WO2024014446A1 - Smell measurement device, sensor element, and methods for manufacturing same - Google Patents

Smell measurement device, sensor element, and methods for manufacturing same Download PDF

Info

Publication number
WO2024014446A1
WO2024014446A1 PCT/JP2023/025532 JP2023025532W WO2024014446A1 WO 2024014446 A1 WO2024014446 A1 WO 2024014446A1 JP 2023025532 W JP2023025532 W JP 2023025532W WO 2024014446 A1 WO2024014446 A1 WO 2024014446A1
Authority
WO
WIPO (PCT)
Prior art keywords
odorant
metal wiring
sensor
odor
sensor element
Prior art date
Application number
PCT/JP2023/025532
Other languages
French (fr)
Japanese (ja)
Inventor
岳 金澤
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2024014446A1 publication Critical patent/WO2024014446A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to an odor measuring device, a sensor element, and a method for manufacturing the same.
  • Patent Document 1 proposes a mechanism for replacing the semiconductor of a semiconductor gas sensor with a conductive polymer and detecting the adsorption of odor components onto the surface of the conductive polymer.
  • Patent Document 1 reports that it is possible to detect odor components that are easily thermally decomposed and substances that do not cause redox reactions on the surface of the detection section of the sensor.
  • Patent Document 2 focuses on the property that the electrical resistance of a mixture of an organic polymer and a conductive substance changes when exposed to an organic gas.
  • Patent Document 2 when a plurality of organic polymer/conductive material combinations with different organic polymer compositions are prepared from the above mixture and these are used as an electrical resistance array in a sensor, the electricity when exposed to the same organic gas is It is stated that each resistance change is different.
  • Patent Document 3 reports that the response speed of the sensor is improved by adding a plasticizer to the above organic polymer.
  • Patent Document 4 discloses a sensor having a receptor including a filler having a structure of RSiO 3/2 and a specific average primary particle size.
  • the performance of the sensor element applied to the odor measuring device changes every time it is manufactured and is not stable, it will not be possible to stably produce the odor measuring device with a predetermined detection accuracy. Furthermore, when replacing the sensor element of the odor measuring device with a new sensor element, it is desirable that the difference in performance between the original sensor element and the replacement sensor element be small or non-existent.
  • An object of one aspect of the present invention is to provide an odor measuring device, a sensor element, and a manufacturing method thereof that can output stable measurement results.
  • the present inventors conducted studies to achieve the above object, and as a result, they arrived at the present invention.
  • an odor measurement device includes an electrode having a first metal wiring and a second metal wiring separated from the first metal wiring, and at least a portion of the first metal wiring.
  • the sensor element includes an electrode having a first metal wiring and a second metal wiring spaced apart from the first metal wiring, and at least a portion of the first metal wiring and the second metal wiring.
  • an odorant receptor layer in contact with at least a portion of the second metal wiring, the odorant receptor layer comprising T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ).
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the method for manufacturing a sensor element includes a slurry preparation step of preparing a slurry, a first metal wiring, and a second metal wiring spaced apart from the first metal wiring on the substrate.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an odor measuring device according to an embodiment of the present invention.
  • FIG. 2 is a top view showing an example of the configuration of a sensor element. 3 is a cross-sectional view showing an example of the configuration of the sensor element shown in FIG. 2.
  • FIG. FIG. 2 is a functional block diagram showing an example of the configuration of an odor measuring device. It is a flowchart which shows an example of the flow of a process by which an estimation device generates an estimation model.
  • FIG. 2 is a functional block diagram showing an example of the configuration of an odor measuring device. It is a flowchart which shows an example of the flow of the process by which an estimation device estimates an odorant.
  • FIG. 3 is a top view showing a configuration example of a sensor chamber.
  • FIG. 2 is a cross-sectional view showing a configuration example of a sensor chamber.
  • FIG. 2 is a cross-sectional view showing a configuration example of a sensor chamber.
  • FIG. 1 is a top view showing an example of the configuration of a sensor element of the present invention.
  • FIG. 1 is a top view showing an example of the configuration of a sensor element of the present invention.
  • FIG. 3 is a top view showing an example of the configuration of a sensor element of the present invention. It is a flowchart which shows an example of the flow of the method of manufacturing a sensor element.
  • FIG. 3 is a top view showing an example of a substrate before slurry application.
  • odorant means a substance that can be adsorbed to the odorant-receiving layer in a broad sense. Therefore, it also includes substances that are not generally considered to be odor-causing substances. "Odors" often contain multiple odorants, and there are also substances that are not recognized as odorants or unknown odorants.
  • One embodiment of the present invention focuses on the fact that the amount of odorant adsorbed to the odorant receptor layer differs depending on the type of odorant.
  • odorant even when simply described as “odorant”, it may mean “an aggregate of odorants” that may include a plurality of odorants, rather than individual odorants.
  • Oxy substances are not particularly limited, but include, for example, hexane, ethyl acetate, methanol, diethyl carbonate, toluene, d-limonene, bornan-2-one, cis-3-hexenol, ⁇ -phenylethyl alcohol, citral, L- Examples include carvone, ⁇ -undecalactone, eugenol, linalyl acetate, menthol, benzaldehyde, vanillin, hexanal, ethanol, pentyl valerate, linalool, 2-propanol, and the like.
  • a resin composition according to one embodiment of the present invention is a resin composition for forming an odorant-receiving layer, and includes a resin (A) and a filler (C).
  • the resin (A) contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ).
  • the resin composition may be a composition in which these components are uniformly present.
  • the resin composition may further contain a surfactant (B) as a dispersant for the filler (C).
  • the resin (A) only needs to have film-forming properties capable of forming an odorant-receiving layer, and preferably exhibits an interaction such as adsorption or dissolution with respect to a specific odorant. Further, the resin (A) preferably has appropriate physical properties (such as heat resistance) and chemical properties (such as compatibility with sample gas and corrosion resistance) depending on the usage conditions of the odor sensor, which will be described later.
  • the silicone resin contained in the resin (A) may be a mixture of a plurality of silicone resins consisting of T units and a plurality of silicone resins consisting of D units.
  • Silicone resins include monofunctional M units with three organic groups bonded to Si, difunctional D units with two organic groups bonded to Si, and trifunctional D units with one organic group bonded to Si. There are a T unit and a tetrafunctional Q unit to which no organic group is bonded.
  • the silicone resin contained in the resin (A) consists of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), where R 1 is a monovalent group having 1 to 10 carbon atoms. is a hydrocarbon group.
  • a silicone crosslinked product that is solid at normal temperature and normal pressure for example, normal temperature is 25 ⁇ 15° C. and normal pressure is 1013 hPa
  • siliconcone resin a silicone crosslinked product that is solid at normal temperature and normal pressure (for example, normal temperature is 25 ⁇ 15° C. and normal pressure is 1013 hPa) is referred to as a “silicone resin”.
  • the hydrocarbon group may be either an aliphatic group or an aromatic group, and includes, for example, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and the like.
  • the alkyl group and alkenyl group may be either straight chain or branched chain.
  • alkyl groups examples include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. .
  • aryl group examples include a phenyl group, a tolyl group, a dimethylphenyl group, and the like.
  • aralkyl group examples include a benzyl group, phenylethyl group, phenylpropyl group, and phenylbutyl group.
  • the weight ratio of T units and D units is within the above range, the resin composition has suitable flexibility and has high film formability.
  • the weight ratio of T units in the silicone resin is lower than 50%, the number of network structures in the silicone resin decreases, and the reversibility of adsorption and desorption of the odorant to the resin composition of the odorant receiving layer decreases. Getting worse.
  • the resin (A) may contain components other than silicone resin.
  • examples of other components that the resin (A) may contain include silicone oil.
  • silicone oil has fluidity at normal temperature and normal pressure (for example, normal temperature is 25 ⁇ 15° C. and normal pressure is 1013 hPa), and has siloxane bonds extending in a chain.
  • Silicone resin can form a three-dimensional crosslinked structure consisting of siloxane bonds through a crosslinking reaction, whereas silicone oil cannot form the above-mentioned crosslinked structure.
  • Silicone oil can be blended into the resin composition from the viewpoint of increasing the dispersibility of the filler (C) in the resin composition or from the viewpoint of improving the applicability of the resin composition.
  • the silicone oil is preferably a silicone oil consisting only of D units.
  • silicone oil can be modified in the form of side chain type, both terminal type, single terminal type, side chain both terminal type, etc. It can have parts.
  • the above modified sites include amino groups, amines, epoxy groups, carbinol groups, mercapto groups, carboxyl groups, methyl hydrogens, methacrylic groups, acrylic groups, phenyl groups, phenol groups, silanol groups, and carboxylic acid anhydrides. , vinyl group, etc.
  • modified sites include polyester sites, polyether sites, alkyl sites, aralkyl sites, fluoroalkyl sites, higher fatty acid ester sites, and higher fatty amide sites.
  • silicone resin will be explained using an example in which it does not contain silicone oil.
  • the surfactant (B) functions as a dispersant for the filler (C) described below. Further, the surfactant (B) can improve the coating properties of the resin composition when forming the sensor element by coating the resin composition.
  • the surfactant (B) can be appropriately selected from known surfactants within a range that exhibits the above effects.
  • surfactant (B) examples include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • anionic surfactant examples include alkali metal salts of carboxylic acids having 10 to 24 carbon atoms and alkali metal salts of alkylsulfonic acids having 14 to 24 carbon atoms.
  • Examples of the carboxylic acid having 10 to 24 carbon atoms include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, pentadecanoic acid, nonadecanoic acid, icosanoic acid, henicosanoic acid, Examples include docosanoic acid, tricosanoic acid, and tetracosanoic acid.
  • Examples of the alkyl group possessed by the alkyl sulfonic acid having 14 to 24 carbon atoms include a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an icosyl group, a henicosyl group, a docosyl group, a tricosyl group, and a tetracosyl group. Examples include groups.
  • alkali metal contained in the alkali metal salt examples include sodium and potassium.
  • cationic surfactant examples include quaternary ammonium halide salts having an alkyl group having 12 to 24 carbon atoms.
  • Examples of the quaternary ammonium having an alkyl group having 12 to 24 carbon atoms include tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, dimethyldioctylammonium, didecyldimethylammonium, decyltrimethylammonium, and dodecyltrimethyl.
  • Ammonium tridecyltrimethylammonium, hexadecyltrimethylammonium, methyltrioctylammonium, octyltrimethylammonium, tributylmethylammonium, octadecyltrimethylammonium, tetradecyltrimethylammonium, nonadecyltrimethylammonium, icosyltrimethylammonium, henicosyltrimethylammonium, Examples include heptadecyltrimethylammonium and pentadecyltrimethylammonium.
  • halide salts examples include fluoride salts, chloride salts, bromide salts, and iodide salts.
  • amphoteric surfactant examples include dimethyl(3-sulfopropyl)ammonium inner salt having an alkyl group having 10 to 22 carbon atoms, and N-alkyl-N,N-dimethyl having an alkyl group having 10 to 22 carbon atoms.
  • examples include glycine.
  • dimethyl(3-sulfopropyl)ammonium hydroxide inner salt having an alkyl group having 10 to 22 carbon atoms examples include decyldimethyl(3-sulfopropyl)ammonium hydroxide inner salt, undecyldimethyl(3-sulfopropyl) ) ammonium hydroxide inner salt, dodecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, tridecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, tetradecyl dimethyl (3-sulfopropyl) ammonium hydroxide pentadecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, hexadecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, heptadecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner
  • N-alkyl-N,N-dimethylglycine having an alkyl group having 10 to 22 carbon atoms examples include N-dodecyl-N,N-dimethylglycine and N-octadecyl-N,N-dimethylglycine.
  • nonionic surfactants include higher alcohol ethylene oxide adducts.
  • Examples of higher alcohols include 1-hexyl alcohol, 1-heptyl alcohol, 1-octyl alcohol, 1-nonyl alcohol, 1-decyl alcohol, 1-undecyl alcohol, 1-dodecyl alcohol, 1-tridecyl alcohol, and 1-tetra Examples include decyl alcohol, 1-pentadecyl alcohol, 1-hexadecyl alcohol, 1-heptadecyl alcohol, and 1-octadecyl alcohol.
  • the number of moles of ethylene oxide added is preferably 5 to 50, more preferably 5 to 40, and even more preferably 5 to 30 from the viewpoint of odor discrimination performance.
  • the surfactant (B) preferably has at least one of an amide group, a primary amino group, a secondary amino group, and a tertiary amino group.
  • the surfactant (B) should have at least one of an oxyethylene chain, an oxypropylene chain, and a random structure or block structure of oxyethylene/oxypropylene. is preferred.
  • the random structure of oxyethylene/oxypropylene is a chain structure in which both oxyethylene and oxypropylene are irregularly connected.
  • the block structure of oxyethylene/oxypropylene is a chain structure in which an oxyethylene block formed by connecting oxyethylene and an oxypropylene block formed by connecting oxypropylene are connected.
  • Examples of commercially available surfactants (B) include Disparon DA-325, Disparon DA-375, and Disparon DA-234 (manufactured by Kusumoto Kasei Co., Ltd.).
  • the filler (C) is an inorganic material such as silica, metal such as nickel powder, or conductive carbon material.
  • a conductive carbon material is a carbon material having a volume resistivity of 0.1 ⁇ cm or less.
  • the filler (C) is dispersed in a mixture of the resin (A) and the surfactant (B).
  • the resin composition has electrical conductivity because the fillers (C) come into contact with each other and form a conductive path.
  • silica products examples include organosilica sol (MEIPA-ST, IPA-ST-UP, IPA-ST-ZL, DMAC-ST, MEK-ST, MIBK-ST, PMA-ST and PGM-ST), etc.
  • Examples of the conductive carbon material include carbon black, carbon nanotubes, and graphene.
  • carbon black is particularly preferred.
  • Ketjenblack EC product name manufactured by Akzo, Netherlands
  • Ketjenblack EC-300J product name manufactured by Lion Specialty Chemicals Co., Ltd.
  • Ketjenblack EC-600JD product name manufactured by Lion Specialty Chemicals Co., Ltd.
  • Seast G116, 116 product name manufactured by Tokai Carbon Co., Ltd.
  • Niteron #10 product name manufactured by Nippon Steel Chemical Co., Ltd.
  • Denka Black product name manufactured by Denki Kagaku Kogyo Co., Ltd.
  • SUPER C-65 product name of MTI Corporation, USA.
  • VGCF-H manufactured by Showa Denko KK.
  • the shape of the conductive carbon material is preferably fibrous or spherical.
  • the fiber diameter is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the fiber length is preferably 0.1 to 10 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the primary particle diameter is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm.
  • the conductive carbon material preferably has a primary particle diameter of 100 nm or less.
  • the particle size of the conductive carbon material can be determined by a known method.
  • the particle size of the conductive carbon material can be measured by observing it with a transmission electron microscope (TEM) and analyzing the image using an image processing device (for example, Digital Microscope VHX-700F manufactured by Keyence Corporation).
  • TEM transmission electron microscope
  • an image processing device for example, Digital Microscope VHX-700F manufactured by Keyence Corporation.
  • the particle size may be a literature value or a catalog value.
  • the weight ratio [(A)/(B)] between the resin (A) and the surfactant (B) in the resin composition determines the coating stability of the resin composition and the amount of filler (C) in the resin composition. From the viewpoint of stability, it is preferably 4.0 to 50.0.
  • the weight ratio (A)/(B) is more preferably more than 4.0, more preferably 4.5 or more, from the viewpoint of stability of the filler (C) in the resin composition. , more preferably 5.0 or more. Further, the weight ratio (A)/(B) is more preferably 40.0 or less, more preferably 30.0 or less, from the viewpoint of coating stability of the resin composition.
  • the content of the filler (C) in the resin composition is determined from the viewpoint that the sensor element formed from the resin composition exhibits sufficient conductivity as an odor sensor, and from the viewpoint that the sensor element formed from the resin composition exhibits sufficient sensitivity as an odor sensor.
  • the amount is preferably 5 to 30% by weight based on the total of 100% by weight of (A), surfactant (B) and filler (C).
  • the content of filler (C) with respect to the total 100% by weight of resin (A), surfactant (B) and filler (C) is preferably 10% by weight or more from the viewpoint of further increasing the above-mentioned conductivity.
  • the content is preferably 15% by weight or more, and more preferably 15% by weight or more.
  • filler (C) based on the total of 100% by weight of resin (A), surfactant (B), and filler (C) should be 25% by weight or less from the viewpoint of further increasing the sensitivity. More preferably, it is 20% by weight or less.
  • the resin composition may further contain components other than the resin (A), surfactant (B) and filler (C) described above, within a range where the effects of the present invention can be obtained.
  • examples of other components include solvent (D).
  • the other components may be suitably used within the range in which both the effects of the present invention and the effects of the other components can be obtained.
  • the solvent (D) is used from the viewpoint of increasing the compatibility between the resin (A) and the surfactant (B), from the viewpoint of increasing the dispersibility of the filler (C) in the resin composition, or from the viewpoint of increasing the applicability of the resin composition. From this point of view, it is possible to incorporate it into the resin composition.
  • solvent (D) include N-methyl-2-pyrrolidone, propylene glycol monomethyl ether acetate, ethyl butyrate, butyl butyrate, ethyl acetate, N,N-dimethylformamide, N,N-dimethylacetamide, toluene and xylene. included.
  • the content of the solvent (D) in the resin composition can be determined as appropriate from the above viewpoints.
  • the content of the solvent (D) in the resin composition is 100 to 10,000 parts by weight based on a total of 100 parts by weight of the resin (A), the surfactant (B), and the filler (C). Parts by weight are preferred.
  • the resin composition is obtained as a slurry by mixing a resin (A), a surfactant (B), a filler (C), and, if necessary, a solvent (D), and uniformly kneading the mixture with a stirrer.
  • the solvent (D) is distilled off from the resin composition.
  • the solvent (D) may be distilled off from the resin composition produced by uniformly mixing them, or may be distilled off from the coating film produced during the production of the sensor element described below.
  • the electrical conductivity of the resin composition varies depending on the amount of the odorant adsorbed to the resin composition. Further, the adsorption process of odorants to the resin composition described above differs depending on the odorant. Therefore, by forming a detection part to which an odorant can be adsorbed using the resin composition, it can be used as a sensor element of an odor sensor.
  • odor identification performance can be improved. For example, it is possible to identify real odor patterns in which multiple substances interact or even real odor patterns due to substances whose composition is unknown. Further, the resin composition has excellent composition stability and coating stability. Therefore, the stability of odor identification performance when used as a sensor element is improved.
  • Cited Document 1 It is thought that the sensor described in Cited Document 1 is capable of detecting odors composed of single compounds. On the other hand, many odors are mixtures of multiple substances. The sensor described in Cited Document 1 does not have a function for identifying odor components in the detection section, and therefore does not have sufficient odor discrimination performance for mixtures.
  • Cited Document 2 the difference in chemical structure of conductive polymers used in the detection part is used to create a mixture in which the response to various compounds shown by the detection part is different through each conductive polymer. It has been shown that odors can be recognized as However, the chemical structure of conductive polymers is limited, making it difficult to sensitively separate the response of a detection unit to any odor component, and making it difficult to distinguish between odors made of similar components.
  • Cited Document 3 proposes a method in which a mixture of an organic polymer, a plasticizer, and a conductive substance is used as a detection material in the detection part, and the penetration of an odor component into the organic polymer is detected as a change in the electrical resistance of the mixture. There is. Utilizing the fact that different odor components permeate when using organic polymers with different compositions, it is possible to detect odors as a mixture by creating an array in which multiple detection units made of the above-mentioned detection materials containing organic polymers with different compositions are used in parallel. can be recognized.
  • the sensor element 31 includes an odorant receiving layer 315 containing the above-described resin composition, a first metal wiring 313A, and a second metal wiring 313B. Note that below, when the first metal wiring 313A and the second metal wiring 313B are not distinguished, they may be referred to as metal wiring 313.
  • odorant receptor layer refers to a layer that adsorbs an odorant to be identified.
  • the odorant receptor layer is formed from the resin composition described above.
  • An odorant-receptive layer may be provided as part of a sensor element according to an embodiment of the invention.
  • FIG. 2 is a top view showing an example of the configuration of the sensor element 31
  • FIG. 3 is a cross-sectional view showing an example of the configuration of the sensor element 31 shown in FIG.
  • the first metal wiring 313A and the second metal wiring 313B are metal wirings that function as electrodes for measuring changes in electrical conductivity of the odorant receiving layer 315 (ie, the resin composition). That is, the first metal wiring 313A and the second metal wiring 313B are spaced apart from each other, and the odorant receiving layer 315 is in contact with at least a portion of the first metal wiring and at least a portion of the second metal wiring. .
  • the first metal wiring 313A and the second metal wiring 313B are metal wirings that are not in direct contact with each other, and may be metal wirings that are substantially parallel to each other as shown in FIG. 2.
  • the metal wiring 313 including the first metal wiring 313A and the second metal wiring 313B may be arranged on the substrate 311.
  • the substrate 311 may be a glass epoxy substrate commonly used in electronic circuits.
  • the metal wiring 313 may be a metal wiring such as copper or gold.
  • the thickness of each of the first metal wiring 313A and the second metal wiring 313B when viewed from a direction perpendicular to the surface of the substrate is preferably 10 ⁇ m to 2 mm, more preferably 10 ⁇ m to 1 mm.
  • the height, that is, the thickness, of each of the first metal wiring 313A and the second metal wiring 313B when viewed from a direction parallel to the surface of the substrate is preferably 1 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
  • the interval between the first metal wiring 313A and the second metal wiring 313B is preferably 1 ⁇ m to 1 mm, more preferably 1 ⁇ m to 100 ⁇ m.
  • the length of the metal wiring 313 is preferably 10 ⁇ m to 50 mm, more preferably 10 ⁇ m to 30 mm.
  • the metal wiring 313 may be arranged on the seal substrate 312.
  • FIG. 3 shows a cross section taken along line AA in FIG.
  • a seal substrate 312 may be placed on a substrate 311 made of glass epoxy or the like, and metal wiring 313 may be placed on the seal substrate 312.
  • a vinyl tape 314 may be used to fix the seal substrate 312 on the substrate 311.
  • the vinyl tape 314 can also be used to adjust the length of the exposed portion of the metal wiring 313 by masking the excess portion of the metal wiring 313.
  • the exposed portion of the metal wiring 313 is a portion where the metal wiring 313 and the odorant receiving layer 315 are in contact.
  • the vinyl tape 314 may also be an insulator for adjusting the length of the contact portion between the metal wiring 313 and the odorant receptor layer 315.
  • the odorant-receiving layer 315 may be in contact with at least a portion of the first metal wiring 313A and at least a portion of the second metal wiring 313B.
  • the odorant-receiving layer 315 may be arranged to fill a region sandwiched between the first metal wiring 313A and the second metal wiring 313B.
  • the interval between the first metal wiring 313A and the second metal wiring 313B is a predetermined distance (for example, 500 ⁇ m) or less. This is desirable.
  • the sensor element 31 can be used in various ways by applying a resin composition whose electrical conductivity changes over time depending on whether odorant A is adsorbed or when odorant B, which is different from odorant A, is adsorbed. It is possible to detect and identify odorous substances.
  • the sensor element 31 may be a resistive type element, a membrane-type surface stress sensor (MSS) type element, or a quartz crystal microbalance type element. ;QCM) type element may be used.
  • MSS membrane-type surface stress sensor
  • QCM quartz crystal microbalance
  • resistive elements have relatively few of these problems, and from these points of view, it is preferable to use resistive elements as the sensor element in the present invention. Further, it is preferable to use a conductive carbon material as the filler (C) of this resistance type element.
  • the sensor element 31 can be manufactured by creating the odorant receptor layer 315 using the resin composition according to the embodiment of the present invention described above.
  • the odorant receptor layer 315 can be produced by applying the above-described resin composition as a coating liquid and solidifying or curing the formed coating film.
  • the resin composition can be applied using known coating techniques.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an odor measuring device 100 including an odor sensor 30 to which a sensor element 31 is applied. Note that in the sensor element 31 shown in FIG. 1, the illustration of the vinyl tape 314 is omitted for simplification.
  • the odor sensor 30 includes a sensor element 31 that detects odorants, a constant current source 32 (power source), and a voltmeter 33 (measuring device).
  • FIG. 1 shows an example in which a constant current source 32 and a voltmeter 33 are arranged on the lead wire W.
  • the constant current source 32 is a power source for feeding power to the sensor element 31.
  • the constant current source 32 supplies a constant current (for example, 1 mA DC current) to the sensor element 31 via a lead wire.
  • the voltmeter 33 measures the potential difference generated between the first metal wiring 313A and the second metal wiring 313B when the constant current supplied from the constant current source 32 is supplied to the odorant receiving layer 315.
  • the odor sensor 30 may further include a housing 34, although this is not an essential configuration.
  • the housing 34 is a container that can contain air containing an odorant. When the housing 34 is provided, the sensor element 31 is installed within the housing 34.
  • the housing 34 includes an inlet 341 for introducing odorants and an outlet 342 for discharging air containing odorants.
  • the introduction of the odorant may be carried out by inserting a filter paper P soaked with the odorant into the housing 34 through the introduction port 341, or by introducing air containing the odorant into the housing 34 through the introduction port 341. It may also be done by inserting.
  • the housing 34 is a container for containing air containing an odorant at a predetermined concentration (for example, 200 ppm) or more.
  • an airflow generation fan 35 may be disposed at the exhaust port 342 of the housing 34.
  • the airflow generation fan 35 is used to generate an airflow inside the housing 34 and to discharge gas inside the housing 34 to the outside of the housing 34 from the exhaust port 342 .
  • the odor sensor 30 may include a constant voltage source (power supply) (not shown) as an alternative to the constant current source 32 and an ammeter (measuring device) (not shown) as an alternative to the voltmeter 33.
  • the constant voltage source functions as a power source for supplying power to the sensor element 31, and applies a constant voltage to the sensor element 31 via the lead wire.
  • the ammeter measures the value of the current flowing between the first metal wiring 313A and the second metal wiring 313B when a constant voltage is applied to the odorant receiving layer 315.
  • the odor sensor 30 outputs a measured value indicating the change in electrical conductivity of the sensor element 31 over time before and after the odorant is adsorbed to the sensor element 31. This makes it possible to detect and identify various odorants.
  • Odor measuring device 100 The above-described odor sensor 30 can output changes over time in the electrical conductivity of the sensor element 31 for each odorant when various odorants are adsorbed to the sensor element 31. If this odor sensor 30 is applied, changes in electrical conductivity of the sensor element 31 over time when odorant A is adsorbed to the sensor element 31, and changes over time in the electrical conductivity of the sensor element 31 when odorant B is adsorbed to the sensor element 31 can be detected. It can be compared with the change in electrical conductivity of the element 31 over time. Based on such comparison results, it is possible to realize the odor measurement device 100 that can estimate the odorant adsorbed to the sensor element 31.
  • the odor measurement device 100 can estimate odorants with high accuracy by using the estimation model 22 generated by machine learning.
  • the estimation model 22 is a learning model that includes a combination of a measurement value measured when each of a plurality of odorants is adsorbed to at least one sensor element 31 and identification information specific to the odorant that gave the measurement value. can be generated using data for
  • the odor measuring device 100 is a device that estimates the odorant adsorbed to the sensor element 31 from the change in electrical conductivity that occurs in the sensor element 31 to which the above-described resin composition is applied.
  • FIG. 1 is a block diagram showing an example of the configuration of an odor measuring device 100.
  • the odor measuring device 100 includes an estimating device 10 and an odor sensor 30.
  • the estimating device 10 is a device that estimates the odorant detected by the odor sensor 30.
  • the estimation device 10 is, for example, a computer, and includes a CPU and memory (not shown).
  • the estimation device 10 is communicably connected to the odor sensor 30. Specifically, the estimation device 10 estimates the odorant by analyzing the measured value obtained from the odor sensor 30. The configuration of the estimation device 10 will be explained later.
  • the estimation model 22 is a combination of a measurement value measured by a voltmeter 33 when each of a plurality of odorants is adsorbed to at least one sensor element, and identification information specific to the odorant that gave the measurement value. Generated by machine learning using training data including .
  • the identification information unique to the odorant may be, for example, the name, CAS number, chemical formula, etc. of the odorant.
  • FIG. 4 is a functional block diagram showing an example of the configuration of the odor measuring device 100.
  • members having the same functions as the members described in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.
  • the estimation device 10 includes an input section 15, a control section 1, and a storage section 2.
  • the input unit 15 is for receiving various input operations from the user, and may be, for example, a keyboard, a mouse, a touch panel, etc.
  • the control unit 1 includes a measured value acquisition unit 11 (acquisition unit), a change pattern analysis unit 12 (analysis unit), a learning control unit 13, and an estimated model generation unit 14.
  • the measured value acquisition unit 11 acquires the measured value from the voltmeter 33. Furthermore, the measured value acquisition unit 11 uses the acquired measured values to calculate values (for example, resistance value, impedance, etc.) indicating the electrical conductivity of the sensor element 31. In the present disclosure, it is preferable that the measured value acquisition unit 11 calculates a change in the resistance value of the odorant receiving layer.
  • the measured value acquisition unit 11 may acquire measured values from the voltmeter 33 at predetermined time intervals (for example, at 0.1 second intervals).
  • the change pattern analysis unit 12 analyzes changes in electrical conductivity of at least one sensor element 31 over time.
  • the change pattern analysis unit 12 uses the resistance value calculated by the measured value acquisition unit 11 to calculate a value indicating the amount of change in electrical conductivity of the sensor element 31 due to adsorption of the odorant.
  • the change pattern analysis unit 12 generates data indicating a change pattern indicating a temporal change in the calculated amount of change in electrical conductivity.
  • the change pattern analysis unit 12 associates the generated change pattern with identification information specific to the known odorant and stores it in the change pattern database 21 (learning data). May be stored.
  • the learning control unit 13 reads the change pattern database 21 from the storage unit 2 and controls the generation of the estimation model 22 by machine learning.
  • the change pattern database 21 includes a combination of measurement values measured when a plurality of odorants are adsorbed onto the sensor element 31 and identification information unique to the known odorant that gave the measurement values. It is a database.
  • the learning control unit 13 inputs the change pattern read from the change pattern database 21 to the estimated model generation unit 14. Further, the learning control unit 13 compares the identification information of the odorant corresponding to the change pattern input to the estimation model generation unit 14 and the estimation result output from the estimation model generation unit 14, and makes corrections according to the comparison result.
  • the instruction is output to the estimated model generation unit 14.
  • the estimated model generation unit 14 generates the estimated model 22 by a machine learning algorithm using change patterns stored in the change pattern database 21.
  • the estimated model generation unit 14 may be configured to generate the estimated model 22 using a known supervised machine learning algorithm. Examples of machine learning algorithms that can be applied to the estimated model generation unit 14 include the k-nearest neighbor method, logistic regression, support vector machine, random forest, and neural network.
  • FIG. 5 is a flowchart illustrating an example of a process flow in which the estimation device 10 generates the estimation model 22.
  • the measured value acquisition unit 11 acquires the voltage value V0 measured at the odor sensor 30 before inserting the filter paper P impregnated with the odorant into the housing 34, and calculates the resistance value R0 (step S11).
  • the resistance value R0 is preferably 200 to 10,000 ⁇ , more preferably 250 to 3,000 ⁇ , and most preferably 300 to 1,000 ⁇ .
  • the input unit 15 receives input such as the name of a known odorant substance dipped into the filter paper P inserted into the housing 34 (step S12).
  • the process of step S12 may be performed before step S11.
  • the measured value acquisition unit 11 acquires the voltage value V measured at the odor sensor 30 immediately after inserting the filter paper P impregnated with a known odorant into the housing 34, and calculates the resistance value R. (Step S13).
  • the change pattern analysis unit 12 calculates R/R0 using the resistance value R0 and the resistance value R (step S14).
  • R/R0 is a value indicating the amount of change in electrical conductivity of the sensor element 31 due to adsorption of a known odorant. Note that the change pattern analysis unit 12 may calculate R-R0 instead of R/R0.
  • the change pattern analysis unit 12 stores the change pattern of R/R0 over time in the change pattern database 21 in association with the input name of the known odorant (step S15).
  • step S16 If no change pattern is stored for the predetermined type of existing odorant (NO in step S16), that is, if the data used for machine learning is still insufficient, the process returns to step S11.
  • the learning control unit 13 reads the change pattern for the known odorant stored in the change pattern database 21. , is input to the estimated model generation section 14.
  • the estimated model generation unit 14 generates the estimated model 22 by a machine learning algorithm using the change patterns stored in the change pattern database 21 (step S17).
  • the estimated model generation unit 14 stores the estimated model 22 generated by predetermined machine learning in the storage unit 2 (step S18).
  • the estimation device 10 generates the estimation model 22, but the present invention is not limited to this.
  • a computer that is external to the estimation device 10 and has the same functions as the learning control unit 13 and the estimation model generation unit 14 is provided with the same data as the change pattern database 21 to create the estimation model 22. You can.
  • FIG. 6 is a functional block diagram showing an example of the configuration of the odor measuring device 100a.
  • members having the same functions as those described in FIGS. 1 and 4 are denoted by the same reference numerals, and the description thereof will not be repeated.
  • the estimation device 10a includes a control section 1a, a storage section 2a, and an output section 18.
  • FIG. 6 shows a configuration example when the estimation device 10 shown in FIG. 4 is used for estimation processing of odorants. That is, the estimation device 10 shown in FIG. 4 and the estimation device 10a shown in FIG. 6 may be computers having the same hardware configuration.
  • the output unit 18 is for presenting the estimation results to the user, and may be, for example, a display, a speaker, a lamp, etc.
  • the control unit 1a includes a measured value acquisition unit 11 (acquisition unit), a change pattern analysis unit 12 (analysis unit), an estimation unit 16, and an output control unit 17.
  • the estimation unit 16 uses the estimation model 22 to estimate the odorant from the analysis result of the measurement value obtained from the odor sensor 30.
  • the output control unit 17 controls the output unit 18 to output the estimation result.
  • FIG. 7 is a flowchart showing an example of a process flow in which the estimating device 10a estimates an odorant.
  • the measured value acquisition unit 11 acquires the voltage value V0 measured at the odor sensor 30 before inserting the filter paper P impregnated with the odorant into the housing 34, and calculates the resistance value R0 (step S1). .
  • the measured value acquisition unit 11 acquires the voltage value V measured at the odor sensor 30 immediately after inserting the filter paper P impregnated with an unknown (i.e., estimation target) odorant into the housing 34. Then, the resistance value R is calculated (step S2).
  • the change pattern analysis unit 12 calculates R/R0 using the resistance value R0 and the resistance value R (step S3).
  • the estimation unit 16 estimates the unknown odorant from the change pattern of R/R0 over time based on the estimation model 22 (step S4).
  • the output control unit 17 controls the output unit and outputs the estimation result (step S5).
  • the odor sensor 30 includes one sensor element 31, but the odor sensor 30 may include two or more sensor elements 31.
  • the odor sensor 30b may include sensor elements 31 and 31b in which the resin compositions used for the odor substance receiving layer 315 are different from each other. This will be explained using FIG. 8.
  • FIG. 8 is a block diagram showing an example of the configuration of an odor measuring device 100b according to another embodiment of the present invention. For convenience of explanation, members having the same functions as the members described in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.
  • the odor measuring device 100b shown in FIG. 8 includes odor sensors 30, 30b and an estimation device 10b.
  • the odor sensor 30b includes a sensor element 31 and a sensor element 31b, and the odorant receptor layer 315 of the sensor element 31 and the odorant receptor layer 315b of the sensor element 31b use different resin compositions. You can.
  • the estimation device 10b may be a computer having the same configuration as the estimation devices 10 and 10a.
  • the estimation device 10b calculates a first measurement value measured by the voltmeter 33 when a constant current is supplied from the constant current source 32 to the sensor element 31, and a first measurement value when a constant current is supplied from the constant current source 32b to the sensor element 31b. and the second measurement value measured by the voltmeter 33b are respectively acquired and analyzed.
  • the odor measuring device 100b can simultaneously perform estimation for a plurality of odorants.
  • a sensor element whose odorant-receiving layer does not contain the surfactant (B) may be used in combination.
  • a first change pattern indicating a change in the electrical conductivity of the sensor element 31 and a second change pattern indicating a change in the electrical conductivity of the sensor element 31b can be obtained for each known odorant. It is possible to obtain The estimated model 22 may be generated by machine learning using both the first change pattern and the second change pattern. Since the odor measurement device 100b estimates odorants using the estimation model 22 generated in this way, it is possible to identify each odorant more precisely.
  • the odor measuring device 100b of Embodiment 2 had a mode in which a filter paper P impregnated with an odorant was introduced into a casing 34 having two sensor elements (namely, sensor elements 31 and 31b) inside. With this configuration, it is not possible to control the timing at which the odorant reaches the sensor elements 31 and 31b, or to adjust the concentration of the odorant. Therefore, the odor measuring device 100c of the present embodiment includes a sensor chamber 60 including a plurality of sensor elements (hereinafter referred to as sensor element group 31A), a target sample containing an odorant, and a sensor chamber 60 including a plurality of sensor elements (hereinafter referred to as a sensor element group 31A). A target sample receiving section 50 containing gas is separately provided.
  • each sensor element included in the sensor element group 31A may be simply referred to as a "sensor element”.
  • the configurations of the target sample receiving section 50 and the sensor chamber 60 correspond to the odor sensor 30 and the odor sensor 31 of the first and second embodiments.
