WO2024009705A1 - エピタキシャルウェーハの製造方法 - Google Patents

エピタキシャルウェーハの製造方法 Download PDF

Info

Publication number
WO2024009705A1
WO2024009705A1 PCT/JP2023/021921 JP2023021921W WO2024009705A1 WO 2024009705 A1 WO2024009705 A1 WO 2024009705A1 JP 2023021921 W JP2023021921 W JP 2023021921W WO 2024009705 A1 WO2024009705 A1 WO 2024009705A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal silicon
oxide film
single crystal
epitaxial
manufacturing
Prior art date
Application number
PCT/JP2023/021921
Other languages
English (en)
French (fr)
Inventor
克佳 鈴木
温 鈴木
剛 大槻
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2024009705A1 publication Critical patent/WO2024009705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections

Definitions

  • the present invention relates to a method for manufacturing an epitaxial wafer.
  • Silicon substrates that form semiconductor devices such as solid-state image sensors and other transistors are required to have the function of gettering heavy metals and other elements that disrupt device characteristics.
  • gettering there are methods such as providing a polycrystalline silicon (Poly-Si) layer on the back surface of the silicon substrate, forming a damaged layer by blasting, using a silicon substrate with a high concentration of boron, and removing precipitates.
  • Various methods have been proposed and put into practical use, such as forming .
  • gettering by oxygen precipitation gettering is performed by incorporating a metal with a high ionization tendency (low electronegativity) against oxygen, which has high electronegativity.
  • proximity gettering in which a gettering layer is formed near the active region of the element, has been proposed.
  • a substrate in which silicon is epitaxially grown on a substrate into which carbon ions are implanted.
  • Gettering requires elements to diffuse to gettering sites (the energy of the entire system is lowered by bonding and clustering at sites rather than by metals existing as a single element).
  • the diffusion coefficient of metal elements contained in silicon differs depending on the element, and in consideration of the fact that metals cannot diffuse to the gettering site due to recent lower process temperatures, a method of proximity gettering has been proposed. .
  • oxygen can be used for proximity gettering, it is thought that the silicon substrate will have a very effective gettering layer.
  • the epitaxial wafer has an oxygen atomic layer in the middle of the epitaxial layer, metal impurities can be reliably gettered even in recent low-temperature processes.
  • Patent Document 1 is a method in which a thin layer of oxygen is formed on silicon and then silicon is further grown.
  • This method is a technology based on ALD ( ⁇ atomic layer deposition'').
  • ALD is a method in which molecules containing target atoms are adsorbed, and then unnecessary atoms (molecules) in the molecules are dissociated and released.It uses surface bonding, has very high precision, and has good reaction controllability. Yes, and widely used.
  • Patent Document 2 describes a method in which a natural oxide film is formed on a silicon clean surface formed by vacuum heating or the like, and then an oxide film or another substance is adsorbed and deposited.
  • Patent Documents 3 and 4 show that by introducing multiple oxygen atomic layers into a silicon substrate, it is possible to improve device characteristics and (mobility).
  • Patent Document 5 shows a method of forming an epitaxial layer using SiH 4 gas on an atomic layer having a thickness of 5 nm or less. Furthermore, a method of forming an oxygen atomic layer using oxygen gas is shown.
  • Patent Documents 6 and 7 describe a method of epitaxially growing single crystal silicon after forming an oxide film by bringing the surface of a semiconductor substrate into contact with an oxidizing gas or an oxidizing solution. Further, Patent Document 6 describes a method in which a silicon film forming gas is flowed after flowing an oxidizing gas.
  • Patent Document 8 describes a method in which a natural oxide film on the surface of a wafer made of group IV elements is removed, the wafer is oxidized to form an oxygen atomic layer, and then single crystal silicon is epitaxially grown.
  • Patent Document 9 describes a method in which a precursor containing oxygen is supplied to a CVD epitaxy furnace to form an oxygen-inserted monolayer, and then a silicon epitaxial layer is formed.
  • Non-Patent Document 1 shows a method of removing a natural oxide film with HF, oxidizing it in the atmosphere, forming an amorphous silicon film by low pressure CVD, and then forming single crystal silicon by crystallization heat treatment.
  • Japanese Patent Application Publication No. 2014-165494 Japanese Patent Application Publication No. 05-243266 US Patent No. 7,153,763 US Patent No. 7,265,002 JP2019-004050A Japanese Patent Application Publication No. 2008-263025 Japanese Patent Application Publication No. 2009-016637 JP 2021-111696 Publication JP2022-22194A
  • Patent Documents 5 and 9 have a problem in that it is necessary to prepare two chambers with separate exhaust systems in order to prevent SiH 4 and oxygen from reacting and exploding.
  • Patent Document 6 has a problem in that a special device with safety in mind is required to prevent the oxidizing gas and the silicon film-forming gas from reacting and exploding.
  • Non-Patent Document 1 requires heat treatment during crystallization, which has the problem of increasing the number of process steps. Furthermore, since amorphous silicon generally contains a large amount of hydrogen, there is a possibility that hydrogen-related defects may be formed during crystallization heat treatment.
  • Patent Document 8 has the problem that, in addition to requiring long-time oxidation to form an oxygen atomic layer, it is difficult to make the oxygen concentration uniform within the wafer surface.
  • the conventional technology has a problem in that there is no description for stably introducing an oxygen layer or specific description for forming an epitaxial layer of high quality single crystal silicon.
  • Patent Document 2 does not describe any method for forming an epitaxial layer of single crystal silicon on a wafer surface without generating dislocations or stacking faults.
  • Patent Documents 3 and 4 do not mention a specific method for growing a silicon wafer into which multiple oxygen atomic layers are introduced.
  • Patent Documents 6 and 7 do not describe a method for removing a natural oxide film before contacting with an oxidizing gas or an oxidizing solution.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is capable of stably and easily introducing an oxygen atomic layer into an epitaxial layer, as well as an epitaxial layer having a high-quality single-crystal silicon epitaxial layer.
  • An object of the present invention is to provide an epitaxial wafer manufacturing method that can manufacture wafers.
  • the present invention provides an epitaxial wafer manufacturing method for forming a single crystal silicon epitaxial layer on a single crystal silicon wafer, comprising: A process of removing a natural oxide film from the surface of a single crystal silicon wafer, After removing the natural oxide film, forming an oxide film on the surface of the single crystal silicon wafer using an oxidizing solution; After forming the oxide film, thinning the oxide film to form an oxygen atomic layer; and After forming the oxygen atomic layer, forming a single crystal on the surface of the single crystal silicon wafer having the oxygen atomic layer.
  • a method for manufacturing an epitaxial wafer is provided, which includes a step of epitaxially growing silicon.
  • single crystal silicon can be grown without forming dislocations or stacking faults on the surface of a single crystal silicon wafer having an oxygen atomic layer while leaving the oxygen atomic layer. That is, with the epitaxial wafer manufacturing method of the present invention, an oxygen atomic layer can be stably and easily introduced into an epitaxial layer, and an epitaxial wafer having a high-quality single-crystal silicon epitaxial layer can be manufactured.
  • the natural oxide film can be removed using a solution containing hydrofluoric acid.
  • an SC1 solution hydrogen peroxide solution, or ozone water can be used.
  • an oxide film can be easily formed in a short time.
  • the SC1 solution or the hydrogen peroxide solution can be used as the oxidizing solution, and the temperature of the SC1 solution or the hydrogen peroxide solution can be set to 20° C. or higher and 80° C. or lower.
  • single-crystal silicon wafers can be easily oxidized without the need for special equipment.
  • the ozone water can be used as the oxidizing solution, and the temperature of the ozone water can be set to 10°C or more and 30°C or less.
  • the wafer can be reliably oxidized.
  • the oxide film can be thinned by heating the single crystal silicon wafer in a hydrogen atmosphere.
  • the heating temperature in the hydrogen atmosphere can be set to 600° C. or higher and 1250° C. or lower.
  • the oxide film can be thinned by plasma using a gas containing hydrogen atoms or plasma using an inert gas.
  • the oxide film can be thinned by sputtering with high-energy particles generated by the plasma.
  • the single crystal silicon in the step of epitaxially growing the single crystal silicon, can be epitaxially grown at a temperature of 450° C. or higher and 800° C. or lower.
  • the partial pressure of the silicon source gas can be set to 0.1 Pa or more and 2000 Pa or less.
  • single crystal silicon can be epitaxially grown more stably without generating defects.
  • planar concentration of oxygen in the oxygen atomic layer can be 6 ⁇ 10 14 atoms/cm 2 or less.
  • epitaxial wafers can be stably manufactured without generating defects.
  • the steps of forming the oxide film, forming the oxygen atomic layer, and epitaxially growing the single crystal silicon can be repeated.
  • an oxygen atomic layer can be stably and easily introduced into the epitaxial layer, and an epitaxial layer of high-quality single crystal silicon can be introduced into the epitaxial layer. It is possible to provide a method for manufacturing an epitaxial wafer having the following. Furthermore, it becomes possible to manufacture a proximity gettering substrate having a proximity gettering effect due to the oxygen atomic layer.
  • FIG. 2 is a diagram showing a flow of the method for manufacturing an epitaxial wafer of the present invention.
  • 1 is a schematic cross-sectional view of an example of an epitaxial wafer that can be manufactured by the method for manufacturing an epitaxial wafer of the present invention. It is a schematic sectional view of another example of an epitaxial wafer which can be manufactured by the manufacturing method of an epitaxial wafer of the present invention.
  • 2 is a graph showing the relationship between heating time and oxygen concentration in a hydrogen atmosphere in Example 1 and Comparative Example 1.
  • 2 is a graph showing the distribution of oxygen concentration in an oxygen atomic layer within the plane of a substrate in Example 1 and Comparative Example 2.
  • an epitaxial wafer that does not require special equipment or complicated processes, can stably and easily introduce an oxygen atomic layer into an epitaxial layer, and has an epitaxial layer of high-quality single crystal silicon.
