WO2024016121A1 - 侧行传输方法、终端和网络设备 - Google Patents

侧行传输方法、终端和网络设备 Download PDF

Info

Publication number
WO2024016121A1
WO2024016121A1 PCT/CN2022/106305 CN2022106305W WO2024016121A1 WO 2024016121 A1 WO2024016121 A1 WO 2024016121A1 CN 2022106305 W CN2022106305 W CN 2022106305W WO 2024016121 A1 WO2024016121 A1 WO 2024016121A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission resources
information
sidelink transmission
sideline
sidelink
Prior art date
Application number
PCT/CN2022/106305
Other languages
English (en)
French (fr)
Inventor
赵振山
张世昌
丁伊
马腾
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/106305 priority Critical patent/WO2024016121A1/zh
Publication of WO2024016121A1 publication Critical patent/WO2024016121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like

Definitions

  • the present application relates to the field of communications, and more specifically, to a sideline transmission method, terminal and network equipment.
  • SL-U sidelink over unlicensed spectrum
  • terminals need to perform channel listening before using sidelink transmission resources for data transmission. Sidelink transmission can only be performed when the channel is idle. If the terminal's sidelink transmission resources are continuous in the time domain, the terminal can continue to occupy the channel if it successfully performs channel sensing before the first time slot of the sidelink transmission resource.
  • the terminal's sidelink transmission resources are continuous in the time domain, the terminal can continue to occupy the channel if it successfully performs channel sensing before the first time slot of the sidelink transmission resource.
  • Embodiments of the present application provide a sidelink transmission method, including: a first terminal obtains first information, the first information is used to indicate M sidelink transmission resources; the first terminal determines N sidelink transmission blocks; A terminal uses the M sideline transmission resources to send the N sideline transmission blocks to the second terminal; where M and N are integers greater than 1, and M is greater than or equal to N.
  • Embodiments of the present application provide a sidelink transmission method, including: the second terminal receives N sidelink transmission blocks sent by the first terminal to the second terminal using M sidelink transmission resources; where M and N are greater than 1. Integer, M is greater than or equal to N.
  • Embodiments of the present application provide a sidelink transmission method, including: a network device sends first information, the first information is used to indicate M sidelink transmission resources, where the M sidelink transmission resources correspond to N sidelink transmissions block, the M sideline transmission resources are used to transmit the N sideline transmission blocks, where M and N are integers greater than 1, and M is greater than or equal to N.
  • Embodiments of the present application provide a first terminal, including: a receiving unit, configured to obtain first information, the first information being used to indicate M sideline transmission resources; a processing unit, configured to determine N sideline transmission blocks; The sending unit is configured to use the M sideline transmission resources to send the N sideline transmission blocks to the second terminal; where M and N are integers greater than 1, and M is greater than or equal to N.
  • An embodiment of the present application provides a second terminal, including: a receiving unit, configured to receive N sideline transmission blocks sent by the first terminal to the second terminal using M sideline transmission resources; where M and N are greater than 1 is an integer, M is greater than or equal to N.
  • An embodiment of the present application provides a network device, including: a sending unit, configured to send first information, where the first information is used to indicate M sideline transmission resources, where the M sideline transmission resources correspond to N sideline Transmission blocks, the M sideline transmission resources are used to transmit the N sideline transmission blocks, where M and N are integers greater than 1, and M is greater than or equal to N.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer program stored in the memory, so that the terminal device performs the above-mentioned sideline transmission method.
  • An embodiment of the present application provides a network device, including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, so that the network device performs the above-mentioned sidelink transmission method.
  • An embodiment of the present application provides a chip for implementing the above sideline transmission method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned sideline transmission method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, it causes the device to perform the above-mentioned side transmission method.
  • An embodiment of the present application provides a computer program product, which includes computer program instructions.
  • the computer program instructions cause the computer to execute the above-mentioned side-by-side transmission method.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to perform the above sideline transmission method.
  • the embodiment of the present application can transmit side-link transmission blocks through multiple side-link transmission resources, thereby improving transmission efficiency.
  • Figure 1 is a schematic diagram of intra-network communication according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of partial network coverage for sideline communications according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of network coverage outer row communication according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a central control node according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of unicast according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of multicast according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of broadcasting according to an embodiment of the present application.
  • Figures 8a and 8b are schematic diagrams of the time slot structure in NR-V2X according to embodiments of the present application.
  • Figure 9 is a schematic diagram of lateral feedback according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of a multicast communication sideline feedback schematic diagram according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of the NR-V2X system frame structure according to an embodiment of the present application.
  • Figure 12 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application.
  • Figure 13 is a schematic flow chart of a sidelink transmission method according to another embodiment of the present application.
  • Figure 14 is a schematic flow chart of a sidelink transmission method according to another embodiment of the present application.
  • Figure 15 is a schematic diagram illustrating the correspondence between sideline transmission resources and sideline transmission blocks.
  • Figure 16 is a schematic diagram of valid bits in the NDI information field.
  • Figure 17 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application.
  • Figures 18a to 18d are schematic diagrams of how to determine the correspondence between sideline transmission resources and sideline transmission blocks.
  • Figure 19 is a schematic diagram of frequency domain resources corresponding to sidelink transmission resources between different groups.
  • Figure 20 is a schematic diagram of Example 1 of determining the frequency domain resource correspondence relationship corresponding to the sidelink transmission resource.
  • Figure 21 is a schematic diagram of Example 2 of determining the frequency domain resource correspondence relationship corresponding to the sidelink transmission resource.
  • Figure 22 is a schematic diagram of Example 3 of determining the frequency domain resource correspondence relationship corresponding to the sidelink transmission resource.
  • Figure 23 is a schematic diagram of Example 4 of determining the frequency domain resource correspondence relationship corresponding to the sidelink transmission resource.
  • Figure 24 is a schematic diagram of Example 5 of determining the frequency domain resource correspondence relationship corresponding to the sidelink transmission resource.
  • Figure 25 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application.
  • Figure 26 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application.
  • Figure 27 is a schematic block diagram of a first terminal according to an embodiment of the present application.
  • Figure 28 is a schematic block diagram of a second terminal according to an embodiment of the present application.
  • Figure 29 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Figure 30 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 31 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 32 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA)Network scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiment of the present application can also be applied to licensed spectrum , among which, licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • side-link communication according to the network coverage of the communicating terminal, it can be divided into side-link communication with network coverage, side-link communication with partial network coverage, and side-link communication with network coverage, respectively, as shown in Figure 1, Figure 2, and Figure 3 and Figure 4.
  • Figure 1 In sidelink communication within network coverage, all terminals performing sidelink communication are within the coverage of the same base station. Therefore, the above-mentioned terminals can perform sidelink based on the same sidelink configuration by receiving configuration signaling from the base station. communication.
  • Figure 2 When part of the network covers side-link communication, some terminals performing side-link communication are located within the coverage of the base station. These terminals can receive the configuration signaling of the base station and perform side-link communication according to the configuration of the base station. Terminals located outside the network coverage cannot receive the configuration signaling of the base station. In this case, the terminal outside the network coverage will be determined based on the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminal located within the network coverage. Side row configuration for side row communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • Figure 3 For side-link communication outside network coverage, all terminals performing side-link communication are located outside the network coverage, and all terminals determine the side-link configuration based on pre-configuration information for side-link communication.
  • Figure 4 For side-line communication with a central control node, multiple terminals form a communication group.
  • the communication group has a central control node, which can also be called a cluster head terminal (Cluster Header, CH).
  • the central control node has at least one of the following functions: responsible for the establishment of communication groups; joining and leaving group members; coordinating resources, allocating sideline transmission resources to other terminals, receiving sideline feedback information from other terminals; communicating with other communication groups Carry out resource coordination and other functions.
  • D2D communication is a side link transmission technology (SL: Sidelink, side link), which uses end-to-end direct communication to communicate with traditional cellular systems through base stations. There are different ways of receiving or sending. Therefore, it has higher spectrum efficiency and lower transmission delay. There are two transmission modes defined in 3GPP: first mode and second mode.
  • the transmission resources of the terminal are allocated by the base station, and the terminal sends data on the sidelink according to the resources allocated by the base station.
  • the base station can dynamically allocate sidelink transmission resources to the terminal, or can allocate semi-static transmission resources to the terminal.
  • the terminal is located within the network coverage, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the terminal selects a resource in the resource pool for data transmission.
  • the terminal is located outside the cell coverage, and the terminal independently selects transmission resources from the preconfigured resource pool for sidelink transmission.
  • the terminal independently selects transmission resources from the resource pool configured in the network for side transmission.
  • unicast, multicast and broadcast transmission methods are introduced.
  • unicast transmission there is only one receiving terminal.
  • unicast transmission is performed between UE1 and UE2.
  • the receiving end is all terminals in a communication group, or all terminals within a certain transmission distance.
  • UE1, UE2, UE3 and UE4 form a communication group, in which UE1 sends data, and other terminal devices in the group are receiving terminals.
  • the receiving end is any terminal around the sending end terminal.
  • UE1 is the sending end terminal, and the other terminals around it, UE2-UE6, are all receiving end terminals.
  • Figure 8a shows the time slot structure that does not include PSFCH (Physical Sidelink Feedback Channel, physical sidelink feedback channel) in the time slot.
  • Figure 8b shows the time slot structure including PSFCH.
  • PSFCH Physical Sidelink Feedback Channel, physical sidelink feedback channel
  • PSCCH Physical Sidelink Control Channel
  • OFDM Orthogonal Frequency Division Multiplexing, positive Cross-frequency division multiplexing
  • PRBs Physical Resource Blocks
  • PSSCH also starts from the second sidelink symbol of the time slot in the time domain.
  • the last time domain symbol in the time slot is the Guard Period (GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first siderow symbol in this time slot is a repetition of the second siderow symbol.
  • the receiving terminal uses the first siderow symbol as an AGC (Automatic Gain Control) symbol. The symbol on this symbol The data is generally not used for data demodulation.
  • PSSCH occupies K sub-channels in the frequency domain, and each sub-channel includes A consecutive PRBs. As shown in Figure 8a.
  • the penultimate and penultimate symbols in the time slot are used for PSFCH channel transmission, and a time domain symbol before the PSFCH channel is used as the GP symbol, as shown in Figure 8b.
  • NR-V2X in order to improve reliability, a sidelink feedback channel is introduced.
  • the unicast and multicast transmission methods in the NR-V2X system support sideline feedback, but the broadcast transmission method does not support sideline feedback.
  • the sending terminal sends sideline data (including PSCCH and PSSCH) to the receiving terminal, and the receiving terminal sends HARQ (Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request) feedback information to the sending terminal.
  • HARQ Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request
  • the sending terminal determines whether retransmission is needed based on the feedback information from the receiving terminal.
  • the HARQ feedback information is carried in the sidelink feedback channel, such as PSFCH.
  • two sideline HARQ feedback methods are introduced, namely, the sideline HARQ feedback method that only feeds back NACK, and the sideline HARQ feedback method that feeds back ACK or NACK.
  • the transmitting end indicates the sidelink HARQ feedback mode of the receiving end in SCI (Sidelink Control Information).
  • the first type of multicast sidelink HARQ feedback method also called NACK-only sidelink feedback method.
  • NACK is sent to the sending UE. If the UE successfully detects the PSSCH, no sidelink HARQ feedback information is sent, and all UEs that need to send NACK use the same feedback resource to send NACK.
  • This sideline HARQ feedback method is usually suitable for connection-less multicast transmission, that is, no communication group is established between UEs.
  • this side-link HARQ feedback method is usually combined with communication distance requirements, that is, only UEs within a certain distance range from the sending-end UE send side-link HARQ feedback information to the sending-end UE, and UEs outside the communication distance range There is no need to send sideline HARQ feedback information.
  • the second type of multicast sidelink HARQ feedback method ACK/NACK sidelink feedback method.
  • connection-based multicast communication a group of UEs forms a communication group, and each UE in the group corresponds to an intra-group identifier. For example, as shown in Figure 10, if a communication group includes 4 UEs, the group size is 4, and the group identifier of each UE corresponds to ID#0, ID#1, ID#2, and ID#3 respectively. Each UE can learn the number of group members and the group identifier of the UE in the group. When a UE sends PSCCH/PSSCH, other UEs in the group are receiving UEs.
  • Each receiving UE decides to feed back ACK or NACK to the sending UE based on the detected status of PSSCH, and each receiving UE uses a different side.
  • Line HARQ feedback resources that is, sideline HARQ feedback is performed through frequency division multiplexing (Frequency Division Multiplexing, FDM) or code division multiplexing (Code Division Multiplexing, CDM).
  • FDM Frequency Division Multiplexing
  • CDM Code Division Multiplexing
  • P 1, 2, 4
  • the feedback information of the PSSCH transmitted in time slots 2, 3, 4, and 5 is all transmitted in time slot 7, so the time slot ⁇ 2, 3, 4, 5 ⁇ can be regarded as a time slot set,
  • the corresponding PSFCH of the PSSCH transmitted in this time slot set is in the same time slot.
  • the minimum time interval between the PSSCH and its corresponding PSFCH can be configured through the resource pool configuration information. As shown in Figure 11, the minimum time interval between the PSSCH and its corresponding PSFCH is 2 time slots.
  • Mode 1 resource allocation methods of Mode 1 (ie, the above-mentioned first mode) and Mode 2 (ie, the above-mentioned second mode) are supported.
  • the terminal independently selects transmission resources from the resource pool for side-link transmission, which is the above-mentioned second mode; in mode 1, the network allocates side-link transmission resources to the terminal, which is the above-mentioned first mode.
  • the network can Dynamic Scheduling (DG) is used to allocate side-link transmission resources to terminals; or the network can allocate Side-link Configuration Grant (SL CG) transmission resources to terminals.
  • DG Dynamic Scheduling
  • SL CG Side-link Configuration Grant
  • the resource allocation method of CG there are mainly two configuration authorization methods: type-1configured grant (the first type of configuration authorization) and type-2configured grant (the second type of configuration authorization)
  • the first type of configuration authorization the network configures sidelink transmission resources for the terminal through RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the UE receives the high-level parameters, it can immediately use the configured transmission parameters at the configured time and frequency. Sidelink transmission is performed on the resource.
  • the second type of configuration authorization adopts a two-step resource configuration method, that is, the resource configuration method of RRC signaling and DCI (Downlink Control Information, downlink control information); first, some parameters are configured by RRC signaling, and then the second step is activated by DCI Class configuration authorized transmission, and at the same time configure other transmission resources and transmission parameters including time domain resources, frequency domain resources, etc.
  • the network can deactivate the sidelink configuration authorization through DCI. After the terminal receives the deactivated DCI, it can no longer use the sidelink configuration authorization transmission resources for sidelink transmission.
  • the sidelink configuration authorization resource of the network configuration is associated with a resource pool, that is, the transmission resource of the sidelink configuration authorization is the transmission resource in the resource pool associated with it.
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is usually considered a shared spectrum, that is, communication equipment in different communication systems can use the spectrum as long as it meets the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum authorization from the government.
  • MCOT Maximum channel occupancy time
  • Channel Occupancy Time refers to the length of time that the unlicensed spectrum channel is used for signal transmission after LBT is successful.
  • the signal occupied channel may be discontinuous within this length of time. Among them, the longest one COT cannot exceed 20ms, and the length of time occupied by signal transmission within the COT does not exceed MCOT.
  • Channel occupancy time (gNB-initiated COT) of network equipment i.e. base station: also called COT initiated by network equipment, refers to the channel occupancy time obtained after successful LBT of network equipment.
  • the channel occupation time of the network device can also be used for the UE to perform uplink transmission under certain conditions.
  • UE's channel occupancy time (UE-initiated COT): also called UE-initiated COT, refers to the channel occupancy time obtained after the UE LBT is successful.
  • the channel access method is also called the LBT method, that is, channel access and LBT can be interchanged.
  • Type1 LBT method multi-slot channel detection based on random backoff adjusted by the contention window size. According to the channel access priority p, channel occupation with a length of Tmcot can be initiated.
  • the base station uses the type1 LBT method, in addition to sending its own data , the COT can also be shared with the UE.
  • the UE uses the type 1 LBT method. In addition to sending its own data, the COT can also be shared with the base station.
  • the following table shows the channel access priority and corresponding parameters when the terminal performs Type-1LBT.
  • m p refers to the number of backoff time slots corresponding to the channel access priority p
  • CW p refers to the contention window size corresponding to the channel access priority p
  • CW min,p refers to the minimum value of CW p corresponding to channel access priority p
  • CW max,p refers to the maximum value of CW p corresponding to channel access priority p
  • T mcot,p refers to channel access priority The maximum occupied time length of the channel corresponding to level p.
  • Type 2 is a channel access method based on fixed-length channel monitoring time slots.
  • Type2A LBT mode single time slot detection of 25us (microsecond) channel, channel detection starts at least 25us before data starts to be sent, including at least one 16us detection and one 9us detection, if the channels are all idle, then If the channel is considered to be idle, channel access can be performed.
  • Type2B's LBT method uses a single time slot with a fixed length of 16us for channel detection. If the channel is idle for more than 4us in the last 9us, the channel is considered to be idle.
  • the LBT method of Type2C does not perform channel detection and transmits directly. Because the time difference between this transmission and the previous transmission is less than 16us, it can be considered as the same transmission, but the transmission length does not exceed 584us.
  • the terminal needs to perform data transmission before using the sidelink transmission resources.
  • Channel sensing, or LBT enables sidelink transmission only when the channel is idle. If the terminal's sidelink transmission resources are continuous in the time domain, that is, occupying adjacent time slots, if the terminal's LBT before the first time slot is successful, it can continue to occupy the channel, thereby reducing the number of LBTs and increasing the channel occupancy rate. . Therefore, in the SL-U system, consider supporting sidelink transmission resources based on continuous time domain, such as the resource allocation method of continuous time slots.
  • the terminal autonomously selects multiple resources in consecutive time slots.
  • the network allocates sidelink transmission resources on consecutive time slots to the terminal.
  • Embodiments of the present application can use consecutive time slots to transmit multiple sideline transmission blocks (Transmission Block, TB).
  • Figure 12 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 to 7, but is not limited thereto.
  • the method 1200 includes at least part of the following.
  • the first terminal obtains first information, which is used to indicate M sidelink transmission resources;
  • the first terminal determines N sideline transmission blocks
  • the first terminal uses M sideline transmission resources to send N sideline transmission blocks to the second terminal;
  • M and N are integers greater than 1, and M is greater than or equal to N.
  • M and/or N may also be equal to 1.
  • M is an integer multiple of N.
  • the first terminal may receive first information from the network device.
  • the first information may be used to indicate the M sidelink transmission resources allocated by the network device to the first terminal.
  • the first information is DCI or RRC.
  • the first terminal may also receive first information from other terminals.
  • the first information may be used to indicate the M sideline transmission resources allocated by other terminals to the first terminal.
  • the first information is SCI, MAC. (Media Access Control, Media Access Control) CE (Control Element, Control Unit) or PC5-RRC (PC5 Radio Resource Control, PC5 Radio Resource Management), where the other terminal can be the second terminal, or in addition to the first terminal and A terminal other than the second terminal.
  • the first terminal can also autonomously select M sideline transmission resources and generate the first information based on the M sideline transmission resources.
  • the first information can be used to indicate the M sideline transmission resources, for example, the first One piece of information is SCI, and the first terminal uses the above-mentioned second mode to determine the M sidelink transmission resources.
  • the first terminal may determine N sidelink transmission blocks based on the M sidelink transmission resources indicated by the first information. Then, the first terminal may use the M sidelink transmission resources to send N sidelink transmission blocks to the second terminal.
  • the M sidelink transmission resources may include one or more groups of sidelink transmission resources that are continuous in the time domain, or the time domain of the M sidelink transmission resources is not continuous.
  • the M sidelink transmission resources can transmit one or more sidelink transmission blocks.
  • sideline data, sideline transmission block or sideline data block may represent the same meaning, or may have a corresponding relationship, and the three may be interchanged.
  • the first information indicates that the M sidelink transmission resources include transmission resources for new data transmission; or, the first information indicates that the M sidelink transmission resources include transmission resources for the first transmission of sideline data blocks. Transmission resources; or, the first information indicates that the M sidelink transmission resources only include transmission resources for retransmitting sideline data blocks.
  • the first information indicates four sideline transmission resources, which are used to transmit four sideline transmission blocks, and these four sideline transmission resources are respectively used for the first transmission of these four sideline transmission blocks; or, the first information indicates 4 sideline transmission resources are used to transmit 2 sideline transmission blocks.
  • These 4 sideline transmission resources are used for the first transmission and the first retransmission of these 2 sideline transmission blocks respectively; or, the first information indication
  • Two sideline transmission resources are used to retransmit one sideline transmission block. These two sideline transmission resources are used for two retransmissions of one sideline transmission block.
  • Figure 13 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 to 7, but is not limited thereto.
  • the method 1300 includes at least part of the following.
  • the first terminal determines the number of sideline transmission blocks according to the number of sideline transmission resources.
  • this embodiment can be combined with any method step of the above embodiment.
  • the first terminal determines N side row transmission blocks, including: S1310, the first terminal determines N side row transmission blocks according to The number of sidelink transmission resources determines the number of sidelink transmission blocks.
  • the number of sidelink transmission resources includes at least one of the following:
  • the maximum number of sidelink transmission resources that the first information can indicate is the maximum number of sidelink transmission resources that the first information can indicate
  • the first information indicates the number of sidelink transmission resources.
  • the network device or other terminals may allocate sidelink transmission resources to the first terminal through the first information.
  • the first information may be first signaling.
  • the first signaling can be DCI (Downlink Control Information), RRC signaling, SCI, MAC CE or PC5-RRC, etc.
  • the first terminal determines the number of sidelink transmission blocks according to the maximum number of sidelink transmission resources that the network device can indicate through the first information, or the number of sidelink transmission resources that the network device indicates through the first information.
  • the maximum number of side-link transmission resources that can be indicated by the first information may also be referred to as the maximum number of side-link transmission resources that can be allocated by the first information, or may be referred to as the maximum number of side-link transmission resources.
  • the number of sidelink transmission resources indicated by the first information may also be called the actual number of sidelink transmission resources allocated by the first information, etc., or may be simply referred to as the actual number of sidelink transmission resources, etc.
  • the actual number of sidelink transmission resources indicated by the first information is less than or equal to the maximum number of sidelink transmission resources that can be indicated by the first information.
  • the method further includes:
  • the first terminal obtains second information, and the second information is used to determine the maximum number of sidelink transmission resources that can be indicated by the first information.
  • the second information is information in resource pool configuration information. In yet another implementation manner, the second information is determined based on protocol predefinition, preconfiguration information or network configuration information.
  • the maximum number of sidelink transmission resources that the first information can indicate is determined by at least one of the following:
  • the first information is DCI, and the maximum number of sidelink transmission resources that the first information can indicate is determined based on the maximum number of sidelink transmission resources that the DCI can indicate; or,
  • the first information is RRC signaling
  • the maximum number of sidelink transmission resources that the first information can indicate is the maximum number of sidelink transmission resources included in one cycle of the sidelink configuration authorized transmission resources configured according to the RRC signaling. definite; or,
  • the maximum number of side-link transmission resources that can be indicated by the first information is determined based on the maximum number of side-link transmission resources that can be indicated by the SCI.
  • the first information is the SCI
  • the maximum number of side transmission resources that the first information can indicate is determined based on the maximum number of side transmission resources that the SCI can indicate.
  • the first information is DCI and/or RRC signaling. In the DCI or RRC signaling, the same method or the same information field as the SCI is used to indicate sidelink transmission resources. Therefore, the first information can indicate sidelink transmission.
  • the maximum number of resources is determined based on the maximum number of sidelink transmission resources that the SCI can indicate.
  • the number of sidelink transmission resources indicated by the first information includes at least one of the following:
  • the first information is DCI, and the number of sidelink transmission resources indicated by the first information is the number of sidelink transmission resources indicated by the DCI;
  • the first information is RRC signaling, and the number of sidelink transmission resources indicated by the first information is the number of sidelink transmission resources included in a sidelink configuration authorization period;
  • the first information is SCI
  • the number of sidelink transmission resources indicated by the first information is the number of sidelink transmission resources indicated by the SCI.
  • the first information is DCI, it is a resource allocation method based on DCI, and the number of sidelink transmission resources indicated by the network device is the number of sidelink transmission resources indicated by DCI.
  • the first information is RRC signaling, or the first information is DCI and RRC signaling, which is the resource allocation method of side-link configuration authorization (SL CG)
  • the number of side-link transmission resources indicated by the network device through the first information is one The number of sidelink transmission resources included in the sidelink configuration authorization cycle.
  • the first information is SCI
  • the number of side transmission resources is the number of side transmission resources indicated by the SCI, excluding the number of reserved side transmission resources in the next cycle.
  • the number of sidelink transmission resources indicated by the network device may include the number of transmission resources included in a set of time-domain continuous sidelink transmission resources, or may include the number of transmission resources included in multiple sets of time-domain continuous sidelink transmission resources.
  • the amount of resources For example, if the network device allocates 3 groups of time domain continuous sidelink transmission resources through DCI, each group includes transmission resources of 2 consecutive time slots, then the number of sidelink transmission resources allocated by the network equipment is 6 (i.e., multiple groups of time domain The number of transmission resources included in consecutive sidelink transmission resources). For another example, the network device allocates a group of time-domain continuous sidelink transmission resources through DCI. The group includes transmission resources of 2 consecutive time slots. Then the number of sidelink transmission resources allocated by the network equipment is 2 (i.e., a group of time-domain transmission resources). The number of transmission resources included in the domain’s continuous sidelink transmission resources).
  • the method further includes: the first terminal obtaining a first parameter, the first parameter being used to determine the number of sideline transmission blocks.
  • the first parameter does not need to be configured.
  • the number of sidelink transmission blocks can be determined based on the number of sidelink transmission resources. .
  • the first parameter represents the number of sidelink transmission resources corresponding to one sidelink transmission block.
  • the number of sidelink transmission blocks corresponding to the sidelink transmission resources indicated by the network device may be determined according to the first parameter.
  • the first parameter R1 is an integer greater than or equal to 1.
  • One sidelink transmission block corresponds to R1 sideline transmission resources.
  • the multiple sidelink transmission resources transmit the same sidelink transmission block.
  • the value of the first parameter is determined by the first terminal based on at least one of protocol predefinition, preconfiguration information, or network configuration information.
  • the number of sidelink transmission blocks is determined by the first terminal based on the number of sidelink transmission resources indicated by the first information and the first parameter.
  • the number of sidelink transmission blocks is determined by the first terminal according to the maximum number of sidelink transmission resources that can be indicated by the first information and the first parameter.
  • the method further includes: the first terminal determining a maximum number of sideline transmission blocks; wherein the maximum number of sideline transmission blocks is a sideline that the first terminal can indicate based on the first information.
  • the maximum number of transmission resources is determined by this first parameter.
  • the number of resources included in a set of time-domain continuous sidelink transmission resources allocated by the network device to the first terminal is 2, and the number of sidelink transmission blocks is determined to be 1 according to the first parameter R1.
  • the first terminal may determine the maximum number or side number of the corresponding side link transmission blocks according to the maximum number of side line transmission resources that can be indicated by the first information or the actual number of side line transmission resources indicated by the first information.
  • the number of line transmission blocks can support network equipment or other terminals to allocate different amounts of side line transmission resources to the first terminal, thereby improving scheduling flexibility.
  • Figure 14 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 to 7, but is not limited thereto.
  • the method 1400 includes at least part of the following.
  • the first terminal determines the information of the NDI information field.
  • the first information includes an NDI (New Data Indicator, new data indication) information field.
  • the method 1400 also includes: S1410 .
  • the first terminal determines the information of the NDI information field.
  • S1410 may be executed before S1210 or after S1210; alternatively, S1410 may be executed before S1220 or after S1220.
  • the DCI when the network device allocates sidelink transmission resources to the first terminal through DCI, the DCI may be DCI used for dynamic scheduling, or it may be DCI used to activate Type-2SL CG, or it may be used to activate Type-2SL CG. DCI for retransmission scheduling.
  • the DCI may include an NDI information field, the number of bits of the NDI information field is N, and N is an integer greater than or equal to 1. If the NDI information field is 1 bit, the first terminal can use the sidelink transmission resources allocated by the DCI to transmit a sidelink transmission block. If the NDI information field is multiple bits, the first terminal may use the sidelink transmission resources allocated by the DCI to transmit multiple sidelink transmission blocks.
  • the RRC signaling may be, for example, configuration signaling used to configure Type-1 sidelink configuration authorized transmission resources.
  • the information in the NDI information field includes at least one of the following:
  • the number of bits in the NDI information field may also be called the maximum number of bits in the NDI information field or the maximum value of the number of bits in the NDI information field.
  • the number of valid bits in the NDI information field may be less than or equal to the number of bits in the NDI information field.
  • the number of bits in the NDI information field is 6, and the number of valid bits in the NDI information field is 6.
  • the number of bits in the NDI information field is 6, and the number of valid bits in the NDI information field is 4.
  • the valid bits in the NDI information field may include bits with valid values among all the bits in the NDI information field.
  • the valid bits of the NDI information field may include some of the bits among all the bits of the NDI information field.
  • the number of bits in the NDI information field is 6, the number of valid bits in the NDI information field is 4, and the valid bits are the lowest 4 bits in the NDI information field.
  • the number of bits in the NDI information field is 6, the number of valid bits in the NDI information field is 3, and the valid bits are the highest 3 bits in the NDI information field.
  • the number of bits in the NDI information field is determined based on at least one of protocol predefinition, preconfiguration information, or network configuration information.
  • the number of bits in the NDI information field is predefined in the protocol.
  • the resource pool configuration information or the sidelink bandwidth part (Bandwidth Part, BWP) configuration information includes indication information, and the indication information is used to indicate the number of bits in the NDI information field.
  • the information in the NDI information field is determined based on the number of sidelink transmission resources and/or the number of sidelink transmission blocks.
  • S1410 may include the first terminal determining the information of the NDI information field according to the number of sidelink transmission resources and/or the number of sidelink transmission blocks.
  • the number of bits in the NDI information field corresponds to the maximum number of sidelink transmission resources that can be indicated by the first information and/or the maximum number of sidelink transmission resources that can be indicated by the first information. Determined by the maximum number of sideline transmission blocks.
  • the first terminal may determine the number of bits in the NDI information field based on the maximum number of sidelink transmission resources that can be indicated by the first information. For example, if the maximum number of sidelink transmission resources is 4, then the number of bits included in the NDI information field is also 4.
  • the first terminal determines the number of bits in the NDI information field according to the maximum number of sidelink transmission blocks that can be transmitted by the sidelink transmission resource indicated by the first information.
  • the maximum number of sidelink transmission blocks that can be transmitted by the sidelink transmission resources indicated by the first information may be the maximum number of sidelink transmission blocks corresponding to the maximum number of sidelink transmission resources indicated by the first information.
  • the number of bits in the NDI information field is determined based on the maximum number of sidelink transmission resources that can be indicated by the first information, including: the number of bits in the NDI information field is determined based on the maximum number of sideline transmission resources that can be indicated by the first information.
  • the maximum number of side-link transmission resources is determined by a second parameter, where the second parameter represents a multiple relationship between the number of side-link transmission resources and the number of bits in the NDI information field.
  • the number of sidelink transmission resources is M
  • the second parameter is R2
  • the maximum number of sidelink transmission resources that can be indicated by the first information there is a corresponding relationship between the maximum number of sidelink transmission resources that can be indicated by the first information and the number of bits in the NDI information field.
  • the number of bits in the NDI information field may be determined based on the maximum number of sidelink transmission resources that can be indicated by the first information and the corresponding relationship.
  • the first terminal needs to determine the number of valid bits in the NDI information field and the corresponding valid bits. .
  • the number of bits in the NDI information field is equal to the ratio between the maximum number of sidelink transmission resources that the first information can indicate and the second parameter.
  • the maximum number of sidelink transmission resources is Mmax
  • the second parameter is R2
  • the number of bits in the NDI information field is determined based on the maximum number of sidelink transmission blocks corresponding to the maximum number of sidelink transmission resources that the first information can indicate, or, the number of bits in the NDI information field
  • the number of bits is determined based on the maximum number of side transmission blocks, including: the maximum number of side transmission blocks is the same as the number of bits in the NDI information field, where the maximum number of side transmission blocks is the same as that indicated by the first information.
  • There is a corresponding relationship between the maximum number of sidelink transmission resources. For example, the maximum number of sideline transport blocks is Tmax, and the number of bits in the NDI information field is Kmax Tmax.
  • S1410 further includes: the first terminal determines the number of effective bits of the NDI information field according to the number of sidelink transmission resources and/or the number of sidelink transmission blocks indicated by the first information. For example, when the number of sideline transmission blocks is less than the maximum number of sideline transmission blocks, the first terminal determines the number of effective bits of the NDI information field according to the number of sideline transmission blocks.
  • the number of side-link transmission blocks is the number of side-link transmission blocks determined according to the number of side-link transmission resources indicated by the first information. For example, the number of side transmission blocks (also called the actual number of side transmission blocks, denoted as N) may be less than the maximum number of side transmission blocks, Tmax.
  • the number of bits in the NDI information field may include the number of valid bits and the number of invalid bits, and the number of bits in the NDI information field may include valid bits and invalid bits.
  • the first terminal decides whether to perform retransmission or new data transmission based on whether the valid bits in the NDI information field are flipped, and the invalid bits (or valid bits) in the NDI information field do not correspond to the sideline transmission blocks, that is, the first terminal The decision to retransmit a sideline transport block or transmit a new sideline transport block is not based on invalid bits (or invalid bits).
  • the first terminal may determine the number of effective bits K of the NDI information field according to the number N of sideline transmission blocks.
  • the number of effective bits K in the NDI information field is less than or equal to the number of bits Kmax in the NDI information field.
  • the valid bits in the NDI information field may correspond to sideline transport blocks one-to-one. Whether a bit in the NDI information field is flipped indicates whether a sidelink transport block corresponding to the bit needs to be retransmitted.
  • S1410 may include: the first terminal determines the valid bits of the NDI information field.
  • the first terminal determines the valid bits of the NDI information field, including: the first terminal determines the lowest K bits or the highest K bits of the NDI information field as the NDI information field. Valid bits, where K represents the number of valid bits in the NDI information field.
  • the first terminal determines the valid bits of the NDI information field, including: when the sidelink transmission resources indicated by the first information only include retransmission resources, the first terminal determines the NDI information field. The bits that are not flipped are used as the valid bits of the NDI information field.
  • the sidelink transmission resources indicated by the first information are only used for retransmission of sidelink transmission blocks, then the valid bits in the NDI information field include bits that are not NDI inverted.
  • the first information includes DCI
  • the NDI information field is an information field included in the DCI.
  • the maximum number of sideline transmission blocks that can be transmitted by the sideline transmission resource indicated by the first information there is a corresponding relationship between the maximum number of sideline transmission blocks that can be transmitted by the sideline transmission resource indicated by the first information and the number of bits in the NDI information field.
  • the number of bits in the NDI information field can be determined based on this correspondence.
  • the first terminal needs to determine the number of valid bits in the NDI information field and the corresponding valid bits.
  • the first terminal determines the number of effective bits in the NDI information field based on the actual number. For example, if the maximum number of sidelink transmission resources allocated by the network device is 4, then the number of bits included in the NDI information field is also 4.
  • the actual number of sidelink transmission resources allocated by the gNB to the first terminal is 2, so it is determined that the number of valid bits in the NDI information field (ie, the number of valid bits) is also 2.
  • the valid bits may be the lowest 2 bits or the highest 2 bits in the NDI information field.
  • the first terminal determines the number of valid bits in the NDI information field based on the actual number. For example, if the maximum number of sidelink transmission resources that the network device gNB can indicate through the first information is 6, then the number of bits included in the NDI information field is 3.