  • the odor measurement device 100c of this embodiment employs a configuration in which the gas containing the odorant inside the target sample receiving section 50 is pushed out toward the sensor chamber 60 using another gas (carrier gas).
  • the gas in the target sample receiving unit 50 when the target sample is introduced into the target sample receiving unit 50 (that is, the gas containing the odorant to be detected) is referred to as a first gas.
  • a carrier gas for pushing the first gas toward the sensor chamber 60 is referred to as a second gas.
  • FIG. 9 is a schematic diagram of the odor measuring device 100c.
  • the odor measurement device 100c includes a target sample receiving section 50, a sensor chamber 60, a gas supply section 80, and an estimation device 10b. Further, the odor measurement device 100c may further include an adjustment section 51.
  • FIG. 9 shows, as an example, an example in which gas flows from the gas supply section 80 to the target sample receiving section 50 and then to the sensor chamber 60 in this order.
  • the gas supply section 80, the target sample receiving section 50, and the sensor chamber 60 are each connected by a tube.
  • the target sample receiving section 50 is capable of receiving a target sample containing an odorant therein and retaining the first gas.
  • the target sample receiving section 50 includes a first port 501 through which a second gas entering the inside passes, and a second port 502 through which the first gas and second gas exiting from the inside pass.
  • the target sample receiving section 50 may include a sample introduction port 503, which will be described later.
  • FIG. 9 shows a mode in which the first port 501 is installed at the top of the page of the target sample receiving section 50 and the second port 502 is installed at the bottom of the page of the target sample receiving section 50
  • the present invention is not limited to this.
  • the positions of the first port 501 and the second port 502 can be set as appropriate depending on the type and combination of odor components contained in the first gas.
  • the position of the first port 501 and the position of the second port 502 are changed depending on whether the weight per unit volume (i.e., specific gravity) of the odor component contained in the first gas is heavier or lighter than the second gas. You may.
  • the target sample receiving unit 50 may include an airflow generation fan 35 therein, as in FIG. 8 .
  • the target sample receiving section 50 includes a sample inlet 503 for receiving a liquid or solid target sample.
  • FIG. 9 shows an embodiment in which filter paper P impregnated with an odorant is introduced as the target sample, as in FIG. 8.
  • the target sample receiving section 50 may include an installation section (not shown) for installing the target sample.
  • the installation part When the target sample is a liquid, the installation part may be a cup for holding the liquid, and when the target sample is a solid, the installation part may be a petri dish in which the solid is left still. .
  • the target sample may be introduced into the target sample receiving unit 50 in a gaseous state as a first gas from the sample introduction port 503 .
  • the target sample receiving section 50 can receive a liquid or solid target sample, it is possible to adjust the concentration of the odorant in the first gas. For example, even if the odorant is the same, it is easy to adjust the concentration of the odorant in the first gas.
  • the inner surface of the target sample receiving section 50 may be provided with a material that is inert to odorants.
  • a material that is inert to odorants is a material that does not significantly change the concentration of each odorant contained in the gas sent to the sensor chamber 60.
  • a material that is inert to odorants is a material that does not easily absorb or dissolve odorants.
  • materials that are inert to odorants include glass, metal, and resin. When metal is used, stainless steel (SUS) is preferable, and when resin is used, fluororesin, polypropylene (PP), polyethylene (PE), ABS resin, and polyethylene terephthalate (PET) are preferable.
  • the inner surface of the target sample receiving section 50 is made of a material that adsorbs odorants contained in the first gas, there is a risk that the odorants will be adsorbed to each part and affect subsequent measurements.
  • the inner surface of the target sample receiving section 50 is made of a material that is inert to odorants, the material of the inner surface may react with the odorant contained in the first gas, or the inner surface may have an odor. The risk of adsorption of substances is reduced. Therefore, the possibility that the odorant contained in the first gas supplied to the sensor chamber 60 changes while it is contained in the target sample receiving section 50 or that the concentration of the odorant becomes diluted is reduced.
  • the odor measurement device 100c includes the target sample receiving unit 50, so that the concentration of the first gas can be determined in the target sample receiving unit 50 before sending the first gas into the sensor chamber 60. can be made uniform. Moreover, the odor measurement device 100c can push out the first gas into the sensor chamber 60 at a constant flow rate by including the target sample receiving section 50. Thereby, the odor measuring device 100c can send the first gas to the sensor chamber 60 under the same conditions each time even when repeatedly performing measurements, so that stable measurements can be repeatedly performed.
  • the volume within the target sample receiving section 50 is preferably 1 to 100 times the volume within the sensor chamber 60.
  • the volume within the target sample receiving section 50 is preferably larger than the volume within the sensor chamber 60.
  • the volume within the target sample receiving section 50 is more preferably 2 times or more and 80 times or less the volume within the sensor chamber 60, and the volume within the target sample receiving section 50 is at least 4 times the volume within the sensor chamber 60. More preferably, it is 60 times or less. Since the volume inside the target sample receiving section 50 is one or more times larger than the volume inside the sensor chamber 60, the concentration of the odorant in the sensor chamber 60 can be appropriately adjusted, and the sensor included in the sensor chamber 60 can be adjusted appropriately. Measurement results are stably output. In addition, since the volume inside the target sample receiving section 50 is 100 times or less the volume inside the sensor chamber 60, the measurement results by the sensor can be stably output, and the size of the odor measurement device 100c can be made compact. can be accommodated in
  • the volume within the target sample receiving section 50 is less than one time the volume within the sensor chamber 60, the odorant generated in the target sample receiving section 50 will be diluted within the sensor chamber 60, and the measurement sensitivity of the sensor will decrease. There is a possibility that Furthermore, if the volume within the target sample receiving section 50 is larger than 100 times the volume within the sensor chamber 60, the volume of the target sample receiving section 50 is too large, and the overall size of the odor measuring device 100c may increase. There is.
  • FIG. 9 shows an example in which the volume inside the target sample receiving section 50 is eight times the volume inside the sensor chamber 60.
  • the inner surface of the tube body 93 is made of a material that adsorbs odorants contained in the first gas, there is a risk that the odorants will be adsorbed to various parts and affect subsequent measurements. Therefore, the inner surface of the tube body 93 that guides the first gas from the target sample receiving section 50 to the sensor chamber 60 is made of a material that is inert to odorants, similar to the inner surface of the target sample receiving section 50. It is preferable that Examples of the material that is inert to the first gas include glass, metal, and resin. When metal is used, stainless steel (SUS) is preferable, and when resin is used, fluororesin, polypropylene (PP), polyethylene (PE), ABS resin, and polyethylene terephthalate (PET) are preferable.
  • SUS stainless steel
  • resin fluororesin, polypropylene (PP), polyethylene (PE), ABS resin, and polyethylene terephthalate (PET) are preferable.
  • the target sample receiving section 50 may be configured to be detachable from the tubular bodies 92 and 93. As described above, since the target sample receiving section 50 is removable, it is possible to install a new target sample receiving section 50 without purging the inside of the target sample receiving section 50 when the previous measurement is completed and the next measurement is to be performed. It can be replaced. According to this, the odor measuring device 100c can perform multiple measurements in a short time.
  • the target sample receiving section 50 is removable, the target sample receiving section 50 into which the target sample is introduced can be maintained at a desired temperature by using a heat preservation room separate from the odor measuring device 100c. . According to this, for example, even if the odor measuring device 100c cannot be provided with the adjusting section 51 described later, the odor measuring device 100c can adjust the temperature of the target sample receiving section 50.
  • the adjustment unit 51 adjusts at least one of the temperature and humidity of the first gas contained within the target sample receiving unit 50.
  • the adjustment unit 51 adjusts the temperature
  • the adjustment unit 51 is, for example, a heater or a cooler.
  • the adjustment section 51 may be configured to cover the entire target sample receiving section 50.
  • the adjustment unit 51 adjusts the humidity
  • the adjustment unit 51 is, for example, a humidifier or a dehumidifier.
  • the adjustment unit 51 may adjust at least one of the temperature and humidity for each type of first gas, or may change at least one of the temperature and humidity at predetermined intervals during measurement of the same first gas. .
  • the odor measuring device 100c can adjust, for example, the type of the first gas (gas weight, volatility, etc.).
  • the first gas can be sent to the sensor chamber 60 using conditions according to the following.
  • the odor measuring device 100c can send the first gas with a stable concentration to the sensor chamber 60, and the accuracy of measurement is improved.
  • the gas supply unit 80 is connected to the first port 501 of the target sample receiving unit 50 and supplies the first gas from inside the target sample receiving unit 50 to the sensor by sending the second gas into the target sample receiving unit 50. It is sent towards the chamber 60.
  • a valve 81 may be provided between the gas supply section 80 and the target sample receiving section 50. By opening and closing the valve 81, the start and stop of gas supply from the gas supply unit 80 may be adjusted.
  • the gas supply section 80 pushes the gas from the first port 501 side of the target sample receiving section 50 to send the first gas into the sensor chamber 60, so the pressure inside the sensor chamber 60 is positive. Therefore, the odor measuring device 100c can obtain stable measurement results. Furthermore, since the second gas can be sent by opening and closing the valve 81, the odor measurement device 100c can send the first gas from the target sample receiving section 50 toward the sensor chamber 60 at any timing. According to this, the odor measurement device 100c can improve the reproducibility of the waveform output by each sensor element when repeatedly measuring the odorant contained in the first gas using the sensor element group 31A. .
  • the second gas may be an inert gas or air.
  • examples of the inert gas include argon and nitrogen.
  • the gas supply unit 80 may be a gas cylinder.
  • the gas supply section 80 may be a pump.
  • the odor measurement device 100c in order to remove components that react with the first gas included in the target sample receiving section 50, the odor measurement device 100c includes an activated carbon filter, for example, on the first port 501 side of the target sample receiving section 50. You may be prepared.
  • the odor measurement device 100c may further include a mass flow controller on the first port 501 side of the target sample receiving section 50, more specifically between the valve 81 and the gas supply section 80.
  • the odor measuring device 100c employing this configuration can send the first gas from the target sample receiving section 50 to the sensor chamber 60 at a constant flow rate, and the sensor elements of the sensor element group 31A can stably output an output. can.
  • the estimation device 10b has the same functions as the estimation device 10b of the second embodiment.
  • the estimation device 10b supplies a constant current to the sensor element 31c to determine the voltage. Measurements taken by the meter may be further acquired and analyzed.
  • the estimation device 10b may display the measured value itself, a waveform obtained by plotting the measured value, and the estimation result of the unknown odorant based on the estimation model.
  • the estimating device 10b may display numerical values and graphs indicating changes in the abundance ratio of each odorant for a gas containing a plurality of odorants.
  • the sensor chamber 60 is a space that stores the sensor element group 31A for measuring odorants.
  • the sensor chamber 60 is connected to the second port 502 of the target sample receiving section 50.
  • the sensor chamber 60 includes a gas supply port 601 and a gas discharge port 602, and the second port 502 of the target sample receiving section 50 and the gas supply port 601 are connected.
  • the sensor chamber 60 has a plurality of passages in which a plurality of sensor elements capable of outputting measurement results according to odorants contained in the gas are arranged. According to this, it is possible to shorten the time required from when gas starts to be sent into the sensor chamber until measurement results are stably output from all of the plurality of sensor elements. Further, since the plurality of sensor elements are finely divided by the plurality of passages, the variation in airflow turbulence for each measurement is reduced, and measurement accuracy is increased.
  • FIG. 10 is a top view showing a configuration example of the sensor chamber 60.
  • FIG. 10 shows a sensor chamber 60 with four passages (ie passage 61, passage 62, passage 63, passage 64).
  • the first gas can be supplied from the target sample receiving section 50 to each of the passages 61 to 64.
  • a plurality of sensor elements that output different measurement results for each odorant may be arranged in each of the plurality of passages (passages 61 to 64).
  • the plurality of sensor elements that output different measurement results for each odorant may be sensor elements each having a different resin composition as a substance-receiving layer. That is, the plurality of sensor elements disposed in one passage may have different sensitivities and detection specificities to odorants.
  • the sensor chamber 60 in FIG. 10 includes the sensor element 31 described in Embodiment 2 (FIG. 8) and the sensor element 31b in the passage 61, but is not limited thereto.
  • the sensor element 31 and the sensor element 31b can output measurement results according to the same odorant contained in the first gas, but the measurement results output by each sensor element may be different. Further, the sensor element 31 and the sensor element 31b may each be capable of outputting measurement results corresponding to different odorants.
  • the measurement result according to the odorant is, for example, the measurement result according to the concentration of the odorant.
  • a plurality of sensor elements capable of outputting measurement results according to the odorant contained in the first gas are arranged in the passage 62.
  • a plurality of sensor elements (such as sensor elements 31e and 31f) capable of outputting measurement results according to the odorant contained in the first gas are arranged in the passage 63.
  • a plurality of sensor elements (sensor elements 31g and 31h, etc.) capable of outputting measurement results according to the odorant contained in the first gas are arranged in the passage 64.
  • These plurality of sensor elements may be sensor elements in which the resin compositions used for the substance receiving layer 315 are different from each other.
  • some of the sensor elements 31 to 31h may have the same detection specificity for odor components. That is, for example, when the sensor element group 31A arranged in the sensor chamber 60 includes n sensor elements, m types (m ⁇ n) of sensor elements may be arranged. Furthermore, some of the plurality of sensor elements arranged in the same passage may have the same detection specificity for odor components.
  • the sensor chamber 60 has passages 61 to 64, and a plurality of sensor elements may be arranged in each of the passages 61 to 64.
  • a plurality of sensor elements arranged in each of the passages 61 to 64 constitute the sensor element group 31A.
  • four sensor elements may be arranged in the passage 61 and ten sensor elements may be arranged in the passage 62.
  • the difference in the number of sensor elements arranged in each of the passages 61 to 64 is preferably 10 or less.
  • the difference in the number of sensor elements arranged in each of the passages is 10 or less, it is possible to reduce variations in the timing at which odorants are detected by the sensor elements, which may occur depending on the passage.
  • the difference in the number of sensor elements arranged in each of the passages 61 to 4 is 10 or less, the odor measuring device 100c can perform odor measurement in a short time.
  • Each of the passages is connected to a tube 93 for supplying the first gas into the interior space of the sensor chamber 60.
  • passage 61, passage 62, passage 63, and passage 64 are all connected to one tube 93.
  • each passage perpendicular to the supply direction in which the first gas is supplied from the tube body 93 may be smaller than the cross-sectional area perpendicular to the axial direction of the tube body 93. According to this, the first gas supplied from the target sample receiving section 50 can pass through each passage at a faster flow rate than when passing through the tube body 93. According to this, the time lag in measurement between the sensor element disposed close to the gas supply port 601 and the sensor element disposed close to the gas discharge port 602 is minimized, and the odor measuring device 100c has a high accuracy. Can perform high measurements.
  • the gas in the internal space of each passage be replaced within 1 second after the supply of the first gas is started.
  • the supply of the first gas starts when the first gas is supplied to the gas supply port 601.
  • the replacement of gas in the internal space indicates that the first gas supplied from the gas supply port 601 has reached the gas discharge port 602 .
  • the gas in the internal space of each passage is replaced within 1 second after the supply of the first gas and the second gas is started, thereby reducing the timing at which the first gas contacts each sensor element. becomes small, and the odor measuring device 100c can stably perform measurements.
  • the odor measuring device 100c can perform odor measurement in a short time by replacing the gas in the internal space of each passage within 1 second after the supply of the first gas and the second gas is started. I can do it.
  • the flow rate of the first gas passing through the internal space of each passage is preferably 0.1 cm per second or more and 100 cm per second or less. Moreover, it is more preferable that the flow velocity of the first gas passing through the internal space of each passage is 1 cm/sec or more and 50 cm/sec or less.
  • the flow rate of the first gas passing through the internal space of each passage may be adjusted, for example, by the degree of pressurization of the gas supply section 80, which will be described later, or by a mass flow controller, which will be described later.
  • the timing shift in which the first gas touches all the sensor elements of the sensor element group 31A becomes large.
  • the sensor elements of the sensor element group 31A vibrate due to the influence of the airflow, and the odor measuring device 100c cannot perform odor measurement stably.
  • the flow rate of the first gas passing through the internal space of each passage is too fast, the adsorption of the odorant contained in the first gas to the sensor elements of the sensor element group 31A is inhibited, and the odor measuring device 100c is not accurate. Odor measurement cannot be performed.
  • the flow rate of the first gas passing through the internal space of each passage is too fast, there is a risk that the first gas in the target sample receiving section 50 will be consumed before the odor measuring device 100c can perform stable measurements. be.
  • the odor measuring device 100c can perform odor measurement stably because the flow velocity of the first gas passing through the internal space of each passage is 0.1 cm/sec or more and 100 cm/sec or less.
  • Each of the passages may be arranged in parallel.
  • passages 61 to 64 are arranged in parallel to each other. In this way, by arranging the passages in parallel, the odor measuring device 100c can secure a space for arranging the passages, and the size of the entire apparatus can be made compact.
  • FIG. 11 is a cross-sectional view schematically showing a cross section taken along line BB in FIG. 10.
  • the passage 61 in FIG. 11 includes a side wall 610, a side wall 611 opposite to the side wall 610, a ceiling 621, and a substrate 630 as a bottom surface.
  • FIG. 11 shows the sensor chamber 60 in which the cross-sectional shape of the passage 61 is square
  • the cross-sectional shape of the passage 61 is not particularly limited.
  • the cross-sectional shape of the passage 61 may be an arc or a triangle.
  • the passage 61 and the passage 62 are completely partitioned by the side wall 611 and the side wall 612, and the passage 61 and the passage 62 may have a configuration in which gas cannot enter or exit.
  • FIG. 11 as an example, there is a configuration in which there are two side walls (side wall 611 and side wall 612) between the passage 61 and the passage 62, but the present invention is not limited to this.
  • the passage 61 and the passage 62 may be partitioned by one side wall.
  • the entire sensor chamber 60 in FIG. 11 is integrally formed, the structure is not limited to this.
  • the entire sensor chamber 60 may be formed integrally, or each of the plurality of passages may be formed separately.
  • the sensor chamber 60 in FIG. 11 includes, for example, the sensor element 31 on the substrate 630, which is the bottom surface of the passage 61
  • the arrangement of the sensor element 31 is not limited to this.
  • the sensor element 31 may be arranged, for example, in consideration of the type of target odorant that the sensor element 31 can specifically detect.
  • the sensor element 31 may be placed on any of the side wall 610, the side wall 611, and the ceiling 621. Specifically, when the odorant is lighter than air, a configuration in which the sensor element 31 is arranged on the ceiling 621 can be mentioned. According to this, by arranging the sensor element 31 at a location corresponding to the type of odorant, the odor measuring device 100c can perform highly accurate measurement.
  • the sensor chamber 60 includes each sensor element on a substrate 630, and further includes a connector for connecting the substrate 630 and each sensor element between the substrate 630 and each sensor element. Good too.
  • Each sensor element may be independently connected to the substrate 630.
  • each sensor element is connected to the board 630 via a connector (for example, an IC pin). According to this, for example, even if a problem occurs in only one sensor element included in the sensor chamber 60, the user can replace only the one sensor element with the problem.
  • a suitable combination of sensor elements to be used and a suitable arrangement of the sensor elements differ depending on the type of odorant. Since each sensor element is independently connected to the substrate 630 and is removable, the odor measuring device 100c can easily combine and arrange sensor elements suitable for different odorants. subject to change.
  • the sensor element may be placed at two or more locations: the substrate 630, the side wall 610, the side wall 611, and the ceiling 621. According to this, the length of the passage 61 can be made shorter than when the sensor element is provided on only one side, so that the size of the odor measuring device 100c becomes compact. Furthermore, since a plurality of sensor elements can be provided near the gas supply port 601, the odor measurement device 100c can perform odor measurement in a shorter time than when the sensor elements are arranged side by side facing the gas discharge port 602. I can do it.
  • the sensor chamber 60 in FIG. 11 includes four passages, and one sensor element is arranged in each passage in the cross-sectional direction, but the number of passages and the number of sensor elements in the cross-sectional direction are not limited to this.
  • FIG. 12 shows a cross-sectional view of the sensor chamber 60a.
  • the sensor chamber 60a includes, for example, two passages (a passage 61a and a passage 62a). Moreover, two sensors (namely, the sensor element 31 and the sensor element 31c) are provided in the cross-sectional direction of the passage 61a.
  • the sensor elements are not only arranged on the substrate 630, but also in two or more places: the substrate 630, the side wall 610a, the side wall 613a, and the ceiling 621a. Good too.
  • the arrangement of sensor elements in the passage 62a is also similar to that in the passage 61a.
  • the material for the inner surface of the sensor chamber 60 is preferably a material that is inert to odorants, similarly to the target sample receiving section 50.
  • inert materials include glass, metal, and resin.
  • metal stainless steel (SUS) is preferable, and when resin is retransmitted, fluororesin, polypropylene (PP), polyethylene (PE), ABS resin, and polyethylene terephthalate (PET) are preferable.
  • SUS stainless steel
  • PET polyethylene terephthalate
  • the material of the inner surface of the sensor chamber 60 is a material that adsorbs the odorant contained in the first gas, the amount of change in the output from the sensor element in subsequent measurements will be small due to the adsorption of the odorant to the sensor chamber. Therefore, there is a possibility that the odor measuring device 100c may not be able to perform accurate measurements.
  • the sensor elements of the sensor element group 31A may include a thin film.
  • the odorant-receiving layer 315 in FIGS. 2 and 3 is a thin film.
  • a vacuum pump is installed on the gas outlet 602 side of the sensor chamber 60, and the gas is drawn using the vacuum pump.
  • a mode can be considered in which the odorant is sent into the sensor chamber 60 from the gas supply port 601 side.
  • the sensor elements 31 and 31b include a thin film, if the inside of the sensor chamber 60 is under negative pressure, the thin film may expand and the sensor elements 31 and 31b may not be able to output stable measurement results.
  • the first gas is fed into the sensor chamber 60 by the gas supply unit 80 pushing the gas from the sensor chamber 60 and the first port 501 side of the target sample receiving unit 50.
  • the pressure within sensor chamber 60 is positive. Therefore, the odor measuring device 100c can obtain stable measurement results even if the sensor elements of the sensor element group 31A are provided with thin films.
  • the thin film of the sensor element of the sensor element group 31A may include a conductive carbon material, a resin composition, and a surfactant. Specific aspects of the sensor element will be described later.
  • the odor measuring device 100b of Embodiment 2 was equipped with two sensor elements 31 and 31b.
  • the shapes, areas, and thicknesses of the odorant-receiving layers 315, 315b of the sensor elements 31, 31b are not particularly defined. , and thickness preferably have little variation. This is because if there are variations in the shape, area, and thickness of the odorant receiving layers 315, 315b of the plurality of sensor elements, there is a possibility that the odorant cannot be measured stably.
  • the odorant-receiving layer will be collectively referred to as simply the "odorant-receiving layer.”
  • the sensor elements 31 and 31b of Embodiment 2 each had one first metal wiring 313A and one second metal wiring 313B as electrodes, and the metal wirings were arranged in parallel to each other (see FIG. 2). Furthermore, the sensor elements 31 and 31b of the second embodiment were provided with an odorant-receiving layer 315 so as to fill the region sandwiched between the first metal wiring 313A and the second metal wiring 313B.
  • the sensor element group 31A includes, in addition to the sensor elements 31 and 31b, a sensor element configured with a metal wiring (i.e., electrode) arrangement and an odorant receptor layer shape that are different from those of the sensor elements 31 and 31b. But that's fine. Note that in Embodiments 1 and 2, what was referred to as the metal wiring 313 will also be referred to as the electrode 313 hereinafter.
  • the sensor element 31 includes an electrode 313 disposed on a substrate 311 and an odorant receiving layer 315 formed on the electrode 313.
  • the shape of the odorant receptor layer 315 is circular or strip-shaped, and when the shape of the odorant receptor layer 315 is circular, the diameter R of the circle is 0.2 mm or more and 10 mm or less, and the odorant receptor layer 315 When the shape is a band, the width W in the short direction of the band may be 0.2 mm or more and 10 mm or less.
  • the band-like shape refers to a surface shape that mainly has a width in the short direction and a length in the long direction.
  • the diameter R of the circle is preferably 1.5 mm or more and 2.7 mm or less, and when the shape of the odorant receptor layer 315 is a band, the shortness of the band is It is preferable that the width W in the direction is 1.5 mm or more and 2.7 mm.
  • the odor measuring device 100c can detect odorants. It is possible to stably perform measurements according to the conditions.
  • the diameter R of the odorant-receiving layer 315 is less than 0.2 mm, or when the width W is less than 0.2 mm, the area for receiving the odorant becomes small, and the odor measuring device 100c performs measurement stably. I can't.
  • the diameter R of the odorant receiving layer 315 is larger than 10 mm, or when the width W is larger than 10 mm, the area of one sensor element becomes large, and the size of the sensor chamber 60 including the sensor element group 31A becomes large.
  • the size of the sensor chamber 60 increases, it becomes difficult to uniformly diffuse the first gas containing the odorant into the sensor chamber 60, and therefore the odor measurement device 100c cannot stably perform measurements.
  • FIG. 13 is a top view showing an example of the configuration of one sensor element 31c included in the sensor element group 31A.
  • the sensor element 31c includes an electrode 313 (a first electrode 313C, a second electrode 313D) arranged on a substrate 311, and a circular odorant receiving layer 315c formed on the electrode 313.
  • the diameter R of the odorant receiving layer 315c is 0.2 mm or more and 10 mm or less.
  • the shape of the odorant receiving layer 315c included in the sensor element 31c is, for example, an ellipse, but the shape is not limited to this.
  • the average of the short axis and the long axis may be 0.2 mm or more and 10 mm or less.
  • the shape of the odorant receiving layer 315c may be a perfect circle.
  • FIG. 14 is a top view showing an example of the configuration of one sensor element 31d included in the sensor element group 31A.
  • the sensor element 31d includes an electrode 313 (a first electrode 313C, a second electrode 313D) arranged on a substrate 311, and a band-shaped odorant receiving layer 315d formed on the electrode 313.
  • the width of the odorant receiving layer 315d in the short direction is 0.2 mm or more and 10 mm or less.
  • the sensor element group 31A may include a plurality of sensor elements other than the sensor elements 31, 31b to 31d.
  • the sensor element group 31A includes 16 sensor elements as an example, but the number of sensor elements is not limited to this.
  • the odorant receiving layers 315, 315b to 315d of the plurality of sensor elements 31, 31b to 31d included in the sensor element group 31A may each contain a conductive carbon material, a resin composition, and a surfactant.
  • the odorant receiving layers 315, 315b to 315d of the plurality of sensor elements 31, 31b to 31d included in the sensor element group 31A may have different content ratios of the conductive carbon material, the resin composition, and the surfactant, respectively. .
  • the content ratios of the conductive carbon material, resin composition, and surfactant contained in the odorant-receiving layer differ, the sensitivity and detection specificity of the sensor element to the odorant also differ.
  • the odor measurement device 100c detects a wide variety of odorants by including a plurality of sensor elements each having an odorant-receiving layer containing a conductive carbon material, a resin composition, and a surfactant in different proportions. can do.
  • the thickness of the odorant receiving layers 315, 315b to 315d of the sensor elements 31, 31b to 31d included in the odor measuring device 100c according to the present embodiment may be 0.1 ⁇ m or more and 1000 ⁇ m or less. Further, the thickness of each odorant-receiving layer may preferably be 1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the odorant receptor layers of the sensor elements 31, 31b to 31d is within the above range, measurement results that may be caused by variations in the thickness of the odorant receptor layers 315, 315b to 315d of each sensor element can be output. instability is reduced, and the odor measurement device 100c can measure odorants with high precision.
  • the thickness of the odorant-receiving layers 315, 315b to 315d is less than 0.1 ⁇ m, the particle diameter of the odorant-receiving layer is close to that of the conductive carbon material dispersed in the odorant-receiving layer. There is a possibility that the odor measuring device 100c may not be able to output stable measurement results because the uniformity of the thickness cannot be ensured.
  • the thickness of the odorant receptor layers 315, 315b to 315d is greater than 1000 ⁇ m, the diffusion time of the odorant within the odorant receptor layer becomes longer, so the odor measuring device 100c measures the odorant with high accuracy. becomes difficult to do.
  • the thickness of the odorant receiving layers 315, 315b to 315d of the sensor elements 31, 31b to 31d is within the above range, the output of measurement results that may be caused by variations in the thickness of the odorant receiving layers of each sensor element is suppressed. instability is reduced, and the odor measurement device 100c can measure odorants with high precision.
  • the electrodes of the sensor elements 31, 31b to 31d included in the sensor element group 31A each have a first electrode and a second electrode, and the first electrode and the second electrode have a parallel line shape, a parallel curve shape, a comb shape, or They may be arranged concentrically. It is preferable that the first electrode and the second electrode are arranged line-symmetrically or point-symmetrically with respect to each other, regardless of which of the above-mentioned shapes is adopted. By arranging the first electrode and the second electrode in this manner, the odor measuring device 100c can measure odorants contained in the gas with high precision.
  • the sensor element 31c in FIG. 13 has a first electrode 313C and a second electrode 313D.
  • the first electrode 313C is composed of a metal wiring 313a and a metal wiring 313b, and the two metal wirings are arranged in a T-shape so as to be perpendicular to each other.
  • the second electrode 313B is also composed of two metal wires 313c and 313d, similar to the first electrode 313C, and is arranged in a T-shape such that the two metal wires are perpendicular to each other.
  • the first electrode 313A and the second electrode 313B are arranged in parallel lines so that the metal wiring 313a and the metal wiring 313c face each other.
  • the first electrode 313C and the second electrode 313D are arranged in a T-shape with each other, so that the first electrode 313C and the second electrode 313D can be installed at a suitable distance, and the resistance of the electrode is The value can be stabilized.
  • the electrodes are arranged in a comb shape, the distance between the electrodes becomes short, and the resistance value of the electrodes may become too small.
  • the first electrode 313C and the second electrode 313D are arranged in a T-shape, in the coating process of the sensor element manufacturing method described later, the area where the slurry gets wet and spreads is covered with electrodes that can prevent the slurry from getting wet and spreading. Since there are no uneven parts, the slurry gets wet and spreads easily. Furthermore, since the slurry becomes easier to wet and spread, there is an effect that the thickness of the odorant-receiving layer after drying becomes constant.
  • the odorant receiving layers 315, 315b to 315d of the sensor elements 31, 31b to 31d can use slurries having various compositions as raw materials, but the viscosity of the slurry differs depending on the composition of the slurry.
  • slurries with different viscosities for example, if a slurry with a low viscosity is used, it will spread easily on the substrate, whereas if a slurry with a high viscosity is used, it will spread easily on the substrate.
  • the manufacturing method of the present embodiment it is possible to manufacture a plurality of types of sensor elements 31, 31b to 31d with little variation in shape, area, and thickness even if slurries of different compositions, that is, different viscosities are used. Furthermore, since there is no need to change the manufacturing method depending on the level of viscosity, manufacturing costs can be reduced.
  • FIG. 15 is a flowchart for explaining the steps of a manufacturing method for manufacturing multiple types of sensor elements 31, 31b to 31d used in the odor measuring device 100c.
  • a method for manufacturing sensor elements 31, 31b to 31d having odorant receiving layers 315, 315b to 315d containing a surfactant will be exemplified.
  • a slurry containing a filler, a resin composition, and a surfactant is prepared.
  • the resin composition of the slurry contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ).
  • the mixing ratio of the filler, resin composition, and surfactant may be appropriately set depending on the desired sensitivity and detection specificity of the odorant receptor layer.
  • the slurry may contain a solvent and additives in addition to the filler, resin composition, and surfactant (S21).
  • the electrode may include a first electrode (first metal wiring) and a second electrode (second metal wiring).
  • the first electrode and the second electrode are spaced apart.
  • the first electrode and the second electrode may be arranged in parallel straight lines, parallel curves, comb shapes, and concentric circles.
  • it is preferable that the first electrode and the second electrode are arranged line-symmetrically or point-symmetrically with respect to each other, regardless of which of the above-mentioned shapes is adopted.
  • one set of electrodes (first electrode 313C and second electrode 313D) is arranged on one substrate 311, but a plurality of sets of electrodes are arranged on one substrate.
  • the electrodes may be arranged side by side.
  • FIG. 16 is a schematic diagram of the substrate 311 after the resist M is placed. The resist M is arranged so as to define the coating area 330. In the application area 330, the substrate 311 is exposed.
  • the width of the application area 330 may be defined to be the same for each of the plurality of types of slurry. That is, even if the slurry has different mixing ratios of the conductive carbon material, the resin composition, and the surfactant, the area of the application region 330 for applying the slurry may be uniform. According to this, even if a plurality of types of slurry having different mixing ratios, that is, different viscosities are used, the variation in the area of the plurality of types of odorant receiving layers after drying is reduced.
  • the shape of the application area 330 in FIG. 16 is circular as an example, the shape of the application area 330 is not limited to this.
  • the shape of the application area 330 may be circular or band-like. As a result, a circular or band-shaped odorant-receiving layer is formed.
  • the diameter of the circle may be 0.2 mm or more and 10 mm or less
  • the length of the band in the short direction is 0.2 mm or more and 10 mm or less. It may be 2 mm or more and 10 mm or less.
  • the method of disposing the resist M is not particularly limited, but includes a method of silk-printing a solder resist in a defined area and then curing the solder resist with UV, a method of pasting a resist film on a substrate, a method of applying only the resist in a defined area. Examples include a method of curing the material and removing the uncured portion.
  • each of the plurality of types of slurry is applied to the application area 330 (S24).
  • the slurry is applied to an application area 330 that includes at least a portion of the first electrode and at least a portion of the second electrode.
  • the slurry can be applied by any conventionally known method, such as dropping from a nozzle, spraying, or spin coating.
  • the viscosity of multiple types of slurry is different.
  • the difference in the viscosity of the slurry is due to, for example, the different mixing ratios of the conductive carbon material, the resin composition, and the surfactant. Slurries with different viscosities may differ in how they wet and spread.
  • the coating step of this manufacturing method since the coating region is defined in the previous region defining step, the slurry is applied to the defined area.
  • the slurry applied to the application area 330 is dried to form an odorant receptor layer (S25).
  • the method for drying the slurry is not particularly limited, but for example, a method of heating at 100° C. for 1 hour at normal pressure, and then heating at 100° C. for 1 hour while reducing the pressure in a vacuum dryer can be adopted.
  • the thickness of the odorant-receiving layer after drying may be 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the odorant-receiving layer after drying may preferably be 1 ⁇ m or more and 100 ⁇ m or less. If the thickness of the odorant-receiving layer is within the above range, the sensor element can stably measure odorants.
  • the thickness of the odorant-receiving layer is less than 0.1 ⁇ m, the value is close to the particle diameter of the conductive carbon material dispersed within the odorant-receiving layer, so the thickness of the odorant-receiving layer is uniform.
  • the odor measuring device 100c may not be able to output stable measurement results.
  • the thickness of the odorant receptor layer is greater than 1000 ⁇ m, the diffusion time of the odorant within the odorant receptor layer becomes longer, making it difficult for the odor measurement device 100c to measure the odorant with high accuracy. .
  • the manufacturing method according to the present embodiment includes a slurry preparation process, an electrode placement process, a region definition process, a coating process, and a drying process.
  • the slurry droplets can be wetted and spread well in the subsequent coating step.
  • the application area is defined by a resist
  • the surface roughness will be different between a portion of the substrate where the resist is present and a portion where the resist is not present. In areas where no resist exists, the substrate is exposed, so the surface roughness is high and the surface tension is low. This allows the slurry droplets to spread well in the application area where the substrate is exposed.
  • the coating area in the area defining step, wetting and spreading of the slurry in the subsequent coating step is regulated, and the positional relationship between the odorant receiving layers 315, 315b to 315d and the electrodes becomes constant.
  • the application area is defined by a resist
  • a difference in level occurs at the boundary of the resist, which restricts the slurry from spreading and makes the positional relationship between the odorant receiving layers 315, 315b to 315d and the electrodes constant.
  • the region defining step is not essential, and the coating step may be performed without the region being defined.
  • electrodes may be produced in contact with the odorant receptor layers. .
  • the slurry contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), and a filler, so that the slurry has suitable flexibility. , it has the effect of being excellent in film formability. Furthermore, by improving the film formability, it is possible to stably manufacture a plurality of sensor elements 31, 31b to 31d.
  • control blocks (especially the control unit 1) of the estimation devices 10, 10a, and 10b may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software. .
  • the estimation devices 10, 10a, and 10b are equipped with a computer that executes instructions of a program that is software that implements each function.
  • This computer includes, for example, one or more processors and a computer-readable recording medium that stores the above program.
  • the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium in addition to "non-temporary tangible media" such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, programmable logic circuits, etc. can be used.
  • the computer may further include a RAM (Random Access Memory) or the like for expanding the above program.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast waves, etc.) that can transmit the program.
  • any transmission medium communication network, broadcast waves, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • each of the control blocks described above can also be realized by a logic circuit.
  • a logic circuit for example, an integrated circuit in which a logic circuit functioning as each of the control blocks described above is formed is also included in the scope of the present invention.
  • each process described in each of the above embodiments may be executed by AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • the AI may operate on the control device, or may operate on another device (for example, an edge computer or a cloud server).
  • ⁇ summary ⁇ Odor measurement devices 100, 100a to 100c include an electrode 313 having a first metal wiring 313A and a second metal wiring 313B spaced apart from the first metal wiring 313A, and a first metal wiring A plurality of sensor elements 31, 31b to 31d are provided, and the sensor elements 31, 31b to 315d are in contact with at least a portion of the second metal wiring 313A and at least a portion of the second metal wiring 313B.
