WO2024014366A1 - Rotating machine and control device - Google Patents

Rotating machine and control device Download PDF

Info

Publication number
WO2024014366A1
WO2024014366A1 PCT/JP2023/024831 JP2023024831W WO2024014366A1 WO 2024014366 A1 WO2024014366 A1 WO 2024014366A1 JP 2023024831 W JP2023024831 W JP 2023024831W WO 2024014366 A1 WO2024014366 A1 WO 2024014366A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating machine
rotating shaft
bearing
tilting pad
elastic body
Prior art date
Application number
PCT/JP2023/024831
Other languages
French (fr)
Japanese (ja)
Inventor
純 吉田
強 高橋
達也 蓮仏
Original Assignee
トキコシステムソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トキコシステムソリューションズ株式会社 filed Critical トキコシステムソリューションズ株式会社
Publication of WO2024014366A1 publication Critical patent/WO2024014366A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings

Definitions

  • the present disclosure relates to rotating machines and the like.
  • Patent Document 1 a rotating machine in which the radial load of a rotating shaft is supported by a tilting pad type radial bearing is known (see Patent Document 1).
  • Patent Document 1 a tilting pad type radial bearing is applied to an expansion turbine.
  • an elastic body presses the tilting pad against the rotating shaft via the pivot, which generates film pressure of gas or liquid between the rotating shaft and the tilting pad, and rotates. Supports the radial load of the shaft.
  • the elastic body in order to form an appropriate film pressure of gas or liquid between the tilting pad and the rotating shaft, the elastic body must have a force (hereinafter referred to as ⁇ preliminary pressure'') that presses the tilting pad against the rotating shaft via the pivot. (load) must be appropriate.
  • the present invention aims to provide a technology that can adjust the force (preload) that presses the tilting pad against the rotating shaft in a tilting pad type radial bearing built in a rotating machine.
  • a rotating shaft a bearing device that supports the radial load of the rotating shaft; a casing that accommodates components of a rotating machine including the rotating shaft and the bearing device
  • the bearing device includes: a fixing part disposed on the outside in the radial direction when viewed from the rotation axis; a tilting pad disposed between the fixed part and the rotating shaft so as to face the rotating shaft in the radial direction; a pivot arranged to abut on the radially outer side of the tilting pad; an elastic body that is arranged to abut on the outside of the pivot in the radial direction and presses the tilting pad toward the rotation axis via the pivot; an adjustment part attached to the fixing part so that the biasing force of the elastic body can be adjusted;
  • a rotating machine is provided.
  • Controlling the actuator according to the rotational speed of the rotary machine further comprising: a drive mechanism that drives the adjustment section; and an actuator that drives the drive mechanism; A control device is provided.
  • FIG. 2 is a cross-sectional view showing the structure of a first example of a rotating machine. It is a longitudinal cross-sectional view showing the structure of a first example of a rotating machine. It is a cross-sectional view showing the structure of a second example of a rotating machine.
  • FIG. 2 is a diagram showing a functional configuration of an example of a control system for a rotating machine.
  • FIG. 1 is a longitudinal sectional view showing an expansion turbine as an example of a rotating machine.
  • FIG. 1 is a diagram showing an example of a hydrogen gas filling system.
  • FIGS. 1 and 2 A first example of rotating machinery 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. 1 shows a state in which the rotating machine 1 rotates counterclockwise.
  • the axial direction, radial direction, and circumferential direction with respect to the rotating shaft 20 of the rotating machine 1 may be simply referred to as the "axial direction,” “radial direction,” and “circumferential direction.”
  • FIG. 1 is a cross-sectional view showing the structure of a first example of a rotating machine 1.
  • FIG. 1 is a cross-sectional view of a first example of the rotating machine 1 taken along a plane perpendicular to the rotating shaft 20.
  • FIG. 2 is a longitudinal sectional view showing the structure of a first example of the rotating machine 1.
  • FIG. 2 is a cross-sectional view taken on a plane that passes through the axis of the rotating shaft 20 of the first example of the rotating machine 1 and is parallel to the rotating shaft 20.
  • the space between the housing body 11 and the bearing support member 31 is a very small gap in whole or in part in the axial direction, and the space between the housing body 11 and the bearing support member 31 is a very small gap, and the space between the housing body 11 and the bearing support member 31 is very small, and the space between the housing body 11 and the bearing support member 31 is very small, and the space between the housing body 11 and the bearing support member 31 is very small, and the space between the housing body 11 and the bearing support member 31 is very small, and the space between the housing body 11 and the bearing support member 31 is a very small gap, and the space between the housing body 11 and the bearing support member 31 is a very small gap, and the space between the housing body 11 and the bearing support member 31 is very small.
  • the housing body 11 and the bearing support member 31 are fixed so that they do not move relative to each other (that is, the bearing support member 31 does not rotate with respect to the housing body 11).
  • various structures such as screws can be used to fix the housing body 11 and the bearing support member 31 so that they do not displace relative to each other.
  • the support member 31 may be fixed in any configuration.
  • the rotating machine 1 includes a housing 10, a rotating shaft 20, and a bearing device 30.
  • the rotating machine 1 is, for example, an expansion turbine 1A (see FIG. 5), which will be described later. Furthermore, the rotating machine 1 may be a jet engine, a gas turbine, a supercharger, a compressor, a pump, a water turbine, or the like.
  • the housing 10 accommodates the components of the rotating machine 1 including the rotating shaft 20 and the bearing device 30 in an internal space.
  • the housing 10 includes a housing body 11, a flange 12, and a seal member 13.
  • the rotating shaft 20 is a member corresponding to the axis of the rotation center of the rotating body of the rotating machine 1.
  • the bearing device 30 rotatably supports the rotating shaft 20.
  • the bearing device 30 supports the radial load of the rotating shaft 20. Further, the bearing device 30 may support the thrust load of the rotating shaft 20 (see FIG. 5).
  • the bearing device 30 includes a bearing support member 31 and a radial bearing 32.
  • the bearing support member 31 supports the radial bearing 32.
  • the bearing support member 31 is arranged on the outside in the radial direction as viewed from the rotating shaft 20 so as to surround the entire circumference of the rotating shaft 20 .
  • the bearing support member 31 is arranged so as to be spaced apart from the inner surface of the housing 10 (the housing body 11) in the radial direction, and is fixed to the housing 10 (the housing body 11) at both ends in the axial direction. It's okay. Thereby, the bearing support member 31 can support the radial bearing 32 as a fixed part.
  • the radial bearing 32 supports the radial load of the rotating shaft 20.
  • the radial bearing 32 is a tilting pad type radial bearing.
  • the radial bearing 32 includes a tilting pad 32A, a pivot 32B, an elastic body 32C, and an adjustment section 32D.
  • the tilting pad 32A is arranged to face the rotating shaft 20 in the radial space between the rotating shaft 20 and the bearing support member 31.
  • a plurality of tilting pads 32A (three in this example) are arranged in the circumferential direction.
  • the tilting pads 32A are arranged at angular positions set at approximately equal intervals in the circumferential direction.
  • the outer peripheral surface of the tilting pad 32A is formed, for example, in a curved shape such as a spherical shape.
  • a special coating is applied to the inner and outer peripheral surfaces of the tilting pad 32A to increase hardness.
  • the pivot 32B is arranged so as to abut on the outside of the tilting pad 32A in the radial direction.
  • a pivot 32B is provided for each tilting pad 32A. That is, the same number of pivots 32B (in this example, three) as the tilting pads 32A are provided, and each of the plurality of pivots 32B is located at a position in the circumferential direction ( angular position).
  • the contact portion of the pivot 32B with the tilting pad 32A is formed, for example, in a curved shape such as a spherical shape. Thereby, the curved tilting pad 32A can freely move while in contact with the pivot 32B.
  • a special coating is applied to the contact portion of the pivot 32B with the tilting pad 32A to increase hardness.
  • the elastic body 32C comes into contact with the outside of the pivot 32B in the radial direction, and generates a biasing force for pressing the tilting pad 32A toward the rotating shaft 20 via the pivot 32B.
  • the elastic body 32C is, for example, a coil spring.
  • An elastic body 32C is provided for each pivot 32B. That is, the same number (in this example, three) of elastic bodies 32C as the pivots 32B are provided.
  • the elastic body 32C may be provided only on some of the pivots 32B (for example, one pivot 32B) among the plurality of (three in this example) pivots 32B.
  • the pivot 32B and the elastic body 32C are arranged in a radially extending through hole provided in the bearing support member 31.
  • the through holes of the bearing support member 31 are provided in the same number as the pivot 32B and the elastic body 32C (three in this example), and each of the through holes is located at an angular position where the plurality of tilting pads 32A are arranged. It is formed at a circumferential position (angular position) corresponding to .
  • the adjustment portion 32D is arranged so as to abut on the radially outer side of the elastic body 32C.
  • the adjustment section 32D is provided for each combination of the pivot 32B and the elastic body 32C. That is, the same number (in this example, three) of adjustment parts 32D as the pivot 32B and the elastic body 32C are provided.
  • the adjustment portion 32D is attached to the bearing support member 31 so as to be able to adjust the radial outer end position of the elastic body 32C. Thereby, the expansion and contraction state of the elastic body 32C can be adjusted, and the biasing force of the elastic body 32C to press the tilting pad 32A against the rotating shaft 20 via the pivot 32B can be adjusted.
  • the adjustment portion 32D is a male threaded member that can be screwed from the outside in the radial direction into a female threaded portion formed on the radial inner surface of a through hole in the bearing support member 31 in which the pivot 32B and the elastic body 32C are accommodated.
  • the screwing amount of the adjustment portion 32D (externally threaded member)
  • the drive portion 32D1 of the adjustment portion 32D (male threaded member) is exposed so as to be visible from the radially outer opening of the through hole in the bearing support member 31.
  • the adjustment portion 32D can be operated from the outside in the radial direction of the bearing support member 31 using a tool, and the screwing amount of the adjustment portion 32D (externally threaded member) can be adjusted.
  • the housing 10 is provided with a through hole 11A that penetrates between the outer surface and the inner surface.
  • the through hole 11A is provided for each radial bearing 32 (adjustment portion 32D). That is, the same number (in this example, three) of through holes 11A as adjustment parts 32D are provided.
  • the through hole 11A is formed linearly in the radial direction from the outer surface of the housing body 11 toward the drive section 32D1 of the adjustment section 32D.
  • the cross-sectional shape and cross-sectional size of the through hole 11A are appropriately set so that a tool (for example, a Phillips screwdriver or a flathead screwdriver) for engaging the drive portion 32D1 can be inserted therethrough. This allows the tool to reach the adjustment section 32D (drive section 32D1) from outside the housing 10 and operate the adjustment section 32D, and the elastic body 32C presses the tilting pad 32A against the rotating shaft 20 via the pivot 32B. You can adjust your forces.
  • the outer opening of the through hole 11A is closed by a flange 12 fixed to the housing body 11 with screws or the like.
  • the flange 12 is provided for each through hole 11A. That is, the same number of flanges 12 (in this example, three) as there are through holes 11A are provided.
  • a recessed portion for accommodating the sealing member 13 is provided on the surface of the flange 12 that meets the outer surface of the housing body 11.
  • the seal member 13 is, for example, an O-ring.
  • the link mechanism connected to the adjustment section 32D (drive section 32D1) may be installed so as to be exposed to the outside of the casing 10 (casing main body 11) through the through hole 11A.
  • the adjustment portion 32D can be operated simply by operating the link mechanism without inserting a tool into the through hole 11A.
  • the adjustment portion 32D is configured such that the outer end portion of the adjustment portion 32D in the radial direction is extended radially outward, so that the adjustment portion 32D is exposed to the outside of the casing 10 (the casing main body 11) through the through hole 11A. You can. Thereby, the adjustment portion 32D exposed to the outside of the housing 10 can be more easily operated.
  • FIG. 3 shows a state in which the rotating machine 1 rotates clockwise.
  • FIG. 3 is a cross-sectional view showing the structure of a second example of the rotating machine 1. As shown in FIG. Specifically, FIG. 3 is a cross-sectional view of a second example of the rotating machine 1 taken along a plane perpendicular to the rotating shaft 20.
  • the rotating machine 1 includes a housing 10 (not shown), a rotating shaft 20, and a bearing device 30, as in the first example described above.
  • the bearing device 30 includes a bearing support member 31 and a radial bearing 32, as in the first example described above.
  • the radial bearing 32 is a tilting pad type radial bearing, similar to the first example described above.
  • the radial bearing 32 includes a tilting pad 32A, a pivot 32B, an elastic body 32C, and an adjustment part 32D, as in the first example described above.
  • a plurality of pivots 32B are arranged in the circumferential direction.
  • the pivot 32B is arranged in a radially extending through hole provided in the bearing support member 31, as in the first example described above.
  • the elastic body 32C is provided only for some of the plurality of pivots 32B (in this example, one pivot 32B).
  • the elastic body 32C is a coil spring.
  • the elastic body 32C is housed in a recess provided from the radially outer end of the pivot 32B toward the radially inner side.
  • the elastic body 32C may be provided for all of the plurality of pivots 32B, as in the first example described above.
  • the adjustment portion 32D is arranged so as to come into contact with the radially outer side of the elastic body 32C, as in the first example described above.
  • the adjustment portion 32D is attached to the bearing support member 31 so as to be able to adjust the radial outer end position of the elastic body 32C, as in the first example described above.
  • the adjustment portion 32D may be a male threaded member that can adjust the amount of screwing into the female threaded portion of the through hole, similar to the first example described above.
  • the drive mechanism 35 drives the adjustment section 32D in accordance with the operation of the minute displacement actuator 36, and adjusts the radial outer end position of the adjustment section 32D. Thereby, the drive mechanism 35 can adjust the biasing force of the elastic body 32C, that is, the preload of the radial bearing 32.
  • the drive mechanism 35 includes a linear cam 35A, a cylinder 35B, and an elastic body 35C.
  • the linear cam 35A is attached to the radially outer end of the adjustment section 32D.
  • the outer circumferential surface around the central axis of the through hole in which the adjustment section 32D is disposed comes into contact with and slides on the tip of the movable section 36B of the minute displacement actuator 36, so that the linear movement of the movable section 36B is controlled by the adjustment section 32D. Convert to rotational motion.
  • the linear cam 35A can rotate the adjusting portion 32D in a direction that increases the amount of screwing into the female threaded portion of the through hole. can.
  • the cylinder 35B accommodates the linear cam 35A.
  • the elastic body 35C is arranged inside the cylinder 35B so as to come into contact with both the inner surface and the linear cam 35A.
  • the elastic body 35C contacts and slides on the outer circumferential surface of the linear cam 35A at a position substantially opposite to the minute displacement actuator 36 in the circumferential direction based on the central axis of the through hole in which the adjustment portion 32D is arranged.
  • the elastic body 35C in the linear cam 35A is arranged so that the elastic body 35C contracts when the linear cam 35A rotates in a direction in which the movable part 36B of the minute displacement actuator 36 is displaced in a direction approaching the linear cam 35A and the screwing amount of the adjustment part 32D is increased.
  • the shape of the sliding surface is specified.
  • the elastic body 35C can rotate the linear cam 35A in a direction in which the screwing amount of the adjustment portion 32D is decreased by its restoring force. Therefore, the elastic body 35C can reduce the screwing amount of the adjustment part 32D in accordance with the displacement of the movable part 36B of the minute displacement actuator 36 in the direction away from the linear cam 35A.
  • the minute displacement actuator 36 drives the adjustment section 32D.
  • the minute displacement actuator 36 is an actuator that can output a minute displacement corresponding to the minute adjustment width of the screwing amount of the adjustment portion 32D.
  • the minute displacement actuator 36 is, for example, a piezo actuator that employs a piezo element (piezoelectric element).
  • the minute displacement actuator 36 includes a main body portion 36A and a movable portion 36B that protrudes from the main body portion 36A toward the sliding surface of the linear cam 35A.
  • the minute displacement actuator 36 can adjust the biasing force of the elastic body 32C through the adjustment section 32D by adjusting the amount of displacement of the movable section 36B under the control of the control device 60.
  • the drive mechanism 35 is arranged adjacent to the bearing support member 31 and the adjustment section 32D, and the drive mechanism 35 and the minute displacement actuator 36 are housed inside the housing body 11. .
  • the cylinder 35B of the drive mechanism 35 is fixed to the bearing support member 31, and the linear cam 35A of the drive mechanism 35 is rotatably connected to the adjustment part 32D through a penetration part provided in the cylinder 35B. good.
  • the inside of the housing body 11 is a space that can accommodate the bearing device 30 including the drive mechanism 35 and the minute displacement actuator 36, and a space that includes a work space for assembling the bearing device 30 inside. It is formed.
  • the drive mechanism 35 and the minute displacement actuator 36 may be arranged outside the housing body 11.
  • the cylinder 35B of the drive mechanism 35 and the minute displacement actuator 36 are attached to the outer surface of the housing body 11.
  • the housing body 11 is provided with a through hole 11A similar to the first example described above, and the adjustment portion 32D inside the housing body 11 and the linear cam 35A of the drive mechanism 35 outside the housing body 11 are connected to each other. They may be rotatably connected as one body through the through hole 11A.
  • FIG. 4 is a diagram showing a functional configuration of an example of a control system of the rotating machine 1. As shown in FIG. 4
  • the control system of the rotating machine 1 includes a control device 60 and a rotation speed sensor 70.
  • the control device 60 performs control regarding the rotating machine 1.
  • the control device 60 may be mounted on the rotating machine 1 or may be provided outside the rotating machine 1, and controls the rotation by outputting control commands to the equipment to be controlled in the rotating machine 1 through a predetermined communication line. Control regarding the machine 1 may also be performed.
  • control device 60 The functions of the control device 60 are realized by arbitrary hardware or a combination of arbitrary hardware and software.
  • the control device 60 is mainly configured with a computer including a CPU (Central Processing Unit), a memory device, an auxiliary storage device, and an interface device.
  • the memory device is, for example, SRAM (Static Random Access Memory).
  • the auxiliary storage device is, for example, an EEPROM (Electrically Erasable Programmable Read Only Memory) or a flash memory.
  • the interface device includes a communication interface that communicates with other devices such as the minute displacement actuator 36 and the rotation speed sensor 70. Further, the interface device may include an external interface for connecting to an external recording medium. Thereby, the control device 60 can read data and programs necessary for processing from an external recording medium through an external interface and install them in the auxiliary storage device, for example, on a factory production line or the like.
