WO2024009660A1 - 弾性波装置及びフィルタ装置 - Google Patents

弾性波装置及びフィルタ装置 Download PDF

Info

Publication number
WO2024009660A1
WO2024009660A1 PCT/JP2023/020462 JP2023020462W WO2024009660A1 WO 2024009660 A1 WO2024009660 A1 WO 2024009660A1 JP 2023020462 W JP2023020462 W JP 2023020462W WO 2024009660 A1 WO2024009660 A1 WO 2024009660A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode fingers
electrode
elastic wave
wave device
shape
Prior art date
Application number
PCT/JP2023/020462
Other languages
English (en)
French (fr)
Inventor
拓也 薮
亮 中川
健太郎 中村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024009660A1 publication Critical patent/WO2024009660A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device and a filter device.
  • Patent Document 1 discloses an example of an elastic wave device.
  • an IDT (Interdigital Transducer) electrode is provided on a piezoelectric substrate.
  • the shape of the plurality of electrode fingers of the IDT electrode includes a curved shape. More specifically, each electrode finger extends along a curved line from the center of the area where the IDT electrodes intersect to the common electrode.
  • the electrode finger pitch at the central portion in the direction in which the plurality of electrode fingers extends is narrower than the electrode finger pitch at the end portions in the direction. Therefore, the effect of suppressing the response of unnecessary waves can be obtained.
  • the resonant frequency differs for each part of the IDT electrode, there is a risk that the resonant characteristics will deteriorate.
  • An object of the present invention is to provide an elastic wave device and a filter device that can suppress unnecessary waves and suppress deterioration of resonance characteristics.
  • a broad aspect of the acoustic wave device includes a piezoelectric substrate including a piezoelectric layer and an IDT electrode provided on the piezoelectric layer, the IDT electrodes facing each other. a plurality of first electrode fingers having one end connected to the first busbar; and a plurality of second electrodes having one end connected to the second busbar. a portion in which the plurality of first and second electrode fingers are interposed with each other, and the first electrode finger and the second electrode finger overlap in the elastic wave propagation direction; is an intersection region, the shape of the plurality of first and second electrode fingers in plan view includes a curved portion, and within the intersection region, the resonance frequencies or the anti-resonance frequencies are approximately the same. We are doing so.
  • a piezoelectric substrate including a piezoelectric layer and an IDT electrode provided on the piezoelectric layer are provided, the IDT electrodes facing each other. a plurality of first electrode fingers having one end connected to the first busbar; and a plurality of second electrode fingers having one end connected to the second busbar. and the plurality of first and second electrode fingers are interposed with each other, and the first electrode finger and the second electrode finger overlap in the elastic wave propagation direction.
  • the portion is an intersection region, and the shape of the plurality of first and second electrode fingers in a plan view includes a circular arc or an elliptical arc shape, and includes the circular arc in the shape of the first and second electrode fingers.
  • the center of the circle or the midpoint of the two foci of the ellipse including the elliptical arc is set as a fixed point, and a straight line passing through the center of the intersection area in the direction in which the plurality of first and second electrode fingers extends is set as the reference line.
  • ⁇ C is an angle formed by a straight line passing through the fixed point and the reference line, the larger the absolute value of the angle ⁇ C , the narrower the electrode finger pitch.
  • a piezoelectric substrate including a piezoelectric layer and an IDT electrode provided on the piezoelectric layer are provided, and the piezoelectric substrate includes: One of a substrate formed by laminating the piezoelectric layer using lithium tantalate or lithium niobate as a material and a support substrate, and a substrate containing only the piezoelectric layer using lithium niobate as a material.
  • the IDT electrode includes first and second busbars facing each other, a plurality of first electrode fingers having one end connected to the first busbar, and one end connected to the second busbar.
  • a portion where the two electrode fingers overlap in the elastic wave propagation direction is an intersection region, and the shape of the plurality of first and second electrode fingers in plan view includes the shape of a circular arc or an elliptical arc, and the first and second electrode fingers overlap in the elastic wave propagation direction.
  • the plurality of first and second electrode fingers in the intersecting region extend from the center of a circle including the circular arc in the shape of the electrode finger, or the midpoint of two foci of the ellipse including the elliptical arc, as a fixed point.