  • the resin composition contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), and a filler, and R 1 is , a monovalent hydrocarbon radical having 1 to 10 carbon atoms.
  • the odorant-receiving layer has a porosity x of 12% ⁇ x, which is evaluated based on a SEM image of a cross section of the odorant-receiving layer. It may be ⁇ 30%.
  • the resin composition may further contain a surfactant.
  • the odor measuring device 100, 100a to 100c according to Aspect 5 of the present disclosure may detect an odor based on a change in the resistance value of the odorant receptor layer in any of Aspects 1 to 4 above.
  • the filler may be a conductive carbon material.
  • the conductive carbon material may be carbon black.
  • the sensor elements 31, 31b to 31d include an electrode 313 having a first metal wiring 313A and a second metal wiring 313B separated from the first metal wiring 313A, and a first metal wiring 313A.
  • the odorant receiving layers 315, 315b are in contact with at least a portion of the second metal wiring 313B, and the odorant receiving layers 315, 315b have T units (R 1 SiO 3/2 ) and D units. (R 1 2 SiO 2/2 ) and fillers, where R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the odorant-receiving layer has a porosity x of 12% ⁇ x ⁇ , which is evaluated based on a SEM image of a cross section of the odorant-receiving layer. It may be 30%.
  • the method for manufacturing sensor elements 31, 31b to 31d includes a slurry preparation step of preparing a slurry, and a first metal wiring 313A and a first metal wiring 313A that are spaced apart from each other on the substrate. an electrode arrangement step of arranging an electrode 313 having a second metal wiring 313B; and a coating step of applying slurry to a coating area including at least a portion of the first metal wiring 313A and at least a portion of the second metal wiring 313B.
  • a drying step of drying the slurry applied to the application area to form the odorant receiving layers 315, 315b to 315d the slurry contains T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ) and a filler, R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the odorant-receiving layer has a porosity x of 12% as evaluated based on a SEM image of a cross section of the odorant-receiving layer. ⁇ x ⁇ 30% may be satisfied.
  • the slurry may further contain a surfactant.
  • the present invention is applicable to a wide range of industrial fields where odor measurement is required, and is expected to contribute to achieving Goal 9 of the Sustainable Development Goals (SDGs) regarding the foundations of industry and technological innovation.
  • SDGs Sustainable Development Goals
  • % means % by weight and parts means parts by weight.
  • silicone resin does not include silicone oil.
  • A1 DOWSIL (registered trademark) RSN-0217 Flake Resin (manufactured by Dow Toray Industries, Inc.) 57.6 parts by weight, DOWSIL (registered trademark) RSN-0255 Flake Resin (manufactured by Dow Toray Industries, Inc.) 14.4 parts by weight parts (mixing two types of silicone resins at a weight ratio of 4:1)
  • ARE-310 manufactured by Thinky Co., Ltd.
  • Resin composition 2 was produced in the same manner as resin composition 1 except that filler C2 was used instead of filler C1.
  • Resin composition 3 was prepared in the same manner as Resin Composition 1, except that Resin A was changed to 72 parts by weight and 8 parts by weight of Surfactant B1 was added as a surfactant.
  • Resin composition 4 was prepared in the same manner as resin composition 3, except that resin A was changed to 72 parts by weight, surfactant B2 was added to 8 parts by weight as a surfactant, and filler C2 was used instead of filler C1. Created.
  • Resin composition 5 was prepared in the same manner as resin composition 4, except that silicone resin A2 having a weight ratio of T units:D units of 97:3 was used in place of silicone resin A1.
  • Resin composition 6 was prepared in the same manner as resin composition 4 except that silicone resin A3 having a weight ratio of T units:D units of 95:5 was used.
  • Resin composition 7 was prepared in the same manner as resin composition 4 except that silicone resin A4 having a weight ratio of T units:D units of 40:60 was used.
  • Resin composition 8 was produced in the same manner as resin composition 6 except that filler C3 was used instead of filler C2.
  • Resin composition 9 was prepared in the same manner as resin composition 6 except that resin A was changed to 54 parts by weight and silicone oil A7 was added to 18 parts by weight.
  • Resin composition 10 was produced in the same manner as resin composition 9 except that silicone oil A8 was used instead of silicone oil A7.
  • Resin composition c1 was produced in the same manner as resin composition 2, except that silicone resin A5 having a weight ratio of T units:D units of 100:0 was used instead of silicone resin A1.
  • Resin composition c2 In the same manner as Resin Composition 1, except that 60 parts by weight of silicone resin A6 having a T unit:D unit weight ratio of 100:0 was used instead of silicone resin A1, and the weight part of filler C1 was 40, A resin composition c2 was produced.
  • a sealing substrate including a set of two metal wirings was cut out from a sealing substrate (ICB-073, manufactured by Sanhayato Co., Ltd.) equipped with a plurality of metal wirings with an interval width of 500 ⁇ m. The cut out seal substrate was further cut so that the length of the metal wiring was 3.5 cm.
  • each of Resin Compositions 1 to 10 was applied to the exposed portion of the metal wiring using a bar coater (No. 4). After coating, it was dried for 3 hours in a dryer heated to 100°C. After drying and cooling to room temperature, the metal wiring provided with the odorant-receiving layer was peeled off from the glass plate to form sensor elements (E-1) to (E-12) and comparative sensor element (E'-1). ), (E'-2) were obtained. Regarding sensor elements (E-1) and (E-2), two sensor elements (E-1) and (E-2) were both produced using resin composition 1.
  • Examples 1 to 12, Comparative Examples 1 and 2 A casing was fabricated that was equipped with an inlet for introducing a sample (odorant), a carrier gas inlet for creating an airflow to spread the sample uniformly, and a gas flow regulator. Lead wires for taking out the terminals to the outside were soldered to each of the eight sensor elements (E-1), and the eight sensor elements (E-1) were installed inside the housing. For each sensor element (E-1), a 1 mA constant current power source and a voltmeter for measuring the voltage applied to both terminals of the lead wire were connected to the end of the lead wire taken out from the housing. In this way, an odor sensor 1 having eight sensor elements (E-1) was constructed.
  • Odor sensors 2 to 12 and c1 and c2 were each constructed using the following methods. For odor sensors 1 and 4 and odor sensor c2, a membrane-type surface stress sensor (MSS) method is used, and an SD-MSS sensor probe (manufactured by NIMS) is used to detect the electromotive force from the sensor element. was amplified by an amplifier to obtain the output voltage.
  • MSS membrane-type surface stress sensor
  • odor sensors 2 and 5 the Quartz Crystal Microbalance (QCM) method was used, QA-A9M-AU (manufactured by Seiko EG&G) was used, and the resonance frequency was measured with a frequency counter, and the frequency change was measured. obtained.
  • QCM Quartz Crystal Microbalance
  • V 0 and V were obtained for the output voltages obtained from the MSS sensor elements.
  • F0 and F were obtained for the frequencies obtained from the QCM sensor elements, and the coefficients of variation were calculated in the same manner as for V0 and V, respectively.
  • a cross section including an odorant-receiving layer and an odorant-permeable layer of a sensor element included in each of odor sensors 1 to 12, c1, and c2 was observed and imaged using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the built-in application adjusted the image between 3225 and 3275 in contrast and 2025 and 2075 in brightness.
  • the SEM image obtained by SEM was subjected to binarization processing using image analysis software.
  • ImageJ was used for the binarization process.
  • the image is processed in the order of "Gaussian Blur", "16bit”, and “unsharp Mask”, and then the binarization process is performed with "threshold”. 50, the area corresponding to the voids in the SEM image was extracted, and the porosity, which is the ratio of the area occupied by the voids to the area of the odorant receptor layer shown in the SEM image, was calculated.
  • Table 1 shows the composition and physical properties of the resin compositions of the odor sensors 1 to 12 of Examples 1 to 12 and the odor sensors c1 and c2 of Comparative Examples 1 and 2.
  • T unit: D unit means the weight ratio of T unit and D unit. If the ⁇ V coefficient of variation is 0.2 or less, preferably 0.15 or less, and more preferably 0.1 or less, the variation in performance among multiple sensor elements in an integrated odor sensor is sufficiently small to pose a practical problem. It can be determined that there is no From the viewpoint of reducing the variation, the smaller the ⁇ V variation coefficient is, the more preferable it is.
  • Example 6 According to a comparison between Examples 3 and 6, a practically acceptable ⁇ V coefficient of variation was obtained whether or not the surfactant (B) was included.
  • the odor sensor 6 of Example 6 comprising the resin composition 4 containing the surfactant (B) showed a smaller ⁇ V coefficient of variation.
  • an odor sensor including a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ) and an odorant-receiving layer containing a filler has a ⁇ V coefficient of variation that does not pose any practical problem. It was found that That is, an odor measuring device equipped with such an odor sensor can output stable measurement results.
  • the present invention is useful as an odor identification sensor used for medical purposes, gas detection, agriculture, and other industries and daily life.
  • a farmer can use the odor identification sensor to determine the maturity of fragrant crops and manage optimal harvest timing.
  • converting the smell of products such as food or cosmetics into data using an odor identification sensor it is possible to improve the efficiency of product development and support quality stabilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Provided are: a smell measurement device capable of outputting a stable measurement result; a sensor element; and methods for manufacturing same. A smell measurement device (100) includes a plurality of sensor elements (31) each comprising: an electrode (313) having a first metal wiring (313A) and a second metal wiring (313B); and a smell substance reception layer (315) in contact with at least a part of the first metal wiring (313A) and at least a part of the second metal wiring (313B). The smell substance reception layer (315) includes a resin composition. The resin composition includes a silicon resin comprising a T unit (R1SiO3/2) and a D unit (R1 2SiO2/2 and a filler. R1 is a monovalent hydrocarbon group having 1-10 carbon atoms.

Description

匂い測定装置、センサ素子、およびその製造方法Odor measurement device, sensor element, and manufacturing method thereof
 本発明は、匂い測定装置、センサ素子、およびその製造方法に関する。 The present invention relates to an odor measuring device, a sensor element, and a method for manufacturing the same.
 近年の情報処理技術の発達により、人間の五感のうち機械的な測定が十分に達成できていない嗅覚を何らかの方法で数値化することができれば、幅広い産業分野で利用可能であることが期待される。例えば、医療分野では介護・介助、未病予防診断や疾病検査など、環境分野では工場などでの臭気管理、バイオガス利用の分野での発酵工程管理や排水処理の管理など、安全分野では土砂崩れや水害などの予兆検知、エンジンオイルや機械動作油の劣化検知などが可能になる。また、食品分野では植物や肉などの食材の熟成状態検知、例えば酒類などの発酵食品の工程管理、植物の栽培管理や食品の生産・保管・流通過程での品質管理など、マーケティング分野では香粧品、体臭、香り環境、商材の香りのプロデュースなどに利用可能である。これまでに、特定の気体物質(ガス)を検出する方法は半導体ガスセンサなどによって高精度・高感度の測定が実現されている。様々な匂いに対して異なる応答特性を有するセンサが報告されており、センサが含む受容体の組成についても検討がされている。 With the development of information processing technology in recent years, if it were possible to quantify the sense of smell, which is one of the five human senses that cannot be adequately measured mechanically, it is expected that it could be used in a wide range of industrial fields. . For example, in the medical field, such as nursing care/assistance, preventive diagnosis and disease testing, etc., in the environmental field, odor control in factories, fermentation process management and wastewater treatment management in the field of biogas utilization, and in the safety field, landslide prevention, etc. It becomes possible to detect signs of water damage, etc., and to detect deterioration of engine oil and machine operating oil. In addition, in the food field, detection of the ripening state of ingredients such as plants and meat, process control of fermented foods such as alcoholic beverages, plant cultivation management, and quality control during food production, storage, and distribution processes, and in the marketing field, cosmetics. It can be used to produce body odor, scented environments, and product scents. To date, methods for detecting specific gaseous substances (gases) have achieved highly accurate and highly sensitive measurements using semiconductor gas sensors and the like. Sensors with different response characteristics to various odors have been reported, and the composition of receptors contained in the sensors has also been investigated.
 特許文献1に記載の発明は、半導体ガスセンサの半導体を導電性高分子に置き換えて導電性高分子表面への匂い成分の吸着を検出する仕組みを提案している。特許文献1では、熱分解しやすい匂い成分およびセンサの検出部表面で酸化還元反応を生じない物質の検出が可能になることを報告している。 The invention described in Patent Document 1 proposes a mechanism for replacing the semiconductor of a semiconductor gas sensor with a conductive polymer and detecting the adsorption of odor components onto the surface of the conductive polymer. Patent Document 1 reports that it is possible to detect odor components that are easily thermally decomposed and substances that do not cause redox reactions on the surface of the detection section of the sensor.
 また、特許文献2においては、有機ポリマーと導電性物質の混合物の電気抵抗が有機ガスに曝露されることで変化する性質に着目している。特許文献2では、上記混合物のうち有機ポリマーの組成が異なる有機ポリマー/導電性物質の組み合わせを複数調製し、これらを電気抵抗アレイとしてセンサに用いると、同一の有機ガスに曝露された際の電気抵抗変化がそれぞれ異なることが記載されている。これを利用して、電気抵抗変化のパターンと匂い(=有機ガスの混合物)の種類を帰属することによって匂いを識別できることが特許文献2では報告されている。 Further, Patent Document 2 focuses on the property that the electrical resistance of a mixture of an organic polymer and a conductive substance changes when exposed to an organic gas. In Patent Document 2, when a plurality of organic polymer/conductive material combinations with different organic polymer compositions are prepared from the above mixture and these are used as an electrical resistance array in a sensor, the electricity when exposed to the same organic gas is It is stated that each resistance change is different. Patent Document 2 reports that using this, it is possible to identify odors by attributing the pattern of electrical resistance change and the type of odor (=mixture of organic gases).
 さらに、特許文献3において、上記の有機ポリマーに対して可塑剤を添加することでセンサの応答速度が向上することが報告されている。 Further, Patent Document 3 reports that the response speed of the sensor is improved by adding a plasticizer to the above organic polymer.
 特許文献4には、RSiO3/2の構造および特定の平均一次粒子径を示すフィラーを含む受容体を有するセンサが開示されている。 Patent Document 4 discloses a sensor having a receptor including a filler having a structure of RSiO 3/2 and a specific average primary particle size.
特開平11-23508号公報Japanese Patent Application Publication No. 11-23508 特表平11-503231号公報Special Publication No. 11-503231 特表2002-519633号公報Special Publication No. 2002-519633 特開2022-26253号公報JP2022-26253A
 匂い測定装置に適用されるセンサ素子の性能が製造する度に変化し安定しない場合、所定の検出精度を備える匂い測定装置を安定的に生産することができない。また、匂い測定装置のセンサ素子を新しいセンサ素子に交換する場合、交換元のセンサ素子の性能と交換先のセンサ素子の性能との差が小さいまたは無いことが望ましい。 If the performance of the sensor element applied to the odor measuring device changes every time it is manufactured and is not stable, it will not be possible to stably produce the odor measuring device with a predetermined detection accuracy. Furthermore, when replacing the sensor element of the odor measuring device with a new sensor element, it is desirable that the difference in performance between the original sensor element and the replacement sensor element be small or non-existent.
 本発明の一態様は、安定した測定結果を出力できる匂い測定装置、センサ素子、およびその製造方法を提供することを目的とする。 An object of one aspect of the present invention is to provide an odor measuring device, a sensor element, and a manufacturing method thereof that can output stable measurement results.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。 The present inventors conducted studies to achieve the above object, and as a result, they arrived at the present invention.
 すなわち、本発明の一態様に係る匂い測定装置は、第1金属配線、および前記第1金属配線とは離間している第2金属配線を有する電極と、前記第1金属配線の少なくとも一部と前記第2金属配線の少なくとも一部とに接する匂い物質受容層と、を備える複数のセンサ素子を備え、前記匂い物質受容層は、樹脂組成物を含み、前記樹脂組成物は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含み、前記Rは、1~10個の炭素原子を有する一価の炭化水素基である。 That is, an odor measurement device according to one aspect of the present invention includes an electrode having a first metal wiring and a second metal wiring separated from the first metal wiring, and at least a portion of the first metal wiring. an odorant-receiving layer in contact with at least a portion of the second metal wiring; the odorant-receiving layer includes a resin composition; the resin composition has T units (R 1 SiO 3/2 ) and a D unit (R 1 2 SiO 2/2 ), and a filler, R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms. .
 また、本発明の一態様に係るセンサ素子は、第1金属配線、および前記第1金属配線とは離間している第2金属配線を有する電極と、前記第1金属配線の少なくとも一部と前記第2金属配線の少なくとも一部とに接する匂い物質受容層と、を備え、前記匂い物質受容層は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂およびフィラーを含み、前記Rは、1~10個の炭素原子を有する一価の炭化水素基である。 Further, the sensor element according to one aspect of the present invention includes an electrode having a first metal wiring and a second metal wiring spaced apart from the first metal wiring, and at least a portion of the first metal wiring and the second metal wiring. an odorant receptor layer in contact with at least a portion of the second metal wiring, the odorant receptor layer comprising T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ). R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
 また、本発明の一態様に係るセンサ素子の製造方法は、スラリーを調製するスラリー調製工程と、基板上に、第1金属配線、および前記第1金属配線とは離間している第2金属配線を有する電極を配置する電極配置工程と、前記スラリーを、前記第1金属配線の少なくとも一部と前記第2金属配線の少なくとも一部とを含む塗布領域に塗布する塗布工程と、前記塗布領域に塗布された前記スラリーを乾燥させて匂い物質受容層を形成する乾燥工程と、を含み、前記スラリーは、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含み、前記Rは、1~10個の炭素原子を有する一価の炭化水素基である。 Further, the method for manufacturing a sensor element according to one aspect of the present invention includes a slurry preparation step of preparing a slurry, a first metal wiring, and a second metal wiring spaced apart from the first metal wiring on the substrate. an electrode arranging step of arranging an electrode having an electrode, a coating step of applying the slurry to a coating region including at least a portion of the first metal wiring and at least a portion of the second metal wiring, and a coating step of applying the slurry to the coating region including at least a portion of the first metal wiring and at least a portion of the second metal wiring a drying step of drying the applied slurry to form an odorant-receiving layer, the slurry comprising T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ). R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
 本発明の一態様によれば、安定した測定結果を出力できる匂い測定装置、センサ素子、およびその製造方法を提供することを目的とする。 According to one aspect of the present invention, it is an object of the present invention to provide an odor measuring device, a sensor element, and a manufacturing method thereof that can output stable measurement results.
本発明の一実施形態に係る匂い測定装置の構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of an odor measuring device according to an embodiment of the present invention. センサ素子の構成の一例を示す上面図である。FIG. 2 is a top view showing an example of the configuration of a sensor element. 図2に示すセンサ素子の構成の一例を示す断面図である。3 is a cross-sectional view showing an example of the configuration of the sensor element shown in FIG. 2. FIG. 匂い測定装置の構成の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing an example of the configuration of an odor measuring device. 推定装置が推定モデルを生成する処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process by which an estimation device generates an estimation model. 匂い測定装置の構成の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing an example of the configuration of an odor measuring device. 推定装置が匂い物質を推定する処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process by which an estimation device estimates an odorant. 本発明の別の実施形態に係る匂い測定装置の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of an odor measuring device concerning another embodiment of the present invention. 本発明の別の実施形態に係る匂い測定装置の構成の一例を示す概略図である。It is a schematic diagram showing an example of composition of an odor measuring device concerning another embodiment of the present invention. センサチャンバの構成例を示す上面図である。FIG. 3 is a top view showing a configuration example of a sensor chamber. センサチャンバの構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration example of a sensor chamber. センサチャンバの構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration example of a sensor chamber. 本発明のセンサ素子の構成の一例を示す上面図である。FIG. 1 is a top view showing an example of the configuration of a sensor element of the present invention. 本発明のセンサ素子の構成の一例を示す上面図である。FIG. 1 is a top view showing an example of the configuration of a sensor element of the present invention. センサ素子を製造する方法の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the method of manufacturing a sensor element. スラリー塗布前の基板の一例を示す上面図である。FIG. 3 is a top view showing an example of a substrate before slurry application.
 〔実施形態1〕
 本発明の一実施形態について以下に説明する。本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意図する。
[Embodiment 1]
An embodiment of the present invention will be described below. In this specification, unless otherwise specified, the numerical range "A to B" is intended to be "A or more and B or less".
 本明細書中、「匂い物質」とは、広義において匂い物質受容層に吸着可能な物質を意味する。従って、一般的に匂いの原因物質とされていない物質も含まれる。「匂い」には原因となる匂い物質が複数含まれることが多く、また、匂い物質として認知されていない物質または未知の匂い物質も存在する。本発明の一実施形態は、匂い物質受容層への匂い物質の吸着量が匂い物質の種類によって異なることに着目するものである。 In the present specification, "odorant" means a substance that can be adsorbed to the odorant-receiving layer in a broad sense. Therefore, it also includes substances that are not generally considered to be odor-causing substances. "Odors" often contain multiple odorants, and there are also substances that are not recognized as odorants or unknown odorants. One embodiment of the present invention focuses on the fact that the amount of odorant adsorbed to the odorant receptor layer differs depending on the type of odorant.
 なお、本明細書中、単に「匂い物質」と記載した場合であっても、個々の匂い物質ではなく、複数の匂い物質が含まれ得る「匂い物質の集合体」を意味する場合がある。 Note that in this specification, even when simply described as "odorant", it may mean "an aggregate of odorants" that may include a plurality of odorants, rather than individual odorants.
 「匂い物質」としては特に限定されないが、例えばヘキサン、酢酸エチル、メタノール、炭酸ジエチル、トルエン、d-リモネン、ボルナン-2-オン、シス-3-ヘキセノール、β-フェニルエチルアルコール、シトラール、L-カルボン、γ-ウンデカラクトン、オイゲノール、リナリルアセテート、メントール、ベンズアルデヒド、バニリン、ヘキサナール、エタノール、吉草酸ペンチル、リナロール、2-プロパノール等が挙げられる。 "Odor substances" are not particularly limited, but include, for example, hexane, ethyl acetate, methanol, diethyl carbonate, toluene, d-limonene, bornan-2-one, cis-3-hexenol, β-phenylethyl alcohol, citral, L- Examples include carvone, γ-undecalactone, eugenol, linalyl acetate, menthol, benzaldehyde, vanillin, hexanal, ethanol, pentyl valerate, linalool, 2-propanol, and the like.
 [1.樹脂組成物]
 本発明の一実施形態に係る樹脂組成物は、匂い物質受容層を形成するための樹脂組成物であって、樹脂(A)、およびフィラー(C)を含む。樹脂(A)は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂を含む。樹脂組成物は、これらの成分が均一に存在する状態の組成物であり得る。また、樹脂組成物は、フィラー(C)の分散剤として界面活性剤(B)をさらに含んでもよい。
[1. Resin composition]
A resin composition according to one embodiment of the present invention is a resin composition for forming an odorant-receiving layer, and includes a resin (A) and a filler (C). The resin (A) contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ). The resin composition may be a composition in which these components are uniformly present. Moreover, the resin composition may further contain a surfactant (B) as a dispersant for the filler (C).
 <樹脂(A)>
 樹脂(A)は、匂い物質受容層を形成可能な製膜性を有していればよく、特定の匂い物質に対して吸着や溶解といった相互作用を呈することが好ましい。また、樹脂(A)は、後述する匂いセンサの使用条件に応じた適当な物理的性質(耐熱性など)および化学的性質(試料ガスに対する相溶性および耐腐食性など)を有することが好ましい。
<Resin (A)>
The resin (A) only needs to have film-forming properties capable of forming an odorant-receiving layer, and preferably exhibits an interaction such as adsorption or dissolution with respect to a specific odorant. Further, the resin (A) preferably has appropriate physical properties (such as heat resistance) and chemical properties (such as compatibility with sample gas and corrosion resistance) depending on the usage conditions of the odor sensor, which will be described later.
 樹脂(A)が含むシリコーン樹脂は、T単位からなるシリコーン樹脂と、D単位からなるシリコーン樹脂とを複数混合したものであってもよい。 The silicone resin contained in the resin (A) may be a mixture of a plurality of silicone resins consisting of T units and a plurality of silicone resins consisting of D units.
 (シリコーン樹脂)
 シリコーン樹脂には、Siに有機基が3個結合した一官能性のM単位、Siに有機基が2個結合した二官能性のD単位、Siに有機基が1個結合した三官能性のT単位、有機基が結合していない四官能性のQ単位がある。樹脂(A)が含むシリコーン樹脂は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなり、Rは、1~10個の炭素原子を有する一価の炭化水素基である。本開示において、常温常圧(例えば、常温は25±15℃、常圧は1013hPa)で固体のシリコーン架橋物を「シリコーン樹脂」と呼称する。
(Silicone resin)
Silicone resins include monofunctional M units with three organic groups bonded to Si, difunctional D units with two organic groups bonded to Si, and trifunctional D units with one organic group bonded to Si. There are a T unit and a tetrafunctional Q unit to which no organic group is bonded. The silicone resin contained in the resin (A) consists of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), where R 1 is a monovalent group having 1 to 10 carbon atoms. is a hydrocarbon group. In the present disclosure, a silicone crosslinked product that is solid at normal temperature and normal pressure (for example, normal temperature is 25±15° C. and normal pressure is 1013 hPa) is referred to as a “silicone resin”.
 炭化水素基は、脂肪族基、芳香族基のいずれでもよく、例えば、アルキル基、アルケニル基、アリール基、アラルキル基などが挙げられる。アルキル基およびアルケニル基は、直鎖または分岐鎖のいずれであってもよい。 The hydrocarbon group may be either an aliphatic group or an aromatic group, and includes, for example, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and the like. The alkyl group and alkenyl group may be either straight chain or branched chain.
 前記アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基が挙げられる。 Examples of the alkyl groups include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. .
 前記アリール基としては、フェニル基、トルイル基、ジメチルフェニル基などが挙げられる。 Examples of the aryl group include a phenyl group, a tolyl group, a dimethylphenyl group, and the like.
 前記アラルキル基としては、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基などが挙げられる。 Examples of the aralkyl group include a benzyl group, phenylethyl group, phenylpropyl group, and phenylbutyl group.
 シリコーン樹脂のT単位(RSiO3/2)と、D単位(R SiO2/2)との重量比は、T単位:D単位=98:2~40:60であることが好ましい。また、T単位とD単位との重量比は、T単位:D単位=95:5~50:50であることがより好ましい。T単位とD単位との重量比が前記の範囲であることにより、樹脂組成物が好適な柔軟性を有しつつ、成膜性が高くなる。なお、シリコーン樹脂のT単位の重量比が50%より低い場合は、シリコーン樹脂中の網目構造の箇所が少なくなり、匂い物質受容層の樹脂組成物に匂い物質が吸脱着する際の可逆性が悪化する。 The weight ratio of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ) of the silicone resin is preferably T units:D units = 98:2 to 40:60. . Further, the weight ratio of T units and D units is more preferably T units: D units = 95:5 to 50:50. When the weight ratio of T units and D units is within the above range, the resin composition has suitable flexibility and has high film formability. In addition, when the weight ratio of T units in the silicone resin is lower than 50%, the number of network structures in the silicone resin decreases, and the reversibility of adsorption and desorption of the odorant to the resin composition of the odorant receiving layer decreases. Getting worse.
 樹脂(A)は、シリコーン樹脂以外の他の成分を含んでもよい。樹脂(A)が含み得る他の成分の例としては、シリコーンオイルが挙げられる。本開示においては、シリコーンオイルは常温常圧(例えば、常温は25±15℃、常圧は1013hPa)にて流動性を有しており、シロキサン結合が鎖状に延びたものである。シリコーン樹脂は、架橋反応によりシロキサン結合からなる3次元的な架橋構造を形成することが可能であるのに対し、シリコーンオイルは、上記架橋構造を形成することができないものである。シリコーンオイルは、樹脂組成物中におけるフィラー(C)の分散性を高める観点、または樹脂組成物の塗布性を高める観点から樹脂組成物に配合することが可能である。特にシリコーンオイルはD単位のみからなるシリコーンオイルであることが好ましい。シリコーンオイルが有する変性部として、官能基やブロック化されたその他変性部位の種類については特に限定はなく、例えば側鎖型、両末端型、方末端型、側鎖両末端型などの形態で変性部位を有しうる。上記変性部位としては、アミノ基、アミン類、エポキシ基、カルビノール基、メルカプト基、カルボキシル基、メチルハイドロジェン類、メタクリル基、アクリル基、フェニル基、フェノール基、シラノール基、カルボン酸無水物類、ビニル基などが挙げられる。その他変性部位としては、ポリエステル部位、ポリエーテル部位、アルキル部位、アラルキル部位、フロロアルキル部位、高級脂肪酸エステル部位、高級脂肪アミド部位などが挙げられる。以下の記載において「シリコーン樹脂」は、シリコーンオイルを含まない場合を例に挙げて説明する。 The resin (A) may contain components other than silicone resin. Examples of other components that the resin (A) may contain include silicone oil. In the present disclosure, silicone oil has fluidity at normal temperature and normal pressure (for example, normal temperature is 25±15° C. and normal pressure is 1013 hPa), and has siloxane bonds extending in a chain. Silicone resin can form a three-dimensional crosslinked structure consisting of siloxane bonds through a crosslinking reaction, whereas silicone oil cannot form the above-mentioned crosslinked structure. Silicone oil can be blended into the resin composition from the viewpoint of increasing the dispersibility of the filler (C) in the resin composition or from the viewpoint of improving the applicability of the resin composition. In particular, the silicone oil is preferably a silicone oil consisting only of D units. There are no particular limitations on the types of functional groups or other blocked modified sites that silicone oil has; for example, it can be modified in the form of side chain type, both terminal type, single terminal type, side chain both terminal type, etc. It can have parts. The above modified sites include amino groups, amines, epoxy groups, carbinol groups, mercapto groups, carboxyl groups, methyl hydrogens, methacrylic groups, acrylic groups, phenyl groups, phenol groups, silanol groups, and carboxylic acid anhydrides. , vinyl group, etc. Other modified sites include polyester sites, polyether sites, alkyl sites, aralkyl sites, fluoroalkyl sites, higher fatty acid ester sites, and higher fatty amide sites. In the following description, "silicone resin" will be explained using an example in which it does not contain silicone oil.
 <界面活性剤(B)>
 界面活性剤(B)は、後述するフィラー(C)の分散剤としての作用を呈する。また、界面活性剤(B)は、センサ素子を樹脂組成物の塗布によって形成する際の樹脂組成物の塗布性を高めることが可能である。界面活性剤(B)は、上記の作用を発現する範囲において、公知の界面活性剤から適宜に選ぶことが可能である。
<Surfactant (B)>
The surfactant (B) functions as a dispersant for the filler (C) described below. Further, the surfactant (B) can improve the coating properties of the resin composition when forming the sensor element by coating the resin composition. The surfactant (B) can be appropriately selected from known surfactants within a range that exhibits the above effects.
 界面活性剤(B)としては、例えばアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤およびノニオン性界面活性剤が挙げられる。 Examples of the surfactant (B) include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
 アニオン性界面活性剤としては、炭素数10~24のカルボン酸のアルカリ金属塩および炭素数14~24のアルキルスルホン酸のアルカリ金属塩等が挙げられる。 Examples of the anionic surfactant include alkali metal salts of carboxylic acids having 10 to 24 carbon atoms and alkali metal salts of alkylsulfonic acids having 14 to 24 carbon atoms.
 前記炭素数10~24のカルボン酸としては、例えば、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ペンタデカン酸、ノナデカン酸、イコサン酸、ヘンイコサン酸、ドコサン酸、トリコサン酸およびテトラコサン酸等が挙げられる。 Examples of the carboxylic acid having 10 to 24 carbon atoms include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, pentadecanoic acid, nonadecanoic acid, icosanoic acid, henicosanoic acid, Examples include docosanoic acid, tricosanoic acid, and tetracosanoic acid.
 前記炭素数14~24のアルキルスルホン酸が有するアルキル基としては、例えば、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基およびテトラコシル基等が挙げられる。 Examples of the alkyl group possessed by the alkyl sulfonic acid having 14 to 24 carbon atoms include a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an icosyl group, a henicosyl group, a docosyl group, a tricosyl group, and a tetracosyl group. Examples include groups.
 前記アルカリ金属塩が含むアルカリ金属としては、例えば、ナトリウムおよびカリウム等が挙げられる。 Examples of the alkali metal contained in the alkali metal salt include sodium and potassium.
 カチオン性界面活性剤としては、炭素数12~24のアルキル基を有する第4級アンモニウムのハロゲン化物塩等が挙げられる。 Examples of the cationic surfactant include quaternary ammonium halide salts having an alkyl group having 12 to 24 carbon atoms.
 前記炭素数12~24のアルキル基を有する第4級アンモニウムとしては、例えばテトラプロピルアンモニウム、テトラブチルアンモニウム、テトラペンチルアンモニウム、テトラヘキシルアンモニウム、ジメチルジオクチルアンモニウム、ジデシルジメチルアンモニウム、デシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、トリデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、メチルトリオクチルアンモニウム、オクチルトリメチルアンモニウム、トリブチルメチルアンモニウム、オクタデシルトリメチルアンモニウム、テトラデシルトリメチルアンモニウム、ノナデシルトリメチルアンモニウム、イコシルトリメチルアンモニウム、ヘンイコシルトリメチルアンモニウム、ヘプタデシルトリメチルアンモニウムおよびペンタデシルトリメチルアンモニウム等が挙げられる。 Examples of the quaternary ammonium having an alkyl group having 12 to 24 carbon atoms include tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, dimethyldioctylammonium, didecyldimethylammonium, decyltrimethylammonium, and dodecyltrimethyl. Ammonium, tridecyltrimethylammonium, hexadecyltrimethylammonium, methyltrioctylammonium, octyltrimethylammonium, tributylmethylammonium, octadecyltrimethylammonium, tetradecyltrimethylammonium, nonadecyltrimethylammonium, icosyltrimethylammonium, henicosyltrimethylammonium, Examples include heptadecyltrimethylammonium and pentadecyltrimethylammonium.
 前記ハロゲン化物塩としては、例えばフッ化物塩、塩化物塩、臭化物塩およびヨウ化物塩等が挙げられる。 Examples of the halide salts include fluoride salts, chloride salts, bromide salts, and iodide salts.
 両性界面活性剤としては、例えば、炭素数10~22のアルキル基を有するジメチル(3-スルホプロピル)アンモニウム分子内塩、炭素数10~22のアルキル基を有するN-アルキル-N,N-ジメチルグリシン等が挙げられる。 Examples of the amphoteric surfactant include dimethyl(3-sulfopropyl)ammonium inner salt having an alkyl group having 10 to 22 carbon atoms, and N-alkyl-N,N-dimethyl having an alkyl group having 10 to 22 carbon atoms. Examples include glycine.
 炭素数10~22のアルキル基を有するジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩としては、例えばデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、ウンデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、ドデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、トリデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、テトラデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、ペンタデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、ヘキサデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、ヘプタデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、オクタデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、ノナデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、イコシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩、ヘンイコシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩およびドコシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩等が挙げられる。 Examples of the dimethyl(3-sulfopropyl)ammonium hydroxide inner salt having an alkyl group having 10 to 22 carbon atoms include decyldimethyl(3-sulfopropyl)ammonium hydroxide inner salt, undecyldimethyl(3-sulfopropyl) ) ammonium hydroxide inner salt, dodecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, tridecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, tetradecyl dimethyl (3-sulfopropyl) ammonium hydroxide pentadecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, hexadecyl dimethyl (3-sulfopropyl) ammonium hydroxide inner salt, heptadecyl dimethyl (3-sulfopropyl) ammonium hydroxide molecule inner salt, octadecyldimethyl (3-sulfopropyl) ammonium hydroxide inner salt, nonadecyldimethyl (3-sulfopropyl) ammonium hydroxide inner salt, icosyldimethyl (3-sulfopropyl) ammonium hydroxide inner salt, Examples include icosyldimethyl(3-sulfopropyl)ammonium hydroxide inner salt and docosyldimethyl(3-sulfopropyl)ammonium hydroxide inner salt.
 炭素数10~22のアルキル基を有するN-アルキル-N,N-ジメチルグリシンとしては、N-ドデシル-N,N-ジメチルグリシンおよびN-オクタデシル-N,N-ジメチルグリシン等が挙げられる。 Examples of N-alkyl-N,N-dimethylglycine having an alkyl group having 10 to 22 carbon atoms include N-dodecyl-N,N-dimethylglycine and N-octadecyl-N,N-dimethylglycine.
 ノニオン性界面活性剤としては、例えば、高級アルコールエチレンオキサイド付加物等が挙げられる。 Examples of nonionic surfactants include higher alcohol ethylene oxide adducts.
 高級アルコールとしては、1-ヘキシルアルコール、1-ヘプチルアルコール、1-オクチルアルコール、1-ノニルアルコール、1-デシルアルコール、1-ウンデシルアルコール、1-ドデシルアルコール、1-トリデシルアルコール、1-テトラデシルアルコール、1-ペンタデシルアルコール、1-ヘキサデシルアルコール、1-ヘプタデシルアルコール、1-オクタデシルアルコール等が挙げられる。 Examples of higher alcohols include 1-hexyl alcohol, 1-heptyl alcohol, 1-octyl alcohol, 1-nonyl alcohol, 1-decyl alcohol, 1-undecyl alcohol, 1-dodecyl alcohol, 1-tridecyl alcohol, and 1-tetra Examples include decyl alcohol, 1-pentadecyl alcohol, 1-hexadecyl alcohol, 1-heptadecyl alcohol, and 1-octadecyl alcohol.
