WO2024009819A1 - 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法 - Google Patents

反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法 Download PDF

Info

Publication number
WO2024009819A1
WO2024009819A1 PCT/JP2023/023537 JP2023023537W WO2024009819A1 WO 2024009819 A1 WO2024009819 A1 WO 2024009819A1 JP 2023023537 W JP2023023537 W JP 2023023537W WO 2024009819 A1 WO2024009819 A1 WO 2024009819A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
phase shift
reflective mask
mask blank
shift film
Prior art date
Application number
PCT/JP2023/023537
Other languages
English (en)
French (fr)
Inventor
裕也 永田
大二郎 赤木
健一 佐々木
啓明 岩岡
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020247003978A priority Critical patent/KR20240024293A/ko
Priority to JP2023551682A priority patent/JP7416342B1/ja
Priority to JP2023220380A priority patent/JP2024024684A/ja
Publication of WO2024009819A1 publication Critical patent/WO2024009819A1/ja
Priority to US18/420,846 priority patent/US20240160096A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Definitions

  • the present disclosure relates to a reflective mask blank, a reflective mask, a method for manufacturing a reflective mask blank, and a method for manufacturing a reflective mask.
  • EUVL EUV lithography
  • EUV includes soft X-rays and vacuum ultraviolet rays, and specifically refers to light with a wavelength of about 0.2 nm to 100 nm.
  • EUV with a wavelength of about 13.5 nm is mainly being considered.
  • a reflective mask In EUVL, a reflective mask is used.
  • a reflective mask includes, in this order, a substrate such as a glass substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of EUV light.
  • An opening pattern is formed in the phase shift film.
  • an aperture pattern of a phase shift film is transferred to a target substrate such as a semiconductor substrate. Transferring includes reducing and transferring.
  • the phase shift film of Patent Document 1 is made of an alloy containing an element selected from group A and an element selected from group B in order to suppress fluctuations in phase difference due to changes in the film thickness of the phase shift film.
  • Group A consists of Pd, Ag, Pt, Au, Ir, W, Cr, Mn, Sn, Ta, V, Fe and Hf.
  • Group B consists of Rh, Ru, Mo, Nb, Zr and Y.
  • the protective film of Patent Document 1 is made of a Ru-based material containing Ru as a main component.
  • Ru-based materials include Ru metal alone, Ru alloys containing metals such as Nb, Zr, Y, B, Ti, La, Mo, Co, and/or Re in addition to Ru, or N (nitrogen) added to these materials. is a nitrogen compound that contains
  • the phase shift film one made of Ir-based material can be considered.
  • the Ir-based material is a material containing Ir as a main component. Ir has a small refractive index for EUV light and a large extinction coefficient for EUV light. Therefore, by using an Ir-based material as the material for the phase shift film, the phase shift film can be made thinner while ensuring a desired phase difference.
  • phase shift film is made of an Ir-based material
  • the etching rate of the phase shift film is slow.
  • the ratio of etching rates between the Ir-based material that makes up the phase shift film and the Ru-based material that makes up the protective film is small. Therefore, when forming an opening pattern in the phase shift film, there was a risk that the multilayer reflective film would be etched.
  • One aspect of the present disclosure provides a technique for improving the etching selectivity between the phase shift film and the protective film when the phase shift film contains Ir as a main component.
  • a reflective mask blank includes a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of the EUV light. in this order.
  • the phase shift film is made of an Ir-based material containing Ir as a main component
  • the protective film is made of an Rh-based material containing Rh as a main component.
  • the etching selectivity between the phase shift film and the protective film can be improved.
  • FIG. 1 is a cross-sectional view showing a reflective mask blank according to one embodiment.
  • FIG. 2 is a cross-sectional view showing a reflective mask according to one embodiment.
  • FIG. 3 is a cross-sectional view showing an example of EUV light reflected by the reflective mask of FIG. 2.
  • FIG. 4 is a flowchart illustrating a method for manufacturing a reflective mask blank according to one embodiment.
  • FIG. 5 is a flowchart illustrating a method for manufacturing a reflective mask according to one embodiment.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are directions that are orthogonal to each other.
  • the Z-axis direction is a direction perpendicular to the first main surface 10a of the substrate 10.
  • the X-axis direction is a direction perpendicular to the incident plane of EUV light (the plane including the incident light beam and the reflected light beam).
  • the reflective mask blank 1 includes, for example, a substrate 10, a multilayer reflective film 11, a protective film 12, a phase shift film 13, and an etching mask film 14 in this order.
  • the multilayer reflective film 11, the protective film 12, the phase shift film 13, and the etching mask film 14 are formed on the first main surface 10a of the substrate 10 in this order.
  • the reflective mask blank 1 only needs to include at least a substrate 10, a multilayer reflective film 11, a protective film 12, and a phase shift film 13.
  • the reflective mask blank 1 may further include a functional film not shown in FIG.
  • the reflective mask blank 1 may have a conductive film on the side opposite to the multilayer reflective film 11 with respect to the substrate 10.
  • the conductive film is formed on the second main surface 10b of the substrate 10.
  • the second main surface 10b is a surface opposite to the first main surface 10a.
  • the conductive film is used, for example, to attract the reflective mask 2 to an electrostatic chuck of an exposure device.
  • the reflective mask blank 1 may have a buffer film between the protective film 12 and the phase shift film 13.
  • the buffer film protects the protective film 12 from the etching gas that forms the opening pattern 13a in the phase shift film 13.
  • the buffer film is etched more slowly than the phase shift film 13.
  • the buffer film ultimately has the same opening pattern as the opening pattern 13a of the phase shift film 13.
  • the reflective mask 2 is manufactured using, for example, the reflective mask blank 1 shown in FIG. 1, and includes an opening pattern 13a in the phase shift film 13. Note that the etching mask film 14 shown in FIG. 1 is removed after the opening pattern 13a is formed in the phase shift film 13.
  • the opening pattern 13a of the phase shift film 13 is transferred to a target substrate such as a semiconductor substrate. Transferring includes reducing and transferring.
  • the substrate 10, multilayer reflective film 11, protective film 12, phase shift film 13, and etching mask film 14 will be explained in this order.
  • the substrate 10 is, for example, a glass substrate.
  • the material of the substrate 10 is preferably silica glass containing TiO 2 .
  • Quartz glass has a smaller coefficient of linear expansion and less dimensional change due to temperature changes than common soda lime glass.
  • the quartz glass may contain 80% to 95% by weight of SiO 2 and 4% to 17% by weight of TiO 2 . When the TiO 2 content is 4% by mass to 17% by mass, the coefficient of linear expansion near room temperature is approximately zero, and almost no dimensional change occurs near room temperature.
  • the quartz glass may contain a third component or impurity other than SiO 2 and TiO 2 . Note that the material of the substrate 10 may be crystallized glass with ⁇ -quartz solid solution precipitated thereon, silicon, metal, or the like.
  • the substrate 10 has a first main surface 10a and a second main surface 10b opposite to the first main surface 10a.
  • a multilayer reflective film 11 and the like are formed on the first main surface 10a.
  • the size of the substrate 10 in plan view is, for example, 152 mm in length and 152 mm in width.
  • the vertical and horizontal dimensions may be 152 mm or more.
  • the first main surface 10a and the second main surface 10b have, for example, a square quality assurance area at their centers.
  • the size of the quality assurance area is, for example, 142 mm in length and 142 mm in width.
  • the quality assurance area of the first main surface 10a preferably has a root mean square roughness (Rq) of 0.150 nm or less and a flatness of 100 nm or less. Moreover, it is preferable that the quality assurance area of the first principal surface 10a does not have any defects that cause phase defects.
  • the multilayer reflective film 11 reflects EUV light.
  • the multilayer reflective film 11 is, for example, a structure in which high refractive index layers and low refractive index layers are alternately laminated.
  • the material of the high refractive index layer is, for example, silicon (Si)
  • the material of the low refractive index layer is, for example, molybdenum (Mo)
  • Mo/Si multilayer reflective film is used.
  • Ru/Si multilayer reflective film Mo/Be multilayer reflective film, Mo compound/Si compound multilayer reflective film, Si/Mo/Ru multilayer reflective film, Si/Mo/Ru/Mo multilayer reflective film, Si/Ru/Mo /Ru multilayer reflective film, MoRu/Si multilayer reflective film, Si/Ru/Mo multilayer reflective film, etc. can also be used as the multilayer reflective film 11.
  • each layer and the number of repeating units of each layer constituting the multilayer reflective film 11 can be appropriately selected depending on the material of each layer and the reflectance to EUV light.
  • the multilayer reflective film 11 is a Mo/Si multilayer reflective film, in order to achieve a reflectance of 60% or more for EUV light with an incident angle ⁇ (see FIG. 3) of 6°, the film thickness must be 2.
  • a Mo film with a thickness of 3 ⁇ 0.1 nm and a Si film with a thickness of 4.5 ⁇ 0.1 nm may be laminated so that the number of repeating units is 30 or more and 60 or less.
  • the multilayer reflective film 11 preferably has a reflectance of 60% or more for EUV light with an incident angle ⁇ of 6°. The reflectance is more preferably 65% or more.
  • the method for forming each layer constituting the multilayer reflective film 11 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
  • a DC sputtering method a DC sputtering method
  • a magnetron sputtering method a magnetron sputtering method
  • an ion beam sputtering method an example of the film forming conditions for each of the Mo film and the Si film is as follows.
  • the protective film 12 is formed between the multilayer reflective film 11 and the phase shift film 13 to protect the multilayer reflective film 11.
  • the protective film 12 protects the multilayer reflective film 11 from the etching gas that forms the opening pattern 13a (see FIG. 2) in the phase shift film 13.
  • the protective film 12 remains on the multilayer reflective film 11 without being removed even when exposed to the etching gas.
  • the etching gas is, for example, a halogen-based gas, an oxygen-based gas, or a mixed gas thereof.
  • the halogen gas include chlorine gas and fluorine gas.
  • the chlorine-based gas is, for example, Cl 2 gas, SiCl 4 gas, CHCl 3 gas, CCl 4 gas, BCl 3 gas, or a mixed gas thereof.
  • the fluorine-based gas is, for example, CF 4 gas, CHF 3 gas, SF 6 gas, BF 3 gas, XeF 2 gas, or a mixed gas thereof.
  • the oxygen-based gas is O 2 gas, O 3 gas, or a mixed gas thereof.
  • the ratio (ER2/ER1) of the etching rate ER2 of the phase shift film 13 to the etching rate ER1 of the protective film 12 is also referred to as the selectivity ratio (ER2/ER1).
  • the selectivity ratio (ER2/ER1) is preferably 5.0 or more, more preferably 10 or more, and still more preferably 30 or more.
  • the selectivity ratio (ER2/ER1) is preferably 200 or less, more preferably 100 or less.
  • the protective film 12 is made of, for example, a Rh-based material.
  • the Rh-based material is a material containing Rh as a main component, and contains 50 at % to 100 at % of Rh.
  • the selectivity ratio (ER2/ER1) can be made 5.0 or more.
  • the Rh-based material preferably contains Rh from 50 at% to 100 at%, more preferably from more than 50 at% to less than 100 at%, and even more preferably from more than 50 at% to less than 100 at%.
  • the Rh-based material may be Rh alone, but is preferably a Rh compound.
  • the protective film 12 may contain only Rh, but preferably contains an Rh compound.
  • the Rh compound may contain at least one element Z1 selected from Ru, Pd, Y, Al, Nb and Si in addition to Rh.
  • Pd, Y, or Al the etching rate ER1 of the protective film 12 can be reduced and the selectivity (ER2/ER1) can be increased.
  • Ru, Nb, or Si the reflectance of the reflective mask 2 can be improved.
  • the elemental ratio of Z1 (all Z1) and Rh (Z1:Rh) is preferably 1:99 to 1:1.
  • elemental ratio refers to molar ratio. If the value of the ratio (Z1/Rh) is 1/99 or more, the reflectance for EUV light is good. If the value of the ratio (Z1/Rh) is 1 or less, the durability of the protective film 12 against etching gas is good.