  • the actual number of sidelink transmission resources indicated by the gNB to the first terminal through the first information is 2, and then it is determined that the valid bit of the NDI information field is 1. Specifically, the valid bit is the lowest 1 bit or the highest 1 bit in the NDI information field.
  • the sideline transmission method further includes: the first terminal obtains third information, the third information is used to indicate sideline transmission resources for retransmitting the first sideline data block, the N sideline data The first side row data block is included in the block.
  • the network device allocates sidelink transmission resources to the first terminal through the first information, and the sidelink transmission resources include resources for initial transmission of the first sidelink transmission block.
  • the network device allocates sideline transmission resources to the first terminal through the third information, where the sideline transmission resources include resources for retransmitting the first sideline transmission block.
  • the first side transmission block is included in N side transmission blocks, or the first side transmission block is one or more side transmission blocks among the N side transmission blocks.
  • the first information is, for example, DCI or RRC signaling
  • the third information is, for example, DCI.
  • the third information includes an NDI information field, the bits corresponding to the first side row data block in the NDI information field are not flipped, and the remaining bits in the NDI information field are flipped.
  • the third information indicates X sideline transmission resources, and the X sideline transmission resources are used to retransmit the first sideline data block; where X is less than or equal to M.
  • the third information includes an NDI information field.
  • the bits corresponding to the first side row data block in the NDI information field are not flipped.
  • Bits other than those corresponding to the transport block are flipped.
  • the sidelink transmission resources allocated by the third information include transmission resources for retransmitting the first sideline data block and transmission resources for new data transmission.
  • the number of sidelink transmission resources allocated by the third information is the same as the number of sidelink transmission resources allocated by the third information.
  • the number of sideline transmission resources allocated to a piece of information is equal.
  • the third information includes an NDI information field. The bits corresponding to the first sideline transmission block in the NDI information field are not flipped. The remaining bits in the NDI information field are flipped or NDI information. The remaining bits among the valid bits in the field are flipped except for the bits corresponding to the first side row transport block.
  • the first terminal uses the sidelink transmission resources corresponding to the first sidelink transmission block to retransmit the first sidelink transmission block, and uses the sidelink transmission resources corresponding to the remaining valid bits in the NDI information field to transmit the new sideline transmission block.
  • the maximum number of sidelink transmission resources allocated by the network to the terminal through DCI is 4. If the maximum number of sidelink transmission resources is equal to the number of bits in the NDI information field, the number of bits in the NDI information field is determined to be 4; the network passes the first The DCI dynamically allocates 3 sideline transmission resources to the first terminal. The first terminal determines that the number of valid bits in the NDI information field is 3, and determines that the valid bits are the lowest 3 bits in the NDI information field. The 3 allocated by the first DCI Sideline transmission resources are used to transmit three sideline transmission blocks, including a first sideline transmission block, a second sideline transmission block, and a third sideline transmission block.
  • the network allocates three sideline transmission resources to the terminal through the second DCI, including for The retransmission resources for retransmitting the first sideline transmission block also include transmission resources for transmitting new data.
  • the first of the three valid bits of the NDI information field in the second DCI is not flipped, and the second bit is not flipped. and the third bit is flipped, therefore, the first of the 3 sideline transmission resources in the second DCI is used to retransmit the first sideline transmission block, the second and third sideline transmission Resources are used to transmit new side-link transmission blocks.
  • the sidelink transmission resources indicated by the third information are not used for transmitting new sidelink data blocks.
  • the transmission resources indicated by the third information only include retransmission resources.
  • the sideline transmission resources allocated by the third information only include transmission resources for retransmitting the first sideline data block, and do not include transmission resources for new data transmission.
  • the third information includes an NDI information field, and the NDI information.
  • the bits in the field corresponding to the first sideline transport block are not flipped, and the remaining bits in the NDI information field are flipped (denoted as case 1), or the bits in the NDI information field corresponding to the first sideline transport block are not flipped, Among the valid bits in the NDI information field, the remaining bits except the bits corresponding to the first side row transport block are flipped (denoted as case 2).
  • the first terminal uses the sidelink transmission resource corresponding to the first sidelink transmission block to retransmit the first sidelink transmission block.
  • the maximum number of sidelink transmission resources allocated by the network to the terminal through DCI is 4. If the maximum number of sidelink transmission resources is equal to the number of bits in the NDI information field, the number of bits in the NDI information field is determined to be 4; the network passes the first DCI dynamically allocates 3 sideline transmission resources to the first terminal. The first terminal determines that the number of valid bits in the NDI information field is 3, and determines that the valid bits are the lowest 3 bits in the NDI information field; the 3 allocated by the first DCI Sideline transmission resources are used for the first transmission of three sideline transmission blocks, including the first sideline transmission block (TB#1), the second sideline transmission block (TB#2), and the third sideline transmission block (TB#). 3).
  • the lowest three bits in the NDI information field correspond to the three sideline transmission blocks respectively.
  • the lowest bit in the NDI information field corresponds to TB#3
  • the second to last bit in the NDI information field corresponds to TB#2
  • the third to last bit in the NDI information field corresponds to TB#2.
  • the bit corresponds to TB#1. If the network receives the feedback information corresponding to the three sidelink transmission blocks in the sidelink feedback information reported by the terminal as NACK, ACK, and ACK respectively, the network allocates retransmission resources to the terminal through the second DCI for retransmission of the third sidelink transmission block.
  • the number of sideline transmission resources allocated in the second DCI is 1, the sideline transmission resource is used to retransmit the first sideline transmission block, the NDI information field in the second DCI is the same as TB
  • the value of the bit corresponding to #1 is not flipped, but the value of other bits in the NDI information field is flipped (corresponding to the above situation 1).
  • the value of the NDI information field in the first DCI is [0 0 0 0]
  • the last 3 bits are valid bits, and the first bit is an invalid bit
  • the value of the NDI information field in the second DCI is [1 0 1 1], which corresponds to TB# in the second DCI.
  • the bits in the NDI information field of 1 are not flipped, and the remaining bits are flipped.
  • the value of the bit corresponding to TB#1 in the NDI information field in the second DCI is not inverted, but other bits in the valid bits in the NDI information field are inverted (corresponding to the above situation 2), for example, in the first DCI
  • the value of the NDI information field is [0 0 0 0], where the last 3 bits are valid bits and the first bit is an invalid bit;
  • the value of the NDI information field in the second DCI is [0 0 1 1], that is, in the second DCI, the bits corresponding to the NDI information field of TB#1 are not flipped, and the remaining valid bits are flipped.
  • the first bit corresponds to the invalid bit, and its value remains unchanged.
  • the number of sidelink transmission resources allocated by the network device to the terminal through different DCI may be different.
  • the number of bits in the NDI information field can be determined based on the maximum number of side-link transmission resources allocated by the network.
  • the maximum number of sideline transmission resources that the network device can indicate through the first information is Mmax, and the maximum number of corresponding sideline transmission blocks is Tmax.
  • the number of bits Kmax in the NDI information field is determined based on Mmax or Tmax.
  • the correspondence between sideline transmission resources and sideline transmission blocks can include the following three types:
  • Many-to-many correspondence that is, multiple sideline transmission resources are used to transmit multiple sideline transmission blocks. There is no fixed correspondence between sidelink transmission resources and sidelink transmission blocks.
  • the corresponding relationship between the sidelink transmission resources and the sidelink transmission block may be determined based on the UE implementation, or the sidelink transmission resource corresponding to the sidelink transmission block may be determined based on the third parameter (such as priority) corresponding to the sidelink transmission block.
  • the maximum number of sideline transport blocks is the same as the number of NDI information bits. There is a corresponding relationship between sideline transport blocks and NDI information bits.
  • the number of bits in the NDI information field is 4. And there is a 1-to-1 correspondence between NDI information bits and sideline transport blocks.
  • the side-link transmission blocks and the bits of the NDI information field corresponding to the side-link transmission resources are as shown in Figure 16.
  • the valid bits shown in Figure 16 correspond to the leftmost 2 bits of the NDI.
  • the first terminal may determine the subsequent action to be performed based on whether the NDI information field is flipped.
  • the first terminal can perform at least one of the following steps:
  • the first terminal uses the sideline transmission resources corresponding to the first sideline data to transmit the second sideline data; wherein the second sideline data includes one or more sideline data for which NACK is reported. Further, the first terminal reports ACK to the network for the first sideline data.
  • the first terminal retransmits the first sideline data. If the terminal does not retransmit the first sidelink data, and if the sidelink transmission resource corresponding to the first sidelink data does not perform sidelink transmission, it is possible that the sidelink transmission resource will be discontinuous in the time domain, causing the channel to be used by other sources.
  • the device of the system (such as WiFi system) preempts, thus losing the channel occupation. Further, the first terminal reports ACK to the network device for the first sideline data.
  • Figure 17 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 to 7, but is not limited thereto.
  • the method 1700 includes at least part of the following.
  • the first terminal determines the correspondence between N sideline transmission blocks and M sideline transmission resources.
  • this S1710 can be combined with any method step of the above embodiment.
  • the network device may send first information to the first terminal to allocate M sidelink transmission resources to the first terminal. After receiving the first information sent by the network device, the first terminal can obtain the M sidelink transmission resources indicated by the first information.
  • the M side-link transmission resources correspond to N side-link transmission blocks, and it is necessary to determine the corresponding relationship (or mapping relationship) between the side-link transmission blocks and the side-link transmission resources.
  • the M sidelink transmission resources correspond to the N sidelink transmission blocks one-to-one.
  • the four sideline transmission resources are M1, M2, M3 and M4 respectively, and the four sideline transmission blocks are N1, N2, N3 and N4 respectively, where M1 corresponds to N1, M2 corresponds to N2, M3 corresponds to N3 and M4 corresponds to N4. .
  • the number of the sidelink transmission resources is an integer multiple of the number of the sidelink transmission blocks.
  • the network device allocates M sidelink transmission resources to the first terminal, and the number of sidelink transmission blocks (TB) transmitted by the first terminal using the M sidelink transmission resources is N.
  • the first terminal does not expect that M is not an integer multiple of N, or the first terminal does not expect that M cannot be divisible by N.
  • M/N is an integer.
  • the corresponding relationship between the side-link TB and the side-link transmission resources can be determined according to the following manner 1 and 2.
  • Mode 1 Determine the mapping method between sideline TBs and sideline transmission resources based on protocol predefinition, preconfiguration information or network configuration information.
  • Mode 1 may include at least one of the following first mode, second mode, third mode and fourth mode.
  • the first way to determine the correspondence between the N sidelink transmission blocks and the M sidelink transmission resources is to divide the M sidelink transmission resources into an A1 group of sidelink transmission resources.
  • each group includes N side-link transmission resources
  • the N side-link transmission resources included in each group of side-link transmission resources correspond to the N side-link transmission blocks one-to-one, that is, each side of the N side-link transmission resources
  • the row transmission resources are each used to transmit a side row transmission block.
  • the first group of N side-link transmission resources takes turns to perform the first transmission of N TBs.
  • the second transmission of N TB is performed in turn in the next set of N sidelink transmission resources, and so on.
  • N time slots can be spaced between two adjacent transmissions of a TB. If the ACK feedback of the TB can be received before the next retransmission, the retransmission of the TB can be stopped to reduce system congestion. .
  • the second way to determine the correspondence between the N sidelink transmission blocks and the M sidelink transmission resources is to divide the M sidelink transmission resources into N groups of sidelink transmission resources.
  • each group includes A2 sideline transmission resources, and the A2 sideline transmission resources included in each group of sideline transmission resources are used to transmit one of the N sideline transmission blocks.
  • the N group of sideline transmission blocks The resources correspond to the N sidelink transmission blocks one-to-one.
  • the M sidelink transmission resources include a set of time-domain continuous sidelink transmission resources.
  • M sidelink transmission resources correspond to M consecutive M time slots.
  • the M sidelink transmission resources include L groups of time domain continuous sidelink transmission resources. Each group of time domain continuous sidelink transmission resources includes N sidelink transmission resources. Determine the N sidelink transmission resources.
  • the third way of the correspondence between the transport block and the M sidelink transmission resources is: the N sidelink transmission resources included in each group of time domain continuous sidelink transmission resources are one by one with the N sidelink transmission blocks. Correspondingly, that is, each of the N sidelink transmission resources is used to transmit a sidelink transmission block.
  • the third method can be called the third mapping method, which can specifically include: M sidelink transmission resources including L groups of time domain continuous sidelink transmission resources, each group of time domain continuous sidelink transmission resources It includes N side-link transmission resources, that is, the N side-link transmission resources included in a set of time-domain continuous side-link transmission resources correspond to N side-link transmission blocks one-to-one.
  • Each sidelink transmission block is transmitted L times, and is located in L groups of time domain continuous sidelink transmission resources.
  • Sidelink transmission resources of different groups may be discontinuous.
  • the time slots corresponding to resources N-1 and N may not be continuous time slots
  • the time slots corresponding to resources 2N-1 and 2N may not be continuous time slots.
  • the M sidelink transmission resources include N groups of time domain continuous sidelink transmission resources, and each group of time domain continuous sidelink transmission resources includes P sidelink transmission resources. Determine the N sidelink transmission resources.
  • the fourth way of the correspondence between the transport block and the M sidelink transmission resources is: the P sidelink transmission resources included in each group of time domain continuous sidelink transmission resources are used to transmit the N sidelink transmission blocks.
  • a sidelink transmission block in , the N sets of sidelink transmission resources correspond to the N sidelink transmission blocks one-to-one.
  • M sidelink transmission resources include N groups of time domain continuous sidelink transmission resources, the number of sidelink transmission blocks is also N, and each group of time domain Domain-continuous side-link transmission resources include P side-link transmission resources, that is, the P transmission resources included in a set of time-domain-continuous side-link transmission resources are used to transmit 1 side-link transmission block among the N side-link transmission blocks.
  • L groups of time domain continuous sidelink transmission resources are used to transmit L transmission blocks.
  • Different groups of sidelink transmission resources may be discontinuous.
  • the time slots corresponding to resources P-1 and P may not be continuous time slots, and the time slots corresponding to resources 2P-1 and 2P may not be continuous time slots.
  • time slot indexes in Figures 18a to 18d represent the sequential indexes from low to high in the M time slots corresponding to the M sidelink transmission resources.
  • the TB index represents the sequential index of N TBs from low to high.
  • the sidelink transmission resources within the same group may be continuous in the time domain; the sidelink transmission resources between different groups may be continuous in the time domain, or may not be continuous in the time domain.
  • the first terminal may determine the number of sidelink transmission resources corresponding to the sidelink data according to the third parameter of the sidelink data.
  • the correspondence between the N sideline transmission blocks and the M sideline transmission resources is determined based on a third parameter, and the third parameter is based on QoS (Quality of Service, Quality of Service) determined parameters.
  • QoS Quality of Service
  • PQI PC5 5G QoS Identifier, fifth-generation service quality indicator
  • the third parameter includes at least one of the following parameters: priority, reliability, and delay, where the delay includes PDB (Packet Delay Budget).
  • PDB Packet Delay Budget
  • the third parameter is priority. More transmission resources can be allocated to high-priority data to ensure the transmission performance of the sidelink data.
  • the priority value corresponding to the first side transmission block is lower than the priority value corresponding to the second side transmission block (the lower the priority value, the higher the priority level), that is, the first side transmission block has a higher priority. Therefore, the first terminal uses 3 resources to transmit the first sideline transmission block and 1 resource to transmit the second sideline transmission block.
  • the first terminal may determine the time domain sequence and sum of the sidelink transmission resources corresponding to the sidelink transmission block among the M sidelink transmission resources indicated by the first information according to the third parameter of the sidelink transmission block. /or time domain position.
  • the third parameter is the priority, so the sidelink transmission resources corresponding to the high-priority sidelink transmission blocks are located before the sidelink transmission resources corresponding to the low-priority sidelink transmission blocks.
  • the number of sideline data ie, sideline transmission blocks
  • the priority value corresponding to the first side row data is lower than the priority value corresponding to the second side row data (the lower the priority value, the higher the priority level), that is, the priority of the first side row data higher. Therefore, the first terminal uses 2 sidelink resources to transmit the first sidelink data, and the 2 resources are the two resources with the first position in the time domain; and, the first terminal uses 2 sidelink resources to transmit the second sidelink data. Side row data, and the two resources are the two resources at the lower position in the time domain.
  • the method further includes:
  • the first terminal obtains the first corresponding relationship
  • the first terminal determines the number of sideline transmission resources corresponding to the sideline transmission block according to the first correspondence relationship and the third parameter.
  • the first corresponding relationship is at least one of the following:
  • the method further includes: the first terminal determining, based on the third parameter, the time domain sequence and/or timing of the sidelink transmission resources corresponding to the sidelink transmission blocks among the M sidelink transmission resources. domain location.
  • the third parameter includes a priority, so the sidelink transmission resources corresponding to the high-priority sidelink transmission blocks are located before the sidelink transmission resources corresponding to the low-priority sidelink transmission blocks.
  • the third parameter is priority
  • the first correspondence is the correspondence between priority and the maximum number of transmission resources, as shown in the following table:
  • priority value 1 2 3 4 5 6 7 8 Maximum number of transmission resources 4 4 3 3 2 2 1 1
  • the priority value of sidelink data is 3, according to Table 2, the maximum number of corresponding transmission resources is 3.
  • the number of sidelink transmission resources that can be allocated for this sidelink data is 1, 2 or 3.
  • the third parameter is the priority
  • the first correspondence is the correspondence between the priority threshold and the maximum number of transmission resources, as shown in the following table:
  • Priority cap 2 4 6 8 Maximum number of transmission resources 4 3 2 1
  • the priority range corresponding to the upper limit of priority 2 is [1,2].
  • the priority range corresponding to the upper limit of priority 4 is [3,4].
  • the priority range corresponding to the upper limit of priority 6 is [5,6].
  • the priority range corresponding to the upper limit of priority 8 is [7,8].
  • the priority value of sidelink data is 5, according to Table 3, the maximum number of corresponding transmission resources is 2.
  • the number of sidelink transmission resources that can be allocated for this sidelink data is 1 or 2.
  • the sidelink transport block is carried in the physical sidelink shared channel PSSCH.
  • all or part of the OFDM symbols except the last orthogonal frequency division multiplexing OFDM symbol in a time slot are used to transmit the PSSCH.
  • the first terminal transmits the first data in the GP symbol in the time slot such that the idle duration in the GP symbol is less than or equal to a first duration, the first duration is based on Type 2 (Second Type )
  • the idle duration required for channel access is determined, and the first data is cyclic prefix extension or determined based on data on one OFDM symbol.
  • the first duration is 16us or 25us.
  • the idle time period indicates the time period during which the first terminal does not transmit data within the GP symbol.
  • the first data is a cyclic prefix extension (CP extension) or a repetition of data on a certain OFDM symbol.
  • the first terminal uses all OFDM symbols in the time slot that can be used for side lines to transmit side line data.
  • the first information includes a first information field, and the first information field is used to determine a first HARQ Process Number (HARQ Process Number).
  • HARQ Process Number HARQ Process Number
  • the first information is DCI
  • the first information field is a HARQ information field in the DCI
  • the HARQ information field is used to indicate the first HARQ process number.
  • the first information is RRC signaling
  • the first information field includes a fourth parameter and a fifth parameter in the RRC signaling
  • the fourth parameter and the fifth parameter are used to determine the first A HARQ process number
  • the fourth parameter is used to indicate the HARQ process number offset
  • the fifth parameter is used to indicate the number of HARQ process numbers.
  • the fourth parameter is sl-HARQ-ProcID-offset
  • the fifth parameter is sl-NrOfHARQ-Processes.
  • the first HARQ process number associated with the sidelink transmission resource of each period (or the first sidelink transmission resource of each period) authorized by the sidelink configuration can be determined. For example, determine the first HARQ process number according to the following formula:
  • HARQ Process ID [floor(CURRENT_slot/PeriodicitySL)]modulo sl-NrOfHARQ-Processes+sl-HARQ-ProcID-offset
  • CURRENT_slot represents the logical time slot corresponding to the sidelink transmission resource in each cycle (or the first sidelink transmission resource in each cycle) authorized by the sidelink configuration, which can also be called the current logical time slot;
  • PeriodicitySL It is determined based on the side row configuration authorization cycle. For example:
  • sl-PeriodCG represents the side-link configuration authorization period
  • T' max represents the number of time slots included in an SFN (or DFN) cycle by the resource pool associated with the side-link configuration authorization transmission resources.
  • the method further includes: the first terminal determines a second HARQ process number, the second HARQ process number is determined by the first terminal based on the first HARQ process number and the number of sideline transmission blocks.
  • the sideline HARQ process number is the HARQ process number carried in the SCI.
  • the first terminal determines the second HARQ process number, including: the first terminal determines N second HARQ process numbers according to the number N of the sideline transmission blocks, and each sideline transmission block respectively Corresponds to the second HARQ process number.
  • the first terminal obtains the first information and determines the sideline HARQ process number (recorded as the second HARQ process number) according to the first information field (carrying the first HARQ process number) in the first information and the value of N.
  • the number of second HARQ process numbers is equal to the number N of sidelink transmission blocks.
  • the first terminal may randomly select N HARQ process numbers from unused sideline HARQ process numbers as the N second HARQ process numbers.
  • one first HARQ process number corresponds to N second HARQ process numbers, and the first terminal can determine the correspondence between the first HARQ process number and the N second process numbers.
  • At least the maximum number of sidelink transmission resources, the maximum number of sidelink transmission blocks, the number of second HARQ process numbers, and the number of bits of the NDI information field in the first information that can be indicated by the first information is determined based on protocol predefinition, preconfiguration information or network configuration information.
  • At least the maximum number of sidelink transmission resources, the maximum number of sidelink transmission blocks, the number of second HARQ process numbers, and the number of bits of the NDI information field in the first information that can be indicated by the first information is a second corresponding relationship between the two.
  • At least two of the number of sidelink transmission resources indicated by the first information, the number of sidelink transmission blocks, the number of second HARQ process numbers, and the number of valid bits of the NDI information field in the first information There is a third corresponding relationship between them.
  • At least one of the following information is determined based on protocol predefinition, preconfiguration information or network configuration information: the number of sideline transmission resources indicated by the first information, the number of sideline transmission blocks, the number of second HARQ process numbers, the number of first The number of valid bits included in the NDI information field in signaling.
  • the resource pool configuration information includes indication information.
  • the indication information is used to indicate the number of bits N corresponding to the NDI information field included in the DCI.
  • the indication information is used to indicate the number of sidelink TBs transmitted by the sidelink transmission resources allocated by the network.
  • the indication information is used to indicate the number (or maximum number) of sidelink transmission resources allocated by the network.
  • the M sidelink transmission resources include one or more groups of time-domain continuous sidelink transmission resources.
  • a set of P sidelink transmission resources that are continuous in the time domain means that the P time slots corresponding to the set of sidelink transmission resources are continuous time slots, where P is a positive integer.
  • a set of P time slots included in a set of sidelink transmission resources are consecutive time slots.
  • the P time slots are physical time slots
  • the P physical time slots corresponding to the P sidelink transmission resources are continuous
  • the P sidelink transmission resources correspond to P consecutive logical time slots in the first resource pool.
  • the physical time slots corresponding to these P logical time slots may be discontinuous.
  • a set of P sidelink transmission resources that are continuous in the time domain have the same frequency domain resources.
  • a set of P sidelink transmission resources that are continuous in the time domain have different frequency domain resources.
  • the frequency domain resources between different groups of time domain continuous sidelink transmission resources may be different.
  • the first signaling includes a second information field
  • the second information field is used to indicate M sidelink transmission resources
  • the M sidelink transmission resources include L groups of time domain continuous sidelink transmission resources.
  • Each group of consecutive side-link transmission resources includes P side-link transmission resources.
  • the P time slots corresponding to each set of sidelink transmission resources are consecutive time slots.
  • the consecutive time slots are consecutive time slots in a resource pool.
  • the frequency domain resources corresponding to the continuous sidelink transmission resources in the time domain between different groups can be different, as shown in Figure 19.
  • the first terminal obtains the first signaling and determines the number M of sidelink transmission resources according to the sidelink transmission resources indicated in the second information field in the first signaling.
  • the sidelink transmission method further includes: the first terminal uses M sidelink transmission resources to send N sidelink TBs to the second terminal, each TB corresponding to a second HARQ process number.
  • the sidelink transmission method further includes:
  • the first terminal obtains feedback information from the second terminal, and determines whether N TBs correspond to ACK or NACK based on the feedback information.
  • the sidelink transmission method further includes: the first terminal reporting sidelink feedback information of each TB to the network, that is, ACK or NACK.
  • the sidelink transmission method further includes: the base station obtains sidelink feedback information reported by the first terminal, and performs retransmission scheduling based on the feedback information.
  • the sidelink transmission method further includes: when the network sends the retransmission scheduled DCI, the NDI value in the first information field is not flipped, indicating that its corresponding sidelink TB needs to be retransmitted; The NDI value in one information field is flipped, indicating that a new side row TB is scheduled for transmission.
  • the following examples in the embodiments of this application take the first information as DCI as an example, that is, the network device allocates sidelink transmission resources to the terminal through dynamic scheduling.
  • the embodiments of this application are also applicable to the situation where the network allocates Type-1 or Type-2 SL CG to the terminal; at this time, the network device activates Type-2CG through DCI and allocates side-link transmission resources; or configure side-link transmission through RRC signaling resource.
  • the network may allocate retransmission sidelink transmission resources through DCI.
  • the first parameter R1 is used as an example for explanation.
  • the second parameter R2 can also be used to determine the correspondence between the sideline transmission resource and the sideline transmission block. It is similar to R1 and will not be described again here. .
  • the terminal determines the maximum number of sideline transmission blocks as Tmax.
  • Tmax Mmax.
  • the number of bits included in the NDI information field in the first signaling is determined according to the maximum number of sideline transport blocks. Therefore, the number of bits in the NDI information field is Tmax bits.
  • the number of sidelink transmission blocks determined according to the corresponding relationship is M
  • the number of second HARQ process numbers is M
  • the number of valid information bits in the NDI information field for M is M.
  • the 4 transmission resources may include a set of 4 consecutive sidelink transmission resources in the time domain, or may include multiple sets of time slots.
  • Domain-continuous sidelink transmission resources For example, four transmission resources include two groups of time-domain continuous sidelink transmission resources, and each group of time-domain continuous sidelink transmission resources includes transmission resources of two continuous time slots.
  • the TX UE uses 4 sidelink transmission resources to transmit 4 TB to the RX UE (receiving end). Specifically, the TX UE determines four second HARQ process numbers based on the first HARQ process number, corresponding to HPNS#0, HPNS#1, HPNS#2 and HPNS#3 respectively (for the purpose of distinction, the second HARQ process number is expressed as HPNS (HARQ Process Number SL)).
  • the second HARQ process number has a corresponding relationship with the bits in the NDI information field in the first DCI.
  • the second HARQ process number has a one-to-one correspondence with the bits of the NDI information field from left to right.
  • sideline TBs are transmitted on the four sideline transmission resources allocated by the base station, corresponding to TB#0, TB#1, TB#2 and TB3 respectively.
  • These 4 TBs correspond to the 4 second HARQ process numbers respectively, and the NDI value in the SCI corresponding to each TB is 0.
  • the redundant version RV is repeated in a fixed order. For example, the repetition sequence of the RV version is [0,2,3,1].
  • the RX UE sends 4 TB of sidelink feedback information to the TX UE.
  • This embodiment does not limit the way in which the RX UE feeds back sidelink feedback information to the TX UE.
  • the feedback information of these 4 TBs can be carried through one PSFCH, or through 4 PSFCHs respectively.
  • these 4 PSFCH channels can be located in the same time slot or in different time slots.
  • the TX UE determines the ACK or NACK corresponding to each TB based on the PSFCH detection results, and reports the sidelink feedback information corresponding to each TB to the gNB. Such as reporting through PUCCH or PUSCH.
  • the gNB decides whether to schedule retransmissions for the corresponding TB based on the sidelink feedback information of each TB reported by the TX UE. If the feedback information corresponding to a certain TB is NACK, retransmission scheduling needs to be performed, and the bit value corresponding to the TB in the NDI information field in the DCI is not flipped. As shown in Figure 20, the feedback results of the third TB (ie TB#2) and the fourth TB (ie TB#3) are NACK, then gNB retransmits the third bit and the third bit in the NDI information field in the scheduled DCI. The value of the four bits is not flipped, that is, it still has the value 0.
  • the network can schedule a new TB or not schedule a new TB.
  • the bit value corresponding to the TB is flipped.
  • the feedback results of the first TB (ie TB#0) and the second TB (ie TB#1) are ACK, then gNB retransmits the first bit and the second bit in the NDI information field in the scheduled DCI.
  • the value of the two bits is flipped, that is, the value is 1.
  • TX UE obtains new resource scheduling signaling such as the second DCI.
  • the second DCI is used to schedule 4 sidelink transmission resources, and determines whether to perform new data transmission on the sidelink according to the NDI information field in the second DCI. , or perform data retransmission. Since the first HARQ process number in the second DCI is 0, the TX UE can determine that the corresponding four sideline HARQ process numbers are respectively based on the correspondence between the first HARQ process number and the second HARQ process number.
  • the data is retransmitted on the third and fourth sidelink resources on the sidelink, that is, TB#2 and TB#3 are retransmitted respectively, and their corresponding second HARQ process numbers are HPNS#2 and HPNS#3 respectively.
  • the second DCI sent by the network is only used to allocate retransmission resources and is not used to allocate resources for new data transmission.
  • the bits corresponding to the retransmission TB in the NDI information field in the DCI are not flipped, and the remaining bits are flipped.
  • the network since the network receives the sidelink feedback information reported by the TX UE as [ACK, ACK, NACK, NACK], it needs to allocate retransmission resources to TB#2 and TB#3.
  • DCI is used to allocate 2 sidelink transmission resources for retransmission of TB#2 and TB#3.
  • determining whether the retransmission scheduling DCI includes sidelink transmission resources for new data transmission based on protocol predefinition, preconfiguration information or network configuration information.
  • the first parameter R1 is greater than 1, and there is a many-to-1 correspondence between sideline transmission resources and sideline transmission blocks, that is, multiple sideline transmission resources are used to transmit one sideline transmission block.
  • the second mapping method The number of sidelink transmission resources allocated by the network is M, and the number of sidelink transmission blocks is N.
  • the parameter R1 indicates the number of sidelink transmission resources corresponding to one sidelink transmission block.
  • the terminal determines the maximum number of sideline transmission blocks as Tmax.
  • the number of bits included in the NDI information field in the first signaling is determined according to the maximum number Tmax of sideline transport blocks. Therefore, the number of bits in the NDI information field is Tmax bits.
  • TX UE utilizes 4 sidelink transmission resources to transmit 2 TB to RX UE.
  • the TX UE determines two second HARQ process numbers based on the first HARQ process number, corresponding to HPNS#0 and HPNS#1 respectively (for distinction.
  • the second HARQ process number is expressed as HPNS (HARQ Process Number SL) ).
  • the second HARQ process number has a corresponding relationship with the information bits in the NDI information field in the first DCI.
  • the second HARQ process number corresponds one-to-one from low to high and the information bits in the NDI information field from left to right.
  • 2 TBs are transmitted on the 4 sideline transmission resources allocated by the base station, corresponding to TB#0 and TB#1 respectively.
  • These 2 TBs correspond to the 2 second HARQ process numbers respectively.
  • the redundant version RV is repeated in a fixed order.
  • the repetition sequence of the RV version is [0,2,3,1].
  • the second mapping method mentioned above ie, Figure 18b is used to perform mapping between sideline TBs and sideline transmission resources. Therefore, TB#0 is transmitted on the first and second resources, corresponding to redundancy versions 0 and 2 respectively. TB#1 is transmitted on the third and fourth resources, corresponding to redundancy versions 0 and 2 respectively.
  • the RX UE sends 2 TB of sidelink feedback information to the TX UE.
  • the method in which the RX UE feeds back the sidelink feedback information to the TX UE is not limited.
  • the receiving end feeds back four sideline transmissions respectively, that is, feeds back 4-bit sideline feedback information; or the receiving end feeds back two sideline TBs, that is, feeds back 2-bit sideline feedback information.
  • Figure 21 takes separate feedback for two TBs as an example.
  • the sidelink feedback information fed back by the receiving end can be carried through one PSFCH, or through multiple PSFCHs and each PSFCH carries 1 bit of feedback information. When carried through multiple PSFCHs, multiple PSFCH channels can be located in the same time slot or in different time slots.
  • the TX UE determines whether each TB corresponds to ACK or NACK based on the PSFCH detection results, and reports sidelink feedback information to the gNB. Such as reporting through PUCCH or PUSCH.
  • the TX UE can separately report the sidelink feedback information of each sidelink TB to the network, or separately report the sidelink feedback information corresponding to 4 sidelink transmissions.
  • the TX UE reports the sidelink feedback information of each TB to the network as an example, that is, the TX UE reports 2 bits of sidelink feedback information.
  • the gNB decides whether to schedule retransmissions for the corresponding TB based on the sidelink feedback information of each TB reported by the TX UE. If the feedback information corresponding to a certain TB is NACK, retransmission scheduling is required. The bit value corresponding to this TB in the NDI information field in DCI is not flipped. As shown in Figure 21, the feedback result of the second TB (that is, TB#1) is NACK, then the value of the second bit in the NDI information field in the retransmission scheduling DCI of gNB is not flipped, that is, it is still 0. If the feedback information corresponding to a certain TB is ACK, there is no need to perform retransmission scheduling.
  • the network can schedule a new TB or not, and the bit value corresponding to the TB in the NDI information field in the DCI is flipped.
  • the feedback result of the first TB (that is, TB#0) is ACK
  • the value of the first bit in the NDI information field in the retransmission scheduling DCI of gNB is flipped, that is, the value is 1.
  • TX UE obtains new resource scheduling signaling such as the second DCI.
  • the second DCI is used to schedule 4 sidelink transmission resources, and determines whether to perform new data transmission on the sidelink according to the NDI information field in the second DCI. , or perform data retransmission. Since the first HARQ process number in the second DCI is 0, the first terminal can determine the corresponding two sideline HARQ process numbers based on the correspondence between the first HARQ process number and the second HARQ process number. are HPNS#0 and HPNS#1.
  • the data is retransmitted on the third and fourth sidelink resources on the sidelink, that is, TB#1 is retransmitted, corresponding to
  • the second HARQ process number is HPNS#1
  • the redundancy version RV is 3 and 1 respectively.
  • the second DCI sent by the network is only used to allocate retransmission resources and is not used to allocate resources for new data transmission.
  • the bits corresponding to the retransmission TB in the NDI information field in the DCI are not flipped, and the remaining bits are flipped.
  • the network since the network receives the sidelink feedback information reported by the TX UE as [ACK, NACK], it needs to allocate retransmission resources to TB#1, and the second DCI sent by the network is used to allocate 2 sidelinks. Transmission resources used to retransmit TB#1.
  • determining whether the retransmission scheduling DCI includes sidelink transmission resources for new data transmission based on protocol predefinition, preconfiguration information or network configuration information.
  • the network allocates L groups of time-domain continuous side-link transmission resources to the terminal.
  • Each group of time-domain continuous transmission resources includes P side-link transmission resources; the number of side-link transmission blocks is N.
  • Different continuous transmission resource groups are respectively used for different times of transmission of the P side row TBs.
  • the number of bits in the NDI information field is Tmax bits. If the number of sidelink transmission resources allocated by the network to the terminal is M, including L groups of time domain continuous sidelink transmission resources, each group of time domain continuous sidelink transmission resources includes P resources. The number of sideline transmission blocks determined according to the above third mapping method is P, the number of second HARQ process numbers is P, and the number of valid information bits in the NDI information field is P.
  • the TX UE utilizes 6 sidelink transmission resources to transmit 2 TB to the RX UE. Specifically, the TX UE determines two second HARQ process numbers based on the first HARQ process number, corresponding to HPNS#0 and HPNS#1 respectively (for distinction, the second HARQ process number is expressed as HPNS (HARQ Process Number SL))
  • the second HARQ process number has a corresponding relationship with the information bits in the NDI information field in the first DCI.
  • the second HARQ process number has a one-to-one correspondence with the information bits in the NDI information field from left to right.
  • TX UE uses the 6 sidelink transmission resources allocated by the base station to transmit 2 TBs, corresponding to TB#0 and TB#1 respectively. And for each group of two consecutive sideline transmission resources in the time domain, 2 TB are transmitted respectively. Different sets of time domain continuous transmission resources are used to transmit different retransmissions of these two TBs. For a TB, if multiple transfers occur, the redundant version RVs are in a fixed order. For example, the order of RV versions is [0,2,3,1]. For the first group of time domain continuous transmission resources, these two TBs correspond to the two second HARQ process numbers respectively, and the NDI value in the SCI corresponding to each TB is 0, and the redundancy version is 0.
  • these two TBs correspond to the two second HARQ process numbers respectively, and the NDI value in the SCI corresponding to each TB is 0, and the redundancy version is 2.
  • these two TBs correspond to the two second HARQ process numbers respectively, and the NDI value in the SCI corresponding to each TB is 0, and the redundancy version is 3.
  • the RX UE feeds back 2 TB of side-link feedback information to the TX UE.
  • This embodiment does not limit the way in which the RX UE feeds back the side-link feedback information to the TX UE.
  • the RX UE can feed back PSFCH for each sidelink transmission, or it can feed back PSFCH for two transmissions corresponding to a set of sidelink transmission resources.
  • the feedback information of these two TBs can be carried through one PSFCH, or through two PSFCHs respectively.
  • the two PSFCH channels can be located in the same time slot or in different time slots.
  • the TX UE determines the ACK or NACK corresponding to each TB based on the PSFCH detection results, and reports the sidelink feedback information corresponding to each TB to the gNB. Such as reporting through PUCCH or PUSCH.
  • the gNB decides whether to schedule retransmissions for the corresponding TB based on the sidelink feedback information of each TB reported by the TX UE. If the feedback information corresponding to a certain TB is NACK, retransmission scheduling needs to be performed, and the bit value corresponding to the TB in the NDI information field in the DCI is not flipped. As shown in Figure 22, the feedback result of the second TB (that is, TB#1) is NACK, then the value of the second bit in the NDI information field in the retransmission scheduling DCI of gNB is not flipped, that is, it is still 0. If the feedback information corresponding to a certain TB is ACK, retransmission scheduling is not required.
  • the network can schedule a new TB or not, and the bit value corresponding to the TB in the NDI information field in the DCI is flipped.
  • the feedback result of the first TB (that is, TB#0) is ACK, then the value of the first bit in the NDI information field in the retransmission scheduling DCI by gNB is flipped, that is, the value is 1.