 エチレンオキサイド付加モル数は、匂い識別性能の観点から5~50が好ましく、より好ましくは5~40が好ましく、さらに好ましくは5~30である。 The number of moles of ethylene oxide added is preferably 5 to 50, more preferably 5 to 40, and even more preferably 5 to 30 from the viewpoint of odor discrimination performance.
 界面活性剤(B)は、フィラー(C)に対する分散性の観点から、アミド基、第1級アミノ基、第2級アミノ基、第3級アミノ基のうち少なくとも1つを有することが好ましい。また、界面活性剤(B)は、フィラー(C)に対する分散性の観点から、オキシエチレン鎖、オキシプロピレン鎖、および、オキシエチレン・オキシプロピレンのランダム構造もしくはブロック構造、の少なくとも1つを有することが好ましい。なお、オキシエチレン・オキシプロピレンのランダム構造は、オキシエチレンとオキシプロピレンとの両方が不規則に連結してなる鎖状構造である。また、オキシエチレン・オキシプロピレンのブロック構造は、オキシエチレンが連結してなるオキシエチレンブロックと、オキシプロピレンが連結してなるオキシプロピレンブロックとが連結してなる鎖状構造である。界面活性剤(B)の市販品の例としては、ディスパロンDA-325、ディスパロンDA-375、およびディスパロンDA-234(楠本化成(株)製)等が挙げられる。 From the viewpoint of dispersibility in the filler (C), the surfactant (B) preferably has at least one of an amide group, a primary amino group, a secondary amino group, and a tertiary amino group. In addition, from the viewpoint of dispersibility in the filler (C), the surfactant (B) should have at least one of an oxyethylene chain, an oxypropylene chain, and a random structure or block structure of oxyethylene/oxypropylene. is preferred. The random structure of oxyethylene/oxypropylene is a chain structure in which both oxyethylene and oxypropylene are irregularly connected. The block structure of oxyethylene/oxypropylene is a chain structure in which an oxyethylene block formed by connecting oxyethylene and an oxypropylene block formed by connecting oxypropylene are connected. Examples of commercially available surfactants (B) include Disparon DA-325, Disparon DA-375, and Disparon DA-234 (manufactured by Kusumoto Kasei Co., Ltd.).
 <フィラー(C)>
 フィラー(C)は、シリカ、ニッケル粉などの金属、導電性炭素材料など無機物系の材料である。本明細書において、導電性炭素材料とは、体積固有抵抗が0.1Ω・cm以下の炭素材料のことである。上述の樹脂組成物は、樹脂(A)と界面活性剤(B)との混合物中にフィラー(C)が分散している状態である。フィラー(C)同士が互いに接触して導電経路を形成することで樹脂組成物が導電性を有する。
<Filler (C)>
The filler (C) is an inorganic material such as silica, metal such as nickel powder, or conductive carbon material. In this specification, a conductive carbon material is a carbon material having a volume resistivity of 0.1 Ω·cm or less. In the above resin composition, the filler (C) is dispersed in a mixture of the resin (A) and the surfactant (B). The resin composition has electrical conductivity because the fillers (C) come into contact with each other and form a conductive path.
 シリカの市販品の例としては、日産化学社製のオルガノシリカゾル(メIPA-ST、IPA-ST-UP、IPA-ST-ZL、DMAC-ST、MEK-ST、MIBK-ST、PMA-STおよびPGM-ST)等が挙げられる。 Examples of commercially available silica products include organosilica sol (MEIPA-ST, IPA-ST-UP, IPA-ST-ZL, DMAC-ST, MEK-ST, MIBK-ST, PMA-ST and PGM-ST), etc.
 導電性炭素材料としては、例えば、カーボンブラック、カーボンナノチューブおよびグラフェン等が挙げられる。導電性炭素材料としては、特に、カーボンブラックであることが好ましい。 Examples of the conductive carbon material include carbon black, carbon nanotubes, and graphene. As the conductive carbon material, carbon black is particularly preferred.
 カーボンブラックの市販品としては、ケッチェンブラックEC(オランダ・アクゾ社製商品名)、ケッチェンブラックEC-300J(ライオンスペシャリティケミカルズ(株)製商品名)、ケッチェンブラックEC-600JD(ライオンスペシャリティケミカルズ(株)製商品名)、シーストG116、116(東海カーボン社製商品名)、ニテロン#10(新日鉄化学(株)社製商品名)、デンカブラック(電気化学工業(株)社製商品名)およびSUPER C-65(米国・MTI Corporation社製品名)等がある。 Commercially available carbon black products include Ketjenblack EC (product name manufactured by Akzo, Netherlands), Ketjenblack EC-300J (product name manufactured by Lion Specialty Chemicals Co., Ltd.), and Ketjenblack EC-600JD (product name manufactured by Lion Specialty Chemicals Co., Ltd.). (product name manufactured by Nippon Steel Chemical Co., Ltd.), Seast G116, 116 (product name manufactured by Tokai Carbon Co., Ltd.), Niteron #10 (product name manufactured by Nippon Steel Chemical Co., Ltd.), Denka Black (product name manufactured by Denki Kagaku Kogyo Co., Ltd.) and SUPER C-65 (product name of MTI Corporation, USA).
 カーボンナノチューブの市販品としては、VGCF-H(昭和電工(株)社製諸品名)等がある。 Commercially available carbon nanotubes include VGCF-H (manufactured by Showa Denko KK).
 グラフェンの市販品としては、シグマアルドリッチ社製がある。 Commercially available graphene products include those manufactured by Sigma-Aldrich.
 前記導電性炭素材料の形状は、好ましくは繊維状または球状である。 The shape of the conductive carbon material is preferably fibrous or spherical.
 繊維状である場合、繊維径は好ましくは0.1~10μmであり、更に好ましくは0.1~5μmである。繊維長は好ましくは0.1~10μmであり、更に好ましくは1~10μmである。 When it is fibrous, the fiber diameter is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm. The fiber length is preferably 0.1 to 10 μm, more preferably 1 to 10 μm.
 球状である場合、1次粒子径が好ましくは10nm~200nmであり、更に好ましくは20nm~150nmである。 When the particles are spherical, the primary particle diameter is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm.
 また、導電性炭素材料は、樹脂組成物中での導電性及びセンサ感度の観点から、一次粒子径が100nm以下であることが好ましい。導電性炭素材料の粒子径は、公知の方法で求めることが可能である。例えば導電性炭素材料の粒子径は透過型電子顕微鏡(TEM)により観察し、画像処理装置(例えばキーエンス製のデジタルマイクロスコープVHX-700F)を用いて画像解析することにより測定することができる。導電性炭素材料が公知の物または市販品である場合には、粒子径は、文献値またはカタログ値であってもよい。 Furthermore, from the viewpoint of conductivity in the resin composition and sensor sensitivity, the conductive carbon material preferably has a primary particle diameter of 100 nm or less. The particle size of the conductive carbon material can be determined by a known method. For example, the particle size of the conductive carbon material can be measured by observing it with a transmission electron microscope (TEM) and analyzing the image using an image processing device (for example, Digital Microscope VHX-700F manufactured by Keyence Corporation). When the conductive carbon material is a known material or a commercially available product, the particle size may be a literature value or a catalog value.
 <樹脂組成物の組成>
 樹脂組成物における樹脂(A)と界面活性剤(B)との重量比[(A)/(B)]は、樹脂組成物の塗工安定性および樹脂組成物中でのフィラー(C)の安定性の観点から4.0~50.0であることが好ましい。当該重量比(A)/(B)は、樹脂組成物中でのフィラー(C)の安定性の観点から、4.0超であることがより好ましく、4.5以上であることがより好ましく、5.0以上であることがより好ましい。また、当該重量比(A)/(B)は、樹脂組成物の塗工安定性から、40.0以下であることがより好ましく、30.0以下であることがより好ましい。
<Composition of resin composition>
The weight ratio [(A)/(B)] between the resin (A) and the surfactant (B) in the resin composition determines the coating stability of the resin composition and the amount of filler (C) in the resin composition. From the viewpoint of stability, it is preferably 4.0 to 50.0. The weight ratio (A)/(B) is more preferably more than 4.0, more preferably 4.5 or more, from the viewpoint of stability of the filler (C) in the resin composition. , more preferably 5.0 or more. Further, the weight ratio (A)/(B) is more preferably 40.0 or less, more preferably 30.0 or less, from the viewpoint of coating stability of the resin composition.
 樹脂組成物におけるフィラー(C)の含有量は、樹脂組成物から形成されるセンサ素子が匂いセンサとして十分な導電性を発現する観点、および当該匂いセンサとして十分な感度を発現する観点から、樹脂(A)、界面活性剤(B)およびフィラー(C)の合計100重量%に対して、5~30重量%であることが好ましい。樹脂(A)、界面活性剤(B)およびフィラー(C)の合計100重量%に対するフィラー(C)の含有量は、上記の導電性をより高める観点から、10重量%以上であることがより好ましく、15重量%以上であることがより好ましい。また、樹脂(A)、界面活性剤(B)およびフィラー(C)の合計100重量%に対するフィラー(C)の含有量は、上記の感度をより高める観点から、25重量%以下であることがより好ましく、20重量%以下であることがより好ましい。 The content of the filler (C) in the resin composition is determined from the viewpoint that the sensor element formed from the resin composition exhibits sufficient conductivity as an odor sensor, and from the viewpoint that the sensor element formed from the resin composition exhibits sufficient sensitivity as an odor sensor. The amount is preferably 5 to 30% by weight based on the total of 100% by weight of (A), surfactant (B) and filler (C). The content of filler (C) with respect to the total 100% by weight of resin (A), surfactant (B) and filler (C) is preferably 10% by weight or more from the viewpoint of further increasing the above-mentioned conductivity. The content is preferably 15% by weight or more, and more preferably 15% by weight or more. In addition, the content of filler (C) based on the total of 100% by weight of resin (A), surfactant (B), and filler (C) should be 25% by weight or less from the viewpoint of further increasing the sensitivity. More preferably, it is 20% by weight or less.
 <任意成分>
 樹脂組成物は、本発明の効果が得られる範囲において、前述した樹脂(A)、界面活性剤(B)およびフィラー(C)以外の他の成分をさらに含有していてもよい。他の成分の例には、溶剤(D)が含まれる。当該他の成分は、本発明の効果および当該他の成分による効果の両方が得られる範囲で好適に使用され得る。
<Optional ingredients>
The resin composition may further contain components other than the resin (A), surfactant (B) and filler (C) described above, within a range where the effects of the present invention can be obtained. Examples of other components include solvent (D). The other components may be suitably used within the range in which both the effects of the present invention and the effects of the other components can be obtained.
 溶剤(D)は、樹脂(A)と界面活性剤(B)との相溶性を高める観点、樹脂組成物中におけるフィラー(C)の分散性を高める観点、または樹脂組成物の塗布性を高める観点から樹脂組成物に配合することが可能である。溶剤(D)の例には、N-メチル-2-ピロリドン、プロピレングリコールモノメチルエーテルアセテート、酪酸エチル、酪酸ブチル、酢酸エチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、トルエンおよびキシレンが含まれる。 The solvent (D) is used from the viewpoint of increasing the compatibility between the resin (A) and the surfactant (B), from the viewpoint of increasing the dispersibility of the filler (C) in the resin composition, or from the viewpoint of increasing the applicability of the resin composition. From this point of view, it is possible to incorporate it into the resin composition. Examples of solvent (D) include N-methyl-2-pyrrolidone, propylene glycol monomethyl ether acetate, ethyl butyrate, butyl butyrate, ethyl acetate, N,N-dimethylformamide, N,N-dimethylacetamide, toluene and xylene. included.
 樹脂組成物における溶剤(D)の含有量は、上記の観点の観点から適宜に決定し得る。たとえば、樹脂組成物における溶剤(D)の含有量は、塗工性の観点から、樹脂(A)、界面活性剤(B)およびフィラー(C)の合計100重量部に対して、100~10000重量部であることが好ましい。 The content of the solvent (D) in the resin composition can be determined as appropriate from the above viewpoints. For example, from the viewpoint of coating properties, the content of the solvent (D) in the resin composition is 100 to 10,000 parts by weight based on a total of 100 parts by weight of the resin (A), the surfactant (B), and the filler (C). Parts by weight are preferred.
 <樹脂組成物の製法>
 前記樹脂組成物は、樹脂(A)、界面活性剤(B)、フィラー(C)および必要に応じて溶剤(D)を混合して、撹拌機で均一に混練することでスラリーとして得られる。溶剤(D)を添加する場合では、溶剤(D)は樹脂組成物から留去される。溶剤(D)は、均一に混合して生成した樹脂組成物から留去してもよいし、後述のセンサ素子の製造時に生成した塗膜から留去してもよい。
<Production method of resin composition>
The resin composition is obtained as a slurry by mixing a resin (A), a surfactant (B), a filler (C), and, if necessary, a solvent (D), and uniformly kneading the mixture with a stirrer. When adding the solvent (D), the solvent (D) is distilled off from the resin composition. The solvent (D) may be distilled off from the resin composition produced by uniformly mixing them, or may be distilled off from the coating film produced during the production of the sensor element described below.
 <主な作用効果>
 上述した樹脂組成物では、樹脂組成物に吸着した匂い物質の量に応じて樹脂組成物の電気伝導性が異なる。また、上述の樹脂組成物への匂い物質の吸着過程は、匂い物質毎に異なっている。このため、当該樹脂組成物で匂い物質が吸着し得る検出部を形成することにより、匂いセンサのセンサ素子に利用することが可能である。当該樹脂組成物を用いることにより、匂いの識別性能を向上させることができる。例えば、複数の物質が相互作用する現実の匂いパターンまたは組成が不明である物質による現実の匂いパターンをも識別することができる。また、当該樹脂組成物は、組成の安定性および樹脂組成物の塗工安定性に優れる。よってセンサ素子に利用したときの匂いの識別性能の安定性が高められる。
<Main effects>
In the resin composition described above, the electrical conductivity of the resin composition varies depending on the amount of the odorant adsorbed to the resin composition. Further, the adsorption process of odorants to the resin composition described above differs depending on the odorant. Therefore, by forming a detection part to which an odorant can be adsorbed using the resin composition, it can be used as a sensor element of an odor sensor. By using the resin composition, odor identification performance can be improved. For example, it is possible to identify real odor patterns in which multiple substances interact or even real odor patterns due to substances whose composition is unknown. Further, the resin composition has excellent composition stability and coating stability. Therefore, the stability of odor identification performance when used as a sensor element is improved.
 引用文献1に記載のセンサでは、単体の化合物からなる匂いの検出は可能であると考えられる。一方で多くの匂いは複数の物質の混合物である。引用文献1に記載のセンサでは検出部に匂いの成分を識別させる機能がないため、混合物に対する匂い識別性能が十分でない。引用文献2では検出部に用いる導電性を示す高分子の化学構造の違いを利用して、それぞれの導電性高分子を介して検出部が示す種々の化合物に対する応答に違いを持たせることで混合物としての匂いを認識させることができることが示されている。しかしながら、導電性を示す高分子の化学構造は限られており、任意の匂い成分に対する検出部の応答を感度良く分離することが難しく、類似の成分からなる匂い同士を識別させることは難しい。引用文献3では有機ポリマーと可塑剤と導電性物質からなる混合物を検出材料として検出部に用いて匂い成分が有機ポリマー中に浸透することを上記混合物の電気抵抗変化として検出する方法を提案している。異なる組成の有機ポリマーを用いれば浸透する匂い成分が異なることを利用して異なる組成の有機ポリマーを含む上記の検出材料からなる検出部を複数並列して用いるアレイにすることで、混合物としての匂いを認識させることができる。しかしながら、上記の有機ポリマーおよび可塑剤を含有する有機ポリマーでは、有機ポリマー/導電性物質の組み合わせを複数用意したとしても、有機ポリマー同士の化学的な性質の差が小さいため、匂いの識別性能は十分でない。これらの従来技術では例えば、複数の物質が相互作用する現実の匂いパターンまたは組成が不明である物質による現実の匂いパターンを的確に検知できない。 It is thought that the sensor described in Cited Document 1 is capable of detecting odors composed of single compounds. On the other hand, many odors are mixtures of multiple substances. The sensor described in Cited Document 1 does not have a function for identifying odor components in the detection section, and therefore does not have sufficient odor discrimination performance for mixtures. In Cited Document 2, the difference in chemical structure of conductive polymers used in the detection part is used to create a mixture in which the response to various compounds shown by the detection part is different through each conductive polymer. It has been shown that odors can be recognized as However, the chemical structure of conductive polymers is limited, making it difficult to sensitively separate the response of a detection unit to any odor component, and making it difficult to distinguish between odors made of similar components. Cited Document 3 proposes a method in which a mixture of an organic polymer, a plasticizer, and a conductive substance is used as a detection material in the detection part, and the penetration of an odor component into the organic polymer is detected as a change in the electrical resistance of the mixture. There is. Utilizing the fact that different odor components permeate when using organic polymers with different compositions, it is possible to detect odors as a mixture by creating an array in which multiple detection units made of the above-mentioned detection materials containing organic polymers with different compositions are used in parallel. can be recognized. However, with the above-mentioned organic polymers and organic polymers containing plasticizers, even if multiple combinations of organic polymers and conductive substances are prepared, the difference in chemical properties between organic polymers is small, so the odor discrimination performance is poor. not enough. These conventional techniques cannot accurately detect, for example, an actual odor pattern in which multiple substances interact or an actual odor pattern due to a substance whose composition is unknown.
 [2.センサ素子31]
 上述した樹脂組成物は、樹脂組成物に匂い物質Aが吸着した場合と、匂い物質Aとは異なる匂い物質Bが吸着した場合とで、電気伝導性の時的な変化が異なる。この性質を利用すれば、匂い物質を検出・識別可能なセンサ素子31を実現することができる。
[2. Sensor element 31]
The electrical conductivity of the resin composition described above changes over time depending on whether odorant A is adsorbed to the resin composition or when odorant B, which is different from odorant A, is adsorbed to the resin composition. By utilizing this property, it is possible to realize a sensor element 31 that can detect and identify odorants.
 以下では、本発明の一実施形態に係る樹脂組成物を適用したセンサ素子31の概要および効果について説明する。 Below, the outline and effects of the sensor element 31 to which the resin composition according to one embodiment of the present invention is applied will be explained.
 センサ素子31は、上述の樹脂組成物を含む匂い物質受容層315、第1金属配線313A、および第2金属配線313Bを備えている。なお、以下では、第1金属配線313Aおよび第2金属配線313Bを区別しない場合、金属配線313と記す場合がある。 The sensor element 31 includes an odorant receiving layer 315 containing the above-described resin composition, a first metal wiring 313A, and a second metal wiring 313B. Note that below, when the first metal wiring 313A and the second metal wiring 313B are not distinguished, they may be referred to as metal wiring 313.
 本明細書中、「匂い物質受容層」とは、識別対象となる匂い物質を吸着する層を意味する。匂い物質受容層は上述の樹脂組成物から形成される。匂い物質受容層は、本発明の実施形態に係るセンサ素子の一部として設けられ得る。 As used herein, the term "odorant receptor layer" refers to a layer that adsorbs an odorant to be identified. The odorant receptor layer is formed from the resin composition described above. An odorant-receptive layer may be provided as part of a sensor element according to an embodiment of the invention.
 ここで、第1金属配線313Aおよび第2金属配線313Bについて、図2および図3を用いて説明する。図2は、センサ素子31の構成の一例を示す上面図であり、図3は、図2に示すセンサ素子31の構成の一例を示す断面図である。 Here, the first metal wiring 313A and the second metal wiring 313B will be explained using FIGS. 2 and 3. FIG. 2 is a top view showing an example of the configuration of the sensor element 31, and FIG. 3 is a cross-sectional view showing an example of the configuration of the sensor element 31 shown in FIG.
 第1金属配線313Aおよび第2金属配線313Bは、匂い物質受容層315(すなわち、樹脂組成物)の電気伝導性の変化を計測するための電極として機能する金属配線である。すなわち、第1金属配線313Aと第2金属配線313Bとは互いに離間しており、匂い物質受容層315は、第1金属配線の少なくとも一部と第2金属配線の少なくとも一部とに接している。一例において、第1金属配線313Aおよび第2金属配線313Bは、互いに直接接していない金属配線であり、図2に示すように、互いに略平行な金属配線であってもよい。 The first metal wiring 313A and the second metal wiring 313B are metal wirings that function as electrodes for measuring changes in electrical conductivity of the odorant receiving layer 315 (ie, the resin composition). That is, the first metal wiring 313A and the second metal wiring 313B are spaced apart from each other, and the odorant receiving layer 315 is in contact with at least a portion of the first metal wiring and at least a portion of the second metal wiring. . In one example, the first metal wiring 313A and the second metal wiring 313B are metal wirings that are not in direct contact with each other, and may be metal wirings that are substantially parallel to each other as shown in FIG. 2.
 図2に示すように第1金属配線313Aおよび第2金属配線313Bを含む金属配線313は、基板311上に配置されていてもよい。基板311は、電子回路に一般的に用いられるガラスエポキシ等の基板であり得る。金属配線313は、銅、または金等の金属配線であり得る。基板の面に対して垂直な方向から見た第1金属配線313Aおよび第2金属配線313Bそれぞれの太さは10μm~2mmが好ましく、更に好ましくは10μm~1mmである。基板の面に対して平行な方向から見た第1金属配線313Aおよび第2金属配線313Bそれぞれの高さ、すなわち厚さは1μm~100μmが好ましく、更に好ましくは10μm~50μmである。第1金属配線313Aおよび第2金属配線313Bの間隔は1μm~1mmが好ましく、更に好ましくは1μm~100μmである。金属配線313の長さは10μm~50mmが好ましく、更に好ましくは10μm~30mmである。 As shown in FIG. 2, the metal wiring 313 including the first metal wiring 313A and the second metal wiring 313B may be arranged on the substrate 311. The substrate 311 may be a glass epoxy substrate commonly used in electronic circuits. The metal wiring 313 may be a metal wiring such as copper or gold. The thickness of each of the first metal wiring 313A and the second metal wiring 313B when viewed from a direction perpendicular to the surface of the substrate is preferably 10 μm to 2 mm, more preferably 10 μm to 1 mm. The height, that is, the thickness, of each of the first metal wiring 313A and the second metal wiring 313B when viewed from a direction parallel to the surface of the substrate is preferably 1 μm to 100 μm, more preferably 10 μm to 50 μm. The interval between the first metal wiring 313A and the second metal wiring 313B is preferably 1 μm to 1 mm, more preferably 1 μm to 100 μm. The length of the metal wiring 313 is preferably 10 μm to 50 mm, more preferably 10 μm to 30 mm.
 金属配線313はシール基板312上に配置されていてもよい。図3は、図2のA-A断面を示している。図3に示すようにガラスエポキシ等の基板311上にシール基板312を配置し、そのシール基板312上に金属配線313が配置されていてもよい。基板311上にシール基板312を固定するためにビニールテープ314を用いていてもよい。また、ビニールテープ314は、金属配線313の余分な部分をマスクすることにより、金属配線313の露出部分の長さを調整するためにも用いられ得る。ここで、金属配線313の露出部分とは、金属配線313と匂い物質受容層315とが接する部分である。ビニールテープ314は、金属配線313と匂い物質受容層315とが接する部分の長さを調節するための絶縁体でもあり得る。 The metal wiring 313 may be arranged on the seal substrate 312. FIG. 3 shows a cross section taken along line AA in FIG. As shown in FIG. 3, a seal substrate 312 may be placed on a substrate 311 made of glass epoxy or the like, and metal wiring 313 may be placed on the seal substrate 312. A vinyl tape 314 may be used to fix the seal substrate 312 on the substrate 311. The vinyl tape 314 can also be used to adjust the length of the exposed portion of the metal wiring 313 by masking the excess portion of the metal wiring 313. Here, the exposed portion of the metal wiring 313 is a portion where the metal wiring 313 and the odorant receiving layer 315 are in contact. The vinyl tape 314 may also be an insulator for adjusting the length of the contact portion between the metal wiring 313 and the odorant receptor layer 315.
 匂い物質受容層315は、第1金属配線313Aの少なくとも一部と第2金属配線313Bの少なくとも一部とに接していてもよい。匂い物質受容層315は、例えば、図2および図3に示すように、第1金属配線313Aと第2金属配線313Bとに挟まれた領域を埋めるように配されていてもよい。 The odorant-receiving layer 315 may be in contact with at least a portion of the first metal wiring 313A and at least a portion of the second metal wiring 313B. For example, as shown in FIGS. 2 and 3, the odorant-receiving layer 315 may be arranged to fill a region sandwiched between the first metal wiring 313A and the second metal wiring 313B.
 匂い物質受容層315の電気伝導性(すなわち、センサ素子31の電気伝導性)が低い場合、第1金属配線313Aと第2金属配線313Bとの間隔は所定の距離(例えば、500μm)以下であることが望ましい。 When the electrical conductivity of the odorant receptor layer 315 (that is, the electrical conductivity of the sensor element 31) is low, the interval between the first metal wiring 313A and the second metal wiring 313B is a predetermined distance (for example, 500 μm) or less. This is desirable.
 センサ素子31は、匂い物質Aが吸着した場合と、匂い物質Aとは異なる匂い物質Bが吸着した場合とで、電気伝導性の経時的な変化が異なる樹脂組成物を適用することにより、さまざまな匂い物質を検出したり、識別したりすることが可能である。 The sensor element 31 can be used in various ways by applying a resin composition whose electrical conductivity changes over time depending on whether odorant A is adsorbed or when odorant B, which is different from odorant A, is adsorbed. It is possible to detect and identify odorous substances.
 センサ素子31は、抵抗式の素子が用いられてもよく、膜型表面応力センサ(Membrane-type Surface stress Sensor:MSS)方式の素子が用いられてもよく、水晶振動子マイクロバランス(Quartz Crystal Microbalance;QCM)方式の素子が用いられてもよい。膜型表面応力センサ(MSS)方式の素子、水晶振動子マイクロバランス(QCM)方式の素子はいずれも電極上の膜物質の僅かな量の差や厚さのムラなどにより測定結果が変わり、センサ素子の製造ロット毎のバラツキが大きくなる傾向がある。また、膜型表面応力センサ(MSS)方式の素子ではカンチレバー等の応力感知部の構造が繊細なため、一度に大量のスラリーを塗布して厚膜形成をしようとすると、応力感知部の破損が生じ歩留りが低くなるという問題がある。一方で、抵抗式の素子ではこれらの課題が比較的少なく、これらの点から、本発明においては、センサ素子は抵抗式の素子が用いられることが好ましい。また、この抵抗式の素子のフィラー(C)としては導電性炭素材料を用いることが好ましい。 The sensor element 31 may be a resistive type element, a membrane-type surface stress sensor (MSS) type element, or a quartz crystal microbalance type element. ;QCM) type element may be used. Membrane surface stress sensor (MSS) type elements and quartz crystal microbalance (QCM) type elements both have measurement results that vary due to slight differences in the amount of film material on the electrode or uneven thickness, and the sensor There is a tendency for variations between manufacturing lots of elements to become large. In addition, in membrane surface stress sensor (MSS) type elements, the structure of the stress sensing part such as a cantilever is delicate, so if you try to form a thick film by applying a large amount of slurry at once, the stress sensing part may be damaged. There is a problem in that the yield is low. On the other hand, resistive elements have relatively few of these problems, and from these points of view, it is preferable to use resistive elements as the sensor element in the present invention. Further, it is preferable to use a conductive carbon material as the filler (C) of this resistance type element.
 <センサ素子の製造方法>
 センサ素子31は、前述した本発明の実施形態に係る樹脂組成物を用いて匂い物質受容層315を作製することによって製造することができる。匂い物質受容層315は、前述の樹脂組成物を塗工液として塗布し、形成された塗膜を固化または硬化させることによって作製され得る。樹脂組成物の塗布は、公知の塗布技術を用いて実施可能である。
<Method for manufacturing sensor element>
The sensor element 31 can be manufactured by creating the odorant receptor layer 315 using the resin composition according to the embodiment of the present invention described above. The odorant receptor layer 315 can be produced by applying the above-described resin composition as a coating liquid and solidifying or curing the formed coating film. The resin composition can be applied using known coating techniques.
 [3.匂いセンサ30]
 以下では、センサ素子31を適用した匂いセンサ30の概要および効果について、図1を用いて説明する。図1は、センサ素子31を適用した匂いセンサ30を備える匂い測定装置100の構成の一例を示す概略図である。なお、図1に示すセンサ素子31において、ビニールテープ314は簡略化のためにその図示を省略している。
[3. Odor sensor 30]
Below, the outline and effects of the odor sensor 30 to which the sensor element 31 is applied will be explained using FIG. 1. FIG. 1 is a schematic diagram showing an example of the configuration of an odor measuring device 100 including an odor sensor 30 to which a sensor element 31 is applied. Note that in the sensor element 31 shown in FIG. 1, the illustration of the vinyl tape 314 is omitted for simplification.
 匂いセンサ30は、匂い物質を検出するセンサ素子31、定電流源32(電源)、および電圧計33(測定機器)を備えている。 The odor sensor 30 includes a sensor element 31 that detects odorants, a constant current source 32 (power source), and a voltmeter 33 (measuring device).
 センサ素子31の第1金属配線313Aと第2金属配線313Bとはリード線Wで接続されている。図1には、リード線Wに定電流源32および電圧計33が配された例を示している。 The first metal wiring 313A and the second metal wiring 313B of the sensor element 31 are connected by a lead wire W. FIG. 1 shows an example in which a constant current source 32 and a voltmeter 33 are arranged on the lead wire W.
 定電流源32は、センサ素子31に給電するための電源である。定電流源32は、センサ素子31にリード線を介して定電流(例えば、1mAの直流電流)を供給する。 The constant current source 32 is a power source for feeding power to the sensor element 31. The constant current source 32 supplies a constant current (for example, 1 mA DC current) to the sensor element 31 via a lead wire.
 電圧計33は、定電流源32から供給された定電流を匂い物質受容層315に供給した場合に、第1金属配線313Aと第2金属配線313Bとの間に生じる電位差を測定する。 The voltmeter 33 measures the potential difference generated between the first metal wiring 313A and the second metal wiring 313B when the constant current supplied from the constant current source 32 is supplied to the odorant receiving layer 315.
 匂いセンサ30は、必須の構成ではないが、筐体34をさらに備えていてもよい。筐体34は、匂い物質を含む空気を内包可能な容器である。筐体34を備えている場合、センサ素子31は筐体34内に設置される。 The odor sensor 30 may further include a housing 34, although this is not an essential configuration. The housing 34 is a container that can contain air containing an odorant. When the housing 34 is provided, the sensor element 31 is installed within the housing 34.
 筐体34は、匂い物質を導入するための導入口341および匂い物質を含む空気を排出するための排出口342を備えていている。匂い物質の導入は、導入口341から匂い物質を浸漬したろ紙P等を筐体34内に挿入することによって行われてもよいし、匂い物質を含む空気を導入口341から筐体34内に挿入することによって行われてもよい。筐体34は、匂い物質を所定の濃度(例えば、200ppm)以上含む空気を内包するための容器である。 The housing 34 includes an inlet 341 for introducing odorants and an outlet 342 for discharging air containing odorants. The introduction of the odorant may be carried out by inserting a filter paper P soaked with the odorant into the housing 34 through the introduction port 341, or by introducing air containing the odorant into the housing 34 through the introduction port 341. It may also be done by inserting. The housing 34 is a container for containing air containing an odorant at a predetermined concentration (for example, 200 ppm) or more.
 筐体34の排出口342には、必須では無いが、気流生成用ファン35が配されていてもよい。気流生成用ファン35は、筐体34内に気流を生じさせたり、筐体34内の気体を排出口342から筐体34外へ排出させたりするためのものである。 Although not essential, an airflow generation fan 35 may be disposed at the exhaust port 342 of the housing 34. The airflow generation fan 35 is used to generate an airflow inside the housing 34 and to discharge gas inside the housing 34 to the outside of the housing 34 from the exhaust port 342 .
 なお、匂いセンサ30は、定電流源32の代替として不図示の定電圧源(電源)、電圧計33の代替として不図示の電流計(測定機器)を備えていてもよい。この場合、定電圧源は、センサ素子31に給電するための電源として機能し、センサ素子31にリード線を介して定電圧を印加する。一方、電流計は、匂い物質受容層315に定電圧が印加された場合に、第1金属配線313Aと第2金属配線313Bとの間を流れる電流値を測定する。 Note that the odor sensor 30 may include a constant voltage source (power supply) (not shown) as an alternative to the constant current source 32 and an ammeter (measuring device) (not shown) as an alternative to the voltmeter 33. In this case, the constant voltage source functions as a power source for supplying power to the sensor element 31, and applies a constant voltage to the sensor element 31 via the lead wire. On the other hand, the ammeter measures the value of the current flowing between the first metal wiring 313A and the second metal wiring 313B when a constant voltage is applied to the odorant receiving layer 315.
 匂いセンサ30は、センサ素子31に匂い物質が吸着する前後における、該センサ素子31の電気伝導性の経時的な変化を示す測定値を出力する。これにより、さまざまな匂い物質を検出したり、識別したりすることが可能である。 The odor sensor 30 outputs a measured value indicating the change in electrical conductivity of the sensor element 31 over time before and after the odorant is adsorbed to the sensor element 31. This makes it possible to detect and identify various odorants.
 [4.匂い測定装置100]
 上述した匂いセンサ30は、センサ素子31にさまざまな匂い物質が吸着した場合、該センサ素子31の電気伝導性の経時的な変化を匂い物質毎に出力することができる。この匂いセンサ30を適用すれば、匂い物質Aがセンサ素子31に吸着した場合の該センサ素子31の電気伝導性の経時的な変化と、匂い物質Bがセンサ素子31に吸着した場合の該センサ素子31の電気伝導性の経時的な変化と比較することができる。このような比較結果に基づいて、センサ素子31に吸着した匂い物質を推定可能な匂い測定装置100を実現することができる。
[4. Odor measuring device 100]
The above-described odor sensor 30 can output changes over time in the electrical conductivity of the sensor element 31 for each odorant when various odorants are adsorbed to the sensor element 31. If this odor sensor 30 is applied, changes in electrical conductivity of the sensor element 31 over time when odorant A is adsorbed to the sensor element 31, and changes over time in the electrical conductivity of the sensor element 31 when odorant B is adsorbed to the sensor element 31 can be detected. It can be compared with the change in electrical conductivity of the element 31 over time. Based on such comparison results, it is possible to realize the odor measurement device 100 that can estimate the odorant adsorbed to the sensor element 31.
 さらに、匂い測定装置100は、機械学習によって生成した推定モデル22を用いれば、高精度な匂い物質の推定を行うことができる。推定モデル22は、複数の匂い物質のそれぞれを少なくとも1つのセンサ素子31に吸着させた場合に測定される測定値と、該測定値を与えた匂い物質に固有の識別情報との組み合わせを含む学習用データを用いて生成され得る。 Furthermore, the odor measurement device 100 can estimate odorants with high accuracy by using the estimation model 22 generated by machine learning. The estimation model 22 is a learning model that includes a combination of a measurement value measured when each of a plurality of odorants is adsorbed to at least one sensor element 31 and identification information specific to the odorant that gave the measurement value. can be generated using data for
 以下では、匂いセンサ30を適用した匂い測定装置100の概要および効果について説明する。匂い測定装置100は、上述した樹脂組成物を適用したセンサ素子31に生じた電気伝導性の変化から、センサ素子31に吸着した匂い物質を推定する装置である。 Below, the outline and effects of the odor measuring device 100 to which the odor sensor 30 is applied will be explained. The odor measuring device 100 is a device that estimates the odorant adsorbed to the sensor element 31 from the change in electrical conductivity that occurs in the sensor element 31 to which the above-described resin composition is applied.
 まず、本発明の一実施形態に係る匂い測定装置100の構成について、図1を用いて説明する。図1は、匂い測定装置100の構成の一例を示すブロック図である。 First, the configuration of an odor measuring device 100 according to an embodiment of the present invention will be described using FIG. 1. FIG. 1 is a block diagram showing an example of the configuration of an odor measuring device 100.
 図1に示すように、匂い測定装置100は、推定装置10、および匂いセンサ30を備えている。 As shown in FIG. 1, the odor measuring device 100 includes an estimating device 10 and an odor sensor 30.
 <推定装置10>
 推定装置10は、匂いセンサ30によって検出された匂い物質を推定する装置である。推定装置10は、例えばコンピュータであり、不図示のCPUおよびメモリを備えている。推定装置10は、匂いセンサ30と通信可能に接続されている。具体的には、推定装置10は、匂いセンサ30から取得した計測値を解析することによって、匂い物質の推定を実行する。推定装置10の構成については、後に説明する。
<Estimation device 10>
The estimating device 10 is a device that estimates the odorant detected by the odor sensor 30. The estimation device 10 is, for example, a computer, and includes a CPU and memory (not shown). The estimation device 10 is communicably connected to the odor sensor 30. Specifically, the estimation device 10 estimates the odorant by analyzing the measured value obtained from the odor sensor 30. The configuration of the estimation device 10 will be explained later.