  • the elemental ratio of Z1 and Rh (Z1:Rh) is more preferably 3:10 to 1:1.
  • the Rh compound may contain at least one element Z2 selected from the group consisting of N, O, C, and B.
  • the element Z2 reduces the durability of the protective film 12 against etching gas, it can suppress crystallization of the protective film 12 and form a smooth surface of the protective film 12.
  • the Rh compound containing element Z2 has an amorphous or microcrystalline structure. If the Rh compound has an amorphous or microcrystalline structure, the X-ray diffraction profile of the Rh compound will not have distinct peaks.
  • the content of Rh or the total content of Rh and Z1 is 40 at% to 99 at%, and the total content of Z2 is 1.0 at% to 60 at%. It is preferable that When the Rh compound contains Z2 in addition to Rh, the content of Rh or the total content of Rh and Z1 is 80 at% to 99 at%, and the total content of Z2 is 1.0 at% to 20 at%. It is more preferable that
  • the Rh compound contains 90 at% or more of Rh, contains at least one of Z1 and Z2, and has a density of 10.0 g/cm 3 to 14.0 g/cm 3 , it has an amorphous structure or a microcrystalline structure. has.
  • the density of the Rh compound is preferably 11.0 g/cm 3 to 13.0 g/cm 3 .
  • the protective film 12 contains 100 at % Rh and has a density of 11.0 g/cm 3 to 12.0 g/cm 3 , it has an amorphous structure or a microcrystalline structure. Note that the density of the protective film 12 is measured using an X-ray reflectance method.
  • the protective film 12 is a single layer in this embodiment, it may be a plurality of layers. That is, the protective film 12 may be a multilayer film having a lower layer and an upper layer.
  • the lower layer of the protective film 12 is a layer formed in contact with the uppermost surface of the multilayer reflective film 11.
  • the upper layer of the protective film 12 is in contact with the lowermost surface of the phase shift film 13.
  • the upper layer of the protective film 12 preferably contains Rh, and more preferably contains an Rh compound.
  • the lower layer of the protective film 12 preferably contains at least one element selected from the group consisting of Ru, Nb, Mo, Zr, Y, C, and B, and more preferably contains Ru.
  • the lower layer of the protective film 12 may not contain Rh.
  • the thickness of the protective film 12 below means the total film thickness of the multilayer film.
  • the thickness of the protective film 12 is preferably 1.0 nm or more and 4.0 nm or less, preferably 1.5 nm or more and 4.0 nm or less, more preferably 2.0 nm or more and 3.8 nm or less, and even more preferably It is 2.0 nm or more and 3.5 nm or less. If the thickness of the protective film 12 is 1.0 nm or more, the etching resistance is good. Moreover, if the thickness of the protective film 12 is 4.0 nm or less, a decrease in reflectance to EUV light can be suppressed.
  • the density of the protective film 12 is preferably 10.0 g/cm 3 or more and 14.0 g/cm 3 or less. If the density of the protective film 12 is 10.0 g/cm 3 or more, the etching resistance is good. Further, if the density of the protective film 12 is 14.0 g/cm 3 or less, a decrease in reflectance to EUV light can be suppressed.
  • the root mean square roughness (Rq) of the upper surface of the protective film 12, that is, the surface on which the phase shift film 13 of the protective film 12 is formed, is preferably 0.300 nm or less, more preferably 0.150 nm or less. If the root mean square roughness (Rq) is 0.300 nm or less, the phase shift film 13 and the like can be formed smoothly on the protective film 12. Further, scattering of EUV light can be suppressed, and reflectance for EUV light can be improved.
  • the root mean square roughness (Rq) is preferably 0.050 nm or more.
  • a method for forming the protective film 12 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
  • a Rh film formation conditions is as follows.
  • N 2 gas or a mixed gas of Ar gas and N 2 may be used as the sputtering gas.
  • the volume ratio (N 2 /(Ar+N 2 )) of N 2 gas in the sputtering gas is 0.05 or more and 1.0 or less.
  • the phase shift film 13 is a film on which an opening pattern 13a is formed.
  • the opening pattern 13a is not formed in the manufacturing process of the reflective mask blank 1, but is formed in the manufacturing process of the reflective mask 2.
  • the phase shift film 13 not only absorbs EUV light but also shifts the phase of the EUV light.
  • the phase shift film shifts the phase of the second EUV light L2 with respect to the first EUV light L1 shown in FIG.
  • the first EUV light L1 is light that passes through the opening pattern 13a without passing through the phase shift film 13, is reflected by the multilayer reflective film 11, and passes through the opening pattern 13a again without passing through the phase shift film 13.
  • the second EUV light L2 is light that is transmitted through the phase shift film 13 while being absorbed by the phase shift film 13, reflected by the multilayer reflective film 11, and transmitted through the phase shift film 13 while being absorbed by the phase shift film 13 again.
  • the phase difference ( ⁇ 0) between the first EUV light L1 and the second EUV light L2 is, for example, 170° to 250°.
  • the phase of the first EUV light L1 may lead or lag the phase of the second EUV light L2.
  • the phase shift film 13 improves the contrast of the transferred image by utilizing interference between the first EUV light L1 and the second EUV light L2.
  • the transferred image is an image obtained by transferring the opening pattern 13a of the phase shift film 13 onto the target substrate.
  • the shadowing effect is caused by the fact that the incident angle ⁇ of the EUV light is not 0° (for example, 6°), and a region is created near the sidewall of the aperture pattern 13a where the sidewall blocks the EUV light, resulting in a transferred image. This refers to the occurrence of positional or dimensional deviations.
  • it is effective to reduce the height of the side wall of the opening pattern 13a, and it is effective to reduce the thickness of the phase shift film 13.
  • the thickness of the phase shift film 13 is, for example, 60 nm or less, preferably 50 nm or less, in order to reduce the shadowing effect.
  • the thickness of the phase shift film 13 is preferably 20 nm or more, more preferably 30 nm or more in order to ensure a phase difference between the first EUV light L1 and the second EUV light L2.
  • the phase shift film 13 of this embodiment is made of an Ir-based material.
  • the Ir-based material is a material containing Ir as a main component, and contains 50 at% to 100 at% of Ir. That is, the phase shift film 13 contains 50 at % to 100 at % of Ir.
  • Ir-based materials have a small refractive index n and a large extinction coefficient k. Therefore, the phase shift film 13 can be made thinner while ensuring a desired phase difference.
  • the larger the Ir content the smaller the refractive index n and the larger the extinction coefficient k.
  • the Ir content is preferably 70 at% or more, more preferably 80 at% or more.
  • the refractive index n of the phase shift film 13 is preferably 0.935 or less, more preferably 0.920 or less, still more preferably 0.910 or less, and particularly preferably 0.90 or less.
  • the refractive index n of the phase shift film 13 is preferably 0.885 or more.
  • the refractive index is the refractive index for EUV light (for example, light with a wavelength of 13.5 nm).
  • the extinction coefficient k of the phase shift film 13 is preferably 0.030 or more, more preferably 0.032 or more, still more preferably 0.035 or more, and particularly preferably 0.037 or more.
  • the extinction coefficient k of the phase shift film 13 is preferably 0.065 or less.
  • the extinction coefficient is an extinction coefficient for EUV light (for example, light with a wavelength of 13.5 nm).
  • the phase shift film 13 preferably contains Ir, and more preferably contains an Ir compound.
  • the Ir compound may contain only Ir as a metal element, or may contain at least one first element X1 selected from Ru, Ta, Cr, Re, W, V and Mn in addition to Ir as a metal element. preferable.
  • Optical properties can be adjusted by adding Ru to Ir.
  • Etching characteristics can be improved by adding Ta, Cr, Re, W, V, or Mn to Ir.
  • the total content of the first element X1 is preferably 1.0 at% to 49 at%.
  • the Ir compound preferably contains, in addition to Ir, at least one second element X2 selected from O, B, C, N, and Si as a nonmetallic element.
  • the second element X2 preferably contains oxygen, and more preferably contains oxygen and nitrogen. Oxygen can suppress the crystallization of the Ir compound and suppress the deterioration of the optical properties of the Ir compound when added in a small amount.
  • the total content of the second element X2 is preferably 1.0 at% to 49 at%, more preferably 5.0 at% to 30 at%, even more preferably 15 at% to 25 at%.
  • the Ir compound preferably contains O as a nonmetallic element in excess of 0 at% and not more than 25 at%, more preferably in the range of 1 at% to 20 at%, and more preferably in the range of 1 at% to 15 at%. is more preferable, and it is particularly preferable that the content is 1 at% or more and 10 at% or less.
  • the Ir compound preferably contains C as a nonmetallic element, more than 0 at% and 15 at% or less, and more preferably 1 at% or more and 10 at% or less.
  • C a nonmetallic element
  • crystallization can be suppressed while suppressing deterioration of optical properties, and the roughness of the side wall of the opening pattern 13a can be reduced.
  • the Ir compound preferably contains B as a nonmetallic element, more than 0 at% and 15 at% or less, and more preferably 1 at% or more and 10 at% or less.
  • B a nonmetallic element
  • crystallization can be suppressed while suppressing deterioration of optical properties, and the roughness of the side wall of the opening pattern 13a can be reduced.
  • the Ir compound preferably contains Si as a nonmetallic element, more than 0 at% and 15 at% or less, and more preferably 1 at% or more and 10 at% or less.
  • Si a nonmetallic element
  • crystallization can be suppressed while suppressing deterioration of optical properties, and the roughness of the side wall of the opening pattern 13a can be reduced.
  • the Ir compound preferably contains N as a nonmetallic element, more than 0 at% and less than 10 at%, more preferably 1 at% and more than 8 at%, and more preferably 1 at% and more than 6 at%. It is more preferable that the content be 1.8 at% or more and 5 at% or less.
  • N crystallization can be suppressed while suppressing deterioration of optical properties, and the roughness of the side wall of the opening pattern 13a can be reduced.
  • the crystallinity of the Ir compound can be suppressed even with a small O content.
  • the Ir compound preferably has a total content of the first element X1 of 5.0 at% to 49 at%, or a total content of the second element X2 of 1.0 at% to 45 at%.
  • the Ir compound is an iridium oxide compound that is unstable with respect to hydrogen. occurs, and the hydrogen resistance of the reflective mask blank 1 deteriorates.
  • the ratio (Ir/Ta) of the Ir content (at%) to the Ta content (at%) is, for example, 1 to 190. If the ratio of Ir content to Ta content (Ir/Ta) is 1 or more, the optical properties of the phase shift film 13 are good. If the ratio of Ir content to Ta content (Ir/Ta) is 190 or less, the processability of the phase shift film 13 is good.
  • the ratio of Ir content to Ta content (Ir/Ta) is preferably 1 to 100, more preferably 1 to 40, still more preferably 2 to 30, particularly preferably 2 to 25. , most preferably from 2 to 15.
  • the ratio (Ir/Cr) of the Ir content (at%) to the Cr content (at%) is, for example, 1 to 105. If the ratio of Ir content to Cr content (Ir/Cr) is 1 or more, the optical properties of the phase shift film 13 are good. If the ratio of Ir content to Cr content (Ir/Cr) is 105 or less, the selectivity ratio (ER2/ER1) is large and the processability of the phase shift film 13 is good.
  • the ratio of Ir content to Cr content (Ir/Cr) is preferably 1 to 105, more preferably 2 to 105, still more preferably 3 to 105, particularly preferably 4 to 105. .
  • the ratio (Ir/W) of the Ir content (at%) to the W content (at%) is, for example, 1 to 100. If the ratio of Ir content to W content (Ir/W) is 1 or more, the optical properties of the phase shift film 13 are good. If the ratio of Ir content to W content (Ir/W) is 100 or less, the selectivity ratio (ER2/ER1) is large and the processability of the phase shift film 13 is good.
  • the ratio of Ir content to W content (Ir/W) is preferably 1 to 90, more preferably 2 to 80, still more preferably 3 to 70, particularly preferably 4 to 30. .