  • control device 60 may be installed in the auxiliary storage device by being downloaded from an external device through a communication interface.
  • the rotation speed sensor 70 acquires information regarding the rotation speed (rotation speed) of the rotating machine 1.
  • the rotation speed sensor 70 is, for example, an encoder mounted on the rotating machine 1.
  • control device 60 controls the minute displacement actuator 36.
  • control device 60 includes a startup preload target value setting section 601, a post-startup preload target value setting section 602, and a manipulated variable conversion section 603 as functional sections. These functions are realized, for example, by loading a program installed in an auxiliary storage device into a memory device and executing it on a CPU.
  • the startup preload target value setting unit 601 sets a target value N of the preload of the radial bearing 32 (hereinafter referred to as "preload target value”) when the rotating machine 1 is started.
  • the preload at the time of startup of the rotating machine 1 corresponds to the preload of the radial bearing 32 in a situation where the rotating machine 1 starts rotating from a state where the rotational speed is zero.
  • the preload target value N of the radial bearing 32 at the time of startup of the rotating machine 1 is registered in advance in an auxiliary storage device or the like as the minimum value Nmin of the preload target value N of the radial bearing 32.
  • the start-up preload target value setting unit 601 sets the preload target value N to the minimum value Nmin when the measured value of the rotation speed X of the rotating machine 1 is in an extremely low speed region below a predetermined threshold value Xth1. .
  • the post-startup preload target value setting unit 602 sets a target preload value (preload target value N) of the radial bearing 32 after the rotating machine 1 is started.
  • the preload target value N after the rotating machine 1 is started is varied according to the rotation speed X of the rotating machine 1.
  • the preload target value N may be varied so as to increase as the rotation speed X of the rotating machine 1 increases.
  • information for example, a function such as a conversion formula
  • the preload target value N which is acquired based on the output of the rotation speed sensor 70, is controlled. It is registered in advance in the auxiliary storage device of the device 60.
  • the post-startup preload target value setting unit 602 uses the information defining the correlation loaded from the auxiliary storage device to the memory device based on the output of the rotation speed sensor 70 to determine the rotation speed X of the rotating machine 1. It is possible to set the preload target value N according to the following. For example, when the measured value of the rotation speed X of the rotating machine 1 exceeds the threshold value Xth1, the post-startup preload target value setting unit 602 sets the preload target value N according to the rotation speed X of the rotating machine 1. do.
  • the threshold value Xth1 is predefined, for example, as the upper limit value of the rotational speed when the rotating machine 1 is in an extremely low rotational speed at startup.
  • the operation amount conversion unit 603 converts the preload target value N set by the startup preload target value setting unit 601 or the post-startup preload target value setting unit 602 into an operation amount of the minute displacement actuator 36 to be controlled. Then, the operation amount conversion unit 603 energizes and drives the minute displacement actuator 36 so as to realize the obtained operation amount.
  • the amount of operation of the minute displacement actuator 36 is, for example, the amount of displacement of the movable portion 36B of the minute displacement actuator 36 toward the linear cam 35A. That is, the manipulated variable converter 603 converts the set preload target value N into the displacement amount of the minute displacement actuator 36 necessary to generate a biasing force corresponding to the preload target value N in the elastic body 32C. It's okay.
  • information for example, a function such as a conversion formula
  • the manipulated variable conversion unit 603 converts the set preload target value N into the manipulated variable (displacement amount) of the minute displacement actuator 36 using the information that defines the correlation loaded from the auxiliary storage device to the memory device. can be converted to .
  • control device 60 can control the minute displacement actuator 36 and adjust the preload of the radial bearing 32 so that the higher the rotational speed of the rotating machine 1, the greater the preload of the radial bearing 32.
  • the preload of the radial bearing 32 is fixed to a relatively large value, vibrations in a region where the rotational speed of the rotating machine 1 is relatively high (particularly in a high-speed rotation region) can be suppressed.
  • the preload of the radial bearing 32 is fixed at a relatively high value, the friction loss when the rotating machine 1 starts up and the shaft loss (viscous resistance) when the rotation speed is steady will become relatively large, and the energy consumption will be reduced. This may lead to an increase in
  • the preload of the radial bearing 32 is fixed to a relatively small value, it is possible to reduce the friction loss when starting up the rotating machine 1 and the shaft loss during steady rotation, thereby reducing energy consumption.
  • the preload of the radial bearing 32 is fixed to a relatively small value, there is a possibility that vibrations in a region where the rotational speed of the rotating machine 1 is relatively high (particularly in a high-speed rotation region) cannot be appropriately suppressed.
  • the control device 60 can vary the preload of the radial bearing 32 according to the rotation speed of the rotating machine 1. Specifically, the control device 60 makes the preload of the radial bearing 32 relatively small when the rotation speed of the rotating machine 1 is relatively low, and reduces the preload of the radial bearing 32 when the rotation speed of the rotating machine 1 is relatively high. The preload of the radial bearing 32 can be adjusted so that the preload is relatively large. Therefore, the control device 60 reduces friction loss during startup of the rotating machine 1 and shaft loss during steady rotation, and reduces energy consumption while operating in a relatively high rotation speed range (particularly in a high speed rotation range). The vibrations of the rotating machine 1 can be appropriately suppressed.
  • FIG. 5 is a longitudinal sectional view showing an expansion turbine 1A as an example of the rotating machine 1. Specifically, FIG. 5 is a diagram for explaining contents common to the rotating machine 1 according to the above-described first example and second example.
  • the vertical direction in the figure corresponds to the vertical direction.
  • illustration of the housing 10 is omitted.
  • only some of the components of the expansion turbine 1A (bearing support member 31 and thrust bearing 34) are shown as a cross-sectional view.
  • the expansion turbine 1A includes a housing 10, a rotating shaft 20, a bearing device 30, an impeller 40, and an energy consumption section 50.
  • the bearing device 30 supports the radial load and thrust load on the rotating shaft 20 that rotates at high speed.
  • the rotating shaft 20 is installed to extend in the vertical direction. Further, the rotating shaft 20 may be arranged to extend in the horizontal direction.
  • An impeller 40 that expands the process gas is attached to one end (lower end in this example) of the rotating shaft 20.
  • the process gas is, for example, hydrogen gas (see FIG. 6). Further, the process gas may be helium gas, nitrogen gas, or air.
  • An energy consumption section 50 is attached to the other end (in this example, the upper end) of the rotating shaft 20.
  • the energy consumption unit 50 can consume the rotational energy of the rotating shaft 20 driven by the process gas.
  • the energy consumption unit 50 is, for example, an impeller of a compressor (see FIG. 6).
  • the energy consumption part 50 may be a brake fan for braking or a generator.
  • rotating shaft 20 may be vertically reversed.
  • the bearing device 30 includes a bearing support member 31, a radial bearing 32, a collar 33, and a thrust bearing 34.
  • the bearing support member 31 supports a radial bearing 32, a collar 33, and a thrust bearing 34.
  • the rotating shaft 20 passes through the bearing support member 31 in the vertical direction.
  • the impeller 40 is attached to one end (lower end) of the rotating shaft 20 exposed from one end (lower end) of the bearing support member 31, and the other end (lower end) of the rotating shaft 20 exposed from the other end (upper end) of the bearing supporting member 31.
  • the energy consumption section 50 is attached to the upper limit).
  • the radial bearing 32 supports the radial load on the rotating shaft 20.
  • the radial bearing 32 is a tilting pad type radial bearing as described above.
  • two radial bearings 32 are provided, and each is arranged at both ends of the inside of the bearing support member 31 in the axial direction.
  • the collar 33 is attached to the rotating shaft 20 and has a disk shape centered on the rotating shaft 20.
  • the collar 33 is provided in the center of the bearing support member 31 in the axial direction.
  • the collar 33 is configured to be able to receive a reaction force (hereinafter referred to as "thrust reaction force”) generated by the thrust bearing 34 against the thrust load of the rotating shaft 20.
  • thrust reaction force a reaction force generated by the thrust bearing 34 against the thrust load of the rotating shaft 20.
  • the thrust bearing 34 supports the thrust load on the rotating shaft 20. Specifically, the thrust bearing 34 generates a thrust reaction force against the collar 33.
  • the thrust bearing 34 is arranged to face the collar 33 in the axial direction.
  • two thrust bearings 34 are provided, and each thrust bearing 34 is arranged adjacent to both one end (lower end) side and the other end (upper end) side of the rotating shaft 20 when viewed from the collar 33. be done.
  • the thrust bearing 34 is a static pressure type gas bearing.
  • the thrust bearing 34 has an injection hole 34A that injects a predetermined gas toward the collar 33.
  • the injection holes 34A are provided at predetermined intervals in the circumferential direction.
  • the injection hole 34A communicates with a gas supply path 34B connected to the bearing support member 31 and the outside of the housing 10, and a predetermined gas is supplied from the outside to the injection hole 34A.
  • the predetermined gas is, for example, the same gas as the process gas introduced into the expansion turbine 1A (impeller 40). In this case, the process gas before being introduced into the expansion turbine 1A including the impeller 40 is branched and introduced into the gas supply path 34B.
  • the predetermined gas may be a gas dedicated to the thrust bearing 34, which is different from the process gas introduced into the expansion turbine 1A including the impeller 40.
  • the thrust bearing 34 may be a dynamic pressure type gas bearing that supports the thrust load of the rotating shaft 20 by the gas film pressure between the thrust bearing 34 and the collar 33 . In this case, the injection hole 34A is omitted.
  • the thrust bearing 34 may have a combination of both a dynamic pressure type and a static pressure type configuration.
  • the injection hole 34A is provided on the surface of the thrust bearing 34 facing the collar 33, and is formed so that the injection direction of the predetermined gas is in the axial direction. Thereby, a thrust reaction force can be generated in the collar 33 by the predetermined gas injected from the injection hole 34A. Furthermore, even if, for example, the rotating shaft 20 is tilted due to vibration or vibration of the rotating shaft 20 and the collar 33 approaches the thrust bearing 34, the tilt of the rotating shaft 20 will increase due to the action of the predetermined gas that is injected. It is possible to suppress abnormal approach due to As a result, contact between the collar 33 and the thrust bearing 34 can be suppressed.
  • the gas injected from the injection hole 34A may be released to the atmosphere or may be recovered. In the latter case, the recovered gas may be returned to the gas path before being introduced into the expansion turbine 1A.
  • FIG. 6 is a diagram showing an example of application of the rotating machine 1 (expansion turbine 1A). Specifically, FIG. 6 is a diagram showing an example of the hydrogen gas filling system SYS.
  • the hydrogen gas filling system SYS is installed, for example, at a hydrogen station for filling the vehicle VCL with hydrogen gas.
  • FIG. 6 it includes a hydrogen gas compression equipment 100, an expansion valve 200, a hydrogen gas line 300, and a pre-cool system 400.
  • the hydrogen gas compression equipment 100 compresses hydrogen gas supplied from a tank, increases the pressure to a predetermined pressure, and outputs the pressure.
  • the expansion valve 200 adiabatically expands (isenthalpic expands) the hydrogen gas output from the hydrogen gas compression equipment 100. At this time, since the temperature of the hydrogen gas before expansion is higher than the inversion temperature (-58° C.), the temperature of the hydrogen gas after expansion increases due to the Joule-Thomson effect.
  • the hydrogen gas line 300 supplies the expanded hydrogen gas output from the expansion valve 200 to the pre-cool system 400.
  • the pre-cool system 400 cools hydrogen gas supplied from the hydrogen gas line 300 and supplies it to the dispenser 500.
  • the pre-cool system 400 includes a compressor 410, a cooler 420, a cold source 430, and an expansion section 440.
  • the compressor 410 compresses hydrogen gas supplied from the hydrogen gas line 300.
  • the cooler 420 cools the hydrogen gas by exchanging heat between the refrigerant supplied from the cold source 430 and the hydrogen gas compressed by the compressor 410.
  • the cold heat source 430 supplies and circulates a refrigerant having a lower temperature than the hydrogen gas output from the compressor 410 to the cooler 420.
  • a cooler similar to the cooler 420 may be provided upstream of the compressor 410, and the hydrogen gas in the hydrogen gas line 300 may be introduced into the compressor 410 after being cooled by the cooler.
  • the expansion section 440 expands the hydrogen gas cooled by the cooler 420. Thereby, the hydrogen gas can be expanded and the temperature of the hydrogen gas can be lowered. Further, by expanding the hydrogen gas compressed by the compressor 410, the expansion ratio becomes relatively large, and as a result, the temperature of the hydrogen gas can be lowered to a greater extent. Therefore, for example, the temperature of hydrogen gas can be lowered to an appropriate level without requiring a pre-cool system that requires refrigerator equipment including a compressor, condenser, expansion valve, evaporator, accumulator, etc.
  • the compressor 410 and the expansion section 440 are realized by the expansion turbine 1A.
  • the expansion turbine 1A achieves the function of the expansion section 440 by expanding hydrogen gas using the impeller 40 at one end of the rotating shaft 20, and achieves the function of the expansion section 440 by using the impeller 40 as the energy consumption section 50 at the other end of the rotating shaft 20.
  • the function of the compressor 410 is realized by compressing hydrogen gas.
  • the dispenser 500 fills the hydrogen tank TNK of the vehicle VCL with hydrogen gas supplied from the pre-cool system 400 under high pressure.
  • the vehicle VCL is, for example, a fuel cell vehicle equipped with a fuel cell capable of generating electricity using hydrogen gas as fuel.
  • the expansion turbine 1A can be applied to the pre-cool system 400 of the hydrogen gas filling system SYS.
  • the rotating machine includes a rotating shaft, a bearing device that supports the radial load of the rotating shaft, and a casing that houses the components of the rotating machine including the rotating shaft and the bearing device.
  • the rotating machine is, for example, the rotating machine 1 described above.
  • the rotation axis is, for example, the rotation axis 20 described above.
  • the bearing device is, for example, the bearing device 30 described above.
  • the housing is, for example, the housing 10 described above.
  • the bearing device includes a fixed part, a tilting pad, a pivot, an elastic body, and an adjustment part.
  • the fixed portion is, for example, the bearing support member 31 described above.
  • the tilting pad is, for example, the above-mentioned tilting pad 32A.
  • the pivot is, for example, the pivot 32B described above.
  • the elastic body is, for example, the above-mentioned elastic body 32C.
  • the adjustment section is, for example, the above-mentioned adjustment section 32D.
  • the fixing part is arranged on the outside in the radial direction when viewed from the rotation axis.
  • the tilting pad is arranged between the fixed part and the rotation shaft so as to face the rotation shaft in the radial direction.
  • the pivot is arranged to abut on the outside of the tilting pad in the radial direction.
  • the elastic body is arranged to abut on the outside of the pivot in the radial direction, and presses the tilting pad toward the rotation axis via the pivot.
  • the adjustment part is attached to the fixed part so that the biasing force of the elastic body can be adjusted.
  • the elastic body rotates the tilting pad via the pivot. Subtle adjustment of the force applied to the shaft is required. Therefore, for example, after assembling a rotating machine, a rotation test is performed, and depending on the test results, the rotating machine is disassembled, the force that presses the tilting pad against the rotating shaft is adjusted, and then the rotating machine is reassembled and a rotation test is performed. It may be time consuming to repeat the process. Furthermore, repeated disassembly and reassembly of the rotating machine may accelerate aging (deterioration) of the component parts.
  • the rotating machine has a structure in which the biasing force can be adjusted by operating the adjustment section from outside the housing.
  • the force with which the tilting pad is pressed against the rotating shaft can be easily adjusted from outside the casing of the rotating machine without disassembling the rotating machine.
  • the casing may be provided with a through hole through which the adjustment section can be accessed from the outside of the casing.
  • the through hole is, for example, the through hole 11A.
  • the tool can be made to reach the adjustment section through the through hole 11A and the adjustment section can be operated.
  • the rotating machine may include a drive mechanism and an actuator.
  • the drive mechanism is, for example, the drive mechanism 35 described above.
  • the actuator is, for example, the minute displacement actuator 36 described above.
  • the drive mechanism drives the adjustment section.
  • the actuator then drives the drive mechanism.
  • the rotary machine can automatically operate the adjustment section using the actuator and automatically adjust the force (preload) with which the elastic body presses the tilting pad against the rotating shaft via the pivot. Therefore, in the rotating machine, the force (preload) with which the elastic body presses the tilting pad against the rotating shaft via the pivot can be adjusted as appropriate depending on the operating state of the rotating machine.
  • control device may control the actuator according to the rotation speed of the rotating machine.
  • the control device is, for example, the control device 60 described above.
  • control device can appropriately adjust the force (preload) with which the elastic body presses the tilting pad against the rotating shaft via the pivot, in accordance with the rotational speed of the rotating machine.
  • control device may control the actuator so that the higher the rotational speed of the rotating machine, the greater the biasing force of the elastic body.
  • the control device can, for example, start the rotating machine by making the force (preload) with which the elastic body presses the tilting pad via the pivot relatively small in a region where the rotational speed of the rotating machine is relatively low. Sliding loss during operation and shaft loss during steady rotation can be suppressed. Further, in a region where the rotational speed is relatively high, the control device can appropriately suppress vibrations of the rotating machine by increasing the force with which the elastic body presses the tilting pad via the pivot. Therefore, the control device can suppress the vibration of the rotating machine in a relatively high rotational speed area while suppressing the sliding loss and shaft loss of the rotating machine in a relatively low rotational speed area. Therefore, the control device can both reduce energy consumption of the rotating machine and suppress vibration of the rotating machine.
  • Rotating machine 1A Expansion turbine 10 Housing 11 Housing main body 11A Through hole 12 Flange 13 Seal member 20 Rotating shaft 30 Bearing device 31 Bearing support member 32 Radial bearing 32A Tilting pad 32B Pivot 32C Elastic body 32D Adjustment part 32D1 Drive part 33 Collar 34 Thrust bearing 35 Drive mechanism 36 Micro displacement actuator 40 Impeller 50 Energy consumption unit 60 Control device 70 Rotational speed sensor 100 Hydrogen gas compression equipment 200 Expansion valve 300 Hydrogen gas line 400 Pre-cool system 500 Dispenser SYS Hydrogen gas filling system TNK Hydrogen tank VCL vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)