  • TX UE obtains new resource scheduling signaling such as the second DCI.
  • the second DCI is used to schedule 6 sidelink transmission resources.
  • the TX UE determines whether to perform new data transmission on the sidelink link or Perform data retransmission. Since the first HARQ process number in the DCI is 0, the TX UE can determine that the corresponding two sideline HARQ process numbers are HPNS# based on the correspondence between the first HARQ process number and the second HARQ process number. 0.HPNS#1. Since the first bit in the NDI information field in the DCI is flipped, new sidelink data is transmitted on the sidelink link, that is, TB#2 is transmitted, and the corresponding second HARQ process number is HPNS#0.
  • the NDI flip in SCI is used to indicate new data transmission, and the corresponding redundancy version RVs in three consecutive sets of sideline transmission resources are 0, 2, and 3 respectively. Since the second bit in the NDI information field in the DCI is not flipped, data is retransmitted on the sidelink link, that is, TB#1 is retransmitted, and the corresponding second HARQ process number is HPNS#1.
  • the second DCI sent by the network is only used to allocate retransmission resources and is not used to allocate resources for new data transmission.
  • the bits corresponding to the retransmission TB in the NDI information field in the DCI are not flipped, and the remaining bits are flipped.
  • the network since the network receives the sideline feedback information reported by the TX UE as [ACK, NACK], it needs to allocate retransmission resources to TB#1, and the second DCI sent by the network is used to allocate 3 sideline Transmission resources used to retransmit TB#1.
  • determining whether the retransmission scheduling DCI includes sidelink transmission resources for new data transmission based on protocol predefinition, preconfiguration information or network configuration information.
  • the network allocates L groups of time-domain continuous sidelink transmission resources to the terminal, and each group of time-domain continuous transmission resources includes P transmission resources.
  • the number of side row transmission blocks is N.
  • the fourth mapping method mentioned above is adopted, that is, P transmission resources included in a group of time-domain continuous side-link transmission resources are used to transmit 1 side-link transmission block, and L groups of time-domain continuous side-link transmission resources are used to transmit L transmission block.
  • the number of side row transmission blocks N L;
  • the number of bits in the NDI information field is Tmax bits. If the number of side-link transmission resources allocated by the network to the terminal is M, including L groups of time-domain continuous side-link transmission resources, each group of time-domain continuous side-link transmission resources includes P resources, determined according to the fourth mapping method above The number of sideline transmission blocks is L, the number of second HARQ process numbers is L, and the number of valid information bits in the NDI information field is L.
  • the TX UE utilizes 6 sidelink transmission resources to transmit 3 TB to the RX UE. Specifically, the TX UE determines three second HARQ process numbers based on the first HARQ process number, corresponding to HPNS#0, HPNS#1 and HPNS#2 respectively (for distinction, the second HARQ process number is expressed as HPNS (HARQ Process NumberSL)).
  • the second HARQ process number has a corresponding relationship with the information bits in the NDI information field in the first DCI.
  • the second HARQ process number corresponds one-to-one from low to high and the information bits in the NDI information field from left to right.
  • TX UE uses the 6 sidelink transmission resources allocated by the base station to transmit 3 TBs, corresponding to TB#0, TB#1 and TB#2 respectively. And each group of two consecutive sideline transmission resources in the time domain is used to transmit 1 TB, and different groups of continuous transmission resources in the time domain are used to transmit different TBs. For a TB. If multiple transfers occur, the redundant versions of RV are in a fixed order. For example, the order of RV versions is [0,2,3,1].
  • the corresponding second HARQ process number is 0, the NDI value in the SCI is 0, and the redundancy corresponding to the sidelink data transmitted by the two sidelink resources
  • the remaining versions are 0 and 2 respectively.
  • the corresponding second HARQ process number is 1, the NDI value in the SCI is 0, and the redundancy corresponding to the sidelink data transmitted by the two sidelink resources
  • the remaining versions are 0 and 2 respectively.
  • the corresponding second HARQ process number is 2
  • the NDI value in the SCI is 0,
  • the redundancy corresponding to the sidelink data transmitted by the two sidelink resources The remaining versions are 0 and 2 respectively.
  • the RX UE feeds back 3 TB of side-link feedback information to the TX UE.
  • This embodiment does not limit the way in which the RX UE feeds back the side-link feedback information to the TX UE.
  • the RX UE can feed back PSFCH for each sidelink transmission, or it can feed back PSFCH for two transmissions corresponding to a set of sidelink transmission resources.
  • Feedback information can be carried through one PSFCH, or through PSFCHs separately. When carried through PSFCH respectively, multiple PSFCH channels can be located in the same time slot or in different time slots.
  • the TX UE determines the ACK or NACK corresponding to each TB based on the PSFCH detection results, and reports the sidelink feedback information corresponding to each TB to the gNB. Such as reporting through PUCCH or PUSCH.
  • the gNB decides whether to schedule retransmissions for the corresponding TB based on the sidelink feedback information of each TB reported by the TX UE. If the feedback information corresponding to a certain TB is NACK, retransmission scheduling needs to be performed, and the bit value corresponding to the TB in the NDI information field in the DCI is not flipped. As shown in Figure 23, the feedback result of the third TB (that is, TB#2) is NACK, then the value of the third bit in the NDI information field in the retransmission scheduling DCI of gNB is not flipped, that is, it is still 0. If the feedback information corresponding to a certain TB is ACK, there is no need to perform retransmission scheduling.
  • the network can schedule a new TB or not, and the bit value corresponding to the TB in the NDI information field in the DCI is flipped.
  • the feedback results of the first TB (ie TB#0) and the second TB (ie TB#1) are ACK, then gNB retransmits the first bit and the second bit in the NDI information field in the scheduled DCI.
  • the value of the two bits is flipped, that is, the value is 1.
  • TX UE obtains new resource scheduling signaling such as the second DCI, which is used to schedule 6 sidelink transmission resources, and determines whether to perform new data transmission on the sidelink according to the NDI information field in the second DCI. , or perform data retransmission. Since the first HARQ process number in the second DCI is 0, the TX UE can determine that the corresponding three sideline HARQ process numbers are respectively based on the correspondence between the first HARQ process number and the second HARQ process number. HPNS#0, HPNS#1 and HPNS#2.
  • new sidelink data is transmitted on the sidelink, that is, TB#3 is transmitted, using the 3 consecutive sets of data indicated in the second DCI.
  • the redundancy versions RV corresponding to the side-link data transmitted on the two transmission resources are 0 and 2.
  • new sidelink data is transmitted on the sidelink, that is, TB#4 is transmitted, using the 3 consecutive sets of data indicated in the second DCI.
  • the two transmission resources corresponding to the second group of transmission resources in the side-link transmission resources transmit TB#4, which corresponds to HPNS#1.
  • the redundancy versions RV corresponding to the side-link data transmitted on the two transmission resources are 0 and 2 respectively.
  • the sidelink data corresponding to the NDI information bit is transmitted and retransmitted on the sidelink, that is, TB#2 is retransmitted, using the second
  • the two transmission resources corresponding to the third group of three consecutive sets of side-link transmission resources indicated in the DCI transmit TB#2, corresponding to HPNS#2, and the redundancy corresponding to the side-link data transmitted on the two transmission resources.
  • the second DCI sent by the network is only used to allocate retransmission resources and is not used to allocate resources for new data transmission.
  • the bits corresponding to the retransmission TB in the NDI information field in the DCI are not flipped, and the remaining bits are flipped.
  • the network since the network receives the sidelink feedback information reported by the TX UE as [ACK, ACK, NACK], it needs to allocate retransmission resources to TB#2, and the second DCI sent by the network is used to allocate 2 Sidelink transmission resources are used to retransmit TB#2.
  • determining whether the retransmission scheduling DCI includes sidelink transmission resources for new data transmission based on protocol predefinition, preconfiguration information or network configuration information.
  • the sidelink transmission resource corresponding to the sidelink transmission block is determined based on the above method 2.
  • the first parameter R1 is greater than 1, and there is a many-to-many correspondence between sideline transmission resources and sideline transmission blocks, that is, multiple sideline transmission resources are used to transmit multiple sideline transmission blocks.
  • the number of sidelink transmission resources allocated by the network is M.
  • the number of side row transmission blocks is N.
  • the number of sideline transmission blocks and the number of sideline transmission resources corresponding to each sideline transmission block can be determined according to the third parameter of the sideline data.
  • Mmax the maximum number of sidelink transmission resources allocated by the network to the terminal through the first signaling
  • Tmax the maximum number of sidelink transmission blocks allocated by the network to the terminal through the first signaling.
  • R1 is greater than 1
  • the determined number of sideline transmission blocks Tmax Mmax/R1.
  • the number of bits included in the NDI information field in the first signaling is determined according to the maximum number Tmax of sideline transport blocks. Therefore, the number of bits in the NDI information field is Tmax bits.
  • the first parameter R1 2.
  • TX UE utilizes 4 sidelink transmission resources to transmit 2 TB to RX UE.
  • the TX UE determines two second HARQ process numbers based on the first HARQ process number, corresponding to HPNS#0 and HPNS#1 respectively.
  • the second HARQ process number is expressed as HPNS (HARQ Process Number SL) ).
  • the second HARQ process number has a corresponding relationship with the information bits in the NDI information field in the first DCI.
  • the second HARQ process number corresponds one-to-one from low to high and the information bits in the NDI information field from left to right.
  • 2 TBs are transmitted on the 4 sideline transmission resources allocated by the base station, corresponding to TB#0 and TB#1 respectively.
  • These 2 TBs correspond to the 2 second HARQ process numbers respectively.
  • the redundant version RV is repeated in a fixed order.
  • the repetition sequence of the RV version is [0,2,3,1].
  • the priority value corresponding to the first TB is 1, and the priority value corresponding to the second TB is 3.
  • Table 3 determine that the number of transmission resources corresponding to the first TB is 3, and the number of transmission resources corresponding to the second TB is 1.
  • the side transmission resources corresponding to the first TB are located before the side transmission resources corresponding to the second TB. Therefore, the first and TB#0 is transmitted on the second and third resources, corresponding to redundancy versions 0, 2, and 3 respectively.
  • TB#1 is transmitted on the fourth resource, corresponding to redundancy version 0.
  • the RX UE feeds back 2 TB of side-link feedback information to the TX UE.
  • This embodiment does not limit the way in which the RX UE feeds back the side-link feedback information to the TX UE.
  • the receiving end feeds back four sideline transmissions respectively, that is, feeds back 4-bit sideline feedback information; or the receiving end feeds back two sideline TBs, that is, feeds back 2-bit sideline feedback information.
  • feedback for two TBs is taken as an example.
  • the sidelink feedback information fed back by the receiving end can be carried through one PSFCH, or through multiple PSFCHs and each PSFCH carries 1 bit of feedback information. When carried through multiple PSFCHs, multiple PSFCH channels can be located in the same time slot or in different time slots.
  • the TX UE determines whether each TB corresponds to ACK or NACK based on the PSFCH detection results, and reports sidelink feedback information to the gNB. Such as reporting through PUCCH or PUSCH.
  • the TX UE can separately report the sidelink feedback information of each sidelink TB to the network, or separately report the sidelink feedback information corresponding to 4 sidelink transmissions.
  • the TX UE reports the sidelink feedback information of each TB to the network as an example, that is, the TX UE reports 2 bits of sidelink feedback information.
  • the gNB decides whether to schedule retransmissions for the corresponding TB based on the sidelink feedback information of each TB reported by the TX UE. If the feedback information corresponding to a certain TB is NACK, retransmission scheduling needs to be performed, and the bit value corresponding to the TB in the NDI information field in the DCI is not flipped. As shown in Figure 24, the feedback result of the second TB (that is, TB#1) is NACK, then the value of the second bit in the NDI information field in the retransmission scheduling DCI of gNB is not flipped, that is, it is still 0. If the feedback information corresponding to a certain TB is ACK, there is no need to perform retransmission scheduling.
  • the network can schedule a new TB or not, and the bit value corresponding to the TB in the NDI information field in the DCI is flipped.
  • the feedback result of the first TB that is, TB#0
  • the value of the first bit in the NDI information field in the retransmission scheduling DCI of gNB is flipped, that is, the value is 1.
  • TX UE obtains new resource scheduling signaling such as the second DCI.
  • the second DCI is used to schedule 4 sidelink transmission resources.
  • the NDI information field in the DCI it determines whether to perform new data transmission on the sidelink link or Perform data retransmission. Since the first HARQ process number in the DCI is 0, the first terminal can determine that the corresponding two side-line HARQ process numbers are HPNS based on the correspondence between the first HARQ process number and the second HARQ process number. #0, HPNS#1. Since the first bit in the NDI information field in the DCI is flipped, new data is transmitted on the sidelink, that is, TB#2 is transmitted, and the priority value of TB#2 is 5.
  • the retransmission of TB#1 on the sidelink is because the priority value of TB#2 is greater than the priority value of TB#1, that is, TB#2
  • the priority of TB#1 is lower than that of TB#1, so the terminal allocates more transmission resources to TB#1 and less transmission resources to TB#2.
  • the terminal determines to allocate 1 transmission resource, that is, the first transmission resource, to TB#2, and allocate 3 transmission resources to TB#1.
  • the sidelink transmission resource corresponding to TB#1 is located before the sidelink transmission resource corresponding to TB#2.
  • TB#1 is transmitted on the first, second and third transmission resources, that is, TB#1 is retransmitted.
  • the corresponding second HARQ process number is HPNS#1.
  • TB#2 is transmitted on the fourth transmission resource, and the corresponding second HARQ process number is HPNS#0.
  • the second DCI sent by the network is only used to allocate retransmission resources and is not used to allocate resources for new data transmission.
  • the bits corresponding to the retransmission TB in the NDI information field in the DCI are not flipped, and the remaining bits are flipped.
  • the network since the network receives the sidelink feedback information reported by the TX UE as [ACK, NACK], it needs to allocate retransmission resources to TB#1, and the second DCI sent by the network is used to allocate 1 sidelink Transmission resources used to retransmit TB#1.
  • determining whether the retransmission scheduling DCI includes sidelink transmission resources for new data transmission based on protocol predefinition, preconfiguration information or network configuration information.
  • Figure 25 is a schematic flow chart of a sidelink transmission method 2500 according to an embodiment of the present application. The method includes at least part of the following.
  • the second terminal receives N sideline transmission blocks sent by the first terminal to the second terminal using M sideline transmission resources; where M and N are integers greater than 1, and M is greater than or equal to N.
  • M and/or N may also be equal to 1.
  • the M sidelink transmission resources include one or more groups of time-domain continuous sidelink transmission resources.
  • the method further includes: the second terminal sending sideline feedback information to the first terminal, where the sideline feedback information is used to determine ACK or NACK corresponding to the N sideline transmission blocks.
  • the method further includes: reporting, at the first terminal, an ACK corresponding to the first sideline transmission block, and/or reporting a NACK corresponding to the second sideline transmission block.
  • the second terminal performs at least one of the following:
  • Figure 26 is a schematic flow chart of a sidelink transmission method 2600 according to an embodiment of the present application. The method includes at least part of the following.
  • the network device sends first information.
  • the first information is used to indicate M sideline transmission resources, where the M sideline transmission resources correspond to N sideline transmission blocks, and the M sideline transmission resources are used to transmit N Side row transmission block, where M and N are integers greater than 1, and M is greater than or equal to N.
  • M and/or N may also be equal to 1.
  • the M sidelink transmission resources include one or more groups of time-domain continuous sidelink transmission resources.
  • a set of P sidelink transmission resources that are continuous in the time domain means that the P time slots corresponding to the set of sidelink transmission resources are continuous time slots, where P is a positive integer.
  • the P time slots are physical time slots
  • the P physical time slots corresponding to the P sidelink transmission resources are continuous
  • the P sidelink transmission resources correspond to P consecutive logical time slots in the first resource pool.
  • a set of P sidelink transmission resources that are continuous in the time domain have the same frequency domain resources.
  • the sidelink transport block is carried in the physical sidelink shared channel PSSCH.
  • all or part of the OFDM symbols except the last orthogonal frequency division multiplexing OFDM symbol in a time slot are used to transmit the PSSCH.
  • the first data is transmitted by the first terminal in the GP symbol in the time slot, so that the idle duration in the GP symbol is less than or equal to the first duration, and the first duration is according to the second Type 2
  • the idle duration required for channel access is determined, and the first data is a cyclic prefix extension or a repetition of data on one OFDM symbol.
  • the first information includes a first information field, and the first information field is used to determine the first HARQ process number.
  • the first information is DCI
  • the first information field is a HARQ information field included in the DCI
  • the HARQ information field is used to indicate the first HARQ process number.
  • the first information field when the first information is RRC signaling, the first information field includes the fourth parameter and the fifth parameter in the RRC signaling, and the fourth parameter and the fifth parameter are used to determine The first HARQ process number, wherein the fourth parameter is used to indicate the HARQ process number offset, and the fifth parameter is used to indicate the number of HARQ process numbers.
  • the second HARQ process number is a sideline HARQ process number determined by the first terminal based on the first HARQ process number and the number of sideline transmission blocks.
  • each sidelink transmission block corresponds to one second HARQ process number.
  • the method further includes: the network device sending third information, the third information being used to indicate sideline transmission resources for retransmitting the first sideline data block, and the N sideline data blocks include The first side row data block.
  • the third information includes an NDI information field, the bits corresponding to the first side row data block in the NDI information field are not flipped, and the remaining bits in the NDI information field are flipped.
  • the method further includes that the third information indicates X sideline transmission resources, and the X sideline transmission resources are used to retransmit the first sideline data block; where X is less than or equal to M .
  • the third information includes an NDI information field.
  • the bits corresponding to the first side row data block in the NDI information field are not flipped.
  • the remaining bits except the bits corresponding to the row transport block are flipped.
  • the sidelink transmission resources indicated by the third information are not used to transmit new sidelink data blocks.
  • Figure 27 is a schematic block diagram of the first terminal 2700 according to an embodiment of the present application.
  • the first terminal 2700 may include:
  • the receiving unit 2710 is used to obtain first information, where the first information is used to indicate M sidelink transmission resources;
  • the processing unit 2720 is used to determine N side row transmission blocks
  • the sending unit 2730 is configured to use the M sideline transmission resources to send the N sideline transmission blocks to the second terminal;
  • M and N are integers greater than 1, and M is greater than or equal to N.
  • M and/or N may also be equal to 1.
  • the processing unit 2720 is further configured to determine the number of side-link transmission blocks according to the number of side-link transmission resources.
  • the number of sidelink transmission resources includes at least one of the following:
  • the maximum number of sidelink transmission resources that the first information can indicate is the maximum number of sidelink transmission resources that the first information can indicate
  • the first information indicates the number of sidelink transmission resources.
  • the receiving unit 2710 is further configured to obtain second information, and the second information is used to determine the maximum number of sidelink transmission resources that can be indicated by the first information.
  • the second information is information in resource pool configuration information.
  • the maximum number of sidelink transmission resources that the first information can indicate is determined by at least one of the following:
  • the first information is DCI, and the maximum number of sidelink transmission resources that the first information can indicate is determined based on the maximum number of sidelink transmission resources that the DCI can indicate; or,
  • the first information is RRC signaling
  • the maximum number of sidelink transmission resources that the first information can indicate is the maximum number of sidelink transmission resources included in one cycle of the sidelink configuration authorized transmission resources configured according to the RRC signaling. definite; or,
  • the maximum number of side-link transmission resources that can be indicated by the first information is determined based on the maximum number of side-link transmission resources that can be indicated by the SCI.
  • the number of sidelink transmission resources indicated by the first information includes at least one of the following:
  • the first information is DCI, and the number of sidelink transmission resources indicated by the first information is the number of sidelink transmission resources indicated by the DCI;
  • the first information is RRC signaling, and the number of sidelink transmission resources indicated by the first information is the number of sidelink transmission resources included in a sidelink configuration authorization period;
  • the first information is SCI
  • the number of sidelink transmission resources indicated by the first information is the number of sidelink transmission resources indicated by the SCI.
  • the receiving unit 2710 is further configured to obtain a first parameter, which is used to determine the number of sideline transmission blocks.
  • the first parameter represents the number of sidelink transmission resources corresponding to one sidelink transmission block.
  • the multiple sidelink transmission resources transmit the same sidelink transmission block.
  • the value of the first parameter is determined by the first terminal based on at least one of protocol predefinition, preconfiguration information, or network configuration information.
  • the number of sidelink transmission blocks is determined by the first terminal based on the number of sidelink transmission resources indicated by the first information and the first parameter.
  • the number of sidelink transmission blocks is determined by the first terminal according to the maximum number of sidelink transmission resources that can be indicated by the first information and the first parameter.
  • the processing unit 2720 is also used to determine the maximum number of sideline transmission blocks; wherein the maximum number of sideline transmission blocks is the sideline transmission resource that the first terminal can indicate based on the first information. The maximum number is determined by this first parameter.
  • the first information includes a new data indication NDI information field
  • the processing unit 2720 is further configured to determine the information of the NDI information field according to the number of sideline transmission resources and/or the number of sideline transmission blocks.
  • the information in the NDI information field includes at least one of the following:
  • the processing unit is further configured to determine the information of the NDI information domain according to the number of sideline transmission resources and/or the number of sideline transmission blocks.
  • the number of bits in the NDI information field corresponds to the maximum number of sidelink transmission resources that can be indicated by the first information and/or the maximum number of sidelink transmission resources that can be indicated by the first information. Determined by the maximum number of sideline transmission blocks.
  • the number of bits in the NDI information field is determined based on the maximum number of sidelink transmission resources that can be indicated by the first information, including: the number of bits in the NDI information field is determined based on the maximum number of sideline transmission resources that can be indicated by the first information.
  • the maximum number of side-link transmission resources is determined by a second parameter, where the second parameter represents a multiple relationship between the number of side-link transmission resources and the number of bits in the NDI information field.
  • the number of bits in the NDI information field is equal to the ratio between the maximum number of sidelink transmission resources that the first information can indicate and the second parameter.
  • the number of bits in the NDI information field is determined based on the maximum number of sidelink transmission blocks corresponding to the maximum number of sidelink transmission resources that the first information can indicate, including: the sidelink transmission block The maximum number is the same as the number of bits in the NDI information field.
  • the number of bits in the NDI information field is determined based on at least one of the following: protocol predefinition, preconfiguration information, and network configuration information.
  • the processing unit is further configured to determine the number of effective bits of the NDI information field according to the number of sideline transmission resources and/or the number of sideline transmission blocks indicated by the first information, wherein the sideline The number of side-link transmission blocks is the number of side-link transmission blocks determined according to the number of side-link transmission resources indicated by the first information. For example, when the number of sideline transmission blocks is less than the maximum number of sideline transmission blocks, the first terminal determines the number of effective bits of the NDI information field according to the number of sideline transmission blocks, where the sideline transmission The number of blocks is the number of sidelink transmission blocks determined according to the number of sidelink transmission resources indicated by the first information.
  • the number of valid bits in the NDI information field is equal to the number of sideline transport blocks.
  • the processing unit 2720 is also used to determine the valid bits of the NDI information field.
  • the processing unit 2720 is also configured to determine the lowest K bits or the highest K bits of the NDI information field as valid bits of the NDI information field, where K represents the NDI information field. The number of valid bits.
  • the processing unit is further configured to determine, for the first terminal, the non-flipped bits in the NDI information field as the Valid bits of the NDI information field.
  • the first information includes DCI
  • the NDI information field is an information field included in the DCI.
  • the processing unit 2720 is further configured to determine the correspondence between the N side-link transmission blocks and the M side-link transmission resources.
  • the M sidelink transmission resources correspond to the N sidelink transmission blocks one-to-one.
  • the number of the sidelink transmission resources is an integer multiple of the number of the sidelink transmission blocks.
  • the first way to determine the correspondence between the N sidelink transmission blocks and the M sidelink transmission resources is to divide the M sidelink transmission resources into an A1 group of sidelink transmission resources.
  • each group includes N side-link transmission resources, and the N side-link transmission resources included in each group of side-link transmission resources correspond one-to-one to the N side-link transmission blocks.
  • the second way to determine the correspondence between the N sidelink transmission blocks and the M sidelink transmission resources is to divide the M sidelink transmission resources into N groups of sidelink transmission resources.
  • each group includes A2 sideline transmission resources, and the A2 sideline transmission resources included in each group of sideline transmission resources are used to transmit one of the N sideline transmission blocks.
  • the N group of sideline transmission blocks The resources correspond to the N sidelink transmission blocks one-to-one.
  • the M sidelink transmission resources include a set of time-domain continuous sidelink transmission resources.
  • the M sidelink transmission resources include L groups of time domain continuous sidelink transmission resources. Each group of time domain continuous sidelink transmission resources includes N sidelink transmission resources. Determine the N sidelink transmission resources. The third way of the correspondence between the transport block and the M sidelink transmission resources is: the N sidelink transmission resources included in each group of time domain continuous sidelink transmission resources are one by one with the N sidelink transmission blocks. correspond.
  • the M sidelink transmission resources include N groups of time domain continuous sidelink transmission resources, and each group of time domain continuous sidelink transmission resources includes P sidelink transmission resources. Determine the N sidelink transmission resources.
  • the fourth way of the correspondence between the transport block and the M sidelink transmission resources is: the P sidelink transmission resources included in each group of time domain continuous sidelink transmission resources are used to transmit the N sidelink transmission blocks.
  • a sidelink transmission block in , the N sets of sidelink transmission resources correspond to the N sidelink transmission blocks one-to-one.
  • the corresponding relationship between the N sidelink transmission blocks and the M sidelink transmission resources is determined based on a third parameter, and the third parameter is a parameter determined based on the quality of service QoS.
  • the third parameter includes at least one of the following parameters: priority, reliability, and delay.
  • the receiving unit 2710 is also used to obtain the first correspondence
  • the processing unit 2720 is also configured to determine the number of side-link transmission resources corresponding to the side-link transmission block according to the first correspondence relationship and the third parameter.
  • the first corresponding relationship is at least one of the following:
  • the processing unit 2720 is further configured to determine the time domain sequence and/or time domain position of the side link transmission resources corresponding to the side link transmission blocks in the M side link transmission resources according to the third parameter. .
  • the third parameter includes a priority, so the sidelink transmission resources corresponding to the high-priority sidelink transmission blocks are located before the sidelink transmission resources corresponding to the low-priority sidelink transmission blocks.
  • the M sidelink transmission resources include one or more groups of time-domain continuous sidelink transmission resources.
  • a set of P sidelink transmission resources that are continuous in the time domain means that the P time slots corresponding to the set of sidelink transmission resources are continuous time slots, where P is a positive integer.
  • the P time slots are physical time slots
  • the P physical time slots corresponding to the P sidelink transmission resources are continuous
  • the P sidelink transmission resources correspond to P consecutive logical time slots in the first resource pool.
  • a set of P sidelink transmission resources that are continuous in the time domain have the same frequency domain resources.
  • the sidelink transport block is carried in the physical sidelink shared channel PSSCH.
  • all or part of the OFDM symbols except the last orthogonal frequency division multiplexing OFDM symbol in a time slot are used to transmit the PSSCH.
  • the processing unit 2720 is also configured to transmit the first data in the GP symbol in the time slot, so that the idle duration in the GP symbol is less than or equal to the first duration, the first duration is according to the second category
  • the idle duration required for Type 2 channel access is determined.
  • the first data is cyclic prefix extension or determined based on data on an OFDM symbol.
  • the first information includes a first information field, and the first information field is used to determine the first HARQ process number.
  • the first information is DCI
  • the first information field is a HARQ information field in the DCI
  • the HARQ information field is used to indicate the first HARQ process number.
  • the first information is RRC signaling
  • the first information field includes a fourth parameter and a fifth parameter in the RRC signaling
  • the fourth parameter and the fifth parameter are used to determine the first A HARQ process number
  • the fourth parameter is used to indicate the HARQ process number offset
  • the fifth parameter is used to indicate the number of HARQ process numbers.
  • the processing unit 2720 is further configured to determine a second HARQ process number, which is determined by the first terminal based on the first HARQ process number and the number of sideline transmission blocks. Enter the HARQ process number.
  • the processing unit 2720 is further configured to determine N second HARQ process numbers based on the number N of sideline transmission blocks, and each sideline transmission block corresponds to one second HARQ process number.
  • At least the maximum number of sidelink transmission resources, the maximum number of sidelink transmission blocks, the number of second HARQ process numbers, and the number of bits of the NDI information field in the first information that can be indicated by the first information is determined based on protocol predefinition, preconfiguration information or network configuration information.
  • At least the maximum number of sidelink transmission resources, the maximum number of sidelink transmission blocks, the number of second HARQ process numbers, and the number of bits of the NDI information field in the first information that can be indicated by the first information is a second corresponding relationship between the two.
  • At least two of the number of sidelink transmission resources indicated by the first information, the number of sidelink transmission blocks, the number of second HARQ process numbers, and the number of valid bits of the NDI information field in the first information There is a third corresponding relationship between them.
  • the receiving unit is further configured to obtain third information, the third information being used to indicate sideline transmission resources for retransmitting the first sideline data block, and the N sideline data blocks include the Row data block on one side.
  • the third information includes an NDI information field, the bits corresponding to the first side row data block in the NDI information field are not flipped, and the remaining bits in the NDI information field are flipped.
  • the first terminal further includes: the third information indicates X sideline transmission resources, and the X sideline transmission resources are used to retransmit the first sideline data block; wherein Equal to M.
  • the third information includes an NDI information field.
  • the bits corresponding to the first side row data block in the NDI information field are not flipped.
  • the remaining bits except the bits corresponding to the row transport block are flipped.
  • the sidelink transmission resources indicated by the third information are not used to transmit new sidelink data blocks.
  • the first terminal 2700 in the embodiment of the present application can implement the corresponding functions of the first terminal in the foregoing method embodiment.
  • functions, implementation methods and beneficial effects of each module (sub-module, unit or component, etc.) in the first terminal 2700 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the first terminal 2700 in the embodiment of the application can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • FIG. 28 is a schematic block diagram of a second terminal 2800 according to an embodiment of the present application.
  • the second terminal 2800 may include:
  • the receiving unit 2810 is configured to receive N sideline transmission blocks sent by the first terminal to the second terminal using M sideline transmission resources; where M and N are integers greater than 1, and M is greater than or equal to N.
  • M and/or N may also be equal to 1.
  • the M sidelink transmission resources include one or more groups of time-domain continuous sidelink transmission resources.
  • the second terminal further includes: a sending unit, configured to send sideline feedback information to the first terminal, where the sideline feedback information is used to determine ACK or NACK corresponding to the N sideline transmission blocks. .
  • the receiving unit is also configured to report an ACK corresponding to the first sideline transmission block at the first terminal, and/or report a NACK corresponding to the second sideline transmission block, in the received DCI. If the NDI information field corresponding to the first sideline transmission block is flipped and the NDI information field corresponding to the second sideline transmission block is not flipped, then at least one of the following is performed:
  • the second terminal 2800 in the embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiment.
  • functions, implementation methods and beneficial effects of each module (sub-module, unit or component, etc.) in the second terminal 2800 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the second terminal 2800 in the embodiment of the application can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 29 is a schematic block diagram of a network device 2900 according to an embodiment of the present application.
  • the network device 2900 may include:
  • the sending unit 2910 is configured to send first information, where the first information is used to indicate M sidelink transmission resources, where the M sidelink transmission resources correspond to N sidelink transmission blocks, and the M sidelink transmission resources are For transmitting the N side row transmission blocks, M and N are integers greater than 1, and M is greater than or equal to N.
  • M and/or N may also be equal to 1.
  • the M sidelink transmission resources include one or more groups of time-domain continuous sidelink transmission resources.
  • a set of P sidelink transmission resources that are continuous in the time domain means that the P time slots corresponding to the set of sidelink transmission resources are continuous time slots, where P is a positive integer.
  • the P time slots are physical time slots
  • the P physical time slots corresponding to the P sidelink transmission resources are continuous
  • the P sidelink transmission resources correspond to P consecutive logical time slots in the first resource pool.
  • a set of P sidelink transmission resources that are continuous in the time domain have the same frequency domain resources.
  • the sidelink transport block is carried in the physical sidelink shared channel PSSCH.
  • all or part of the OFDM symbols except the last orthogonal frequency division multiplexing OFDM symbol in a time slot are used to transmit the PSSCH.
  • the first data is transmitted by the first terminal in the GP symbol in the time slot, so that the idle duration in the GP symbol is less than or equal to the first duration, and the first duration is according to the second Type 2
  • the idle duration required for channel access is determined, and the first data is a cyclic prefix extension or a repetition of data on one OFDM symbol.
  • the first information includes a first information field, and the first information field is used to determine the first HARQ process number.
  • the first information is DCI
  • the first information field is a HARQ information field included in the DCI
  • the HARQ information field is used to indicate the first HARQ process number.
  • the first information field when the first information is RRC signaling, the first information field includes the fourth parameter and the fifth parameter in the RRC signaling, and the fourth parameter and the fifth parameter are used to determine The first HARQ process number, wherein the fourth parameter is used to indicate the HARQ process number offset, and the fifth parameter is used to indicate the number of HARQ process numbers.
  • the second HARQ process number is a sideline HARQ process number determined by the first terminal based on the first HARQ process number and the number of sideline transmission blocks.
  • each sidelink transmission block corresponds to one second HARQ process number.
  • the network device further includes: the sending unit is further configured to send third information, the third information is used to indicate sideline transmission resources for retransmitting the first sideline data block, the N sideline The first side row data block is included in the data block.
  • the third information includes an NDI information field, the bits corresponding to the first side row data block in the NDI information field are not flipped, and the remaining bits in the NDI information field are flipped.
  • the network device further includes that the third information indicates X sideline transmission resources, and the X sideline transmission resources are used to retransmit the first sideline data block; where X is less than or equal to M.
  • the third information includes an NDI information field.
  • the bits corresponding to the first side row data block in the NDI information field are not flipped.
  • the remaining bits except the bits corresponding to the row transport block are flipped.
  • the sidelink transmission resources indicated by the third information are not used to transmit new sidelink data blocks.
  • the network device 2900 in the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the network device 2900 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the network device 2900 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. Module (submodule, unit or component, etc.) implementation.
  • Figure 30 is a schematic structural diagram of a communication device 3000 according to an embodiment of the present application.
  • the communication device 3000 includes a processor 3010, and the processor 3010 can call and run a computer program from the memory, so that the communication device 3000 implements the method in the embodiment of the present application.
  • communication device 3000 may also include memory 3020.
  • the processor 3010 can call and run the computer program from the memory 3020, so that the communication device 3000 implements the method in the embodiment of the present application.
  • the memory 3020 may be a separate device independent of the processor 3010, or may be integrated into the processor 3010.
  • the communication device 3000 may also include a transceiver 3030, and the processor 3010 may control the transceiver 3030 to communicate with other devices. Specifically, the communication device 3000 may send information or data to other devices, or receive information sent by other devices. information or data.
  • the transceiver 3030 may include a transmitter and a receiver.
  • the transceiver 3030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 3000 can be a network device according to the embodiment of the present application, and the communication device 3000 can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, these processes are not mentioned here. Again.
  • the communication device 3000 may be a terminal device such as a first terminal and/or a second terminal in the embodiment of the present application, and the communication device 3000 may implement various methods in the embodiment of the present application implemented by the terminal device. The corresponding process, for the sake of brevity, will not be repeated here.
  • Figure 31 is a schematic structural diagram of a chip 3100 according to an embodiment of the present application.
  • the chip 3100 includes a processor 3110, and the processor 3110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 3100 may also include memory 3120.
  • the processor 3110 can call and run the computer program from the memory 3120 to implement the method executed by the terminal device or network device in the embodiment of the present application.
  • the memory 3120 may be a separate device independent of the processor 3110, or may be integrated into the processor 3110.
  • the chip 3100 may also include an input interface 3130.
  • the processor 3110 can control the input interface 3130 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 3100 may also include an output interface 3140.
  • the processor 3110 can control the output interface 3140 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, they will not be described again. .
  • the chip can be applied to the terminal equipment in the embodiment of the present application, such as the first terminal and/or the second terminal, and the chip can implement the corresponding functions implemented by the terminal equipment in each method of the embodiment of the present application.
  • the process for the sake of brevity, will not be repeated here.
  • the chips used in network equipment and terminal equipment can be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG 32 is a schematic block diagram of a communication system 3200 according to an embodiment of the present application.
  • the communication system 3200 includes a first terminal 3210, a second terminal 3220 and a network device 3230.
  • the first terminal 3210 is used to execute the method executed by the first terminal in any of the above method embodiments;
  • the second terminal 3220 is used to execute the method executed by the second terminal in any of the above method embodiments;
  • Network device 3230 is used to execute the method executed by the network device in any of the above method embodiments.
  • the first terminal 3210 and the second terminal 3220 can be used to implement the corresponding functions implemented by the terminal devices in the above method, and the network device 3220 can be used to implement the corresponding functions implemented by the network device in the above method.
  • the network device 3220 can be used to implement the corresponding functions implemented by the network device in the above method.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,更具体地,涉及一种侧行传输方法、终端和网络设备。具体实现方式为:第一终端获取第一信息,所述第一信息用于指示M个侧行传输资源;所述第一终端确定N个侧行传输块;所述第一终端利用所述M个侧行传输资源向第二终端发送所述N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。本申请实施例,能够通过多个侧行传输资源传输侧行传输块,提高传输效率。