  • the ratio (Ir/O) of the Ir content (at%) to the O content (at%) is, for example, 1 to 40. If the ratio of Ir content to O content (Ir/O) is 1 or more, the hydrogen resistance of the phase shift film 13 can be improved. When the ratio of the Ir content to the O content (Ir/O) is 40 or less, crystallization of the phase shift film 13 can be suppressed, and the roughness of the side wall of the opening pattern 13a can be reduced.
  • the ratio of Ir content to O content (Ir/O) is preferably 1 to 40, more preferably 2 to 35, still more preferably 2 to 30, particularly preferably 2 to 20. , most preferably from 3 to 15.
  • the ratio (Ir/N) of the Ir content (at%) to the N content (at%) is, for example, 10 to 105. If the ratio of Ir content to N content (Ir/N) is 10 or more, the hydrogen resistance of the phase shift film 13 can be improved. Crystallization can be suppressed, and the roughness of the side walls of the opening pattern 13a can be reduced. When the ratio of the Ir content to the N content (Ir/N) is 105 or less, crystallization of the phase shift film 13 can be suppressed, and the sidewall roughness of the opening pattern 13a can be reduced.
  • the ratio of Ir content to N content (Ir/N) is preferably 10 to 105, more preferably 10 to 80, still more preferably 15 to 70, particularly preferably 20 to 68. , most preferably 20-45.
  • the phase shift film 13 has a ratio of Ir content (at%) to the sum of O content (at%) and N content (at%) (Ir/( O+N)) is, for example, 1 to 45. If the ratio of the Ir content to the sum of the O content and the N content (Ir/(O+N)) is 1 or more, the hydrogen resistance of the phase shift film 13 can be improved. When the ratio of the Ir content to the sum of the O content and the N content (Ir/(O+N)) is 45 or less, crystallization of the phase shift film 13 can be suppressed, and the sidewall roughness of the opening pattern 13a can be reduced.
  • the ratio of Ir content to the sum of O content and N content (Ir/(O+N)) is preferably 1 to 45, more preferably 2 to 30, and still more preferably 2.5 to 20. The number is particularly preferably 3 to 15, most preferably 3 to 10.
  • the phase shift film 13 has an etching rate of 0 nm/min to 0.05 nm/min using sulfuric acid/hydrogen.
  • the sulfuric acid peroxide solution is used for removing a resist film or cleaning the reflective mask 2, which will be described later. If the etching rate of the phase shift film 13 by sulfuric acid peroxide is 0.05 nm/min or less, damage to the phase shift film 13 during cleaning can be suppressed.
  • a method for forming the phase shift film 13 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
  • the oxygen content of the phase shift film 13 can be controlled by the content of O 2 gas in the sputtering gas.
  • the nitrogen content of the phase shift film 13 can be controlled by the content of N 2 gas in the sputtering gas.
  • an example of film forming conditions is as follows. ⁇ Film formation conditions for IrTaON film> Target: Ir target and Ta target (or IrTa target), Power density of Ir target: 1.0 W/cm 2 to 8.5 W/cm 2 , Power density of Ta target: 1.0W/cm 2 to 8.5W/cm 2 , Sputtering gas: mixed gas of Ar gas, O 2 gas and N 2 gas, Volume ratio of O 2 gas in sputtering gas (O 2 /(Ar+O 2 +N 2 )): 0.01 to 0.25, Volume ratio of N 2 gas in sputtering gas (N 2 /(Ar+O 2 +N 2 )): 0.01 to 0.25, Film formation rate: 0.020 nm/sec to 0.060 nm/sec, Film thickness: 20nm to 60nm.
  • phase shift film 13 is a single layer in this embodiment, it may be a plurality of layers.
  • the phase shift film 13 may have a layer that does not contain Ir. In any case, it is preferable that at least one layer constituting the phase shift film 13 is made of an Ir-based material.
  • the Ir-based material is a material containing Ir as a main component.
  • the Ir-based material may be Ir alone, but is preferably an Ir compound.
  • the phase shift film 13 may contain 50 at % or more of Ir as a whole.
  • the ratio (t1/t2) of the thickness t1 (nm) of the phase shift film 13 to the thickness t2 (nm) of the Rh-containing layer constituting the protective film 12 is 25 or less.
  • t1/t2 is preferably 25 or less, more preferably 22 or less, even more preferably 20 or less, and particularly preferably 18 or less.
  • the ratio (t1/t3) of the thickness t1 (nm) of the phase shift film 13 to the thickness t3 (nm) of the protective film 12 is 15 or less.
  • t1/t3 is preferably 15 or less, more preferably 12 or less, and even more preferably 11 or less.
  • the etching mask film 14 is formed on the opposite side of the protective film 12 with respect to the phase shift film 13, and is used to form the opening pattern 13a in the phase shift film 13.
  • a resist film (not shown) is provided on the etching mask film 14.
  • first a first opening pattern is formed in the resist film, then a second opening pattern is formed in the etching mask film 14 using the first opening pattern, and then a second opening pattern is formed in the etching mask film 14.
  • a third opening pattern 13a is formed in the phase shift film 13 using the following method.
  • the first aperture pattern, the second aperture pattern, and the third aperture pattern 13a have the same dimensions and the same shape in a plan view (as viewed in the Z-axis direction).
  • the etching mask film 14 allows the resist film to be made thinner.
  • Etching mask film 14 preferably contains at least one element selected from Al, Hf, Y, Cr, Nb, Ti, Mo, Ta, and Si. Etching mask film 14 may further contain at least one element selected from O, N, and B.
  • the thickness of the etching mask film 14 is preferably 2 nm or more and 30 nm or less, more preferably 2 nm or more and 25 nm or less, and still more preferably 2 nm or more and 10 nm or less.
  • a method for forming the etching mask film 14 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
  • the method for manufacturing the reflective mask blank 1 includes steps S101 to S105 shown in FIG. 4, for example.
  • step S101 the substrate 10 is prepared.
  • step S102 a multilayer reflective film 11 is formed on the first main surface 10a of the substrate 10.
  • step S103 a protective film 12 is formed on the multilayer reflective film 11.
  • step S104 the phase shift film 13 is formed on the protective film 12.
  • step S105 an etching mask film 14 is formed on the phase shift film 13.
  • the method for manufacturing the reflective mask blank 1 only needs to include at least steps S101 to S104.
  • the method for manufacturing the reflective mask blank 1 may further include a step of forming a functional film not shown in FIG.
  • the method for manufacturing the reflective mask 2 includes steps S201 to S204 shown in FIG.
  • step S201 a reflective mask blank 1 is prepared.
  • step S202 the etching mask film 14 is processed.
  • a resist film (not shown) is provided on the etching mask film 14.
  • step S203 a third opening pattern 13a is formed in the phase shift film 13 using the second opening pattern.
  • step S203 the phase shift film 13 is etched using an etching gas.
  • the resist film and etching mask film 14 are removed.
  • step S204 removal of the etching mask film 14
  • step S202 processing the etching mask film 14
  • Example 1 to Example 5 EUVL reflective mask blanks were produced under the same conditions except for the type of phase shift film and the film formation conditions.
  • Each reflective mask blank was composed of a substrate, a multilayer reflective film, a protective film, and a phase shift film. Examples 1 to 5 are examples.
  • a SiO 2 -TiO 2 -based glass substrate (outer size: 6 inches (152 mm) square, thickness: 6.3 mm) was prepared.
  • This glass substrate has a thermal expansion coefficient of 0.02 ⁇ 10 ⁇ 7 /°C at 20°C, a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific stiffness of 3.07 ⁇ 10 7 m. 2 / s2 .
  • the quality assurance area of the first main surface of the substrate had a root mean square roughness (Rq) of 0.15 nm or less and a flatness of 100 nm or less by polishing.
  • a Cr film with a thickness of 100 nm was formed on the second main surface of the substrate using a magnetron sputtering method. The sheet resistance of the Cr film was 100 ⁇ / ⁇ .
  • a Mo/Si multilayer reflective film was formed as the multilayer reflective film.
  • the Mo/Si multilayer reflective film was formed by repeating 40 times of forming a Si layer (4.5 nm thick) and a Mo layer (2.3 nm thick) using an ion beam sputtering method.
  • the total film thickness of the Mo/Si multilayer reflective film was 272 nm ((4.5 nm+2.3 nm) ⁇ 40).
  • a Rh film (film thickness: 2.5 nm) was formed.
  • the Rh film was formed using a DC sputtering method.
  • Example 1 An Ir film, IrTaON film, or IrCrON film was formed as the phase shift film.
  • an Ir film was formed using a DC sputtering method.
  • Examples 2 to 4 IrTaON films were formed using a reactive sputtering method.
  • Example 5 an IrCrON film was formed using a reactive sputtering method.
  • Table 1 shows the types of phase shift films obtained in Examples 1 to 5 and their characteristics.
  • composition of the phase shift film was measured using an X-ray photoelectron spectrometer (PHI 5000 VersaProbe) manufactured by ULVAC-PHI.
  • phase shift film optical index n and extinction coefficient k
  • the incident angle ⁇ of EUV light, the reflectance R for EUV light, the refractive index n of the phase shift film, and the extinction coefficient k of the phase shift film satisfy the following formula (1).
  • R
  • a plurality of combinations of the incident angle ⁇ and the reflectance R were measured, and the refractive index n and extinction coefficient k were calculated by the least squares method so that the error between the plurality of measurement data and equation (1) was minimized.
  • etching rates ER1 and ER1' of the protective film and the etching rate ER2 of the phase shift film were measured using an inductively coupled plasma (ICP) etching apparatus.
  • ER1 is the etching rate of Rh metal alone.
  • ER1' is the etching rate of Ru metal alone.
  • a mixed gas of CF 4 gas and O 2 gas was used as the etching gas.
  • the specific conditions for inductively coupled plasma etching were as follows. ICP antenna bias: 1650W, Substrate bias: 50W, Etching pressure: 4.0 ⁇ 10 ⁇ 1 Pa, Etching gas: mixed gas of CF4 gas and O2 gas, CF4 gas flow rate: 80sccm, O2 gas flow rate: 20 sccm.
  • Examples 1 to 5 a protective film made of Rh-based material (specifically Rh metal alone) and a phase shift film made of Ir-based material were combined, so the selectivity ratio (ER2/ER1) was as shown in Table 1. was able to increase the value to 5.0 or higher. Note that when a protective film made of Ru-based material (more specifically, Ru metal alone) is combined with a phase shift film made of Ir-based material, the selectivity ratio (ER2/ER1') is 5.0 as shown in Table 1. It was less than
  • Example 6 The EUVL reflective mask blank of Example 6 was produced under the following conditions.
  • a SiO 2 -TiO 2 -based glass substrate (outer size: 6 inches (152 mm) square, thickness: 6.3 mm) was prepared.
  • This glass substrate has a thermal expansion coefficient of 0.02 ⁇ 10 ⁇ 7 /°C at 20°C, a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific stiffness of 3.07 ⁇ 10 7 m. 2 / s2 .
  • the quality assurance area of the first main surface of the substrate had a root mean square roughness (Rq) of 0.15 nm or less and a flatness of 100 nm or less by polishing.
  • a Cr film with a thickness of 100 nm was formed on the second main surface of the substrate using a magnetron sputtering method. The sheet resistance of the Cr film was 100 ⁇ / ⁇ .
  • a Mo/Si multilayer reflective film was formed as the multilayer reflective film.
  • the Mo/Si multilayer reflective film was formed by repeating 40 times of forming a Si layer (4.5 nm thick) and a Mo layer (2.3 nm thick) using an ion beam sputtering method.
  • the total film thickness of the Mo/Si multilayer reflective film was 272 nm ((4.5 nm+2.3 nm) ⁇ 40).
  • a Ru film (thickness: 1.0 nm) and Rh film (thickness: 1.5 nm) were formed in this order.
  • the Ru film and Rh film were formed using an ion beam sputtering method.
  • Example 7 A reflective mask blank for EUVL was produced under the same conditions as in Example 6, except that the thickness of the Rh film constituting the protective film was 2.5 nm.
  • ICP inductively coupled plasma
  • a mixed gas of CF 4 gas and O 2 gas was used as the etching gas.
  • the specific conditions for inductively coupled plasma etching were as follows. ICP antenna bias: 1200W, Substrate bias: 50W, Etching pressure: 4.0 ⁇ 10 ⁇ 1 Pa, Etching gas: mixed gas of CF4 gas and O2 gas, CF4 gas flow rate: 48sccm, O2 gas flow rate: 12sccm Etching time: 317 seconds or 346 seconds.
  • the surface roughness Ra of the protective film (specifically, the Rh film) after the etching test was measured using an atomic force microscope.
  • the surface roughness Ra is the arithmetic mean roughness described in JIS-B0601:2013.
  • Table 2 shows the measurement results of surface roughness Ra.
  • Ra0 is Ra measured at an etching time of 317 seconds
  • Ra1 is Ra measured at an etching time of 346 seconds.
  • t1/t2 was 25 or less, so it was possible to suppress an increase in the surface roughness Ra of the protective film due to an extension of the etching time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