Abstract

Provided is a technology making it possible to adjust the force with which a tilting pad, which is on a tilting pad-type radial bearing built into a rotating machine, is pressed against a rotating shaft. A rotating machine 1 is provided with: a rotating shaft 20; a bearing device 30 for supporting a radial load of the rotating shaft 20; and an enclosure 10 accommodating the constituent elements of the rotating machine 1. The bearing device 30 comprises: a bearing support member 31; a tilting pad 32A that radially faces the rotating shaft 20, between the bearing support member 31 and the rotating shaft 20; a pivot 32B arranged so as to abut against the outside in the radial direction of the tilting pad 32A; an elastic body 32C for pushing the tilting pad 32A toward the rotating shaft 20, via the pivot 32B; and an adjustment unit 32D attached to the bearing support member 31 so as to enable adjustment of the urging force of the elastic body 32C.

Description

回転機械、制御装置Rotating machinery, control equipment
 本開示は、回転機械等に関する。 The present disclosure relates to rotating machines and the like.
 従来、ティルティングパッド式のラジアル軸受によって回転軸のラジアル荷重が支持される回転機械が知られている(特許文献1参照)。 Conventionally, a rotating machine in which the radial load of a rotating shaft is supported by a tilting pad type radial bearing is known (see Patent Document 1).
 特許文献1では、膨張タービンにティルティングパッド式のラジアル軸受が適用されている。 In Patent Document 1, a tilting pad type radial bearing is applied to an expansion turbine.
実開昭60-140876号公報Utility Model Publication No. 60-140876
 ところで、ティルティングパッド式のラジアル軸受では、弾性体がピボットを介してティルティングパッドを回転軸に押し付けることで、回転軸とティルティングパッドとの間に気体や液体の膜圧力を発生させて回転軸のラジアル荷重を支持する。 By the way, in a tilting pad type radial bearing, an elastic body presses the tilting pad against the rotating shaft via the pivot, which generates film pressure of gas or liquid between the rotating shaft and the tilting pad, and rotates. Supports the radial load of the shaft.
 しかしながら、例えば、ティルティングパッドと回転軸との間の気体や液体の膜圧力の適切な形成のためには、弾性体がピボットを介してティルティングパッドを回転軸に押し付ける力(以下、「予荷重」)が適切である必要がある。 However, for example, in order to form an appropriate film pressure of gas or liquid between the tilting pad and the rotating shaft, the elastic body must have a force (hereinafter referred to as ``preliminary pressure'') that presses the tilting pad against the rotating shaft via the pivot. (load) must be appropriate.
 そこで、上記課題に鑑み、回転機械に内蔵されるティルティングパッド式のラジアル軸受におけるティルティングパッドを回転軸に押し付ける力(予荷重)を調整可能な技術を提供することを目的とする。 Therefore, in view of the above problems, the present invention aims to provide a technology that can adjust the force (preload) that presses the tilting pad against the rotating shaft in a tilting pad type radial bearing built in a rotating machine.
 上記目的を達成するため、本開示の一実施形態では、
 回転軸と、
 前記回転軸のラジアル荷重を支持する軸受装置と、
 前記回転軸及び前記軸受装置を含む回転機械の構成要素を収容する筐体と、を備え、
 前記軸受装置は、
 前記回転軸から見て径方向の外側に配置される固定部と、
 前記固定部と前記回転軸との間で、前記回転軸と前記径方向で対向するように配置されるティルティングパッドと、
 前記ティルティングパッドの前記径方向の外側に当接するように配置されるピボットと、
 前記ピボットの前記径方向の外側に当接するように配置され、前記ピボットを介して前記ティルティングパッドを前記回転軸に向けて押し付ける弾性体と、
 前記弾性体の付勢力を調整可能なように前記固定部に取り付けられる調整部と、を含む、
 回転機械が提供される。
To achieve the above object, in one embodiment of the present disclosure,
a rotating shaft;
a bearing device that supports the radial load of the rotating shaft;
a casing that accommodates components of a rotating machine including the rotating shaft and the bearing device,
The bearing device includes:
a fixing part disposed on the outside in the radial direction when viewed from the rotation axis;
a tilting pad disposed between the fixed part and the rotating shaft so as to face the rotating shaft in the radial direction;
a pivot arranged to abut on the radially outer side of the tilting pad;
an elastic body that is arranged to abut on the outside of the pivot in the radial direction and presses the tilting pad toward the rotation axis via the pivot;
an adjustment part attached to the fixing part so that the biasing force of the elastic body can be adjusted;
A rotating machine is provided.
 また、本開示の他の実施形態では、
 前記調整部を駆動する駆動機構と、前記駆動機構を駆動するアクチュエータと、を更に備える前記回転機械の回転速度に応じて、前記アクチュエータを制御する、
 制御装置が提供される。
Additionally, in other embodiments of the present disclosure,
Controlling the actuator according to the rotational speed of the rotary machine, further comprising: a drive mechanism that drives the adjustment section; and an actuator that drives the drive mechanism;
A control device is provided.
 上述の実施形態によれば、回転機械に内蔵されるティルティングパッド式のラジアル軸受におけるティルティングパッドを回転軸に押し付ける力(予荷重)を調整することができる。 According to the embodiment described above, it is possible to adjust the force (preload) that presses the tilting pad against the rotating shaft in the tilting pad type radial bearing built in the rotating machine.
回転機械の第1例の構造を示す横断面図である。FIG. 2 is a cross-sectional view showing the structure of a first example of a rotating machine. 回転機械の第1例の構造を示す縦断面図である。It is a longitudinal cross-sectional view showing the structure of a first example of a rotating machine. 回転機械の第2例の構造を示す横断面図である。It is a cross-sectional view showing the structure of a second example of a rotating machine. 回転機械の制御系の一例の機能構成を示す図である。FIG. 2 is a diagram showing a functional configuration of an example of a control system for a rotating machine. 回転機械の一例としての膨張タービンを示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an expansion turbine as an example of a rotating machine. 水素ガス充填システムの一例を示す図である。FIG. 1 is a diagram showing an example of a hydrogen gas filling system.
 以下、図面を参照して実施形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 [回転機械の第1例]
 図1、図2を参照して、本実施形態に係る回転機械1の第1例について説明する。
[First example of rotating machinery]
A first example of a rotating machine 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.
 尚、図1では、回転機械1が左回りに回転する状態を表している。 Note that FIG. 1 shows a state in which the rotating machine 1 rotates counterclockwise.
 以下、回転機械1の回転軸20を基準とする軸方向、径方向、及び周方向を、単に「軸方向」、「径方向」、及び「周方向」と称する場合がある。 Hereinafter, the axial direction, radial direction, and circumferential direction with respect to the rotating shaft 20 of the rotating machine 1 may be simply referred to as the "axial direction," "radial direction," and "circumferential direction."
 図1は、回転機械1の第1例の構造を示す横断面図である。具体的には、図1は、回転機械1の第1例の回転軸20と垂直な平面による断面図である。図2は、回転機械1の第1例の構造を示す縦断面図である。具体的には、図2は、回転機械1の第1例の回転軸20の軸心を通過し且つ回転軸20と平行な平面による断面図である。 FIG. 1 is a cross-sectional view showing the structure of a first example of a rotating machine 1. Specifically, FIG. 1 is a cross-sectional view of a first example of the rotating machine 1 taken along a plane perpendicular to the rotating shaft 20. As shown in FIG. FIG. 2 is a longitudinal sectional view showing the structure of a first example of the rotating machine 1. As shown in FIG. Specifically, FIG. 2 is a cross-sectional view taken on a plane that passes through the axis of the rotating shaft 20 of the first example of the rotating machine 1 and is parallel to the rotating shaft 20.
 図中では、回転機械1の一部の構成要素(筐体本体11、フランジ12、シール部材13、回転軸20、及び軸受支持部材31)のみが断面図として描画される。また、図中では、筐体本体11と軸受支持部材31との間に径方向の空間が描画されるが、この空間は、筐体本体11と軸受支持部材31とが別体に存在することを模式的に表している。例えば、筐体本体11と軸受支持部材31との間の空間は、軸方向の全体或いは一部において、非常に微小な隙間であって、その間にシール部材等が介在する形で当接することで筐体本体11と軸受支持部材31とが相対変位しないように(即ち、筐体本体11に対して軸受支持部材31が回転しないように)固定されている。 In the figure, only some components of the rotating machine 1 (the housing body 11, the flange 12, the seal member 13, the rotating shaft 20, and the bearing support member 31) are drawn as a cross-sectional view. In addition, although a radial space is drawn between the housing body 11 and the bearing support member 31 in the figure, this space does not mean that the housing body 11 and the bearing support member 31 exist separately. is schematically represented. For example, the space between the housing body 11 and the bearing support member 31 is a very small gap in whole or in part in the axial direction, and the space between the housing body 11 and the bearing support member 31 is a very small gap, and the space between the housing body 11 and the bearing support member 31 is very small, and the space between the housing body 11 and the bearing support member 31 is very small, and the space between the housing body 11 and the bearing support member 31 is very small, and the space between the housing body 11 and the bearing support member 31 is a very small gap, and the space between the housing body 11 and the bearing support member 31 is a very small gap, and the space between the housing body 11 and the bearing support member 31 is very small. The housing body 11 and the bearing support member 31 are fixed so that they do not move relative to each other (that is, the bearing support member 31 does not rotate with respect to the housing body 11).
 尚、筐体本体11と軸受支持部材31とが相対変位しないように固定するための構成は、上述のシール部材の他、ネジ等の種々の構成が採用可能であり、筐体本体11と軸受支持部材31とは、何れの構成で固定されてもよい。 In addition to the above-mentioned sealing member, various structures such as screws can be used to fix the housing body 11 and the bearing support member 31 so that they do not displace relative to each other. The support member 31 may be fixed in any configuration.
 図1に示すように、本例では、回転機械1は、筐体10と、回転軸20と、軸受装置30とを含む。 As shown in FIG. 1, in this example, the rotating machine 1 includes a housing 10, a rotating shaft 20, and a bearing device 30.
 回転機械1は、例えば、後述の膨張タービン1A(図5参照)である。また、回転機械1は、ジェットエンジン、ガスタービン、過給機、圧縮機、ポンプ、水車等であってもよい。 The rotating machine 1 is, for example, an expansion turbine 1A (see FIG. 5), which will be described later. Furthermore, the rotating machine 1 may be a jet engine, a gas turbine, a supercharger, a compressor, a pump, a water turbine, or the like.
 筐体10は、回転軸20及び軸受装置30を含む回転機械1の構成要素を内部空間に収容する。筐体10は、筐体本体11と、フランジ12と、シール部材13とを含む。 The housing 10 accommodates the components of the rotating machine 1 including the rotating shaft 20 and the bearing device 30 in an internal space. The housing 10 includes a housing body 11, a flange 12, and a seal member 13.
 回転軸20は、回転機械1の回転体の回転中心の軸に相当する部材である。 The rotating shaft 20 is a member corresponding to the axis of the rotation center of the rotating body of the rotating machine 1.
 軸受装置30は、回転軸20を回転可能に支持する。本例では、軸受装置30は、回転軸20のラジアル荷重を支持する。また、軸受装置30は、回転軸20のスラスト荷重を支持してもよい(図5参照)。 The bearing device 30 rotatably supports the rotating shaft 20. In this example, the bearing device 30 supports the radial load of the rotating shaft 20. Further, the bearing device 30 may support the thrust load of the rotating shaft 20 (see FIG. 5).
 軸受装置30は、軸受支持部材31と、ラジアル軸受32とを含む。 The bearing device 30 includes a bearing support member 31 and a radial bearing 32.
 軸受支持部材31は、ラジアル軸受32を支持する。軸受支持部材31は、回転軸20から見た径方向の外側において、回転軸20を全周に亘って包囲するように配置される。軸受支持部材31は、径方向において、筐体10(筐体本体11)の内面から離隔されるように配置されると共に、軸方向の両端部で筐体10(筐体本体11)に固定されてよい。これにより、軸受支持部材31は、固定部として、ラジアル軸受32を支持することができる。 The bearing support member 31 supports the radial bearing 32. The bearing support member 31 is arranged on the outside in the radial direction as viewed from the rotating shaft 20 so as to surround the entire circumference of the rotating shaft 20 . The bearing support member 31 is arranged so as to be spaced apart from the inner surface of the housing 10 (the housing body 11) in the radial direction, and is fixed to the housing 10 (the housing body 11) at both ends in the axial direction. It's okay. Thereby, the bearing support member 31 can support the radial bearing 32 as a fixed part.
 ラジアル軸受32は、回転軸20のラジアル荷重を支持する。本例では、ラジアル軸受32は、ティルティングパッド式のラジアル軸受である。 The radial bearing 32 supports the radial load of the rotating shaft 20. In this example, the radial bearing 32 is a tilting pad type radial bearing.
 ラジアル軸受32は、ティルティングパッド32Aと、ピボット32Bと、弾性体32Cと、調整部32Dとを含む。 The radial bearing 32 includes a tilting pad 32A, a pivot 32B, an elastic body 32C, and an adjustment section 32D.
 ティルティングパッド32Aは、回転軸20と軸受支持部材31との間の径方向の空間において、回転軸20と対向するように配置される。ティルティングパッド32Aは、周方向に複数(本例では、3個)配置される。例えば、ティルティングパッド32Aは、周方向で略等間隔に設定される角度位置に配置される。ティルティングパッド32Aの外周面は、例えば、球面状等の曲面状に形成される。ティルティングパッド32Aの内周面及び外周面には、例えば、硬度を高めるための特殊コーティングが施される。 The tilting pad 32A is arranged to face the rotating shaft 20 in the radial space between the rotating shaft 20 and the bearing support member 31. A plurality of tilting pads 32A (three in this example) are arranged in the circumferential direction. For example, the tilting pads 32A are arranged at angular positions set at approximately equal intervals in the circumferential direction. The outer peripheral surface of the tilting pad 32A is formed, for example, in a curved shape such as a spherical shape. For example, a special coating is applied to the inner and outer peripheral surfaces of the tilting pad 32A to increase hardness.
 ピボット32Bは、ティルティングパッド32Aの径方向の外側に当接するように配置される。ピボット32Bは、ティルティングパッド32Aごとに設けられる。即ち、ティルティングパッド32Aと同数(本例では、3個)のピボット32Bが設けられ、複数のピボット32Bは、それぞれ、対応するティルティングパッド32Aの外周面と当接可能な周方向の位置(角度位置)に配置される。ピボット32Bのティルティングパッド32Aとの接触部は、例えば、球面状等の曲面状に形成される。これにより、曲面状のティルティングパッド32Aは、ピボット32Bと当接した状態で自由に移動することができる。ピボット32Bのティルティングパッド32Aとの接触部には、例えば、硬度を高めるための特殊コーティングが施される。 The pivot 32B is arranged so as to abut on the outside of the tilting pad 32A in the radial direction. A pivot 32B is provided for each tilting pad 32A. That is, the same number of pivots 32B (in this example, three) as the tilting pads 32A are provided, and each of the plurality of pivots 32B is located at a position in the circumferential direction ( angular position). The contact portion of the pivot 32B with the tilting pad 32A is formed, for example, in a curved shape such as a spherical shape. Thereby, the curved tilting pad 32A can freely move while in contact with the pivot 32B. For example, a special coating is applied to the contact portion of the pivot 32B with the tilting pad 32A to increase hardness.