Description

侧行传输方法、终端和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种侧行传输方法、终端和网络设备。
背景技术
在SL-U(sidelink over unlicensed spectrum,侧行非授权频谱)***中,终端在利用侧行传输资源进行数据传输前都需要进行信道侦听,当信道空闲时才能进行侧行传输。若终端的侧行传输资源在时域上连续,则终端在该侧行传输资源的第一个时隙之前进行信道侦听成功就可以持续占用信道。在SL-U***中考虑支持基于连续的侧行传输资源的资源分配方式。
发明内容
本申请实施例提供一种侧行传输方法,包括:第一终端获取第一信息,该第一信息用于指示M个侧行传输资源;该第一终端确定N个侧行传输块;该第一终端利用该M个侧行传输资源向第二终端发送该N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
本申请实施例提供一种侧行传输方法,包括:第二终端接收第一终端利用M个侧行传输资源向第二终端发送的N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
本申请实施例提供一种侧行传输方法,包括:网络设备发送第一信息,该第一信息用于指示M个侧行传输资源,其中,该M个侧行传输资源对应N个侧行传输块,该M个侧行传输资源用于传输该N个侧行传输块,其中,M和N为大于1的整数,M大于或等于N。
本申请实施例提供一种第一终端,包括:接收单元,用于获取第一信息,该第一信息用于指示M个侧行传输资源;处理单元,用于确定N个侧行传输块;发送单元,用于利用该M个侧行传输资源向第二终端发送该N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
本申请实施例提供一种第二终端,包括:接收单元,用于接收第一终端利用M个侧行传输资源向第二终端发送的N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
本申请实施例提供一种网络设备,包括:发送单元,用于发送第一信息,该第一信息用于指示M个侧行传输资源,其中,该M个侧行传输资源对应N个侧行传输块,该M个侧行传输资源用于传输该N个侧行传输块,其中,M和N为大于1的整数,M大于或等于N。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的侧行传输方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的侧行传输方法。
本申请实施例提供一种芯片,用于实现上述的侧行传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的侧行传输方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的侧行传输方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的侧行传输方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述侧行传输方法。
本申请实施例,能够通过多个侧行传输资源传输侧行传输块,提高传输效率。
附图说明
图1是根据本申请实施例的网络覆盖范围内侧行通信的示意图。
图2是根据本申请实施例的部分网络覆盖侧行通信的示意图。
图3是根据本申请实施例的网络覆盖外侧行通信的示意图。
图4是根据本申请实施例的有中央控制节点的示意图。
图5是根据本申请实施例的单播的示意图。
图6是根据本申请实施例的组播的示意图。
图7是根据本申请实施例的广播的示意图。
图8a和图8b是根据本申请实施例的NR-V2X中的时隙结构的示意图。
图9是根据本申请实施例的侧行反馈的示意图。
图10是根据本申请实施例的组播通信侧行反馈示意图的示意图。
图11是根据本申请实施例的NR-V2X***帧结构的示意图。
图12是根据本申请一实施例的侧行传输方法的示意性流程图。
图13是根据本申请另一实施例的侧行传输方法的示意性流程图。
图14是根据本申请另一实施例的侧行传输方法的示意性流程图。
图15是侧行传输资源与侧行传输块对应关系的示意图。
图16是NDI信息域中有效比特位的示意图。
图17是根据本申请一实施例的侧行传输方法的示意性流程图。
图18a至图18d是侧行传输资源与侧行传输块对应关系的确定方式的示意图。
图19是不同组之间的侧行传输资源对应的频域资源的示意图。
图20是确定侧行传输资源对应的频域资源对应关系的示例1的示意图。
图21是确定侧行传输资源对应的频域资源对应关系的示例2的示意图。
图22是确定侧行传输资源对应的频域资源对应关系的示例3的示意图。
图23是确定侧行传输资源对应的频域资源对应关系的示例4的示意图。
图24是确定侧行传输资源对应的频域资源对应关系的示例5的示意图。
图25是根据本申请一实施例的侧行传输方法的示意性流程图。
图26是根据本申请一实施例的侧行传输方法的示意性流程图。
图27是根据本申请一实施例的第一终端的示意性框图。
图28是根据本申请一实施例的第二终端的示意性框图。
图29是根据本申请一实施例的网络设备的示意性框图。
图30是根据本申请实施例的通信设备示意性框图。
图31是根据本申请实施例的芯片的示意性框图。
图32是根据本申请实施例的通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
在一种实施方式中,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种实施方式中,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处 理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
不同网络覆盖环境下的侧行通信:
在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信,分别如图1,图2,图3和图4所示。
图1:在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于同一基站的覆盖范围内,从而,上述终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
图2:在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部分终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令。在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Chanel,PSBCH) 中携带的信息确定侧行配置,进行侧行通信。
图3:对于网络覆盖外侧行通信,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置信息确定侧行配置进行侧行通信。
图4:对于有中央控制节点的侧行通信,多个终端构成一个通信组,该通信组内具有中央控制节点,又可以称为组头终端(Cluster Header,CH)。该中央控制节点具有以下功能至少之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
D2D/V2X:
设备到设备(Device to Device,D2D)通信是一种侧行链路传输技术(SL:Sidelink,侧行链路),采用终端到终端直接通信的方式,与传统的蜂窝***中通信数据通过基站接收或者发送的方式不同。因此具有更高的频谱效率以及更低的传输时延。在3GPP定义了两种传输模式:第一模式和第二模式。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送。基站可以为终端动态分配侧行传输资源,也可以为终端分配半静态传输资源。如图1中,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图3中,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输。或者如图1中,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
NR-V2X:
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在NR-V2X中,引入了单播、组播和广播的传输方式。对于单播传输,其接收端终端只有一个终端。如图5中,UE1、UE2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。如图6,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端。对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图7中,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
NR-V2X***帧结构:
NR-V2X中的时隙结构如图8a和图8b所示:图8a表示时隙中不包括PSFCH(Physical Sidelink Feedback Channel,物理侧行链路反馈信道)的时隙结构。图8b表示包括PSFCH的时隙结构。
NR-V2X中PSCCH(Pysical Sidelink Control Channel,物理侧行链路控制信道)在时域上从该时隙的第二个侧行符号开始,占用2个或3个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,在频域上可以占用{10,12 15,20,25}个PRB(Physical Resource Block,物理资源块)。为了降低UE对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道(sub-channel)为NR-V2X中PSSCH(Physical Sidelink Shared Channel,物理侧行共享信道)资源分配的最小粒度。PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(Guard Period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作AGC(自动增益控制,Automatic Gain Control)符号,该符号上的数据通常不用于数据解调。PSSCH在频域上占据K个子信道,每个子信道包括A个连续的PRB。如图8a所示。
当时隙中包含PSFCH信道时,该时隙中倒数第二个和倒数第三个符号用作PSFCH信道传输,在PSFCH信道之前的一个时域符号用作GP符号,如图8b所示。
侧行反馈信道:
在NR-V2X中,为了提高可靠性,引入了侧行反馈信道。NR-V2X***中的单播和组播传输方式支持侧行反馈,广播传输方式不支持侧行反馈。
参见图9,对于单播传输,发送端终端向接收端终端发送侧行数据(包括PSCCH和PSSCH),接收端终端向发送端终端发送HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈信息(包括ACK(ACKnowledgment,确认)或NACK(Negative ACKnowledgment,,非确认)),发送端终端根据接收端终端的反馈信息判断是否需要进行重传。其中,HARQ反馈信息承载在侧行反馈信道中,例如PSFCH。
在组播传输方式中,引入了两种侧行HARQ反馈方式,即只反馈NACK的侧行HARQ反馈方式,以及反馈ACK或NACK的侧行HARQ反馈方式。发送端在SCI(Sidelink Control Information,侧行链路控制信息)中指示接收端的侧行HARQ反馈方式。
第一类组播侧行HARQ反馈方式:又称为NACK-only侧行反馈方式。
当UE未成功检测PSSCH时,向发送端UE发送NACK,如果UE成功检测了PSSCH,不发送侧行HARQ反馈信息,并且所有需要发送NACK的UE使用相同的反馈资源发送NACK。该侧行HARQ反馈方式通常适用于无连接(Connection-less)的组播传输,即UE之间并没有建立通信组。另外,该侧行HARQ反馈方式通常与通信距离需求相结合,即,只有和发送端UE在一定距离范围内的UE才向发送端UE发送侧行HARQ反馈信息,而该通信距离范围外的UE不需要发送侧行HARQ反馈信息。
第二类组播侧行HARQ反馈方式:即ACK/NACK侧行反馈方式。
当UE成功检测PSSCH,则反馈ACK,否则反馈NACK。该侧行HARQ反馈方式通常适用于基于连接(Connection-based)的组播通信中。在基于连接的组播通信中,一组UE构成一个通信组,并且每个组内UE对应着一个组内标识。例如,如图10所示,一个通信组包括4个UE,则该组大小为4,每个UE的组内标识分别对应ID#0、ID#1、ID#2和ID#3。每个UE可以获知组成员的个数,以及该UE在该组内的组内标识。一个UE发送PSCCH/PSSCH时,该组内的其他UE都是接收端UE,每个接收端UE根据检测PSSCH的状态决定向发送端UE反馈ACK或NACK,并且每个接收端UE使用不同的侧行HARQ反馈资源,即通过频分复用(Frequency Division Multiplexing,FDM)或码分复用(Code Division Multiplexing,CDM)的方式进行侧行HARQ反馈。
侧行反馈信道的资源:
为了降低PSFCH信道的开销,定义在每P个时隙(slot)中的一个时隙包括PSFCH传输资源,即侧行反馈资源的周期是P个时隙,其中P=1、2、4,参数P是预配置或者网络配置的,P=4的示意图参见图11。
其中,时隙2、3、4、5中传输的PSSCH,其反馈信息都是在时隙7中传输的,因此可以把时隙{2、3、4、5}看做一个时隙集合,该时隙集合中传输的PSSCH,其对应的PSFCH是在相同的时隙中。可以通过资源池配置信息配置PSSCH与其对应的PSFCH之间的最小时间间隔,如图11中,PSSCH与其对应的PSFCH之间的最小时间间隔是2个时隙。
侧行配置授权(Configured Grant,CG)
在NR-V2X中,支持模式1(即上述第一模式)和模式2(即上述第二模式)的资源分配方式。在模式2中,终端在资源池自主选取传输资源进行侧行传输,即上述第二模式;在模式1中,网络为终端分配侧行传输资源,即上述第一模式,具体的,网络可以通过动态调度(Dynamic Scheduling,DG)的方式为终端分配侧行传输资源;或者网络可以为终端分配侧行配置授权(SL CG)传输资源。对于CG的资源分配方式,主要包括两种配置授权方式:type-1configured grant(第一类配置授权)和type-2configured grant(第二类配置授权)
第一类配置授权:网络通过RRC(Radio Resource Control,无线资源控制)信令为终端配置侧行传输资源,当UE接收到该高层参数后,可立即使用所配置的传输参数在配置的时频资源上进行侧行传输。
第二类配置授权:采用两步的资源配置方式,即RRC信令和DCI(Downlink Control Information,下行控制信息)的资源配置方式;首先,由RRC信令配置部分参数,然后由DCI激活第二类配置授权的传输,并同时配置包括时域资源、频域资源等在内的其他传输资源和传输参数。此外,网络可以通过DCI去激活该侧行配置授权,当终端接收到去激活的DCI后,不能再使用该侧行配置授权传输资源进行侧行传输。
在NR-V2X中,网络配置的侧行配置授权资源是与一个资源池相关联的,即侧行配置授权的传输资源是与其关联的资源池中的传输资源。
非授权频谱
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信***中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信***在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听(Sensing),只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送。如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT)。
NR-U***中的传输结构
在非授权频谱上的信号传输包括以下基本概念:
最大信道占用时间(MCOT):指LBT成功后允许使用非授权频谱的信道进行信号传输的最大时间长度,不同信道接入优先级下有不同的MCOT。当前MCOT的最大取值为10ms(毫秒)。应理解,该MCOT为信号传输占用的时间。
信道占用时间(Channel Occupancy Time,COT):指LBT成功后使用非授权频谱的信道进行信号传输的时间长度,该时间长度内信号占用信道可以是不连续的。其中,一次COT最长不能超过20ms,并且,该COT内的信号传输占用的时间长度不超过MCOT。
网络设备(即基站)的信道占用时间(gNB-initiated COT):也称为网络设备发起的COT,指网络设备LBT成功后获得的一次信道占用时间。网络设备的信道占用时间内除了可以用于下行传输,也可以在满足一定条件下用于UE进行上行传输。
UE的信道占用时间(UE-initiated COT):也称为UE发起的COT,指UE LBT成功后获得的一次信道占用时间。
NR-U***中的信道接入方式
在本申请中,信道接入方式又称为LBT方式,即信道接入和LBT可以互换。
在NR-U中,有以下几种LBT方式:
Type1的LBT方式:基于竞争窗口大小调整的随机回退的多时隙的信道检测,根据信道接入优先级p,可以发起长度为Tmcot的信道占用,基站使用type1的LBT方式,除了发送自己的数据,还可以将COT共享给UE,UE使用type1的LBT方式,除了发送自己的数据,还可以将COT共享给基站。下表给出了终端进行Type-1LBT时的信道接入优先级及其对应的参数。
表1不同信道优先级对应的信道接入参数
Figure PCTCN2022106305-appb-000001
需要说明的是,在上述表1中,m p是指信道接入优先级p对应的回退时隙个数,CW p是指信道接入优先级p对应的竞争窗口大小,CW min,p是指信道接入优先级p对应的CW p取值的最小值,CW max,p是指信道接入优先级p对应的CW p取值的最大值,T mcot,p是指信道接入优先级p对应的信道最大占用时间长度。
NR–U中的Type1的4种信道接入优先级,p=1为最高优先级。
Type2是基于固定长度的信道监听时隙的信道接入方式。
Type2A的LBT方式,25us(微秒)的信道的单时隙的检测,数据开始发送前至少25us开始信道检测,至少包括1个16us的检测和1个9us的检测,如果信道都是空闲,则认为信道空闲的,可以进行信道接入。
Type2B的LBT方式,固定长度为16us的单时隙的信道检测,检测在最后的9us的时间内,有4us以上空闲就认为信道是空闲的。
Type2C的LBT方式,不进行信道检测,直接传输,因为本次传输距离上一次传输之间时间差小于16us,则可以认为是同一次的传输,但传输长度不超过584us。
在SL-U***中,若终端获取的侧行传输资源在时域上不是连续的,如占用的时隙不是相邻的时隙,则终端在利用侧行传输资源进行数据传输前都需要进行信道侦听,即LBT,只有当信道空闲时才能进行侧行传输。若终端的侧行传输资源在时域上连续,即占用相邻的时隙,如果终端在第一个时隙之前的LBT成功,就可以持续占用信道,从而降低LBT的次数,提高信道占用率。因此,在SL-U***中考虑支持基于时域连续的侧行传输资源,例如连续时隙的资源分配方式。对于第二模式,终端自主选取连续时隙的多个资源。对于第一模式,网络为终端分配连续时隙上的侧行传输资源。本申请实施例可以利用连续时隙传输多个侧行传输块(Transmission Block,TB)。
图12是根据本申请一实施例的侧行传输方法的示意性流程图。该方法可选地可以应用于图1至图7所示的***,但并不仅限于此。该方法1200包括以下内容的至少部分内容。
S1210、第一终端获取第一信息,该第一信息用于指示M个侧行传输资源;
S1220、该第一终端确定N个侧行传输块;
S1230、该第一终端利用M个侧行传输资源向第二终端发送N个侧行传输块;
其中,M和N为大于1的整数,M大于或等于N。
在一些实施方式中,M和/或N也可以等于1。
在一些实施方式中,M是N的整数倍。
本申请实施例中,第一终端可以接收来自于网络设备的第一信息,该第一信息可以用于指示网络设备为第一终端分配的M个侧行传输资源,例如,该第一信息是DCI或RRC。或者,第一终端也可以接收来自于其他终端的第一信息,该第一信息可以用于指示其他终端为第一终端分配的M个侧行传输资源,例如,该第一信息是SCI,MAC(Media Access Control,媒体访问控制)CE(Control Element,控制单元)或PC5-RRC(PC5Radio Resource Control,PC5无线资源管理),其中,该其他终端可以是第二终端,或者是除了第一终端和第二终端外的终端。或者,第一终端也可以自主选取M个侧行传输资源,根据该M个侧行传输资源生成该第一信息,该第一信息可以用于指示该M个侧行传输资源,例如,该第一信息是SCI,第一终端利用上述第二模式确定该M个侧行传输资源。第一终端可以根据该第一信息指示的M个侧行传输资源确定N个侧行传输块。然后,第一终端可以利用该M个侧行传输资源向第二终端发送N个侧行传输块。该M个侧行传输资源可以包括一组或多组时域连续的侧行传输资源,或者,该M个侧行传输资源的时域不是连续的。该M个侧行传输资源可以传输一个或多个侧行传输块。
本申请实施例中,侧行数据、侧行传输块或侧行数据块可以表示相同的含义,或可以具有对应关系,三者间可以互换。
在一些实施方式中,该第一信息指示M个侧行传输资源包括用于新数据传输的传输资源;或者,该第一信息指示M个侧行传输资源包括用于侧行数据块首次传输的传输资源;或者,该第一信息指示M个侧行传输资源只包括用于重传侧行数据块的传输资源。例如,第一信息指示4个侧行传输资源,用于传输4个侧行传输块,这4个侧行传输资源分别用于这4个侧行传输块的首次传输;或者,第一信息指示4个侧行传输资源,用于传输2个侧行传输块,这4个侧行传输资源分别用于这2个侧行传输块的首次传输以及第一次重传;或者,第一信息指示2个侧行传输资源,用于重传1个侧行传输块,这2个侧行传输资源用于这1个侧行传输块的两次重传。
图13是根据本申请一实施例的侧行传输方法的示意性流程图。该方法可选地可以应用于图1至图7所示的***,但并不仅限于此。该方法1300包括以下内容的至少部分内容。
S1310、第一终端根据侧行传输资源的数量确定侧行传输块的数量。
在一种实施方式中,本实施例可以与上述实施例的任意方法步骤相结合,例如,在步骤S1220中,该第一终端确定N个侧行传输块,包括:S1310、该第一终端根据侧行传输资源的数量确定侧行传输块的数量。
在一种实施方式中,该侧行传输资源的数量包括以下至少之一:
该第一信息可指示的侧行传输资源的最大数量;
该第一信息指示的侧行传输资源的数量。
在本申请实施例中,网络设备或其他终端可以通过第一信息为第一终端分配侧行传输资源。第一信息可以为第一信令。第一信令可以为DCI(Downlink Control Information,下行链路控制信息)、RRC信令、SCI、MAC CE或PC5-RRC等。例如,第一终端根据网络设备通过第一信息可指示的侧行传输资源的最大数量,或网络设备通过第一信息指示的侧行传输资源的数量,确定侧行传输块的数量。其中,第一信息可指示的侧行传输资源的最大数量也可以称为第一信息可分配的侧行传输资源的最大数量,可以简称侧行传输资源的最大数量。第一信息指示的侧行传输资源的数量,也可以称为第一信息分配的侧行传输资源的实际数量等,可以简称侧行传输资源的实际数量等。第一信息指示的侧行传输资源的实际数量小于或等于第一信息可指示的侧行传输资源的最大数量。
在一种实施方式中,该方法还包括:
该第一终端获取第二信息,该第二信息用于确定该第一信息可指示的侧行传输资源的最大数量。
在一种实施方式中,该第二信息是资源池配置信息中的信息。在又一种实施方式中,该第二信息是根据协议预定义、预配置信息或网络配置信息确定的。
在一种实施方式中,该第一信息可指示的侧行传输资源的最大数量通过以下至少之一确定:
该第一信息为DCI,该第一信息可指示的侧行传输资源的最大数量是根据该DCI能够指示的侧行传输资源的最大数量确定的;或者,
该第一信息为RRC信令,该第一信息可指示的侧行传输资源的最大数量是根据该RRC信令配置的侧行配置授权传输资源的一个周期中包括的侧行传输资源的最大数量确定的;或者,
该第一信息可指示的侧行传输资源的最大数量是根据SCI能够指示的侧行传输资源的最大数量确定的。
例如,第一信息为SCI,该第一信息可指示的侧行传输资源的最大数量是根据该SCI能够指示的侧行传输资源的最大数量确定的。又例如,第一信息为DCI和/或RRC信令,在DCI或RRC信令中采用和SCI相同的方式或相同的信息域指示侧行传输资源,因此该第一信息可指示的侧行传输资源的最大数量是根据SCI能够指示的侧行传输资源的最大数量确定的。
在一种实施方式中,第一信息指示的侧行传输资源的数量包括以下至少之一:
该第一信息为DCI,该第一信息指示的侧行传输资源的数量是该DCI指示的侧行传输资源的数量;
该第一信息为RRC信令,该第一信息指示的侧行传输资源的数量是一个侧行配置授权周期中包括的侧行传输资源的数量;
该第一信息为SCI,该第一信息指示的侧行传输资源的数量是该SCI指示的侧行传输资源的数量。
在本申请实施例中,如果第一信息为DCI,是基于DCI的资源分配方式,网络设备指示的侧行传输资源的数量为该DCI指示的侧行传输资源的数量。如果第一信息为RRC信令,或者第一信息为DCI和RRC信令,是侧行配置授权(SL CG)的资源分配方式,网络设备通过第一信息指示的侧行传输资源的数量为一个侧行配置授权周期中包括的侧行传输资源的数量。如果第一信息为SCI,侧行传输资源的数量为该SCI指示的侧行传输资源的数量,不包括预留的下一个周期中的侧行传输资源的数量。
在一种实施方式中,网络设备指示的侧行传输资源的数量可以包括一组时域连续侧行传输资源包括的传输资源的数量,也可以包括多组时域连续侧行传输资源包括的传输资源的数量。例如,网络设备通过DCI分配3组时域连续的侧行传输资源,每组中包括2个连续时隙的传输资源,则网络设备分配的侧行传输资源的数量为6(即多组时域连续侧行传输资源包括的传输资源的数量)。又例如,网络设备通过DCI分配1组时域连续的侧行传输资源,该组中包括2个连续时隙的传输资源,则网络设备分配的侧行传输资源的数量为2(即一组时域连续侧行传输资源包括的传输资源的数量)。
在一种实施方式中,该方法还包括:该第一终端获取第一参数,该第一参数用于确定该侧行传输块的数量。
在一种实施方式中,在***未配置第一参数R1的情况下,可以默认使得R1=1,即第一参数的缺省值可以为1。
在一种实施方式中,若侧行传输资源和侧行传输块是一一对应的,则可以不配置第一参数,此时,根据侧行传输资源的数量即可确定侧行传输块的数量。
在一种实施方式中,该第一参数表示一个侧行传输块对应的侧行传输资源的数量。例如,根据该第一参数可以确定网络设备指示的侧行传输资源所对应的侧行传输块的数量。第一参数R1是大于或等于1的整数。一个侧行传输块对应R1个侧行传输资源。
在一种实施方式中,在一个侧行传输块对应多个侧行传输资源的情况下,该多个侧行传输资源传输相同的侧行传输块。
在一种实施方式中,该第一参数的取值是该第一终端根据协议预定义、预配置信息或网络配置信息的至少之一确定的。
在一种实施方式中,该侧行传输块的数量是该第一终端根据第一信息指示的侧行传输资源的数量和该第一参数确定的。
例如,若网络设备分配的侧行传输资源的数量为4,第一参数R1=1,即一个侧行传输块对应一个侧行传输资源,则可以确定侧行传输块的数量为4。若网络设备为第一终端分配一组时域连续侧行传输资源包括的资源数量为2,根据第一参数R1,确定侧行传输块数量也是2。
又例如,若网络设备分配的侧行传输资源的数量为4,第一参数R1=2,即一个侧行传输块对应2个侧行传输资源,则可以确定侧行传输块的数量为2。若网络设备为第一终端分配一组时域连续侧行传输资源包括的资源数量为2,根据第一参数R1,确定侧行传输块数量是1。
在一种实施方式中,该侧行传输块的数量是该第一终端根据第一信息可指示的侧行传输资源的最大数量和该第一参数确定的。
例如,若网络设备可指示的侧行传输资源的数量为6,第一参数R1=2,即一个侧行传输块对应一个侧行传输资源,则可以确定侧行传输块的数量为3。
在一种实施方式中,该方法还包括:该第一终端确定侧行传输块的最大数量;其中,该侧行传输块的最大数量是该第一终端根据该第一信息可指示的侧行传输资源的最大数量和该第一参数确定的。
在本申请实施例中,第一终端不仅可以确定侧行传输块的数量,还可以确定侧行传输块的最大数量。例如,若网络设备分配的侧行传输资源的最大数量为6,一个侧行传输块对应2个侧行传输资源,即第一参数R1=2,则可以确定侧行传输块的最大数量为3。网络设备为第一终端分配的一组时域连续侧行传输资源包括的资源数量为2,根据第一参数R1,确定侧行传输块数量为1。
在本申请实施例中,第一终端可以根据第一信息可指示的侧行传输资源的最大数量或第一信息指示 的侧行传输资源的实际数量确定相应的侧行传输块的最大数量或侧行传输块的数量,可以支持网络设备或其他终端为第一终端分配不同数量的侧行传输资源,提高调度灵活性。
图14是根据本申请一实施例的侧行传输方法的示意性流程图。该方法可选地可以应用于图1至图7所示的***,但并不仅限于此。该方法1400包括以下内容的至少部分内容。
S1410、第一终端确定NDI信息域的信息。
在一种实施方式中,本实施例可以与上述实施例的任意方法步骤相结合,例如,在第一信息中包括NDI(New Data Indicator,新数据指示)信息域,该方法1400还包括:S1410、第一终端确定NDI信息域的信息。S1410可以在S1210之前执行也可以在S1210之后执行;或者,S1410可以在S1220之前执行也可以在S1220之后执行。
在本申请实施例中,当网络设备通过DCI为第一终端分配侧行传输资源时,该DCI可以是用于动态调度的DCI,也可以是用于激活Type-2SL CG的DCI,或者是用于重传调度的DCI。DCI中可以包括NDI信息域,该NDI信息域的比特数量为N,N是大于或等于1的整数。如果NDI信息域为1比特,第一终端可以利用DCI分配的侧行传输资源传输一个侧行传输块。如果NDI信息域为多个比特,第一终端可以利用DCI分配的侧行传输资源传输多个侧行传输块。
在本申请实施例中,当网络设备通过RRC信令为第一终端分配侧行传输资源时,该RRC信令可以是例如用于配置Type-1侧行配置授权传输资源的配置信令。
在一种实施方式中,该NDI信息域的信息包括以下至少之一:
NDI信息域的比特数量;
NDI信息域的有效比特数量;
NDI信息域的有效比特位。
在本申请实施例中,NDI信息域的比特数量又可以称为NDI信息域的最大比特数量或者NDI信息域的比特数量的最大值。
在本申请实施例中,NDI信息域的有效比特数量可以小于或等于NDI信息域的比特数量。例如,NDI信息域的比特数量为6,NDI信息域的有效比特数量为6。又例如,NDI信息域的比特数量为6,NDI信息域的有效比特数量为4。NDI信息域的有效比特位可以包括NDI信息域的所有比特位中取值有效的比特位。NDI信息域的有效比特位可以包括NDI信息域的所有比特位中的部分比特位。例如,NDI信息域的比特数量为6,NDI信息域的有效比特数量为4,有效比特位是NDI信息域的最低的4位。又例如,NDI信息域的比特数量为6,NDI信息域的有效比特数量为3,有效比特位是NDI信息域的最高的3位。
在一种实施方式中,该NDI信息域的比特数量是根据协议预定义、预配置信息或网络配置信息的至少之一确定的。
例如,在协议中预定义了NDI信息域的比特数量。又例如,在资源池配置信息或侧行带宽部分(Bandwidth Part,BWP)配置信息中包括指示信息,该指示信息用于指示NDI信息域的比特数量。
在一种实施方式中,该NDI信息域的信息是根据侧行传输资源的数量和/或侧行传输块的数量确定的。
在一种实施方式中,S1410可以包括该第一终端根据侧行传输资源的数量和/或侧行传输块的数量确定NDI信息域的信息。
在一种实施方式中,该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量和/或该第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的。
在本申请实施例中,第一终端可以根据第一信息可指示的侧行传输资源的最大数量确定NDI信息域的比特数量。例如,侧行传输资源的最大数量为4,则NDI信息域包括的比特数量也为4。
又例如,第一终端根据第一信息指示的侧行传输资源可传输的侧行传输块的最大数量确定NDI信息域的比特数量。其中,第一信息指示的侧行传输资源可传输的侧行传输块最大数量可以为第一信息指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量。
在一种实施方式中,该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量确定的,包括:该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量和第二参数确定的,其中,该第二参数表示侧行传输资源的数量与NDI信息域的比特数量之间的倍数关系。例如,侧行传输资源的数量为M,第二参数为R2,NDI信息域的比特数量为Kmax=M/R2。
在一种实施方式中,第一信息可指示的侧行传输资源的最大数量和NDI信息域的比特数量之间具有对应关系。根据第一信息可指示的侧行传输资源的最大数量和该对应关系可以确定NDI信息域的比特数量。在第一信息可指示的侧行传输资源的数量可以小于该第一信息可指示的侧行传输资源的最大数量时,第一终端需要确定NDI信息域的有效比特数量,以及相应的有效比特位。
在一种实施方式中,该NDI信息域的比特数量等于该第一信息可指示的侧行传输资源的最大数量与该第二参数之间的比值。例如,侧行传输资源的最大数量为Mmax,第二参数为R2,NDI信息域的比特数量为Kmax=Mmax/R2。
在一种实施方式中,该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的,或者,该NDI信息域的比特数量是根据侧行传输块的最大数量确定的,包括:该侧行传输块的最大数量与该NDI信息域的比特数量相同,其中,侧行传输块的最大数量与第一信息可指示的侧行传输资源的最大数量之间具有对应关系。例如,侧行传输块的最大数量为Tmax,NDI信息域的比特数量Kmax=Tmax。
在一种实施方式中,S1410还包括:该第一终端根据该第一信息指示的侧行传输资源的数量和/或该侧行传输块的数量确定该NDI信息域的有效比特数量。例如,在侧行传输块的数量小于该侧行传输块的最大数量的情况下,该第一终端根据该侧行传输块的数量确定该NDI信息域的有效比特数量。其中,该侧行传输块的数量是根据该第一信息指示的侧行传输资源的数量确定的侧行传输块的数量。例如,侧行传输块的数量(又称为侧行传输块的实际数量,记为N)可能小于侧行传输块的最大数量为Tmax。这种情况下,NDI信息域的比特数量中可以包括有效比特数量和无效比特数量,NDI信息域的比特中可以包括有效比特和无效比特。第一终端根据NDI信息域中的有效比特是否翻转决定进行重传还是新数据传输,而NDI信息域中的无效比特位(或称为有效比特)不与侧行传输块对应,即第一终端不根据无效比特位(或称为无效比特)决定重传侧行传输块或传输新的侧行传输块。第一终端可以根据侧行传输块的数量N确定NDI信息域的有效比特数量K。NDI信息域的有效比特数量K小于或等于NDI信息域的比特数量Kmax。
在一种实施方式中,该NDI信息域的有效比特数量K等于该侧行传输块的数量N,即K=N。例如,NDI信息域的有效比特位可以与侧行传输块一一对应。通过NDI信息域一个比特是否翻转,指示是否需要对该比特对应的一个侧行传输块进行重传。
在一种实施方式中,该方法中,S1410可以包括:该第一终端确定该NDI信息域的有效比特位。
在一种实施方式中,该第一终端确定该NDI信息域的有效比特位,包括:该第一终端确定该NDI信息域的最低K个比特位或最高K个比特位作为该NDI信息域的有效比特位,其中,K表示该NDI信息域的有效比特数量。
在一种实施方式中,该第一终端确定该NDI信息域的有效比特位,包括:在第一信息指示的侧行传输资源只包括重传资源的情况下,第一终端确定该NDI信息域中不翻转的比特位作为该NDI信息域的有效比特位。
在一种实施方式中,该第一信息指示的侧行传输资源只用于侧行传输块的重传,则该NDI信息域的有效比特位包括NDI不翻转的比特。
在一种实施方式中,该第一信息包括DCI,该NDI信息域是包括在该DCI中的信息域。
在一种实施方式中,第一信息指示的侧行传输资源可传输的侧行传输块的最大数量和NDI信息域的比特数量之间具有对应关系,第一终端根据侧行传输块的最大数量和该对应关系可以确定NDI信息域的比特数量。在侧行传输块的数量小于该侧行传输块的最大数量时,第一终端需要确定NDI信息域的有效比特数量,以及相应的有效比特位。
在本申请实施例中,若网络设备例如gNB通过第一信息可指示的(或可分配的)侧行传输资源的最大数量和NDI信息域包括的比特数量相等,则当gNB通过第一信息为第一终端指示的(或分配的)侧行传输资源的实际数量小于该最大数量时,第一终端根据该实际数量确定NDI信息域中的有效比特数量。例如,网络设备分配的侧行传输资源的最大数量为4,则NDI信息域包括的比特数量也为4。gNB为第一终端分配的侧行传输资源的实际数量为2,则确定NDI信息域的有效比特位的数量(即有效比特数量)也是2。具体的,该有效比特位可以为NDI信息域中最低的2位,或最高的2位。又例如,若网络设备gNB通过第一信息可指示的侧行传输资源的最大数量是NDI信息域包括的比特数量的2倍,即2个侧行传输资源(或时隙)对应1个NDI信息域的比特,则当gNB通过第一信息为第一终端指示的侧行传输资源的实际数量小于最大数量时,第一终端根据该实际数量确定NDI信息域中的有效比特数。例如,网络设备gNB通过第一信息可指示的的侧行传输资源的最大数量为6,则NDI信息域包括的比特数为3。gNB通过第一信息为第一终端指示的侧行传输资源的实际数量为2,则确定NDI信息域的有效比特位是1位。具体的,该有效比特位为NDI信息域中最低的1位,或最高的1位。
在一种实施方式中,该侧行传输方法还包括:第一终端获取第三信息,该第三信息用于指示重传第一侧行数据块的侧行传输资源,该N个侧行数据块中包括该第一侧行数据块。
例如,网络设备通过第一信息为第一终端分配侧行传输资源,该侧行传输资源包括用于初传第一侧行传输块的资源。网络设备通过第三信息为第一终端分配侧行传输资源,该侧行传输资源包括用于重传 第一侧行传输块的资源。其中,该第一侧行传输块包括在N个侧行传输块中,或者,该第一侧行传输块是该N个侧行传输块中的一个或多个侧行传输块。该第一信息例如DCI或RRC信令,该第三信息例如是DCI。
在一种实施方式中,第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的其余比特翻转。
在一种实施方式中,该第三信息指示X个侧行传输资源,该X个侧行传输资源用于重传该第一侧行数据块;其中,X小于或等于M。
在一种实施方式中,第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
例如,该第三信息分配的侧行传输资源包括重传第一侧行数据块的传输资源,也包括用于新数据传输的传输资源,该第三信息分配的侧行传输资源数量与该第一信息分配的侧行传输资源数量相等,该第三信息中包括NDI信息域,该NDI信息域中与第一侧行传输块对应的比特不翻转,NDI信息域中的其余比特翻转或者NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。第一终端利用第一侧行传输块对应的侧行传输资源重传第一侧行传输块,利用NDI信息域中其余有效比特对应的侧行传输资源传输新的侧行传输块。