反射型マスクブランクは、基板と、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、前記EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する。前記位相シフト膜はIrを主成分とするIr系材料からなり、前記保護膜はRhを主成分とするRh系材料からなる。

Description

反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
 本開示は、反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法に関する。
 近年、半導体デバイスの微細化に伴い、極端紫外線(Extreme Ultra-Violet:EUV)を用いた露光技術であるEUVリソグラフィー(EUVL)が開発されている。EUVとは、軟X線および真空紫外線を含み、具体的には波長が0.2nm~100nm程度の光のことである。現時点では、13.5nm程度の波長のEUVが主に検討されている。
 EUVLでは、反射型マスクが用いられる。反射型マスクは、ガラス基板などの基板と、EUV光を反射する多層反射膜と、多層反射膜を保護する保護膜と、EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する。位相シフト膜には、開口パターンが形成される。EUVLでは、位相シフト膜の開口パターンを半導体基板などの対象基板に転写する。転写することは、縮小して転写することを含む。
 特許文献1の位相シフト膜は、位相シフト膜の膜厚の変動による位相差の変動を抑制すべく、A群から選ばれる元素とB群から選ばれる元素とを有する合金からなる。A群は、Pd、Ag、Pt、Au、Ir、W、Cr、Mn、Sn、Ta、V、FeおよびHfからなる。B群は、Rh、Ru、Mo、Nb、ZrおよびYからなる。
 特許文献1の保護膜は、Ruを主成分として含むRu系材料からなる。Ru系材料は、Ru金属単体、Ruに加えてNb、Zr、Y、B、Ti、La、Mo、Co及び/又はReなどの金属を含有するRu合金、又はこれらの材料にN(窒素)が含まれる窒素化合物である。
日本国特開2018-146945号公報
 位相シフト膜として、Ir系材料からなるものが考えられる。Ir系材料は、Irを主成分として含む材料である。Irは、EUV光に対する屈折率が小さく、且つEUV光に対する消衰係数が大きい。従って、位相シフト膜の材料としてIr系材料を用いることで、所望の位相差を確保しつつ位相シフト膜を薄化できる。
 しかし、位相シフト膜がIr系材料からなる場合、位相シフト膜のエッチング速度が遅い。また、位相シフト膜を構成するIr系材料と、保護膜を構成するRu系材料とは、エッチング速度の比が小さい。それゆえ、位相シフト膜に開口パターンを形成する際に、多層反射膜がエッチングされる恐れがあった。
 本開示の一態様は、位相シフト膜がIrを主成分として含む場合に、位相シフト膜と保護膜のエッチング選択比を向上する、技術を提供する。
 本開示の一態様に係る反射型マスクブランクは、基板と、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、前記EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する。前記位相シフト膜はIrを主成分とするIr系材料からなり、前記保護膜はRhを主成分とするRh系材料からなる。
 本開示の一態様によれば、位相シフト膜がIrを主成分として含む場合に、位相シフト膜と保護膜のエッチング選択比を向上することができる。
図1は、一実施形態に係る反射型マスクブランクを示す断面図である。 図2は、一実施形態に係る反射型マスクを示す断面図である。 図3は、図2の反射型マスクで反射されるEUV光の一例を示す断面図である。 図4は、一実施形態に係る反射型マスクブランクの製造方法を示すフローチャートである。 図5は、一実施形態に係る反射型マスクの製造方法を示すフローチャートである。
 以下、本開示を実施するための形態について図面を参照して説明する。各図面において同一のまたは対応する構成には同一の符号を付し、説明を省略することがある。明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
 図1~図3において、X軸方向とY軸方向とZ軸方向は互いに直交する方向である。Z軸方向は、基板10の第1主面10aに対して垂直な方向である。X軸方向は、EUV光の入射面(入射光線と反射光線を含む面)に直交する方向である。図3に示すように、X軸方向から見たときに、入射光線はZ軸負方向に向かうほどY軸正方向に傾斜し、反射光線はZ軸正方向に向かうほどY軸正方向に傾斜する。
 図1を参照して、一実施形態に係る反射型マスクブランク1について説明する。反射型マスクブランク1は、例えば、基板10と、多層反射膜11と、保護膜12と、位相シフト膜13と、エッチングマスク膜14と、をこの順番で有する。多層反射膜11と、保護膜12と、位相シフト膜13と、エッチングマスク膜14とは、この順番で、基板10の第1主面10aに形成される。なお、反射型マスクブランク1は、少なくとも、基板10と、多層反射膜11と、保護膜12と、位相シフト膜13と、を有していればよい。
 反射型マスクブランク1は、図1には図示しない機能膜を更に有してもよい。例えば、反射型マスクブランク1は、基板10を基準として、多層反射膜11とは反対側に、導電膜を有してもよい。導電膜は、基板10の第2主面10bに形成される。第2主面10bは、第1主面10aとは反対向きの面である。導電膜は、例えば反射型マスク2を露光装置の静電チャックに吸着するのに用いられる。
 反射型マスクブランク1は、図示しないが、保護膜12と位相シフト膜13の間にバッファ膜を有してもよい。バッファ膜は、位相シフト膜13に開口パターン13aを形成するエッチングガスから、保護膜12を保護する。バッファ膜は、位相シフト膜13よりも緩やかにエッチングされる。バッファ膜は、保護膜12とは異なり、最終的に位相シフト膜13の開口パターン13aと同一の開口パターンを有することになる。
 次に、図2および図3を参照して、一実施形態に係る反射型マスク2について説明する。反射型マスク2は、例えば、図1に示す反射型マスクブランク1を用いて作製され、位相シフト膜13に開口パターン13aを含む。なお、図1に示すエッチングマスク膜14は、位相シフト膜13に開口パターン13aを形成した後に除去される。
 EUVLでは、位相シフト膜13の開口パターン13aを半導体基板などの対象基板に転写する。転写することは、縮小して転写することを含む。以下、基板10、多層反射膜11、保護膜12、位相シフト膜13、およびエッチングマスク膜14について、この順番で説明する。
 基板10は、例えばガラス基板である。基板10の材質は、TiOを含有する石英ガラスが好ましい。石英ガラスは、一般的なソーダライムガラスに比べて、線膨張係数が小さく、温度変化による寸法変化が小さい。石英ガラスは、SiOを80質量%~95質量%、TiOを4質量%~17質量%含んでよい。TiO含有量が4質量%~17質量%であると、室温付近での線膨張係数が略ゼロであり、室温付近での寸法変化がほとんど生じない。石英ガラスは、SiOおよびTiO以外の第三成分または不純物を含んでもよい。なお、基板10の材質は、β石英固溶体を析出した結晶化ガラス、シリコン、または金属等であってもよい。
 基板10は、第1主面10aと、第1主面10aとは反対向きの第2主面10bと、を有する。第1主面10aには、多層反射膜11などが形成される。平面視(Z軸方向視)にて基板10のサイズは、例えば縦152mm、横152mmである。縦寸法および横寸法は、152mm以上であってもよい。第1主面10aと第2主面10bは、各々の中央に、例えば正方形の品質保証領域を有する。品質保証領域のサイズは、例えば縦142mm、横142mmである。第1主面10aの品質保証領域は、0.150nm以下の二乗平均平方根粗さ(Rq)と、100nm以下の平坦度と、を有することが好ましい。また、第1主面10aの品質保証領域は、位相欠陥を生じさせる欠点を有しないことが好ましい。
 多層反射膜11は、EUV光を反射する。多層反射膜11は、例えば高屈折率層と低屈折率層とを交互に積層したものである。高屈折率層の材質は例えばシリコン(Si)であり、低屈折率層の材質は例えばモリブデン(Mo)であり、Mo/Si多層反射膜が用いられる。なお、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜、MoRu/Si多層反射膜、Si/Ru/Mo多層反射膜なども、多層反射膜11として使用可能である。
 多層反射膜11を構成する各層の膜厚および層の繰り返し単位の数は、各層の材質、およびEUV光に対する反射率に応じて適宜選択できる。多層反射膜11は、Mo/Si多層反射膜である場合、入射角θ(図3参照)が6°であるEUV光に対して60%以上の反射率を達成するには、膜厚2.3±0.1nmのMo膜と、膜厚4.5±0.1nmのSi膜とを繰り返し単位数が30以上60以下になるように積層すればよい。多層反射膜11は、入射角θが6°であるEUV光に対して60%以上の反射率を有することが好ましい。反射率は、より好ましくは65%以上である。
 多層反射膜11を構成する各層の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法、またはイオンビームスパッタリング法などである。イオンビームスパッタリング法を用いてMo/Si多層反射膜を形成する場合、Mo膜とSi膜の各々の成膜条件の一例は下記の通りである。
<Si膜の成膜条件>
ターゲット:Siターゲット、
スパッタガス:Arガス、
ガス圧:0.013Pa~0.027Pa、
イオン加速電圧:300V~1500V、
成膜速度:0.030nm/sec~0.300nm/sec、
Si膜の膜厚:4.5±0.1nm、
<Mo膜の成膜条件>
ターゲット:Moターゲット、
スパッタガス:Arガス、
ガス圧:0.013Pa~0.027Pa、
イオン加速電圧:300V~1500V、
成膜速度:0.030nm/sec~0.300nm/sec、
Mo膜の膜厚:2.3±0.1nm、
<Si膜とMo膜の繰り返し単位>
繰り返し単位数:30~60(好ましくは40~50)。
 保護膜12は、多層反射膜11と位相シフト膜13の間に形成され、多層反射膜11を保護する。保護膜12は、位相シフト膜13に開口パターン13a(図2参照)を形成するエッチングガスから多層反射膜11を保護する。保護膜12は、エッチングガスに曝されても除去されずに、多層反射膜11の上に残る。