 弾性体32Cは、ピボット32Bの径方向の外側に当接し、ピボット32Bを介してティルティングパッド32Aを回転軸20に向けて押し付けるための付勢力を発生させる。弾性体32Cは、例えば、コイルばねである。弾性体32Cは、ピボット32Bごとに設けられる。即ち、ピボット32Bと同数(本例では、3個)の弾性体32Cが設けられる。 The elastic body 32C comes into contact with the outside of the pivot 32B in the radial direction, and generates a biasing force for pressing the tilting pad 32A toward the rotating shaft 20 via the pivot 32B. The elastic body 32C is, for example, a coil spring. An elastic body 32C is provided for each pivot 32B. That is, the same number (in this example, three) of elastic bodies 32C as the pivots 32B are provided.
 尚、弾性体32Cは、複数(本例では、3個)のピボット32Bのうちの一部のピボット32B(例えば、1つのピボット32B)のみに設けられてもよい。 Note that the elastic body 32C may be provided only on some of the pivots 32B (for example, one pivot 32B) among the plurality of (three in this example) pivots 32B.
 ピボット32B及び弾性体32Cは、軸受支持部材31に設けられる、径方向に延びる貫通孔に配置される。軸受支持部材31の貫通孔は、ピボット32B及び弾性体32Cのそれぞれと同数(本例では、3個)設けられ、複数の貫通孔は、それぞれ、複数のティルティングパッド32Aが配置される角度位置に対応する周方向の位置(角度位置)に形成される。 The pivot 32B and the elastic body 32C are arranged in a radially extending through hole provided in the bearing support member 31. The through holes of the bearing support member 31 are provided in the same number as the pivot 32B and the elastic body 32C (three in this example), and each of the through holes is located at an angular position where the plurality of tilting pads 32A are arranged. It is formed at a circumferential position (angular position) corresponding to .
 調整部32Dは、弾性体32Cの径方向の外側に当接するように配置される。調整部32Dは、ピボット32B及び弾性体32Cの組み合わせごとに設けられる。即ち、ピボット32B及び弾性体32Cのそれぞれと同数(本例では、3つ)の調整部32Dが設けられる。調整部32Dは、弾性体32Cの径方向の外端位置を調整可能なように軸受支持部材31に取り付けられる。これにより、弾性体32Cの伸縮状態を調整し、弾性体32Cがピボット32Bを介してティルティングパッド32Aを回転軸20に押し付ける付勢力を調整することができる。 The adjustment portion 32D is arranged so as to abut on the radially outer side of the elastic body 32C. The adjustment section 32D is provided for each combination of the pivot 32B and the elastic body 32C. That is, the same number (in this example, three) of adjustment parts 32D as the pivot 32B and the elastic body 32C are provided. The adjustment portion 32D is attached to the bearing support member 31 so as to be able to adjust the radial outer end position of the elastic body 32C. Thereby, the expansion and contraction state of the elastic body 32C can be adjusted, and the biasing force of the elastic body 32C to press the tilting pad 32A against the rotating shaft 20 via the pivot 32B can be adjusted.
 例えば、調整部32Dは、軸受支持部材31におけるピボット32B及び弾性体32Cが収容される貫通孔の径方向の内面に形成される雌ねじ部に径方向の外側からねじ込み可能な雄ねじ部材である。これにより、調整部32D(雄ねじ部材)のねじ込み量を調整することにより、弾性体32Cの径方向の外端位置を調整することができる。調整部32D(雄ねじ部材)の駆動部32D1は、軸受支持部材31における貫通孔の径方向の外側の開口から視認可能なように露出している。これにより、軸受支持部材31の径方向の外側から工具を用いて調整部32Dを操作し、調整部32D(雄ねじ部材)のねじ込み量を調整することができる。 For example, the adjustment portion 32D is a male threaded member that can be screwed from the outside in the radial direction into a female threaded portion formed on the radial inner surface of a through hole in the bearing support member 31 in which the pivot 32B and the elastic body 32C are accommodated. Thereby, by adjusting the screwing amount of the adjustment portion 32D (externally threaded member), the radial outer end position of the elastic body 32C can be adjusted. The drive portion 32D1 of the adjustment portion 32D (male threaded member) is exposed so as to be visible from the radially outer opening of the through hole in the bearing support member 31. Thereby, the adjustment portion 32D can be operated from the outside in the radial direction of the bearing support member 31 using a tool, and the screwing amount of the adjustment portion 32D (externally threaded member) can be adjusted.
 筐体10には、外面と内面との間を貫通する貫通孔11Aが設けられる。貫通孔11Aは、ラジアル軸受32(調整部32D)ごとに設けられる。即ち、調整部32Dと同数(本例では、3個)の貫通孔11Aが設けられる。 The housing 10 is provided with a through hole 11A that penetrates between the outer surface and the inner surface. The through hole 11A is provided for each radial bearing 32 (adjustment portion 32D). That is, the same number (in this example, three) of through holes 11A as adjustment parts 32D are provided.
 貫通孔11Aは、筐体本体11の外面から調整部32Dの駆動部32D1に向かって、径方向に且つ直線状に形成される。貫通孔11Aの断面形状や断面の大きさは、駆動部32D1に係合させるための工具(例えば、プラスドライバやマイナスドライバ)を挿通させることが可能なように適宜設定される。これにより、筐体10の外部から工具を調整部32D(駆動部32D1)に到達させて調整部32Dを操作し、弾性体32Cがピボット32Bを介してティルティングパッド32Aを回転軸20に押し付ける付勢力を調整することができる。 The through hole 11A is formed linearly in the radial direction from the outer surface of the housing body 11 toward the drive section 32D1 of the adjustment section 32D. The cross-sectional shape and cross-sectional size of the through hole 11A are appropriately set so that a tool (for example, a Phillips screwdriver or a flathead screwdriver) for engaging the drive portion 32D1 can be inserted therethrough. This allows the tool to reach the adjustment section 32D (drive section 32D1) from outside the housing 10 and operate the adjustment section 32D, and the elastic body 32C presses the tilting pad 32A against the rotating shaft 20 via the pivot 32B. You can adjust your forces.
 貫通孔11Aの外側の開口は、筐体本体11にねじ等により固定されるフランジ12によって閉塞される。フランジ12は、貫通孔11Aごとに設けられる。即ち、貫通孔11Aと同数(本例では、3個)のフランジ12が設けられる。 The outer opening of the through hole 11A is closed by a flange 12 fixed to the housing body 11 with screws or the like. The flange 12 is provided for each through hole 11A. That is, the same number of flanges 12 (in this example, three) as there are through holes 11A are provided.
 フランジ12における筐体本体11の外面との合わせ面には、シール部材13を収容する凹部が設けられる。シール部材13は、例えば、Oリングである。これにより、回転機械1について、筐体10の気密性や液密性(油密性)を確保することができる。 A recessed portion for accommodating the sealing member 13 is provided on the surface of the flange 12 that meets the outer surface of the housing body 11. The seal member 13 is, for example, an O-ring. Thereby, the airtightness and liquidtightness (oiltightness) of the housing 10 of the rotating machine 1 can be ensured.
 尚、筐体10の気密性や液密性が必要でない場合、フランジ12及びシール部材13は省略されてもよい。また、調整部32D(駆動部32D1)と連結されるリンク機構が貫通孔11Aを通じて筐体10(筐体本体11)の外部まで露出するように設置されてもよい。これにより、工具を貫通孔11Aに挿通させることなく、リンク機構を操作するだけで調整部32Dを操作することができる。また、調整部32Dの径方向の外端部が径方向
の外側に延長されることにより、貫通孔11Aを通じて筐体10(筐体本体11)の外部に露出するように調整部32Dが構成されてもよい。これにより、筐体10の外部に露出する調整部32Dをより容易に操作することができる。
Note that if the airtightness or liquidtightness of the housing 10 is not required, the flange 12 and the seal member 13 may be omitted. Further, the link mechanism connected to the adjustment section 32D (drive section 32D1) may be installed so as to be exposed to the outside of the casing 10 (casing main body 11) through the through hole 11A. Thereby, the adjustment portion 32D can be operated simply by operating the link mechanism without inserting a tool into the through hole 11A. Further, the adjustment portion 32D is configured such that the outer end portion of the adjustment portion 32D in the radial direction is extended radially outward, so that the adjustment portion 32D is exposed to the outside of the casing 10 (the casing main body 11) through the through hole 11A. You can. Thereby, the adjustment portion 32D exposed to the outside of the housing 10 can be more easily operated.
 [回転機械の第2例]
 次に、図3を参照して、本実施形態に係る回転機械1の第2例について説明する。
[Second example of rotating machinery]
Next, with reference to FIG. 3, a second example of the rotating machine 1 according to the present embodiment will be described.
 尚、図3では、回転機械1が右回りに回転する状態を表している。 Note that FIG. 3 shows a state in which the rotating machine 1 rotates clockwise.
 以下、上述の第1例と同じ或いは対応する構成には同一の符号を付し、第1例と異なる部分を中心に説明を行うと共に、第1例と同じ或いは対応する内容の説明を省略する場合がある。 Hereinafter, the same reference numerals will be given to the same or corresponding configurations as in the first example above, and the explanation will focus on the parts that are different from the first example, and the explanation of the same or corresponding contents as in the first example will be omitted. There are cases.
  <回転機械の構造>
 図3は、回転機械1の第2例の構造を示す横断面図である。具体的には、図3は、回転機械1の第2例の回転軸20と垂直な平面による断面図である。
<Structure of rotating machinery>
FIG. 3 is a cross-sectional view showing the structure of a second example of the rotating machine 1. As shown in FIG. Specifically, FIG. 3 is a cross-sectional view of a second example of the rotating machine 1 taken along a plane perpendicular to the rotating shaft 20.
 尚、図中では、回転機械1の筐体10の描画が省略され、回転機械1の一部の構成要素(回転軸20、軸受支持部材31、及びシリンダ35B)のみが断面図として描画される。ている。 In addition, in the figure, the drawing of the casing 10 of the rotating machine 1 is omitted, and only some components of the rotating machine 1 (the rotating shaft 20, the bearing support member 31, and the cylinder 35B) are drawn as a cross-sectional view. . ing.
 図3に示すように、本例では、回転機械1は、上述の第1例と同様、図示しない筐体10と、回転軸20と、軸受装置30とを含む。 As shown in FIG. 3, in this example, the rotating machine 1 includes a housing 10 (not shown), a rotating shaft 20, and a bearing device 30, as in the first example described above.
 軸受装置30は、上述の第1例と同様、軸受支持部材31と、ラジアル軸受32とを含む。 The bearing device 30 includes a bearing support member 31 and a radial bearing 32, as in the first example described above.
 本例では、ラジアル軸受32は、上述の第1例と同様、ティルティングパッド式のラジアル軸受である。 In this example, the radial bearing 32 is a tilting pad type radial bearing, similar to the first example described above.
 ラジアル軸受32は、上述の第1例と同様、ティルティングパッド32Aと、ピボット32Bと、弾性体32Cと、調整部32Dとを含む。 The radial bearing 32 includes a tilting pad 32A, a pivot 32B, an elastic body 32C, and an adjustment part 32D, as in the first example described above.
 ピボット32Bは、上述の第1例と同様、周方向に複数(本例では、3個)配置される。ピボット32Bは、上述の第1例と同様、軸受支持部材31に設けられる、径方向に延びる貫通孔に配置される。 Similar to the first example described above, a plurality of pivots 32B (three in this example) are arranged in the circumferential direction. The pivot 32B is arranged in a radially extending through hole provided in the bearing support member 31, as in the first example described above.
 弾性体32Cは、複数のピボット32Bのうちの一部のピボット32B(本例では、1個のピボット32B)のみに対して設けられる。例えば、図3に示すように、弾性体32Cは、コイルばねである。本例では、弾性体32Cは、ピボット32Bの径方向の外側の端部から径方向の内側に向けて設けられる凹部に収容される。 The elastic body 32C is provided only for some of the plurality of pivots 32B (in this example, one pivot 32B). For example, as shown in FIG. 3, the elastic body 32C is a coil spring. In this example, the elastic body 32C is housed in a recess provided from the radially outer end of the pivot 32B toward the radially inner side.
 尚、弾性体32Cは、上述の第1例と同様、複数のピボット32Bの全てに対して設けられてもよい。 Note that the elastic body 32C may be provided for all of the plurality of pivots 32B, as in the first example described above.
 調整部32Dは、上述の第1例と同様、弾性体32Cの径方向の外側に当接するように配置される。調整部32Dは、上述の第1例と同様、弾性体32Cの径方向の外端位置を調整可能なように軸受支持部材31に取り付けられる。具体的には、調整部32Dは、上述の第1例と同様、貫通孔の雌ねじ部に対するねじ込み量を調整可能な雄ねじ部材であってよい。 The adjustment portion 32D is arranged so as to come into contact with the radially outer side of the elastic body 32C, as in the first example described above. The adjustment portion 32D is attached to the bearing support member 31 so as to be able to adjust the radial outer end position of the elastic body 32C, as in the first example described above. Specifically, the adjustment portion 32D may be a male threaded member that can adjust the amount of screwing into the female threaded portion of the through hole, similar to the first example described above.
 駆動機構35は、微小変位アクチュエータ36の動作に応じて、調整部32Dを駆動し、調整部32Dの径方向の外端位置を調整する。これにより、駆動機構35は、弾性体32Cの付勢力、即ち、ラジアル軸受32の予荷重を調整することができる。駆動機構35は、リニアカム35Aと、シリンダ35Bと、弾性体35Cとを含む。 The drive mechanism 35 drives the adjustment section 32D in accordance with the operation of the minute displacement actuator 36, and adjusts the radial outer end position of the adjustment section 32D. Thereby, the drive mechanism 35 can adjust the biasing force of the elastic body 32C, that is, the preload of the radial bearing 32. The drive mechanism 35 includes a linear cam 35A, a cylinder 35B, and an elastic body 35C.
 リニアカム35Aは、調整部32Dの径方向の外端部に取り付けられる。リニアカム35Aは、調整部32Dが配置される貫通孔の中心軸周りの外周面が微小変位アクチュエータ36の可動部36Bの先端と当接・摺動し、可動部36Bの直線運動を調整部32Dの回転運動に変換する。具体的には、リニアカム35Aは、微小変位アクチュエータ36の可動部36Bがリニアカム35A側に近づく方向に直線移動すると、貫通孔の雌ねじ部に対するねじ込み量が増加する方向に調整部32Dを回転させることができる。 The linear cam 35A is attached to the radially outer end of the adjustment section 32D. In the linear cam 35A, the outer circumferential surface around the central axis of the through hole in which the adjustment section 32D is disposed comes into contact with and slides on the tip of the movable section 36B of the minute displacement actuator 36, so that the linear movement of the movable section 36B is controlled by the adjustment section 32D. Convert to rotational motion. Specifically, when the movable portion 36B of the minute displacement actuator 36 moves linearly in a direction approaching the linear cam 35A side, the linear cam 35A can rotate the adjusting portion 32D in a direction that increases the amount of screwing into the female threaded portion of the through hole. can.
 シリンダ35Bは、リニアカム35Aを収容する。 The cylinder 35B accommodates the linear cam 35A.