  • the present inventor has devised a method for manufacturing an epitaxial wafer in which a single crystal silicon epitaxial layer is formed on a single crystal silicon wafer, in which a natural oxide film is removed from the surface of the single crystal silicon wafer. After removing the natural oxide film, forming an oxide film on the surface of the single crystal silicon wafer using an oxidizing solution; After forming the oxide film, thinning the oxide film to form an oxygen atomic layer. and after forming the oxygen atomic layer, epitaxially growing single crystal silicon on the surface of the single crystal silicon wafer having the oxygen atomic layer.
  • the present invention has been completed by discovering that it is possible to stably and easily introduce an oxygen atomic layer into an epitaxial layer of silicon without forming dislocations or stacking faults on the epitaxial layer.
  • the present invention is an epitaxial wafer manufacturing method for forming a single-crystal silicon epitaxial layer on a single-crystal silicon wafer, comprising: A process of removing a natural oxide film from the surface of a single crystal silicon wafer, After removing the natural oxide film, forming an oxide film on the surface of the single crystal silicon wafer using an oxidizing solution; After forming the oxide film, thinning the oxide film to form an oxygen atomic layer; and After forming the oxygen atomic layer, forming a single crystal on the surface of the single crystal silicon wafer having the oxygen atomic layer.
  • This is a method for manufacturing an epitaxial wafer, characterized by including a step of epitaxially growing silicon.
  • an epitaxial wafer 10A whose cross section is schematically shown in FIG. 2, for example, can be manufactured.
  • the epitaxial wafer that can be manufactured by the epitaxial wafer manufacturing method of the present invention is not limited to that shown in FIG. 2.
  • the epitaxial wafer 10A shown in FIG. 2 has a single crystal epitaxial silicon layer (hereinafter sometimes simply referred to as an epitaxial layer) 3 on a single crystal silicon wafer 1, and has a single crystal epitaxial silicon layer 3 and a single crystal silicon wafer 1. There is an oxygen atomic layer 2 between them.
  • FIG. 1 shows the flow of the method for manufacturing an epitaxial wafer according to the present invention.
  • the step S11 in FIG. 1 is a step of preparing a single crystal silicon wafer.
  • the method for manufacturing the single crystal silicon wafer is not particularly limited.
  • a substrate manufactured by the Czochralski Method (hereinafter referred to as the CZ method) may be used, or a substrate manufactured by the Floating Zone Method (hereinafter referred to as the FZ method) may be used.
  • a substrate in which single crystal silicon is epitaxially grown on a single crystal silicon substrate manufactured by the CZ method or the FZ method may be used.
  • S12 in FIG. 1 is a step of removing a natural oxide film from the surface of the single crystal silicon wafer prepared in step S11.
  • the natural oxide film can be removed using a solution containing hydrofluoric acid.
  • hydrofluoric acid or buffered hydrofluoric acid may be used.
  • Buffered hydrofluoric acid is a solution containing hydrofluoric acid and ammonium fluoride.
  • the concentration of hydrofluoric acid in the solution containing hydrofluoric acid may be any concentration that can remove the native oxide film, and may be, for example, 0.001% or more and 60% or less.
  • the temperature of the solution containing hydrofluoric acid can be, for example, 10°C or higher and 50°C or lower. When the temperature is 10° C. or higher, it is possible to prevent dew condensation from forming on the wafer after processing with a solution containing hydrofluoric acid. Further, by setting the temperature to 50° C. or lower, the amount of hydrofluoric acid that evaporates can be suppressed, and safety problems can be avoided.
  • the time for cleaning with a solution containing hydrofluoric acid can be, for example, until water repellency is confirmed, and can be, for example, 1 second or more and 1 hour or less. If the time is 1 second or more, the natural oxide film can be removed. Further, by setting the time to 1 hour or less, it is possible to prevent it from taking too much time.
  • a batch type cleaning device or a single wafer type cleaning device may be used.
  • the natural oxide film may be removed using vapor of a solution containing hydrofluoric acid.
  • S13 in FIG. 1 is a step of forming an oxide film on the surface of the single crystal silicon wafer using an oxidizing solution after removing the natural oxide film in step S12.
  • a hydrophobic surface without an oxide film tends to attract particles, but a hydrophilic surface with an oxide film can prevent particles from adhering. For this reason, for example, by immersing a single crystal silicon wafer in an oxidizing solution to form an oxide film on the surface, particles can be prevented from adhering to the single crystal silicon wafer before it is transported from the cleaning equipment to the next process. It can be prevented.
  • a batch type device or a single wafer type device may be used, for example.
  • oxidizing solution for example, SC1 solution, hydrogen peroxide solution, or ozone water can be used.
  • an oxide film can be easily formed in a short time.
  • the SC1 solution is a solution that is a mixture of ammonia, hydrogen peroxide, and water, and the hydrogen peroxide solution oxidizes the surface of a single-crystal silicon wafer, while the ammonia etches the oxide film. With this, particles attached to the surface of the single crystal silicon wafer can be lifted off and removed. Therefore, by using the SC1 solution used in the cleaning process of single crystal silicon substrates, an oxide film is formed on the surface of the single crystal silicon wafer.
  • the mixing ratio between each component in the SC1 solution it is preferable that the amount of hydrogen peroxide solution is larger than that of aqueous ammonia. With such a mixing ratio, an oxide film can be formed stably and uniformly.
  • the mixing ratio of aqueous ammonia (NH 3 concentration: 28%), hydrogen peroxide solution (H 2 O 2 concentration: 30%), and water can be 1:1 to 2:5 to 100.
  • the time for immersing the single crystal silicon wafer in the SC1 solution can be, for example, 1 second or more and 1 hour or less. If the heating time is 1 second or more, an oxygen atomic layer can be sufficiently formed. Further, by setting the time to 1 hour or less, it is possible to prevent it from taking too much time.
  • the concentration of the hydrogen peroxide solution can be set to 0.01% or more and 30% or less, for example. If the concentration is 0.01% or more, an oxide film can be reliably formed. Further, if the concentration is 30% or less, the amount of evaporation of hydrogen peroxide from the cleaning liquid can be maintained at an appropriate level, so that an increase in the burden on the disposal equipment can be prevented.
  • the time for immersing the single crystal silicon wafer in the hydrogen peroxide solution can be, for example, 1 second or more and 1 hour or less. If the time is 1 second or more, an oxygen atomic layer can be formed. Further, by setting the time to 1 hour or less, it is possible to prevent it from taking too much time.
  • the temperature of the SC1 solution or the hydrogen peroxide solution as the oxidizing solution can be, for example, 20°C or higher and 80°C or lower. If the temperature is 20° C. or higher, an oxide film can be stably formed. Further, if the temperature is 80° C. or lower, the amount of evaporation of the cleaning liquid can be kept constant and bubbles can be prevented from increasing in the cleaning liquid, so that an oxide film can be formed uniformly within the wafer surface. That is, at such a temperature, a single crystal silicon wafer can be easily oxidized without preparing special equipment.
  • ozone water is used to decompose organic matter and oxidize the surface of the single crystal silicon wafer.
  • the ozone concentration of the ozone water can be, for example, 1 ppm or more and 500 ppm or less.
  • the ozone concentration is 1 ppm or more, an oxide film can be stably formed on the surface of the single crystal silicon wafer.
  • the ozone concentration is 500 ppm or less, it is possible to prevent variations in the oxide film thickness due to fluctuations in the ozone concentration due to ozone decomposition or escape into the gas phase.
  • the temperature of the ozone water can be, for example, 10°C or higher and 30°C or lower.
  • the temperature can be, for example, 10°C or higher and 30°C or lower.
  • 10° C. or higher it is possible to prevent dew condensation from occurring on the wafer after the ozone water treatment.
  • the temperature to 30° C. or lower, it is possible to prevent ozone from decomposing in ozone water or from escaping into the gas phase, thereby making it possible to reliably oxidize the single crystal silicon wafer.
  • the time for immersing the single crystal silicon wafer in ozone water can be, for example, 1 second or more and 1 hour or less. If the time is 1 second or more, an oxygen atomic layer can be formed. Further, by setting the time to 1 hour or less, it is possible to prevent it from taking too much time.
  • S14 in FIG. 1 is a step in which, after forming the oxide film in step S13, the oxide film is thinned to form an oxygen atomic layer.
  • the oxide film can be thinned, for example, by heating a single crystal silicon wafer in a hydrogen atmosphere. By performing heat treatment in a hydrogen atmosphere in this manner, the oxide film can be reduced uniformly and stably, thereby making it possible to reduce the thickness of the oxide film.
  • Heating may be performed in an atmospheric pressure environment or in a reduced pressure environment.
  • the reduced pressure environment refers to, for example, an environment of 100 Pa or more and less than atmospheric pressure.
  • the hydrogen atmosphere for example, an atmosphere containing 100% hydrogen may be used, or an atmosphere containing a mixture of hydrogen and an inert gas may be used.
  • the inert gas any one of nitrogen, helium, neon, argon, krypton, and xenon can be used.
  • the heating temperature can be, for example, 600°C or higher and 1250°C or lower.
  • the oxide film can be reliably reduced and made thinner.
  • a general-purpose heating device can be used.
  • the heating time can be, for example, 1 second or more and 1 hour or less. If the time is 1 second or more, the oxide film can be reduced and made thinner. Further, by setting the time to 1 hour or less, it is possible to prevent it from taking too much time.
  • the above pressure, heating temperature, and heating time can be changed depending on the thickness of the oxide film.
  • the oxide film When the oxide film is thick, the oxide film can be made thinner and an oxygen atomic layer can be formed by increasing the pressure, temperature, or lengthening the heating time.
  • the oxide film When the oxide film is thin, the oxide film can be completely removed and the oxygen atomic layer can be prevented from disappearing by lowering the pressure, lowering the temperature, or shortening the heating time.
  • Heating of the single crystal silicon wafer in a hydrogen atmosphere may be performed in a heat treatment furnace or in a single crystal silicon film forming apparatus.
  • the heating device may be a batch type or a single wafer type.
  • the thinning of the oxide film in step S14 can be performed by plasma using a gas containing hydrogen atoms or plasma using an inert gas.