 エッチングガスは、例えばハロゲン系ガス、酸素系ガス、またはこれらの混合ガスである。ハロゲン系ガスとしては、塩素系ガスと、フッ素系ガスと、が挙げられる。塩素系ガスは、例えばClガス、SiClガス、CHClガス、CClガス、BClガスまたはこれらの混合ガスである。フッ素系ガスは、例えばCFガス、CHFガス、SFガス、BFガス、XeFガスまたはこれらの混合ガスである。酸素系ガスは、Oガス、Oガスまたはこれらの混合ガスである。
 保護膜12のエッチング速度ER1に対する、位相シフト膜13のエッチング速度ER2の比(ER2/ER1)を、選択比(ER2/ER1)とも呼ぶ。選択比(ER2/ER1)が大きいほど、位相シフト膜13の加工性が良い。選択比(ER2/ER1)は、好ましくは5.0以上であり、より好ましくは10以上であり、さらに好ましくは30以上である。選択比(ER2/ER1)は、好ましくは200以下であり、より好ましくは100以下である。
 保護膜12は、例えばRh系材料からなる。Rh系材料は、Rhを主成分とする材料であり、Rhを50at~100at%含有する材料である。Rh系材料からなる保護膜12と、後述するIr系材料からなる位相シフト膜13とを組み合わせることで、選択比(ER2/ER1)を5.0以上にすることができる。Rh系材料は、Rhを50at%以上100at%以下含有することが好ましく、Rhを50at%超100at%以下含有することがより好ましく、Rhを50at%超100at%未満含有することがさらに好ましい。Rh系材料は、Rh単体であってもよいが、Rh化合物であることが好ましい。
 保護膜12は、Rhのみを含有してもよいが、Rh化合物を含有することが好ましい。Rh化合物は、Rhに加えてRu、Pd、Y、Al、NbおよびSiから選択される少なくとも1つの元素Z1を含有してもよい。RhにPd、Y、またはAlを添加することで、保護膜12のエッチング速度ER1を小さくでき、選択比(ER2/ER1)を大きくできる。また、RhにRu、NbまたはSiを添加することで、反射型マスク2の反射率を向上できる。
 Z1(全てのZ1)とRhの元素比(Z1:Rh)は、好ましくは1:99~1:1である。本明細書において、元素比とは、モル比のことである。比の値(Z1/Rh)が1/99以上であれば、EUV光に対する反射率が良好である。比の値(Z1/Rh)が1以下であれば、保護膜12のエッチングガスに対する耐久性が良好である。Z1とRhの元素比(Z1:Rh)は、より好ましくは3:10~1:1である。
 Rh化合物は、Rhに加えて、N、O、CおよびBからなる群から選択される少なくとも1つの元素Z2を含有してもよい。元素Z2は、保護膜12のエッチングガスに対する耐久性を低下させてしまう反面、保護膜12の結晶化を抑制でき、保護膜12の表面を平滑に形成できる。元素Z2を含有するRh化合物は、非結晶構造または微結晶構造を有する。Rh化合物が非結晶構造または微結晶構造を有する場合、Rh化合物のX線回折プロファイルは明瞭なピークを有しない。
 Rh化合物がRhに加えてZ2を含有する場合、Rhの含有量またはRhとZ1の合計の含有量は40at%~99at%であって且つZ2の合計の含有量は1.0at%~60at%であることが好ましい。Rh化合物がRhに加えてZ2を含有する場合、Rhの含有量またはRhとZ1の合計の含有量は80at%~99at%であって且つZ2の合計の含有量は1.0at%~20at%であることがより好ましい。
 Rh化合物は、Rhを90at%以上含有し、Z1とZ2の少なくとも1つを含有し、且つ10.0g/cm~14.0g/cmの密度を有する場合、非結晶構造または微結晶構造を有する。Rh化合物の密度は、好ましくは11.0g/cm~13.0g/cmである。なお、保護膜12は、Rhを100at%含有し、且つ11.0g/cm~12.0g/cmの密度を有する場合、非結晶構造または微結晶構造を有する。なお、保護膜12の密度は、X線反射率法を用いて測定する。
 保護膜12は、本実施形態では単層であるが、複数層であってもよい。つまり、保護膜12は、下層及び上層を有する多層膜であってもよい。保護膜12の下層は、多層反射膜11の最上面に接触して形成された層である。保護膜12の上層は、位相シフト膜13の最下面に接触している。このように、保護膜12を複数層構造とすることで、所定の機能に優れた材料を各層に使用できるので、保護膜12全体の多機能化を図ることができる。保護膜12は、全体としてRhを50at%以上含有すればよく、Rhを含有しない層を有してもよい。
 保護膜12の上層は、Rhを含むことが好ましく、Rh化合物を含むことがより好ましい。保護膜12の下層は、Ru、Nb、Mo、Zr、Y、C及びBからなる群から選択される少なくとも1つの元素を含むことが好ましく、Ruを含むことがより好ましい。保護膜12の下層は、Rhを含まなくてもよい。また、保護膜12が多層膜である場合、下記の保護膜12の厚みとは多層膜の合計膜厚を意味する。
 保護膜12の厚みは、好ましくは1.0nm以上4.0nm以下であり、好ましくは1.5nm以上4.0nm以下であり、より好ましくは2.0nm以上3.8nm以下であり、さらに好ましくは2.0nm以上3.5nm以下である。保護膜12の厚みが1.0nm以上であれば、エッチング耐性が良い。また、保護膜12の厚みが4.0nm以下であれば、EUV光に対する反射率の低下を抑制できる。
 保護膜12の密度は、好ましくは10.0g/cm以上14.0g/cm以下である。保護膜12の密度が10.0g/cm以上であれば、エッチング耐性が良い。また、保護膜12の密度が14.0g/cm以下であれば、EUV光に対する反射率の低下を抑制できる。
 保護膜12の上面、すなわち保護膜12の位相シフト膜13が形成される表面は、二乗平均平方根粗さ(Rq)が好ましくは0.300nm以下であり、より好ましくは0.150nm以下である。二乗平均平方根粗さ(Rq)が0.300nm以下であれば、保護膜12の上に位相シフト膜13などを平滑に形成できる。また、EUV光の散乱を抑制でき、EUV光に対する反射率を向上できる。二乗平均平方根粗さ(Rq)は、好ましくは0.050nm以上である。
 保護膜12の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法またはイオンビームスパッタリング法などである。DCスパッタリング法を用いてRh膜を形成する場合、成膜条件の一例は下記の通りである。
<Rh膜の成膜条件>
ターゲット:Rhターゲット、
スパッタガス:Arガス、
ガス圧:1.0×10-2Pa~1.0×10Pa、
ターゲットの出力密度:1.0W/cm~8.5W/cm
成膜速度:0.020nm/sec~1.000nm/sec、
Rh膜の膜厚:1nm~10nm。
 なお、Rh膜を形成する場合、スパッタガスとして、NガスまたはArガスとNの混合ガスを使用してもよい。スパッタガス中のNガスの体積比(N/(Ar+N))は0.05以上1.0以下である。
 位相シフト膜13は、開口パターン13aが形成される膜である。開口パターン13aは、反射型マスクブランク1の製造工程では形成されずに、反射型マスク2の製造工程で形成される。位相シフト膜13は、EUV光を吸収するだけではなく、EUV光の位相をシフトさせる。位相シフト膜は、図3に示す第1EUV光L1に対して、第2EUV光L2の位相をシフトさせる。
 第1EUV光L1は、位相シフト膜13を透過することなく開口パターン13aを通過し、多層反射膜11で反射され、再び位相シフト膜13を透過することなく開口パターン13aを通過した光である。第2EUV光L2は、位相シフト膜13に吸収されながら位相シフト膜13を透過し、多層反射膜11で反射され、再び位相シフト膜13に吸収されながら位相シフト膜13を透過した光である。
 第1EUV光L1と第2EUV光L2の位相差(≧0)は、例えば170°~250°である。第1EUV光L1の位相が、第2EUV光L2の位相よりも、進んでいてもよいし、遅れていてもよい。位相シフト膜13は、第1EUV光L1と第2EUV光L2の干渉を利用して、転写像のコントラストを向上する。転写像は、位相シフト膜13の開口パターン13aを対象基板に転写した像である。
 EUVLでは、いわゆる射影効果(シャドーイング効果)が生じる。シャドーイング効果とは、EUV光の入射角θが0°ではない(例えば6°である)ことに起因して、開口パターン13aの側壁付近に、側壁によってEUV光を遮る領域が生じ、転写像の位置ずれまたは寸法ずれが生じることをいう。シャドーイング効果を低減するには、開口パターン13aの側壁の高さを低くすることが有効であり、位相シフト膜13の薄化が有効である。
 位相シフト膜13の膜厚は、シャドーイング効果を低減すべく、例えば60nm以下であり、好ましくは50nm以下である。位相シフト膜13の膜厚は、第1EUV光L1と第2EUV光L2の位相差を確保すべく、好ましくは20nm以上であり、より好ましくは30nm以上である。
 第1EUV光L1と第2EUV光L2の位相差を確保しつつ、シャドーイング効果を低減すべく位相シフト膜13の膜厚を小さくするには、位相シフト膜13の屈折率nを小さくすることが有効である。そこで、本実施形態の位相シフト膜13は、Ir系材料からなる。Ir系材料は、Irを主成分とする材料であり、Irを50at%~100at%含有する材料である。つまり、位相シフト膜13は、Irを50at%~100at%含有する。
 Ir系材料は、屈折率nが小さく、且つ消衰係数kが大きい。従って、所望の位相差を確保しつつ位相シフト膜13を薄化できる。Ir含有量が大きいほど、屈折率nが小さく、消衰係数kが大きい。Ir含有量は、好ましくは70at%以上であり、より好ましくは80at%以上である。
 位相シフト膜13の屈折率nは、好ましくは0.935以下であり、より好ましくは0.920以下であり、さらに好ましくは0.910以下であり、特に好ましくは0.90以下である。位相シフト膜13の屈折率nが小さいほど、位相シフト膜13を薄化できる。なお、位相シフト膜13の屈折率nは、好ましくは0.885以上である。本明細書において、屈折率は、EUV光(例えば波長13.5nmの光)に対する屈折率である。
 位相シフト膜13の消衰係数kは、好ましくは0.030以上であり、より好ましくは0.032以上であり、さらに好ましくは0.035以上であり、特に好ましくは0.037以上である。位相シフト膜13の消衰係数kが大きいほど、薄い膜厚で所望の反射率を得ることが容易である。なお、位相シフト膜13の消衰係数kは、好ましくは0.065以下である。本明細書において、消衰係数は、EUV光(例えば波長13.5nmの光)に対する消衰係数である。