  • the plurality of first and second electrode fingers has one of a configuration in which the larger the absolute value of the angle ⁇ C is, the wider the electrode finger pitch is, and a configuration in which the electrode finger pitch is narrower as the absolute value of the angle ⁇ C is larger.
  • a filter device is an elastic wave device including a plurality of elastic wave resonators, and at least one of the elastic wave resonators is configured according to the present invention.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • FIG. 3 is a schematic plan view for explaining the configuration of the IDT electrode in the first embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing an enlarged part of the IDT electrode in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the relationship between the absolute value of the angle
  • FIG. 6 is a schematic plan view of an IDT electrode in a comparative example.
  • FIG. 6 is a schematic plan view of an IDT electrode in a comparative example.
  • FIG. 7 is a diagram showing the Q value near the frequency at which the main mode is excited in the first embodiment of the present invention and the first comparative example.
  • FIG. 8 is a diagram showing the return loss near the frequency at which Rayleigh waves occur in the first embodiment of the present invention and the first comparative example.
  • FIG. 9 is a diagram showing a reverse velocity surface of elastic waves propagating through the first piezoelectric substrate and the second piezoelectric substrate.
  • FIG. 10 is a diagram showing reverse velocity surfaces of longitudinal waves, fast transverse waves, and slow transverse waves in the first piezoelectric substrate.
  • FIG. 11 is a diagram showing the relationship between the absolute value of the angle
  • FIG. 12 is a diagram showing impedance frequency characteristics when the resonance frequencies substantially match each other and the difference ⁇ f between the resonance frequencies is a negative value, and when the difference ⁇ f between the resonance frequencies is 0.
  • FIG. 13 is a diagram showing impedance frequency characteristics when the resonance frequencies substantially match each other and the difference ⁇ f between the resonance frequencies is a positive value, and when the difference ⁇ f between the resonance frequencies is 0.
  • FIG. 14 is a diagram showing the relationship between the absolute value of the angle
  • FIG. 15 is a diagram showing return loss near frequencies where higher-order modes occur in the second modified example of the first embodiment of the present invention and the first comparative example.
  • FIG. 16 is a diagram showing the relationship between the length of the offset electrode and the impedance ratio.
  • FIG. 17 is a diagram showing the relationship between gap width and impedance ratio.
  • FIG. 18 is a schematic front sectional view of an elastic wave device according to a third modification of the first embodiment of the present invention.
  • FIG. 19 is a schematic front sectional view of an elastic wave device according to a fourth modification of the first embodiment of the present invention.
  • FIG. 20 is a schematic plan view of an elastic wave device according to the second embodiment of the present invention.
  • FIG. 21 is a schematic plan view for explaining the configuration of an IDT electrode in the second embodiment of the present invention.
  • FIG. 22 is a diagram showing the relationship between the absolute value of the angle
  • FIG. 23 is a diagram showing return loss near frequencies where higher-order modes occur in the second embodiment of the present invention and the first comparative example.
  • FIG. 24 is a schematic plan view of an elastic wave device according to a third embodiment of the present invention.
  • FIG. 25 is a schematic plan view of an elastic wave device according to the fourth embodiment of the present invention.
  • FIG. 26 is a diagram showing impedance frequency characteristics in the first embodiment and the fourth embodiment of the present invention.
  • FIG. 27 is a diagram showing impedance frequency characteristics near the upper end of the stopband in the first embodiment and the fourth embodiment of the present invention.
  • FIG. 28 is a diagram showing return loss in the first embodiment and the fourth embodiment of the present invention.
  • FIG. 29 is a schematic plan view of an elastic wave device according to the fifth embodiment of the present invention.
  • FIG. 30 is a diagram showing impedance frequency characteristics in the first embodiment and the fifth embodiment of the present invention.
  • FIG. 31 is a diagram showing phase characteristics around 2.2 times the resonance frequency in the first embodiment and the fifth embodiment of the present invention.
  • FIG. 32 is a diagram showing return loss in the first embodiment and the fifth embodiment of the present invention.
  • FIG. 33 is a diagram showing the relationship between the absolute value
  • FIG. 34 is a schematic front sectional view of an elastic wave device according to a seventh embodiment of the present invention.