  • a gas containing hydrogen atoms for example, hydrogen molecules, ammonia, nitrogen, argon, helium, neon, krypton, or xenon can be used. These gases may be used in combination.
  • hydrogen radicals generated by plasma can stably reduce the oxide film at low temperatures and make it thin.
  • the oxide film can be thinned by sputtering with high-energy particles generated by plasma.
  • the oxide film when the oxide film is thinned using the plasma, it may be performed at room temperature or may be performed by heating.
  • the time for exposing the single crystal silicon wafer to plasma depends on the plasma density, ion energy, etc., but by setting it to, for example, 1 second or more and 30 minutes or less, the oxide film can be stably thinned.
  • the time of exposure to plasma can be changed depending on the thickness of the oxide film.
  • the oxide film can be made thinner to form an oxygen atomic layer by increasing the plasma exposure time.
  • the oxide film is thin, by shortening the time of exposure to plasma, it is possible to prevent the oxide film from being completely removed and the oxygen atomic layer disappearing.
  • S15 in FIG. 1 is a step of epitaxially growing single crystal silicon on the surface of the single crystal silicon wafer having the oxygen atomic layer after forming the oxygen atomic layer in step S14.
  • monosilane and disilane can be used as the gas used for epitaxial growth.
  • Nitrogen and hydrogen may also be used as carrier gases.
  • the pressure in the chamber may be any pressure that does not cause a gas phase reaction.
  • a batch type or a single wafer type may be used as the epitaxial growth apparatus.
  • epitaxial growth of single crystal silicon can be performed at a temperature of, for example, 450° C. or higher and 800° C. or lower.
  • a temperature of, for example, 450° C. or higher and 800° C. or lower.
  • the film formation time can be adjusted to adjust the thickness of the epitaxial layer. Furthermore, when forming a film at a high temperature, by shortening the film forming time, it is possible to prevent oxygen from diffusing outward from the single crystal silicon wafer and reducing the heat resistance of the oxygen atomic layer.
  • epitaxial growth of single-crystal silicon can be performed, for example, with the partial pressure of the silicon source gas set to 0.1 Pa or more and 2000 Pa or less. Within this pressure range, single crystal silicon can be more stably formed without generating dislocations or stacking faults on the oxygen atomic layer.
  • step S14 of forming an oxygen atomic layer by setting the plane concentration of oxygen in the oxygen atomic layer to 6 ⁇ 10 14 atoms/cm 2 or less, no defects are formed in the epitaxial layer. This is because the crystallinity of the single crystal silicon wafer is maintained when the amount of oxidation (planar concentration of oxygen in the oxygen atomic layer) is small. Therefore, there is no lower limit to the plane concentration of oxygen, and it is sufficient that it is greater than 0. If the plane concentration of oxygen in the oxygen atomic layer is 6 ⁇ 10 14 atoms/cm 2 or less, defects caused by the oxygen atomic layer can be prevented from being formed in the epitaxial layer, and if the epitaxial layer is polycrystalline. It can prevent it from becoming silicon or amorphous silicon.
  • the planar concentration of oxygen can be measured by SIMS (Secondary Ion Mass Spectrometry).
  • SIMS Secondary Ion Mass Spectrometry
  • a peak is formed at the depth where the oxide layer is formed.
  • the planar concentration can be determined by integrating the product of the volume concentration and depth obtained by one sputtering process near the peak.
  • an epitaxial wafer 10A as shown in FIG. 2, for example, can be obtained.
  • an oxide film is formed on a single crystal silicon wafer 1 as described above, the oxide film is thinned to form an oxygen atomic layer 2, and then single crystal silicon is epitaxially grown. By doing so, a uniform oxygen atomic layer 2 can be formed within the wafer surface. This is because the oxidation rate in single-crystal silicon slows down due to the growth of the oxide film, so the thickness of the oxide film is easier to control than the oxygen atomic layer 2, and the thinning of the oxide film is easier than the oxidation process. This is thought to be because it is easier to control as it progresses slowly.
  • step S15 of epitaxially growing single-crystal silicon repeating step S13 of forming an oxide film, step S14 of forming oxygen atomic layer 2, and step S15 of epitaxially growing single-crystal silicon, for example, as shown in FIG.
  • a plurality of oxygen atomic layers 2 can be formed. That is, according to the method for manufacturing an epitaxial wafer according to this aspect, an epitaxial wafer 10B shown in FIG. 3 is obtained in which oxygen atomic layers 2 and single-crystal epitaxial silicon layers 3 are alternately and repeatedly stacked on a single-crystal silicon wafer 1. be able to.
  • the top surface of the epitaxial wafer 10B in FIG. 3 is a single-crystal epitaxial silicon layer 3.
  • the gettering effect can be enhanced more than when a single oxygen atomic layer 2 is formed.
  • the method for manufacturing an epitaxial wafer of the present invention as described above is a highly versatile method that does not require any special equipment, and also allows stable and simple formation of an oxygen atomic layer for proximity gettering. It is possible to form a high-quality epitaxial layer, and a high-quality epitaxial wafer can be obtained.
  • Example 1 and Comparative Example 1 The conductivity type, diameter, crystal plane orientation, and oxygen concentration of the prepared single crystal silicon wafer are as follows. Wafer conductivity type: p type Diameter: 300mm Crystal plane orientation: (100) Oxygen concentration: 14ppma (JEITA)
  • the single-crystal silicon wafer was subjected to hydrofluoric acid cleaning using a batch-type cleaning apparatus, and then rinsed with pure water.
  • the single crystal silicon wafer was immersed in the SC1 solution using a batch type apparatus.
  • the SC1 solution prepared at this time had a mixing ratio of aqueous ammonia (NH 3 concentration 28%): hydrogen peroxide solution (H 2 O 2 concentration 30%): water of 1:1:10, and the temperature of the solution was 70°C. And so.
  • the immersion time in the SC1 solution was 3 minutes. Thereafter, the single crystal silicon wafer was rinsed with pure water.
  • Example 1 the single crystal silicon wafer with the oxide film formed thereon was transported into an epitaxial growth apparatus.
  • Example 1 the oxide film was thinned by heating in a hydrogen atmosphere to form an oxygen atomic layer.
  • the heating temperature was 700° C.
  • Example 1 the heating time was 20 to 600 seconds.
  • Comparative Example 1 the oxide film was not thinned by heating in a hydrogen atmosphere. That is, the heating time in Comparative Example 1 in a hydrogen atmosphere was 0 seconds.
  • monocrystalline silicon was epitaxially grown using monosilane on the surface of the single-crystal silicon wafer on which the oxygen atomic layer had been formed.
  • the temperature was 700° C.
  • the partial pressure of monosilane was 60 Pa
  • the film thickness was 100 nm.
  • hydrogen was used as the carrier gas. In this way, epitaxial wafers were manufactured in each of Example 1 and Comparative Example 1.
  • Example 1 the formation of the oxygen atomic layer and the epitaxial growth of single crystal silicon were performed in the same chamber.
  • Comparative Example 1 single crystal silicon was epitaxially grown without thinning the oxide film by heating in a hydrogen atmosphere.
  • Example 1 Furthermore, the results of measuring the oxygen concentration within the plane of the substrate when the heating time in Example 1 was 20 seconds are shown by black circles in FIG. From FIG. 5, it can be seen that in Example 1, the oxygen atomic layer could be formed uniformly within the plane.
  • Example 1 As a result of measuring defects with a size of 100 nm or more on the epitaxial wafers manufactured in Example 1 and Comparative Example 1 using SurfScan SP5 manufactured by KLA-Tencor, it was found that the oxide film was thinned by heating in a hydrogen atmosphere. In Comparative Example 1, in which heating was not performed, the number of defects reached the measurement upper limit (approximately 20,000), but in Example 1, in which heating was performed in a hydrogen atmosphere, no defects were present. In the case of , the number was 27 or less, indicating that a single crystal silicon epitaxial layer could be formed on the oxygen atomic layer without generating defects.
  • Comparative Example 2 In Comparative Example 2, first, the same single crystal silicon substrate as in Example 1 and Comparative Example 1 was prepared. Next, in order to remove the natural oxide film from the surface of the prepared single-crystal silicon wafer, the single-crystal silicon wafer was subjected to hydrofluoric acid cleaning using a batch-type cleaning device, followed by deionized water rinsing, and then hydrogen Heated in atmosphere. The heating temperature was 1150° C. and the heating time was 1 minute.
  • Example 2 Under the same conditions as in Example 1 and Comparative Example 1, single crystal silicon was epitaxially grown on the surface of the single crystal silicon wafer on which the oxygen atomic layer was formed. In this manner, an epitaxial wafer was manufactured in Comparative Example 2.
  • Example 1 which is an example of the present invention
  • the oxygen atomic layer is more stable in the epitaxial layer than in Comparative Example 2, in which neither oxide film formation using an oxidizing solution nor thinning of the oxide film was performed.
  • a method for manufacturing an epitaxial wafer in which a single-crystal silicon epitaxial layer is formed on a single-crystal silicon wafer the step of removing a natural oxide film from the surface of the single-crystal silicon wafer; a step of forming an oxide film on the surface of a crystalline silicon wafer using an oxidizing solution; a step of thinning the oxide film to form an oxygen atomic layer after forming the oxide film; and a step of forming an oxygen atomic layer after forming the oxygen atomic layer.
  • a method for manufacturing an epitaxial wafer comprising the step of epitaxially growing single crystal silicon on the surface of the single crystal silicon wafer having the oxygen atomic layer.
  • [5] The method for manufacturing an epitaxial wafer according to [3], characterized in that the ozone water is used as the oxidizing solution, and the temperature of the ozone water is 10°C or more and 30°C or less.
  • [6] The method for producing an epitaxial wafer according to any one of [1] to [5], wherein the oxide film is thinned by heating the single crystal silicon wafer in a hydrogen atmosphere.
  • [7] The method for producing an epitaxial wafer according to [6], wherein the heating temperature in the hydrogen atmosphere is 600°C or higher and 1250°C or lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、単結晶シリコンウェーハ上に単結晶シリコンエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、単結晶シリコンウェーハの表面から自然酸化膜を除去する工程、前記自然酸化膜除去後に、前記単結晶シリコンウェーハの表面に酸化性溶液により酸化膜を形成する工程、前記酸化膜を形成した後に、前記酸化膜を薄膜化して、酸素原子層を形成する工程、及び前記酸素原子層を形成した後に、前記酸素原子層を有する前記単結晶シリコンウェーハの表面に単結晶シリコンをエピタキシャル成長させる工程を含むことを特徴とするエピタキシャルウェーハの製造方法である。これにより、酸素原子層をエピタキシャル層に安定的かつ簡便に導入することができるとともに、良質な単結晶シリコンのエピタキシャル層を有するエピタキシャルウェーハを製造できるエピタキシャルウェーハの製造方法を提供できる。