 位相シフト膜13は、Irを含むことが好ましく、Ir化合物を含むことがより好ましい。Ir化合物は、金属元素としてIrのみを含有するか、金属元素としてIrに加えてRu、Ta、Cr、Re、W、VおよびMnから選択される少なくとも1つの第1元素X1を含有することが好ましい。IrにRuを添加することで、光学特性を調整できる。IrにTa、Cr、Re、W、VまたはMnを添加することで、エッチング特性を向上できる。第1元素X1の合計含有量は、好ましくは1.0at%~49at%である。
 Ir化合物は、Irに加えて、非金属元素として、O、B、C、NおよびSiから選択される少なくとも1つの第2元素X2を含むことが好ましい。Irに第2元素X2を添加することで、光学特性の低下を抑制しつつ結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。第2元素X2は、酸素を含むことが好ましく、酸素と窒素を含むことがより好ましい。酸素は、少ない添加量で、Ir化合物の結晶化を抑制でき、Ir化合物の光学特性の低下を抑制できる。第2元素X2の合計含有量は、好ましくは1.0at%~49at%であり、より好ましくは5.0at%~30at%であり、さらに好ましくは15at%~25at%である。
 Ir化合物は、Irに加えて、非金属元素としてOを、0at%超25at%以下含有することが好ましく、1at%以上20at%以下含有することがより好ましく、1at%以上15at%以下含有することがさらに好ましく、1at%以上10at%以下含有することが特に好ましい。Oを含有することで、光学特性の低下を抑制しつつ結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。
 Ir化合物は、Irに加えて、非金属元素としてCを、0at%超15at%以下含有することが好ましく、1at%以上10at%以下含有することがより好ましい。Cを含有することで、光学特性の低下を抑制しつつ結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。
 Ir化合物は、Irに加えて、非金属元素としてBを、0at%超15at%以下含有することが好ましく、1at%以上10at%以下含有することがより好ましい。Bを含有することで、光学特性の低下を抑制しつつ結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。
 Ir化合物は、Irに加えて、非金属元素としてSiを、0at%超15at%以下含有することが好ましく、1at%以上10at%以下含有することがより好ましい。Siを含有することで、光学特性の低下を抑制しつつ結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。
 Ir化合物は、Irに加えて、非金属元素としてNを、0at%超10at%以下含有することが好ましく、1at%以上8at%以下含有することがより好ましく、1.5at%以上6at%以下含有することがさらに好ましく、1.8at%以上5at%以下含有することが特に好ましい。Nを含有することで、光学特性の低下を抑制しつつ結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。またNを含有することで、少ないO含有量でもIr化合物の結晶性を抑制できる。
 Ir化合物は、好ましくは、第1元素X1の合計含有量が5.0at%~49at%であるか、または第2元素X2の合計含有量が1.0at%~45at%である。Ir化合物は、第1元素X1の合計含有量が5.0at%未満であって且つ第2元素X2の合計含有量が45at%よりも大きい場合、水素に対して不安定な化合物である酸化イリジウムが生じ、反射型マスクブランク1の水素耐性は悪くなる。
 位相シフト膜13は、第2元素X2がTaの場合、Ta含有量(at%)に対するIr含有量(at%)の比(Ir/Ta)は、例えば1~190である。Ta含有量に対するIr含有量の比(Ir/Ta)が1以上であれば、位相シフト膜13の光学特性が良い。Ta含有量に対するIr含有量の比(Ir/Ta)が190以下であれば、位相シフト膜13の加工性が良い。Ta含有量に対するIr含有量の比(Ir/Ta)は、好ましくは1~100であり、より好ましくは1~40であり、さらに好ましくは2~30であり、特に好ましくは2~25であり、最も好ましくは2~15である。
 位相シフト膜13は、第2元素X2がCrの場合、Cr含有量(at%)に対するIr含有量(at%)の比(Ir/Cr)は、例えば1~105である。Cr含有量に対するIr含有量の比(Ir/Cr)が1以上であれば、位相シフト膜13の光学特性が良い。Cr含有量に対するIr含有量の比(Ir/Cr)が105以下であれば、選択比(ER2/ER1)が大きく、位相シフト膜13の加工性が良い。Cr含有量に対するIr含有量の比(Ir/Cr)は、好ましくは1~105であり、より好ましくは2~105であり、さらに好ましくは3~105であり、特に好ましくは4~105である。
 位相シフト膜13は、第2元素X2がWの場合、W含有量(at%)に対するIr含有量(at%)の比(Ir/W)は、例えば1~100である。W含有量に対するIr含有量の比(Ir/W)が1以上であれば、位相シフト膜13の光学特性が良い。W含有量に対するIr含有量の比(Ir/W)が100以下であれば、選択比(ER2/ER1)が大きく、位相シフト膜13の加工性が良い。W含有量に対するIr含有量の比(Ir/W)は、好ましくは1~90であり、より好ましくは2~80であり、さらに好ましくは3~70であり、特に好ましくは4~30である。
 位相シフト膜13は、第1元素X1がOを含有する場合、O含有量(at%)に対するIr含有量(at%)の比(Ir/O)は、例えば1~40である。O含有量に対するIr含有量の比(Ir/O)が1以上であれば、位相シフト膜13の耐水素性が向上できる。O含有量に対するIr含有量の比(Ir/O)が40以下であれば、位相シフト膜13の結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。O含有量に対するIr含有量の比(Ir/O)は、好ましくは1~40であり、より好ましくは2~35であり、さらに好ましくは2~30であり、特に好ましくは2~20であり、最も好ましくは3~15である。
 位相シフト膜13は、第1元素X1がNを含有する場合、N含有量(at%)に対するIr含有量(at%)の比(Ir/N)は、例えば10~105である。N含有量に対するIr含有量の比(Ir/N)が10以上であれば、位相シフト膜13の耐水素性が向上できる。結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。N含有量に対するIr含有量の比(Ir/N)が105以下であれば、位相シフト膜13の結晶化を抑制でき、開口パターン13aの側壁ラフネスを小さくできる。N含有量に対するIr含有量の比(Ir/N)は、好ましくは10~105であり、より好ましくは10~80であり、さらに好ましくは15~70であり、特に好ましくは20~68であり、最も好ましくは20~45である。
 位相シフト膜13は、第1元素X1がOとNを含有する場合、O含有量(at%)とN含有量(at%)の合計に対するIr含有量(at%)の比(Ir/(O+N))は、例えば1~45である。O含有量とN含有量の合計に対するIr含有量の比(Ir/(O+N))が1以上であれば、位相シフト膜13の耐水素性を向上できる。O含有量とN含有量の合計に対するIr含有量の比(Ir/(O+N))が45以下であれば、位相シフト膜13の結晶化を抑制でき、開口パターン13aの側壁ラフネスを小さくできる。O含有量とN含有量の合計に対するIr含有量の比(Ir/(O+N))は、好ましくは1~45であり、より好ましくは2~30であり、さらに好ましくは2.5~20であり、特に好ましくは3~15であり、最も好ましくは3~10である。
 位相シフト膜13は、硫酸過水によるエッチング速度が0nm/min~0.05nm/minである。硫酸過水は、後述するレジスト膜の除去、又は反射型マスク2の洗浄などに用いられる。位相シフト膜13の硫酸過水によるエッチング速度が0.05nm/min以下であれば、洗浄時に位相シフト膜13の損傷を抑制できる。
 位相シフト膜13の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法、又はイオンビームスパッタリング法などである。スパッタガス中のOガスの含有量で、位相シフト膜13の酸素含有量を制御可能である。また、スパッタガス中のNガスの含有量で、位相シフト膜13の窒素含有量を制御可能である。
 反応性スパッタリング法を用いてIrTaON膜を形成する場合、成膜条件の一例は下記の通りである。
<IrTaON膜の成膜条件>
ターゲット:IrターゲットおよびTaターゲット(またはIrTaターゲット)、
Irターゲットの出力密度:1.0W/cm~8.5W/cm
Taターゲットの出力密度:1.0W/cm~8.5W/cm
スパッタガス:ArガスとOガスとNガスの混合ガス、
スパッタガス中のOガスの体積比(O/(Ar+O+N)):0.01~0.25、
スパッタガス中のNガスの体積比(N/(Ar+O+N)):0.01~0.25、
成膜速度:0.020nm/sec~0.060nm/sec、
膜厚:20nm~60nm。
 位相シフト膜13は、本実施形態では単層であるが、複数層であってもよい。位相シフト膜13は、Irを含まない層を有してもよい。いずれにしろ、位相シフト膜13を構成する少なくとも一層がIr系材料からなることが好ましい。Ir系材料は、Irを主成分として含む材料である。Ir系材料は、Ir単体であってもよいが、Ir化合物であることが好ましい。位相シフト膜13は、全体としてIrを50at%以上含有すればよい。
 位相シフト膜13の厚みt1(nm)と、保護膜12を構成するRh含有層の厚みt2(nm)の比(t1/t2)が25以下であることが好ましい。t1/t2が25以下であることで、エッチング時間の延長による保護膜12の表面粗さの増加を抑制できる。t1/t2は、25以下が好ましく、22以下がよりこのましく、20以下がさらに好ましく、18以下が特に好ましい。
 位相シフト膜13の厚みt1(nm)と、保護膜12の厚みt3(nm)の比(t1/t3)が15以下であることが好ましい。t1/t3が15以下であることで、エッチング時間の延長による保護膜12の表面粗さの増加を抑制できる。t1/t3は、15以下が好ましく、12以下がよりこのましく、11以下がさらに好ましい。