 (推定モデル22の生成)
 次に、匂い物質を推定するために用いる推定モデル22を生成する処理を行う匂い測定装置100の構成、および、推定モデル22を生成する処理について、図4および図5を用いて説明する。
(Generation of estimation model 22)
Next, the configuration of the odor measuring device 100 that performs the process of generating the estimation model 22 used to estimate an odorant, and the process of generating the estimation model 22 will be described using FIGS. 4 and 5.
 推定モデル22は、複数の匂い物質のそれぞれを少なくとも1つのセンサ素子に吸着させた場合に電圧計33によって測定される測定値と、該測定値を与えた匂い物質に固有の識別情報との組み合わせを含む学習用データを用いた機械学習によって生成される。ここで、匂い物質に固有の識別情報とは、例えば、匂い物質の名称、CAS番号、および化学式等であってもよい。 The estimation model 22 is a combination of a measurement value measured by a voltmeter 33 when each of a plurality of odorants is adsorbed to at least one sensor element, and identification information specific to the odorant that gave the measurement value. Generated by machine learning using training data including . Here, the identification information unique to the odorant may be, for example, the name, CAS number, chemical formula, etc. of the odorant.
 (推定装置10の構成(推定モデル22の生成))
 図4は、匂い測定装置100の構成の一例を示す機能ブロック図である。なお、説明の便宜上、図1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
(Configuration of estimation device 10 (generation of estimation model 22))
FIG. 4 is a functional block diagram showing an example of the configuration of the odor measuring device 100. For convenience of explanation, members having the same functions as the members described in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.
 図4に示すように、推定装置10は、入力部15、制御部1、記憶部2を備えている。 As shown in FIG. 4, the estimation device 10 includes an input section 15, a control section 1, and a storage section 2.
 入力部15は、ユーザからの各種入力操作を受付けるためのものであり、例えば、キーボード、マウス、タッチパネル等であってもよい。 The input unit 15 is for receiving various input operations from the user, and may be, for example, a keyboard, a mouse, a touch panel, etc.
 制御部1は、測定値取得部11(取得部)、変化パターン解析部12(解析部)、学習制御部13、および推定モデル生成部14を備えている。 The control unit 1 includes a measured value acquisition unit 11 (acquisition unit), a change pattern analysis unit 12 (analysis unit), a learning control unit 13, and an estimated model generation unit 14.
 測定値取得部11は、電圧計33から測定値を取得する。また測定値取得部11は、取得した測定値を用いて、センサ素子31の電気伝導性を示す値(例えば、抵抗値、およびインピーダンスなど)を算出する。本開示において、測定値取得部11は、匂い物質受容層の抵抗値の変化を算出することが好ましい。測定値取得部11は、電圧計33から所定の時間間隔(例えば0.1秒間隔)で測定値を取得してもよい。 The measured value acquisition unit 11 acquires the measured value from the voltmeter 33. Furthermore, the measured value acquisition unit 11 uses the acquired measured values to calculate values (for example, resistance value, impedance, etc.) indicating the electrical conductivity of the sensor element 31. In the present disclosure, it is preferable that the measured value acquisition unit 11 calculates a change in the resistance value of the odorant receiving layer. The measured value acquisition unit 11 may acquire measured values from the voltmeter 33 at predetermined time intervals (for example, at 0.1 second intervals).
 変化パターン解析部12は、少なくとも1つのセンサ素子31の電気伝導性の経時的な変化を解析する。変化パターン解析部12は、測定値取得部11によって算出された抵抗値を用いて、匂い物質が吸着したことによるセンサ素子31の電気伝導性の変化量を示す値を算出する。変化パターン解析部12は、算出した電気伝導性の変化量の時間変化を示す変化パターンを示すデータを生成する。変化パターン解析部12は、生成した変化パターンが既知の匂い物質である場合、生成した変化パターンを該既知の匂い物質に固有の識別情報と対応付けて、変化パターンデータベース21(学習用データ)に格納してもよい。 The change pattern analysis unit 12 analyzes changes in electrical conductivity of at least one sensor element 31 over time. The change pattern analysis unit 12 uses the resistance value calculated by the measured value acquisition unit 11 to calculate a value indicating the amount of change in electrical conductivity of the sensor element 31 due to adsorption of the odorant. The change pattern analysis unit 12 generates data indicating a change pattern indicating a temporal change in the calculated amount of change in electrical conductivity. When the generated change pattern is for a known odorant, the change pattern analysis unit 12 associates the generated change pattern with identification information specific to the known odorant and stores it in the change pattern database 21 (learning data). May be stored.
 学習制御部13は、記憶部2から変化パターンデータベース21を読み出して、機械学習による推定モデル22の生成を制御する。ここで、変化パターンデータベース21は、複数の匂い物質をセンサ素子31に吸着させた場合に測定される測定値と、該測定値を与えた既知の匂い物質に固有の識別情報との組み合わせを含むデータベースである。学習制御部13は、変化パターンデータベース21から読み出した変化パターンを推定モデル生成部14に入力する。また、学習制御部13は、推定モデル生成部14に入力した変化パターンに対応する匂い物質の識別情報と、推定モデル生成部14から出力される推定結果とを比較し、比較結果に応じた補正指示を推定モデル生成部14に出力する。 The learning control unit 13 reads the change pattern database 21 from the storage unit 2 and controls the generation of the estimation model 22 by machine learning. Here, the change pattern database 21 includes a combination of measurement values measured when a plurality of odorants are adsorbed onto the sensor element 31 and identification information unique to the known odorant that gave the measurement values. It is a database. The learning control unit 13 inputs the change pattern read from the change pattern database 21 to the estimated model generation unit 14. Further, the learning control unit 13 compares the identification information of the odorant corresponding to the change pattern input to the estimation model generation unit 14 and the estimation result output from the estimation model generation unit 14, and makes corrections according to the comparison result. The instruction is output to the estimated model generation unit 14.
 推定モデル生成部14は、変化パターンデータベース21に格納されている変化パターンを用いた機械学習アルゴリズムによって、推定モデル22を生成する。推定モデル生成部14は、公知の教師有り機械学習アルゴリズムを用いて推定モデル22を生成する構成であってもよい。推定モデル生成部14に適用可能な機械学習アルゴリズムとしては、例えば、k近似法(k-nearest neighbor method)、ロジスティック回帰、サポートベクトルマシン、ランダムフォレスト、およびニューラルネットワーク等が挙げられる。 The estimated model generation unit 14 generates the estimated model 22 by a machine learning algorithm using change patterns stored in the change pattern database 21. The estimated model generation unit 14 may be configured to generate the estimated model 22 using a known supervised machine learning algorithm. Examples of machine learning algorithms that can be applied to the estimated model generation unit 14 include the k-nearest neighbor method, logistic regression, support vector machine, random forest, and neural network.
 (推定モデル22を生成する処理)
 以下、制御部1の各部が行う具体的な処理については、図5を用いて説明する。図5は、推定装置10が推定モデル22を生成する処理の流れの一例を示すフローチャートである。
(Processing to generate estimation model 22)
Hereinafter, specific processing performed by each part of the control unit 1 will be explained using FIG. 5. FIG. 5 is a flowchart illustrating an example of a process flow in which the estimation device 10 generates the estimation model 22.
 まず、測定値取得部11は、匂い物質を浸漬させたろ紙Pを筐体34へ挿入する前の匂いセンサ30において測定された電圧値V0を取得し、抵抗値R0を算出する(ステップS11)。抵抗値R0は、好ましくは200~10000Ωであり、さらに好ましくは250~3000Ωであり、最も好ましくは300~1000Ωである。 First, the measured value acquisition unit 11 acquires the voltage value V0 measured at the odor sensor 30 before inserting the filter paper P impregnated with the odorant into the housing 34, and calculates the resistance value R0 (step S11). . The resistance value R0 is preferably 200 to 10,000 Ω, more preferably 250 to 3,000 Ω, and most preferably 300 to 1,000 Ω.
 一方、入力部15は、筐体34内に挿入したろ紙Pに浸漬させた既知の匂い物質の名称等の入力を受け付ける(ステップS12)。ステップS12の処理はステップS11の前に行ってもよい。 On the other hand, the input unit 15 receives input such as the name of a known odorant substance dipped into the filter paper P inserted into the housing 34 (step S12). The process of step S12 may be performed before step S11.
 次に、測定値取得部11は、既知の匂い物質を浸漬させたろ紙Pを筐体34へ挿入した直後からの、匂いセンサ30において測定された電圧値Vを取得し、抵抗値Rを算出する(ステップS13)。 Next, the measured value acquisition unit 11 acquires the voltage value V measured at the odor sensor 30 immediately after inserting the filter paper P impregnated with a known odorant into the housing 34, and calculates the resistance value R. (Step S13).
 続いて、変化パターン解析部12は、抵抗値R0および抵抗値Rを用いて、R/R0を算出する(ステップS14)。R/R0は、既知の匂い物質が吸着したことによる、センサ素子31の電気伝導性の変化量を示す値である。なお、変化パターン解析部12は、R/R0の代わりに、R-R0を算出してもよい。変化パターン解析部12は、R/R0の経時的な変化パターンを、入力された既知の匂い物質の名称と対応付けて変化パターンデータベース21に格納する(ステップS15)。 Subsequently, the change pattern analysis unit 12 calculates R/R0 using the resistance value R0 and the resistance value R (step S14). R/R0 is a value indicating the amount of change in electrical conductivity of the sensor element 31 due to adsorption of a known odorant. Note that the change pattern analysis unit 12 may calculate R-R0 instead of R/R0. The change pattern analysis unit 12 stores the change pattern of R/R0 over time in the change pattern database 21 in association with the input name of the known odorant (step S15).
 所定種類の既存の匂い物質について変化パターンが記憶されていない場合(ステップS16にてNO)、すなわち、機械学習に用いるデータがまだ不足している場合、ステップS11に戻る。 If no change pattern is stored for the predetermined type of existing odorant (NO in step S16), that is, if the data used for machine learning is still insufficient, the process returns to step S11.
 所定種類の既存の匂い物質について変化パターンが記憶された場合(ステップS16にてYES)、学習制御部13は、変化パターンデータベース21に記憶されている、既知の匂い物質についての変化パターンを読み出して、推定モデル生成部14に入力する。推定モデル生成部14は、変化パターンデータベース21に格納されている変化パターンを用いた機械学習アルゴリズムによって、推定モデル22を生成する(ステップS17)。 If a change pattern is stored for a predetermined type of existing odorant (YES in step S16), the learning control unit 13 reads the change pattern for the known odorant stored in the change pattern database 21. , is input to the estimated model generation section 14. The estimated model generation unit 14 generates the estimated model 22 by a machine learning algorithm using the change patterns stored in the change pattern database 21 (step S17).
 推定モデル生成部14は、所定の機械学習によって生成した推定モデル22を記憶部2に格納する(ステップS18)。 The estimated model generation unit 14 stores the estimated model 22 generated by predetermined machine learning in the storage unit 2 (step S18).
 図4および図5に示す例では、推定装置10が推定モデル22を生成しているが、これに限定されない。例えば、推定装置10とは異なる外部のコンピュータであって、学習制御部13および推定モデル生成部14と同じ機能を備えるコンピュータに変化パターンデータベース21と同じデータを提供して、推定モデル22を作成させてもよい。 In the examples shown in FIGS. 4 and 5, the estimation device 10 generates the estimation model 22, but the present invention is not limited to this. For example, a computer that is external to the estimation device 10 and has the same functions as the learning control unit 13 and the estimation model generation unit 14 is provided with the same data as the change pattern database 21 to create the estimation model 22. You can.
 (匂い物質の推定)
 次に、推定モデル22を用いて匂い物質を推定する匂い測定装置100aの構成、および、推定処理について、図6および図7を用いて説明する。
(Estimation of odorant)
Next, the configuration and estimation processing of the odor measurement device 100a that estimates odorants using the estimation model 22 will be described using FIGS. 6 and 7.
 (推定装置10aの構成(推定処理の実行))
 図6は、匂い測定装置100aの構成の一例を示す機能ブロック図である。なお、説明の便宜上、図1および図4にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
(Configuration of estimation device 10a (execution of estimation process))
FIG. 6 is a functional block diagram showing an example of the configuration of the odor measuring device 100a. For convenience of explanation, members having the same functions as those described in FIGS. 1 and 4 are denoted by the same reference numerals, and the description thereof will not be repeated.
 図6に示すように、推定装置10aは、制御部1a、記憶部2a、および出力部18を備えている。ここで、図6は、図4に示す推定装置10を、匂い物質の推定処理に利用した場合の構成例を示している。すなわち、図4に示す推定装置10と図6に示す推定装置10aとは、同じハードウェア構成を備えるコンピュータであってもよい。 As shown in FIG. 6, the estimation device 10a includes a control section 1a, a storage section 2a, and an output section 18. Here, FIG. 6 shows a configuration example when the estimation device 10 shown in FIG. 4 is used for estimation processing of odorants. That is, the estimation device 10 shown in FIG. 4 and the estimation device 10a shown in FIG. 6 may be computers having the same hardware configuration.
 出力部18は、ユーザに推定結果を提示するためのものであり、例えば、ディスプレイ、スピーカ、ランプ等であってもよい。 The output unit 18 is for presenting the estimation results to the user, and may be, for example, a display, a speaker, a lamp, etc.
 制御部1aは、測定値取得部11(取得部)、変化パターン解析部12(解析部)、推定部16、および出力制御部17を備えている。 The control unit 1a includes a measured value acquisition unit 11 (acquisition unit), a change pattern analysis unit 12 (analysis unit), an estimation unit 16, and an output control unit 17.
 推定部16は、推定モデル22を用いて、匂いセンサ30から取得した測定値を解析した解析結果から匂い物質を推定する。 The estimation unit 16 uses the estimation model 22 to estimate the odorant from the analysis result of the measurement value obtained from the odor sensor 30.
 出力制御部17は、推定結果を出力するように出力部18を制御する。 The output control unit 17 controls the output unit 18 to output the estimation result.
 (推定処理)
 以下、制御部1aの各部が行う具体的な処理については、図7を用いて説明する。図7は、推定装置10aが匂い物質を推定する処理の流れの一例を示すフローチャートである。
(Estimation processing)
Hereinafter, specific processing performed by each part of the control unit 1a will be described using FIG. 7. FIG. 7 is a flowchart showing an example of a process flow in which the estimating device 10a estimates an odorant.
 まず、測定値取得部11は、匂い物質を浸漬させたろ紙Pを筐体34へ挿入する前の匂いセンサ30において測定された電圧値V0を取得し、抵抗値R0を算出する(ステップS1)。 First, the measured value acquisition unit 11 acquires the voltage value V0 measured at the odor sensor 30 before inserting the filter paper P impregnated with the odorant into the housing 34, and calculates the resistance value R0 (step S1). .
 次に、測定値取得部11は、未知の(すなわち、推定対象の)匂い物質を浸漬させたろ紙Pを筐体34へ挿入した直後からの、匂いセンサ30において測定された電圧値Vを取得し、抵抗値Rを算出する(ステップS2)。 Next, the measured value acquisition unit 11 acquires the voltage value V measured at the odor sensor 30 immediately after inserting the filter paper P impregnated with an unknown (i.e., estimation target) odorant into the housing 34. Then, the resistance value R is calculated (step S2).
 続いて、変化パターン解析部12は、抵抗値R0および抵抗値Rを用いて、R/R0を算出する(ステップS3)。 Next, the change pattern analysis unit 12 calculates R/R0 using the resistance value R0 and the resistance value R (step S3).
 次に、推定部16は、推定モデル22に基づいて、R/R0の経時的な変化パターンから未知の匂い物質を推定する(ステップS4)。 Next, the estimation unit 16 estimates the unknown odorant from the change pattern of R/R0 over time based on the estimation model 22 (step S4).
 出力制御部17は、出力部を制御して、推定結果を出力する(ステップS5)。 The output control unit 17 controls the output unit and outputs the estimation result (step S5).
 〔実施形態2〕
 上述の実施形態では、1つのセンサ素子31を備える匂いセンサ30について説明したが、匂いセンサ30が2以上のセンサ素子31を備えていてもよい。例えば、匂いセンサ30bは、匂い物質受容層315に用いた樹脂組成物が互いに異なるセンサ素子31、31bを備えていてもよい。このことについて、図8を用いて説明する。図8は、本発明の別の実施形態に係る匂い測定装置100bの構成の一例を示すブロック図である。なお、説明の便宜上、図1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
In the above-described embodiment, the odor sensor 30 includes one sensor element 31, but the odor sensor 30 may include two or more sensor elements 31. For example, the odor sensor 30b may include sensor elements 31 and 31b in which the resin compositions used for the odor substance receiving layer 315 are different from each other. This will be explained using FIG. 8. FIG. 8 is a block diagram showing an example of the configuration of an odor measuring device 100b according to another embodiment of the present invention. For convenience of explanation, members having the same functions as the members described in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.
 例えば、図8に示す匂い測定装置100bは、匂いセンサ30、30bおよび推定装置10bを備えている。匂いセンサ30bは、センサ素子31およびセンサ素子31bを備えており、センサ素子31の匂い物質受容層315と、センサ素子31bの匂い物質受容層315bとでは、用いられている樹脂組成物が異なっていてもよい。 For example, the odor measuring device 100b shown in FIG. 8 includes odor sensors 30, 30b and an estimation device 10b. The odor sensor 30b includes a sensor element 31 and a sensor element 31b, and the odorant receptor layer 315 of the sensor element 31 and the odorant receptor layer 315b of the sensor element 31b use different resin compositions. You can.
 推定装置10bは、推定装置10、10aと同じ構成を備えるコンピュータであってもよい。推定装置10bは、定電流源32からセンサ素子31に定電流を供給した場合に電圧計33によって測定される第1測定値と、定電流源32bからセンサ素子31bに定電流を供給した場合に電圧計33bによって測定される第2測定値とをそれぞれ取得し解析する。 The estimation device 10b may be a computer having the same configuration as the estimation devices 10 and 10a. The estimation device 10b calculates a first measurement value measured by the voltmeter 33 when a constant current is supplied from the constant current source 32 to the sensor element 31, and a first measurement value when a constant current is supplied from the constant current source 32b to the sensor element 31b. and the second measurement value measured by the voltmeter 33b are respectively acquired and analyzed.
 匂い物質を吸着する特性が異なる樹脂組成物を匂い物質受容層に用いたセンサ素子を複数備えることにより、匂い測定装置100bは、複数の匂い物質についての推定を同時に実行することができる。なお、本発明の一実施形態に係るセンサ素子に加えて、匂い物質受容層に界面活性剤(B)を含まないセンサ素子を併用してもよい。 By including a plurality of sensor elements whose odorant-receiving layers are made of resin compositions with different odorant-adsorbing properties, the odor measuring device 100b can simultaneously perform estimation for a plurality of odorants. In addition to the sensor element according to one embodiment of the present invention, a sensor element whose odorant-receiving layer does not contain the surfactant (B) may be used in combination.
 また、匂い測定装置100bを用いれば、既知の匂い物質のそれぞれについて、センサ素子31の電気伝導性の変化を示す第1変化パターンと、センサ素子31bの電気伝導性の変化を示す第2変化パターンとを得ることが可能である。推定モデル22は、第1変化パターンおよび第2変化パターンの両方を用いた機械学習によって生成されてもよい。匂い測定装置100bは、このように生成された推定モデル22を用いて匂い物質を推定するため、各匂い物質をより精密に識別することが可能である。 Furthermore, if the odor measuring device 100b is used, a first change pattern indicating a change in the electrical conductivity of the sensor element 31 and a second change pattern indicating a change in the electrical conductivity of the sensor element 31b can be obtained for each known odorant. It is possible to obtain The estimated model 22 may be generated by machine learning using both the first change pattern and the second change pattern. Since the odor measurement device 100b estimates odorants using the estimation model 22 generated in this way, it is possible to identify each odorant more precisely.
 〔実施形態3〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 3]
Hereinafter, one embodiment of the present invention will be described in detail.
 実施形態2の匂い測定装置100bは、内部に2つのセンサ素子(すなわち、センサ素子31および31b)を備える筐体34の中に、匂い物質を浸漬させたろ紙Pを導入する態様であった。この構成では、センサ素子31及び31bに匂い物質が到達するタイミングを制御したり、匂い物質の濃度を調整したりすることができない。そこで、本実施形態の匂い測定装置100cは、複数のセンサ素子(以下、センサ素子群31A)を備えるセンサチャンバ60と、匂い物質を含む対象試料が導入され、対象試料から発生した匂い物質を含む気体が内包される対象試料受入部50とを別々に備える。本実施形態では、センサ素子群31Aに含まれる個々のセンサ素子を単に「センサ素子」と記す場合もある。また、本実施形態において、対象試料受入部50と、センサチャンバ60との構成が、実施形態1および2の匂いセンサ30および匂いセンサ31に相当する。 The odor measuring device 100b of Embodiment 2 had a mode in which a filter paper P impregnated with an odorant was introduced into a casing 34 having two sensor elements (namely, sensor elements 31 and 31b) inside. With this configuration, it is not possible to control the timing at which the odorant reaches the sensor elements 31 and 31b, or to adjust the concentration of the odorant. Therefore, the odor measuring device 100c of the present embodiment includes a sensor chamber 60 including a plurality of sensor elements (hereinafter referred to as sensor element group 31A), a target sample containing an odorant, and a sensor chamber 60 including a plurality of sensor elements (hereinafter referred to as a sensor element group 31A). A target sample receiving section 50 containing gas is separately provided. In this embodiment, each sensor element included in the sensor element group 31A may be simply referred to as a "sensor element". Furthermore, in this embodiment, the configurations of the target sample receiving section 50 and the sensor chamber 60 correspond to the odor sensor 30 and the odor sensor 31 of the first and second embodiments.
 本実施形態の匂い測定装置100cは、対象試料受入部50の内部の、匂い物質を含む気体を別の気体(キャリアガス)を用いてセンサチャンバ60の方へ押し出す構成を採用している。本実施形態において、対象試料受入部50内に対象試料が導入された場合の該対象試料受入部50内の気体(すなわち、検出対象の匂い物質を含む気体)を第1気体と称す。一方、第1気体をセンサチャンバ60の方へ押し出すためのキャリアガスのことを第2気体と称す。 The odor measurement device 100c of this embodiment employs a configuration in which the gas containing the odorant inside the target sample receiving section 50 is pushed out toward the sensor chamber 60 using another gas (carrier gas). In this embodiment, the gas in the target sample receiving unit 50 when the target sample is introduced into the target sample receiving unit 50 (that is, the gas containing the odorant to be detected) is referred to as a first gas. On the other hand, a carrier gas for pushing the first gas toward the sensor chamber 60 is referred to as a second gas.
 図9は、匂い測定装置100cの概略図である。図9に示すように、匂い測定装置100cは、対象試料受入部50、センサチャンバ60、気体供給部80、および推定装置10bを備える。また、匂い測定装置100cは、調節部51をさらに備えてもよい。 FIG. 9 is a schematic diagram of the odor measuring device 100c. As shown in FIG. 9, the odor measurement device 100c includes a target sample receiving section 50, a sensor chamber 60, a gas supply section 80, and an estimation device 10b. Further, the odor measurement device 100c may further include an adjustment section 51.
 図9は、一例として、気体供給部80から、対象試料受入部50、センサチャンバ60の順に気体が流れる例を示している。気体供給部80、対象試料受入部50、およびセンサチャンバ60は、それぞれ管体で接続されている。 FIG. 9 shows, as an example, an example in which gas flows from the gas supply section 80 to the target sample receiving section 50 and then to the sensor chamber 60 in this order. The gas supply section 80, the target sample receiving section 50, and the sensor chamber 60 are each connected by a tube.
 対象試料受入部50は、匂い物質を含む対象試料を内部に受け入れて第1気体を保持可能である。対象試料受入部50は、内部に進入する第2気体が通過する第1口501と、内部から出る第1気体および第2気体が通過可能な第2口502とを備えている。なお、対象試料受入部50は、後述する試料導入口503を備えていてもよい。 The target sample receiving section 50 is capable of receiving a target sample containing an odorant therein and retaining the first gas. The target sample receiving section 50 includes a first port 501 through which a second gas entering the inside passes, and a second port 502 through which the first gas and second gas exiting from the inside pass. Note that the target sample receiving section 50 may include a sample introduction port 503, which will be described later.
 図9では、第1口501は、対象試料受入部50の紙面上部に設置され、第2口502は、対象試料受入部50の紙面下部に設置される態様を示すが、これに限定されない。例えば、第1口501および第2口502の位置は、第1気体に含まれる匂い成分の種類および組み合わせなどに応じて適宜設定し得る。例えば、第1気体に含まれる匂い成分の単位体積当たりの重量(すなわち、比重)が第2気体より重い場合と、軽い場合とで、第1口501の位置および第2口502の位置を変更してもよい。また、対象試料受入部50は、図8と同じく、気流生成用ファン35を内部に備えていてもよい。 Although FIG. 9 shows a mode in which the first port 501 is installed at the top of the page of the target sample receiving section 50 and the second port 502 is installed at the bottom of the page of the target sample receiving section 50, the present invention is not limited to this. For example, the positions of the first port 501 and the second port 502 can be set as appropriate depending on the type and combination of odor components contained in the first gas. For example, the position of the first port 501 and the position of the second port 502 are changed depending on whether the weight per unit volume (i.e., specific gravity) of the odor component contained in the first gas is heavier or lighter than the second gas. You may. Further, the target sample receiving unit 50 may include an airflow generation fan 35 therein, as in FIG. 8 .
 対象試料受入部50は、液体または固体の対象試料を受け入れるための試料導入口503を備える。図9では、図8と同じく匂い物質を浸漬させたろ紙Pが対象試料として導入されている態様を示している。対象試料受入部50は、対象試料を設置するための設置部(不図示)を備えていてもよい。対象試料が液体である場合、設置部は、液体を保持するためのコップであってもよいし、対象試料が固体である場合、設置部は、固体が静置されるシャーレであってもよい。対象試料受入部50には、対象試料が試料導入口503から第1気体として気体状態で導入されてもよい。このように、対象試料受入部50が、液体または固体の対象試料を受け入れ可能であることにより、第1気体中の匂い物質の濃度を調節することが可能である。例えば、同一の匂い物質であっても、第1気体中の匂い物質の濃度の高低を調節することが容易である。 The target sample receiving section 50 includes a sample inlet 503 for receiving a liquid or solid target sample. FIG. 9 shows an embodiment in which filter paper P impregnated with an odorant is introduced as the target sample, as in FIG. 8. The target sample receiving section 50 may include an installation section (not shown) for installing the target sample. When the target sample is a liquid, the installation part may be a cup for holding the liquid, and when the target sample is a solid, the installation part may be a petri dish in which the solid is left still. . The target sample may be introduced into the target sample receiving unit 50 in a gaseous state as a first gas from the sample introduction port 503 . In this way, since the target sample receiving section 50 can receive a liquid or solid target sample, it is possible to adjust the concentration of the odorant in the first gas. For example, even if the odorant is the same, it is easy to adjust the concentration of the odorant in the first gas.
 対象試料受入部50の内側面には、匂い物質に対して不活性な素材が配されていてよい。匂い物質に対して不活性な素材は、センサチャンバ60に送り出される気体に含まれる匂い物質の各々の濃度を大きく変化させない素材である。例えば、匂い物質に対して不活性な素材は、匂い物質が吸着したり、溶け込んだりしにくい素材である。匂い物質に対して不活性な素材としては、例えば、ガラス、金属、樹脂が挙げられる。金属を採用する場合、ステンレス鋼(SUS)が好ましく、樹脂を採用する場合、フッ素系樹脂、ポリプロピレン(PP)、ポリエチレン(PE)、ABS樹脂、ポリエチレンテレフタレート(PET)が好ましい。 The inner surface of the target sample receiving section 50 may be provided with a material that is inert to odorants. A material that is inert to odorants is a material that does not significantly change the concentration of each odorant contained in the gas sent to the sensor chamber 60. For example, a material that is inert to odorants is a material that does not easily absorb or dissolve odorants. Examples of materials that are inert to odorants include glass, metal, and resin. When metal is used, stainless steel (SUS) is preferable, and when resin is used, fluororesin, polypropylene (PP), polyethylene (PE), ABS resin, and polyethylene terephthalate (PET) are preferable.
 対象試料受入部50の内側面が第1気体に含まれる匂い物質を吸着する素材である場合、各部に匂い物質が吸着して、後の測定に影響を及ぼす虞がある。 If the inner surface of the target sample receiving section 50 is made of a material that adsorbs odorants contained in the first gas, there is a risk that the odorants will be adsorbed to each part and affect subsequent measurements.
 このように対象試料受入部50の内側面が匂い物質に対して不活性な素材であることにより、内側面の素材と、第1気体に含まれる匂い物質とが反応する、または内側面に匂い物質が吸着するなどの虞が低減される。従って、センサチャンバ60に供給された第1気体に含まれる匂い物質が、対象試料受入部50に内包されている間に変化する、または匂い物質の濃度が薄まるなどの虞が低減する。 Since the inner surface of the target sample receiving section 50 is made of a material that is inert to odorants, the material of the inner surface may react with the odorant contained in the first gas, or the inner surface may have an odor. The risk of adsorption of substances is reduced. Therefore, the possibility that the odorant contained in the first gas supplied to the sensor chamber 60 changes while it is contained in the target sample receiving section 50 or that the concentration of the odorant becomes diluted is reduced.
 匂い測定装置100cは、対象試料が液体または固体であっても、対象試料受入部50を備えることにより、第1気体をセンサチャンバ60に送り込む前に対象試料受入部50内で第1気体の濃度を均一にすることができる。また、匂い測定装置100cは、対象試料受入部50を備えることにより、第1気体をセンサチャンバ60へ一定の流量で押し出すことができる。これにより、匂い測定装置100cは、測定を繰り返し行う場合であっても、毎回同じ条件でセンサチャンバ60へ第1気体を送ることができるため、繰り返し安定した測定を行うことができる。 Even if the target sample is liquid or solid, the odor measurement device 100c includes the target sample receiving unit 50, so that the concentration of the first gas can be determined in the target sample receiving unit 50 before sending the first gas into the sensor chamber 60. can be made uniform. Moreover, the odor measurement device 100c can push out the first gas into the sensor chamber 60 at a constant flow rate by including the target sample receiving section 50. Thereby, the odor measuring device 100c can send the first gas to the sensor chamber 60 under the same conditions each time even when repeatedly performing measurements, so that stable measurements can be repeatedly performed.
 対象試料受入部50内の容積は、センサチャンバ60内の容積の1倍以上100倍以下であることが好ましい。特に、対象試料受入部50内の容積は、センサチャンバ60内の容積よりも大きいことが好ましい。対象試料受入部50内の容積は、センサチャンバ60内の容積の2倍以上80倍以下であることがより好ましく、対象試料受入部50内の容積は、センサチャンバ60内の容積の4倍以上60倍以下であることがさらに好ましい。対象試料受入部50内の容積が、センサチャンバ60内の容積に対して1倍以上の大きさであることにより、センサチャンバ60における匂い物質の濃度が適切に調整され、センサチャンバ60が備えるセンサによる測定結果が安定して出力される。また、対象試料受入部50内の容積が、センサチャンバ60内の容積に対して100倍以下であることにより、センサによる測定結果が安定して出力されると共に、匂い測定装置100cのサイズをコンパクトに収めることができる。 The volume within the target sample receiving section 50 is preferably 1 to 100 times the volume within the sensor chamber 60. In particular, the volume within the target sample receiving section 50 is preferably larger than the volume within the sensor chamber 60. The volume within the target sample receiving section 50 is more preferably 2 times or more and 80 times or less the volume within the sensor chamber 60, and the volume within the target sample receiving section 50 is at least 4 times the volume within the sensor chamber 60. More preferably, it is 60 times or less. Since the volume inside the target sample receiving section 50 is one or more times larger than the volume inside the sensor chamber 60, the concentration of the odorant in the sensor chamber 60 can be appropriately adjusted, and the sensor included in the sensor chamber 60 can be adjusted appropriately. Measurement results are stably output. In addition, since the volume inside the target sample receiving section 50 is 100 times or less the volume inside the sensor chamber 60, the measurement results by the sensor can be stably output, and the size of the odor measurement device 100c can be made compact. can be accommodated in
 対象試料受入部50内の容積が、センサチャンバ60内の容積の1倍未満である場合は、対象試料受入部50で発生した匂い物質がセンサチャンバ60内で希釈され、センサにおける測定感度が低下する虞がある。また、対象試料受入部50内の容積が、センサチャンバ60内の容積の100倍よりも大きい場合は、対象試料受入部50の容積が大き過ぎるため、匂い測定装置100c全体のサイズが大きくなる虞がある。 If the volume within the target sample receiving section 50 is less than one time the volume within the sensor chamber 60, the odorant generated in the target sample receiving section 50 will be diluted within the sensor chamber 60, and the measurement sensitivity of the sensor will decrease. There is a possibility that Furthermore, if the volume within the target sample receiving section 50 is larger than 100 times the volume within the sensor chamber 60, the volume of the target sample receiving section 50 is too large, and the overall size of the odor measuring device 100c may increase. There is.
 図9では、一例として、対象試料受入部50内の容積が、センサチャンバ60内の容積の8倍の例を示している。 As an example, FIG. 9 shows an example in which the volume inside the target sample receiving section 50 is eight times the volume inside the sensor chamber 60.
 例えば、管体93の内側面が、第1気体に含まれる匂い物質を吸着する素材である場合、各部に匂い物質が吸着して、後の測定に影響を及ぼす虞がある。そこで、第1気体を対象試料受入部50からセンサチャンバ60へと導く管体93の内側面に、対象試料受入部50の内側面と同様に、匂い物質に対して不活性な素材が配されることが好ましい。第1気体に対して不活性な素材としては、例えば、ガラス、金属、樹脂が挙げられる。金属を採用する場合、ステンレス鋼(SUS)が好ましく、樹脂を採用する場合、フッ素系樹脂、ポリプロピレン(PP)、ポリエチレン(PE)、ABS樹脂、ポリエチレンテレフタレート(PET)が好ましい。 For example, if the inner surface of the tube body 93 is made of a material that adsorbs odorants contained in the first gas, there is a risk that the odorants will be adsorbed to various parts and affect subsequent measurements. Therefore, the inner surface of the tube body 93 that guides the first gas from the target sample receiving section 50 to the sensor chamber 60 is made of a material that is inert to odorants, similar to the inner surface of the target sample receiving section 50. It is preferable that Examples of the material that is inert to the first gas include glass, metal, and resin. When metal is used, stainless steel (SUS) is preferable, and when resin is used, fluororesin, polypropylene (PP), polyethylene (PE), ABS resin, and polyethylene terephthalate (PET) are preferable.
 対象試料受入部50は、管体92および管体93から着脱可能な構成であってもよい。このように、対象試料受入部50が着脱可能であることにより、前の測定が終了し、次の測定を行う場合に、対象試料受入部50内をパージせずとも新しい対象試料受入部50を付け替えることができる。これによれば、匂い測定装置100cは、複数の測定を短時間で行うことができる。 The target sample receiving section 50 may be configured to be detachable from the tubular bodies 92 and 93. As described above, since the target sample receiving section 50 is removable, it is possible to install a new target sample receiving section 50 without purging the inside of the target sample receiving section 50 when the previous measurement is completed and the next measurement is to be performed. It can be replaced. According to this, the odor measuring device 100c can perform multiple measurements in a short time.
 また、対象試料受入部50が着脱可能であることにより、匂い測定装置100cとは別体の保温室を用いて、対象試料を導入した対象試料受入部50を所望の温度に保持することができる。これによれば、例えば、後述する調節部51を匂い測定装置100cに設けることが出来ない場合であっても、匂い測定装置100cは、対象試料受入部50の温度を調節することができる。 Furthermore, since the target sample receiving section 50 is removable, the target sample receiving section 50 into which the target sample is introduced can be maintained at a desired temperature by using a heat preservation room separate from the odor measuring device 100c. . According to this, for example, even if the odor measuring device 100c cannot be provided with the adjusting section 51 described later, the odor measuring device 100c can adjust the temperature of the target sample receiving section 50.
 調節部51は、対象試料受入部50内に内包されている第1気体の温度および湿度の少なくとも一方を調節する。調節部51が温度を調節する場合、調節部51は、例えば、ヒータまたは冷却器である。この場合、調節部51は、対象試料受入部50全体を覆うような構成であってもよい。また、調節部51が湿度を調節する場合、調節部51は、例えば、加湿器または除湿器である。調節部51は、第1気体の種類ごとに温度および湿度の少なくとも一方を調節してもよいし、同じ第1気体の測定中において所定時間毎に温度および湿度の少なくとも一方を変化させてもよい。 The adjustment unit 51 adjusts at least one of the temperature and humidity of the first gas contained within the target sample receiving unit 50. When the adjustment unit 51 adjusts the temperature, the adjustment unit 51 is, for example, a heater or a cooler. In this case, the adjustment section 51 may be configured to cover the entire target sample receiving section 50. Further, when the adjustment unit 51 adjusts the humidity, the adjustment unit 51 is, for example, a humidifier or a dehumidifier. The adjustment unit 51 may adjust at least one of the temperature and humidity for each type of first gas, or may change at least one of the temperature and humidity at predetermined intervals during measurement of the same first gas. .