Description

エピタキシャルウェーハの製造方法
 本発明は、エピタキシャルウェーハの製造方法に関する。
 固体撮像素子やその他のトランジスタをはじめとした半導体素子を形成するシリコン基板には、重金属をはじめとした素子特性を狂わせる元素をゲッタリングする機能を持つことが求められる。ゲッタリングにはシリコン基板裏面に多結晶シリコン(Poly-Si)層を持たせたり、ブラスト加工によりダメージを持たせた層を形成する方法や、高濃度ボロンのシリコン基板を利用したり、析出物を形成させたりとさまざまな手法が提案及び実用化されている。酸素析出によるゲッタリングでは、電気陰性度が大きい酸素に対して、イオン化傾向が大きい(電気陰性度が小さい)金属を取り込むことでゲッタリングする。
 また、素子の活性領域近傍にゲッタリング層を形成する、いわゆる近接ゲッタリングも提案されている。例えば、炭素をイオン注入した基板の上にシリコンをエピタキシャル成長させた基板などがある。ゲッタリングでは、ゲッタリングサイト(金属が単元素で存在するよりもサイトで結合やクラスタリングすることで系全体のエネルギーが低下する)まで元素が拡散する必要がある。シリコン中に含まれる金属元素の拡散係数は元素により異なり、また近年のプロセス低温化によりゲッタリングサイトまで金属が拡散することが出来なくなることを考慮して、近接ゲッタリングの手法が提案されている。
 近接ゲッタリングに酸素を用いることが出来れば、非常に有力なゲッタリング層をもったシリコン基板となると考えられる。特に、エピタキシャル層の途中に酸素原子層を有するエピタキシャルウェーハであれば、近年の低温プロセスにおいても確実に金属不純物をゲッタリングすることができる。
 以上、金属不純物をゲッタリングすることを中心に述べてきたが、例えば、酸素の効果としては、CVD酸化膜を裏面に形成することでエピタキシャル成長時のオートドープを防ぐ効果が知られている。
 先行技術について言及する。特許文献1は、構造としてはシリコンの上に酸素の薄い層を形成しさらにシリコンを成長させる方法である。この方法は、ALD(「Atomic layer deposition」、「原子層堆積法」)をベースとした技術である。ALDは対象原子を含む分子を吸着させ、その後分子中の不要な原子(分子)を解離・脱離させる方法であり、表面結合を利用し、非常に精度よく、また、反応制御性が良好であり、幅広く用いられている。
 特許文献2には、真空加熱などにより形成したシリコン清浄表面上に、自然酸化膜を形成してから酸化膜もしくは別の物質を吸着、堆積させる方法が記載されている。
 特許文献3及び4は、シリコン基板に酸素原子層を複数導入することで、デバイス特性の改善、(移動度)向上が可能になることを示している。
 特許文献5は、厚さが5nm以下である原子層の上にSiHガスを用いてエピタキシャル層を形成する方法を示している。また、酸素原子層を酸素ガスにより形成する方法を示している。
 特許文献6及び7には、半導体基板の表面を酸化性気体や酸化性溶液に接触させて酸化膜を形成した後に単結晶シリコンをエピタキシャル成長させる方法が記載されている。また、特許文献6には、酸化性ガスを流した後にシリコンの成膜ガスを流す方法が記載されている。
 特許文献8には、IV族の元素からなるウェーハ表面の自然酸化膜を除去してから、ウェーハを酸化して酸素原子層を形成した後に単結晶シリコンをエピタキシャル成長させる方法が記載されている。
 特許文献9には、酸素を含む前駆体をCVDエピタキシー炉に供給して酸素挿入部分単層を形成してからシリコンエピタキシャル層を形成する方法が記載されている。
 非特許文献1は、HFによる自然酸化膜除去後に大気中で酸化してから減圧CVDによりアモルファスシリコンを成膜し、その後結晶化熱処理により単結晶シリコンを形成する方法を示している。
特開2014-165494号公報 特開平05-243266号公報 米国特許第7,153,763号明細書 米国特許第7,265,002号明細書 特開2019-004050号公報 特開2008-263025号公報 特開2009-016637号公報 特開2021-111696号公報 特開2022-22194号公報
I.Mizushima et al., Jpn. J. Appl. Phys. 39(2000)2147.
 上記のように、ウェーハ内に酸素の層を形成することで金属不純物をゲッタリングする方法は従来から用いられてきた。しかし、従来の技術では、精度よく酸素の薄い層を得られる一方で装置の構成が複雑であったり、工程数が多くなったりという問題があった。
 例えば、特許文献1に記載の技術では、ALDでは単結晶シリコンをエピタキシャル成長させることができないため、ALDとCVDの少なくとも2つのチャンバーが必要になり、装置の構成が複雑になるという問題があった。
 また、特許文献5及び9に記載の技術では、SiHと酸素が反応して爆発するのを防ぐため、排気系統を分けた2つのチャンバーを用意する必要があるという問題があった。
 また、特許文献6に記載の技術では、酸化性のガスとシリコンの成膜ガスが反応して爆発するのを防ぐため、安全性に配慮した特別な装置が必要であるという問題があった。
 また、非特許文献1に記載の方法では、結晶化する時に熱処理を行う必要があり、プロセスの工程数が多くなるという問題があった。また、アモルファスシリコン中には一般的に多量の水素が含まれるため、結晶化熱処理時に水素起因の欠陥が形成される可能性がある。
 また、特許文献8に記載の技術では、酸素原子層を形成するために長時間の酸化が必要となることに加え、ウェーハ面内で酸素濃度を均一にすることが難しいという問題があった。
 また、従来の技術では、酸素の層を安定的に導入するための記載や、良質な単結晶シリコンのエピタキシャル層を形成するための具体的な記載がないという問題があった。
 例えば、特許文献2では、転位および積層欠陥を発生させることなくウェーハ表面に単結晶シリコンのエピタキシャル層を形成する方法については何ら記載されていない。
 また、特許文献3、4では、酸素原子層を複数導入したシリコンウェーハの具体的な成長方法については言及していない。
 また、特許文献6及び7では、酸化性気体や酸化性溶液に接触させる前の自然酸化膜の除去法は記載されていない。
 上述のように、従来の技術では、精度よく酸素の原子層を得られる一方で、装置の構成が複雑であったり、酸素の層の導入が安定的ではなかったり、良質な単結晶シリコンのエピタキシャル層を得られなかったりといった問題があった。そのため、酸素原子層をエピタキシャル層に安定的かつ簡便に導入することができるエピタキシャルウェーハの製造方法が必要である。
 本発明は、上記従来技術の問題点に鑑みてなされたものであって、酸素原子層をエピタキシャル層に安定的かつ簡便に導入することができるとともに、良質な単結晶シリコンのエピタキシャル層を有するエピタキシャルウェーハを製造できるエピタキシャルウェーハの製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、単結晶シリコンウェーハ上に単結晶シリコンエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、
 単結晶シリコンウェーハの表面から自然酸化膜を除去する工程、
 前記自然酸化膜除去後に、前記単結晶シリコンウェーハの表面に酸化性溶液により酸化膜を形成する工程、
 前記酸化膜を形成した後に、前記酸化膜を薄膜化して、酸素原子層を形成する工程、及び
 前記酸素原子層を形成した後に、前記酸素原子層を有する前記単結晶シリコンウェーハの表面に単結晶シリコンをエピタキシャル成長させる工程
を含むことを特徴とするエピタキシャルウェーハの製造方法を提供する。
 このようなエピタキシャルウェーハの製造方法とすることで、酸素原子層を残した状態で酸素原子層を有する単結晶シリコンウェーハの表面上に転位および積層欠陥を形成することなく単結晶シリコンを成長できる。すなわち、本発明のエピタキシャルウェーハの製造方法であれば、酸素原子層をエピタキシャル層に安定的かつ簡便に導入することができるとともに、良質な単結晶シリコンのエピタキシャル層を有するエピタキシャルウェーハを製造できる。
 また、例えば、前記自然酸化膜の除去を、フッ酸を含む溶液により行うことができる。
 このようにフッ酸を含む溶液を用いることで、短時間で自然酸化膜を除去することができる。
 また、前記酸化性溶液として、SC1溶液、過酸化水素水又はオゾン水を用いることができる。
 このような方法であれば、短時間で簡単に酸化膜を形成することができる。
 また、前記酸化性溶液として前記SC1溶液又は前記過酸化水素水を用い、前記SC1溶液又は前記過酸化水素水の温度を20℃以上かつ80℃以下とすることができる。
 このような温度であれば、特殊な設備を準備することなく簡単に単結晶シリコンウェーハを酸化することができる。
 また、前記酸化性溶液として前記オゾン水を用い、前記オゾン水の温度を10℃以上かつ30℃以下とすることができる。
 このような温度であれば、確実にウェーハを酸化することができる。
 また、前記酸化膜の薄膜化を水素雰囲気中での前記単結晶シリコンウェーハの加熱により行うことができる。
 このように水素雰囲気中で熱処理することにより、酸化膜の一部を安定的に還元でき、それにより酸化膜の薄膜化を行うことができる。
 この場合、例えば、前記水素雰囲気中での加熱温度を600℃以上かつ1250℃以下とすることができる。
 このような温度範囲とすることで、確実に酸化膜の一部を還元でき、それにより酸化膜の薄膜化を行うことができる。
 或いは、前記酸化膜の薄膜化を水素原子を含むガスを用いたプラズマ又は不活性ガスを用いたプラズマにより行うことができる。
 水素原子を含むガスを用いたプラズマによる方法であれば、酸化膜の一部を低温で安定的に還元でき、それにより酸化膜の薄膜化を行うことができる。また、不活性ガスを用いたプラズマによる方法であれば、プラズマにより生成された高エネルギーの粒子により酸化膜をスパッタリングすることで薄膜化することができる。
 また、前記単結晶シリコンのエピタキシャル成長させる工程では、450℃以上かつ800℃以下の温度で前記単結晶シリコンのエピタキシャル成長を行うことができる。
 このような温度範囲とすることで、欠陥を発生させることなくエピタキシャル成長できる。
 また、前記単結晶シリコンをエピタキシャル成長させる工程で、シリコンの原料ガスの分圧を0.1Pa以上かつ2000Pa以下とすることができる。
 このような圧力範囲とすることで、より安定して欠陥を発生させることなく単結晶シリコンをエピタキシャル成長させることができる。
 また、前記酸素原子層の酸素の平面濃度を6×1014atoms/cm以下とすることができる。
 このような酸素濃度範囲とすることで、欠陥を発生させることなく安定的にエピタキシャルウェーハを製造することができる。
 また、前記単結晶シリコンをエピタキシャル成長させる工程の後に、前記酸化膜を形成する工程と前記酸素原子層を形成する工程と前記単結晶シリコンをエピタキシャル成長させる工程とを繰り返し行うことができる。
 このように酸素原子層を複数層形成することで、単層の場合よりもゲッタリング効果を高めることができる。
 以上のように、本発明によれば、先端デバイスで採用されるシリコンエピタキシャルウェーハにおいて、酸素原子層をエピタキシャル層に安定的にかつ簡便に導入することができるとともに、良質な単結晶シリコンのエピタキシャル層を有するエピタキシャルウェーハを製造できる方法を提供することができる。また、酸素原子層による近接ゲッタリング効果を有する近接ゲッタリング基板を製造することが可能となる。
本発明のエピタキシャルウェーハの製造方法のフローを示す図である。 本発明のエピタキシャルウェーハの製造方法で製造できるエピタキシャルウェーハの一例の概略断面図である。 本発明のエピタキシャルウェーハの製造方法で製造できるエピタキシャルウェーハの他の一例の概略断面図である。 実施例1及び比較例1における水素雰囲気中での加熱時間と酸素濃度との関係を示すグラフである。 実施例1と比較例2における基板面内における酸素原子層の酸素濃度の分布を示すグラフである。
 上述のように、特殊な装置や、複雑なプロセスが必要なく、また、酸素原子層をエピタキシャル層に安定的かつ簡便に導入することができるとともに、良質な単結晶シリコンのエピタキシャル層を有するエピタキシャルウェーハを製造できるエピタキシャルウェーハの製造方法が求められていた。