例如,网络通过DCI为终端分配侧行传输资源的最大数量是4个,若侧行传输资源的最大数量和NDI信息域的比特数量相等,确定NDI信息域的比特数量为4;网络通过第一DCI为第一终端动态分配3个侧行传输资源,第一终端确定NDI信息域的有效比特数量为3,并且确定有效比特位为NDI信息域的最低3位,该第一DCI分配的3个侧行传输资源用于传输3个侧行传输块,包括第一侧行传输块、第二侧行传输块和第三侧行传输块。若网络接收到终端上报的侧行反馈信息中对应于3个侧行传输块的反馈信息分别为NACK、ACK、ACK,则网络通过第二DCI为终端分配3个侧行传输资源,包括用于重传第一个侧行传输块的重传资源,也包括用于传输新数据的传输资源,该第二DCI中的NDI信息域的3个有效比特位中第一位不翻转,第二位和第三位翻转,因此,该第二DCI中的3个侧行传输资源中的第一个侧行传输资源用于重传第一侧行传输块,第二个和第三个侧行传输资源用于传输新的侧行传输块。
在又一种实施方式中,第三信息指示的侧行传输资源不用于传输新的侧行数据块。或者,在又一种实施方式中,该第三信息指示的传输资源只包括重传资源。
例如,该第三信息分配的侧行传输资源只包括重传第一侧行数据块的传输资源,不包括用于新数据传输的传输资源,该第三信息中包括NDI信息域,该NDI信息域中与第一侧行传输块对应的比特不翻转,NDI信息域中的其余比特翻转(记为情况1),或者,该NDI信息域中与第一侧行传输块对应的比特不翻转,NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转(记为情况2)。第一终端利用第一侧行传输块对应的侧行传输资源重传第一侧行传输块。
例如,网络通过DCI为终端分配侧行传输资源的最大数量是4个,若侧行传输资源的最大数量和NDI信息域的比特数量相等,确定NDI信息域的比特数量为4;网络通过第一DCI为第一终端动态分配3个侧行传输资源,第一终端确定NDI信息域的有效比特数量为3,并且确定有效比特位为NDI信息域的最低3位;该第一DCI分配的3个侧行传输资源用于3个侧行传输块的首次传输,包括第一侧行传输块(TB#1)、第二侧行传输块(TB#2)和第三侧行传输块(TB#3),NDI信息域中的最低三位分别和三个侧行传输块对应,如NDI信息域最低比特对应TB#3,NDI信息域倒数第二比特对应TB#2,NDI信息域倒数第三比特对应TB#1。若网络接收到终端上报的侧行反馈信息中对应于3个侧行传输块的反馈信息分别为NACK、ACK、ACK,则网络通过第二DCI为终端分配重传资源,用于重传该第一侧行传输块,该第二DCI中分配的侧行传输资源的数量为1个,该侧行传输资源用于重传第一侧行传输块,该第二DCI中NDI信息域中与TB#1对应的比特的取值不翻转,而NDI信息域中其他比特位取值翻转(对应于上述情况1),例如,第一DCI中NDI信息域的取值为[0 0 0 0],其中,最后3个比特位为有效比特位,第一个比特位为无效比特位;第二DCI中NDI信息域的取值为[1 0 1 1],即在第二DCI中对应于TB#1的NDI信息域的比特不翻转,其余比特翻转。或者,该第二DCI中NDI信息域中与TB#1对应的比特的取值不翻转,而NDI信息域的有效比特中其他比特位翻转(对应于上述情况2),例如,第一DCI中NDI信息域的取值为[0 0 0 0],其中,最后3个比特位为有效比特位,第一个比特位为无效比特位;第二DCI中NDI信息域的取值为[0 0 1 1],即在第二DCI中对应于TB#1的NDI信息域的比特不翻转,其余有效比特翻转,第一个比特对应于无效比特,其取值不变。
在本申请实施例中,网络设备通过不同的DCI为终端分配的侧行传输资源的数量可能是不同的,为了降低终端盲检测DCI的复杂度,需要保证DCI信息比特长度相同。因此,NDI信息域的比特数量可以是根据网络分配的侧行传输资源的最大数量确定的,在网络设备分配不同数量的侧行传输资源时, NDI信息域比特数量不变,从而保证DCI信息比特长度不变,不增加终端盲检测DCI的复杂度。
在本申请实施例中,侧行传输资源、侧行传输块,以及NDI信息域之间的对应关系可以如下:
网络设备通过第一信息可指示的侧行传输资源的最大数量为Mmax,其对应的侧行传输块的最大数量为Tmax,NDI信息域的比特数量Kmax根据Mmax或Tmax确定。侧行传输资源与侧行传输块之间的对应关系可以包括如下三种:
1对1的对应关系:即一个侧行传输资源用于传输一个侧行传输块;此时Mmax=Tmax=Kmax。
多对1的对应关系:即多个侧行传输资源用于传输一个侧行传输块;如图15所示,2个侧行传输资源用于传输1个侧行传输块。
多对多的对应关系:即多个侧行传输资源用于传输多个侧行传输块。侧行传输资源与侧行传输块之间没有固定的对应关系。可以基于UE实现确定侧行传输资源与侧行传输块之间的对应关系,或者根据侧行传输块对应的第三参数(如优先级)确定侧行传输块对应的侧行传输资源。
例如,侧行传输块的最大数量与NDI信息比特数量相同。侧行传输块与NDI信息比特之间具有对应关系。
如图15所示,网络可分配的侧行传输资源的最大数量Mmax=8,对应的侧行传输块的最大数量Tmax=4。即2个侧行传输资源用于传输1个侧行传输块。NDI信息域的比特数量为4。并且NDI信息比特和侧行传输块之间具有1对1的对应关系。
若网络分配的侧行传输资源的实际数量小于侧行传输资源的最大数量,则侧行传输资源对应的侧行传输块和NDI信息域的比特如图16所示。网络分配的侧行传输资源的实际数量是M=4;其对应的侧行传输块的数量是N=2;对应的NDI的有效信息比特数量是2位,并且有效信息位为NDI信息域中的最高(或最低)比特位对应的2个比特,或NDI信息比特序列中的最左侧(或最右侧)的2个比特。图16中所示的有效比特位是对应NDI最左侧2个比特。
在一种实施方式中,第一终端可以基于NDI信息域是否翻转确定后续执行的动作。
例如,对于NDI信息域的有效比特数量或比特数量大于1的情况,若第一终端针对第一侧行数据(即第一侧行传输块)上报了ACK并且针对第二侧行数据(即第二侧行传输块)上报了NACK,但是第一终端接收到网络设备gNB发送的DCI中该第一侧行数据对应的NDI信息域不翻转,则第一终端可以执行以下步骤的至少之一:
第一终端利用该第一侧行数据对应的侧行传输资源传输第二侧行数据;其中,该第二侧行数据包括一个或多个上报了NACK的侧行数据。进一步的,第一终端针对该第一侧行数据向网络上报ACK。
第一终端重传该第一侧行数据。若终端不重传该第一侧行数据,如该第一侧行数据对应的侧行传输资源没有进行侧行传输,会有可能使得侧行传输资源在时域上不连续,导致信道被其他***(如WiFi***)的设备抢占,从而丢掉信道占用。进一步的,第一终端针对该第一侧行数据向网络设备上报ACK。
图17是根据本申请一实施例的侧行传输方法的示意性流程图。该方法可选地可以应用于图1至图7所示的***,但并不仅限于此。该方法1700包括以下内容的至少部分内容。
S1710、第一终端确定N个侧行传输块与M个侧行传输资源之间的对应关系。
在一种实施方式中,该S1710可以与上述实施例的任意方法步骤相结合。
例如,网络设备可以向第一终端发送第一信息,为该第一终端分配M个侧行传输资源。第一终端接收到网络设备发送的第一信息后,可以获取该第一信息指示的M个侧行传输资源。该M个侧行传输资源对应N个侧行传输块,需要确定侧行传输块与侧行传输资源之间的对应关系(或称为映射关系)。
在一种实施方式中,在该侧行传输资源的数量与该侧行传输块的数量相等的情况下,该M个侧行传输资源与该N个侧行传输块一一对应。例如,4个侧行传输资源分别为M1、M2、M3和M4,4个侧行传输块分别为N1、N2、N3和N4,其中M1对应N1,M2对应N2,M3对应N3,M4对应N4。
在一种实施方式中,在该侧行传输资源和该侧行传输块之间是多对一的对应关系的情况下,该侧行传输资源的数量是该侧行传输块的数量的整数倍。例如,网络设备为第一终端分配M个侧行传输资源,第一终端利用该M个侧行传输资源传输的侧行传输块(TB)数量为N。可选的,M是N的整数倍,即M=n*N,n为大于或等于1的整数。可选的,第一终端不期望M不是N的整数倍,或者第一终端不期望M不能被N整除。例如,M/N为整数。
在本公开实施例中,当侧行传输块数量和侧行传输资源数量之间不相等时,侧行TB与侧行传输资源之间的对应关系可以根据下面的方式1和方式2确定。
方式1:根据协议预定义、预配置信息或网络配置信息确定侧行TB与侧行传输资源之间的映射方式。方式1可以包括下述第一方式、第二方式、第三方式和第四方式的至少之一。
在一种实施方式中,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第一方式为:将该M个侧行传输资源分为A1组侧行传输资源,每组包括N个侧行传输资源,每组侧行传输资源中 包括的N个侧行传输资源与该N个侧行传输块一一对应,即N个侧行传输资源中的每个侧行传输资源分别用于传输一个侧行传输块。
例如,参见图18a,第一方式可以称为第一映射方式,具体可以包括:将M个侧行传输资源分为A1组侧行传输资源,每组包括N个侧行传输资源,M=N*A1。第一组N个侧行传输资源轮流进行N个TB第一次传输。然后在下一组N个侧行传输资源中轮流进行N个TB的第二次传输,以此类推。基于该映射方式,可以使得一个TB的相邻两次传输之间间隔N个时隙,若在下一次重传之前可以收到该TB的ACK反馈,则可以停止重传该TB,降低***拥塞程度。
在一种实施方式中,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第二方式为:将该M个侧行传输资源分为N组侧行传输资源,每组包括A2个侧行传输资源,每组侧行传输资源中包括的A2个侧行传输资源用于传输该N个侧行传输块中的一个侧行传输块,该N组侧行传输资源与该N个侧行传输块一一对应。
例如,参见图18b,第二方式可以称为第二种映射方式,具体可以包括:将该M个侧行传输资源分为N组侧行传输资源,每组包括A2个侧行传输资源,M=A2*N。第一组侧行传输资源中包括的A2个传输资源用于传输第一个TB,第二组侧行传输资源中包括的A2个传输资源用于传输第二个TB,以此类推。基于该映射方式,接收端可以根据该TB的多次传输的检测结果判断ACK或NACK,可以只针对该TB进行一次侧行反馈。如根据接收到该TB的所有传输判断ACK或NACK,进而向发送端进行反馈,降低发送PSFCH的传输次数。
在一种实施方式中,该M个侧行传输资源包括一组时域连续的侧行传输资源。例如,在第一方式或第二方式中,M个侧行传输资源对应于连续的M个时隙。
在一种实施方式中,该M个侧行传输资源包括L组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括N个侧行传输资源,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第三方式为:每组时域连续的侧行传输资源中包括的N个侧行传输资源与该N个侧行传输块一一对应,即N个侧行传输资源中的每个侧行传输资源分别用于传输一个侧行传输块。
例如,参见图18c,第三方式可以称为第三种映射方式,具体可以包括:M个侧行传输资源包括L组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括N个侧行传输资源,即一组时域连续的侧行传输资源中包括的N个侧行传输资源与N个侧行传输块一一对应。每个侧行传输块传输L次,分别位于L组时域连续的侧行传输资源中。不同组的侧行传输资源之间可能不连续,例如资源N-1和N对应的时隙可能不是连续的时隙,资源2N-1和2N对应的时隙可能不是连续的时隙。
在一种实施方式中,该M个侧行传输资源包括N组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括P个侧行传输资源,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第四方式为:每组时域连续的侧行传输资源中包括的P个侧行传输资源用于传输该N个侧行传输块中的一个侧行传输块,该N组侧行传输资源与该N个侧行传输块一一对应。
例如,参见图18d,第四方式第四种映射方式(可以简称):M个侧行传输资源包括N组时域连续的侧行传输资源,侧行传输块的数量也为N,每组时域连续的侧行传输资源包括P个侧行传输资源,即一组时域连续的侧行传输资源中包括的P个传输资源用于传输该N个侧行传输块中1个侧行传输块,L组时域连续的侧行传输资源用于传输L个传输块。不同组侧行传输资源之间可能不连续,例如资源P-1和P对应的时隙可能不是连续的时隙,资源2P-1和2P对应的时隙可能不是连续的时隙。
应理解,图18a至图18d中的时隙索引表示M个侧行传输资源对应的M个时隙中从低到高的顺序索引。TB索引表示N个TB从低到高的顺序索引。
在第三方式和第四方式中,同组内的侧行传输资源可以是时域连续的;不同组之间的侧行传输资源可以是时域连续的,也可以不是时域连续的。
方式2,第一终端可以根据侧行数据的第三参数确定侧行数据对应的侧行传输资源数量。
在一种实施方式中,该N个侧行传输块与该M个侧行传输资源之间的对应关系是根据第三参数确定的,该第三参数是根据QoS(Quality of Service,业务质量)确定的参数。例如,根据PQI(PC5 5G QoS Identifier,第五代业务质量指示)确定的参数。
在一种实施方式中,其中,该第三参数包括以下参数至少之一:优先级、可靠性、时延,其中时延包括PDB(Packet Delay Budget,包时延预算)。
例如,第三参数为优先级,可以为高优先级的数据分配更多传输资源可以保证该侧行数据的传输性能。侧行传输块的数量N=2,侧行传输资源数量M=4。第一侧行传输块对应的优先级取值低于第二个侧行传输块对应的优先级取值(优先级取值越低表示优先级等级越高),即第一个侧行传输块的优先级更高。因此,第一终端用3个资源传输第一个侧行传输块,用1个资源传输第二个侧行传输块。
在一种实施方式中,第一终端可以根据侧行传输块的第三参数确定侧行传输块所对应的侧行传输资 源在第一信息指示的M个侧行传输资源中的时域顺序和/或时域位置。
在一种实施方式中,第三参数为优先级,则高优先级的侧行传输块对应的侧行传输资源位于低优先级的侧行传输块对应的侧行传输资源之前。
例如,侧行数据(即侧行传输块)的数量N=2,侧行传输资源的数量M=4。第一侧行数据对应的优先级取值低于第二个侧行数据对应的优先级取值(优先级取值越低表示优先级等级越高),即第一个侧行数据的优先级更高。因此,第一终端用2个侧行资源传输第一个侧行数据,并且该2个资源是时域位置靠前的2个资源;并且,第一终端用2个侧行资源传输第二个侧行数据,并且该2个资源是时域位置靠后的2个资源。
在一种实施方式中,该方法还包括:
该第一终端获取第一对应关系;
该第一终端根据该第一对应关系以及第三参数确定侧行传输块对应的侧行传输资源的数量。
在一种实施方式中,该第一对应关系为以下至少之一:
第三参数和侧行传输资源的数量之间的对应关系;
第三参数的门限和侧行传输资源的数量之间的对应关系;
第三参数和侧行传输资源的最大数量之间的对应关系;
第三参数的门限和侧行传输资源的最大数量之间的对应关系。
在一种实施方式中,该方法还包括:该第一终端根据该第三参数确定侧行传输块所对应的侧行传输资源在该M个侧行传输资源中的时域顺序和/或时域位置。
在一种实施方式中,该第三参数包括优先级,则高优先级的侧行传输块对应的侧行传输资源位于低优先级的侧行传输块对应的侧行传输资源之前。
例如,第三参数为优先级,第一对应关系为优先级和传输资源的最大数量之间的对应关系如下表所示:
表2:优先级和传输资源最大数量之间的对应关系
优先级取值 1 2 3 4 5 6 7 8
传输资源最大数量 4 4 3 3 2 2 1 1
若侧行数据的优先级取值为3,根据表2,其对应的传输资源的最大数量为3。可以为该侧行数据分配的侧行传输资源数量为1,2或3个。
又例如,第三参数为优先级,第一对应关系为优先级门限和传输资源的最大数量之间的对应关系,如下表所示:
表3:优先级门限和传输资源最大数量之间的对应关系
优先级上限 2 4 6 8
传输资源最大数量 4 3 2 1
其中,优先级上限2对应的优先级范围为[1,2]。优先级上限4对应的优先级范围为[3,4]。优先级上限6对应的优先级范围为[5,6]。优先级上限8对应的优先级范围为[7,8]。
若侧行数据的优先级取值为5,根据表3,其对应的传输资源的最大数量为2。可以为该侧行数据分配的侧行传输资源数量为1或2个。
在一种实施方式中,该侧行传输块承载在物理侧行共享信道PSSCH中。
在一种实施方式中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输该PSSCH。
在一种实施方式中,该第一终端在时隙中的GP符号中传输第一数据,使得该GP符号中的空闲时长小于或等于第一时长,该第一时长根据Type 2(第二类)信道接入所需的空闲时长确定,该第一数据为循环前缀扩展或者根据一个OFDM符号上的数据确定。例如,第一时长为16us或25us。该空闲时长表示第一终端在GP符号内不进行数据发送的时长。该第一数据为循环前缀扩展(CP extension)或是某个OFDM符号上的数据的重复。可选的,第一终端利用时隙中的全部可用于侧行的OFDM符号传输侧行数据。
在一种实施方式中,该第一信息中包括第一信息域,该第一信息域用于确定第一HARQ进程号(HARQ Process Number)。
在一种实施方式中,该第一信息为DCI,该第一信息域为该DCI中的HARQ信息域,该HARQ信息域用于指示该第一HARQ进程号。
在一种实施方式中,该第一信息为RRC信令,该第一信息域包括该RRC信令中的第四参数和第五参数,该第四参数和该第五参数用于确定该第一HARQ进程号,其中,该第四参数用于指示HARQ进程号偏移量,该第五参数用于指示HARQ进程号数量。例如,第四参数为sl-HARQ-ProcID-offset,第 五参数为sl-NrOfHARQ-Processes。根据这两个参数可以确定侧行配置授权每个周期的侧行传输资源(或每个周期的第一个侧行传输资源)关联的第一HARQ进程号。例如,根据下式确定第一HARQ进程号:
HARQ Process ID=[floor(CURRENT_slot/PeriodicitySL)]modulo sl-NrOfHARQ-Processes+sl-HARQ-ProcID-offset
其中:CURRENT_slot表示侧行配置授权的每个周期内的侧行传输资源(或每个周期的第一个侧行传输资源)所对应的逻辑时隙,又可称为当前的逻辑时隙;PeriodicitySL是根据侧行配置授权周期确定的。例如:
Figure PCTCN2022106305-appb-000002
其中,sl-PeriodCG表示侧行配置授权周期,T' max表示侧行配置授权传输资源所关联的资源池在一个SFN(或DFN)周期中包括的时隙数量。
在一种实施方式中,该方法还包括:该第一终端确定第二HARQ进程号,该第二HARQ进程号是该第一终端根据该第一HARQ进程号以及该侧行传输块的数量确定的侧行HARQ进程号。其中,第二HARQ进程号是在SCI中携带的HARQ进程号。
在一种实施方式中,该第一终端确定第二HARQ进程号,包括:该第一终端根据该侧行传输块的数量N确定N个该第二HARQ进程号,每个侧行传输块分别对应一个该第二HARQ进程号。
例如,第一终端获取第一信息,根据该第一信息中的第一信息域(携带第一HARQ进程号)以及N的取值确定侧行HARQ进程号(记为第二HARQ进程号)。可选的,第二HARQ进程号数量等于侧行传输块数量N。如何确定这N个侧行HARQ进程号可以基于终端实现。例如,第一终端可以从未被使用的侧行HARQ进程号中随机选取N个HARQ进程号作为该N个第二HARQ进程号。此外,一个第一HARQ进程号对应N个第二HARQ进程号,第一终端可以确定第一HARQ进程号和N个第二进程号之间的对应关系。
在一种实施方式中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少一个,是根据协议预定义、预配置信息或网络配置信息确定的。
在一种实施方式中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少二者之间具有第二对应关系。
在一种实施方式中,第一信息指示的侧行传输资源的数量、侧行传输块的数量、第二HARQ进程号的数量、第一信息中的NDI信息域的有效比特数量的至少二者之间具有第三对应关系。
可选的,根据协议预定义、预配置信息或网络配置信息确定以下信息中的至少一个:第一信息指示的侧行传输资源数量、侧行传输块数量、第二HARQ进程号数量、第一信令中的NDI信息域包括的有效比特数量。
例如,在资源池配置信息中包括指示信息。该指示信息用于指示DCI中包括的NDI信息域对应的比特数量N。或者,该指示信息用于指示网络分配的侧行传输资源传输的侧行TB数量。或者,该指示信息用于指示网络分配的侧行传输资源的数量(或最大数量)。
在一种实施方式中,该M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
在一种实施方式中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。例如,一组侧行传输资源包括的P个时隙是连续的时隙。
在一种实施方式中,在该P个时隙是物理时隙的情况下,该P个侧行传输资源对应的P个物理时隙是连续的;
在该P个时隙是第一资源池中的逻辑时隙的情况下,该P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。但是这P个逻辑时隙所对应的物理时隙可能是不连续的。
在一种实施方式中,一组时域连续的P个侧行传输资源的频域资源相同。
在一种实施方式中,一组时域连续的P个侧行传输资源的频域资源不同。
在一种实施方式中,不同组时域连续的侧行传输资源的之间的频域资源可以不同。
可选的,该第一信令中包括第二信息域,该第二信息域用于指示M个侧行传输资源,该M个侧行传输资源包括L组时域连续的侧行传输资源。每组连续的侧行传输资源中都包括P个侧行传输资源。每组侧行传输资源对应的P个时隙是连续的时隙。可选的,该连续的时隙是在一个资源池中连续的时隙。可选的,每组侧行传输资源包括的P个资源的频域资源可以相同或不同,本实施例不做限定。例如,P个侧行传输资源的频域资源相同,可以降低资源指示信息域的比特数量,降低信令开销。如图19所示:L=3;P=2,每个传输资源在频域占据2个子信道。可选的,不同组之间的时域连续的侧行传输资源对应的频域资源可以不同,如图19所示。
在一种实施方式中,第一终端获取第一信令,根据第一信令中的第二信息域所指示的侧行传输资源 确定侧行传输资源数量M。第一终端获取参数R1,根据侧行传输资源数量M和参数R1可以确定侧行传输块数量N,例如:N=M/R1。
在一种实施方式中,该侧行传输方法还包括:第一终端利用M个侧行传输资源向第二终端发送N个侧行TB,每个TB分别对应一个第二HARQ进程号。
在一种实施方式中,该侧行传输方法还包括:
第一终端获取第二终端的反馈信息,根据反馈信息确定N个TB对应ACK或NACK。
在一种实施方式中,该侧行传输方法还包括:第一终端向网络上报各个TB的侧行反馈信息,即ACK或NACK。
在一种实施方式中,该侧行传输方法还包括:基站获取第一终端上报的侧行反馈信息,根据反馈信息进行重传调度。
在一种实施方式中,该侧行传输方法还包括:网络发送重传调度的DCI时,在第一信息域中的NDI值不翻转,表示其对应的侧行TB需要进行重传;在第一信息域中的NDI值翻转,表示调度新的侧行TB进行传输。
本申请实施例中的以下示例以第一信息为DCI为例,即网络设备通过动态调度为终端分配侧行传输资源。本申请实施例同样适用于网络为终端分配Type-1或Type-2SL CG的情况;此时,网络设备通过DCI激活Type-2CG,并分配侧行传输资源;或者通过RRC信令配置侧行传输资源。当网络接收到第一终端上报的NACK时,可以通过DCI分配重传侧行传输资源。
示例1:
在本示例中,第一参数R1=1,即侧行传输资源与侧行传输块之间具有1对1的对应关系。网络分配M个侧行传输资源,用于传输N个侧行传输块,M=N。在本申请的各示例中以第一参数R1为例进行说明,也可以采用第二参数R2来确定侧行传输资源与侧行传输块之间对应关系,与R1是类似的,在此不赘述。
终端获取指示信息,该指示信息用于确定网络通过第一信令为终端分配的侧行传输资源的最大数量Mmax(例如,Mmax=4)。终端确定侧行传输块的最大数量为Tmax。当参数R1=1,即侧行传输资源与侧行传输块之间具有1对1对应关系时,Tmax=Mmax。第一信令中的NDI信息域包括的比特数根据侧行传输块的最大数量确定,因此,NDI信息域的比特数量为Tmax比特。若网络为终端分配的侧行传输资源数量为M(M<=Mmax),根据对应关系确定的侧行传输块数量为M,第二HARQ进程号数量为M,NDI信息域中有效信息比特数为M。
如图20所示,参数R1=1;gNB通过资源调度信令例如第一DCI向TX UE(发送端)分配侧行传输资源。如,分配4个侧行传输资源(即M=4),对应4个侧行时隙,该4个传输资源可以包括一组时域连续的4个侧行传输资源,也可以包括多组时域连续的侧行传输资源。例如,4个传输资源包括2组时域连续的侧行传输资源,每组时域连续的侧行传输资源中包括2个连续时隙的传输资源。并且在第一DCI中指示第一HARQ进程号,即HPND=0(为了区分,第一HARQ进程号表示为HPND(HARQ Process Number DL))。第一DCI中包括4比特NDI信息域(即N=4),每个比特对应一个NDI,各个NDI取值为0。
TX UE利用4个侧行传输资源向RX UE(接收端)传输4个TB。具体地,TX UE根据该第一HARQ进程号,确定4个第二HARQ进程号,分别对应HPNS#0、HPNS#1、HPNS#2和HPNS#3(为了区分,第二HARQ进程号表示为HPNS(HARQ Process Number SL))。第二HARQ进程号和第一DCI中的NDI信息域中的比特具有对应关系。优选的,第二HARQ进程号从低到高和NDI信息域的比特从左到右的顺序一一对应。并且在基站分配的4个侧行传输资源上分别传输4个侧行TB,分别对应TB#0、TB#1、TB#2和TB3。这4个TB分别和4个第二HARQ进程号对应,并且每个TB对应的SCI中的NDI取值为0。对于一个TB,如果发生多次传输,冗余版本RV按照固定的顺序重复。示例性的,RV版本的重复顺序为[0,2,3,1]。
RX UE向TX UE发送4个TB的侧行反馈信息。本实施例中不限定RX UE向TX UE反馈侧行反馈信息方式。如,这4个TB的反馈信息可以通过一个PSFCH承载,或分别通过4个PSFCH承载。当通过4个PSFCH承载时,这4个PSFCH信道可以位于同一时隙,也可以位于不同时隙。
TX UE根据PSFCH检测结果判断各个TB对应ACK或NACK,并且向gNB上报各个TB对应的侧行反馈信息。如通过PUCCH或PUSCH上报。
gNB根据TX UE上报的各个TB的侧行反馈信息决定是否对相应的TB进行重传调度。如某个TB对应的反馈信息为NACK,则需要进行重传调度,在DCI中的NDI信息域中该TB对应的比特取值不翻转。如图20中的第三个TB(即TB#2)和第四个TB(即TB#3)的反馈结果为NACK,则gNB在重传调度DCI中的NDI信息域中第三比特和第四比特的取值不翻转,即仍然取值为0。如某个TB对应 的反馈信息为ACK,则不需要进行重传调度,此时网络可以调度新的TB或者不调度新的TB,在DCI中的NDI信息域中该TB对应的比特取值翻转。如图20中的第一个TB(即TB#0)和第二个TB(即TB#1)的反馈结果为ACK,则gNB在重传调度DCI中的NDI信息域中第一比特和第二比特的取值翻转,即取值为1。
TX UE获取新的资源调度信令例如第二DCI,该第二DCI用于调度4个侧行传输资源,根据该第二DCI中的NDI信息域确定在侧行链路上是进行新数据传输,还是进行数据重传。由于该第二DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的4个侧行HARQ进程号分别为HPNS#0、HPNS#1、HPNS#2和HPNS#3。由于第二DCI中的NDI信息域中的第一个比特和第二个比特翻转,因此,在侧行链路上的第一个和第二个侧行资源上进行新数据传输,即分别传输TB#4和TB#5,其对应的第二HARQ进程号分别为HPNS#0和HPNS#1。SCI中的NDI翻转,即NDI=1,用于指示新数据传输,并且冗余版本RV为0。由于重传调度DCI中的NDI信息域中的第三个比特和第四个比特不翻转,因此,在侧行链路上的第三个和第四个侧行资源上进行数据重传,即分别重传TB#2和TB#3,其对应的第二HARQ进程号分别为HPNS#2和HPNS#3。SCI中的NDI不翻转,即NDI=0,用于指示数据重传。由于是该TB的第二次传输,对应的冗余版本RV为2。
在另一种实现方式中,网络发送的第二DCI只用于分配重传资源,不用于分配新数据传输的资源。此时,DCI中的NDI信息域中对应于重传TB的比特位不翻转,其余比特位翻转。例如,在本示例中,由于网络接收到TX UE上报的侧行反馈信息为[ACK,ACK,NACK,NACK],因此需要为TB#2和TB#3分配重传资源,网络发送的第二DCI用于分配2个侧行传输资源,用于重传TB#2和TB#3。由于该DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的4个侧行HARQ进程号分别为HPNS#0、HPNS#1、HPNS#2和HPNS#3。由于第二DCI中的NDI信息域的第一、第二比特位翻转,第三、第四比特位不翻转,即表示该第二DCI分配的侧行传输资源用于重传TB#2和TB#3,其对应的第二HARQ进程号分别为HPNS#2和HPNS#3。SCI中的NDI不翻转,即NDI=0,用于指示数据重传。由于是该TB的第二次传输,对应的冗余版本RV为2。
可选的,根据协议预定义、预配置信息或网络配置信息确定重传调度DCI中是否包括用于新数据传输的侧行传输资源。
示例2:
在本实施例中,第一参数R1大于1,侧行传输资源和侧行传输块之间是多对1的对应关系,即多个侧行传输资源用于传输一个侧行传输块,采用上述第二种映射方式。网络分配的侧行传输资源数量为M,侧行传输块数量为N。
可选的,终端获取第一参数R1,侧行传输块的数量N=M/R1。可选的,该参数R1表示一个侧行传输块对应的侧行传输资源的数量。
终端获取指示信息,该指示信息用于确定网络通过第一信令为终端分配的侧行传输资源的最大数量Mmax(例如,Mmax=4)。终端确定侧行传输块的最大数量为Tmax。当参数R1大于1时,且侧行传输资源与侧行传输块之间具有多对1对应关系时,例如,2个侧行传输资源传输1个侧行传输块,即R1=2;Tmax=Mmax/2。第一信令中的NDI信息域包括的比特数根据侧行传输块的最大数量Tmax确定,因此,NDI信息域的比特数量为Tmax比特。若网络为终端分配的侧行传输资源数量为M=4,根据对应关系确定的侧行传输块数量为N=M/R1=2,第二HARQ进程号数量为2,NDI信息域中有效信息比特数为2。
如图21所示,第一参数R1=2;gNB通过第一DCI向TX UE分配侧行传输资源。如,分配4个侧行传输资源(即M=4),并且在DCI中指示第一HARQ进程号,即HPND=0(为了区分,第一HARQ进程号表示为HPND(HARQ Process Number DL))。DCI中包括2比特NDI信息域(即N=2),每个比特对应一个NDI,各个NDI取值为0。
TX UE利用4个侧行传输资源向RX UE传输2个TB。具体地,TX UE根据该第一HARQ进程号,确定2个第二HARQ进程号,分别对应HPNS#0、HPNS#1,(为了区分。第二HARQ进程号表示为HPNS(HARQ Process Number SL))。第二HARQ进程号和第一DCI中的NDI信息域中的信息比特具有对应关系。优选的,第二HARQ进程号从低到高和NDI信息域的信息比特从左到右的顺序一一对应。并且在基站分配的4个侧行传输资源上传输2个TB,分别对应TB#0、TB#1,这2个TB分别和2个第二HARQ进程号对应。对于一个TB,如果发生多次传输,冗余版本RV按照固定的顺序重复。示例性的,RV版本的重复顺序为[0,2,3,1]。本示例中,采用上述第二种映射方式(即图18b)的方式进行侧行TB与侧行传输资源之间映射。因此,第一个和第二资源上传输TB#0,分别对应冗余版本0和2。第三个和第四资源上传输TB#1,分别对应冗余版本0和2。
RX UE向TX UE发送2个TB的侧行反馈信息,本实施例中不限定RX UE向TX UE反馈侧行反馈信息方式。如,接收端分别针对4次侧行传输进行反馈,即反馈4比特侧行反馈信息;或者接收端分 别针对2个侧行TB进行反馈,即反馈2比特侧行反馈信息。图21中以针对2个TB分别反馈为例。又例如,接收端反馈的侧行反馈信息可以通过一个PSFCH承载,或分别通过多个PSFCH承载并且每个PSFCH承载1比特反馈信息。当通过多个PSFCH承载时,多个PSFCH信道可以位于同一时隙,也可以位于不同时隙。
TX UE根据PSFCH检测结果判断各个TB对应ACK或NACK,并且向gNB上报侧行反馈信息。如通过PUCCH或PUSCH上报。可选的,TX UE可以向网络分别上报每个侧行TB的侧行反馈信息,或者分别上报4次侧行传输对应的侧行反馈信息。图21中以TX UE向网络上报每个TB的侧行反馈信息为例,即TX UE上报2比特侧行反馈信息。
gNB根据TX UE上报的各个TB的侧行反馈信息决定是否对相应的TB进行重传调度。如某个TB对应的反馈信息为NACK,则需要进行重传调度。在DCI中的NDI信息域中该TB对应的比特取值不翻转。如图21中的第二个TB(即TB#1)的反馈结果为NACK,则gNB在重传调度DCI中的NDI信息域中第二比特的取值不翻转,即仍然取值为0。如某个TB对应的反馈信息为ACK,则不需要进行重传调度,此时网络可以调度新的TB或不调度新的TB,在DCI中的NDI信息域中该TB对应的比特取值翻转。如图21中的第一个TB(即TB#0)的反馈结果为ACK,则gNB在重传调度DCI中的NDI信息域中第一比特的取值翻转,即取值为1。
TX UE获取新的资源调度信令例如第二DCI,该第二DCI用于调度4个侧行传输资源,根据该第二DCI中的NDI信息域确定在侧行链路上是进行新数据传输,还是进行数据重传。由于该第二DCI中的第一HARQ进程号为0,因此,第一终端根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的2个侧行HARQ进程号分别为HPNS#0、HPNS#1。由于该第二DCI中NDI信息域中的第一个比特翻转,因此,在侧行链路上的第一个和第二个侧行资源上传输新的数据,即传输TB#2,对应的第二HARQ进程号为HPNS#0,SCI中的NDI翻转,即NDI=1,用于指示新数据传输,并且冗余版本RV分别为0和2。由于该第二DCI中NDI信息域中的第二个比特不翻转,因此,在侧行链路上的第三个和第四个侧行资源上重传数据,即重传TB#1,对应的第二HARQ进程号为HPNS#1,SCI中的NDI不翻转,即NDI=0,用于指示数据重传,并且冗余版本RV分别为3和1。
在另一种实现方式中,该网络发送的第二DCI只用于分配重传资源,不用于分配新数据传输的资源。此时,DCI中的NDI信息域中对应于重传TB的比特位不翻转,其余比特位翻转。例如,在本示例中,由于网络接收到TX UE上报的侧行反馈信息为[ACK,NACK],因此需要为TB#1分配重传资源,网络发送的第二DCI用于分配2个侧行传输资源,用于重传TB#1。由于该DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的2个侧行HARQ进程号分别为HPNS#0、HPNS#1。由于第二DCI中的NDI信息域的第一比特位翻转,第二比特位不翻转,即表示该第二DCI分配的侧行传输资源用于重传TB#1,其对应的第二HARQ进程号为HPNS#1。SCI中的NDI不翻转,即NDI=0,用于指示数据重传。由于是该TB的第三次和第四次传输,对应的冗余版本RV分别为3和1。
可选的,根据协议预定义、预配置信息或网络配置信息确定重传调度DCI中是否包括用于新数据传输的侧行传输资源。
示例3:
网络为终端分配L组时域连续侧行传输资源,每组时域连续传输资源包括P个侧行传输资源;侧行传输块数量为N。采用上述第三种映射方式,即每组时域连续侧行传输资源与侧行传输块之间具有1对1对应关系,侧行传输块数量N=P。不同的连续传输资源组分别用于该P个侧行TB的不同次的传输。
可选的,终端获取第一参数R1,R1=L,侧行传输块的数量N=P。
终端获取指示信息,该指示信息用于确定网络通过第一信令为终端分配的侧行传输资源的最大数量Mmax(例如,Mmax=6),或者,该指示信息用于确定网络通过第一信令为终端分配的时域连续的侧行传输资源组的数量Lmax((例如,Lmax=3)),以及每组时域连续的侧行传输资源包括的最大资源数量Pmax(例如,Pmax=2),终端确定侧行传输块的最大数量为Tmax。当采用上述第三种映射方式时,Tmax=Pmax。第一信令中的NDI信息域包括的比特数根据侧行传输块的最大数量确定,因此,NDI信息域的比特数量为Tmax比特。若网络为终端分配的侧行传输资源数量为M,包括L组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括P个资源。根据上述第三种映射方式确定的侧行传输块数量为P,第二HARQ进程号数量为P,NDI信息域中有效信息比特数为P。
如图22所示,gNB通过第一DCI向TX UE分配3组(即L=3)时域连续的侧行传输资源,每组连续的侧行传输资源中包括的资源数量为2(即P=2),并且在第一DCI中指示第一HARQ进程号,即HPND=0(为了区分,第一HARQ进程号表示为HPND(HARQ Process Number DL))。第一DCI中包括2比特NDI信息域(即N=2),每个比特对应一个NDI,各个NDI取值为0。
TX UE利用6个侧行传输资源向RX UE传输2个TB。具体地,TX UE根据该第一HARQ进程号,确定2个第二HARQ进程号,分别对应HPNS#0、HPNS#1(为了区分,第二HARQ进程号表示为HPNS(HARQ Process Number SL)).第二HARQ进程号和第一DCI中的NDI信息域中的信息比特具有对应关系。优选的,第二HARQ进程号从低到高和NDI信息域的信息比特从左到右的顺序一一对应。TX UE利用基站分配的6个侧行传输资源上传输2个TB,分别对应TB#0、TB#1。并且对于每组时域连续的2个侧行传输资源分别传输2个TB。不同组的时域连续传输资源用于传输这两个TB的不同的重传。对于一个TB,如果发生多次传输,冗余版本RV按照固定的顺序。示例性的,RV版本的顺序为[0,2,3,1]。对于第一组时域连续的传输资源,这2个TB分别和2个第二HARQ进程号对应,并且每个TB对应的SCI中的NDI取值为0,冗余版本为0。对于第二组时域连续的传输资源,这2个TB分别和2个第二HARQ进程号对应,并且每个TB对应的SCI中的NDI取值为0,冗余版本为2。对于第三组时域连续的传输资源,这2个TB分别和2个第二HARQ进程号对应,并且每个TB对应的SCI中的NDI取值为0,冗余版本为3。
RX UE向TX UE反馈2个TB的侧行反馈信息,本实施例中不限定RX UE向TX UE反馈侧行反馈信息方式。如,RX UE可以针对每一次侧行传输都反馈PSFCH,也可以针对一组侧行传输资源对应的2次传输一起反馈PSFCH。这2个TB的反馈信息可以通过一个PSFCH承载,或分别通过2个PSFCH承载。当通过2个PSFCH承载时,这2个PSFCH信道可以位于同一时隙,也可以位于不同时隙。
TX UE根据PSFCH检测结果判断各个TB对应ACK或NACK,并且向gNB上报各个TB对应的侧行反馈信息。如通过PUCCH或PUSCH上报。
gNB根据TX UE上报的各个TB的侧行反馈信息决定是否对相应的TB进行重传调度。如某个TB对应的反馈信息为NACK,则需要进行重传调度,在DCI中的NDI信息域中该TB对应的比特取值不翻转。如图22中的第二个TB(即TB#1)的反馈结果为NACK,则gNB在重传调度DCI中的NDI信息域中第二比特的取值不翻转,即仍然取值为0。如某个TB对应的反馈信息为ACK,则不需要进行重传调度。此时网络可以调度新的TB或不调度新的TB,在DCI中的NDI信息域中该TB对应的比特取值翻转。如图22中的第一个TB(即TB#0)的反馈结果为ACK,则gNB在重传调度DCI中的NDI信息域中第一比特的取值翻转,即取值为1。
TX UE获取新的资源调度信令例如第二DCI,该第二DCI用于调度6个侧行传输资源,根据该DCI中的NDI信息域确定在侧行链路上是进行新数据传输,还是进行数据重传。由于该DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的2个侧行HARQ进程号分别为HPNS#0、HPNS#1。由于该DCI中的NDI信息域中的第一个比特比特翻转,因此,在侧行链路上传输新的侧行数据,即传输TB#2,对应的第二HARQ进程号为HPNS#0,SCI中的NDI翻转,即NDI=1,用于指示新数据传输,并且在3组连续的侧行传输资源中对应的冗余版本RV分别为0,2,3。由于该DCI中的NDI信息域中的第二个比特比特不翻转,因此,在侧行链路上进行数据重传,即重传TB#1,对应的第二HARQ进程号为HPNS#1,SCI中的NDI不翻转,即NDI=0,用于指示数据重传,并且在3组连续的侧行传输资源中对应的冗余版本RV分别为1,0,2。