 エッチングマスク膜14は、位相シフト膜13を基準として保護膜12とは反対側に形成され、位相シフト膜13に開口パターン13aを形成するのに用いられる。エッチングマスク膜14の上には、不図示のレジスト膜が設けられる。反射型マスク2の製造工程では、先ずレジスト膜に第1開口パターンを形成し、次に第1開口パターンを用いてエッチングマスク膜14に第2開口パターンを形成し、次に第2開口パターンを用いて位相シフト膜13に第3開口パターン13aを形成する。第1開口パターンと第2開口パターンと第3開口パターン13aは、平面視(Z軸方向視)で同一の寸法および同一の形状を有する。エッチングマスク膜14は、レジスト膜の薄膜化を可能にする。
 エッチングマスク膜14は、好ましくはAl、Hf、Y、Cr、Nb、Ti、Mo、TaおよびSiから選択される少なくとも1つの元素を含有する。エッチングマスク膜14は、さらにO、NおよびBから選択される少なくとも1つの元素を含有してもよい。
 エッチングマスク膜14の膜厚は、好ましくは2nm以上30nm以下であり、より好ましくは2nm以上25nm以下であり、更に好ましくは2nm以上10nm以下である。
 エッチングマスク膜14の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法、またはイオンビームスパッタリング法などである。
 次に、図4を参照して、一実施形態に係る反射型マスクブランク1の製造方法について説明する。反射型マスクブランク1の製造方法は、例えば、図4に示すステップS101~S105を有する。ステップS101では、基板10を準備する。ステップS102では、基板10の第1主面10aに多層反射膜11を形成する。ステップS103では、多層反射膜11の上に保護膜12を形成する。ステップS104では、保護膜12の上に位相シフト膜13を形成する。ステップS105では、位相シフト膜13の上にエッチングマスク膜14を形成する。
 なお、反射型マスクブランク1の製造方法は、少なくとも、ステップS101~S104を有していればよい。反射型マスクブランク1の製造方法は、図4には図示しない機能膜を形成するステップを更に有してもよい。
 次に、図5を参照して、一実施形態に係る反射型マスク2の製造方法について説明する。反射型マスク2の製造方法は、図5に示すステップS201~S204を有する。ステップS201では、反射型マスクブランク1を準備する。ステップS202では、エッチングマスク膜14を加工する。エッチングマスク膜14の上には、不図示のレジスト膜が設けられる。先ずレジスト膜に第1開口パターンを形成し、次に第1開口パターンを用いてエッチングマスク膜14に第2開口パターンを形成する。ステップS203では、第2開口パターンを用いて位相シフト膜13に第3開口パターン13aを形成する。ステップS203では、エッチングガスを用いて位相シフト膜13をエッチングする。ステップS204では、レジスト膜およびエッチングマスク膜14を除去する。レジスト膜の除去には、例えば硫酸過水が用いられる。エッチングマスク膜14の除去には、例えばエッチングガスが用いられる。ステップS204(エッチングマスク膜14の除去)で用いられるエッチングガスは、ステップS202(エッチングマスク膜14の加工)で用いられるエッチングガスと同種であってもよい。なお、反射型マスク2の製造方法は、少なくとも、ステップS201およびS203を有していればよい。
 以下、実験データについて説明する。
 <例1~例5>
 例1~例5では、位相シフト膜の膜種とその成膜条件を除き、同じ条件でEUVL用反射型マスクブランクを作製した。各反射型マスクブランクは、基板と多層反射膜と保護膜と位相シフト膜で構成した。例1~例5は、実施例である。
 基板としては、SiO-TiO系のガラス基板(外形6インチ(152mm)角、厚さが6.3mm)を準備した。このガラス基板は、20℃における熱膨張係数が0.02×10-7/℃であり、ヤング率が67GPaであり、ポアソン比が0.17であり、比剛性は3.07×10/sであった。基板の第1主面の品質保証領域は、研磨によって0.15nm以下の二乗平均平方根粗さ(Rq)と、100nm以下の平坦度と、を有していた。基板の第2主面には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜した。Cr膜のシート抵抗は100Ω/□であった。
 多層反射膜としては、Mo/Si多層反射膜を形成した。Mo/Si多層反射膜は、イオンビームスパッタリング法を用いてSi層(膜厚4.5nm)とMo層(膜厚2.3nm)を成膜することを40回繰り返すことにより形成した。Mo/Si多層反射膜の合計膜厚は272nm((4.5nm+2.3nm)×40)であった。
 保護膜としては、Rh膜(膜厚2.5nm)を形成した。Rh膜は、DCスパッタリング法を用いて形成した。
 位相シフト膜としては、Ir膜、IrTaON膜またはIrCrON膜を形成した。例1では、DCスパッタリング法を用いてIr膜を形成した。例2~例4では、反応性スパッタリング法を用いてIrTaON膜を形成した。例5では、反応性スパッタリング法を用いてIrCrON膜を形成した。
 例1~例5で得た位相シフト膜の膜種とその特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 位相シフト膜の組成は、アルバックファイ社製X線光電子分光装置(PHI 5000 VersaProbe)を用いて測定した。
 位相シフト膜の光学特性(屈折率nと消衰係数k)は、Center for X-Ray Optics,Lawrence Berkeley National Laboratoryのデータベースの値、または後述する反射率の「入射角の依存性」から算出した値を用いた。
 EUV光の入射角θと、EUV光に対する反射率Rと、位相シフト膜の屈折率nと、位相シフト膜の消衰係数kとは、下記の式(1)を満たす。
R=|(sinθ-((n+ik)-cosθ)1/2)/(sinθ+((n+ik)-cosθ)1/2)|・・・(1)
入射角θと反射率Rの組み合わせを複数測定し、複数の測定データと式(1)との誤差が最小になるように、最小二乗法で屈折率nと消衰係数kを算出した。
 保護膜のエッチング速度ER1、ER1´と、位相シフト膜のエッチング速度ER2は、誘導結合プラズマ(ICP:Inductively Coupled Plasma)エッチング装置を用いて測定した。ER1は、Rh金属単体のエッチング速度である。ER1´は、Ru金属単体のエッチング速度である。エッチングガスとしては、CFガスとOガスの混合ガスを用いた。誘導結合プラズマエッチングの具体的な条件は、下記の通りであった。
ICPアンテナバイアス:1650W、
基板バイアス:50W、
エッチング圧力:4.0×10-1Pa、
エッチングガス:CFガスとOガスの混合ガス、
CFガスの流量:80sccm、
ガスの流量:20sccm。
 例1~例5では、Rh系材料(詳細にはRh金属単体)からなる保護膜とIr系材料からなる位相シフト膜とを組み合わせたので、表1に示すように選択比(ER2/ER1)を5.0以上にすることができた。なお、Ru系材料(詳細にはRu金属単体)からなる保護膜とIr系材料からなる位相シフト膜とを組み合わせた場合、表1に示すように選択比(ER2/ER1´)は5.0未満であった。
 <例6>
 例6のEUVL用反射型マスクブランクは以下の条件で作製した。基板としては、SiO-TiO系のガラス基板(外形6インチ(152mm)角、厚さが6.3mm)を準備した。このガラス基板は、20℃における熱膨張係数が0.02×10-7/℃であり、ヤング率が67GPaであり、ポアソン比が0.17であり、比剛性は3.07×10/sであった。基板の第1主面の品質保証領域は、研磨によって0.15nm以下の二乗平均平方根粗さ(Rq)と、100nm以下の平坦度と、を有していた。基板の第2主面には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜した。Cr膜のシート抵抗は100Ω/□であった。
 多層反射膜としては、Mo/Si多層反射膜を形成した。Mo/Si多層反射膜は、イオンビームスパッタリング法を用いてSi層(膜厚4.5nm)とMo層(膜厚2.3nm)を成膜することを40回繰り返すことにより形成した。Mo/Si多層反射膜の合計膜厚は272nm((4.5nm+2.3nm)×40)であった。
 保護膜としては、Ru膜(膜厚1.0nm)と、Rh膜(膜厚1.5nm)をこの順番で形成した。Ru膜及びRh膜は、イオンビームスパッタリング法を用いて形成した。
 位相シフト膜としては、IrTaON膜(膜厚38nm、Ir:Ta:O:N=69.1at%:22.9at%:3.1at%:4.9at%)を反応性スパッタリング法を用いて形成した。
 <例7>
 保護膜を構成するRh膜の膜厚を2.5nmとした以外は、例6と同様の条件でEUVL用反射型マスクブランクを作製した。
 作製した例6、例7のEUVL用反射型マスクブランクに対して下記条件でエッチング試験を実施した。エッチング試験は、誘導結合プラズマ(ICP:Inductively Coupled Plasma)エッチング装置を用いて行った。エッチングガスとしては、CFガスとOガスの混合ガスを用いた。誘導結合プラズマエッチングの具体的な条件は、下記の通りであった。
ICPアンテナバイアス:1200W、
基板バイアス:50W、
エッチング圧力:4.0×10-1Pa、
エッチングガス:CFガスとOガスの混合ガス、
CFガスの流量:48sccm、
ガスの流量:12sccm
エッチング時間:317秒又は346秒。
 エッチング試験後の保護膜(詳細にはRh膜)の表面粗さRaは、原子間力顕微鏡を用いて測定した。表面粗さRaは、JIS-B0601:2013に記載の算術平均粗さのことである。表面粗さRaの測定結果を表2に示す。表2において、Raの増加率(%)は、下記式(2)から算出する。
増加率=(Ra1-Ra0)/Ra0×100・・・(2)
上記式(2)において、Ra0はエッチング時間317秒で測定したRaであり、Ra1はエッチング時間346秒で測定したRaである。
 表2に示すように、例7は、例6とは異なり、t1/t2が25以下であったので、エッチング時間の延長による保護膜の表面粗さRaの増加を抑制できた。
Figure JPOXMLDOC01-appb-T000002
 以上、本開示に係る反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、および組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。
 本出願は、2022年7月5日に日本国特許庁に出願した特願2022-108643号と2023年5月11日に日本国特許庁に出願した特願2023-078399号に基づく優先権を主張するものであり、特願2022-108643号と特願2023-078399号の全内容を本出願に援用する。
1  反射型マスクブランク
2  反射型マスク
10 基板
11 多層反射膜
12 保護膜
13 位相シフト膜