 本発明者は、上記課題について鋭意検討を重ねた結果、単結晶シリコンウェーハ上に単結晶シリコンエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、単結晶シリコンウェーハの表面から自然酸化膜を除去する工程、前記自然酸化膜除去後に、前記単結晶シリコンウェーハの表面に酸化性溶液により酸化膜を形成する工程、前記酸化膜を形成した後に、前記酸化膜を薄膜化して、酸素原子層を形成する工程、及び前記酸素原子層を形成した後に、前記酸素原子層を有する前記単結晶シリコンウェーハの表面に単結晶シリコンをエピタキシャル成長させる工程を含むことを特徴とするエピタキシャルウェーハの製造方法により、単結晶シリコンのエピタキシャル層上に転位および積層欠陥を形成することなく、酸素原子層をエピタキシャル層に安定的かつ簡便に導入することが可能となることを見出し、本発明を完成した。
 即ち、本発明は、単結晶シリコンウェーハ上に単結晶シリコンエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、
 単結晶シリコンウェーハの表面から自然酸化膜を除去する工程、
 前記自然酸化膜除去後に、前記単結晶シリコンウェーハの表面に酸化性溶液により酸化膜を形成する工程、
 前記酸化膜を形成した後に、前記酸化膜を薄膜化して、酸素原子層を形成する工程、及び
 前記酸素原子層を形成した後に、前記酸素原子層を有する前記単結晶シリコンウェーハの表面に単結晶シリコンをエピタキシャル成長させる工程
を含むことを特徴とするエピタキシャルウェーハの製造方法である。
 以下、本発明について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
 [エピタキシャルウェーハ]
 本発明のエピタキシャルウェーハの製造方法によれば、例えば図2に概略的に断面を示す、エピタキシャルウェーハ10Aを製造できる。ただし、本発明のエピタキシャルウェーハの製造方法で製造できるエピタキシャルウェーハは、図2に示すものに限定されない。
 図2に示すエピタキシャルウェーハ10Aは、単結晶シリコンウェーハ1上に単結晶エピタキシャルシリコン層(以下、単にエピタキシャル層という場合がある)3を有し、単結晶エピタキシャルシリコン層3と単結晶シリコンウェーハ1との間に酸素原子層2を有している。
 [エピタキシャルウェーハの製造方法]
 図1に、本発明に係るエピタキシャルウェーハの製造方法のフローを示す。
 図1のS11の工程は、単結晶シリコンウェーハを準備する工程である。
 ここで、単結晶シリコンウェーハの製造方法は特に限定されない。例えば、チョクラルスキー法(Czochralski Method:以下CZ法という)により製造された基板を用いても良いし、フローティングゾーン法(Floating Zone Method:以下FZ法という)により製造された基板を用いても良い。また、CZ法及びFZ法により製造された単結晶シリコン基板上に単結晶シリコンをエピタキシャル成長させた基板を用いても良い。
 図1のS12は、工程S11で準備した単結晶シリコンウェーハの表面から自然酸化膜を除去する工程である。
 例えば、前記自然酸化膜の除去を、フッ酸を含む溶液により行うことができる。
 このようにフッ酸を含む溶液を用いることで、短時間で自然酸化膜を除去することができる。
 自然酸化膜を除去する工程S12では、例えば、フッ酸を用いても良いし、バッファードフッ酸を用いてもよい。バッファードフッ酸とは、フッ酸とフッ化アンモニウムとを混合した溶液である。フッ酸を含む溶液におけるフッ酸の濃度は、自然酸化膜を除去できる濃度であればよく、例えば0.001%以上かつ60%以下とすることができる。フッ酸を含む溶液の温度は、例えば10℃以上かつ50℃以下とすることができる。10℃以上とすれば、フッ酸を含む溶液で処理した後にウェーハに結露が生じるのを防ぐことができる。また、温度を50℃以下とすれば、揮発するフッ酸の量を抑えることができ、安全上の問題を回避できる。
 フッ酸を含む溶液による洗浄(自然酸化膜除去)の時間は、例えば撥水性が確認できるまでとすることができるが、例えば、1秒以上かつ1時間以下とすることができる。1秒以上であれば自然酸化膜を除去することができる。また、1時間以下とすることで時間が掛かりすぎるのを防止することができる。
 フッ酸を含む溶液による洗浄(自然酸化膜除去)は、バッチ式の洗浄装置を用いても良いし、枚葉式の洗浄装置を用いても良い。
 また、工程S12では、フッ酸を含む溶液の蒸気を用いて自然酸化膜を除去してもよい。
 図1のS13は、工程S12での自然酸化膜除去後に、単結晶シリコンウェーハの表面に酸化性溶液により酸化膜を形成する工程である。
 酸化膜のない疎水性の表面はパーティクルが付着しやすいが、酸化膜がある親水性の表面は、パーティクルの付着を防止することができる。このため、例えば、単結晶シリコンウェーハを酸化性溶液に浸漬して表面に酸化膜を形成することで、洗浄装置から次工程に単結晶シリコンウェーハを搬送するまでの間にパーティクルが付着するのを防止することができる。
 酸化性溶液への単結晶シリコンウェーハの浸漬では、例えば、バッチ式の装置を用いても良いし、枚葉式の装置を用いても良い。
 酸化性溶液として、例えば、SC1溶液、過酸化水素水又はオゾン水を用いることができる。
 このような方法であれば、短時間で簡単に酸化膜を形成することができる。
 より具体的には、SC1溶液とは、アンモニアと過酸化水素水と水とを混合した溶液であり、過酸化水素水により単結晶シリコンウェーハの表面を酸化するとともにアンモニアにより酸化膜をエッチングすることで、単結晶シリコンウェーハ表面に付着したパーティクルをリフトオフして除去することができる。このため、単結晶シリコン基板の洗浄工程で用いられるSC1溶液を用いることで、単結晶シリコンウェーハの表面に酸化膜が形成される。SC1溶液における各成分間の混合比は、アンモニア水より過酸化水素水の量を多くすることが好ましい。このような混合比とすることで、安定的かつ均一に酸化膜を形成することができる。例えば、アンモニア水(NH濃度28%)、過酸化水素水(H濃度30%)、及び水の混合比を、1:1~2:5~100とすることができる。
 単結晶シリコンウェーハをSC1溶液に浸漬する時間は、例えば1秒以上かつ1時間以下とすることができる。1秒以上であれば酸素原子層を十分に形成することができる。また、1時間以下とすることで時間が掛かりすぎるのを防止することができる。
 過酸化水素水を用いて酸化を行う場合には、例えば、過酸化水素水の濃度を0.01%以上かつ30%以下とすることができる。濃度が0.01%以上であれば確実に酸化膜を形成することができる。また、濃度が30%以下であれば、洗浄液中から過酸化水素水の蒸発量を適正に保つことができるため、廃棄設備への負担が増大することを防ぐことができる。
 単結晶シリコンウェーハを過酸化水素水に浸漬する時間は、例えば1秒以上かつ1時間以下とすることができる。1秒以上であれば酸素原子層を形成することができる。また、1時間以下とすることで時間が掛かりすぎるのを防止することができる。
 酸化性溶液としてのSC1溶液又は過酸化水素水の温度は、例えば20℃以上かつ80℃以下とすることができる。20℃以上であれば、安定的に酸化膜を形成することができる。また、80℃以下であれば、洗浄液の蒸発量を一定に保ち、洗浄液中に気泡が増加することを防ぐことができるため、ウェーハ面内で均一に酸化膜を形成することができる。すなわち、このような温度であれば、特殊な設備を準備することなく簡単に単結晶シリコンウェーハを酸化することができる。
 酸化膜を形成する工程S13において、オゾン水は、有機物の分解及び単結晶シリコンウェーハの表面の酸化のために使われる。オゾン水のオゾン濃度は、例えば、1ppm以上かつ500ppm以下とすることができる。オゾン濃度が1ppm以上であれば、安定的に単結晶シリコンウェーハの表面に酸化膜を形成することができる。また、オゾン濃度を500ppm以下とすることで、オゾンが分解又は気相中に抜けてオゾン濃度が変動することによる酸化膜厚のばらつきが発生するのを防止することができる。
 オゾン水の温度は、例えば10℃以上かつ30℃以下とすることができる。10℃以上とすることで、オゾン水処理後のウェーハで結露が発生するのを防ぐことができる。また、30℃以下とすることでオゾン水においてオゾンの分解または気相中に抜けることを防止することができ、それにより単結晶シリコンウェーハを確実に酸化することができる。
 単結晶シリコンウェーハをオゾン水に浸漬する時間は、例えば1秒以上かつ1時間以下とすることができる。1秒以上であれば酸素原子層を形成することができる。また、1時間以下とすることで時間が掛かりすぎるのを防止することができる。
 図1のS14は、工程S13で酸化膜を形成した後に、酸化膜を薄膜化して、酸素原子層を形成する工程である。
 酸化膜の薄膜化は、例えば、水素雰囲気中で単結晶シリコンウェーハを加熱することにより行うことができる。このように水素雰囲気中で熱処理することにより、酸化膜を均一かつ安定的に還元でき、それにより酸化膜の薄膜化を行うことができる。
 加熱は大気圧環境下で行っても良いし、減圧環境下で行ってもよい。減圧環境とは、例えば、100Pa以上かつ大気圧未満の環境のことを示す。水素雰囲気として、例えば、水素が100%の雰囲気を用いても良いし、水素と不活性ガスとを混合した雰囲気を用いても良い。不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノンのいずれかを用いることができる。
 加熱温度は、例えば、600℃以上かつ1250℃以下とすることができる。600℃以上とすることで確実に酸化膜を還元して薄膜化することができる。また、1250℃以下とすることで汎用的な加熱装置を用いることができる。
 加熱する時間は、例えば1秒以上かつ1時間以下とすることができる。1秒以上であれば酸化膜を還元して薄膜化できる。また、1時間以下とすることで時間がかかりすぎるのを防止することができる。
 また、上記の圧力、加熱温度、加熱時間は、酸化膜の厚さに応じて変えることができる。酸化膜が厚い場合には、圧力を高くする、又は温度を高くする、又は加熱時間を長くすることにより、酸化膜を薄膜化して酸素原子層を形成することができる。酸化膜が薄い場合には、圧力を低くする、又は温度を低くする、又は加熱時間を短くすることにより、酸化膜を全て除去して酸素原子層がなくなってしまうことを防ぐことができる。
 水素雰囲気中での単結晶シリコンウェーハの加熱は熱処理炉で行っても良いし、単結晶シリコンの成膜装置中で行ってもよい。加熱装置には、バッチ式を使用しても良いし、枚葉式を使用しても良い。
 或いは、工程S14における酸化膜の薄膜化は、水素原子を含むガスを用いたプラズマ又は不活性ガスを用いたプラズマにより行うことができる。前記ガスとしては、例えば、水素分子、アンモニア、窒素、アルゴン、ヘリウム、ネオン、クリプトン、又はキセノンを用いることができる。これらのガスは混合して用いてもよい。
 水素原子を含む、水素分子およびアンモニアの場合は、プラズマにより生成された水素ラジカルにより、低温で安定して酸化膜を還元して薄膜化することができる。
 不活性ガスとして、窒素、アルゴン、ヘリウム、ネオン、クリプトン、キセノンを用いる場合は、プラズマにより生成された高エネルギーの粒子により酸化膜をスパッタリングすることで薄膜化することができる。
 なお、前記プラズマを用いて酸化膜を薄膜化する場合には、室温で行っても良いし、加熱し行っても良い。
 前記単結晶シリコンウェーハをプラズマに曝す時間は、プラズマ密度やイオンエネルギーなどに依存するが、例えば1秒以上かつ30分以下とすることで、安定的に酸化膜を薄膜化することができる。
 また、プラズマに曝す時間は、酸化膜の厚さに応じて変えることができる。酸化膜が厚い場合には、プラズマに曝す時間を長くすることにより、酸化膜を薄膜化して酸素原子層を形成することができる。酸化膜が薄い場合には、プラズマに曝す時間を短くすることにより、酸化膜を全て除去して酸素原子層がなくなってしまうことを防ぐことができる。
 図1のS15は、工程S14で酸素原子層を形成した後に、前記酸素原子層を有する前記単結晶シリコンウェーハの表面に単結晶シリコンをエピタキシャル成長させる工程である。
 エピタキシャル成長に使うガスとして、例えば、モノシラン及びジシランを使うことができる。キャリアガスとして窒素及び水素を使用しても良い。また、チャンバーの圧力は気相反応が生じない圧力であればよい。
 エピタキシャル成長装置としてはバッチ式を使用しても良いし、枚葉式を使用しても良い。