在另一种实现方式中,该网络发送的第二DCI只用于分配重传资源,不用于分配新数据传输的资源。此时,DCI中的NDI信息域中对应于重传TB的比特位不翻转,其余比特位翻转。例如,在本示例中,由于网络接收到TX UE上报的侧行反馈信息为[ACK,NACK],因此需要为TB#1分配重传资源,网络发送的第二DCI用于分配3个侧行传输资源,用于重传TB#1。由于该DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的2个侧行HARQ进程号分别为HPNS#0、HPNS#1。由于第二DCI中的NDI信息域的第一比特位翻转,第二比特位不翻转,即表示该第二DCI分配的侧行传输资源用于重传TB#1,其对应的第二HARQ进程号为HPNS#1。SCI中的NDI不翻转,即NDI=0,用于指示数据重传。由于是该TB的第四次、第五次和第六次传输,对应的冗余版本RV分别为1,0,2。
可选的,根据协议预定义、预配置信息或网络配置信息确定重传调度DCI中是否包括用于新数据传输的侧行传输资源。
示例4:
网络为终端分配L组时域连续侧行传输资源,每组时域连续传输资源包括P个传输资源。侧行传输块数量为N。采用上述第四种映射方式,即一组时域连续的侧行传输资源中包括的P个传输资源用于传输1个侧行传输块,L组时域连续的侧行传输资源用于传输L个传输块。侧行传输块数量N=L;
可选的,终端获取第一参数R1,R1=M,侧行传输块的数量N=L。
终端获取指示信息,该指示信息用于确定网络通过第一信令为终端分配的侧行传输资源的最大数量Mmax(例如,Mmax=6),或者,该指示信息用于确定网络通过第一信令为终端分配的时域连续的侧行 传输资源组的数量Lmax((例如,Lmax=3)),以及每组时域连续的侧行传输资源包括的最大资源数量Pmax(例如,Pmax=2)。终端确定侧行传输块的最大数量为Tmax。当采用上述第四种映射方式时,Tmax=Lmax。第一信令中的NDI信息域包括的比特数根据侧行传输块的最大数量确定,因此,NDI信息域的比特数量为Tmax比特。若网络为终端分配的侧行传输资源数量为M,包括L组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括P个资源,根据上述第四种映射方式确定的侧行传输块数量为L,第二HARQ进程号数量为L,NDI信息域中有效信息比特数为L。
如图23所示,gNB通过第一DCI向TX UE分配3组(即L=3)时域连续的侧行传输资源,每组连续的侧行传输资源中包括的资源数量为2(即M=2),并且在DCI中指示第一HARQ进程号,即HPND=0(为了区分,第一HARQ进程号表示为HPND(HARQ Process Number DL))。DCI中包括3比特NDI信息域(即N=3),每个比特对应一个NDI,各个NDI取值为0。
TX UE利用6个侧行传输资源向RX UE传输3个TB。具体地,TX UE根据该第一HARQ进程号,确定3个第二HARQ进程号,分别对应HPNS#0、HPNS#1和HPNS#2(为了区分,第二HARQ进程号表示为HPNS(HARQ Process Number SL))。第二HARQ进程号和第一DCI中的NDI信息域中的信息比特具有对应关系。优选的,第二HARQ进程号从低到高和NDI信息域的信息比特从左到右的顺序一一对应。TX UE利用基站分配的6个侧行传输资源上传输3个TB,分别对应TB#0、TB#1和TB#2。并且利用每组时域连续的2个侧行传输资源传输1个TB,不同组的时域连续传输资源用于传输不同的TB。对于一个TB。如果发生多次传输,冗余版本RV按照固定的顺序。示例性的,RV版本的顺序为[0,2,3,1]。对于第一组时域连续的传输资源,用于传输TB#0,对应的第二HARQ进程号为0,SCI中的NDI取值为0,2个侧行资源传输的侧行数据对应的冗余版本分别为0和2。对于第二组时域连续的传输资源,用于传输TB#1,对应的第二HARQ进程号为1,SCI中的NDI取值为0,2个侧行资源传输的侧行数据对应的冗余版本分别为0和2。对于第三组时域连续的传输资源,用于传输TB#2,对应的第二HARQ进程号为2,SCI中的NDI取值为0,2个侧行资源传输的侧行数据对应的冗余版本分别为0和2。
RX UE向TX UE反馈3个TB的侧行反馈信息,本实施例中不限定RX UE向TX UE反馈侧行反馈信息方式。如,RX UE可以针对每一次侧行传输都反馈PSFCH,也可以针对一组侧行传输资源对应的2次传输一起反馈PSFCH。反馈信息可以通过一个PSFCH承载,或分别通过PSFCH承载。当分别通过PSFCH承载时,多个PSFCH信道可以位于同一时隙,也可以位于不同时隙。
TX UE根据PSFCH检测结果判断各个TB对应ACK或NACK,并且向gNB上报各个TB对应的侧行反馈信息。如通过PUCCH或PUSCH上报。
gNB根据TX UE上报的各个TB的侧行反馈信息决定是否对相应的TB进行重传调度。如某个TB对应的反馈信息为NACK,则需要进行重传调度,在DCI中的NDI信息域中该TB对应的比特取值不翻转。如图23中的第三个TB(即TB#2)的反馈结果为NACK,则gNB在重传调度DCI中的NDI信息域中第三比特的取值不翻转,即仍然取值为0。如某个TB对应的反馈信息为ACK,则不需要进行重传调度,此时网络可以调度新的TB或不调度新的TB,在DCI中的NDI信息域中该TB对应的比特取值翻转。如图23中的第一个TB(即TB#0)和第二个TB(即TB#1)的反馈结果为ACK,则gNB在重传调度DCI中的NDI信息域中第一比特和第二比特的取值翻转,即取值为1。
TX UE获取新的资源调度信令例如第二DCI,该第二DCI用于调度6个侧行传输资源,根据该第二DCI中的NDI信息域确定在侧行链路上是进行新数据传输,还是进行数据重传。由于该第二DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的3个侧行HARQ进程号分别为HPNS#0、HPNS#1和HPNS#2。由于该第二DCI中的NDI信息域中的第一个比特翻转,因此,在侧行链路上传输新的侧行数据,即传输TB#3,利用第二DCI中指示的3组连续的侧行传输资源中的第一组传输资源所对应的2个传输资源传输TB#3,对应的HPNS=0,在2个传输资源上传输的侧行数据对应的冗余版本RV分别为0和2,SCI中的NDI翻转,即NDI=1,用于指示新数据传输。由于该第二DCI中的NDI信息域中的第二个比特翻转,因此,在侧行链路上传输新的侧行数据,即传输TB#4,利用第二DCI中指示的3组连续的侧行传输资源中的第二组传输资源所对应的2个传输资源传输TB#4,对应HPNS#1,在2个传输资源上传输的侧行数据对应的冗余版本RV分别为0和2,SCI中的NDI翻转,即NDI=1,用于指示新数据传输。由于该第二DCI中的NDI信息域中的第三个比特不翻转,因此,在侧行链路上传输重传该NDI信息比特对应的侧行数据,即重传TB#2,利用第二DCI中指示的3组连续的侧行传输资源中的第三组传输资源所对应的2个传输资源传输TB#2,对应HPNS#2,在2个传输资源上传输的侧行数据对应的冗余版本RV分别为3和1,SCI中的NDI不翻转,即NDI=0,用于指示数据重传。
在另一种实现方式中,该网络发送的第二DCI只用于分配重传资源,不用于分配新数据传输的资 源。此时,DCI中的NDI信息域中对应于重传TB的比特位不翻转,其余比特位翻转。例如,在本示例中,由于网络接收到TX UE上报的侧行反馈信息为[ACK,ACK,NACK],因此需要为TB#2分配重传资源,网络发送的第二DCI用于分配2个侧行传输资源,用于重传TB#2。由于该DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的3个侧行HARQ进程号分别为HPNS#0、HPNS#1和HPNS#2。由于第二DCI中的NDI信息域的第一、第二比特位翻转,第三比特位不翻转,即表示该第二DCI分配的侧行传输资源用于重传TB#2,其对应的第二HARQ进程号为HPNS#2。SCI中的NDI不翻转,即NDI=0,用于指示数据重传。由于是该TB的第三次和第四次传输,对应的冗余版本RV分别为3,1。
可选的,根据协议预定义、预配置信息或网络配置信息确定重传调度DCI中是否包括用于新数据传输的侧行传输资源。
示例5:
在本示例中,基于上述方式2确定侧行传输块对应的侧行传输资源。
第一参数R1大于1,侧行传输资源和侧行传输块之间是多对多的对应关系,即多个侧行传输资源用于传输多个侧行传输块。网络分配的侧行传输资源数量为M。侧行传输块数量为N。
可选的,终端获取第一参数R1,侧行传输块的数量N=M/R1;根据第一参数R1以及网络分配的侧行传输资源数量M可以确定该M个侧行传输资源可传输的侧行传输块数量,每个侧行传输块对应的侧行传输资源的数量可以根据侧行数据的第三参数确定。
终端获取指示信息,该指示信息用于确定网络通过第一信令为终端分配的侧行传输资源的最大数量Mmax(例如,Mmax=4),终端确定侧行传输块的最大数量为Tmax。当R1大于1时,确定的侧行传输块数量Tmax=Mmax/R1。第一信令中的NDI信息域包括的比特数根据侧行传输块的最大数量Tmax确定,因此,NDI信息域的比特数量为Tmax比特。若网络为终端分配的侧行传输资源数量为M=4,参数R1=2,确定的侧行传输块数量为N=M/R1=2,第二HARQ进程号数量为2,NDI信息域中有效信息比特数为2。
如图24所示,第一参数R1=2。gNB通过第一DCI向TX UE分配侧行传输资源,如,分配4个连续时隙上的侧行传输资源(即M=4),并且在第一DCI中指示第一HARQ进程号,即HPND=0(为了区分,第一HARQ进程号表示为HPND(HARQ Process Number DL))。第一DCI中包括2比特NDI信息域(即N=2),每个比特对应一个NDI,各个NDI取值为0。
TX UE利用4个侧行传输资源向RX UE传输2个TB。具体地,TX UE根据该第一HARQ进程号,确定2个第二HARQ进程号,分别对应HPNS#0、HPNS#1,(为了区分,第二HARQ进程号表示为HPNS(HARQ Process Number SL))。第二HARQ进程号和第一DCI中的NDI信息域中的信息比特具有对应关系。优选的,第二HARQ进程号从低到高和NDI信息域的信息比特从左到右的顺序一一对应。并且在基站分配的4个侧行传输资源上传输2个TB,分别对应TB#0、TB#1,这2个TB分别和2个第二HARQ进程号对应。对于一个TB,如果发生多次传输,冗余版本RV按照固定的顺序重复。示例性的,RV版本的重复顺序为[0,2,3,1]。第一个TB对应的优先级取值为1,第二个TB对应的优先级取值为3。根据表3确定第一个TB对应的传输资源数量为3,第二个TB对应的传输资源数量为1。进一步的,由于第一个TB的优先级高于第二个TB,因此,第一个TB对应的侧行传输资源位于第二个TB对应的侧行传输资源之前,因此,第一个、第二个和第三个资源上传输TB#0,分别对应冗余版本0、2、3。第四资源上传输TB#1,对应冗余版本0。
RX UE向TX UE反馈2个TB的侧行反馈信息,本实施例中不限定RX UE向TX UE反馈侧行反馈信息方式。如,接收端分别针对4次侧行传输进行反馈,即反馈4比特侧行反馈信息;或者接收端分别针对2个侧行TB进行反馈,即反馈2比特侧行反馈信息。图24中以针对2个TB分别反馈为例。又例如,接收端反馈的侧行反馈信息可以通过一个PSFCH承载,或分别通过多个PSFCH承载并且每个PSFCH承载1比特反馈信息。当通过多个PSFCH承载时,多个PSFCH信道可以位于同一时隙,也可以位于不同时隙。
TX UE根据PSFCH检测结果判断各个TB对应ACK或NACK,并且向gNB上报侧行反馈信息。如通过PUCCH或PUSCH上报。可选的,TX UE可以向网络分别上报每个侧行TB的侧行反馈信息,或者分别上报4次侧行传输对应的侧行反馈信息。图24中以TX UE向网络上报每个TB的侧行反馈信息为例,即TX UE上报2比特侧行反馈信息。
gNB根据TX UE上报的各个TB的侧行反馈信息决定是否对相应的TB进行重传调度。如某个TB对应的反馈信息为NACK,则需要进行重传调度,在DCI中的NDI信息域中该TB对应的比特取值不翻转。如图24中的第二个TB(即TB#1)的反馈结果为NACK,则gNB在重传调度DCI中的NDI信息域中第二比特的取值不翻转,即仍然取值为0。如某个TB对应的反馈信息为ACK,则不需要进行重 传调度,此时网络可以调度新的TB或不调度新的TB,在DCI中的NDI信息域中该TB对应的比特取值翻转;如图24中的第一个TB(即TB#0)的反馈结果为ACK,则gNB在重传调度DCI中的NDI信息域中第一比特的取值翻转,即取值为1。
TX UE获取新的资源调度信令例如第二DCI,该第二DCI用于调度4个侧行传输资源,根据该DCI中的NDI信息域确定在侧行链路上是进行新数据传输,还是进行数据重传。由于该DCI中的第一HARQ进程号为0,因此,第一终端根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的2个侧行HARQ进程号分别为HPNS#0、HPNS#1。由于该DCI中NDI信息域中的第一个比特翻转,因此,在侧行链路上的传输新的数据,即传输TB#2,而TB#2的优先级取值为5,该DCI中NDI信息域中的第二个比特不翻转,因此,在侧行链路上的重传TB#1,由于TB#2的优先级取值大于TB#1的优先级取值,即TB#2的优先级低于TB#1的优先级,因此终端为TB#1分别更多的传输资源,为TB#2分配少的传输资源。根据表3,终端确定为TB#2分配1个传输资源,即第一个传输资源,为TB#1分配3个传输资源,进一步的,由于TB#1的优先级高于TB#2,因此,TB#1对应的侧行传输资源位于TB#2对应的侧行传输资源之前。例如第一个、第二个和第三个传输资源上传输TB#1,即重传TB#1,对应的第二HARQ进程号为HPNS#1,SCI中的NDI不翻转,即NDI=0,用于指示数据重传,并且冗余版本RV分别为2、3和1。第四个传输资源上传输TB#2,对应的第二HARQ进程号为HPNS#0,SCI中的NDI翻转,即NDI=1,用于指示新数据传输,并且冗余版本RV为0。
在另一种实现方式中,该网络发送的第二DCI只用于分配重传资源,不用于分配新数据传输的资源。此时,DCI中的NDI信息域中对应于重传TB的比特位不翻转,其余比特位翻转。例如,在本示例中,由于网络接收到TX UE上报的侧行反馈信息为[ACK,NACK],因此需要为TB#1分配重传资源,网络发送的第二DCI用于分配1个侧行传输资源,用于重传TB#1。由于该DCI中的第一HARQ进程号为0,因此,TX UE根据第一HARQ进程号和第二HARQ进程号之间的对应关系,可以确定对应的2个侧行HARQ进程号分别为HPNS#0和HPNS#1。由于第二DCI中的NDI信息域的第一比特位翻转,第二比特位不翻转,即表示该第二DCI分配的侧行传输资源用于重传TB#1,其对应的第二HARQ进程号为HPNS#1。SCI中的NDI不翻转,即NDI=0,用于指示数据重传。由于是该TB的第二次传输,对应的冗余版本RV为2。
可选的,根据协议预定义、预配置信息或网络配置信息确定重传调度DCI中是否包括用于新数据传输的侧行传输资源。
图25是根据本申请一实施例的侧行传输方法2500的示意性流程图。该方法包括以下内容的至少部分内容。
S2510、第二终端接收第一终端利用M个侧行传输资源向第二终端发送的N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
在一些实施方式中,M和/或N也可以等于1。
在一种实施方式中,该M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
在一种实施方式中,该方法还包括:该第二终端向该第一终端发送侧行反馈信息,该侧行反馈信息用于确定该N个侧行传输块对应的ACK或NACK。
在一种实施方式中,该方法还包括:在该第一终端上报第一侧行传输块对应的ACK,和/或,上报第二侧行传输块对应的NACK,在接收到的DCI中第一侧行传输块对应的NDI信息域翻转且第二侧行传输块对应的NDI信息域不翻转,则该第二终端执行以下至少之一:
接收该第一终端利用该第一侧行传输块对应的侧行传输资源传输的第二侧行传输块;其中,该第二侧行传输块包括一个或多个上报了NACK的侧行传输块;
接收该第一终端重传的该第一侧行传输块。
本实施例的第二终端执行方法2500的具体示例可以参见上述方法实施例中关于第二终端的相关描述,为了简洁,在此不再赘述。
图26是根据本申请一实施例的侧行传输方法2600的示意性流程图。该方法包括以下内容的至少部分内容。
S2610、网络设备发送第一信息,该第一信息用于指示M个侧行传输资源,其中,M个侧行传输资源对应N个侧行传输块,M个侧行传输资源用于传输N个侧行传输块,其中,M和N为大于1的整数,M大于或等于N。
在一些实施方式中,M和/或N也可以等于1。
在一种实施方式中,该M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
在一种实施方式中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。
在一种实施方式中,在该P个时隙是物理时隙的情况下,该P个侧行传输资源对应的P个物理时隙是连续的;
在该P个时隙是第一资源池中的逻辑时隙的情况下,该P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。
在一种实施方式中,一组时域连续的P个侧行传输资源的频域资源相同。
在一种实施方式中,该侧行传输块承载在物理侧行共享信道PSSCH中。
在一种实施方式中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输该PSSCH。
在一种实施方式中,第一数据是该第一终端在时隙中的GP符号中传输的,使得该GP符号中的空闲时长小于或等于第一时长,该第一时长根据第二类Type 2信道接入所需的空闲时长确定,该第一数据为循环前缀扩展或者一个OFDM符号上的数据的重复。
在一种实施方式中,该第一信息中包括第一信息域,该第一信息域用于确定第一HARQ进程号。
在一种实施方式中,该第一信息为DCI该第一信息域为该DCI中包括的HARQ信息域,该HARQ信息域用于指示该第一HARQ进程号。
在一种实施方式中,该第一信息为RRC信令时,该第一信息域包括该RRC信令中的第四参数和第五参数,该第第四参数和该第五参数用于确定该第一HARQ进程号,其中,该第四参数用于指示HARQ进程号偏移量,该第五参数用于指示HARQ进程号数量。
在一种实施方式中,该第二HARQ进程号是该第一终端根据该第一HARQ进程号以及该侧行传输块的数量、确定的侧行HARQ进程号。
在一种实施方式中,每个侧行传输块分别对应一个该第二HARQ进程号。
在一种实施方式中,该方法还包括:该网络设备发送第三信息,该第三信息用于指示重传第一侧行数据块的侧行传输资源,该N个侧行数据块中包括该第一侧行数据块。
在一种实施方式中,该第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的其余比特翻转。
在一种实施方式中,该方法还包括,该第三信息指示X个侧行传输资源,该X个侧行传输资源用于重传该第一侧行数据块;其中,X小于或等于M。
在一种实施方式中,该第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
在一种实施方式中,该第三信息指示的侧行传输资源不用于传输新的侧行数据块。
本实施例的网络设备执行方法2600的具体示例可以参见上述方法实施例中关于网络设备的相关描述,为了简洁,在此不再赘述。
图27是根据本申请一实施例的第一终端2700的示意性框图。该第一终端2700可以包括:
接收单元2710,用于获取第一信息,该第一信息用于指示M个侧行传输资源;
处理单元2720,用于确定N个侧行传输块;
发送单元2730,用于利用该M个侧行传输资源向第二终端发送该N个侧行传输块;
其中,M和N为大于1的整数,M大于或等于N。
在一些实施方式中,M和/或N也可以等于1。
在一种实施方式中,该处理单元2720还用于根据侧行传输资源的数量确定侧行传输块的数量。
在一种实施方式中,该侧行传输资源的数量包括以下至少之一:
该第一信息可指示的侧行传输资源的最大数量;
该第一信息指示的侧行传输资源的数量。
在一种实施方式中,该接收单元2710还用于获取第二信息,该第二信息用于确定该第一信息可指示的侧行传输资源的最大数量。
在一种实施方式中,该第二信息是资源池配置信息中的信息。
在一种实施方式中,该第一信息可指示的侧行传输资源的最大数量通过以下至少之一确定:
该第一信息为DCI,该第一信息可指示的侧行传输资源的最大数量是根据该DCI能够指示的侧行传输资源的最大数量确定的;或者,
该第一信息为RRC信令,该第一信息可指示的侧行传输资源的最大数量是根据该RRC信令配置的侧行配置授权传输资源的一个周期中包括的侧行传输资源的最大数量确定的;或者,
该第一信息可指示的侧行传输资源的最大数量是根据SCI能够指示的侧行传输资源的最大数量确定的。
在一种实施方式中,第一信息指示的侧行传输资源的数量包括以下至少之一:
该第一信息为DCI,该第一信息指示的侧行传输资源的数量是该DCI指示的侧行传输资源的数量;
该第一信息为RRC信令,该第一信息指示的侧行传输资源的数量是一个侧行配置授权周期中包括的侧行传输资源的数量;
该第一信息为SCI,该第一信息指示的侧行传输资源的数量是该SCI指示的侧行传输资源的数量。
在一种实施方式中,该接收单元2710还用于获取第一参数,该第一参数用于确定该侧行传输块的数量。
在一种实施方式中,该第一参数表示一个侧行传输块对应的侧行传输资源的数量。
在一种实施方式中,在一个侧行传输块对应多个侧行传输资源的情况下,该多个侧行传输资源传输相同的侧行传输块。
在一种实施方式中,该第一参数的取值是该第一终端根据协议预定义、预配置信息或网络配置信息的至少之一确定的。
在一种实施方式中,该侧行传输块的数量是该第一终端根据第一信息指示的侧行传输资源的数量和该第一参数确定的。
在一种实施方式中,该侧行传输块的数量是该第一终端根据第一信息可指示的侧行传输资源的最大数量和该第一参数确定的。
在一种实施方式中,该处理单元2720还用于确定侧行传输块的最大数量;其中,该侧行传输块的最大数量是该第一终端根据该第一信息可指示的侧行传输资源的最大数量和该第一参数确定的。
在一种实施方式中,该第一信息中包括新数据指示NDI信息域,该处理单元2720还用于根据侧行传输资源的数量和/或侧行传输块的数量确定NDI信息域的信息。
在一种实施方式中,该NDI信息域的信息包括以下至少之一:
NDI信息域的比特数量;
NDI信息域的有效比特数量;
NDI信息域的有效比特位。
在一种实施方式中,该处理单元还用于根据侧行传输资源的数量和/或侧行传输块的数量确定NDI信息域的信息。
在一种实施方式中,该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量和/或该第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的。
在一种实施方式中,该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量确定的,包括:该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量和第二参数确定的,其中,该第二参数表示侧行传输资源的数量与NDI信息域的比特数量之间的倍数关系。
在一种实施方式中,该NDI信息域的比特数量等于该第一信息可指示的侧行传输资源的最大数量与该第二参数之间的比值。
在一种实施方式中,该NDI信息域的比特数量是根据该第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的,包括:该侧行传输块的最大数量与该NDI信息域的比特数量相同。
在一种实施方式中,该NDI信息域的比特数量根据以下至少之一确定:协议预定义、预配置信息、网络配置信息。
在一种实施方式中,该处理单元还用于根据该第一信息指示的侧行传输资源的数量和/或该侧行传输块的数量确定该NDI信息域的有效比特数量,其中,该侧行传输块的数量是根据该第一信息指示的侧行传输资源的数量确定的侧行传输块的数量。例如,在侧行传输块的数量小于该侧行传输块的最大数量的情况下,该第一终端根据该侧行传输块的数量确定该NDI信息域的有效比特数量,其中,该侧行传输块的数量是根据该第一信息指示的侧行传输资源的数量确定的侧行传输块的数量。
在一种实施方式中,该NDI信息域的有效比特数量等于该侧行传输块的数量。
在一种实施方式中,该处理单元2720还用于确定该NDI信息域的有效比特位。
在一种实施方式中,该处理单元2720还用于确定该NDI信息域的最低K个比特位或最高K个比特位作为该NDI信息域的有效比特位,其中,K表示该NDI信息域的有效比特数量。
在一种实施方式中,该处理单元还用于在该第一信息指示的侧行传输资源只包括重传资源的情况下,该第一终端确定该NDI信息域中不翻转的比特位作为该NDI信息域的有效比特位。
在一种实施方式中,该第一信息包括DCI,该NDI信息域是包括在该DCI中的信息域。
在一种实施方式中,该处理单元2720还用于确定该N个侧行传输块与该M个侧行传输资源之间的对应关系。
在一种实施方式中,在该侧行传输资源的数量与该侧行传输块的数量相等的情况下,该M个侧行 传输资源与该N个侧行传输块一一对应。
在一种实施方式中,在该侧行传输资源和该侧行传输块之间是多对一的对应关系的情况下,该侧行传输资源的数量是该侧行传输块的数量的整数倍。
在一种实施方式中,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第一方式为:将该M个侧行传输资源分为A1组侧行传输资源,每组包括N个侧行传输资源,每组侧行传输资源中包括的N个侧行传输资源与该N个侧行传输块一一对应。
在一种实施方式中,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第二方式为:将该M个侧行传输资源分为N组侧行传输资源,每组包括A2个侧行传输资源,每组侧行传输资源中包括的A2个侧行传输资源用于传输该N个侧行传输块中的一个侧行传输块,该N组侧行传输资源与该N个侧行传输块一一对应。
在一种实施方式中,该M个侧行传输资源包括一组时域连续的侧行传输资源。
在一种实施方式中,该M个侧行传输资源包括L组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括N个侧行传输资源,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第三方式为:每组时域连续的侧行传输资源中包括的N个侧行传输资源与该N个侧行传输块一一对应。
在一种实施方式中,该M个侧行传输资源包括N组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括P个侧行传输资源,确定该N个侧行传输块与该M个侧行传输资源之间的对应关系的第四方式为:每组时域连续的侧行传输资源中包括的P个侧行传输资源用于传输该N个侧行传输块中的一个侧行传输块,该N组侧行传输资源与该N个侧行传输块一一对应。
在一种实施方式中,该N个侧行传输块与该M个侧行传输资源之间的对应关系是根据第三参数确定的,该第三参数是根据业务质量QoS确定的参数。
在一种实施方式中,该第三参数包括以下参数至少之一:优先级、可靠性、时延。
在一种实施方式中,该接收单元2710还用于获取第一对应关系;
该处理单元2720还用于根据该第一对应关系以及第三参数确定侧行传输块对应的侧行传输资源的数量。
在一种实施方式中,该第一对应关系为以下至少之一:
第三参数和侧行传输资源的数量之间的对应关系;
第三参数的门限和侧行传输资源的数量之间的对应关系;
第三参数和侧行传输资源的最大数量之间的对应关系;
第三参数的门限和侧行传输资源的最大数量之间的对应关系。
在一种实施方式中,该处理单元2720还用于根据该第三参数确定侧行传输块所对应的侧行传输资源在该M个侧行传输资源中的时域顺序和/或时域位置。
在一种实施方式中,该第三参数包括优先级,则高优先级的侧行传输块对应的侧行传输资源位于低优先级的侧行传输块对应的侧行传输资源之前。
在一种实施方式中,该M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
在一种实施方式中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。
在一种实施方式中,在该P个时隙是物理时隙的情况下,该P个侧行传输资源对应的P个物理时隙是连续的;
在该P个时隙是第一资源池中的逻辑时隙的情况下,该P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。
在一种实施方式中,一组时域连续的P个侧行传输资源的频域资源相同。
在一种实施方式中,该侧行传输块承载在物理侧行共享信道PSSCH中。
在一种实施方式中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输该PSSCH。
在一种实施方式中,该处理单元2720还用于在时隙中的GP符号中传输第一数据,使得该GP符号中的空闲时长小于或等于第一时长,该第一时长根据第二类Type 2信道接入所需的空闲时长确定,该第一数据为循环前缀扩展或者根据一个OFDM符号上的数据确定。
在一种实施方式中,该第一信息中包括第一信息域,该第一信息域用于确定第一HARQ进程号。
在一种实施方式中,该第一信息为DCI,该第一信息域为该DCI中的HARQ信息域,该HARQ信息域用于指示该第一HARQ进程号。
在一种实施方式中,该第一信息为RRC信令,该第一信息域包括该RRC信令中的第四参数和第五参数,该第四参数和该第五参数用于确定该第一HARQ进程号,其中,该第四参数用于指示HARQ进 程号偏移量,该第五参数用于指示HARQ进程号数量。
在一种实施方式中,该处理单元2720还用于确定第二HARQ进程号,该第二HARQ进程号是该第一终端根据该第一HARQ进程号以及该侧行传输块的数量确定的侧行HARQ进程号。
在一种实施方式中,该处理单元2720还用于根据该侧行传输块的数量N确定N个该第二HARQ进程号,每个侧行传输块分别对应一个该第二HARQ进程号。
在一种实施方式中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少一个,是根据协议预定义、预配置信息或网络配置信息确定的。
在一种实施方式中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少二者之间具有第二对应关系。
在一种实施方式中,第一信息指示的侧行传输资源的数量、侧行传输块的数量、第二HARQ进程号的数量、第一信息中的NDI信息域的有效比特数量的至少二者之间具有第三对应关系。
在一种实施方式中,该接收单元还用于获取第三信息,该第三信息用于指示重传第一侧行数据块的侧行传输资源,该N个侧行数据块中包括该第一侧行数据块。
在一种实施方式中,该第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的其余比特翻转。
在一种实施方式中,该第一终端还包括,该第三信息指示X个侧行传输资源,该X个侧行传输资源用于重传该第一侧行数据块;其中,X小于或等于M。
在一种实施方式中,该第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
在一种实施方式中,该第三信息指示的侧行传输资源不用于传输新的侧行数据块。
本申请实施例的第一终端2700能够实现前述的方法实施例中的第一终端的对应功能。该第一终端2700中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第一终端2700中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图28是根据本申请一实施例的第二终端2800的示意性框图。该第二终端2800可以包括:
接收单元2810,用于接收第一终端利用M个侧行传输资源向第二终端发送的N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
在一些实施方式中,M和/或N也可以等于1。
在一种实施方式中,该M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
在一种实施方式中,该第二终端还包括:发送单元,用于向该第一终端发送侧行反馈信息,该侧行反馈信息用于确定该N个侧行传输块对应的ACK或NACK。
在一种实施方式中,该接收单元还用于在该第一终端上报第一侧行传输块对应的ACK,和/或,上报第二侧行传输块对应的NACK,在接收到的DCI中第一侧行传输块对应的NDI信息域翻转且第二侧行传输块对应的NDI信息域不翻转,则执行以下至少之一:
接收该第一终端利用该第一侧行传输块对应的侧行传输资源传输的第二侧行传输块;其中,该第二侧行传输块包括一个或多个上报了NACK的侧行传输块;
接收该第一终端重传的该第一侧行传输块。
本申请实施例的第二终端2800能够实现前述的方法实施例中的终端设备的对应功能。该第二终端2800中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第二终端2800中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图29是根据本申请一实施例的网络设备2900的示意性框图。该网络设备2900可以包括:
发送单元2910,用于发送第一信息,该第一信息用于指示M个侧行传输资源,其中,该M个侧行传输资源对应N个侧行传输块,该M个侧行传输资源用于传输该N个侧行传输块,其中,M和N为大于1的整数,M大于或等于N。
在一些实施方式中,M和/或N也可以等于1。
在一种实施方式中,该M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
在一种实施方式中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。
在一种实施方式中,在该P个时隙是物理时隙的情况下,该P个侧行传输资源对应的P个物理时隙是连续的;
在该P个时隙是第一资源池中的逻辑时隙的情况下,该P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。
在一种实施方式中,一组时域连续的P个侧行传输资源的频域资源相同。
在一种实施方式中,该侧行传输块承载在物理侧行共享信道PSSCH中。
在一种实施方式中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输该PSSCH。
在一种实施方式中,第一数据是该第一终端在时隙中的GP符号中传输的,使得该GP符号中的空闲时长小于或等于第一时长,该第一时长根据第二类Type 2信道接入所需的空闲时长确定,该第一数据为循环前缀扩展或者一个OFDM符号上的数据的重复。
在一种实施方式中,该第一信息中包括第一信息域,该第一信息域用于确定第一HARQ进程号。
在一种实施方式中,该第一信息为DCI该第一信息域为该DCI中包括的HARQ信息域,该HARQ信息域用于指示该第一HARQ进程号。
在一种实施方式中,该第一信息为RRC信令时,该第一信息域包括该RRC信令中的第四参数和第五参数,该第第四参数和该第五参数用于确定该第一HARQ进程号,其中,该第四参数用于指示HARQ进程号偏移量,该第五参数用于指示HARQ进程号数量。
在一种实施方式中,该第二HARQ进程号是该第一终端根据该第一HARQ进程号以及该侧行传输块的数量、确定的侧行HARQ进程号。
在一种实施方式中,每个侧行传输块分别对应一个该第二HARQ进程号。
在一种实施方式中,该网络设备还包括:该发送单元还用于发送第三信息,该第三信息用于指示重传第一侧行数据块的侧行传输资源,该N个侧行数据块中包括该第一侧行数据块。
在一种实施方式中,该第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的其余比特翻转。
在一种实施方式中,该网络设备还包括,该第三信息指示X个侧行传输资源,该X个侧行传输资源用于重传该第一侧行数据块;其中,X小于或等于M。
在一种实施方式中,该第三信息包括NDI信息域,该NDI信息域中与该第一侧行数据块对应的比特不翻转,该NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
在一种实施方式中,该第三信息指示的侧行传输资源不用于传输新的侧行数据块。
本申请实施例的网络设备2900能够实现前述的方法实施例中的网络设备的对应功能。该网络设备2900中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备2900中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图30是根据本申请实施例的通信设备3000示意性结构图。该通信设备3000包括处理器3010,处理器3010可以从存储器中调用并运行计算机程序,以使通信设备3000实现本申请实施例中的方法。
在一种实施方式中,通信设备3000还可以包括存储器3020。其中,处理器3010可以从存储器3020中调用并运行计算机程序,以使通信设备3000实现本申请实施例中的方法。
其中,存储器3020可以是独立于处理器3010的一个单独的器件,也可以集成在处理器3010中。
在一种实施方式中,通信设备3000还可以包括收发器3030,处理器3010可以控制该收发器3030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器3030可以包括发射机和接收机。收发器3030还可以进一步包括天线,天线的数量可以为一个或多个。
在一种实施方式中,该通信设备3000可为本申请实施例的网络设备,并且该通信设备3000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该通信设备3000可为本申请实施例的终端设备例如第一终端和/或第二终端,并且该通信设备3000可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图31是根据本申请实施例的芯片3100的示意性结构图。该芯片3100包括处理器3110,处理器3110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种实施方式中,芯片3100还可以包括存储器3120。其中,处理器3110可以从存储器3120中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器3120可以是独立于处理器3110的一个单独的器件,也可以集成在处理器3110中。
在一种实施方式中,该芯片3100还可以包括输入接口3130。其中,处理器3110可以控制该输入接口3130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种实施方式中,该芯片3100还可以包括输出接口3140。其中,处理器3110可以控制该输出接口3140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种实施方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该芯片可应用于本申请实施例中的终端设备例如第一终端和/或第二终端,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图32是根据本申请实施例的通信***3200的示意性框图。该通信***3200包括第一终端3210、第二终端3220和网络设备3230。
第一终端3210,用于执行以上任一方法实施例中第一终端所执行的方法;
第二终端3220,用于执行以上任一方法实施例中第二终端所执行的方法;
网络设备3230,用于执行以上任一方法实施例中网络设备所执行的方法。
其中,该第一终端3210、第二终端3220可以用于实现上述方法中由终端设备实现的相应的功能,以及网络设备3220可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (173)