 弾性体35Cは、シリンダ35Bの内部において、内面とリニアカム35Aとの双方に当接する形で配置される。例えば、弾性体35Cは、調整部32Dが配置される貫通孔の中心軸を基準とする周方向における、微小変位アクチュエータ36と略反対の位置において、リニアカム35Aの外周面に当接し摺動する。微小変位アクチュエータ36の可動部36Bがリニアカム35Aに近づく方向に変位し調整部32Dのねじ込み量が増加する方向にリニアカム35Aが回転すると弾性体35Cが収縮するように、リニアカム35Aにおける弾性体35Cとの摺動面の形状が規定されている。そのため、弾性体35Cは、微小変位アクチュエータ36の可動部36Bがリニアカム35Aから離れる方向に変位すると、その復元力によって、調整部32Dのねじ込み量が減少する方向にリニアカム35Aを回転させることができる。よって、弾性体35Cは、微小変位アクチュエータ36の可動部36Bがリニアカム35Aから離れる方向に変位するのに合わせて、調整部32Dのねじ込み量を減少させることができる。 The elastic body 35C is arranged inside the cylinder 35B so as to come into contact with both the inner surface and the linear cam 35A. For example, the elastic body 35C contacts and slides on the outer circumferential surface of the linear cam 35A at a position substantially opposite to the minute displacement actuator 36 in the circumferential direction based on the central axis of the through hole in which the adjustment portion 32D is arranged. The elastic body 35C in the linear cam 35A is arranged so that the elastic body 35C contracts when the linear cam 35A rotates in a direction in which the movable part 36B of the minute displacement actuator 36 is displaced in a direction approaching the linear cam 35A and the screwing amount of the adjustment part 32D is increased. The shape of the sliding surface is specified. Therefore, when the movable portion 36B of the minute displacement actuator 36 is displaced in a direction away from the linear cam 35A, the elastic body 35C can rotate the linear cam 35A in a direction in which the screwing amount of the adjustment portion 32D is decreased by its restoring force. Therefore, the elastic body 35C can reduce the screwing amount of the adjustment part 32D in accordance with the displacement of the movable part 36B of the minute displacement actuator 36 in the direction away from the linear cam 35A.
 微小変位アクチュエータ36は、調整部32Dを駆動する。微小変位アクチュエータ36は、調整部32Dのねじ込み量の微小な調整幅に対応する微小な変位を出力可能なアクチュエータである。微小変位アクチュエータ36は、例えば、ピエゾ素子(圧電素子)を採用したピエゾアクチュエータである。微小変位アクチュエータ36は、本体部36Aと、本体部36Aからリニアカム35Aの摺動面に向けて突出する可動部36Bとを含む。微小変位アクチュエータ36は、制御装置60の制御下で、可動部36Bの変位量を調整することにより、調整部32Dを通じて、弾性体32Cの付勢力を調整することができる。 The minute displacement actuator 36 drives the adjustment section 32D. The minute displacement actuator 36 is an actuator that can output a minute displacement corresponding to the minute adjustment width of the screwing amount of the adjustment portion 32D. The minute displacement actuator 36 is, for example, a piezo actuator that employs a piezo element (piezoelectric element). The minute displacement actuator 36 includes a main body portion 36A and a movable portion 36B that protrudes from the main body portion 36A toward the sliding surface of the linear cam 35A. The minute displacement actuator 36 can adjust the biasing force of the elastic body 32C through the adjustment section 32D by adjusting the amount of displacement of the movable section 36B under the control of the control device 60.
 例えば、図3に示すように、駆動機構35は、軸受支持部材31及び調整部32Dに隣接するように配置され、駆動機構35及び微小変位アクチュエータ36は、筐体本体11の内部に収容される。具体的には、駆動機構35のシリンダ35Bは、軸受支持部材31に固定され、駆動機構35のリニアカム35Aは、シリンダ35Bに設けられる貫通部を通じて、調整部32Dと一体として回転可能に連結されてよい。この場合、筐体本体11の内部には、駆動機構35及び微小変位アクチュエータ36を含む軸受装置30を収容可能な空間であって、当該軸受装置30を内部に組み付けるためのワークスペースを含む空間が形成される。また、駆動機構35及び微小変位アクチュエータ36は、筐体本体11の外部に配置されてもよい。例えば、駆動機構35のシリンダ35B、及び微小変位アクチュエータ36は、筐体本体11の外面に取り付けられる。そして、筐体本体11には、上述の第1例と同様の貫通孔11Aが設けられ、筐体本体11の内部の調整部32Dと筐体本体11の外部の駆動機構35のリニアカム35Aとの間が貫通孔11Aを通じて一体として回転可能に連結されていてもよい。 For example, as shown in FIG. 3, the drive mechanism 35 is arranged adjacent to the bearing support member 31 and the adjustment section 32D, and the drive mechanism 35 and the minute displacement actuator 36 are housed inside the housing body 11. . Specifically, the cylinder 35B of the drive mechanism 35 is fixed to the bearing support member 31, and the linear cam 35A of the drive mechanism 35 is rotatably connected to the adjustment part 32D through a penetration part provided in the cylinder 35B. good. In this case, the inside of the housing body 11 is a space that can accommodate the bearing device 30 including the drive mechanism 35 and the minute displacement actuator 36, and a space that includes a work space for assembling the bearing device 30 inside. It is formed. Further, the drive mechanism 35 and the minute displacement actuator 36 may be arranged outside the housing body 11. For example, the cylinder 35B of the drive mechanism 35 and the minute displacement actuator 36 are attached to the outer surface of the housing body 11. The housing body 11 is provided with a through hole 11A similar to the first example described above, and the adjustment portion 32D inside the housing body 11 and the linear cam 35A of the drive mechanism 35 outside the housing body 11 are connected to each other. They may be rotatably connected as one body through the through hole 11A.
  <回転機械の制御系>
 図4は、回転機械1の制御系の一例の機能構成を示す図である。
<Rotating machine control system>
FIG. 4 is a diagram showing a functional configuration of an example of a control system of the rotating machine 1. As shown in FIG.
 図3、図4に示すように、回転機械1の制御系は、制御装置60と、回転数センサ70とを含む。 As shown in FIGS. 3 and 4, the control system of the rotating machine 1 includes a control device 60 and a rotation speed sensor 70.
 制御装置60は、回転機械1に関する制御を行う。制御装置60は、回転機械1に搭載されていてもよいし、回転機械1の外部に設けられ、所定の通信回線を通じて、回転機械1の制御対象の機器に制御指令を出力することにより、回転機械1に関する制御を行ってもよい。 The control device 60 performs control regarding the rotating machine 1. The control device 60 may be mounted on the rotating machine 1 or may be provided outside the rotating machine 1, and controls the rotation by outputting control commands to the equipment to be controlled in the rotating machine 1 through a predetermined communication line. Control regarding the machine 1 may also be performed.
 制御装置60の機能は、任意のハードウェア、或いは、任意のハードウェア及びソフトウェアの組み合わせ等により実現される。例えば、制御装置60は、CPU(Central Processing Unit)、メモリ装置、補助記憶装置、及びインタフェース装置を含むコンピュータを中心に構成される。メモリ装置は、例えば、SRAM(Static Random Access Memory)である。補助記憶装置は、例えば、EEPROM(Electrically Erasable Programmable Read Only Memory)やフラッシュメモリである。インタフェース装置は、微小変位アクチュエータ36や回転数センサ70等の他の機器と通信を行う通信インタフェースを含む。また、インタフェース装置は、外部の記録媒体と接続するための外部インタフェースを含んでもよい。これにより、制御装置60は、例えば、工場の製造ライン等において、外部インタフェースを通じて外部の記録媒体から処理に必要なデータやプログラムを読み込み補助記憶装置にインストールすることができる。 The functions of the control device 60 are realized by arbitrary hardware or a combination of arbitrary hardware and software. For example, the control device 60 is mainly configured with a computer including a CPU (Central Processing Unit), a memory device, an auxiliary storage device, and an interface device. The memory device is, for example, SRAM (Static Random Access Memory). The auxiliary storage device is, for example, an EEPROM (Electrically Erasable Programmable Read Only Memory) or a flash memory. The interface device includes a communication interface that communicates with other devices such as the minute displacement actuator 36 and the rotation speed sensor 70. Further, the interface device may include an external interface for connecting to an external recording medium. Thereby, the control device 60 can read data and programs necessary for processing from an external recording medium through an external interface and install them in the auxiliary storage device, for example, on a factory production line or the like.
 尚、制御装置60の処理に必要なデータやプログラムは、通信インタフェースを通じて外部機器からダウンロードされることにより、補助記憶装置にインストールされてもよい。 Note that the data and programs necessary for the processing of the control device 60 may be installed in the auxiliary storage device by being downloaded from an external device through a communication interface.
 回転数センサ70は、回転機械1の回転数(回転速度)に関する情報を取得する。回転数センサ70は、例えば、回転機械1に搭載されるエンコーダである。 The rotation speed sensor 70 acquires information regarding the rotation speed (rotation speed) of the rotating machine 1. The rotation speed sensor 70 is, for example, an encoder mounted on the rotating machine 1.
 例えば、制御装置60は、微小変位アクチュエータ36を制御する。 For example, the control device 60 controls the minute displacement actuator 36.
 図4に示すように、制御装置60は、機能部として、起動時予荷重目標値設定部601と、起動後予荷重目標値設定部602と、操作量変換部603とを含む。これらの機能は、例えば、補助記憶装置にインストールされるプログラムをメモリ装置にロードしCPU上で実行することにより実現される。 As shown in FIG. 4, the control device 60 includes a startup preload target value setting section 601, a post-startup preload target value setting section 602, and a manipulated variable conversion section 603 as functional sections. These functions are realized, for example, by loading a program installed in an auxiliary storage device into a memory device and executing it on a CPU.
 起動時予荷重目標値設定部601は、回転機械1の起動時のラジアル軸受32の予荷重の目標値(以下、「予荷重目標値」)Nを設定する。回転機械1の起動時の予荷重は、回転機械1の回転数がゼロの状態から回転し始める状況でのラジアル軸受32の予荷重に対応する。回転機械1の起動時のラジアル軸受32の予荷重目標値Nは、ラジアル軸受32の予荷重目標値Nの最小値Nminとして、補助記憶装置等に予め登録されている。例えば、起動時予荷重目標値設定部601は、回転機械1の回転数Xの測定値が所定の閾値Xth1以下の極低速領域にある場合に、予荷重目標値Nを最小値Nminに設定する。 The startup preload target value setting unit 601 sets a target value N of the preload of the radial bearing 32 (hereinafter referred to as "preload target value") when the rotating machine 1 is started. The preload at the time of startup of the rotating machine 1 corresponds to the preload of the radial bearing 32 in a situation where the rotating machine 1 starts rotating from a state where the rotational speed is zero. The preload target value N of the radial bearing 32 at the time of startup of the rotating machine 1 is registered in advance in an auxiliary storage device or the like as the minimum value Nmin of the preload target value N of the radial bearing 32. For example, the start-up preload target value setting unit 601 sets the preload target value N to the minimum value Nmin when the measured value of the rotation speed X of the rotating machine 1 is in an extremely low speed region below a predetermined threshold value Xth1. .
 起動後予荷重目標値設定部602は、回転機械1の起動後のラジアル軸受32の予荷重の目標値(予荷重目標値N)を設定する。回転機械1の起動後の予荷重目標値Nは、回転機械1の回転数Xに応じて可変される。具体的には、回転機械1の回転数Xが高くなるほど予荷重目標値Nが大きくなるように可変されてよい。例えば、回転数センサ70の出力に基づき取得される、回転機械1の回転数Xの測定値と、予荷重目標値Nとの相関関係を規定する情報(例えば、換算式等の関数)が制御装置60の補助記憶装置に予め登録される。これにより、起動後予荷重目標値設定部602は、回転数センサ70の出力に基づき、補助記憶装置からメモリ装置にロードされる相関関係を規定する情報を用いて、回転機械1の回転数Xに応じた予荷重目標値Nを設定することができる。例えば、起動後予荷重目標値設定部602は、回転機械1の回転数Xの測定値が閾値Xth1を超えている場合に、回転機械1の回転数Xに応じた予荷重目標値Nを設定する。閾値Xth1は、例えば、回転機械1が起動時の極低速の回転状態における回転数の上限値として予め規定される。 The post-startup preload target value setting unit 602 sets a target preload value (preload target value N) of the radial bearing 32 after the rotating machine 1 is started. The preload target value N after the rotating machine 1 is started is varied according to the rotation speed X of the rotating machine 1. Specifically, the preload target value N may be varied so as to increase as the rotation speed X of the rotating machine 1 increases. For example, information (for example, a function such as a conversion formula) that defines the correlation between the measured value of the rotation speed X of the rotating machine 1 and the preload target value N, which is acquired based on the output of the rotation speed sensor 70, is controlled. It is registered in advance in the auxiliary storage device of the device 60. Thereby, the post-startup preload target value setting unit 602 uses the information defining the correlation loaded from the auxiliary storage device to the memory device based on the output of the rotation speed sensor 70 to determine the rotation speed X of the rotating machine 1. It is possible to set the preload target value N according to the following. For example, when the measured value of the rotation speed X of the rotating machine 1 exceeds the threshold value Xth1, the post-startup preload target value setting unit 602 sets the preload target value N according to the rotation speed X of the rotating machine 1. do. The threshold value Xth1 is predefined, for example, as the upper limit value of the rotational speed when the rotating machine 1 is in an extremely low rotational speed at startup.
 操作量変換部603は、起動時予荷重目標値設定部601或いは起動後予荷重目標値設定部602により設定される予荷重目標値Nを制御対象の微小変位アクチュエータ36の操作量に変換する。そして、操作量変換部603は、取得される操作量を実現するように微小変位アクチュエータ36を通電させ駆動する。微小変位アクチュエータ36の操作量は、例えば、微小変位アクチュエータ36の可動部36Bのリニアカム35A側への変位量である。即ち、操作量変換部603は、設定された予荷重目標値Nを、予荷重目標値Nに相当する付勢力を弾性体32Cに発生させるために必要な微小変位アクチュエータ36の変位量に変換してよい。例えば、予荷重目標値Nと微小変位アクチュエータ36の操作量(変位量)との間の相関関係を規定する情報(例えば、換算式等の関数)が制御装置60の補助記憶装置に予め登録される。これにより、操作量変換部603は、補助記憶装置からメモリ装置にロードされる相関関係を規定する情報を用いて、設定された予荷重目標値Nを微小変位アクチュエータ36の操作量(変位量)に変換することができる。 The operation amount conversion unit 603 converts the preload target value N set by the startup preload target value setting unit 601 or the post-startup preload target value setting unit 602 into an operation amount of the minute displacement actuator 36 to be controlled. Then, the operation amount conversion unit 603 energizes and drives the minute displacement actuator 36 so as to realize the obtained operation amount. The amount of operation of the minute displacement actuator 36 is, for example, the amount of displacement of the movable portion 36B of the minute displacement actuator 36 toward the linear cam 35A. That is, the manipulated variable converter 603 converts the set preload target value N into the displacement amount of the minute displacement actuator 36 necessary to generate a biasing force corresponding to the preload target value N in the elastic body 32C. It's okay. For example, information (for example, a function such as a conversion formula) that defines the correlation between the preload target value N and the operation amount (displacement amount) of the minute displacement actuator 36 is registered in advance in the auxiliary storage device of the control device 60. Ru. Thereby, the manipulated variable conversion unit 603 converts the set preload target value N into the manipulated variable (displacement amount) of the minute displacement actuator 36 using the information that defines the correlation loaded from the auxiliary storage device to the memory device. can be converted to .