 また、単結晶シリコンのエピタキシャル成長を、例えば450℃以上かつ800℃以下の温度で行うことができる。このような温度でエピタキシャル成長を行うことで、形成するエピタキシャル層に転位及び積層欠陥が形成されるのを防止でき、より安定して良質のエピタキシャル層を形成することができる。温度が高いほどエピタキシャル成長レートは高くなるため、高温で成膜することで厚いエピタキシャル層を短時間で形成することができる。一方で、薄いエピタキシャル層を形成したい場合には低温で成膜すればよい。このように、目的とするエピタキシャル層の厚さに応じて成長温度を変えることができる。また、このような温度範囲であれば、酸素原子層から酸素が拡散して酸素原子層が消滅することをより確実に防ぐことができる。
 また、エピタキシャル層の厚さを調整するために成膜時間を調整することができる。また、高温で成膜する場合には、成膜時間を短くすることで、単結晶シリコンウェーハから酸素が外方拡散して、酸素原子層の耐熱性が低下することを防ぐことができる。
 また、単結晶シリコンのエピタキシャル成長を、例えば、シリコンの原料ガスの分圧を0.1Pa以上かつ2000Pa以下として行うことができる。このような圧力範囲であれば、酸素原子層上に転位や積層欠陥を発生させることなく、より安定して単結晶シリコンを成膜することができる。
 酸素原子層を形成する工程S14において、前記酸素原子層の酸素の平面濃度を6×1014atoms/cm以下とすることで、エピタキシャル層中に欠陥が形成されない。これは、酸化量(酸素原子層の酸素の平面濃度)が少ない場合には単結晶シリコンウェーハの結晶性が保たれるためである。このため、酸素の平面濃度の下限値はなく、0よりも大きければよい。酸素原子層の酸素の平面濃度が6×1014atoms/cm以下であれば、エピタキシャル層に酸素原子層に起因する欠陥が形成されることを防ぐことができ、また、エピタキシャル層が多結晶シリコンまたはアモルファスシリコンになるのを防ぐことができる。
 ここで、酸素の平面濃度はSIMS(Secondary Ion Mass Spectrometry)により測定することができる。酸化層を含むSiをSIMSで測定した場合には、酸化層が形成された深さにピークが形成される。ピーク付近において1回のスパッタリングによる体積濃度と深さの積を積算することで平面濃度を求めることができる。
 以上のような工程S11~S15を行うことにより、例えば図2に示すようなエピタキシャルウェーハ10Aを得ることができる。
 本発明者らの検討によれば、上記のように単結晶シリコンウェーハ1上に酸化膜を形成してから、酸化膜を薄膜化して酸素原子層2を形成し、その後、単結晶シリコンをエピタキシャル成長することにより、ウェーハ面内で均一な酸素原子層2を形成することができる。これは、単結晶シリコンにおける酸化レートは酸化膜の成長により遅くなるため、酸素原子層2よりも酸化膜の方が膜厚の制御が容易であることに加え、酸化膜の薄膜化は酸化よりも緩やかに進行することで制御がしやすいためと考えられる。
 単結晶シリコンをエピタキシャル成長させる工程S15の後に、酸化膜を形成する工程S13と酸素原子層2を形成する工程S14と単結晶シリコンをエピタキシャル成長させる工程S15とを繰り返し行うことで、例えば図3に示すように、酸素原子層2を複数層形成することができる。すなわち、この態様に係るエピタキシャルウェーハの製造方法によれば、図3に示す、単結晶シリコンウェーハ1上に酸素原子層2と単結晶エピタキシャルシリコン層3を交互に繰り返し積層させたエピタキシャルウェーハ10Bを得ることができる。図3のエピタキシャルウェーハ10Bの最上面は、単結晶エピタキシャルシリコン層3である。
 このように酸素原子層2を複数層設けることで、単層の酸素原子層2を形成する場合よりもゲッタリング効果を高めることができる。
 以上のような本発明のエピタキシャルウェーハの製造方法であれば、特殊な装置なども不要で汎用性の高い方法であるとともに、近接ゲッタリングのための酸素原子層の安定的かつ簡単な形成や、良質なエピタキシャル層の形成が可能であり、高品質なエピタキシャルウェーハを得ることができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 [実施例1及び比較例1]
 準備した単結晶シリコンウェーハの導電型、直径、結晶面方位及び酸素濃度は以下の通りである。
 ウェーハの導電型  :p型
 直径        :300mm
 結晶面方位     :(100)
 酸素濃度      :14ppma (JEITA)
 次に、準備した単結晶シリコンウェーハの表面から自然酸化膜を除去するために、バッチ式の洗浄装置で、単結晶シリコンウェーハをフッ酸洗浄に供した後、純水でのリンスに供した。
 その後、酸化膜を形成するために、バッチ式の装置で単結晶シリコンウェーハをSC1溶液に浸漬した。このとき用意したSC1溶液は、アンモニア水(NH濃度28%):過酸化水素水(H濃度30%):水の混合比を1:1:10とし、溶液の温度は70℃とした。SC1溶液に浸漬した時間は3分である。その後、単結晶シリコンウェーハを純水リンスした。
 次に、酸化膜を形成した単結晶シリコンウェーハをエピタキシャル成長装置内に搬送した。実施例1では、水素雰囲気中で加熱することで酸化膜を薄膜化して、酸素原子層を形成した。加熱温度は700℃とし、実施例1では加熱時間を20~600秒とした。一方、比較例1では、水素雰囲気中で加熱することでの酸化膜の薄膜化は行なわなかった。すなわち、比較例1での水素雰囲気中で加熱時間は0秒である。
 その後、酸素原子層を形成した単結晶シリコンウェーハ表面に、モノシランを用いて単結晶シリコンをエピタキシャル成長させた。温度は700℃とし、モノシランの分圧は60Paとし、膜厚は100nmとした。このときキャリアガスには水素を用いた。これにより、実施例1及び比較例1のそれぞれにおいて、エピタキシャルウェーハを製造した。
 なお、実施例1では、酸素原子層の形成と単結晶シリコンのエピタキシャル成長は同一チャンバーで行なった。
 一方、比較例1では、水素雰囲気中で加熱することでの酸化膜の薄膜化を行うことなく、単結晶シリコンをエピタキシャル成長させた。
 その後、実施例1及び比較例1のそれぞれで製造したエピタキシャルウェーハについて、酸素原子層における酸素の平面濃度をSIMSにより測定した。図4に測定結果を示す。図4から、水素雰囲気で加熱することにより酸素原子層における酸素濃度を低減できることがわかる。
 また、実施例1における加熱時間を20秒とした場合について基板の面内で酸素濃度測定を行なった結果を図5に黒丸で示す。図5から、実施例1では、酸素原子層を面内均一に形成できていることがわかる。
 また、実施例1及び比較例1のそれぞれで製造したエピタキシャルウェーハについてKLA-Tencor社製のSurfScan SP5により100nm以上の大きさの欠陥を測定した結果、水素雰囲気中での加熱による酸化膜の薄膜化を行わなかった比較例1では、欠陥数が測定上限(約20000個)に達したが、水素雰囲気中での加熱を行なった実施例1の水素雰囲気中で加熱した場合には、欠陥はいずれの場合にも27個以下であり、欠陥を発生させることなく酸素原子層上に単結晶シリコンエピタキシャル層を形成できていることがわかった。
 [比較例2]
 比較例2では、まず、実施例1及び比較例1と同じ単結晶シリコン基板を準備した。次に、準備した単結晶シリコンウェーハの表面から自然酸化膜を除去するために、バッチ式の洗浄装置で、単結晶シリコンウェーハをフッ酸洗浄に供した後、純水リンスに供してから、水素雰囲気中で加熱した。加熱の温度は1150℃とし、時間は1分とした。
 その後、大気中に5時間放置することで単結晶シリコンウェーハの表面に酸素原子層を形成した。
 次に、実施例1および比較例1と同じ条件で、酸素原子層を形成した単結晶シリコンウェーハ表面に、単結晶シリコンをエピタキシャル成長させた。このようにして、比較例2において、エピタキシャルウェーハを製造した。
 その後、比較例2で製造したエピタキシャルウェーハについて、面内8点で酸素原子層における酸素の平面濃度をSIMSにより測定した。図5に測定結果を三角で示す。図5の結果から、大気中放置を行って酸素原子層を形成した比較例2では、酸素濃度がウェーハ面内で不均一になった。これは、ウェーハの中央部よりも外周部の方がシリコンの酸化速度が速かったためである。酸化速度がウェーハ面内で変化する原因としては、空気の流速の変化が考えられる。空気の流速が速い方が酸素の供給量が多いため、シリコンの酸化速度が速くなる。これらのことから、ウェーハ中央部から外周部に向かって空気の流速が速くなる流速分布となっていたことで、ウェーハ面内で酸素濃度が変化したと考えられる。
 また、比較例2で製造したエピタキシャルウェーハについてKLA-Tencor社製のSurfScan SP5により100nm以上の大きさの欠陥を測定した結果、欠陥数は測定上限(約20000個)に達した。
 以上に説明したように、本発明の例である実施例1では、酸化性溶液による酸化膜形成及び酸化膜の薄膜化の何れも行わなかった比較例2よりも酸素原子層をエピタキシャル層に安定的にかつ簡便に導入することができたとともに、上記比較例2及び酸化層の薄膜化を行わなかった比較例1よりも良質な単結晶シリコンのエピタキシャル層を有するエピタキシャルウェーハを製造できた。
 本明細書は、以下の態様を包含する。
 [1]単結晶シリコンウェーハ上に単結晶シリコンエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、単結晶シリコンウェーハの表面から自然酸化膜を除去する工程、前記自然酸化膜除去後に、前記単結晶シリコンウェーハの表面に酸化性溶液により酸化膜を形成する工程、前記酸化膜を形成した後に、前記酸化膜を薄膜化して、酸素原子層を形成する工程、及び前記酸素原子層を形成した後に、前記酸素原子層を有する前記単結晶シリコンウェーハの表面に単結晶シリコンをエピタキシャル成長させる工程を含むことを特徴とするエピタキシャルウェーハの製造方法。
 [2]前記自然酸化膜の除去を、フッ酸を含む溶液により行うことを特徴とする[1]に記載のエピタキシャルウェーハの製造方法。
 [3]前記酸化性溶液として、SC1溶液、過酸化水素水又はオゾン水を用いることを特徴とする[1]又は[2]に記載のエピタキシャルウェーハの製造方法。
 [4]前記酸化性溶液として前記SC1溶液又は前記過酸化水素水を用い、前記SC1溶液又は前記過酸化水素水の温度を20℃以上かつ80℃以下とすることを特徴とする[3]に記載のエピタキシャルウェーハの製造方法。
 [5]前記酸化性溶液として前記オゾン水を用い、前記オゾン水の温度を10℃以上かつ30℃以下とすることを特徴とする[3]に記載のエピタキシャルウェーハの製造方法。
 [6]前記酸化膜の薄膜化を水素雰囲気中での前記単結晶シリコンウェーハの加熱により行うことを特徴とする[1]~[5]のいずれか1つに記載のエピタキシャルウェーハの製造方法。
 [7]前記水素雰囲気中での加熱温度を600℃以上かつ1250℃以下とすることを特徴とする[6]に記載のエピタキシャルウェーハの製造方法。
 [8]前記酸化膜の薄膜化を水素原子を含むガスを用いたプラズマ又は不活性ガスを用いたプラズマにより行うことを特徴とする[1]~[5]のいずれか1つに記載のエピタキシャルウェーハの製造方法。
 [9]前記単結晶シリコンをエピタキシャル成長させる工程では、450℃以上かつ800℃以下の温度で前記単結晶シリコンのエピタキシャル成長を行うことを特徴とする[1]~[8]のいずれか1つに記載のエピタキシャルウェーハの製造方法。
 [10]前記単結晶シリコンをエピタキシャル成長させる工程で、シリコンの原料ガスの分圧を0.1Pa以上かつ2000Pa以下とすることを特徴とする[1]~[9]のいずれか1つに記載のエピタキシャルウェーハの製造方法。
 [11]前記酸素原子層を形成する工程において、前記酸素原子層の酸素の平面濃度を6×1014atoms/cm以下とすることを特徴とする[1]~[10]のいずれか1つに記載のエピタキシャルウェーハの製造方法。
 [12]前記単結晶シリコンをエピタキシャル成長させる工程の後に、前記酸化膜を形成する工程と前記酸素原子層を形成する工程と前記単結晶シリコンをエピタキシャル成長させる工程とを繰り返し行うことを特徴とする[1]から[11]のいずれか一項に記載のエピタキシャルウェーハの製造方法。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (12)