  1. 一种侧行传输方法,包括:
    第一终端获取第一信息,所述第一信息用于指示M个侧行传输资源;
    所述第一终端确定N个侧行传输块;
    所述第一终端利用所述M个侧行传输资源向第二终端发送所述N个侧行传输块;
    其中,M和N为大于1的整数,M大于或等于N。
  2. 根据权利要求1所述的方法,其中,所述第一终端确定N个侧行传输块,包括:
    所述第一终端根据侧行传输资源的数量确定侧行传输块的数量。
  3. 根据权利要求2所述的方法,其中,所述侧行传输资源的数量包括以下至少之一:
    所述第一信息可指示的侧行传输资源的最大数量;
    所述第一信息指示的侧行传输资源的数量。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    所述第一终端获取第二信息,所述第二信息用于确定所述第一信息可指示的侧行传输资源的最大数量。
  5. 根据权利要求4所述的方法,其中,所述第二信息是资源池配置信息中的信息。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述第一信息可指示的侧行传输资源的最大数量通过以下至少之一确定:
    所述第一信息为下行链路控制信息DCI,所述第一信息可指示的侧行传输资源的最大数量是根据所述DCI能够指示的侧行传输资源的最大数量确定的;或者,
    所述第一信息为无线资源控制RRC信令,所述第一信息可指示的侧行传输资源的最大数量是根据所述RRC信令配置的侧行配置授权传输资源的一个周期中包括的侧行传输资源的最大数量确定的;或者,
    所述第一信息可指示的侧行传输资源的最大数量是根据SCI能够指示的侧行传输资源的最大数量确定的。
  7. 根据权利要求3至6中任一项所述的方法,其中,第一信息指示的侧行传输资源的数量包括以下至少之一:
    所述第一信息为DCI,所述第一信息指示的侧行传输资源的数量是所述DCI指示的侧行传输资源的数量;
    所述第一信息为RRC信令,所述第一信息指示的侧行传输资源的数量是一个侧行配置授权周期中包括的侧行传输资源的数量;
    所述第一信息为SCI,所述第一信息指示的侧行传输资源的数量是所述SCI指示的侧行传输资源的数量。
  8. 根据权利要求2至7中任一项所述的方法,其中,所述方法还包括:
    所述第一终端获取第一参数,所述第一参数用于确定所述侧行传输块的数量。
  9. 根据权利要求8所述的方法,其中,所述第一参数表示一个侧行传输块对应的侧行传输资源的数量。
  10. 根据权利要求8或9所述的方法,其中,在一个侧行传输块对应多个侧行传输资源的情况下,所述多个侧行传输资源传输相同的侧行传输块。
  11. 根据权利要求8至10中任一项所述的方法,其中,所述第一参数的取值是所述第一终端根据协议预定义、预配置信息或网络配置信息的至少之一确定的。
  12. 根据权利要求8至11中任一项所述的方法,其中,所述侧行传输块的数量是所述第一终端根据第一信息指示的侧行传输资源的数量和所述第一参数确定的。
  13. 根据权利要求8至11中任一项所述的方法,其中,所述方法还包括:
    所述第一终端确定侧行传输块的最大数量;其中,所述侧行传输块的最大数量是所述第一终端根据所述第一信息可指示的侧行传输资源的最大数量和所述第一参数确定的。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述第一信息中包括新数据指示NDI信息域,所述方法还包括:
    所述第一终端确定NDI信息域的信息。
  15. 根据权利要求14所述的方法,其中,所述NDI信息域的信息包括以下至少之一:
    NDI信息域的比特数量;
    NDI信息域的有效比特数量;
    NDI信息域的有效比特位。
  16. 根据权利要求14或15所述的方法,其中,所述第一终端确定NDI信息域的信息,包括:
    所述第一终端根据侧行传输资源的数量和/或侧行传输块的数量确定NDI信息域的信息。
  17. 根据权利要求16所述的方法,其中,所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量和/或所述第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的。
  18. 根据权利要求17所述的方法,其中,所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量确定的,包括:所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量和第二参数确定的,其中,所述第二参数表示侧行传输资源的数量与NDI信息域的比特数量之间的倍数关系。
  19. 根据权利要求18所述的方法,其中,所述NDI信息域的比特数量等于所述第一信息可指示的侧行传输资源的最大数量与所述第二参数之间的比值。
  20. 根据权利要求17所述的方法,其中,所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的,包括:
    所述侧行传输块的最大数量与所述NDI信息域的比特数量相同。
  21. 根据权利要求15所述的方法,其中,所述NDI信息域的比特数量根据以下至少之一确定:协议预定义、预配置信息、网络配置信息。
  22. 根据权利要求14至21中任一项所述的方法,其中,所述第一终端确定NDI信息域的信息,包括:所述第一终端根据所述第一信息指示的侧行传输资源的数量和/或所述侧行传输块的数量确定所述NDI信息域的有效比特数量,其中,所述侧行传输块的数量是根据所述第一信息指示的侧行传输资源的数量确定的侧行传输块的数量。
  23. 根据权利要求22所述的方法,所述NDI信息域的有效比特数量等于所述侧行传输块的数量。
  24. 根据权利要求22或23所述的方法,其中,所述第一终端确定NDI信息域的信息,还包括:所述第一终端确定所述NDI信息域的有效比特位。
  25. 根据权利要求24所述的方法,其中,所述第一终端确定所述NDI信息域的有效比特位,包括:所述第一终端确定所述NDI信息域的最低K个比特位或最高K个比特位作为所述NDI信息域的有效比特位,其中,K表示所述NDI信息域的有效比特数量。
  26. 根据权利要求24所述的方法,其中,所述第一终端确定所述NDI信息域的有效比特位,包括:在所述第一信息指示的侧行传输资源只包括重传资源的情况下,所述第一终端确定所述NDI信息域中不翻转的比特位作为所述NDI信息域的有效比特位。
  27. 根据权利要求14至26中任一项所述的方法,所述第一信息包括DCI,所述NDI信息域是包括在所述DCI中的信息域。
  28. 根据权利要求1至27中任一项所述的方法,所述方法还包括:
    所述第一终端确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系。
  29. 根据权利要求28所述的方法,其中,在所述侧行传输资源的数量与所述侧行传输块的数量相等的情况下,所述M个侧行传输资源与所述N个侧行传输块一一对应。
  30. 根据权利要求28或29所述的方法,其中,在所述侧行传输资源和所述侧行传输块之间是多对一的对应关系的情况下,所述侧行传输资源的数量是所述侧行传输块的数量的整数倍。
  31. 根据权利要求30所述的方法,其中,确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系的第一方式为:将所述M个侧行传输资源分为A1组侧行传输资源,每组包括N个侧行传输资源,每组侧行传输资源中包括的N个侧行传输资源与所述N个侧行传输块一一对应。
  32. 根据权利要求30所述的方法,其中,确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系的第二方式为:将所述M个侧行传输资源分为N组侧行传输资源,每组包括A2个侧行传输资源,每组侧行传输资源中包括的A2个侧行传输资源用于传输所述N个侧行传输块中的一个侧行传输块,所述N组侧行传输资源与所述N个侧行传输块一一对应。
  33. 根据权利要求31或32所述的方法,其中,所述M个侧行传输资源包括一组时域连续的侧行传输资源。
  34. 根据权利要求30所述的方法,其中,所述M个侧行传输资源包括L组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括N个侧行传输资源,确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系的第三方式为:每组时域连续的侧行传输资源中包括的N个侧行传输资源与所述N个侧行传输块一一对应。
  35. 根据权利要求30所述的方法,其中,所述M个侧行传输资源包括N组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括P个侧行传输资源,确定所述N个侧行传输块与所述M个侧行 传输资源之间的对应关系的第四方式为:每组时域连续的侧行传输资源中包括的P个侧行传输资源用于传输所述N个侧行传输块中的一个侧行传输块,所述N组侧行传输资源与所述N个侧行传输块一一对应。
  36. 根据权利要求28所述的方法,其中,所述N个侧行传输块与所述M个侧行传输资源之间的对应关系是根据第三参数确定的,所述第三参数是根据业务质量QoS确定的参数。
  37. 根据权利要求36所述的方法,其中,其中,所述第三参数包括以下参数至少之一:优先级、可靠性、时延。
  38. 根据权利要求36或37所述的方法,其中,所述方法还包括:
    所述第一终端获取第一对应关系;
    所述第一终端根据所述第一对应关系以及第三参数确定侧行传输块对应的侧行传输资源的数量。
  39. 根据权利要求38所述的方法,其中,所述第一对应关系为以下至少之一:
    第三参数和侧行传输资源的数量之间的对应关系;
    第三参数的门限和侧行传输资源的数量之间的对应关系;
    第三参数和侧行传输资源的最大数量之间的对应关系;
    第三参数的门限和侧行传输资源的最大数量之间的对应关系。
  40. 根据权利要求36至39中任一项所述的方法,其中,所述方法还包括:
    所述第一终端根据所述第三参数确定侧行传输块所对应的侧行传输资源在所述M个侧行传输资源中的时域顺序和/或时域位置。
  41. 根据权利要求40所述的方法,其中,所述第三参数包括优先级,则高优先级的侧行传输块对应的侧行传输资源位于低优先级的侧行传输块对应的侧行传输资源之前。
  42. 根据权利要求1至41中任一项所述的方法,其中,所述M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
  43. 根据权利要求42所述的方法,其中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。
  44. 根据权利要求43所述的方法,其中,在所述P个时隙是物理时隙的情况下,所述P个侧行传输资源对应的P个物理时隙是连续的;
    在所述P个时隙是第一资源池中的逻辑时隙的情况下,所述P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。
  45. 根据权利要求42至44任一项所述的方法,其中,一组时域连续的P个侧行传输资源的频域资源相同。
  46. 根据权利要求1至45中任一项所述的方法,其中,所述侧行传输块承载在物理侧行共享信道PSSCH中。
  47. 根据权利要求46所述的方法,其中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输所述PSSCH。
  48. 根据权利要求46或47所述的方法,其中,所述第一终端在时隙中的GP符号中传输第一数据,使得所述GP符号中的空闲时长小于或等于第一时长,所述第一时长根据第二类Type 2信道接入所需的空闲时长确定,所述第一数据为循环前缀扩展或者根据一个OFDM符号上的数据确定。
  49. 根据权利要求1至48中任一项所述的方法,其中,所述第一信息中包括第一信息域,所述第一信息域用于确定第一HARQ进程号。
  50. 根据权利要求49所述的方法,其中,所述第一信息为DCI,所述第一信息域为所述DCI中的HARQ信息域,所述HARQ信息域用于指示所述第一HARQ进程号。
  51. 根据权利要求49所述的方法,其中,所述第一信息为RRC信令,所述第一信息域包括所述RRC信令中的第四参数和第五参数,所述第四参数和所述第五参数用于确定所述第一HARQ进程号,其中,所述第四参数用于指示HARQ进程号偏移量,所述第五参数用于指示HARQ进程号数量。
  52. 根据权利要求49至51任一项所述的方法,其中,所述方法还包括:
    所述第一终端确定第二HARQ进程号,所述第二HARQ进程号是所述第一终端根据所述第一HARQ进程号以及所述侧行传输块的数量确定的侧行HARQ进程号。
  53. 根据权利要求52所述的方法,其中,所述第一终端确定第二HARQ进程号,包括:
    所述第一终端根据所述侧行传输块的数量N确定N个所述第二HARQ进程号,每个侧行传输块分别对应一个所述第二HARQ进程号。
  54. 根据权利要求52或53所述的方法,其中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少一个,是 根据协议预定义、预配置信息或网络配置信息确定的。
  55. 根据权利要求52或53所述的方法,其中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少二者之间具有第二对应关系。
  56. 根据权利要求52或53所述的方法,其中,第一信息指示的侧行传输资源的数量、侧行传输块的数量、第二HARQ进程号的数量、第一信息中的NDI信息域的有效比特数量的至少二者之间具有第三对应关系。
  57. 根据权利要求1至56中任一项所述的方法,其中,所述方法还包括:
    所述第一终端获取第三信息,所述第三信息用于指示重传第一侧行数据块的侧行传输资源,所述N个侧行数据块中包括所述第一侧行数据块。
  58. 根据权利要求57所述的方法,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的其余比特翻转。
  59. 根据权利要求58所述的方法,其中,所述方法还包括,所述第三信息指示X个侧行传输资源,所述X个侧行传输资源用于重传所述第一侧行数据块;其中,X小于或等于M。
  60. 根据权利要求57所述的方法,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
  61. 根据权利要求57至60中任一项所述的方法,其中,所述第三信息指示的侧行传输资源不用于传输新的侧行数据块。
  62. 一种侧行传输方法,包括:
    第二终端接收第一终端利用M个侧行传输资源向第二终端发送的N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
  63. 根据权利要求62所述的方法,其中,所述M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
  64. 根据权利要求62或63所述的方法,其中,所述方法还包括:
    所述第二终端向所述第一终端发送侧行反馈信息,所述侧行反馈信息用于确定所述N个侧行传输块对应的ACK或NACK。
  65. 根据权利要求62至64中任一项所述的方法,其中,所述方法还包括:
    在所述第一终端上报第一侧行传输块对应的ACK,和/或,上报第二侧行传输块对应的NACK,在接收到的DCI中第一侧行传输块对应的NDI信息域翻转且第二侧行传输块对应的NDI信息域不翻转,则所述第二终端执行以下至少之一:
    接收所述第一终端利用所述第一侧行传输块对应的侧行传输资源传输的第二侧行传输块;其中,所述第二侧行传输块包括一个或多个上报了NACK的侧行传输块;
    接收所述第一终端重传的所述第一侧行传输块。
  66. 一种侧行传输方法,包括:
    网络设备发送第一信息,所述第一信息用于指示M个侧行传输资源,其中,所述M个侧行传输资源对应N个侧行传输块,所述M个侧行传输资源用于传输所述N个侧行传输块,其中,M和N为大于1的整数,M大于或等于N。
  67. 根据权利要求66所述的方法,其中,所述M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
  68. 根据权利要求67所述的方法,其中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。
  69. 根据权利要求68所述的方法,其中,在所述P个时隙是物理时隙的情况下,所述P个侧行传输资源对应的P个物理时隙是连续的;
    在所述P个时隙是第一资源池中的逻辑时隙的情况下,所述P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。
  70. 根据权利要求67至69任一项所述的方法,其中,一组时域连续的P个侧行传输资源的频域资源相同。
  71. 根据权利要求66至70中任一项所述的方法,其中,所述侧行传输块承载在物理侧行共享信道PSSCH中。
  72. 根据权利要求71所述的方法,其中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输所述PSSCH。
  73. 根据权利要求72所述的方法,其中,第一数据是所述第一终端在时隙中的GP符号中传输的,使得所述GP符号中的空闲时长小于或等于第一时长,所述第一时长根据类型二Type 2信道接入所需的空闲时长确定,所述第一数据为循环前缀扩展或者一个OFDM符号上的数据的重复。
  74. 根据权利要求66至73中任一项所述的方法,其中,所述第一信息中包括第一信息域,所述第一信息域用于确定第一HARQ进程号。
  75. 根据权利要求74所述的方法,其中,所述第一信息为DCI所述第一信息域为所述DCI中包括的HARQ信息域,所述HARQ信息域用于指示所述第一HARQ进程号。
  76. 根据权利要求75所述的方法,其中,所述第一信息为RRC信令时,所述第一信息域包括所述RRC信令中的第四参数和第五参数,所述第第四参数和所述第五参数用于确定所述第一HARQ进程号,其中,所述第四参数用于指示HARQ进程号偏移量,所述第五参数用于指示HARQ进程号数量。
  77. 根据权利要求76所述的方法,其中,第二HARQ进程号是所述第一终端根据所述第一HARQ进程号以及所述侧行传输块的数量、确定的侧行HARQ进程号。
  78. 根据权利要求77所述的方法,其中,每个侧行传输块分别对应一个所述第二HARQ进程号。
  79. 根据权利要求69至78中任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第三信息,所述第三信息用于指示重传第一侧行数据块的侧行传输资源,所述N个侧行数据块中包括所述第一侧行数据块。
  80. 根据权利要求79所述的方法,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的其余比特翻转。
  81. 根据权利要求80所述的方法,其中,所述方法还包括,所述第三信息指示X个侧行传输资源,所述X个侧行传输资源用于重传所述第一侧行数据块;其中,X小于或等于M。
  82. 根据权利要求79所述的方法,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
  83. 根据权利要求79至82中任一项所述的方法,其中,所述第三信息指示的侧行传输资源不用于传输新的侧行数据块。
  84. 一种第一终端,包括:
    接收单元,用于获取第一信息,所述第一信息用于指示M个侧行传输资源;
    处理单元,用于确定N个侧行传输块;
    发送单元,用于利用所述M个侧行传输资源向第二终端发送所述N个侧行传输块;
    其中,M和N为大于1的整数,M大于或等于N。
  85. 根据权利要求84所述的第一终端,其中,所述处理单元还用于根据侧行传输资源的数量确定侧行传输块的数量。
  86. 根据权利要求85所述的第一终端,其中,所述侧行传输资源的数量包括以下至少之一:
    所述第一信息可指示的侧行传输资源的最大数量;
    所述第一信息指示的侧行传输资源的数量。
  87. 根据权利要求86所述的第一终端,其中,所述接收单元还用于获取第二信息,所述第二信息用于确定所述第一信息可指示的侧行传输资源的最大数量。
  88. 根据权利要求87所述的第一终端,其中,所述第二信息是资源池配置信息中的信息。
  89. 根据权利要求86至88中任一项所述的第一终端,其中,所述第一信息可指示的侧行传输资源的最大数量通过以下至少之一确定:
    所述第一信息为DCI,所述第一信息可指示的侧行传输资源的最大数量是根据所述DCI能够指示的侧行传输资源的最大数量确定的;或者,
    所述第一信息为RRC信令,所述第一信息可指示的侧行传输资源的最大数量是根据所述RRC信令配置的侧行配置授权传输资源的一个周期中包括的侧行传输资源的最大数量确定的;或者,
    所述第一信息可指示的侧行传输资源的最大数量是根据SCI能够指示的侧行传输资源的最大数量确定的。
  90. 根据权利要求86至89中任一项所述的第一终端,其中,第一信息指示的侧行传输资源的数量包括以下至少之一:
    所述第一信息为DCI,所述第一信息指示的侧行传输资源的数量是所述DCI指示的侧行传输资源的数量;
    所述第一信息为RRC信令,所述第一信息指示的侧行传输资源的数量是一个侧行配置授权周期中包括的侧行传输资源的数量;
    所述第一信息为SCI,所述第一信息指示的侧行传输资源的数量是所述SCI指示的侧行传输资源的数量。
  91. 根据权利要求85至90中任一项所述的第一终端,其中,所述接收单元还用于获取第一参数,所述第一参数用于确定所述侧行传输块的数量。
  92. 根据权利要求91所述的第一终端,其中,所述第一参数表示一个侧行传输块对应的侧行传输资源的数量。
  93. 根据权利要求91或92所述的第一终端,其中,在一个侧行传输块对应多个侧行传输资源的情况下,所述多个侧行传输资源传输相同的侧行传输块。
  94. 根据权利要求91至93中任一项所述的第一终端,其中,所述第一参数的取值是所述第一终端根据协议预定义、预配置信息或网络配置信息的至少之一确定的。
  95. 根据权利要求91至94中任一项所述的第一终端,其中,所述侧行传输块的数量是所述第一终端根据第一信息指示的侧行传输资源的数量和所述第一参数确定的。
  96. 根据权利要求91至95中任一项所述的第一终端,其中,所述处理单元还用于确定侧行传输块的最大数量;其中,所述侧行传输块的最大数量是所述第一终端根据所述第一信息可指示的侧行传输资源的最大数量和所述第一参数确定的。
  97. 根据权利要求84至96中任一项所述的第一终端,其中,所述第一信息中包括新数据指示NDI信息域,所述处理单元还用于确定NDI信息域的信息。
  98. 根据权利要求97所述的第一终端,其中,所述NDI信息域的信息包括以下至少之一:
    NDI信息域的比特数量;
    NDI信息域的有效比特数量;
    NDI信息域的有效比特位。
  99. 根据权利要求97或98所述的第一终端,其中,所述处理单元还用于根据侧行传输资源的数量和/或侧行传输块的数量确定NDI信息域的信息。
  100. 根据权利要求99所述的第一终端,其中,所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量和/或所述第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的。
  101. 根据权利要求100所述的第一终端,其中,所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量确定的,包括:所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量和第二参数确定的,其中,所述第二参数表示侧行传输资源的数量与NDI信息域的比特数量之间的倍数关系。
  102. 根据权利要求101所述的第一终端,其中,所述NDI信息域的比特数量等于所述第一信息可指示的侧行传输资源的最大数量与所述第二参数之间的比值。
  103. 根据权利要求102所述的第一终端,其中,所述NDI信息域的比特数量是根据所述第一信息可指示的侧行传输资源的最大数量所对应的侧行传输块的最大数量确定的,包括:
    所述侧行传输块的最大数量与所述NDI信息域的比特数量相同。
  104. 根据权利要求98所述的第一终端,其中,所述NDI信息域的比特数量根据以下至少之一确定:协议预定义、预配置信息、网络配置信息。
  105. 根据权利要求97至104中任一项所述的第一终端,其中,所述处理单元还用于根据所述第一信息指示的侧行传输资源的数量和/或所述侧行传输块的数量确定所述NDI信息域的有效比特数量,其中,所述侧行传输块的数量是根据所述第一信息指示的侧行传输资源的数量确定的侧行传输块的数量。
  106. 根据权利要求105所述的第一终端,所述NDI信息域的有效比特数量等于所述侧行传输块的数量。
  107. 根据权利要求105或106所述的第一终端,所述处理单元还用于确定所述NDI信息域的有效比特位。
  108. 根据权利要求107所述的第一终端,所述处理单元还用于确定所述NDI信息域的最低K个比特位或最高K个比特位作为所述NDI信息域的有效比特位,其中,K表示所述NDI信息域的有效比特数量。
  109. 根据权利要求107所述的第一终端,其中,所述处理单元还用于在所述第一信息指示的侧行传输资源只包括重传资源的情况下,所述第一终端确定所述NDI信息域中不翻转的比特位作为所述NDI信息域的有效比特位。
  110. 根据权利要求97至109中任一项所述的第一终端,所述第一信息包括DCI,所述NDI信息域是包括在所述DCI中的信息域。
  111. 根据权利要求84至110中任一项所述的第一终端,所述处理单元还用于确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系。
  112. 根据权利要求111所述的第一终端,其中,在所述侧行传输资源的数量与所述侧行传输块的数量相等的情况下,所述M个侧行传输资源与所述N个侧行传输块一一对应。
  113. 根据权利要求111或112所述的第一终端,其中,在所述侧行传输资源和所述侧行传输块之间是多对一的对应关系的情况下,所述侧行传输资源的数量是所述侧行传输块的数量的整数倍。
  114. 根据权利要求113所述的第一终端,其中,确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系的第一方式为:将所述M个侧行传输资源分为A1组侧行传输资源,每组包括N个侧行传输资源,每组侧行传输资源中包括的N个侧行传输资源与所述N个侧行传输块一一对应。
  115. 根据权利要求114所述的第一终端,其中,确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系的第二方式为:将所述M个侧行传输资源分为N组侧行传输资源,每组包括A2个侧行传输资源,每组侧行传输资源中包括的A2个侧行传输资源用于传输所述N个侧行传输块中的一个侧行传输块,所述N组侧行传输资源与所述N个侧行传输块一一对应。
  116. 根据权利要求114或115所述的第一终端,其中,所述M个侧行传输资源包括一组时域连续的侧行传输资源。
  117. 根据权利要求113所述的第一终端,其中,所述M个侧行传输资源包括L组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括N个侧行传输资源,确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系的第三方式为:每组时域连续的侧行传输资源中包括的N个侧行传输资源与所述N个侧行传输块一一对应。
  118. 根据权利要求113所述的第一终端,其中,所述M个侧行传输资源包括N组时域连续的侧行传输资源,每组时域连续的侧行传输资源包括P个侧行传输资源,确定所述N个侧行传输块与所述M个侧行传输资源之间的对应关系的第四方式为:每组时域连续的侧行传输资源中包括的P个侧行传输资源用于传输所述N个侧行传输块中的一个侧行传输块,所述N组侧行传输资源与所述N个侧行传输块一一对应。
  119. 根据权利要求111所述的第一终端,其中,所述N个侧行传输块与所述M个侧行传输资源之间的对应关系是根据第三参数确定的,所述第三参数是根据业务质量QoS确定的参数。
  120. 根据权利要求119所述的第一终端,其中,所述第三参数包括以下参数至少之一:优先级、可靠性、时延。
  121. 根据权利要求119或120所述的第一终端,其中,所述接收单元还用于获取第一对应关系;
    所述处理单元还用于根据所述第一对应关系以及第三参数确定侧行传输块对应的侧行传输资源的数量。
  122. 根据权利要求121所述的第一终端,其中,所述第一对应关系为以下至少之一:
    第三参数和侧行传输资源的数量之间的对应关系;
    第三参数的门限和侧行传输资源的数量之间的对应关系;
    第三参数和侧行传输资源的最大数量之间的对应关系;
    第三参数的门限和侧行传输资源的最大数量之间的对应关系。
  123. 根据权利要求119至122中任一项所述的第一终端,其中,所述处理单元还用于根据所述第三参数确定侧行传输块所对应的侧行传输资源在所述M个侧行传输资源中的时域顺序和/或时域位置。
  124. 根据权利要求123所述的第一终端,其中,所述第三参数包括优先级,则高优先级的侧行传输块对应的侧行传输资源位于低优先级的侧行传输块对应的侧行传输资源之前。
  125. 根据权利要求84至123中任一项所述的第一终端,其中,所述M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
  126. 根据权利要求125所述的第一终端,其中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。
  127. 根据权利要求126所述的第一终端,其中,在所述P个时隙是物理时隙的情况下,所述P个侧行传输资源对应的P个物理时隙是连续的;
    在所述P个时隙是第一资源池中的逻辑时隙的情况下,所述P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。
  128. 根据权利要求125至127任一项所述的第一终端,其中,一组时域连续的P个侧行传输资源的频域资源相同。
  129. 根据权利要求84至128中任一项所述的第一终端,其中,所述侧行传输块承载在物理侧行共享信道PSSCH中。
  130. 根据权利要求129所述的第一终端,其中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输所述PSSCH。
  131. 根据权利要求129或130所述的第一终端,其中,所述处理单元还用于在时隙中的GP符号中传输第一数据,使得所述GP符号中的空闲时长小于或等于第一时长,所述第一时长根据Type 2信道接入所需的空闲时长确定,所述第一数据为循环前缀扩展或者根据一个OFDM符号上的数据确定。
  132. 根据权利要求84至131中任一项所述的第一终端,其中,所述第一信息中包括第一信息域,所述第一信息域用于确定第一HARQ进程号。
  133. 根据权利要求132所述的第一终端,其中,所述第一信息为DCI,所述第一信息域为所述DCI中的HARQ信息域,所述HARQ信息域用于指示所述第一HARQ进程号。
  134. 根据权利要求132所述的第一终端,其中,所述第一信息为RRC信令,所述第一信息域包括所述RRC信令中的第四参数和第五参数,所述第四参数和所述第五参数用于确定所述第一HARQ进程号,其中,所述第四参数用于指示HARQ进程号偏移量,所述第五参数用于指示HARQ进程号数量。
  135. 根据权利要求132至134任一项所述的第一终端,其中,所述处理单元还用于确定第二HARQ进程号,所述第二HARQ进程号是所述第一终端根据所述第一HARQ进程号以及所述侧行传输块的数量确定的侧行HARQ进程号。
  136. 根据权利要求135所述的第一终端,其中,所述处理单元还用于根据所述侧行传输块的数量N确定N个所述第二HARQ进程号,每个侧行传输块分别对应一个所述第二HARQ进程号。
  137. 根据权利要求135或136所述的第一终端,其中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少一个,是根据协议预定义、预配置信息或网络配置信息确定的。
  138. 根据权利要求135或136所述的第一终端,其中,第一信息可指示的侧行传输资源的最大数量、侧行传输块的最大数量、第二HARQ进程号的数量、第一信息中的NDI信息域的比特数量的至少二者之间具有第二对应关系。
  139. 根据权利要求135或136所述的第一终端,其中,第一信息指示的侧行传输资源的数量、侧行传输块的数量、第二HARQ进程号的数量、第一信息中的NDI信息域的有效比特数量的至少二者之间具有第三对应关系。
  140. 根据权利要求84至139中任一项所述的第一终端,其中,所述接收单元还用于获取第三信息,所述第三信息用于指示重传第一侧行数据块的侧行传输资源,所述N个侧行数据块中包括所述第一侧行数据块。
  141. 根据权利要求140所述的第一终端,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的其余比特翻转。
  142. 根据权利要求141所述的第一终端,其中,所述第一终端还包括,所述第三信息指示X个侧行传输资源,所述X个侧行传输资源用于重传所述第一侧行数据块;其中,X小于或等于M。
  143. 根据权利要求142所述的第一终端,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
  144. 根据权利要求140至143中任一项所述的第一终端,其中,所述第三信息指示的侧行传输资源不用于传输新的侧行数据块。
  145. 一种第二终端,包括:
    接收单元,用于接收第一终端利用M个侧行传输资源向第二终端发送的N个侧行传输块;其中,M和N为大于1的整数,M大于或等于N。
  146. 根据权利要求145所述的第二终端,其中,所述M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
  147. 根据权利要求145或146所述的第二终端,其中,所述第二终端还包括:
    发送单元,用于向所述第一终端发送侧行反馈信息,所述侧行反馈信息用于确定所述N个侧行传输块对应的ACK或NACK。
  148. 根据权利要求145至147中任一项所述的第二终端,其中,所述接收单元还用于在所述第一终端上报第一侧行传输块对应的ACK,和/或,上报第二侧行传输块对应的NACK,在接收到的DCI中第一侧行传输块对应的NDI信息域翻转且第二侧行传输块对应的NDI信息域不翻转,则执行以下至少之一:
    接收所述第一终端利用所述第一侧行传输块对应的侧行传输资源传输的第二侧行传输块;其中,所述第二侧行传输块包括一个或多个上报了NACK的侧行传输块;
    接收所述第一终端重传的所述第一侧行传输块。
  149. 一种网络设备,包括:
    发送单元,用于发送第一信息,所述第一信息用于指示M个侧行传输资源,其中,所述M个侧行传输资源对应N个侧行传输块,所述M个侧行传输资源用于传输所述N个侧行传输块,其中,M和N为大于1的整数,M大于或等于N。
  150. 根据权利要求149所述的网络设备,其中,所述M个侧行传输资源包括一组或多组时域连续的侧行传输资源。
  151. 根据权利要求150所述的网络设备,其中,一组时域连续的P个侧行传输资源表示该组侧行传输资源对应的P个时隙是连续的时隙,其中P为正整数。
  152. 根据权利要求151所述的网络设备,其中,在所述P个时隙是物理时隙的情况下,所述P个侧行传输资源对应的P个物理时隙是连续的;
    在所述P个时隙是第一资源池中的逻辑时隙的情况下,所述P个侧行传输资源对应于第一资源池中的连续的P个逻辑时隙。
  153. 根据权利要求150至152任一项所述的网络设备,其中,一组时域连续的P个侧行传输资源的频域资源相同。
  154. 根据权利要求149至153中任一项所述的网络设备,其中,所述侧行传输块承载在物理侧行共享信道PSSCH中。
  155. 根据权利要求154所述的网络设备,其中,一个时隙中除了最后一个正交频分复用OFDM符号之外的其他全部或部分OFDM符号用于传输所述PSSCH。
  156. 根据权利要求155所述的网络设备,其中,第一数据是所述第一终端在时隙中的GP符号中传输的,使得所述GP符号中的空闲时长小于或等于第一时长,所述第一时长根据Type 2信道接入所需的空闲时长确定,所述第一数据为循环前缀扩展或者一个OFDM符号上的数据的重复。
  157. 根据权利要求149至156中任一项所述的网络设备,其中,所述第一信息中包括第一信息域,所述第一信息域用于确定第一HARQ进程号。
  158. 根据权利要求157所述的网络设备,其中,所述第一信息为DCI所述第一信息域为所述DCI中包括的HARQ信息域,所述HARQ信息域用于指示所述第一HARQ进程号。
  159. 根据权利要求158所述的网络设备,其中,所述第一信息为RRC信令时,所述第一信息域包括所述RRC信令中的第四参数和第五参数,所述第第四参数和所述第五参数用于确定所述第一HARQ进程号,其中,所述第四参数用于指示HARQ进程号偏移量,所述第五参数用于指示HARQ进程号数量。
  160. 根据权利要求159所述的网络设备,其中,第二HARQ进程号是所述第一终端根据所述第一HARQ进程号以及所述侧行传输块的数量、确定的侧行HARQ进程号。
  161. 根据权利要求160所述的网络设备,其中,每个侧行传输块分别对应一个所述第二HARQ进程号。
  162. 根据权利要求1至161中任一项所述的网络设备,其中,所述网络设备还包括:
    所述发送单元还用于发送第三信息,所述第三信息用于指示重传第一侧行数据块的侧行传输资源,所述N个侧行数据块中包括所述第一侧行数据块。
  163. 根据权利要求162所述的网络设备,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的其余比特翻转。
  164. 根据权利要求163所述的网络设备,其中,所述网络设备还包括,所述第三信息指示X个侧行传输资源,所述X个侧行传输资源用于重传所述第一侧行数据块;其中,X小于或等于M。
  165. 根据权利要求162所述的网络设备,其中,所述第三信息包括NDI信息域,所述NDI信息域中与所述第一侧行数据块对应的比特不翻转,所述NDI信息域中的有效比特位中除了与第一侧行传输块对应的比特之外的其余比特翻转。
  166. 根据权利要求162至165中任一项所述的方法,其中,所述第三信息指示的侧行传输资源不用于传输新的侧行数据块。
  167. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至61或62至65中任一项所述的方法。
  168. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述网络设备执行如权利要求66至83中任一项所述的方法。
  169. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至61、62至65或66至83中任一项所述的方法。
  170. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至61、62至65或66至83中任一项所述的方法。
  171. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至61、62至65或66至83中任一项所述的方法。
  172. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至61、62至65或66至83中任一项所述的方法。
  173. 一种通信***,包括:
    第一终端,用于执行如权利要求1至51中任一项所述的方法;
    第二终端,用于执行如权利要求62至65中任一项所述的方法;
    网络设备,用于执行如权利要求66至83中任一项所述的方法。
PCT/CN2022/106305 2022-07-18 2022-07-18 侧行传输方法、终端和网络设备 WO2024016121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106305 WO2024016121A1 (zh) 2022-07-18 2022-07-18 侧行传输方法、终端和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106305 WO2024016121A1 (zh) 2022-07-18 2022-07-18 侧行传输方法、终端和网络设备