Claims (16)

  1.  基板と、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、前記EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する、反射型マスクブランクであって、
     前記位相シフト膜はIrを主成分とするIr系材料からなり、前記保護膜はRhを主成分とするRh系材料からなる、反射型マスクブランク。
  2.  前記位相シフト膜と前記保護膜は、前記保護膜のエッチング速度ER1に対する前記位相シフト膜のエッチング速度ER2の比(ER2/ER1)が5.0以上である、請求項1に記載の反射型マスクブランク。
  3.  前記位相シフト膜は、金属元素としてIrのみを含有するか、金属元素としてIrに加えてRu、Ta、Cr、Re、W、VおよびMnから選択される少なくとも1つの元素を含有する、請求項1に記載の反射型マスクブランク。
  4.  前記位相シフト膜は、Ir化合物を有し、前記Ir化合物は、非金属元素としてO、C、N、BおよびSiから選択される少なくとも1つの元素を含有する、請求項3に記載の反射型マスクブランク。
  5.  前記Ir化合物は、Oを0at%超25at%以下含有する、請求項4に記載の反射型マスクブランク。
  6.  前記Ir化合物は、Nを0at%超、10at%以下含有する、請求項4に記載の反射型マスクブランク。
  7.  前記位相シフト膜の膜厚は、20nm以上、60nm以下である、請求項1に記載の反射型マスクブランク。
  8.  前記保護膜は、Rhのみを含むか、Rhに加えてRu、Pd、Y、Al、NbおよびSiから選択される少なくとも1つの元素を含有する、請求項1に記載の反射型マスクブランク。
  9.  前記保護膜は、Rhを50at%以上、100at%以下含有する、請求項8に記載の反射型マスクブランク。
  10.  前記保護膜の膜厚は、0.5nm以上4.0nm以下である、請求項1に記載の反射型マスクブランク。
  11.  前記位相シフト膜の膜厚t1と、前記保護膜を構成するRh含有層の厚みt2との比(t1/t2)が25以下である、請求項1に記載の反射型マスクブランク。
  12.  前記位相シフト膜を基準として前記保護膜とは反対側に、エッチングマスク膜を有し、
     前記エッチングマスク膜は、Al、Hf、Y、Cr、Nb、Ti、Mo、TaおよびSiから選択される少なくとも1つの元素を含有する、請求項1に記載の反射型マスクブランク。
  13.  前記エッチングマスク膜は、さらにO、NおよびBから選択される少なくとも1つの元素を含有する、請求項12に記載の反射型マスクブランク。
  14.  請求項1~13のいずれか1項に記載の反射型マスクブランクを備え、
     前記位相シフト膜に開口パターンを含む、反射型マスク。
  15.  基板と、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、前記EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する、反射型マスクブランクの製造方法であって、
     前記基板の上に前記多層反射膜と前記保護膜と前記位相シフト膜をこの順番で成膜することを有し、
     前記位相シフト膜はIrを主成分とするIr系材料からなり、前記保護膜はRhを主成分とするRh系材料からなる、反射型マスクブランクの製造方法。
  16.  請求項1~13のいずれか1項に記載の反射型マスクブランクを準備することと、
     前記位相シフト膜に開口パターンを形成することと、
    を有する、反射型マスクの製造方法。
PCT/JP2023/023537 2022-07-05 2023-06-26 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法 WO2024009819A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247003978A KR20240024293A (ko) 2022-07-05 2023-06-26 반사형 마스크 블랭크, 반사형 마스크, 반사형 마스크 블랭크의 제조 방법, 및 반사형 마스크의 제조 방법
JP2023551682A JP7416342B1 (ja) 2022-07-05 2023-06-26 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
JP2023220380A JP2024024684A (ja) 2022-07-05 2023-12-27 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
US18/420,846 US20240160096A1 (en) 2022-07-05 2024-01-24 Reflective mask blank, reflective mask, method of manufacturing reflective mask blank, and method of manufacturing reflective mask

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022108643 2022-07-05
JP2022-108643 2022-07-05
JP2023-078399 2023-05-11
JP2023078399 2023-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/420,846 Continuation US20240160096A1 (en) 2022-07-05 2024-01-24 Reflective mask blank, reflective mask, method of manufacturing reflective mask blank, and method of manufacturing reflective mask

Publications (1)

Publication Number Publication Date
WO2024009819A1 true WO2024009819A1 (ja) 2024-01-11

Family

ID=89453365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023537 WO2024009819A1 (ja) 2022-07-05 2023-06-26 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法

Country Status (5)

Country Link
US (1) US20240160096A1 (ja)
JP (2) JP7416342B1 (ja)
KR (1) KR20240024293A (ja)
TW (1) TW202403434A (ja)
WO (1) WO2024009819A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132111A1 (ja) * 2019-12-27 2021-07-01 Agc株式会社 Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法
JP2021101258A (ja) * 2017-03-03 2021-07-08 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
US20210341828A1 (en) * 2020-04-29 2021-11-04 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
WO2022118762A1 (ja) * 2020-12-03 2022-06-09 Agc株式会社 Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101258A (ja) * 2017-03-03 2021-07-08 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
WO2021132111A1 (ja) * 2019-12-27 2021-07-01 Agc株式会社 Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法
US20210341828A1 (en) * 2020-04-29 2021-11-04 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
WO2022118762A1 (ja) * 2020-12-03 2022-06-09 Agc株式会社 Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法

Also Published As

Publication number Publication date
JP2024024684A (ja) 2024-02-22
US20240160096A1 (en) 2024-05-16
KR20240024293A (ko) 2024-02-23
JPWO2024009819A1 (ja) 2024-01-11
TW202403434A (zh) 2024-01-16
JP7416342B1 (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
KR102305361B1 (ko) 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법
JP6422873B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP7315123B1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
US20230133304A1 (en) Multilayer reflective film-equipped substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
JP7479884B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP6223756B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP7416342B1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
WO2024024513A1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
WO2024053634A1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP7513164B2 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP7367902B1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
WO2023008435A1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP7392236B1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
WO2024009809A1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法
JP7416343B2 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP7511136B2 (ja) 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
KR102624893B1 (ko) 반사형 마스크 블랭크, 반사형 마스크, 반사형 마스크 블랭크의 제조 방법 및 반사형 마스크의 제조 방법
WO2024029409A1 (ja) 反射型マスクブランク及び反射型マスク
JP2018031982A (ja) 反射型マスク、並びに反射型マスクブランク及び半導体装置の製造方法
TW202334736A (zh) 反射型光罩基底、反射型光罩、反射型光罩基底之製造方法、及反射型光罩之製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20247003978

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003978

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835353

Country of ref document: EP

Kind code of ref document: A1