  1.  単結晶シリコンウェーハ上に単結晶シリコンエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、
     単結晶シリコンウェーハの表面から自然酸化膜を除去する工程、
     前記自然酸化膜除去後に、前記単結晶シリコンウェーハの表面に酸化性溶液により酸化膜を形成する工程、
     前記酸化膜を形成した後に、前記酸化膜を薄膜化して、酸素原子層を形成する工程、及び
     前記酸素原子層を形成した後に、前記酸素原子層を有する前記単結晶シリコンウェーハの表面に単結晶シリコンをエピタキシャル成長させる工程
    を含むことを特徴とするエピタキシャルウェーハの製造方法。
  2.  前記自然酸化膜の除去を、フッ酸を含む溶液により行うことを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
  3.  前記酸化性溶液として、SC1溶液、過酸化水素水又はオゾン水を用いることを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
  4.  前記酸化性溶液として前記SC1溶液又は前記過酸化水素水を用い、前記SC1溶液又は前記過酸化水素水の温度を20℃以上かつ80℃以下とすることを特徴とする請求項3に記載のエピタキシャルウェーハの製造方法。
  5.  前記酸化性溶液として前記オゾン水を用い、前記オゾン水の温度を10℃以上かつ30℃以下とすることを特徴とする請求項3に記載のエピタキシャルウェーハの製造方法。
  6.  前記酸化膜の薄膜化を水素雰囲気中での前記単結晶シリコンウェーハの加熱により行うことを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
  7.  前記水素雰囲気中での加熱温度を600℃以上かつ1250℃以下とすることを特徴とする請求項6に記載のエピタキシャルウェーハの製造方法。
  8.  前記酸化膜の薄膜化を水素原子を含むガスを用いたプラズマ又は不活性ガスを用いたプラズマにより行うことを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
  9.  前記単結晶シリコンをエピタキシャル成長させる工程では、450℃以上かつ800℃以下の温度で前記単結晶シリコンのエピタキシャル成長を行うことを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
  10.  前記単結晶シリコンをエピタキシャル成長させる工程で、シリコンの原料ガスの分圧を0.1Pa以上かつ2000Pa以下とすることを特徴とする請求項9に記載のエピタキシャルウェーハの製造方法。
  11.  前記酸素原子層を形成する工程において、前記酸素原子層の酸素の平面濃度を6×1014atoms/cm以下とすることを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
  12.  前記単結晶シリコンをエピタキシャル成長させる工程の後に、前記酸化膜を形成する工程と前記酸素原子層を形成する工程と前記単結晶シリコンをエピタキシャル成長させる工程とを繰り返し行うことを特徴とする請求項1から請求項11のいずれか一項に記載のエピタキシャルウェーハの製造方法。
PCT/JP2023/021921 2022-07-06 2023-06-13 エピタキシャルウェーハの製造方法 WO2024009705A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109273 2022-07-06
JP2022109273A JP2024007890A (ja) 2022-07-06 2022-07-06 エピタキシャルウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2024009705A1 true WO2024009705A1 (ja) 2024-01-11