 調節部51が、対象試料受入部50内の第1気体の温度および湿度の少なくとも一方を調節することにより、匂い測定装置100cは、例えば、第1気体の種類(気体の重さ、揮発性など)に応じた条件を用いてセンサチャンバ60へ第1気体を送ることができる。また、これによれば、匂い測定装置100cは、安定した濃度の第1気体をセンサチャンバ60へ送ることができ、測定の精度が向上する。 By the adjustment unit 51 adjusting at least one of the temperature and humidity of the first gas in the target sample receiving unit 50, the odor measuring device 100c can adjust, for example, the type of the first gas (gas weight, volatility, etc.). ) The first gas can be sent to the sensor chamber 60 using conditions according to the following. Moreover, according to this, the odor measuring device 100c can send the first gas with a stable concentration to the sensor chamber 60, and the accuracy of measurement is improved.
 気体供給部80は、対象試料受入部50の第1口501と接続されており、対象試料受入部50の内部へ第2気体を送ることによって、第1気体を対象試料受入部50内からセンサチャンバ60の方へ送り出す。 The gas supply unit 80 is connected to the first port 501 of the target sample receiving unit 50 and supplies the first gas from inside the target sample receiving unit 50 to the sensor by sending the second gas into the target sample receiving unit 50. It is sent towards the chamber 60.
 気体供給部80と、対象試料受入部50との間にはバルブ81を備えていてもよい。バルブ81の開閉によって、気体供給部80からのガス供給の開始および停止を調節してもよい。 A valve 81 may be provided between the gas supply section 80 and the target sample receiving section 50. By opening and closing the valve 81, the start and stop of gas supply from the gas supply unit 80 may be adjusted.
 このように、対象試料受入部50の第1口501側から気体供給部80が気体を押すことによりセンサチャンバ60に第1気体を送り込むため、センサチャンバ60内の圧力は陽圧である。このため、匂い測定装置100cは、安定した測定結果を得ることができる。また、バルブ81の開閉によって、第2気体を送ることができるため、匂い測定装置100cは、任意のタイミングで第1気体を対象試料受入部50内からセンサチャンバ60の方へ送り出すことができる。これによれば、匂い測定装置100cは、センサ素子群31Aを用いて第1気体に含まれる匂い物質を繰り返し測定する場合、各センサ素子が出力する波形の形の再現性を向上させることができる。 In this way, the gas supply section 80 pushes the gas from the first port 501 side of the target sample receiving section 50 to send the first gas into the sensor chamber 60, so the pressure inside the sensor chamber 60 is positive. Therefore, the odor measuring device 100c can obtain stable measurement results. Furthermore, since the second gas can be sent by opening and closing the valve 81, the odor measurement device 100c can send the first gas from the target sample receiving section 50 toward the sensor chamber 60 at any timing. According to this, the odor measurement device 100c can improve the reproducibility of the waveform output by each sensor element when repeatedly measuring the odorant contained in the first gas using the sensor element group 31A. .
 第2気体は、不活性ガスまたは空気であってよい。不活性ガスとしては、例えば、アルゴン、窒素などが挙げられる。第2気体が不活性ガスである場合、気体供給部80はガスボンベであってよい。 The second gas may be an inert gas or air. Examples of the inert gas include argon and nitrogen. When the second gas is an inert gas, the gas supply unit 80 may be a gas cylinder.
 また、第2気体が空気である場合、気体供給部80はポンプであってよい。この場合、対象試料受入部50に内包される第1気体と反応する成分を除去するために、匂い測定装置100cは、対象試料受入部50の第1口501側に、一例として、活性炭フィルタを備えていてもよい。 Furthermore, when the second gas is air, the gas supply section 80 may be a pump. In this case, in order to remove components that react with the first gas included in the target sample receiving section 50, the odor measurement device 100c includes an activated carbon filter, for example, on the first port 501 side of the target sample receiving section 50. You may be prepared.
 匂い測定装置100cは、対象試料受入部50の第1口501側、さらに具体的にはバルブ81と、気体供給部80との間にマスフローコントローラをさらに備えてもよい。この構成を採用した匂い測定装置100cは、対象試料受入部50からセンサチャンバ60へ一定の流量で第1気体を送ることができ、センサ素子群31Aのセンサ素子が安定して出力を行うことができる。 The odor measurement device 100c may further include a mass flow controller on the first port 501 side of the target sample receiving section 50, more specifically between the valve 81 and the gas supply section 80. The odor measuring device 100c employing this configuration can send the first gas from the target sample receiving section 50 to the sensor chamber 60 at a constant flow rate, and the sensor elements of the sensor element group 31A can stably output an output. can.
 推定装置10bは、実施形態2の推定装置10bと同じ機能を有する。センサチャンバ60が、センサ素子31、センサ素子31bとは異なる樹脂組成物を物質受容層315に用いたセンサ素子31cをさらに備える場合、推定装置10bは、センサ素子31cに定電流を供給して電圧計によって測定される測定値をさらに取得し解析してもよい。また、推定装置10bは、測定値そのもの、測定値をプロットした波形、および推定モデルに基づいた未知の匂い物質の推定結果を表示してもよい。また、推定装置10bは、複数の匂い物質を含む気体に対して、それぞれの匂い物質の存在割合の変化を示す数値、およびグラフなどを表示してもよい。 The estimation device 10b has the same functions as the estimation device 10b of the second embodiment. When the sensor chamber 60 further includes a sensor element 31c in which the substance receiving layer 315 uses a resin composition different from that of the sensor element 31 and the sensor element 31b, the estimation device 10b supplies a constant current to the sensor element 31c to determine the voltage. Measurements taken by the meter may be further acquired and analyzed. Furthermore, the estimation device 10b may display the measured value itself, a waveform obtained by plotting the measured value, and the estimation result of the unknown odorant based on the estimation model. Furthermore, the estimating device 10b may display numerical values and graphs indicating changes in the abundance ratio of each odorant for a gas containing a plurality of odorants.
 センサチャンバ60は、匂い物質を測定するためのセンサ素子群31Aを格納する空間である。センサチャンバ60は、対象試料受入部50の第2口502と接続されている。具体的には、センサチャンバ60は、気体供給口601と、気体排出口602とを備え、対象試料受入部50の第2口502と、気体供給口601とが接続されている。 The sensor chamber 60 is a space that stores the sensor element group 31A for measuring odorants. The sensor chamber 60 is connected to the second port 502 of the target sample receiving section 50. Specifically, the sensor chamber 60 includes a gas supply port 601 and a gas discharge port 602, and the second port 502 of the target sample receiving section 50 and the gas supply port 601 are connected.
 センサチャンバ60は、気体に含まれる匂い物質に応じた測定結果を出力可能な複数のセンサ素子が配置された、複数の通路を有する。これによれば、センサチャンバ内に気体を送り始めてから、複数のセンサ素子のすべてから測定結果が安定して出力されるまでに要する時間を短縮することができる。また、複数のセンサ素子が複数の通路によって細かく区切られることで、測定ごとの気流の乱れのばらつきが少なくなり、測定精度が高くなる。 The sensor chamber 60 has a plurality of passages in which a plurality of sensor elements capable of outputting measurement results according to odorants contained in the gas are arranged. According to this, it is possible to shorten the time required from when gas starts to be sent into the sensor chamber until measurement results are stably output from all of the plurality of sensor elements. Further, since the plurality of sensor elements are finely divided by the plurality of passages, the variation in airflow turbulence for each measurement is reduced, and measurement accuracy is increased.
 図10は、センサチャンバ60の構成例を表す上面図である。図10には、4つの通路(すなわち、通路61、通路62、通路63、通路64)を備えるセンサチャンバ60が示されている。第1気体は、対象試料受入部50から通路61~通路64の各々に供給されうる。 FIG. 10 is a top view showing a configuration example of the sensor chamber 60. FIG. 10 shows a sensor chamber 60 with four passages (ie passage 61, passage 62, passage 63, passage 64). The first gas can be supplied from the target sample receiving section 50 to each of the passages 61 to 64.
 複数の通路(通路61~64)の各々には、匂い物質毎に異なる測定結果を出力する複数のセンサ素子が配置されてもよい。匂い物質毎に異なる測定結果を出力する複数のセンサ素子は、それぞれ異なる樹脂組成物を物質受容層として備えるセンサ素子であってよい。すなわち、1つの通路に配置される複数のセンサ素子は、それぞれのセンサ素子の匂い物質に対する感度および検知特異性が異なっていてよい。図10のセンサチャンバ60は、一例として、通路61に、実施形態2(図8)で説明したセンサ素子31と、センサ素子31bとを含むが、これに限定されない。例えば、センサ素子31と、センサ素子31bとは、第1気体に含まれる同じ匂い物質に応じた測定結果を出力可能であるが、それぞれのセンサ素子が出力する測定結果は異なっていてもよい。また、センサ素子31と、センサ素子31bとは、それぞれが異なる匂い物質に応じた測定結果を出力可能であってもよい。匂い物質に応じた測定結果は、例えば、匂い物質の濃度に応じた測定結果である。複数の通路の各々に、匂い物質毎に異なる測定結果を出力する複数のセンサ素子が配置されることにより、匂い測定装置100cは、1つの通路を通過する匂い物質を感度および検知特異性が異なるセンサ素子によって検出可能である。これにより、匂い測定装置100cは、異なる複数の測定結果から、匂い物質を総合的に検出することが可能である。 A plurality of sensor elements that output different measurement results for each odorant may be arranged in each of the plurality of passages (passages 61 to 64). The plurality of sensor elements that output different measurement results for each odorant may be sensor elements each having a different resin composition as a substance-receiving layer. That is, the plurality of sensor elements disposed in one passage may have different sensitivities and detection specificities to odorants. As an example, the sensor chamber 60 in FIG. 10 includes the sensor element 31 described in Embodiment 2 (FIG. 8) and the sensor element 31b in the passage 61, but is not limited thereto. For example, the sensor element 31 and the sensor element 31b can output measurement results according to the same odorant contained in the first gas, but the measurement results output by each sensor element may be different. Further, the sensor element 31 and the sensor element 31b may each be capable of outputting measurement results corresponding to different odorants. The measurement result according to the odorant is, for example, the measurement result according to the concentration of the odorant. By disposing a plurality of sensor elements that output different measurement results for each odorant in each of the plurality of passages, the odor measurement device 100c can detect odorants passing through one passage with different sensitivities and detection specificities. It can be detected by a sensor element. Thereby, the odor measurement device 100c can comprehensively detect odorants from a plurality of different measurement results.
 また、図10において、通路61と同様に、通路62には、第1気体に含まれる匂い物質に応じた測定結果を出力可能な複数のセンサ素子(センサ素子31cおよび31dなど)が配されている。通路63には、第1気体に含まれる匂い物質に応じた測定結果を出力可能な複数のセンサ素子(センサ素子31eおよび31fなど)が配されている。通路64には、第1気体に含まれる匂い物質に応じた測定結果を出力可能な複数のセンサ素子(センサ素子31gおよび31hなど)が配されている。これら複数のセンサ素子は、物質受容層315に用いた樹脂組成物が互いに異なるセンサ素子であってもよい。 Further, in FIG. 10, similarly to the passage 61, a plurality of sensor elements ( sensor elements 31c and 31d, etc.) capable of outputting measurement results according to the odorant contained in the first gas are arranged in the passage 62. There is. A plurality of sensor elements (such as sensor elements 31e and 31f) capable of outputting measurement results according to the odorant contained in the first gas are arranged in the passage 63. A plurality of sensor elements ( sensor elements 31g and 31h, etc.) capable of outputting measurement results according to the odorant contained in the first gas are arranged in the passage 64. These plurality of sensor elements may be sensor elements in which the resin compositions used for the substance receiving layer 315 are different from each other.
 なお、センサ素子31~31hのうちのいくつかは、匂い成分に対する検知特異性が同じであるセンサ素子であってもよい。すなわち、例えば、センサチャンバ60に配置するセンサ素子群31Aがn個のセンサ素子を含む場合、m種類(m<n)のセンサ素子を配置してもよい。また、同じ通路に配置される複数のセンサ素子のうちいくつかが、匂い成分に対する検知特異性が同じであってもよい。 Note that some of the sensor elements 31 to 31h may have the same detection specificity for odor components. That is, for example, when the sensor element group 31A arranged in the sensor chamber 60 includes n sensor elements, m types (m<n) of sensor elements may be arranged. Furthermore, some of the plurality of sensor elements arranged in the same passage may have the same detection specificity for odor components.
 また、センサチャンバ60は、通路61~通路64を有しており、通路61~通路64の各々に、複数のセンサ素子が配置されていてもよい。この場合、通路61~通路64の各々に配置された複数のセンサ素子がセンサ素子群31Aを構成する。例えば、通路61には4個のセンサ素子を配置し、通路62には10個のセンサ素子を配置してもよい。 Further, the sensor chamber 60 has passages 61 to 64, and a plurality of sensor elements may be arranged in each of the passages 61 to 64. In this case, a plurality of sensor elements arranged in each of the passages 61 to 64 constitute the sensor element group 31A. For example, four sensor elements may be arranged in the passage 61 and ten sensor elements may be arranged in the passage 62.
 通路61~通路64の各々に異なる数のセンサ素子が配置される場合、通路61~通路64の各々に配置されたセンサ素子の数の差は10個以下であることが好ましい。通路の各々に配置されたセンサ素子の数の差が10個以下であることにより、通路によって発生しうる、匂い物質がセンサ素子に検知されるタイミングのばらつきを低減することができる。また、通路61~通路4の各々に配置されたセンサ素子の数の差が10個以下であることにより、匂い測定装置100cは匂い測定を短時間で行うことができる。 When different numbers of sensor elements are arranged in each of the passages 61 to 64, the difference in the number of sensor elements arranged in each of the passages 61 to 64 is preferably 10 or less. By setting the difference in the number of sensor elements arranged in each of the passages to 10 or less, it is possible to reduce variations in the timing at which odorants are detected by the sensor elements, which may occur depending on the passage. Further, since the difference in the number of sensor elements arranged in each of the passages 61 to 4 is 10 or less, the odor measuring device 100c can perform odor measurement in a short time.
 通路の各々は、第1気体をセンサチャンバ60の内部空間内に供給するための管体93と接続されている。図10に示すように、通路61、通路62、通路63、および通路64は全て1つの管体93に接続されている。 Each of the passages is connected to a tube 93 for supplying the first gas into the interior space of the sensor chamber 60. As shown in FIG. 10, passage 61, passage 62, passage 63, and passage 64 are all connected to one tube 93.
 また、通路の各々の第1気体が管体93から供給される供給方向に対して垂直な断面積は、管体93の軸方向に垂直な断面積よりも小さくてよい。これによれば、対象試料受入部50より供給される第1気体は、管体93を通過するときよりも、速い流速で各通路内を通過することができる。これによれば、気体供給口601に近い側に配置されるセンサ素子と、気体排出口602に近い側に配置されるセンサ素子との測定におけるタイムラグが最小限となり、匂い測定装置100cは、精度高い測定を行うことができる。 Further, the cross-sectional area of each passage perpendicular to the supply direction in which the first gas is supplied from the tube body 93 may be smaller than the cross-sectional area perpendicular to the axial direction of the tube body 93. According to this, the first gas supplied from the target sample receiving section 50 can pass through each passage at a faster flow rate than when passing through the tube body 93. According to this, the time lag in measurement between the sensor element disposed close to the gas supply port 601 and the sensor element disposed close to the gas discharge port 602 is minimized, and the odor measuring device 100c has a high accuracy. Can perform high measurements.
 また、通路の各々の内部空間の気体は、第1気体の供給が開始された後1秒以内に置換されることが好ましい。第1気体の供給の開始は、すなわち、第1気体が気体供給口601に供給されたときである。また、内部空間の気体の置換は、気体供給口601から供給された第1気体が、気体排出口602に到達したことを示す。このように、通路の各々の内部空間の気体が、第1気体及び第2気体の供給が開始された後1秒以内に置換されることにより、各センサ素子に第1気体が触れるタイミングのずれが小さくなり、匂い測定装置100cは安定して測定を行うことができる。また、通路の各々の内部空間の気体が、第1気体及び第2気体の供給が開始された後1秒以内に置換されることにより、匂い測定装置100cは、匂い測定を短時間で行うことができる。 Furthermore, it is preferable that the gas in the internal space of each passage be replaced within 1 second after the supply of the first gas is started. The supply of the first gas starts when the first gas is supplied to the gas supply port 601. Further, the replacement of gas in the internal space indicates that the first gas supplied from the gas supply port 601 has reached the gas discharge port 602 . In this way, the gas in the internal space of each passage is replaced within 1 second after the supply of the first gas and the second gas is started, thereby reducing the timing at which the first gas contacts each sensor element. becomes small, and the odor measuring device 100c can stably perform measurements. In addition, the odor measuring device 100c can perform odor measurement in a short time by replacing the gas in the internal space of each passage within 1 second after the supply of the first gas and the second gas is started. I can do it.
 通路の各々の内部空間を通る第1気体の流速は、毎秒0.1cm以上毎秒100cm以下であることが好ましい。また、通路の各々の内部空間を通る第1気体の流速は、毎秒1cm以上毎秒50cm以下であることがより好ましい。通路の各々の内部空間を通る第1気体の流速は、例えば、後述する気体供給部80の加圧の程度によって調節されてもよいし、後述するマスフローコントローラによって調節されてもよい。 The flow rate of the first gas passing through the internal space of each passage is preferably 0.1 cm per second or more and 100 cm per second or less. Moreover, it is more preferable that the flow velocity of the first gas passing through the internal space of each passage is 1 cm/sec or more and 50 cm/sec or less. The flow rate of the first gas passing through the internal space of each passage may be adjusted, for example, by the degree of pressurization of the gas supply section 80, which will be described later, or by a mass flow controller, which will be described later.
 通路の各々の内部空間を通る第1気体の流速が遅いと、第1気体がセンサ素子群31Aのすべてのセンサ素子に触れるタイミングのずれが大きくなる。一方、通路の各々の内部空間を通る第1気体の流速が速すぎると、気流の影響によってセンサ素子群31Aのセンサ素子が振動し、匂い測定装置100cは安定して匂い測定を行えない。また、通路の各々の内部空間を通る第1気体の流速が速すぎると、センサ素子群31Aのセンサ素子への第1気体に含まれる匂い物質の吸着が阻害され、匂い測定装置100cは正確な匂い測定が行えない。また、通路の各々の内部空間を通る第1気体の流速が速すぎると、匂い測定装置100cが安定した測定を行うまでに、対象試料受入部50内の第1気体を消費してしまう虞がある。 If the flow rate of the first gas passing through the internal space of each passage is slow, the timing shift in which the first gas touches all the sensor elements of the sensor element group 31A becomes large. On the other hand, if the flow velocity of the first gas passing through the internal space of each passage is too fast, the sensor elements of the sensor element group 31A vibrate due to the influence of the airflow, and the odor measuring device 100c cannot perform odor measurement stably. Further, if the flow rate of the first gas passing through the internal space of each passage is too fast, the adsorption of the odorant contained in the first gas to the sensor elements of the sensor element group 31A is inhibited, and the odor measuring device 100c is not accurate. Odor measurement cannot be performed. Furthermore, if the flow rate of the first gas passing through the internal space of each passage is too fast, there is a risk that the first gas in the target sample receiving section 50 will be consumed before the odor measuring device 100c can perform stable measurements. be.
 このように、通路の各々の内部空間を通る第1気体の流速が毎秒0.1cm以上毎秒100cm以下であることにより、匂い測定装置100cは、安定して匂い測定を行うことができる。 In this way, the odor measuring device 100c can perform odor measurement stably because the flow velocity of the first gas passing through the internal space of each passage is 0.1 cm/sec or more and 100 cm/sec or less.
 通路の各々は並列に配置されていてもよい。図10において、通路61~通路64は互いに並列に配置されている。このように、通路の各々が並列に配置されることにより、匂い測定装置100cは、通路を配置するためのスペースを確保することができ、装置全体のサイズをコンパクトにすることができる。 Each of the passages may be arranged in parallel. In FIG. 10, passages 61 to 64 are arranged in parallel to each other. In this way, by arranging the passages in parallel, the odor measuring device 100c can secure a space for arranging the passages, and the size of the entire apparatus can be made compact.
 図11は、図10のB-B線断面を模式的に表す断面図である。図11の通路61は、側壁610と、側壁610に対向する側壁611と、天井621と、底面である基板630によって構成されている。 FIG. 11 is a cross-sectional view schematically showing a cross section taken along line BB in FIG. 10. The passage 61 in FIG. 11 includes a side wall 610, a side wall 611 opposite to the side wall 610, a ceiling 621, and a substrate 630 as a bottom surface.
 図11において、通路61の断面の形状が四角形であるセンサチャンバ60を示したが、通路61の断面の形状は特に限定されない。例えば、通路61の断面の形状は円弧であってもよいし、三角形であってもよい。 Although FIG. 11 shows the sensor chamber 60 in which the cross-sectional shape of the passage 61 is square, the cross-sectional shape of the passage 61 is not particularly limited. For example, the cross-sectional shape of the passage 61 may be an arc or a triangle.
 通路61と、通路62とは、側壁611および側壁612によって完全に仕切られており、通路61と、通路62との間は気体の出入りが出来ない構成となっていてよい。 The passage 61 and the passage 62 are completely partitioned by the side wall 611 and the side wall 612, and the passage 61 and the passage 62 may have a configuration in which gas cannot enter or exit.
 図11では、一例として、通路61と、通路62との間に、2枚の側壁(側壁611および側壁612)がある構成となっているが、これに限定されない。例えば、通路61と、通路62とは、1枚の側壁によって仕切られていてもよい。 In FIG. 11, as an example, there is a configuration in which there are two side walls (side wall 611 and side wall 612) between the passage 61 and the passage 62, but the present invention is not limited to this. For example, the passage 61 and the passage 62 may be partitioned by one side wall.
 図11のセンサチャンバ60の全体は一体的に形成されているが、この構成に限定されない。センサチャンバ60の全体は、一体的に形成されていてもよいし、複数の通路の各々が別体によって形成されていてもよい。 Although the entire sensor chamber 60 in FIG. 11 is integrally formed, the structure is not limited to this. The entire sensor chamber 60 may be formed integrally, or each of the plurality of passages may be formed separately.
 図11のセンサチャンバ60は、例えば、センサ素子31を通路61の底面である基板630上に備えているが、センサ素子31の配置はこれに限定されない。センサ素子31は、例えば、センサ素子31が特異的に検出し得る対象の匂い物質の種類を考慮して配置されてもよい。例えば、センサ素子31は、側壁610、側壁611、および天井621の何れかに配置されてもよい。具体的には、匂い物質が空気より軽い場合は、センサ素子31を天井621に配置する構成が挙げられる。これによれば、匂い物質の種類に応じた場所にセンサ素子31を配置することによって、匂い測定装置100cは、精度高い測定を行うことができる。 Although the sensor chamber 60 in FIG. 11 includes, for example, the sensor element 31 on the substrate 630, which is the bottom surface of the passage 61, the arrangement of the sensor element 31 is not limited to this. The sensor element 31 may be arranged, for example, in consideration of the type of target odorant that the sensor element 31 can specifically detect. For example, the sensor element 31 may be placed on any of the side wall 610, the side wall 611, and the ceiling 621. Specifically, when the odorant is lighter than air, a configuration in which the sensor element 31 is arranged on the ceiling 621 can be mentioned. According to this, by arranging the sensor element 31 at a location corresponding to the type of odorant, the odor measuring device 100c can perform highly accurate measurement.
 図11では、センサチャンバ60は、基板630上に、各センサ素子を備えているが、基板630と、各センサ素子との間に、基板630とセンサ素子とを接続するコネクタをさらに備えていてもよい。 In FIG. 11, the sensor chamber 60 includes each sensor element on a substrate 630, and further includes a connector for connecting the substrate 630 and each sensor element between the substrate 630 and each sensor element. Good too.
 各センサ素子は、1個ずつが独立して基板630と接続されていてもよい。例えば、センサ素子1個ずつがコネクタ(例えばICピン)を介して、基板630と接続されている態様が挙げられる。これよれば、例えば、センサチャンバ60に含まれるセンサ素子1個のみに不具合が生じた場合であっても、ユーザは不具合が生じたセンサ素子1個のみを交換することが可能である。 Each sensor element may be independently connected to the substrate 630. For example, there is a mode in which each sensor element is connected to the board 630 via a connector (for example, an IC pin). According to this, for example, even if a problem occurs in only one sensor element included in the sensor chamber 60, the user can replace only the one sensor element with the problem.
 また、複数種類のセンサ素子によって匂い物質を検知する場合、使用するセンサ素子の好適な組み合わせ、およびセンサ素子の好適な配置は、匂い物質の種類によって異なる。各センサ素子が独立して基板630と接続されていることにより、各センサ素子が着脱可能であるため、匂い測定装置100cは、匂い物質に応じた好適なセンサ素子の組み合せ、および配置が用意に変更され得る。 Furthermore, when detecting odorants using multiple types of sensor elements, a suitable combination of sensor elements to be used and a suitable arrangement of the sensor elements differ depending on the type of odorant. Since each sensor element is independently connected to the substrate 630 and is removable, the odor measuring device 100c can easily combine and arrange sensor elements suitable for different odorants. subject to change.
 センサ素子は、基板630、側壁610、側壁611、および天井621の2つ以上の場所に配置されてもよい。これによれば、センサ素子を一面のみに備える場合よりも通路61の長さを短くできるため、匂い測定装置100cのサイズがコンパクトになる。また、センサ素子を気体供給口601に近い場所に複数備えることができるため、センサ素子を気体排出口602に向けて並べて配置するよりも、匂い測定装置100cは、匂い測定を短時間で行うことができる。 The sensor element may be placed at two or more locations: the substrate 630, the side wall 610, the side wall 611, and the ceiling 621. According to this, the length of the passage 61 can be made shorter than when the sensor element is provided on only one side, so that the size of the odor measuring device 100c becomes compact. Furthermore, since a plurality of sensor elements can be provided near the gas supply port 601, the odor measurement device 100c can perform odor measurement in a shorter time than when the sensor elements are arranged side by side facing the gas discharge port 602. I can do it.
 図11のセンサチャンバ60は、一例として、通路を4つ備え、断面方向においてはセンサ素子をそれぞれ1つずつ配置するが、通路の数、断面方向におけるセンサ素子の数はこれに限定されない。図12は、センサチャンバ60aの断面図を示す。センサチャンバ60aは、一例として、2つの通路(通路61aおよび通路62a)を備える。また、通路61aの断面方向には、2つのセンサ(すなわち、センサ素子31、およびセンサ素子31c)を備える。また、センサチャンバ60aにおいても、上述したように、センサ素子は基板630上のみに配置されるだけでなく、基板630、側壁610a、側壁613a、および天井621aの2つ以上の場所に配置されてもよい。通路62aのセンサ素子の配置についても通路61aと同様である。 As an example, the sensor chamber 60 in FIG. 11 includes four passages, and one sensor element is arranged in each passage in the cross-sectional direction, but the number of passages and the number of sensor elements in the cross-sectional direction are not limited to this. FIG. 12 shows a cross-sectional view of the sensor chamber 60a. The sensor chamber 60a includes, for example, two passages (a passage 61a and a passage 62a). Moreover, two sensors (namely, the sensor element 31 and the sensor element 31c) are provided in the cross-sectional direction of the passage 61a. Furthermore, in the sensor chamber 60a, as described above, the sensor elements are not only arranged on the substrate 630, but also in two or more places: the substrate 630, the side wall 610a, the side wall 613a, and the ceiling 621a. Good too. The arrangement of sensor elements in the passage 62a is also similar to that in the passage 61a.
 センサチャンバ60の内側面の素材は、対象試料受入部50と同様に、匂い物質に対して不活性な素材であることが好ましい。不活性な素材としては、例えば、ガラス、金属、樹脂が挙げられる。金属を採用する場合、ステンレス鋼(SUS)が好ましく、樹脂を再送する場合、フッ素系樹脂、ポリプロピレン(PP)、ポリエチレン(PE)、ABS樹脂、ポリエチレンテレフタレート(PET)が好ましい。センサチャンバ60の内側面の素材が、第1気体に含まれる匂い物質を吸着する素材の場合、センサチャンバに匂い物質が吸着することにより、後の測定におけるセンサ素子からの出力の変化量が小さくなり、匂い測定装置100cが正確な測定を行えない虞がある。 The material for the inner surface of the sensor chamber 60 is preferably a material that is inert to odorants, similarly to the target sample receiving section 50. Examples of inert materials include glass, metal, and resin. When metal is used, stainless steel (SUS) is preferable, and when resin is retransmitted, fluororesin, polypropylene (PP), polyethylene (PE), ABS resin, and polyethylene terephthalate (PET) are preferable. If the material of the inner surface of the sensor chamber 60 is a material that adsorbs the odorant contained in the first gas, the amount of change in the output from the sensor element in subsequent measurements will be small due to the adsorption of the odorant to the sensor chamber. Therefore, there is a possibility that the odor measuring device 100c may not be able to perform accurate measurements.
 センサ素子群31Aのセンサ素子は薄膜を備えてもよい。一例として、図2および図3の匂い物質受容層315が薄膜である。 The sensor elements of the sensor element group 31A may include a thin film. As an example, the odorant-receiving layer 315 in FIGS. 2 and 3 is a thin film.
 センサチャンバ60内に匂い物質を含む第1気体を送り込む態様として、例えば、センサチャンバ60の気体排出口602側に真空ポンプを設置し、真空ポンプを用いて気体を引くことにより、センサチャンバ60の気体供給口601側から匂い物質をセンサチャンバ60へ送り込む態様が考えられる。しかし、センサ素子31、31bが薄膜を備える場合、センサチャンバ60内が陰圧であると、薄膜が膨張して、センサ素子31、31bが安定した測定結果を出力できない虞がある。本実施形態に係る匂い測定装置100cであれば、センサチャンバ60および対象試料受入部50の第1口501側から気体供給部80が気体を押すことによりセンサチャンバ60に第1気体を送り込むため、センサチャンバ60内の圧力は陽圧である。このため、匂い測定装置100cは、センサ素子群31Aのセンサ素子が薄膜を備えていても安定した測定結果を得ることができる。 As a mode for sending the first gas containing an odorant into the sensor chamber 60, for example, a vacuum pump is installed on the gas outlet 602 side of the sensor chamber 60, and the gas is drawn using the vacuum pump. A mode can be considered in which the odorant is sent into the sensor chamber 60 from the gas supply port 601 side. However, when the sensor elements 31 and 31b include a thin film, if the inside of the sensor chamber 60 is under negative pressure, the thin film may expand and the sensor elements 31 and 31b may not be able to output stable measurement results. In the odor measuring device 100c according to the present embodiment, the first gas is fed into the sensor chamber 60 by the gas supply unit 80 pushing the gas from the sensor chamber 60 and the first port 501 side of the target sample receiving unit 50. The pressure within sensor chamber 60 is positive. Therefore, the odor measuring device 100c can obtain stable measurement results even if the sensor elements of the sensor element group 31A are provided with thin films.
 また、センサ素子群31Aのセンサ素子の薄膜は、導電性炭素材料、樹脂組成物、および界面活性剤を含んでもよい。センサ素子の具体的な態様については後述する。 Further, the thin film of the sensor element of the sensor element group 31A may include a conductive carbon material, a resin composition, and a surfactant. Specific aspects of the sensor element will be described later.
 [センサ素子]
 実施形態2の匂い測定装置100bは、2つのセンサ素子31、31bを備えていた。実施形態2においては、センサ素子31、31bの匂い物質受容層315、315bの形状、面積、および厚さのばらつきについては特に規定されていなかったが、匂い物質受容層315、315bの形状、面積、および厚さはそれぞればらつきが少ないことが好ましい。複数のセンサ素子の匂い物質受容層315、315bの形状、面積、および厚さにばらつきが生じると、安定して匂い物質の測定ができない虞があるためである。以降、匂い物質受容層を総称して単に「匂い物質受容層」とも記載する。
[Sensor element]
The odor measuring device 100b of Embodiment 2 was equipped with two sensor elements 31 and 31b. In the second embodiment, the shapes, areas, and thicknesses of the odorant-receiving layers 315, 315b of the sensor elements 31, 31b are not particularly defined. , and thickness preferably have little variation. This is because if there are variations in the shape, area, and thickness of the odorant receiving layers 315, 315b of the plurality of sensor elements, there is a possibility that the odorant cannot be measured stably. Hereinafter, the odorant-receiving layer will be collectively referred to as simply the "odorant-receiving layer."
 実施形態2のセンサ素子31、31bは、それぞれ一本の第1金属配線313Aと、第2金属配線313Bとを電極として備え、互いの金属配線が平行に配されていた(図2参照)。また、実施形態2のセンサ素子31、31bは、第1金属配線313Aと、第2金属配線313Bとにはさまれた領域を埋めるように匂い物質受容層315を備えていた。センサ素子群31Aは、センサ素子31、31b以外に、センサ素子31、31bとは異なる、金属配線(すなわち、電極)の配置と、匂い物質受容層の形状とで構成されているセンサ素子を含んでもよい。なお、実施形態1および2において、金属配線313と称していたものを、以降、電極313とも称する。 The sensor elements 31 and 31b of Embodiment 2 each had one first metal wiring 313A and one second metal wiring 313B as electrodes, and the metal wirings were arranged in parallel to each other (see FIG. 2). Furthermore, the sensor elements 31 and 31b of the second embodiment were provided with an odorant-receiving layer 315 so as to fill the region sandwiched between the first metal wiring 313A and the second metal wiring 313B. The sensor element group 31A includes, in addition to the sensor elements 31 and 31b, a sensor element configured with a metal wiring (i.e., electrode) arrangement and an odorant receptor layer shape that are different from those of the sensor elements 31 and 31b. But that's fine. Note that in Embodiments 1 and 2, what was referred to as the metal wiring 313 will also be referred to as the electrode 313 hereinafter.
 センサ素子31は、基板311上に配置された電極313と、電極313上に形成された匂い物質受容層315と、を備える。匂い物質受容層315の形状は円状、または帯状であり、匂い物質受容層315の形状が円状である場合、円の直径Rが0.2mm以上、10mm以下であり、匂い物質受容層315の形状が帯状である場合、帯の短方向の幅Wが0.2mm以上、10mm以下であってよい。ここで、帯状とは、主に短方向の幅と、長方向の長さを有する面形状を指す。匂い物質受容層315の形状が円状である場合、円の直径Rは1.5mm以上、2.7mm以下であることが好ましく、匂い物質受容層315の形状が帯状である場合、帯の短方向の幅Wが1.5mm以上、2.7mmであることが好ましい。 The sensor element 31 includes an electrode 313 disposed on a substrate 311 and an odorant receiving layer 315 formed on the electrode 313. The shape of the odorant receptor layer 315 is circular or strip-shaped, and when the shape of the odorant receptor layer 315 is circular, the diameter R of the circle is 0.2 mm or more and 10 mm or less, and the odorant receptor layer 315 When the shape is a band, the width W in the short direction of the band may be 0.2 mm or more and 10 mm or less. Here, the band-like shape refers to a surface shape that mainly has a width in the short direction and a length in the long direction. When the shape of the odorant receptor layer 315 is circular, the diameter R of the circle is preferably 1.5 mm or more and 2.7 mm or less, and when the shape of the odorant receptor layer 315 is a band, the shortness of the band is It is preferable that the width W in the direction is 1.5 mm or more and 2.7 mm.
 センサ素子群31Aに含まれるセンサ素子31、31b~31dの匂い物質受容層315、315b~315dの円の直径R、または幅Wが前記の範囲であることにより、匂い測定装置100cは、匂い物質に応じた測定を安定して行うことができる。 Since the diameter R or the width W of the circle of the odorant receiving layers 315, 315b to 315d of the sensor elements 31, 31b to 31d included in the sensor element group 31A is within the above range, the odor measuring device 100c can detect odorants. It is possible to stably perform measurements according to the conditions.
 匂い物質受容層315の直径Rが0.2mm未満の場合、または幅Wが0.2mm未満の場合は、匂い物質を受容する面積が小さくなり、匂い測定装置100cは、測定を安定して行うことができない。 When the diameter R of the odorant-receiving layer 315 is less than 0.2 mm, or when the width W is less than 0.2 mm, the area for receiving the odorant becomes small, and the odor measuring device 100c performs measurement stably. I can't.
 また、匂い物質受容層315の直径Rが10mmより大きい場合、または幅Wが10mmより大きい場合は、センサ素子1つの面積が大きくなり、センサ素子群31Aを含むセンサチャンバ60のサイズが大きくなる。センサチャンバ60のサイズが大きくなると、匂い物質を含む第1気体をセンサチャンバ60内に均一に拡散させることが難しくなるため、匂い測定装置100cは、測定を安定して行うことができない。 Further, when the diameter R of the odorant receiving layer 315 is larger than 10 mm, or when the width W is larger than 10 mm, the area of one sensor element becomes large, and the size of the sensor chamber 60 including the sensor element group 31A becomes large. When the size of the sensor chamber 60 increases, it becomes difficult to uniformly diffuse the first gas containing the odorant into the sensor chamber 60, and therefore the odor measurement device 100c cannot stably perform measurements.