  • FIG. 35 is a diagram showing the relationship between the absolute value
  • FIG. 36 is a diagram showing the relationship between the absolute value
  • FIG. 37 is a schematic plan view of an elastic wave device according to the eighth embodiment of the present invention.
  • FIG. 35 is a diagram showing the relationship between the absolute value
  • FIG. 36 is a diagram showing the relationship between the absolute value
  • FIG. 38 is a schematic plan view showing the vicinity of the first edge region and the vicinity of the second edge region of the elastic wave device according to the ninth embodiment of the present invention.
  • FIG. 39 is a schematic plan view showing the vicinity of the first edge region and the vicinity of the second edge region of the elastic wave device according to the tenth embodiment of the present invention.
  • FIG. 40 is a circuit diagram of a filter device according to an eleventh embodiment of the present invention.
  • FIG. 41 is a schematic plan view showing an enlarged part of the IDT electrode in the fifth modification of the first embodiment of the present invention.
  • FIG. 42 is a schematic front sectional view of an elastic wave device according to the twelfth embodiment of the present invention.
  • FIG. 43 is a schematic front sectional view of an elastic wave device according to the thirteenth embodiment of the present invention.
  • FIG. 44 is a schematic front sectional view of an elastic wave device according to a first modification of the thirteenth embodiment of the present invention.
  • FIG. 45 is a schematic front sectional view of an elastic wave device according to a second modification of the thirteenth embodiment of the present invention.
  • FIG. 46 is a schematic front sectional view of an elastic wave device according to a third modification of the thirteenth embodiment of the present invention.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • the elastic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is a substrate having piezoelectricity.
  • the piezoelectric substrate 2 includes a support member 3 and a piezoelectric layer 6. More specifically, the support member 3 includes a support substrate 4 and a dielectric layer 5.
  • Dielectric layer 5 includes a first layer 5a and a second layer 5b. A first layer 5a is provided on the support substrate 4. A second layer 5b is provided on the first layer 5a.
  • a piezoelectric layer 6 is provided on the second layer 5b.
  • the layer structure of the piezoelectric substrate 2 is not limited to the above.
  • the piezoelectric substrate 2 may be a substrate consisting only of the piezoelectric layer 6.
  • an IDT electrode 8 is provided on the piezoelectric layer 6.
  • the IDT electrode 8 has a plurality of first electrode fingers 16 and a plurality of second electrode fingers 17.
  • the shape of the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 in plan view is an arc shape.
  • planar view refers to viewing from a direction corresponding to the upper side in FIG. 2 .
  • the piezoelectric layer 6 side is the upper side.
  • the shapes of the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 in plan view may include curved portions.
  • the shape of the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 in plan view includes the shape of a circular arc or an elliptical arc.
  • the details of the configuration of the IDT electrode 8 will be explained below.
  • the IDT electrode 8 includes, in addition to a plurality of first electrode fingers 16 and a plurality of second electrode fingers 17, a first bus bar 14 and a second bus bar 15, and a plurality of first bus bars 14 and second bus bars 15. It has one offset electrode 18 and a plurality of second offset electrodes 19.
  • the first bus bar 14 and the second bus bar 15 are opposed to each other.
  • One end of a plurality of first electrode fingers 16 is connected to the first bus bar 14, respectively.
  • One end portion of a plurality of second electrode fingers 17 is connected to the second bus bar 15, respectively.
  • the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 are inserted into each other.
  • the area where the first electrode finger 16 and the second electrode finger 17 overlap in the elastic wave propagation direction is an intersection area.
  • the first electrode finger 16 and the second electrode finger 17 may be simply referred to as electrode fingers.
  • the intersection region is a first envelope line that is a virtual line connecting the tips of the plurality of second electrode fingers 17 and a virtual line connecting the tips of the plurality of first electrode fingers 16.
  • This is the area between the second envelope and the second envelope. More specifically, among the plurality of electrode fingers, the electrode finger at one end in the direction in which the plurality of electrode fingers are lined up, the electrode finger at the other end, the first envelope, the second envelope, The area surrounded by is the intersection area. Therefore, the first envelope corresponds to the edge of the intersection region on the first bus bar 14 side.