 このように、制御装置60は、微小変位アクチュエータ36を制御し、回転機械1の回転数が高くなるほどラジアル軸受32の予荷重が大きくなるようにラジアル軸受32の予荷重を調整することができる。 In this way, the control device 60 can control the minute displacement actuator 36 and adjust the preload of the radial bearing 32 so that the higher the rotational speed of the rotating machine 1, the greater the preload of the radial bearing 32.
 例えば、ラジアル軸受32の予荷重が比較的大きい値に固定されると、回転機械1の回転数が比較的高い領域(特に、高速回転領域)での振動を抑制することができる。一方、ラジアル軸受32の予荷重が比較的高い値に固定されると、回転機械1の起動時の摩擦ロスや回転数が定常回転時の軸損(粘性抵抗)が比較的大きくなり、消費エネルギの増加を招来する可能性がある。 For example, if the preload of the radial bearing 32 is fixed to a relatively large value, vibrations in a region where the rotational speed of the rotating machine 1 is relatively high (particularly in a high-speed rotation region) can be suppressed. On the other hand, if the preload of the radial bearing 32 is fixed at a relatively high value, the friction loss when the rotating machine 1 starts up and the shaft loss (viscous resistance) when the rotation speed is steady will become relatively large, and the energy consumption will be reduced. This may lead to an increase in
 逆に、ラジアル軸受32の予荷重が比較的小さい値に固定されると、回転機械1の起動時の摩擦ロスや定常回転時の軸損を低減し、消費エネルギの低減を図ることができる。一方、ラジアル軸受32の予荷重が比較的小さい値に固定されると、回転機械1の回転数が比較的高い領域(特に、高速回転領域)での振動を適切に抑制できない可能性がある。 On the other hand, if the preload of the radial bearing 32 is fixed to a relatively small value, it is possible to reduce the friction loss when starting up the rotating machine 1 and the shaft loss during steady rotation, thereby reducing energy consumption. On the other hand, if the preload of the radial bearing 32 is fixed to a relatively small value, there is a possibility that vibrations in a region where the rotational speed of the rotating machine 1 is relatively high (particularly in a high-speed rotation region) cannot be appropriately suppressed.
 これに対して、本例では、制御装置60は、回転機械1の回転数に応じて、ラジアル軸受32の予荷重を可変させることができる。具体的には、制御装置60は、回転機械1の回転数が比較的低い場合、ラジアル軸受32の予荷重を比較的小さくし、回転機械1の回転数が比較的高い場合、ラジアル軸受32の予荷重を比較的大きくするように、ラジアル軸受32の予荷重を調整できる。そのため、制御装置60は、回転機械1の起動時の摩擦ロスや定常回転時の軸損を低減し、消費エネルギの低減を図りつつ、回転数が比較的高い領域(特に、高速回転領域)での回転機械1の振動を適切に抑制することができる。 On the other hand, in this example, the control device 60 can vary the preload of the radial bearing 32 according to the rotation speed of the rotating machine 1. Specifically, the control device 60 makes the preload of the radial bearing 32 relatively small when the rotation speed of the rotating machine 1 is relatively low, and reduces the preload of the radial bearing 32 when the rotation speed of the rotating machine 1 is relatively high. The preload of the radial bearing 32 can be adjusted so that the preload is relatively large. Therefore, the control device 60 reduces friction loss during startup of the rotating machine 1 and shaft loss during steady rotation, and reduces energy consumption while operating in a relatively high rotation speed range (particularly in a high speed rotation range). The vibrations of the rotating machine 1 can be appropriately suppressed.
 [回転機械の具体例]
 次に、図5を参照して、本実施形態に係る回転機械1の具体例(膨張タービン1A)について説明する。
[Specific example of rotating machinery]
Next, with reference to FIG. 5, a specific example of the rotating machine 1 (expansion turbine 1A) according to the present embodiment will be described.
 以下、上述の第1例及び第2例に係る回転機械1に共通する内容、及び膨張タービン1Aに固有の内容を中心に説明を行う。 Hereinafter, the explanation will focus on contents common to the rotating machine 1 according to the above-mentioned first and second examples and contents specific to the expansion turbine 1A.
 図5は、回転機械1の一例としての膨張タービン1Aを示す縦断面図である。具体的には、図5は、上述の第1例及び第2例に係る回転機械1に共通する内容について説明するための図である。 FIG. 5 is a longitudinal sectional view showing an expansion turbine 1A as an example of the rotating machine 1. Specifically, FIG. 5 is a diagram for explaining contents common to the rotating machine 1 according to the above-described first example and second example.
 尚、本例では、図中の上下方向が鉛直方向に対応する。また、図5では、筐体10の図示が省略される。また、図中では、膨張タービン1Aの構成要素の一部(軸受支持部材31及びスラスト軸受34)のみが断面図として表示される。 Note that in this example, the vertical direction in the figure corresponds to the vertical direction. Further, in FIG. 5, illustration of the housing 10 is omitted. Further, in the figure, only some of the components of the expansion turbine 1A (bearing support member 31 and thrust bearing 34) are shown as a cross-sectional view.
 膨張タービン1Aは、筐体10と、回転軸20と、軸受装置30と、インペラ40と、エネルギ消費部50とを含む。 The expansion turbine 1A includes a housing 10, a rotating shaft 20, a bearing device 30, an impeller 40, and an energy consumption section 50.
 軸受装置30は、高速回転する回転軸20に対するラジアル荷重及びスラスト荷重を支持する。 The bearing device 30 supports the radial load and thrust load on the rotating shaft 20 that rotates at high speed.
 例えば、図5に示すように、回転軸20は、鉛直方向に延びるよう設置される。また、回転軸20は、水平方向に延びるに配置されてもよい。 For example, as shown in FIG. 5, the rotating shaft 20 is installed to extend in the vertical direction. Further, the rotating shaft 20 may be arranged to extend in the horizontal direction.
 回転軸20の一端(本例では、下端)には、プロセスガスを膨張させるインペラ40が取り付けられる。プロセスガスは、例えば、水素ガスである(図6参照)。また、プロセスガスは、ヘリウムガスや窒素ガスや空気であってもよい。 An impeller 40 that expands the process gas is attached to one end (lower end in this example) of the rotating shaft 20. The process gas is, for example, hydrogen gas (see FIG. 6). Further, the process gas may be helium gas, nitrogen gas, or air.
 回転軸20の他端(本例では、上端)には、エネルギ消費部50が取り付けられる。エネルギ消費部50は、プロセスガスにより駆動される回転軸20の回転エネルギを消費することができる。エネルギ消費部50は、例えば、圧縮機(図6参照)のインペラである。また、エネルギ消費部50は、制動用のブレーキファンや発電機であってもよい。 An energy consumption section 50 is attached to the other end (in this example, the upper end) of the rotating shaft 20. The energy consumption unit 50 can consume the rotational energy of the rotating shaft 20 driven by the process gas. The energy consumption unit 50 is, for example, an impeller of a compressor (see FIG. 6). Moreover, the energy consumption part 50 may be a brake fan for braking or a generator.
 尚、回転軸20は、鉛直方向の上下が逆転されてもよい。 Note that the rotating shaft 20 may be vertically reversed.
 軸受装置30は、軸受支持部材31と、ラジアル軸受32と、カラー33と、スラスト軸受34とを含む。 The bearing device 30 includes a bearing support member 31, a radial bearing 32, a collar 33, and a thrust bearing 34.
 軸受支持部材31は、ラジアル軸受32、カラー33、スラスト軸受34を支持する。回転軸20は、軸受支持部材31を上下方向に貫通する。そして、軸受支持部材31の一端(下端)から露出する回転軸20の一端(下端)にインペラ40が取り付けられると共に、軸受支持部材31の他端(上端)から露出する回転軸20の他端(上限)にエネルギ消費部50が取り付けられる。 The bearing support member 31 supports a radial bearing 32, a collar 33, and a thrust bearing 34. The rotating shaft 20 passes through the bearing support member 31 in the vertical direction. The impeller 40 is attached to one end (lower end) of the rotating shaft 20 exposed from one end (lower end) of the bearing support member 31, and the other end (lower end) of the rotating shaft 20 exposed from the other end (upper end) of the bearing supporting member 31. The energy consumption section 50 is attached to the upper limit).
 ラジアル軸受32は、回転軸20に対するラジアル荷重を支持する。具体的には、ラジアル軸受32は、上述の如く、ティルティングパッド式のラジアル軸受である。 The radial bearing 32 supports the radial load on the rotating shaft 20. Specifically, the radial bearing 32 is a tilting pad type radial bearing as described above.
 本例では、ラジアル軸受32は、2つ設けられ、それぞれが軸受支持部材31の内部の軸方向の両端部に配置される。 In this example, two radial bearings 32 are provided, and each is arranged at both ends of the inside of the bearing support member 31 in the axial direction.
 カラー33は、回転軸20に取り付けられ、回転軸20を中心とする円盤形状を有する。カラー33は、軸受支持部材31の内部において、軸方向の中央部に設けられる。 The collar 33 is attached to the rotating shaft 20 and has a disk shape centered on the rotating shaft 20. The collar 33 is provided in the center of the bearing support member 31 in the axial direction.
 カラー33は、回転軸20のスラスト荷重に対して、スラスト軸受34が発生させる反力(以下、「スラスト反力」)を受けることが可能なように構成される。 The collar 33 is configured to be able to receive a reaction force (hereinafter referred to as "thrust reaction force") generated by the thrust bearing 34 against the thrust load of the rotating shaft 20.
 スラスト軸受34は、回転軸20に対するスラスト荷重を支持する。具体的には、スラスト軸受34は、カラー33に対してスラスト反力を発生させる。 The thrust bearing 34 supports the thrust load on the rotating shaft 20. Specifically, the thrust bearing 34 generates a thrust reaction force against the collar 33.
 スラスト軸受34は、軸方向でカラー33に対向するように配置される。例えば、図5に示すように、スラスト軸受34は、2つ設けられ、それぞれがカラー33から見て回転軸20の一端(下端)側及び他端(上端)側の双方に隣り合うように配置される。 The thrust bearing 34 is arranged to face the collar 33 in the axial direction. For example, as shown in FIG. 5, two thrust bearings 34 are provided, and each thrust bearing 34 is arranged adjacent to both one end (lower end) side and the other end (upper end) side of the rotating shaft 20 when viewed from the collar 33. be done.
 例えば、図5に示すように、スラスト軸受34は、静圧型ガス軸受である。具体的には、スラスト軸受34は、カラー33に向かって所定のガスを噴射する噴射孔34Aを有する。例えば、噴射孔34Aは、周方向で所定間隔ごとに設けられる。噴射孔34Aは、軸受支持部材31や筐体10の外部に繋がるガス供給経路34Bと連通し、外部から噴射孔34Aに所定のガスが供給される。所定のガスは、例えば、膨張タービン1A(インペラ40)に導入されるプロセスガスと同じガスである。この場合、インペラ40を含む膨張タービン1Aに導入される前のプロセスガスが分岐されてガス供給経路34Bに導入される。また、所定のガスは、インペラ40を含む膨張タービン1Aに導入されるプロセスガスと異なるスラスト軸受34に専用のガスであってもよい。また、スラスト軸受34は、カラー33との間のガス膜圧によって回転軸20のスラスト荷重を支持する動圧型ガス軸受であってもよい。この場合、噴射孔34Aは省略される。また、スラスト軸受34は、動圧型及び静圧型の双方の構成が組み合わせられていてもよい。 For example, as shown in FIG. 5, the thrust bearing 34 is a static pressure type gas bearing. Specifically, the thrust bearing 34 has an injection hole 34A that injects a predetermined gas toward the collar 33. For example, the injection holes 34A are provided at predetermined intervals in the circumferential direction. The injection hole 34A communicates with a gas supply path 34B connected to the bearing support member 31 and the outside of the housing 10, and a predetermined gas is supplied from the outside to the injection hole 34A. The predetermined gas is, for example, the same gas as the process gas introduced into the expansion turbine 1A (impeller 40). In this case, the process gas before being introduced into the expansion turbine 1A including the impeller 40 is branched and introduced into the gas supply path 34B. Further, the predetermined gas may be a gas dedicated to the thrust bearing 34, which is different from the process gas introduced into the expansion turbine 1A including the impeller 40. Further, the thrust bearing 34 may be a dynamic pressure type gas bearing that supports the thrust load of the rotating shaft 20 by the gas film pressure between the thrust bearing 34 and the collar 33 . In this case, the injection hole 34A is omitted. Furthermore, the thrust bearing 34 may have a combination of both a dynamic pressure type and a static pressure type configuration.
 噴射孔34Aは、カラー33に対するスラスト軸受34の対向面に設けられ、所定のガスの噴射方向が軸方向になるように形成される。これにより、噴射孔34Aから噴射される所定のガスによって、カラー33にスラスト反力を発生させることができる。また、例えば、回転軸20の振れや振動等によって回転軸20が傾き、カラー33がスラスト軸受34に接近するような場合でも、噴射される所定のガスの作用で、回転軸20の傾きの増大による異常な接近を抑制することができる。その結果、カラー33とスラスト軸受34との接触を抑制することができる。 The injection hole 34A is provided on the surface of the thrust bearing 34 facing the collar 33, and is formed so that the injection direction of the predetermined gas is in the axial direction. Thereby, a thrust reaction force can be generated in the collar 33 by the predetermined gas injected from the injection hole 34A. Furthermore, even if, for example, the rotating shaft 20 is tilted due to vibration or vibration of the rotating shaft 20 and the collar 33 approaches the thrust bearing 34, the tilt of the rotating shaft 20 will increase due to the action of the predetermined gas that is injected. It is possible to suppress abnormal approach due to As a result, contact between the collar 33 and the thrust bearing 34 can be suppressed.
 尚、噴射孔34Aから噴射されるガスは、大気に開放されてもよいし、回収されてもよい。後者の場合、回収されるガスは、膨張タービン1Aに導入される前のガスの経路に戻されてよい。 Note that the gas injected from the injection hole 34A may be released to the atmosphere or may be recovered. In the latter case, the recovered gas may be returned to the gas path before being introduced into the expansion turbine 1A.
 [回転機械(膨張タービン)の適用例]
 次に、図6を参照して、本実施形態に係る回転機械1(膨張タービン1A)の適用例について説明する。
[Application example of rotating machinery (expansion turbine)]
Next, with reference to FIG. 6, an application example of the rotating machine 1 (expansion turbine 1A) according to the present embodiment will be described.
 図6は、回転機械1(膨張タービン1A)の適用例を示す図である。具体的には、図6は、水素ガス充填システムSYSの一例を示す図である。 FIG. 6 is a diagram showing an example of application of the rotating machine 1 (expansion turbine 1A). Specifically, FIG. 6 is a diagram showing an example of the hydrogen gas filling system SYS.
 水素ガス充填システムSYSは、例えば、車両VCLに水素ガスを充填するための水素ステーションに設置される。 The hydrogen gas filling system SYS is installed, for example, at a hydrogen station for filling the vehicle VCL with hydrogen gas.
 図6に示すように、水素ガス圧縮設備100と、膨張弁200と、水素ガスライン300と、プレクールシステム400とを含む。 As shown in FIG. 6, it includes a hydrogen gas compression equipment 100, an expansion valve 200, a hydrogen gas line 300, and a pre-cool system 400.
 水素ガス圧縮設備100は、タンクから供給される水素ガスを圧縮し所定の圧力まで昇圧させて出力する。 The hydrogen gas compression equipment 100 compresses hydrogen gas supplied from a tank, increases the pressure to a predetermined pressure, and outputs the pressure.