Publications (1)

Publication Number Publication Date
WO2024016121A1 true WO2024016121A1 (zh) 2024-01-25

Family

ID=89616701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106305 WO2024016121A1 (zh) 2022-07-18 2022-07-18 侧行传输方法、终端和网络设备

Country Status (1)

Country Link
WO (1) WO2024016121A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021007685A1 (zh) * 2019-07-12 2021-01-21 Oppo广东移动通信有限公司 用于传输侧行数据的方法、终端设备和网络设备
WO2021142846A1 (zh) * 2020-01-19 2021-07-22 Oppo广东移动通信有限公司 通信方法、设备及存储介质
WO2021212371A1 (zh) * 2020-04-22 2021-10-28 Oppo广东移动通信有限公司 侧行资源分配方法和终端设备
CN114375064A (zh) * 2019-11-08 2022-04-19 Oppo广东移动通信有限公司 侧行链路的信息上报方法、装置、终端及可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021007685A1 (zh) * 2019-07-12 2021-01-21 Oppo广东移动通信有限公司 用于传输侧行数据的方法、终端设备和网络设备
CN114375064A (zh) * 2019-11-08 2022-04-19 Oppo广东移动通信有限公司 侧行链路的信息上报方法、装置、终端及可读存储介质
WO2021142846A1 (zh) * 2020-01-19 2021-07-22 Oppo广东移动通信有限公司 通信方法、设备及存储介质
WO2021212371A1 (zh) * 2020-04-22 2021-10-28 Oppo广东移动通信有限公司 侧行资源分配方法和终端设备

Similar Documents

Publication Publication Date Title
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
WO2021007685A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2020220359A1 (zh) 确定harq码本的方法和设备
WO2022110233A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021217674A1 (zh) 侧行反馈方法和终端设备
WO2021237702A1 (zh) Harq-ack码本的反馈方法和终端设备
TW202017402A (zh) 用於側行鏈路的通信方法和設備
TW202019205A (zh) 一種資源配置方法及裝置、終端
WO2022134076A1 (zh) 无线通信的方法和终端设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2021212372A1 (zh) 资源分配方法和终端
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2023004725A1 (zh) 无线通信方法、第一设备和第二设备
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2024016121A1 (zh) 侧行传输方法、终端和网络设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2021196237A1 (zh) 侧行反馈信息处理方法、终端设备和网络设备
WO2023065363A1 (zh) 无线通信的方法和终端设备
WO2023060559A1 (zh) 无线通信的方法和终端设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2023193237A1 (zh) 信道接入方法、终端设备、网络设备
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2023133834A1 (zh) 无线通信方法和通信设备
WO2023206145A1 (zh) 无线通信的方法和通信设备
WO2023283888A1 (zh) 无线通信的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951400

Country of ref document: EP

Kind code of ref document: A1