 図13は、センサ素子群31Aに含まれる1つのセンサ素子31cの構成の一例を示す上面図である。センサ素子31cは、基板311上に配置された電極313(第1電極313C、第2電極313D)と、電極313上に形成された円状の匂い物質受容層315cと、を備える。匂い物質受容層315cの直径Rは、0.2mm以上、10mm以下である。図13において、センサ素子31cが備える匂い物質受容層315cの形状は一例として楕円状であるが、これに限定されない。匂い物質受容層315cの形状が楕円である場合は、短径と、長径との平均が0.2mm以上、10mm以下であってよい。また、匂い物質受容層315cの形状は真円であってもよい。 FIG. 13 is a top view showing an example of the configuration of one sensor element 31c included in the sensor element group 31A. The sensor element 31c includes an electrode 313 (a first electrode 313C, a second electrode 313D) arranged on a substrate 311, and a circular odorant receiving layer 315c formed on the electrode 313. The diameter R of the odorant receiving layer 315c is 0.2 mm or more and 10 mm or less. In FIG. 13, the shape of the odorant receiving layer 315c included in the sensor element 31c is, for example, an ellipse, but the shape is not limited to this. When the shape of the odorant receiving layer 315c is an ellipse, the average of the short axis and the long axis may be 0.2 mm or more and 10 mm or less. Moreover, the shape of the odorant receiving layer 315c may be a perfect circle.
 図14は、センサ素子群31Aに含まれる1つのセンサ素子31dの構成の一例を示す上面図である。センサ素子31dは、基板311上に配置された電極313(第1電極313C、第2電極313D)と、電極313上に形成された帯状の匂い物質受容層315dと、を備える。匂い物質受容層315dの短方向の幅の長さは、0.2mm以上、10mm以下である。 FIG. 14 is a top view showing an example of the configuration of one sensor element 31d included in the sensor element group 31A. The sensor element 31d includes an electrode 313 (a first electrode 313C, a second electrode 313D) arranged on a substrate 311, and a band-shaped odorant receiving layer 315d formed on the electrode 313. The width of the odorant receiving layer 315d in the short direction is 0.2 mm or more and 10 mm or less.
 前記の構成を備えることにより、各センサ素子の匂い物質受容層の形状および面積のばらつきに起因しうる測定結果の出力の不安定さが低減され、匂い測定装置100cは、匂い物質を高精度に測定することができる。 By having the above-mentioned configuration, instability in the output of measurement results that may be caused by variations in the shape and area of the odorant receiving layer of each sensor element is reduced, and the odor measurement device 100c can detect odorants with high precision. can be measured.
 センサ素子群31Aは、センサ素子31、31b~31d以外のセンサ素子を複数個含んでいてよい。図9では、センサ素子群31Aは一例として16個のセンサ素子からなるが、センサ素子の数はこれに限定されない。 The sensor element group 31A may include a plurality of sensor elements other than the sensor elements 31, 31b to 31d. In FIG. 9, the sensor element group 31A includes 16 sensor elements as an example, but the number of sensor elements is not limited to this.
 センサ素子群31Aが含む複数のセンサ素子31、31b~31dが備える匂い物質受容層315、315b~315dは、それぞれ導電性炭素材料、樹脂組成物、および界面活性剤を含んでいてよい。 The odorant receiving layers 315, 315b to 315d of the plurality of sensor elements 31, 31b to 31d included in the sensor element group 31A may each contain a conductive carbon material, a resin composition, and a surfactant.
 センサ素子群31Aが含む複数のセンサ素子31、31b~31dが備える匂い物質受容層315、315b~315dは、それぞれ導電性炭素材料、樹脂組成物、および界面活性剤の含有比率が異なっていてよい。匂い物質受容層が含む導電性炭素材料、樹脂組成物、および界面活性剤の含有比率が異なると、センサ素子の匂い物質に対する感度、および検知特異性も異なる。 The odorant receiving layers 315, 315b to 315d of the plurality of sensor elements 31, 31b to 31d included in the sensor element group 31A may have different content ratios of the conductive carbon material, the resin composition, and the surfactant, respectively. . When the content ratios of the conductive carbon material, resin composition, and surfactant contained in the odorant-receiving layer differ, the sensitivity and detection specificity of the sensor element to the odorant also differ.
 匂い測定装置100cは、上記のように、導電性炭素材料、樹脂組成物、および界面活性剤の含有比率が異なる匂い物質受容層を備えるセンサ素子を複数備えることにより、多種多様な匂い物質を検知することができる。 As described above, the odor measurement device 100c detects a wide variety of odorants by including a plurality of sensor elements each having an odorant-receiving layer containing a conductive carbon material, a resin composition, and a surfactant in different proportions. can do.
 本実施形態に係る匂い測定装置100cが含むセンサ素子31、31b~31dの匂い物質受容層315、315b~315dの厚さは、0.1μm以上、1000μm以下であってよい。また、各匂い物質受容層の厚さは、好ましくは、1μm以上、100μm以下であってよい。 The thickness of the odorant receiving layers 315, 315b to 315d of the sensor elements 31, 31b to 31d included in the odor measuring device 100c according to the present embodiment may be 0.1 μm or more and 1000 μm or less. Further, the thickness of each odorant-receiving layer may preferably be 1 μm or more and 100 μm or less.
  センサ素子31、31b~31dの匂い物質受容層の厚さが前記の範囲であることにより、各センサ素子の匂い物質受容層315、315b~315dの厚さのばらつきに起因しうる測定結果の出力の不安定さが低減され、匂い測定装置100cは、匂い物質を高精度に測定することができる。 Since the thickness of the odorant receptor layers of the sensor elements 31, 31b to 31d is within the above range, measurement results that may be caused by variations in the thickness of the odorant receptor layers 315, 315b to 315d of each sensor element can be output. instability is reduced, and the odor measurement device 100c can measure odorants with high precision.
 匂い物質受容層315、315b~315dの厚さが0.1μm未満である場合、匂い物質受容層内に分散している導電性炭素材料の粒子径に近い値となるため、匂い物質受容層の厚さの均一性が担保出来ず、匂い測定装置100cが安定した測定結果を出力できない虞がある。一方、匂い物質受容層315、315b~315dの厚さが、1000μmより大きい場合、匂い物質受容層内での匂い物質の拡散時間が長くなるため、匂い測定装置100cは、匂い物質を精度高く測定することが難しくなる。 When the thickness of the odorant-receiving layers 315, 315b to 315d is less than 0.1 μm, the particle diameter of the odorant-receiving layer is close to that of the conductive carbon material dispersed in the odorant-receiving layer. There is a possibility that the odor measuring device 100c may not be able to output stable measurement results because the uniformity of the thickness cannot be ensured. On the other hand, if the thickness of the odorant receptor layers 315, 315b to 315d is greater than 1000 μm, the diffusion time of the odorant within the odorant receptor layer becomes longer, so the odor measuring device 100c measures the odorant with high accuracy. becomes difficult to do.
 センサ素子31、31b~31dの匂い物質受容層315、315b~315dの厚さが前記の範囲であることにより、各センサ素子の匂い物質受容層の厚さのばらつきに起因しうる測定結果の出力の不安定さが低減され、匂い測定装置100cは、匂い物質を高精度に測定することができる。 Since the thickness of the odorant receiving layers 315, 315b to 315d of the sensor elements 31, 31b to 31d is within the above range, the output of measurement results that may be caused by variations in the thickness of the odorant receiving layers of each sensor element is suppressed. instability is reduced, and the odor measurement device 100c can measure odorants with high precision.
 センサ素子群31Aが含むセンサ素子31、31b~31dの電極は、それぞれ第1電極および第2電極を有し、第1電極および第2電極は、平行線状、平行曲線状、櫛形状、または同心円状に配置されていてもよい。第1電極および第2電極は、前記のどの形状が採用される場合においても、互いに線対称、または点対称で配置されていることが好ましい。このように第1電極および第2電極が配置されることにより、匂い測定装置100cは、気体に含まれる匂い物質を高精度に測定することができる。 The electrodes of the sensor elements 31, 31b to 31d included in the sensor element group 31A each have a first electrode and a second electrode, and the first electrode and the second electrode have a parallel line shape, a parallel curve shape, a comb shape, or They may be arranged concentrically. It is preferable that the first electrode and the second electrode are arranged line-symmetrically or point-symmetrically with respect to each other, regardless of which of the above-mentioned shapes is adopted. By arranging the first electrode and the second electrode in this manner, the odor measuring device 100c can measure odorants contained in the gas with high precision.
 図13のセンサ素子31cは、第1電極313Cと、第2電極313Dを有している。また、一例として、第1電極313Cは、金属配線313aと、金属配線313bとから構成されており、2本の金属配線は、互いに垂直になるようT字状に配されている。第2電極313Bも、第1電極313Cと同様に2本の金属配線313c、313dから構成され、2本の金属配線が互いに垂直になるようT字状に配されるよう構成されている。また、第1電極313Aと、第2電極313Bとは、金属配線313aと、金属配線313cとが向かい合うように平行線状に配置されている。 The sensor element 31c in FIG. 13 has a first electrode 313C and a second electrode 313D. Further, as an example, the first electrode 313C is composed of a metal wiring 313a and a metal wiring 313b, and the two metal wirings are arranged in a T-shape so as to be perpendicular to each other. The second electrode 313B is also composed of two metal wires 313c and 313d, similar to the first electrode 313C, and is arranged in a T-shape such that the two metal wires are perpendicular to each other. Further, the first electrode 313A and the second electrode 313B are arranged in parallel lines so that the metal wiring 313a and the metal wiring 313c face each other.
 第1電極313Cおよび第2電極313Dは、特に、互いにT字状に配されていることにより、第1電極313Cと、第2電極313Dとを好適な距離に設置することができ、電極の抵抗値を安定化させることができる。例えば、電極が櫛形状に配置されている場合は、電極間の距離が短くなり、電極の抵抗値が小さくなり過ぎる虞がある。また、第1電極313Cおよび第2電極313Dが互いにT字状に配されていることにより、後述のセンサ素子の製造方法の塗布工程において、スラリーが濡れ広がる領域に、濡れ広がりを妨げ得る電極の凹凸部分が存在しないため、スラリーが濡れ広がり易くなる。また、スラリーが濡れ広がり易くなることより、乾燥後の匂い物質受容層の厚みが一定になるという効果がある。 In particular, the first electrode 313C and the second electrode 313D are arranged in a T-shape with each other, so that the first electrode 313C and the second electrode 313D can be installed at a suitable distance, and the resistance of the electrode is The value can be stabilized. For example, when the electrodes are arranged in a comb shape, the distance between the electrodes becomes short, and the resistance value of the electrodes may become too small. In addition, since the first electrode 313C and the second electrode 313D are arranged in a T-shape, in the coating process of the sensor element manufacturing method described later, the area where the slurry gets wet and spreads is covered with electrodes that can prevent the slurry from getting wet and spreading. Since there are no uneven parts, the slurry gets wet and spreads easily. Furthermore, since the slurry becomes easier to wet and spread, there is an effect that the thickness of the odorant-receiving layer after drying becomes constant.
 [センサ素子の製造方法]
 匂い測定装置100cにおいて用いられる、複数種類のセンサ素子31、31b~31dを製造する製造方法について説明する。センサ素子31、31b~31dの匂い物質受容層315、315b~315dは、その原料として様々な組成を有するスラリーを使用し得るが、スラリーの組成が異なることによってスラリーの粘度はそれぞれ異なる。同一の方法を用いて、粘度の異なるスラリーを塗布して匂い物質受容層を形成する場合に、例えば、粘度の低いスラリーを使用すると基板上において濡れ広がり易く、一方で、粘度の高いスラリーを使用すると基板上において濡れ広がりにくくなる。このように、粘度の異なるスラリーを塗布する場合、同一の製造方法を用いると、乾燥後の匂い物質受容層315、315b~315dの形状、面積、および厚さなどにばらつきが生じる。このような匂い物質受容層を用いて製造されたセンサ素子31、31b~31dは、匂い物質を安定して測定することが難しい。一方、スラリーの粘度の高低に応じて製造方法を変更すると、形状、面積、厚さなどにばらつきが生じず、均一な匂い物質受容層315、315b~315dが得られるが、製造に係るコストが高くなる。
[Method for manufacturing sensor element]
A manufacturing method for manufacturing multiple types of sensor elements 31, 31b to 31d used in the odor measuring device 100c will be described. The odorant receiving layers 315, 315b to 315d of the sensor elements 31, 31b to 31d can use slurries having various compositions as raw materials, but the viscosity of the slurry differs depending on the composition of the slurry. When using the same method to form an odorant receptor layer by applying slurries with different viscosities, for example, if a slurry with a low viscosity is used, it will spread easily on the substrate, whereas if a slurry with a high viscosity is used, it will spread easily on the substrate. This makes it difficult to wet and spread on the substrate. As described above, when applying slurries having different viscosities and using the same manufacturing method, variations occur in the shape, area, thickness, etc. of the odorant-receiving layers 315, 315b to 315d after drying. It is difficult for sensor elements 31, 31b to 31d manufactured using such an odorant-receiving layer to stably measure odorants. On the other hand, if the manufacturing method is changed depending on the viscosity of the slurry, uniform odorant-receiving layers 315, 315b to 315d can be obtained without variations in shape, area, thickness, etc., but the manufacturing cost is high. It gets expensive.
 本実施形態の製造方法によれば、異なる組成、すなわち異なる粘度のスラリーを用いても形状、面積、および厚さのばらつきが少ない複数種のセンサ素子31、31b~31dを製造することができる。また、粘度の高低に応じて製造方法を変える必要がないため、製造コストを抑えることができる。 According to the manufacturing method of the present embodiment, it is possible to manufacture a plurality of types of sensor elements 31, 31b to 31d with little variation in shape, area, and thickness even if slurries of different compositions, that is, different viscosities are used. Furthermore, since there is no need to change the manufacturing method depending on the level of viscosity, manufacturing costs can be reduced.
 図15は、匂い測定装置100cにおいて用いられる複数種類のセンサ素子31、31b~31dを製造する製造方法の工程を説明するためのフローチャートである。なお、ここでは、界面活性剤を含む匂い物質受容層315、315b~315dを有するセンサ素子31、31b~31dの製造方法を例に挙げる。 FIG. 15 is a flowchart for explaining the steps of a manufacturing method for manufacturing multiple types of sensor elements 31, 31b to 31d used in the odor measuring device 100c. Here, a method for manufacturing sensor elements 31, 31b to 31d having odorant receiving layers 315, 315b to 315d containing a surfactant will be exemplified.
 <スラリー調製工程>
 まず、フィラー、樹脂組成物、および界面活性剤を含むスラリーが調製される。スラリーの樹脂組成物は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂を含む。フィラー、樹脂組成物、および界面活性剤の混合比は、所望する匂い物質受容層の感度および検知特異性によって適宜設定されればよい。スラリーは、フィラー、樹脂組成物、および界面活性剤以外に溶媒、添加剤を含んでいてもよい(S21)。
<Slurry preparation process>
First, a slurry containing a filler, a resin composition, and a surfactant is prepared. The resin composition of the slurry contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ). The mixing ratio of the filler, resin composition, and surfactant may be appropriately set depending on the desired sensitivity and detection specificity of the odorant receptor layer. The slurry may contain a solvent and additives in addition to the filler, resin composition, and surfactant (S21).
 <電極配置工程>
 次に、基板上に電極が配置される(S22)。電極は、第1電極(第1金属配線)および第2電極(第2金属配線)を備えていてよい。第1電極と、第2電極とは離間している。第1電極および第2電極は、平行直線状、平行曲線状、櫛形状、および同心円状に配置されてもよい。また、第1電極および第2電極は、前記のどの形状が採用される場合においても、互いに線対称、または点対称で配置されていることが好ましい。このように第1電極および第2電極が配置されることにより、匂い測定装置100cは、気体に含まれる匂い物質を高精度に測定することができる。
<Electrode placement process>
Next, electrodes are placed on the substrate (S22). The electrode may include a first electrode (first metal wiring) and a second electrode (second metal wiring). The first electrode and the second electrode are spaced apart. The first electrode and the second electrode may be arranged in parallel straight lines, parallel curves, comb shapes, and concentric circles. Moreover, it is preferable that the first electrode and the second electrode are arranged line-symmetrically or point-symmetrically with respect to each other, regardless of which of the above-mentioned shapes is adopted. By arranging the first electrode and the second electrode in this manner, the odor measuring device 100c can measure odorants contained in the gas with high precision.
 一例として、図13および14においては、1枚の基板311上に一組の電極(第1電極313Cおよび第2電極313D)を配置されているが、1枚の基板上に、複数の組の電極が並んで配置されていてもよい。 As an example, in FIGS. 13 and 14, one set of electrodes (first electrode 313C and second electrode 313D) is arranged on one substrate 311, but a plurality of sets of electrodes are arranged on one substrate. The electrodes may be arranged side by side.
 <領域規定工程>
 続いて、電極が配置された基板上に、複数種類のスラリーのそれぞれを塗布する塗布領域が規定される(S23)。塗布領域は、第1金属配線の少なくとも一部と第2金属配線の少なくとも一部とを含む領域である。塗布領域は、例えば、レジストが配されることによって規定されてもよい。また、塗布工程において、スラリーがノズルから滴下される場合は、塗布領域は、ノズル径に合わせて規定されてもよい。図16は、レジストMが配された後の基板311の概略図である。レジストMは、塗布領域330を規定するように配されている。塗布領域330は、基板311がむきだしの状態である。
<Area definition process>
Subsequently, application areas for applying each of the plurality of types of slurry are defined on the substrate on which the electrodes are arranged (S23). The application area is an area including at least a portion of the first metal interconnect and at least a portion of the second metal interconnect. The application area may be defined by, for example, disposing a resist. Moreover, in the coating process, when the slurry is dropped from a nozzle, the coating area may be defined according to the nozzle diameter. FIG. 16 is a schematic diagram of the substrate 311 after the resist M is placed. The resist M is arranged so as to define the coating area 330. In the application area 330, the substrate 311 is exposed.
 塗布領域330の広さは、複数種類のスラリーのそれぞれに対して同じになるよう規定されてもよい。すなわち、導電性炭素材料、樹脂組成物、および界面活性剤の混合比がそれぞれ異なるスラリーであっても、スラリーを塗布するための塗布領域330の面積は、均一であってよい。これによれば、混合比が異なる、すなわち粘度が異なる複数種類のスラリーを用いても、乾燥させた後の複数種類の匂い物質受容層の面積のばらつきが少なくなる。 The width of the application area 330 may be defined to be the same for each of the plurality of types of slurry. That is, even if the slurry has different mixing ratios of the conductive carbon material, the resin composition, and the surfactant, the area of the application region 330 for applying the slurry may be uniform. According to this, even if a plurality of types of slurry having different mixing ratios, that is, different viscosities are used, the variation in the area of the plurality of types of odorant receiving layers after drying is reduced.
 図16の塗布領域330は、一例として円状であるが、塗布領域330の形状はこれに限定されない。塗布領域330の形状は、円状、または帯状であってよい。これにより、円状、または帯状の匂い物質受容層が形成される。 Although the application area 330 in FIG. 16 is circular as an example, the shape of the application area 330 is not limited to this. The shape of the application area 330 may be circular or band-like. As a result, a circular or band-shaped odorant-receiving layer is formed.
 塗布領域330の形状が円状である場合、円の直径は、0.2mm以上、10mm以下であってよく、塗布領域330の形状が帯状である場合、帯の短方向の長さが0.2mm以上、10mm以下であってよい。これにより、円の直径が0.2mm以上、10mm以下の円状の匂い物質受容層、また、帯の短方向の長さが0.2mm以上、10mm以下の円状の匂い物質受容層が形成される。 When the application area 330 has a circular shape, the diameter of the circle may be 0.2 mm or more and 10 mm or less, and when the application area 330 has a band shape, the length of the band in the short direction is 0.2 mm or more and 10 mm or less. It may be 2 mm or more and 10 mm or less. As a result, a circular odorant-receptive layer with a diameter of 0.2 mm or more and 10 mm or less, and a circular odorant-receptive layer with a band length of 0.2 mm or more and 10 mm or less in the short direction are formed. be done.
 レジストMが配される方法は特に限定されないが、規定された領域にソルダーレジストをシルク印刷し、その後ソルダーレジストをUV硬化させる方法、レジストフィルムを基板に貼付する方法、規定された領域のレジストのみを硬化し、未硬化部分を除去する方法などが挙げられる。 The method of disposing the resist M is not particularly limited, but includes a method of silk-printing a solder resist in a defined area and then curing the solder resist with UV, a method of pasting a resist film on a substrate, a method of applying only the resist in a defined area. Examples include a method of curing the material and removing the uncured portion.
 <塗布工程>
 続いて、複数種類のスラリーのそれぞれが塗布領域330に塗布される(S24)。スラリーは、第1電極の少なくとも一部と、第2電極の少なくとも一部とを含む塗布領域330に塗布される。スラリーが塗布される方法は、従来公知の方法を適用可能であり、ノズルから滴下されてもよく、スプレーされてもよく、スピンコートされてもよい。
<Coating process>
Subsequently, each of the plurality of types of slurry is applied to the application area 330 (S24). The slurry is applied to an application area 330 that includes at least a portion of the first electrode and at least a portion of the second electrode. The slurry can be applied by any conventionally known method, such as dropping from a nozzle, spraying, or spin coating.
 複数種類のスラリーの粘度はそれぞれ異なっている。スラリーの粘度が異なることは、例えば、導電性炭素材料、樹脂組成物、および界面活性剤の混合比がそれぞれ異なることに起因する。粘度が異なるスラリーは、濡れ広がり方に違いが現れ得る。しかし、本製造方法の塗布工程においては、前の領域規定工程によって塗布領域が規定されているため、規定された面積にスラリーが塗布されることになる。 The viscosity of multiple types of slurry is different. The difference in the viscosity of the slurry is due to, for example, the different mixing ratios of the conductive carbon material, the resin composition, and the surfactant. Slurries with different viscosities may differ in how they wet and spread. However, in the coating step of this manufacturing method, since the coating region is defined in the previous region defining step, the slurry is applied to the defined area.
 <乾燥工程>
 最後に、塗布領域330に塗布されたスラリーを乾燥させて、匂い物質受容層が形成される(S25)。スラリーの乾燥方法としては、特に限定されないが、例えば、常圧で100℃、1時間加熱し、その後真空乾燥機内で減圧しながら100℃で1時間加熱する方法を採用することができる。
<Drying process>
Finally, the slurry applied to the application area 330 is dried to form an odorant receptor layer (S25). The method for drying the slurry is not particularly limited, but for example, a method of heating at 100° C. for 1 hour at normal pressure, and then heating at 100° C. for 1 hour while reducing the pressure in a vacuum dryer can be adopted.
 乾燥工程において、乾燥後の匂い物質受容層の厚さは、0.1μm以上1000μm以下であってよい。乾燥後の匂い物質受容層の厚さは、好ましくは、1μm以上、100μm以下であってよい。匂い物質受容層の厚さが前記の範囲であれば、センサ素子が匂い物質を安定して測定することができる。匂い物質受容層の厚さが0.1μm未満である場合、匂い物質受容層内に分散している導電性炭素材料の粒子径に近い値となるため、匂い物質受容層の厚さの均一性が担保出来ず、匂い測定装置100cが安定した測定結果を出力できない虞がある。一方、匂い物質受容層の厚さが、1000μmより大きい場合、匂い物質受容層内での匂い物質の拡散時間が長くなるため、匂い測定装置100cは、匂い物質を精度高く測定することが難しくなる。 In the drying step, the thickness of the odorant-receiving layer after drying may be 0.1 μm or more and 1000 μm or less. The thickness of the odorant-receiving layer after drying may preferably be 1 μm or more and 100 μm or less. If the thickness of the odorant-receiving layer is within the above range, the sensor element can stably measure odorants. When the thickness of the odorant-receiving layer is less than 0.1 μm, the value is close to the particle diameter of the conductive carbon material dispersed within the odorant-receiving layer, so the thickness of the odorant-receiving layer is uniform. Therefore, there is a possibility that the odor measuring device 100c may not be able to output stable measurement results. On the other hand, if the thickness of the odorant receptor layer is greater than 1000 μm, the diffusion time of the odorant within the odorant receptor layer becomes longer, making it difficult for the odor measurement device 100c to measure the odorant with high accuracy. .
 上述のように、本実施形態に係る製造方法は、スラリー調製工程と、電極配置工程と、領域規定工程と、塗布工程と、乾燥工程とを含む。このような製造方法を採用することにより、導電性炭素材料、樹脂組成物、および界面活性剤の混合比が異なる複数種類のスラリーを用いても、匂い物質受容層315、315b~315dの形状、面積、および厚さのばらつきが少ない複数種のセンサ素子31、31b~31dを製造することができる。また、スラリーの粘度の高低に応じて製造方法を変える必要がないため、製造コストを抑えることができる。 As described above, the manufacturing method according to the present embodiment includes a slurry preparation process, an electrode placement process, a region definition process, a coating process, and a drying process. By adopting such a manufacturing method, even if multiple types of slurries with different mixing ratios of conductive carbon materials, resin compositions, and surfactants are used, the shape of the odorant receiving layers 315, 315b to 315d, A plurality of types of sensor elements 31, 31b to 31d with small variations in area and thickness can be manufactured. Furthermore, since there is no need to change the manufacturing method depending on the viscosity of the slurry, manufacturing costs can be reduced.
 特に、領域規定工程において、塗布領域が規定されることにより、後の塗布工程においてスラリーのドロップレットの濡れ広がりが良好になる。例えば、塗布領域をレジストで規定した場合、基板のうち、レジストが存在する部分と、存在しない部分とで、表面粗さが異なる。レジストが存在しない部分では、基板がむきだしの状態のため、表面粗さが大きく、表面張力が小さくなる。これにより、基板がむきだしである塗布領域においては、スラリーのドロップレットの濡れ広がりが良好になる。 Particularly, by defining the coating area in the area defining step, the slurry droplets can be wetted and spread well in the subsequent coating step. For example, when the application area is defined by a resist, the surface roughness will be different between a portion of the substrate where the resist is present and a portion where the resist is not present. In areas where no resist exists, the substrate is exposed, so the surface roughness is high and the surface tension is low. This allows the slurry droplets to spread well in the application area where the substrate is exposed.
 また、領域規定工程において、塗布領域が配されることにより、後の塗布工程においてスラリーの濡れ広がりが規制され、匂い物質受容層315、315b~315dと、電極との位置関係が一定になる。例えば、塗布領域をレジストで規定した場合、レジストの境界において段差が生じることにより、スラリーの濡れ広がりが規制され、匂い物質受容層315、315b~315dと、電極との位置関係が一定になる。 Furthermore, by arranging the coating area in the area defining step, wetting and spreading of the slurry in the subsequent coating step is regulated, and the positional relationship between the odorant receiving layers 315, 315b to 315d and the electrodes becomes constant. For example, when the application area is defined by a resist, a difference in level occurs at the boundary of the resist, which restricts the slurry from spreading and makes the positional relationship between the odorant receiving layers 315, 315b to 315d and the electrodes constant.
 領域規定工程は、必須ではなく、領域が規定されない状態で、塗布工程が行われてもよい。 The region defining step is not essential, and the coating step may be performed without the region being defined.
 匂い物質受容層315、315b~315dの作製では、樹脂組成物の塗工によって匂い物質受容層315、315b~315dを作製した後に、当該匂い物質受容層に接するように電極を作製してもよい。 In the production of the odorant receptor layers 315, 315b to 315d, after the odorant receptor layers 315, 315b to 315d are produced by coating a resin composition, electrodes may be produced in contact with the odorant receptor layers. .
 本開示において、スラリーは、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含むことにより、スラリーが好適な柔軟性を有し、成膜性に優れるという効果を奏する。また、成膜性が向上することにより、安定して複数のセンサ素子31、31b~31dを製造することができる。 In the present disclosure, the slurry contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), and a filler, so that the slurry has suitable flexibility. , it has the effect of being excellent in film formability. Furthermore, by improving the film formability, it is possible to stably manufacture a plurality of sensor elements 31, 31b to 31d.
 〔ソフトウェアによる実現例〕
 推定装置10、10a、10bの制御ブロック(特に制御部1)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of implementation using software]
The control blocks (especially the control unit 1) of the estimation devices 10, 10a, and 10b may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software. .
 後者の場合、推定装置10、10a、10bは、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路等を用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)等をさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the estimation devices 10, 10a, and 10b are equipped with a computer that executes instructions of a program that is software that implements each function. This computer includes, for example, one or more processors and a computer-readable recording medium that stores the above program. In the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to "non-temporary tangible media" such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, programmable logic circuits, etc. can be used. Further, the computer may further include a RAM (Random Access Memory) or the like for expanding the above program. Furthermore, the program may be supplied to the computer via any transmission medium (communication network, broadcast waves, etc.) that can transmit the program. Note that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。 Furthermore, part or all of the functions of each of the control blocks described above can also be realized by a logic circuit. For example, an integrated circuit in which a logic circuit functioning as each of the control blocks described above is formed is also included in the scope of the present invention. In addition to this, it is also possible to realize the functions of each of the control blocks described above using, for example, a quantum computer.
 また、上記各実施形態で説明した各処理は、AI(Artificial Intelligence:人工知能)に実行させてもよい。この場合、AIは上記制御装置で動作するものであってもよいし、他の装置(例えばエッジコンピュータまたはクラウドサーバ等)で動作するものであってもよい。 Furthermore, each process described in each of the above embodiments may be executed by AI (Artificial Intelligence). In this case, the AI may operate on the control device, or may operate on another device (for example, an edge computer or a cloud server).
 〔まとめ〕
 本開示の態様1に係る匂い測定装置100、100a~100cは、第1金属配線313A、および第1金属配線313Aとは離間している第2金属配線313Bを有する電極313と、第1金属配線313Aの少なくとも一部と第2金属配線313Bの少なくとも一部とに接する匂い物質受容層315、315b~315dと、を備える複数のセンサ素子31、31b~31dを備え、匂い物質受容層315、315b~315dは、樹脂組成物を含み、樹脂組成物は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含み、Rは、1~10個の炭素原子を有する一価の炭化水素基である。
〔summary〕
Odor measurement devices 100, 100a to 100c according to aspect 1 of the present disclosure include an electrode 313 having a first metal wiring 313A and a second metal wiring 313B spaced apart from the first metal wiring 313A, and a first metal wiring A plurality of sensor elements 31, 31b to 31d are provided, and the sensor elements 31, 31b to 315d are in contact with at least a portion of the second metal wiring 313A and at least a portion of the second metal wiring 313B. -315d contains a resin composition, the resin composition contains a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), and a filler, and R 1 is , a monovalent hydrocarbon radical having 1 to 10 carbon atoms.
 本開示の態様2に係る匂い測定装置100、100a~100cは、前記態様1において、匂い物質受容層は、該匂い物質受容層の断面のSEM画像に基づき評価した空隙率xが12%≦x≦30%であってもよい。 In the odor measuring device 100, 100a to 100c according to Aspect 2 of the present disclosure, in Aspect 1, the odorant-receiving layer has a porosity x of 12%≦x, which is evaluated based on a SEM image of a cross section of the odorant-receiving layer. It may be ≦30%.
 本開示の態様3に係る匂い測定装置100、100a~100cは、前記態様1または2において、樹脂組成物は、界面活性剤をさらに含んでいてもよい。 In the odor measuring device 100, 100a to 100c according to Aspect 3 of the present disclosure, in Aspect 1 or 2, the resin composition may further contain a surfactant.
 本開示の態様4に係る匂い測定装置100、100a~100cは、前記態様1~3のいずれかにおいて、シリコーン樹脂の前記T単位と、前記D単位との重量比は、T単位:D単位=98:2~50:50であってもよい。 In the odor measuring device 100, 100a to 100c according to aspect 4 of the present disclosure, in any of the aspects 1 to 3, the weight ratio of the T unit and the D unit of the silicone resin is T unit:D unit= It may be 98:2 to 50:50.
 本開示の態様5に係る匂い測定装置100、100a~100cは、前記態様1~4のいずれかにおいて、匂い物質受容層の抵抗値の変化によって匂いを検出してもよい。 The odor measuring device 100, 100a to 100c according to Aspect 5 of the present disclosure may detect an odor based on a change in the resistance value of the odorant receptor layer in any of Aspects 1 to 4 above.
 本開示の態様6に係る匂い測定装置100、100a~100cは、前記態様1~5のいずれかにおいて、フィラーは、導電性炭素材料であってもよい。 In the odor measuring device 100, 100a to 100c according to aspect 6 of the present disclosure, in any of aspects 1 to 5, the filler may be a conductive carbon material.
 本開示の態様7に係る匂い測定装置100、100a~100cは、前記態様6において、導電性炭素材料はカーボンブラックであってもよい。 In the odor measuring devices 100, 100a to 100c according to Aspect 7 of the present disclosure, in Aspect 6, the conductive carbon material may be carbon black.
 本開示の態様8に係るセンサ素子31、31b~31dは、第1金属配線313A、および第1金属配線313Aとは離間している第2金属配線313Bを有する電極313、第1金属配線313Aの少なくとも一部と第2金属配線313Bの少なくとも一部とに接する匂い物質受容層315、315bと、を備え、匂い物質受容層315、315bは、T単位(RSiO3/2)およびD単位(R SiO2/2)を含むシリコーン樹脂、およびフィラー含み、Rは、1~10個の炭素原子を有する一価の炭化水素基である。 The sensor elements 31, 31b to 31d according to aspect 8 of the present disclosure include an electrode 313 having a first metal wiring 313A and a second metal wiring 313B separated from the first metal wiring 313A, and a first metal wiring 313A. The odorant receiving layers 315, 315b are in contact with at least a portion of the second metal wiring 313B, and the odorant receiving layers 315, 315b have T units (R 1 SiO 3/2 ) and D units. (R 1 2 SiO 2/2 ) and fillers, where R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
 本開示の態様9に係るセンサ素子31、31b~31dは、前記態様8において、匂い物質受容層は、該匂い物質受容層の断面のSEM画像に基づき評価した空隙率xが12%≦x≦30%であってもよい。 In the sensor elements 31, 31b to 31d according to aspect 9 of the present disclosure, in aspect 8, the odorant-receiving layer has a porosity x of 12%≦x≦, which is evaluated based on a SEM image of a cross section of the odorant-receiving layer. It may be 30%.
 本開示の態様10に係るセンサ素子31、31b~31dの製造方法は、スラリーを調製するスラリー調製工程と、基板上に、第1金属配線313A、および第1金属配線313Aとは離間している第2金属配線313Bを有する電極313を配置する電極配置工程と、スラリーを、第1金属配線313Aの少なくとも一部と第2金属配線313Bの少なくとも一部とを含む塗布領域に塗布する塗布工程と、塗布領域に塗布されたスラリーを乾燥させて匂い物質受容層315、315b~315dを形成する乾燥工程と、を含み、スラリーは、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含み、Rは、1~10個の炭素原子を有する一価の炭化水素基である。 The method for manufacturing sensor elements 31, 31b to 31d according to aspect 10 of the present disclosure includes a slurry preparation step of preparing a slurry, and a first metal wiring 313A and a first metal wiring 313A that are spaced apart from each other on the substrate. an electrode arrangement step of arranging an electrode 313 having a second metal wiring 313B; and a coating step of applying slurry to a coating area including at least a portion of the first metal wiring 313A and at least a portion of the second metal wiring 313B. , a drying step of drying the slurry applied to the application area to form the odorant receiving layers 315, 315b to 315d, the slurry contains T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ) and a filler, R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
 本開示の態様9に係るセンサ素子31、31b~31dの製造方法は、前記態様10において、匂い物質受容層は、該匂い物質受容層の断面のSEM画像に基づき評価した空隙率xが12%≦x≦30%であってもよい。 In the method for manufacturing sensor elements 31, 31b to 31d according to aspect 9 of the present disclosure, in aspect 10, the odorant-receiving layer has a porosity x of 12% as evaluated based on a SEM image of a cross section of the odorant-receiving layer. ≦x≦30% may be satisfied.
 本開示の態様12に係る製造方法は、前記態様10または11において、スラリーは、界面活性剤をさらに含んでもよい。 In the manufacturing method according to Aspect 12 of the present disclosure, in Aspect 10 or 11, the slurry may further contain a surfactant.
 本開示の態様13に係る製造方法は、前記態様10~12のいずれかにおいて、シリコーン樹脂のT単位と、D単位との重量比は、T単位:D単位=98:2~50:50であってよい。 In the manufacturing method according to aspect 13 of the present disclosure, in any of aspects 10 to 12, the weight ratio of T units and D units of the silicone resin is T units: D units = 98:2 to 50:50. It's good.
 本発明は上述した各実施形態に限定されず、請求項に示した範囲で種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various changes can be made within the scope of the claims. Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.
 前述の本発明の態様によれば、匂いを機械的に、高精度かつ高感度で測定することが可能となる。よって、本発明は、匂いの測定が求められる幅広い産業分野に適用可能であり、産業と技術革新の基盤に関する持続可能な開発目標(SDGs)の目標9の達成に貢献することが期待される。 According to the above-described aspect of the present invention, it is possible to mechanically measure odor with high accuracy and sensitivity. Therefore, the present invention is applicable to a wide range of industrial fields where odor measurement is required, and is expected to contribute to achieving Goal 9 of the Sustainable Development Goals (SDGs) regarding the foundations of industry and technological innovation.
 以下、実施例および比較例により本発明をさらに説明するが、本発明はこれらに限定されない。以下、特に定めない限り、%は重量%、部は重量部を示す。 The present invention will be further explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, % means % by weight and parts means parts by weight.
 実施例および比較例で使用する各種材料に関する説明を以下に示す。 Descriptions regarding various materials used in Examples and Comparative Examples are shown below.
 〔樹脂(A)〕
・シリコーン樹脂
 ここで、シリコーン樹脂は、シリコーンオイルを含まない。
[Resin (A)]
-Silicone resin Here, silicone resin does not include silicone oil.