Family

ID=89453250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021921 WO2024009705A1 (ja) 2022-07-06 2023-06-13 エピタキシャルウェーハの製造方法

Country Status (3)

Country Link
JP (1) JP2024007890A (ja)
TW (1) TW202405899A (ja)
WO (1) WO2024009705A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323689A (ja) * 1999-05-14 2000-11-24 Toshiba Corp 半導体エピタキシャル基板及びその製造方法
JP2009016637A (ja) * 2007-07-06 2009-01-22 Shin Etsu Handotai Co Ltd 半導体基板の製造方法
JP2009289807A (ja) * 2008-05-27 2009-12-10 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP2014165494A (ja) * 2013-02-22 2014-09-08 Imec 半導体上の酸素単原子層
JP2019004050A (ja) * 2017-06-15 2019-01-10 信越半導体株式会社 エピタキシャルウェーハの製造方法
JP2021111696A (ja) * 2020-01-10 2021-08-02 信越半導体株式会社 エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ
JP2022125625A (ja) * 2021-02-17 2022-08-29 信越半導体株式会社 エピタキシャルウェーハの製造方法
JP2022146664A (ja) * 2021-03-22 2022-10-05 信越半導体株式会社 エピタキシャルウェーハの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323689A (ja) * 1999-05-14 2000-11-24 Toshiba Corp 半導体エピタキシャル基板及びその製造方法
JP2009016637A (ja) * 2007-07-06 2009-01-22 Shin Etsu Handotai Co Ltd 半導体基板の製造方法
JP2009289807A (ja) * 2008-05-27 2009-12-10 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP2014165494A (ja) * 2013-02-22 2014-09-08 Imec 半導体上の酸素単原子層
JP2019004050A (ja) * 2017-06-15 2019-01-10 信越半導体株式会社 エピタキシャルウェーハの製造方法
JP2021111696A (ja) * 2020-01-10 2021-08-02 信越半導体株式会社 エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ
JP2022125625A (ja) * 2021-02-17 2022-08-29 信越半導体株式会社 エピタキシャルウェーハの製造方法
JP2022146664A (ja) * 2021-03-22 2022-10-05 信越半導体株式会社 エピタキシャルウェーハの製造方法

Also Published As

Publication number Publication date
TW202405899A (zh) 2024-02-01
JP2024007890A (ja) 2024-01-19

Similar Documents

Publication Publication Date Title
Seto Deposition of polycrystalline silicon by pyrolysis of silane in argon
JP2010034330A (ja) エピタキシャルウェーハおよびその製造方法
JP7435516B2 (ja) エピタキシャルウェーハの製造方法
JP5097332B2 (ja) 単結晶シリコンウェーハの製造方法、この種のシリコンウェーハおよびその使用
JP3298467B2 (ja) エピタキシャルウェーハの製造方法
JP7231120B2 (ja) エピタキシャルウェーハの製造方法
WO2024009705A1 (ja) エピタキシャルウェーハの製造方法
WO2021140763A1 (ja) エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ
US20060138540A1 (en) Semiconductor wafer having a semiconductor layer and an electrically insulating layer beneath it, and process for producing it
WO1997033305A1 (fr) Monocristal de silicium et processus de production d'un film fin de silicium monocristallin
JP2022125625A (ja) エピタキシャルウェーハの製造方法
JP3344205B2 (ja) シリコンウェーハの製造方法及びシリコンウェーハ
JP2010041000A (ja) 窒素ドープシリコンウェーハの製造方法及び該方法により得られる窒素ドープシリコンウェーハ
US7199057B2 (en) Method of eliminating boron contamination in annealed wafer
JP6927429B2 (ja) SiCエピタキシャル基板の製造方法
Aoyama et al. Surface cleaning for Si epitaxy using photoexcited fluorine gas
CN112514036A (zh) 外延硅晶片的制造方法及外延硅晶片
JP2005197534A (ja) 熱処理用治具の表面保護膜形成方法及び熱処理用治具
JP3261444B2 (ja) 半導体薄膜の製造方法
JPH0143454B2 (ja)
JPH09199379A (ja) 高品位エピタキシャルウエハ及びその製造方法
JPS6223451B2 (ja)
TW202344699A (zh) 單晶半導體膜之製造方法、單晶半導體膜之積層膜之製造方法以及半導體元件
JP3407345B2 (ja) シリコン基板の酸素濃度測定方法
KR0185985B1 (ko) 실리콘 웨이퍼의 에피택셜층 형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835241

Country of ref document: EP

Kind code of ref document: A1