 膨張弁200は、水素ガス圧縮設備100から出力される水素ガスを断熱膨張(等エンタルピ膨張)させる。この際、水素ガスの膨張前の温度は、逆転温度(-58℃)よりも高いことから、ジュールトムソン効果によって、膨張後の水素ガスの温度は上昇する。 The expansion valve 200 adiabatically expands (isenthalpic expands) the hydrogen gas output from the hydrogen gas compression equipment 100. At this time, since the temperature of the hydrogen gas before expansion is higher than the inversion temperature (-58° C.), the temperature of the hydrogen gas after expansion increases due to the Joule-Thomson effect.
 水素ガスライン300は、膨張弁200から出力される膨張後の水素ガスをプレクールシステム400に供給する。 The hydrogen gas line 300 supplies the expanded hydrogen gas output from the expansion valve 200 to the pre-cool system 400.
 プレクールシステム400は、水素ガスライン300から供給される水素ガスを冷却し、ディスペンサ500に供給する。 The pre-cool system 400 cools hydrogen gas supplied from the hydrogen gas line 300 and supplies it to the dispenser 500.
 プレクールシステム400は、圧縮機410と、冷却器420と、冷熱源430と、膨張部440とを含む。 The pre-cool system 400 includes a compressor 410, a cooler 420, a cold source 430, and an expansion section 440.
 圧縮機410は、水素ガスライン300から供給される水素ガスを圧縮する。 The compressor 410 compresses hydrogen gas supplied from the hydrogen gas line 300.
 冷却器420は、冷熱源430から供給される冷媒と、圧縮機410により圧縮された水素ガスとの間で熱交換を行い、水素ガスを冷却する。 The cooler 420 cools the hydrogen gas by exchanging heat between the refrigerant supplied from the cold source 430 and the hydrogen gas compressed by the compressor 410.
 冷熱源430は、圧縮機410から出力される水素ガスよりも低い温度の冷媒を冷却器420に供給しながら循環させる。 The cold heat source 430 supplies and circulates a refrigerant having a lower temperature than the hydrogen gas output from the compressor 410 to the cooler 420.
 尚、圧縮機410の前段に、冷却器420と同様の冷却器を設け、水素ガスライン300の水素ガスが冷却器により冷却された後に圧縮機410に導入されてもよい。 Note that a cooler similar to the cooler 420 may be provided upstream of the compressor 410, and the hydrogen gas in the hydrogen gas line 300 may be introduced into the compressor 410 after being cooled by the cooler.
 膨張部440は、冷却器420により冷却された水素ガスを膨張させる。これにより、水素ガスを膨張させ、水素ガスの温度を低下させることができる。また、圧縮機410により圧縮された水素ガスを膨張させることにより膨張比が相対的に大きくなり、その結果、水素ガスの温度をより大きく低下させることができる。そのため、例えば、圧縮機、凝縮器、膨張弁、蒸発器、及びアキュムレータ等を含む冷凍機設備を前提とするプレクールシステムを要することなく、水素ガスの温度を適切なレベルまで低下させることができる。 The expansion section 440 expands the hydrogen gas cooled by the cooler 420. Thereby, the hydrogen gas can be expanded and the temperature of the hydrogen gas can be lowered. Further, by expanding the hydrogen gas compressed by the compressor 410, the expansion ratio becomes relatively large, and as a result, the temperature of the hydrogen gas can be lowered to a greater extent. Therefore, for example, the temperature of hydrogen gas can be lowered to an appropriate level without requiring a pre-cool system that requires refrigerator equipment including a compressor, condenser, expansion valve, evaporator, accumulator, etc.
 本例では、圧縮機410及び膨張部440は、膨張タービン1Aにより実現される。具体的には、膨張タービン1Aは、回転軸20の一端のインペラ40により水素ガスを膨張させることで膨張部440の機能を実現し、回転軸20の他端のエネルギ消費部50としてのインペラによって水素ガスを圧縮させることで圧縮機410の機能を実現する。 In this example, the compressor 410 and the expansion section 440 are realized by the expansion turbine 1A. Specifically, the expansion turbine 1A achieves the function of the expansion section 440 by expanding hydrogen gas using the impeller 40 at one end of the rotating shaft 20, and achieves the function of the expansion section 440 by using the impeller 40 as the energy consumption section 50 at the other end of the rotating shaft 20. The function of the compressor 410 is realized by compressing hydrogen gas.
 ディスペンサ500は、プレクールシステム400から供給される水素ガスを高圧の状態で車両VCLの水素タンクTNKに充填する。車両VCLは、例えば、水素ガスを燃料として発電可能な燃料電池を搭載する燃料電池車である。 The dispenser 500 fills the hydrogen tank TNK of the vehicle VCL with hydrogen gas supplied from the pre-cool system 400 under high pressure. The vehicle VCL is, for example, a fuel cell vehicle equipped with a fuel cell capable of generating electricity using hydrogen gas as fuel.
 このように、水素ガス充填システムSYSのプレクールシステム400に膨張タービン1Aを適用することができる。 In this way, the expansion turbine 1A can be applied to the pre-cool system 400 of the hydrogen gas filling system SYS.
 [作用]
 次に、本実施形態に係る回転機械及び制御装置の作用について説明する。
[Effect]
Next, the operation of the rotating machine and control device according to this embodiment will be explained.
 本実施形態では、回転機械は、回転軸と、回転軸のラジアル荷重を支持する軸受装置と、回転軸及び軸受装置を含む回転機械の構成要素を収容する筐体と、を備える。回転機械は、例えば、上述の回転機械1である。回転軸は、例えば、上述の回転軸20である。軸受装置は、例えば、上述の軸受装置30である。筐体は、例えば、上述の筐体10である。具体的には、軸受装置は、固定部と、ティルティングパッドと、ピボットと、弾性体と、調整部と、を含む。固定部は、例えば、上述の軸受支持部材31である。ティルティングパッドは、例えば、上述のティルティングパッド32Aである。ピボットは、例えば、上述のピボット32Bである。弾性体は、例えば、上述の弾性体32Cである。調整部は、例えば、上述の調整部32Dである。より具体的には、固定部は、回転軸から見て径方向の外側に配置される。また、ティルティングパッドは、固定部と回転軸との間で、回転軸と径方向で対向するように配置される。また、ピボットは、ティルティングパッドの径方向の外側に当接するように配置される。また、弾性体は、ピボットの径方向の外側に当接するように配置され、ピボットを介してティルティングパッドを回転軸に向けて押し付ける。また、調整部は、弾性体の付勢力を調整可能なように固定部に取り付けられる。 In this embodiment, the rotating machine includes a rotating shaft, a bearing device that supports the radial load of the rotating shaft, and a casing that houses the components of the rotating machine including the rotating shaft and the bearing device. The rotating machine is, for example, the rotating machine 1 described above. The rotation axis is, for example, the rotation axis 20 described above. The bearing device is, for example, the bearing device 30 described above. The housing is, for example, the housing 10 described above. Specifically, the bearing device includes a fixed part, a tilting pad, a pivot, an elastic body, and an adjustment part. The fixed portion is, for example, the bearing support member 31 described above. The tilting pad is, for example, the above-mentioned tilting pad 32A. The pivot is, for example, the pivot 32B described above. The elastic body is, for example, the above-mentioned elastic body 32C. The adjustment section is, for example, the above-mentioned adjustment section 32D. More specifically, the fixing part is arranged on the outside in the radial direction when viewed from the rotation axis. Further, the tilting pad is arranged between the fixed part and the rotation shaft so as to face the rotation shaft in the radial direction. Further, the pivot is arranged to abut on the outside of the tilting pad in the radial direction. Further, the elastic body is arranged to abut on the outside of the pivot in the radial direction, and presses the tilting pad toward the rotation axis via the pivot. Moreover, the adjustment part is attached to the fixed part so that the biasing force of the elastic body can be adjusted.
 これにより、弾性体の付勢力を調整することで、弾性体がピボットを介してティルティングパッドを回転軸に押し付ける力(予荷重)を調整することができる。 Thereby, by adjusting the biasing force of the elastic body, it is possible to adjust the force (preload) with which the elastic body presses the tilting pad against the rotating shaft via the pivot.
 また、例えば、ティルティングパッド式のラジアル軸受では、ティルティングパッドと回転軸との間の気体や液体の膜圧力の適切な形成のためには、弾性体がピボットを介してティルティングパッドを回転軸に押し付ける力の微妙な調整が必要になる。そのため、例えば、回転機械の組み立て後に回転試験を行い、試験結果によっては、回転機械を分解し、ティルティングパッドを回転軸に押し付ける力を調整した後、再度回転機械を組み立てて回転試験を行う作業を繰り返す手間が生じる可能性がある。また、回転機械の分解及び再度の組み立ての繰り返しによって構成部品の老朽化(劣化)を促進する可能性もある。 In addition, for example, in a tilting pad type radial bearing, in order to create an appropriate film pressure of gas or liquid between the tilting pad and the rotating shaft, the elastic body rotates the tilting pad via the pivot. Subtle adjustment of the force applied to the shaft is required. Therefore, for example, after assembling a rotating machine, a rotation test is performed, and depending on the test results, the rotating machine is disassembled, the force that presses the tilting pad against the rotating shaft is adjusted, and then the rotating machine is reassembled and a rotation test is performed. It may be time consuming to repeat the process. Furthermore, repeated disassembly and reassembly of the rotating machine may accelerate aging (deterioration) of the component parts.
 これに対して、本実施形態では、回転機械は、筐体の外部から調整部を操作し、付勢力を調整可能な構造を有する。 In contrast, in the present embodiment, the rotating machine has a structure in which the biasing force can be adjusted by operating the adjustment section from outside the housing.
 これにより、回転機械を分解することなく、回転機械の筐体の外部からティルティングパッドを回転軸に押し付ける力を容易に調整することができる。 Thereby, the force with which the tilting pad is pressed against the rotating shaft can be easily adjusted from outside the casing of the rotating machine without disassembling the rotating machine.
 また、本実施形態では、筐体には、筐体の外部から調整部にアクセス可能な貫通孔が設けられてもよい。貫通孔は、例えば、貫通孔11Aである。 Furthermore, in this embodiment, the casing may be provided with a through hole through which the adjustment section can be accessed from the outside of the casing. The through hole is, for example, the through hole 11A.
 これにより、例えば、貫通孔11Aを通じて工具を調整部に到達させて調整部を操作することができる。 Thereby, for example, the tool can be made to reach the adjustment section through the through hole 11A and the adjustment section can be operated.
 また、本実施形態では、回転機械は、駆動機構と、アクチュエータと、を備えてもよい。駆動機構は、例えば、上述の駆動機構35である。アクチュエータは、例えば、上述の微小変位アクチュエータ36である。具体的には、駆動機構は、調整部を駆動する。そして、アクチュエータは、駆動機構を駆動する。 Furthermore, in this embodiment, the rotating machine may include a drive mechanism and an actuator. The drive mechanism is, for example, the drive mechanism 35 described above. The actuator is, for example, the minute displacement actuator 36 described above. Specifically, the drive mechanism drives the adjustment section. The actuator then drives the drive mechanism.
 これにより、回転機械は、アクチュエータによって、調整部を自動で操作し、弾性体がピボットを介してティルティングパッドを回転軸に押し付ける力(予荷重)を自動で調整することができる。そのため、回転機械は、その動作状態に合わせて、弾性体がピボットを介してティルティングパッドを回転軸に押し付ける力(予荷重)を適宜調整することができる。 Thereby, the rotary machine can automatically operate the adjustment section using the actuator and automatically adjust the force (preload) with which the elastic body presses the tilting pad against the rotating shaft via the pivot. Therefore, in the rotating machine, the force (preload) with which the elastic body presses the tilting pad against the rotating shaft via the pivot can be adjusted as appropriate depending on the operating state of the rotating machine.
 また、本実施形態では、制御装置は、回転機械の回転速度に応じて、アクチュエータを制御してもよい。制御装置は、例えば、上述の制御装置60である。 Furthermore, in this embodiment, the control device may control the actuator according to the rotation speed of the rotating machine. The control device is, for example, the control device 60 described above.
 これにより、制御装置は、回転機械の回転速度に合わせて、弾性体がピボットを介してティルティングパッドを回転軸に押し付ける力(予荷重)を適宜調整することができる。 Thereby, the control device can appropriately adjust the force (preload) with which the elastic body presses the tilting pad against the rotating shaft via the pivot, in accordance with the rotational speed of the rotating machine.
 また、本実施形態では、制御装置は、回転機械の回転速度が高くなるほど弾性体の付勢力が大きくなるように、アクチュエータを制御してもよい。 Furthermore, in this embodiment, the control device may control the actuator so that the higher the rotational speed of the rotating machine, the greater the biasing force of the elastic body.
 これにより、制御装置は、例えば、回転機械の回転速度が比較的低い領域では、弾性体がピボットを介してティルティングパッドを押し付ける力(予荷重)を比較的小さくすることで、回転機械の起動時の摺動ロスや定常回転時の軸損を抑制することができる。また、制御装置は、回転速度が比較的高い領域では、弾性体がピボットを介してティルティングパッドを押し付ける力を比較的大きくすることで、回転機械の振動を適切に抑制することができる。そのため、制御装置は、比較的回転速度が低い領域での回転機械の摺動ロスや軸損を抑制しつつ、比較的回転速度が高い領域での回転機械の振動を抑制することができる。よって、制御装置は、回転機械の消費エネルギの低減と、回転機械の振動の抑制とを両立させることができる。 As a result, the control device can, for example, start the rotating machine by making the force (preload) with which the elastic body presses the tilting pad via the pivot relatively small in a region where the rotational speed of the rotating machine is relatively low. Sliding loss during operation and shaft loss during steady rotation can be suppressed. Further, in a region where the rotational speed is relatively high, the control device can appropriately suppress vibrations of the rotating machine by increasing the force with which the elastic body presses the tilting pad via the pivot. Therefore, the control device can suppress the vibration of the rotating machine in a relatively high rotational speed area while suppressing the sliding loss and shaft loss of the rotating machine in a relatively low rotational speed area. Therefore, the control device can both reduce energy consumption of the rotating machine and suppress vibration of the rotating machine.
 以上、実施形態について詳述したが、本開示はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments have been described in detail above, the present disclosure is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist described in the claims.
 最後に、本願は、2022年7月12日に出願した日本国特許出願2022-111546号に基づく優先権を主張するものであり、日本国特許出願の全内容を本願に参照により援用する。 Finally, this application claims priority based on Japanese patent application No. 2022-111546 filed on July 12, 2022, and the entire contents of the Japanese patent application are incorporated by reference into this application.
1 回転機械
1A 膨張タービン
10 筐体
11 筐体本体
11A 貫通孔
12 フランジ
13 シール部材
20 回転軸
30 軸受装置
31 軸受支持部材
32 ラジアル軸受
32A ティルティングパッド
32B ピボット
32C 弾性体
32D 調整部
32D1 駆動部
33 カラー
34 スラスト軸受
35 駆動機構
36 微小変位アクチュエータ
40 インペラ
50 エネルギ消費部
60 制御装置
70 回転数センサ
100 水素ガス圧縮設備
200 膨張弁
300 水素ガスライン
400 プレクールシステム
500 ディスペンサ
SYS 水素ガス充填システム
TNK 水素タンク
VCL 車両
1 Rotating machine 1A Expansion turbine 10 Housing 11 Housing main body 11A Through hole 12 Flange 13 Seal member 20 Rotating shaft 30 Bearing device 31 Bearing support member 32 Radial bearing 32A Tilting pad 32B Pivot 32C Elastic body 32D Adjustment part 32D1 Drive part 33 Collar 34 Thrust bearing 35 Drive mechanism 36 Micro displacement actuator 40 Impeller 50 Energy consumption unit 60 Control device 70 Rotational speed sensor 100 Hydrogen gas compression equipment 200 Expansion valve 300 Hydrogen gas line 400 Pre-cool system 500 Dispenser SYS Hydrogen gas filling system TNK Hydrogen tank VCL vehicle