 A1:DOWSIL(登録商標) RSN-0217 Flake Resin(ダウ・東レ(株)製)57.6重量部、DOWSIL(登録商標) RSN-0255 Flake Resin (ダウ・東レ(株)製) 14.4重量部(2種類のシリコーン樹脂を4:1の重量比で混合)
 A2:DOWSIL(登録商標) RSN-0217 Flake Resin(ダウ・東レ(株)製)28.8重量部、DOWSIL(登録商標) RSN-0255 Flake Resin (ダウ・東レ(株)製) 43.2重量部(2種類のシリコーン樹脂を2:3の重量比で混合)
 A3:DOWSIL(登録商標) RSN-0255 Flake Resin (ダウ・東レ(株)製) 72重量部
 A4:DOWSIL(登録商標) RSN-0409 HS Resin (ダウ・東レ(株)製) 72重量部
 A5:DOWSIL(登録商標) RSN-0217 Flake Resin(ダウ・東レ(株)製)72重量部
 A6:シリコーン樹脂
 [シリコーン樹脂(A6)の合成例]
 500mLフラスコに水18g、28%アンモニア水2g、2-プロパノール80gに、3-フリルトリエトキシシラン4.41gを加え、80℃で3時間反応させた。反応液を空冷後、沈殿物をろ取単離した(有機無機ハイブリッド含有溶液)。エタノールでサンプルを十分に洗浄し乾燥させたのち、DMFで10mg/mLになるように溶解した。平均一次粒子径80nmのシリカが分散された2-プロパノール分散液IPA-ST-ZL(日産化学製品)をDMFで10mg/mLになるように調製したフィラー含有溶液と、先述の有機無機ハイブリッド含有溶液を混合比6:4(有機無機ハイブリッド含有溶液:フィラー含有溶液)の割合で混合し目的のシリコーン溶液を得た。また、シリコーン溶液の一部をサンプルとして用い、100℃大気下で乾燥させて、TGAを用いて熱重量減少率を測定した。
・シリコーンオイル
 A7:KF-351A(信越化学(株)製)) 18重量部
 A8:KF-6002A(信越化学(株)製)) 18重量部
 〔界面活性剤(B)〕
 B1:ポリビニルピロリドン(PVP、第一工業製薬(株)製)
 B2:ポリエーテルリン酸エステルのアミン塩(ディスパロンDA-325、楠本化成(株)製)
 〔フィラー(C)〕
 C1:シリカ(IPA-ST-ZL、日産化学(株)製)
 C2:カーボンブラック(SuperC65、MTI Corporation社製)
 C3:カーボンナノチューブ (VGCF-H、昭和電工(株)製)
 〔溶剤(D)〕
 D1:酪酸ブチル
 以下、樹脂組成物の実施例および比較例を示す。
A1: DOWSIL (registered trademark) RSN-0217 Flake Resin (manufactured by Dow Toray Industries, Inc.) 57.6 parts by weight, DOWSIL (registered trademark) RSN-0255 Flake Resin (manufactured by Dow Toray Industries, Inc.) 14.4 parts by weight parts (mixing two types of silicone resins at a weight ratio of 4:1)
A2: DOWSIL (registered trademark) RSN-0217 Flake Resin (manufactured by Dow Toray Industries, Inc.) 28.8 parts by weight, DOWSIL (registered trademark) RSN-0255 Flake Resin (manufactured by Dow Toray Industries, Inc.) 43.2 parts by weight parts (mixing two types of silicone resins at a weight ratio of 2:3)
A3: DOWSIL (registered trademark) RSN-0255 Flake Resin (manufactured by Dow Toray Industries, Inc.) 72 parts by weight A4: DOWSIL (registered trademark) RSN-0409 HS Resin (manufactured by Dow Toray Industries, Inc.) 72 parts by weight A5: DOWSIL (registered trademark) RSN-0217 Flake Resin (manufactured by Dow Toray Industries, Inc.) 72 parts by weight A6: Silicone resin [Synthesis example of silicone resin (A6)]
4.41 g of 3-furyltriethoxysilane was added to 18 g of water, 2 g of 28% aqueous ammonia, and 80 g of 2-propanol in a 500 mL flask, and the mixture was reacted at 80° C. for 3 hours. After air-cooling the reaction solution, the precipitate was collected and isolated by filtration (organic-inorganic hybrid-containing solution). After thoroughly washing the sample with ethanol and drying it, it was dissolved in DMF to a concentration of 10 mg/mL. A filler-containing solution prepared by preparing a 2-propanol dispersion IPA-ST-ZL (Nissan Chemical Products) in which silica with an average primary particle size of 80 nm is dispersed in DMF to a concentration of 10 mg/mL, and the above-mentioned organic-inorganic hybrid-containing solution. were mixed at a mixing ratio of 6:4 (organic-inorganic hybrid-containing solution: filler-containing solution) to obtain the desired silicone solution. Further, a part of the silicone solution was used as a sample, dried at 100° C. in the atmosphere, and the thermogravimetric loss rate was measured using TGA.
・Silicone oil A7: KF-351A (manufactured by Shin-Etsu Chemical Co., Ltd.) 18 parts by weight A8: KF-6002A (manufactured by Shin-Etsu Chemical Co., Ltd.) 18 parts by weight [Surfactant (B)]
B1: Polyvinylpyrrolidone (PVP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
B2: Amine salt of polyether phosphate ester (Disparon DA-325, manufactured by Kusumoto Kasei Co., Ltd.)
[Filler (C)]
C1: Silica (IPA-ST-ZL, manufactured by Nissan Chemical Co., Ltd.)
C2: Carbon black (SuperC65, manufactured by MTI Corporation)
C3: Carbon nanotube (VGCF-H, manufactured by Showa Denko K.K.)
[Solvent (D)]
D1: Butyl butyrate Examples and comparative examples of resin compositions are shown below.
 〔樹脂組成物1〕
 下記の成分を下記の量でサンプル瓶に量り取り、混合物を得た。
[Resin composition 1]
The following components were weighed in the following amounts into a sample bottle to obtain a mixture.
 シリコーン樹脂A1   80重量部
 フィラーC1 20重量部
 溶剤D1   400重量部
 当該混合物を、自転・公転ミキサー((株)シンキー製ARE-310)を用いて2000回転/分で20分間撹拌して、スラリーを得た。こうして当該スラリーとして樹脂組成物1を得た。
Silicone resin A1 80 parts by weight Filler C1 20 parts by weight Solvent D1 400 parts by weight The mixture was stirred at 2000 rpm for 20 minutes using a rotation/revolution mixer (ARE-310 manufactured by Thinky Co., Ltd.) to form a slurry. Obtained. In this way, resin composition 1 was obtained as the slurry.
 〔樹脂組成物2〕
 フィラーC1に代えてフィラーC2を用いる以外は、樹脂組成物1と同様にして、樹脂組成物2を作製した。
[Resin composition 2]
Resin composition 2 was produced in the same manner as resin composition 1 except that filler C2 was used instead of filler C1.
 〔樹脂組成物3〕
 樹脂Aを72重量部に変更し、界面活性剤として界面活性剤B1を8重量部加えた以外は、樹脂組成物1と同様にして、樹脂組成物3を作製した。
[Resin composition 3]
Resin Composition 3 was prepared in the same manner as Resin Composition 1, except that Resin A was changed to 72 parts by weight and 8 parts by weight of Surfactant B1 was added as a surfactant.
 〔樹脂組成物4〕
 樹脂Aを72重量部に変更し、界面活性剤として界面活性剤B2を8重量部加え、フィラーC1に代えてフィラーC2を用いる以外は、樹脂組成物3と同様にして、樹脂組成物4を作成した。
[Resin composition 4]
Resin composition 4 was prepared in the same manner as resin composition 3, except that resin A was changed to 72 parts by weight, surfactant B2 was added to 8 parts by weight as a surfactant, and filler C2 was used instead of filler C1. Created.
 〔樹脂組成物5〕
 シリコーン樹脂A1に代えてT単位:D単位の重量比が97:3のシリコーン樹脂A2を用いる以外は、樹脂組成物4と同様にして、樹脂組成物5を作製した。
[Resin composition 5]
Resin composition 5 was prepared in the same manner as resin composition 4, except that silicone resin A2 having a weight ratio of T units:D units of 97:3 was used in place of silicone resin A1.
 〔樹脂組成物6〕
 T単位:D単位の重量比が95:5のシリコーン樹脂A3を用いる以外は、樹脂組成物4と同様にして、樹脂組成物6を作製した。
[Resin composition 6]
Resin composition 6 was prepared in the same manner as resin composition 4 except that silicone resin A3 having a weight ratio of T units:D units of 95:5 was used.
 〔樹脂組成物7〕
 T単位:D単位の重量比が40:60のシリコーン樹脂A4を用いる以外は、樹脂組成物4と同様にし、樹脂組成物7を作製した。
[Resin composition 7]
Resin composition 7 was prepared in the same manner as resin composition 4 except that silicone resin A4 having a weight ratio of T units:D units of 40:60 was used.
 〔樹脂組成物8〕
 フィラーC2に代えてフィラーC3を用いる以外は、樹脂組成物6と同様にして、樹脂組成物8を作製した。
[Resin composition 8]
Resin composition 8 was produced in the same manner as resin composition 6 except that filler C3 was used instead of filler C2.
 〔樹脂組成物9〕
 樹脂Aを54重量部に変更し、シリコーンオイルA7を18重量部加える以外は、樹脂組成物6と同様にして、樹脂組成物9を作製した。
[Resin composition 9]
Resin composition 9 was prepared in the same manner as resin composition 6 except that resin A was changed to 54 parts by weight and silicone oil A7 was added to 18 parts by weight.
 〔樹脂組成物10〕
 シリコーンオイルA7に代えてシリコーンオイルA8を用いる以外は、樹脂組成物9と同様にして、樹脂組成物10を作製した。
[Resin composition 10]
Resin composition 10 was produced in the same manner as resin composition 9 except that silicone oil A8 was used instead of silicone oil A7.
 〔樹脂組成物c1〕
 シリコーン樹脂A1に代えて、T単位:D単位の重量比が100:0のシリコーン樹脂A5を用いる以外は、樹脂組成物2と同様にして、樹脂組成物c1を作製した。
[Resin composition c1]
Resin composition c1 was produced in the same manner as resin composition 2, except that silicone resin A5 having a weight ratio of T units:D units of 100:0 was used instead of silicone resin A1.
 〔樹脂組成物c2〕
 シリコーン樹脂A1に代えて、T単位:D単位の重量比が100:0のシリコーン樹脂A6を60重量部用い、フィラーC1の重量部を40とする以外は、樹脂組成物1と同様にして、樹脂組成物c2を作製した。
[Resin composition c2]
In the same manner as Resin Composition 1, except that 60 parts by weight of silicone resin A6 having a T unit:D unit weight ratio of 100:0 was used instead of silicone resin A1, and the weight part of filler C1 was 40, A resin composition c2 was produced.
 以下、センサ素子の実施例および比較例を示す。 Examples and comparative examples of sensor elements are shown below.
 〔センサ素子E1~E12、比較用センサ素子E’-1、E’-2〕
 間隔幅500μmの複数の金属配線を備えたシール基板(ICB-073、サンハヤト(株)製)から、2本1組の金属配線を含むシール基板を切り出した。切り出したシール基板を、さらに金属配線の長さが3.5cmとなるように切断した。
[Sensor elements E1 to E12, comparative sensor elements E'-1 and E'-2]
A sealing substrate including a set of two metal wirings was cut out from a sealing substrate (ICB-073, manufactured by Sanhayato Co., Ltd.) equipped with a plurality of metal wirings with an interval width of 500 μm. The cut out seal substrate was further cut so that the length of the metal wiring was 3.5 cm.
 切断されたシール基板をガラス板の上に、金属配線が上になるように両面テープで貼り付けた。また、金属配線の露出部分の長さが3.0cmとなるように、金属配線の余分な部分にビニールテープを貼り付けてマスクした。ここに、樹脂組成物1~10をそれぞれをバーコーター(No.4)を用いて金属配線の露出部に塗布した。塗布後、100℃に加熱した順風乾燥機で3時間乾燥させた。乾燥後、室温まで冷却してから、匂い物質受容層を備えた金属配線をガラス板から剥離して、センサ素子(E-1)~(E-12)および比較用センサ素子(E’-1)、(E’-2)を得た。センサ素子(E-1)および(E-2)については、両者とも樹脂組成物1を用いて2つのセンサ素子(E-1)および(E-2)を作製した。 The cut seal board was pasted onto the glass plate with double-sided tape, with the metal wiring facing up. In addition, vinyl tape was attached to the excess portion of the metal wiring to mask it so that the length of the exposed portion of the metal wiring was 3.0 cm. Here, each of Resin Compositions 1 to 10 was applied to the exposed portion of the metal wiring using a bar coater (No. 4). After coating, it was dried for 3 hours in a dryer heated to 100°C. After drying and cooling to room temperature, the metal wiring provided with the odorant-receiving layer was peeled off from the glass plate to form sensor elements (E-1) to (E-12) and comparative sensor element (E'-1). ), (E'-2) were obtained. Regarding sensor elements (E-1) and (E-2), two sensor elements (E-1) and (E-2) were both produced using resin composition 1.
 〔実施例1~12、比較例1、2〕
 検体(匂い物質)を導入する導入口と、検体が均一に広がるよう気流を作るためのキャリアガス導入部およびガスフロー調整器とを備えた筐体を作製した。端子を外部へ取り出すためのリード線を8個のセンサ素子(E-1)のそれぞれにはんだ付けし、8個のセンサ素子(E-1)を筐体内に設置した。センサ素子(E-1)ごとに、筐体外部に取り出したリード線の末端に1mAの定電流電源と、リード線の両端子にかかる電圧を測定するための電圧計とを接続した。こうして8個のセンサ素子(E-1)を有する匂いセンサ1を構成した。
[Examples 1 to 12, Comparative Examples 1 and 2]
A casing was fabricated that was equipped with an inlet for introducing a sample (odorant), a carrier gas inlet for creating an airflow to spread the sample uniformly, and a gas flow regulator. Lead wires for taking out the terminals to the outside were soldered to each of the eight sensor elements (E-1), and the eight sensor elements (E-1) were installed inside the housing. For each sensor element (E-1), a 1 mA constant current power source and a voltmeter for measuring the voltage applied to both terminals of the lead wire were connected to the end of the lead wire taken out from the housing. In this way, an odor sensor 1 having eight sensor elements (E-1) was constructed.
 センサ素子(E-1)に代えてセンサ素子(E-2)~(E-12)および比較用センサ素子(E’-1)、(E’-2)を用いる以外は匂いセンサ1と同様にして、匂いセンサ2~12およびc1、c2をそれぞれ構成した。匂いセンサ1、4および匂いセンサc2については、膜型表面応力センサ(Membrane-type Surface stress Sensor:MSS)方式を用い、SD-MSSセンサプローブ(NIMS製)を使用し、センサ素子からの起電力をアンプで増幅して出力電圧を取得した。匂いセンサ2および5については、水晶振動子マイクロバランス(Quartz Crystal Microbalance;QCM)方式を用い、QA-A9M-AU(セイコーEG&G社製)を使用し、共振周波数を周波数カウンタで計測し、周波数変化を取得した。 Same as odor sensor 1 except that sensor elements (E-2) to (E-12) and comparison sensor elements (E'-1) and (E'-2) are used instead of sensor element (E-1). Odor sensors 2 to 12 and c1 and c2 were each constructed using the following methods. For odor sensors 1 and 4 and odor sensor c2, a membrane-type surface stress sensor (MSS) method is used, and an SD-MSS sensor probe (manufactured by NIMS) is used to detect the electromotive force from the sensor element. was amplified by an amplifier to obtain the output voltage. For odor sensors 2 and 5, the Quartz Crystal Microbalance (QCM) method was used, QA-A9M-AU (manufactured by Seiko EG&G) was used, and the resonance frequency was measured with a frequency counter, and the frequency change was measured. obtained.
 〔評価〕
 [ΔV変動係数ΔVの測定]
 匂いセンサ1~12およびc1、c2のそれぞれについて、匂いセンサの導入口に検体としてのエタノールを5mL入れた。その後、キャリアガス導入部からキャリアガスとしての窒素をセンサ素子が設置されている筐体内へ、ガスフロー調整器によって1L/minの流量で流し、外部に排出した。この間、センサ素子に接続されている電圧計の測定値をコンピュータで記録した。こうして、匂いセンサにおける8個のセンサ素子のそれぞれの電圧値を測定した。各匂いセンサの各センサ素子について、検体導入前の出力電圧Vおよび検体導入中の電圧Vの差の最大値ΔVを算出した。そして、各匂いセンサで得られた8個の最大値ΔVのデータの標準偏差σおよび平均値μを算出し、センサ素子を形成する樹脂組成物のΔV変動係数(=σ/μ)を求めた。匂いセンサ1、4および匂いセンサc2についてはMSSセンサ素子から得られた出力電圧についてVとVを得た。匂いセンサ2、5についてはQCMセンサ素子から得られた周波数についてF0とFとを得て、それぞれVおよびVの場合と同様に算出して変動係数を得た。
〔evaluation〕
[Measurement of ΔV variation coefficient ΔV]
For each of odor sensors 1 to 12, c1, and c2, 5 mL of ethanol as a sample was put into the inlet of the odor sensor. Thereafter, nitrogen as a carrier gas was flowed from the carrier gas inlet into the housing in which the sensor element was installed at a flow rate of 1 L/min using a gas flow regulator, and was discharged to the outside. During this time, the computer recorded the measurements of the voltmeter connected to the sensor element. In this way, the voltage values of each of the eight sensor elements in the odor sensor were measured. For each sensor element of each odor sensor, the maximum value ΔV of the difference between the output voltage V 0 before sample introduction and the voltage V during sample introduction was calculated. Then, the standard deviation σ and average value μ of the data of the eight maximum values ΔV obtained for each odor sensor were calculated, and the ΔV variation coefficient (=σ/μ) of the resin composition forming the sensor element was determined. . For odor sensors 1 and 4 and odor sensor c2, V 0 and V were obtained for the output voltages obtained from the MSS sensor elements. For odor sensors 2 and 5, F0 and F were obtained for the frequencies obtained from the QCM sensor elements, and the coefficients of variation were calculated in the same manner as for V0 and V, respectively.
 [空隙率の測定方法]
 匂いセンサ1~12およびc1、c2のそれぞれが備えるセンサ素子の匂い物質受容層および匂い物質透過層を含む断面を、走査型電子顕微鏡(SEM)によって観察・撮像した。SEM観察条件は下記のとおりとした。
メーカー:HITACHI
装置:S-4800
加速電圧:1.0V
電流値:10μA。
[Method of measuring porosity]
A cross section including an odorant-receiving layer and an odorant-permeable layer of a sensor element included in each of odor sensors 1 to 12, c1, and c2 was observed and imaged using a scanning electron microscope (SEM). The SEM observation conditions were as follows.
Manufacturer: HITACHI
Equipment: S-4800
Acceleration voltage: 1.0V
Current value: 10 μA.
 SEM画像取得の際、内蔵のアプリケーションによって、コントラスト3225~3275、明るさ2025~2075の間で画像調整をおこなった。 When acquiring the SEM image, the built-in application adjusted the image between 3225 and 3275 in contrast and 2025 and 2075 in brightness.
 SEMにより取得したSEM画像に対して、画像解析ソフトにより二値化処理を行った。二値化処理にはImageJを用いた。この二値化処理において、「Gaussian Blur」、「16bit」、「unsharp Mask」の順番に画像処理をした後、「threshold」にて二値化処理を行った、この際の閾値をグレースケールで50とすることで、SEM画像における空隙に該当するエリアを抽出し、匂い物質受容層のSEM画像に写る領域の広さに対する空隙が占める領域の広さの比率である空隙率を算出した。 The SEM image obtained by SEM was subjected to binarization processing using image analysis software. ImageJ was used for the binarization process. In this binarization process, the image is processed in the order of "Gaussian Blur", "16bit", and "unsharp Mask", and then the binarization process is performed with "threshold". 50, the area corresponding to the voids in the SEM image was extracted, and the porosity, which is the ratio of the area occupied by the voids to the area of the odorant receptor layer shown in the SEM image, was calculated.
 実施例1~12の匂いセンサ1~12、および比較例1、2の匂いセンサc1、c2のそれぞれの樹脂組成物の材料の組成と物性を表1に示す。 Table 1 shows the composition and physical properties of the resin compositions of the odor sensors 1 to 12 of Examples 1 to 12 and the odor sensors c1 and c2 of Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
 表1において、「T単位:D単位」は、T単位とD単位との重量比を意味する。ΔV変動係数が0.2以下、好ましくは0.15以下、より好ましくは0.1以下であれば、一体の匂いセンサにおける複数のセンサ素子間での性能のばらつきが十分に小さく、実用上問題ないと判定できる。ΔV変動係数は、当該ばらつき低減の観点では、小さいほど好ましい。
Figure JPOXMLDOC01-appb-T000001
In Table 1, "T unit: D unit" means the weight ratio of T unit and D unit. If the ΔV coefficient of variation is 0.2 or less, preferably 0.15 or less, and more preferably 0.1 or less, the variation in performance among multiple sensor elements in an integrated odor sensor is sufficiently small to pose a practical problem. It can be determined that there is no From the viewpoint of reducing the variation, the smaller the ΔV variation coefficient is, the more preferable it is.
 〔考察〕
 表1に示されるように、匂いセンサ1~12は、いずれも、実用上問題ないか、あるいは実用上好ましいΔV変動係数を示している。
[Consideration]
As shown in Table 1, all odor sensors 1 to 12 exhibit ΔV variation coefficients that are either practically acceptable or practically preferable.
 また、表1に示されるように、匂い物質受容層の断面のSEM画像に基づき評価した空隙率xが12%≦x≦30%の範囲内である匂いセンサ4~9は、いずれも、実用上問題ないか、あるいは実用上好ましいΔV変動係数を示している。 Furthermore, as shown in Table 1, all odor sensors 4 to 9 whose porosity x, evaluated based on the SEM image of the cross section of the odorant receptor layer, is within the range of 12%≦x≦30% are suitable for practical use. It shows a ΔV variation coefficient that is either no problem or is practically preferable.
 実施例1~12と、比較例1、2との対比によれば、シリコーン樹脂がT単位のみからなる樹脂組成物c1およびc2を備える匂いセンサc1およびc2のΔV変動係数は大きくなることがわかった。 According to a comparison between Examples 1 to 12 and Comparative Examples 1 and 2, it was found that the ΔV variation coefficients of odor sensors c1 and c2 including resin compositions c1 and c2 in which the silicone resin consists of only T units are large. Ta.
 実施例3と6との対比によれば、界面活性剤(B)を含んでいても含んでいなくても、実用上問題ないΔV変動係数が得られている。界面活性剤(B)を含む樹脂組成物4を備える実施例6の匂いセンサ6は、より小さいΔV変動係数を示した。 According to a comparison between Examples 3 and 6, a practically acceptable ΔV coefficient of variation was obtained whether or not the surfactant (B) was included. The odor sensor 6 of Example 6 comprising the resin composition 4 containing the surfactant (B) showed a smaller ΔV coefficient of variation.
 実施例6~9の対比によれば、シリコーン樹脂のT単位:D単位の重量比が異なる場合でも実用上問題ないΔV変動係数が得られている。特に、T単位:D単位の重量比がT単位:D単位=95:5であるシリコーン樹脂A3を備える匂いセンサ8のΔV変動係数が最も小さい値であった。 According to a comparison of Examples 6 to 9, even when the weight ratio of T units to D units of the silicone resins is different, a ΔV variation coefficient that poses no practical problem is obtained. In particular, the ΔV variation coefficient of the odor sensor 8 including the silicone resin A3 in which the weight ratio of T units:D units was 95:5 was the smallest value.
 実施例8、11、12の対比によれば、シリコーンオイルの有無、シリコーンオイルの種類が異なる場合でも実用上問題ないΔV変動係数が得られている。 According to a comparison of Examples 8, 11, and 12, a ΔV variation coefficient that poses no practical problem is obtained even when the presence or absence of silicone oil and the type of silicone oil are different.
 実施例1と2との対比、実施例4と5との対比によれば、センサ方式が異なる場合でも実用上問題ないΔV変動係数が得られている。 According to the comparison between Examples 1 and 2 and the comparison between Examples 4 and 5, a ΔV variation coefficient that poses no practical problem is obtained even when the sensor systems are different.
 実施例8と10の対比によれば、フィラー(C)の種類が異なる場合でも実用上問題ないΔV変動係数が得られている。 According to a comparison between Examples 8 and 10, a ΔV variation coefficient that poses no practical problem is obtained even when the types of filler (C) are different.
 よって、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含む匂い物質受容層を備える匂いセンサは、実用上問題ないΔV変動係数を示すことがわかった。すなわち、このような匂いセンサを搭載した匂い測定装置は、安定した測定結果を出力することができる。 Therefore, an odor sensor including a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ) and an odorant-receiving layer containing a filler has a ΔV coefficient of variation that does not pose any practical problem. It was found that That is, an odor measuring device equipped with such an odor sensor can output stable measurement results.
 本発明は、医療用、ガス検知用、農業用およびその他工業や生活に用いられる匂い識別センサとして有用である。例えば、農家が香りのある作物の成熟具合を前記匂い識別センサを用いて判定して、最適な収穫タイミングを管理することもできる。また、食品または化粧品などの製品の匂いを匂い識別センサでデータ化して、製品開発の効率向上および品質安定化を支援することもできる。 The present invention is useful as an odor identification sensor used for medical purposes, gas detection, agriculture, and other industries and daily life. For example, a farmer can use the odor identification sensor to determine the maturity of fragrant crops and manage optimal harvest timing. Furthermore, by converting the smell of products such as food or cosmetics into data using an odor identification sensor, it is possible to improve the efficiency of product development and support quality stabilization.
10、10a、10b 推定装置
11 測定値取得部(取得部)
12 変化パターン解析部(解析部)
16 推定部
30、30b 匂いセンサ
31、31b、31c、31d センサ素子
32、32b 定電流源(電源)
33、33b 電圧計(測定機器)
100、100a、100b、100c 匂い測定装置
313 金属配線(電極)
313A 第1金属配線
313B 第2金属配線
315、315b 匂い物質受容層
313C 第1電極
313D 第2電極
330 塗布領域
10, 10a, 10b Estimation device 11 Measured value acquisition unit (acquisition unit)
12 Change pattern analysis section (analysis section)
16 Estimating unit 30, 30b Odor sensor 31, 31b, 31c, 31d Sensor element 32, 32b Constant current source (power supply)
33, 33b Voltmeter (measuring equipment)
100, 100a, 100b, 100c Odor measurement device 313 Metal wiring (electrode)
313A First metal wiring 313B Second metal wiring 315, 315b Odor substance receiving layer 313C First electrode 313D Second electrode 330 Application area

Claims (13)

  1.  第1金属配線、および前記第1金属配線とは離間している第2金属配線を有する電極と、前記第1金属配線の少なくとも一部と前記第2金属配線の少なくとも一部とに接する匂い物質受容層と、を備える複数のセンサ素子を備え、
     前記匂い物質受容層は、樹脂組成物を含み、
     前記樹脂組成物は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含み、
     前記Rは、1~10個の炭素原子を有する一価の炭化水素基である、
    匂い測定装置。
    an electrode having a first metal wiring and a second metal wiring separated from the first metal wiring; and an odorant in contact with at least a portion of the first metal wiring and at least a portion of the second metal wiring. a plurality of sensor elements comprising a receptive layer;
    The odorant-receiving layer includes a resin composition,
    The resin composition includes a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), and a filler,
    The R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms,
    Odor measuring device.
  2.  前記匂い物質受容層は、該匂い物質受容層の断面のSEM画像に基づき評価した空隙率xが12%≦x≦30%である、請求項1に記載の匂い測定装置。 The odor measuring device according to claim 1, wherein the odorant-receiving layer has a porosity x of 12%≦x≦30%, which is evaluated based on a SEM image of a cross section of the odorant-receiving layer.
  3.  前記樹脂組成物は、界面活性剤をさらに含む、請求項1または2に記載の匂い測定装置。 The odor measuring device according to claim 1 or 2, wherein the resin composition further contains a surfactant.
  4.  前記シリコーン樹脂の前記T単位と、前記D単位との重量比は、T単位:D単位=98:2~50:50である、請求項1から3のいずれか1項に記載の匂い測定装置。 The odor measuring device according to any one of claims 1 to 3, wherein the weight ratio of the T unit and the D unit of the silicone resin is T unit:D unit = 98:2 to 50:50. .
  5.  前記匂い物質受容層の抵抗値の変化によって匂いを検出する、請求項1から4のいずれか1項に記載の匂い測定装置。 The odor measuring device according to any one of claims 1 to 4, wherein odor is detected by a change in resistance value of the odorant receptor layer.
  6.  前記フィラーは、導電性炭素材料である、請求項1から5のいずれか1項に記載の匂い測定装置。 The odor measuring device according to any one of claims 1 to 5, wherein the filler is a conductive carbon material.
  7.  前記導電性炭素材料はカーボンブラックである、請求項6に記載の匂い測定装置。 The odor measuring device according to claim 6, wherein the conductive carbon material is carbon black.
  8.  第1金属配線、および前記第1金属配線とは離間している第2金属配線を有する電極と、
     前記第1金属配線の少なくとも一部と前記第2金属配線の少なくとも一部とに接する匂い物質受容層と、を備え、
     前記匂い物質受容層は、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含み、
     前記Rは、1~10個の炭素原子を有する一価の炭化水素基である、センサ素子。
    an electrode having a first metal wiring and a second metal wiring separated from the first metal wiring;
    an odorant-receiving layer in contact with at least a portion of the first metal wiring and at least a portion of the second metal wiring,
    The odorant-receiving layer includes a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), and a filler,
    The sensor element, wherein R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  9.  前記匂い物質受容層は、該匂い物質受容層の断面のSEM画像に基づき評価した空隙率xが12%≦x≦30%である、請求項8に記載のセンサ素子。 The sensor element according to claim 8, wherein the odorant-receiving layer has a porosity x of 12%≦x≦30%, which is evaluated based on a SEM image of a cross section of the odorant-receiving layer.
  10.  スラリーを調製するスラリー調製工程と、
     基板上に、第1金属配線、および前記第1金属配線とは離間している第2金属配線を有する電極を配置する電極配置工程と、
     前記スラリーを、前記第1金属配線の少なくとも一部と前記第2金属配線の少なくとも一部とを含む塗布領域に塗布する塗布工程と、
     前記塗布領域に塗布された前記スラリーを乾燥させて匂い物質受容層を形成する乾燥工程と、を含み、
     前記スラリーは、T単位(RSiO3/2)およびD単位(R SiO2/2)からなるシリコーン樹脂、およびフィラーを含み、前記Rは、1~10個の炭素原子を有する一価の炭化水素基である、
    センサ素子の製造方法。
    a slurry preparation step of preparing a slurry;
    an electrode placement step of arranging, on the substrate, an electrode having a first metal wiring and a second metal wiring separated from the first metal wiring;
    a coating step of applying the slurry to a coating area including at least a portion of the first metal interconnect and at least a portion of the second metal interconnect;
    a drying step of drying the slurry applied to the application area to form an odorant-receiving layer,
    The slurry includes a silicone resin consisting of T units (R 1 SiO 3/2 ) and D units (R 1 2 SiO 2/2 ), and a filler, and R 1 has 1 to 10 carbon atoms. is a monovalent hydrocarbon group,
    A method of manufacturing a sensor element.
  11.  前記匂い物質受容層は、該匂い物質受容層の断面のSEM画像に基づき評価した空隙率xが12%≦x≦30%である、請求項10に記載のセンサ素子。 The sensor element according to claim 10, wherein the odorant-receiving layer has a porosity x of 12%≦x≦30%, which is evaluated based on a SEM image of a cross section of the odorant-receiving layer.
  12.  前記スラリーは、界面活性剤をさらに含む、請求項10または11に記載の製造方法。 The manufacturing method according to claim 10 or 11, wherein the slurry further contains a surfactant.
  13.  前記シリコーン樹脂の前記T単位と、前記D単位との重量比は、T単位:D単位=98:2~50:50である、請求項10から12のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 10 to 12, wherein the weight ratio of the T unit and the D unit of the silicone resin is T unit:D unit = 98:2 to 50:50.
PCT/JP2023/025532 2022-07-15 2023-07-11 Smell measurement device, sensor element, and methods for manufacturing same WO2024014446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-114265 2022-07-15
JP2022114265 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024014446A1 true WO2024014446A1 (en) 2024-01-18

Family

ID=89536716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025532 WO2024014446A1 (en) 2022-07-15 2023-07-11 Smell measurement device, sensor element, and methods for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024014446A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990037A (en) * 1982-11-16 1984-05-24 Mitsubishi Electric Corp Moisture sensitive material
KR20150115279A (en) * 2014-04-03 2015-10-14 한국지질자원연구원 Apparatus for detecting gas using carbon polymer-nanotube composite
CN107474550A (en) * 2017-07-20 2017-12-15 杭州师范大学 A kind of fast-response high sensitive polymer matrix gas sensitive and preparation method and application
WO2018230382A1 (en) * 2017-06-16 2018-12-20 シャープ株式会社 Detection device
WO2019189245A1 (en) * 2018-03-30 2019-10-03 パナソニック株式会社 Gas adsorbent, gas sensor, and method for manufacturing gas adsorbent
WO2022030574A1 (en) * 2020-08-05 2022-02-10 パナソニックIpマネジメント株式会社 Gas sensor, gas sensor assembly, and chemical substance labeling method
JP2022026253A (en) * 2020-07-30 2022-02-10 旭化成株式会社 Sensor and sensor array
JP2022045332A (en) * 2020-09-08 2022-03-18 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990037A (en) * 1982-11-16 1984-05-24 Mitsubishi Electric Corp Moisture sensitive material
KR20150115279A (en) * 2014-04-03 2015-10-14 한국지질자원연구원 Apparatus for detecting gas using carbon polymer-nanotube composite
WO2018230382A1 (en) * 2017-06-16 2018-12-20 シャープ株式会社 Detection device
CN107474550A (en) * 2017-07-20 2017-12-15 杭州师范大学 A kind of fast-response high sensitive polymer matrix gas sensitive and preparation method and application
WO2019189245A1 (en) * 2018-03-30 2019-10-03 パナソニック株式会社 Gas adsorbent, gas sensor, and method for manufacturing gas adsorbent
JP2022026253A (en) * 2020-07-30 2022-02-10 旭化成株式会社 Sensor and sensor array
WO2022030574A1 (en) * 2020-08-05 2022-02-10 パナソニックIpマネジメント株式会社 Gas sensor, gas sensor assembly, and chemical substance labeling method
JP2022045332A (en) * 2020-09-08 2022-03-18 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device

Similar Documents

Publication Publication Date Title
Mertaniemi et al. Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces
CN105555708A (en) Carbon nanotubes, dispersion liquid thereof, carbon nanotube-containing film and composition material
Paoletti et al. Room temperature amine sensors enabled by sidewall functionalization of single-walled carbon nanotubes
CN108918634B (en) Graphene transistor ion sensor and preparation method and application thereof
CN1302985C (en) Carbonaceous material and dispersion containing the same
Shitanda et al. Screen-printed atmospheric corrosion monitoring sensor based on electrochemical impedance spectroscopy
Hussain et al. A non-enzymatic electrochemical approach for l-lactic acid sensor development based on CuO· MWCNT nanocomposites modified with a Nafion matrix
WO2024014446A1 (en) Smell measurement device, sensor element, and methods for manufacturing same
Chakraborty et al. Applicability of Fe-CNC/GR/PLA composite as potential sensor for biomolecules
CN110219005A (en) Copper-based material inhibiting solution and preparation method thereof, corrosion inhibition method
JP6357270B1 (en) Humidity sensor and manufacturing method thereof
Ke et al. Electrochemistry and electrocatalysis of myoglobin on carbon coated Fe 3 O 4 nanospindle modified carbon ionic liquid electrode
Foo et al. Au decorated ZnO thin film: application to DNA sensing
Li et al. Functionalized Graphene Obtained via Thiol‐Ene Click Reactions as an Efficient Electrochemical Sensor
JP2024012145A (en) Smell measuring device, sensor element, and method for manufacturing the same
Galliani et al. Tailoring inkjet-printed PEDOT: PSS composition toward green, wearable device fabrication
JP2024012146A (en) High-humidity environment smell measuring device, high-humidity environment sensor device, and method for manufacturing the same
Liu et al. Electrochemical determination of tyrosine using graphene and gold nanoparticle composite modified glassy carbon electrode
CN111220669A (en) Graphene transistor copper ion sensor and preparation method and application thereof
JP2023171214A (en) Smell measuring device
JP2023171216A (en) Smell measuring device
JP2023171215A (en) Manufacturing method for sensor element, sensor element, and smell measuring device
JP7184974B2 (en) RESIN COMPOSITION FOR FORMING ODOR SUBSTANCE RECEIVING LAYER, SENSOR ELEMENT, ODOR SENSOR, AND ODOR MEASURING DEVICE USING SAME
JP7184968B2 (en) RESIN COMPOSITION FOR FORMING ODOR SUBSTANCE RECEIVING LAYER, SENSOR ELEMENT, ODOR SENSOR, AND ODOR MEASURING DEVICE USING SAME
JP7184969B2 (en) RESIN COMPOSITION FOR FORMING ODOR SUBSTANCE RECEIVING LAYER, SENSOR ELEMENT, ODOR SENSOR, AND ODOR MEASURING DEVICE USING SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839618

Country of ref document: EP

Kind code of ref document: A1