Claims (6)

  1.  回転軸と、
     前記回転軸のラジアル荷重を支持する軸受装置と、
     前記回転軸及び前記軸受装置を含む回転機械の構成要素を収容する筐体と、を備え、
     前記軸受装置は、
     前記回転軸から見て径方向の外側に配置される固定部と、
     前記固定部と前記回転軸との間で、前記回転軸と前記径方向で対向するように配置されるティルティングパッドと、
     前記ティルティングパッドの前記径方向の外側に当接するように配置されるピボットと、
     前記ピボットの前記径方向の外側に当接するように配置され、前記ピボットを介して前記ティルティングパッドを前記回転軸に向けて押し付ける弾性体と、
     前記弾性体の付勢力を調整可能なように前記固定部に取り付けられる調整部と、を含む、
     回転機械。
    a rotating shaft;
    a bearing device that supports the radial load of the rotating shaft;
    a casing that accommodates components of a rotating machine including the rotating shaft and the bearing device,
    The bearing device includes:
    a fixing part disposed on the outside in the radial direction when viewed from the rotation axis;
    a tilting pad disposed between the fixed part and the rotating shaft so as to face the rotating shaft in the radial direction;
    a pivot arranged to abut the radially outer side of the tilting pad;
    an elastic body that is arranged to abut on the outside of the pivot in the radial direction and presses the tilting pad toward the rotation axis via the pivot;
    an adjustment part attached to the fixing part so that the biasing force of the elastic body can be adjusted;
    rotating machine.
  2.  前記筐体の外部から前記調整部を操作し、前記付勢力を調整可能な構造を有する、
     請求項1に記載の回転機械。
    having a structure in which the biasing force can be adjusted by operating the adjustment section from the outside of the casing;
    The rotating machine according to claim 1.
  3.  前記筐体には、前記筐体の外部から前記調整部にアクセス可能な貫通孔が設けられる、
     請求項2に記載の回転機械。
    The casing is provided with a through hole that allows access to the adjustment section from outside the casing.
    The rotating machine according to claim 2.
  4.  前記調整部を駆動する駆動機構と、
     前記駆動機構を駆動するアクチュエータと、を備える、
     請求項1乃至3の何れか一項に記載の回転機械。
    a drive mechanism that drives the adjustment section;
    an actuator that drives the drive mechanism;
    A rotating machine according to any one of claims 1 to 3.
  5.  請求項4に記載の回転機械の回転速度に応じて、前記アクチュエータを制御する、
     制御装置。
    controlling the actuator according to the rotational speed of the rotating machine according to claim 4;
    Control device.
  6.  前記回転機械の回転速度が高くなるほど前記付勢力が大きくなるように、前記アクチュエータを制御する、
     請求項5に記載の制御装置。
    controlling the actuator so that the biasing force increases as the rotational speed of the rotating machine increases;
    The control device according to claim 5.
PCT/JP2023/024831 2022-07-12 2023-07-04 Rotating machine and control device WO2024014366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-111546 2022-07-12
JP2022111546 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024014366A1 true WO2024014366A1 (en) 2024-01-18

Family

ID=89536650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024831 WO2024014366A1 (en) 2022-07-12 2023-07-04 Rotating machine and control device

Country Status (1)

Country Link
WO (1) WO2024014366A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB795669A (en) * 1955-02-02 1958-05-28 Westland Aircraft Ltd Improvements in and relating to shaft bearings
JPS49122247U (en) * 1973-02-16 1974-10-19
JPS5954812A (en) * 1983-08-19 1984-03-29 Hitachi Ltd Preload adjusting device
JPH03255213A (en) * 1990-03-06 1991-11-14 Toshiba Corp Gas bearing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB795669A (en) * 1955-02-02 1958-05-28 Westland Aircraft Ltd Improvements in and relating to shaft bearings
JPS49122247U (en) * 1973-02-16 1974-10-19
JPS5954812A (en) * 1983-08-19 1984-03-29 Hitachi Ltd Preload adjusting device
JPH03255213A (en) * 1990-03-06 1991-11-14 Toshiba Corp Gas bearing device

Similar Documents

Publication Publication Date Title
US10570908B2 (en) Centrifugal compressor assembly and method of operation with an airconditioner
US20080134659A1 (en) Zero running clearance centrifugal compressor
US10947974B2 (en) Vacuum scroll pump
US7371057B2 (en) Variable capacity scroll compressor
JP2008190376A (en) Turbine unit for air cycle refrigerating machine
WO2024014366A1 (en) Rotating machine and control device
JP2018138805A (en) Squeeze film damper bearing device
US8328545B2 (en) Scroll fluid machine with stabilized orbiting scroll
WO2008015777A1 (en) Air cycle refrigerating machine turbine unit
US20200149638A1 (en) Seal assembly
JP2008039228A (en) Turbine unit for air cycle refrigerating machine
CN111441942A (en) Pressure booster
JPH10132193A (en) Automatic grease supplying device
JP2001336524A (en) Fluid bearing device
TWI743126B (en) Rotary compressor arrangement
JP2010043620A (en) Scroll compressor
KR102463090B1 (en) Floating Sleeve Hybrid Fluid Film Bearing
JP2003286974A (en) Scroll fluid machine
CN218816986U (en) Vacuum pump
JP7464398B2 (en) Cryogenic refrigerators and sealing parts
JPH09144536A (en) Seal device for water pump
JP3687279B2 (en) Scroll compressor
WO2023210014A1 (en) Bearing device
JP2002180977A (en) Scroll fluid machine
WO2019244526A1 (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839538

Country of ref document: EP

Kind code of ref document: A1