  • the second envelope corresponds to the edge of the intersection region on the second bus bar 15 side.
  • each of the plurality of first offset electrodes 18 is connected to the first bus bar 14 .
  • the first electrode fingers 16 and the first offset electrodes 18 are arranged alternately.
  • One end of each of the plurality of second offset electrodes 19 is connected to the second bus bar 15 .
  • the second electrode fingers 17 and the second offset electrodes 19 are arranged alternately.
  • the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17, as well as the plurality of first offset electrodes 18 and the plurality of second offset electrodes 19, each have a proximal end and a distal end. include.
  • the base end portions of the first electrode fingers 16 and the first offset electrodes 18 are portions connected to the first bus bar 14 .
  • the base end portions of the second electrode fingers 17 and the second offset electrodes 19 are portions connected to the second bus bar 15 .
  • the tip of the first electrode finger 16 and the tip of the second offset electrode 19 face each other with a gap G2 in between. Further, the tip of the first electrode finger 16 faces the second bus bar 15 with the gap G2 and the second offset electrode 19 in between.
  • the tip of the second electrode finger 17 and the tip of the first offset electrode 18 face each other with a gap G1 in between. Further, the tip of the second electrode finger 17 faces the first bus bar 14 with the gap G1 and the first offset electrode 18 in between.
  • first offset electrode 18 and the second offset electrode 19 may be simply referred to as offset electrodes.
  • the first bus bar 14 and the second bus bar 15 may be simply referred to as bus bars.
  • FIG. 3 is a schematic plan view for explaining the configuration of the IDT electrode in the first embodiment.
  • each of the plurality of electrode fingers in a plan view corresponds to each arc of a plurality of concentric circles. Therefore, the centers of circles including arcs in the shapes of the plurality of electrode fingers coincide.
  • the center is defined as a fixed point C.
  • the edge portion of the intersection region D on the first bus bar 14 side is adjacent to the plurality of gaps G1.
  • the edge portion of the intersection region D on the second bus bar 15 side is adjacent to the plurality of gaps G2.
  • the ellipticity coefficient of a circle or ellipse including an arc in the shape of a plurality of electrode fingers is ⁇ 2/ ⁇ 1
  • the ellipticity coefficient ⁇ 2/ ⁇ 1 in this embodiment is 1.
  • the shape including the arc in the shape of the plurality of electrode fingers is an ellipse
  • the ellipticity coefficient ⁇ 2/ ⁇ 1 is other than 1.
  • ⁇ 1 corresponds to the dimension along the direction of the axis passing through the intersection region D among the long and short axes of the ellipse.
  • ⁇ 2 corresponds to the dimension along the direction of the axis that does not pass through the intersection area D, among the major and minor axes of the ellipse.
  • a straight line passing through the center of the intersection region D in the direction in which the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 extend is defined as a reference line N.
  • the direction in which the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 extend refers to a direction in which they extend in a curved shape.
  • the reference line N is, for example, a portion of both end edges where the distance between the end edge on the first bus bar 14 side and the end edge on the second bus bar 15 side in the intersection region D is the shortest. This is a straight line that passes through the center of the intersection area D in the direction that connects them.
  • the reference line N is a straight line corresponding to an axis of symmetry along which both end edges of the intersection region D on the first bus bar 14 side and the second bus bar 15 side are line symmetrical.
  • the fixed point C passes through the reference line N and is located outside the intersection area D.
  • the angle between the straight line passing through the fixed point C and the reference line N be ⁇ C.
  • FIG. 3 shows an example of such straight lines.
  • the positive direction of the angle ⁇ C is the counterclockwise direction when viewed from above. More specifically, the direction from the second bus bar 15 side to the first bus bar 14 side is the positive direction.
  • intersection region D By applying an alternating current voltage to the IDT electrode 8, elastic waves are excited in the intersection region D.
  • the intersection area D has portions located on countless straight lines passing through the fixed point C.
  • a straight line M is shown as an example of countless straight lines passing through the fixed point C and the intersection area D.
  • an elastic wave is excited in a portion located on the straight line M in the intersection region D.
  • Elastic waves are also excited in each of countless other portions located on straight lines (not shown) in the intersection region D.
  • each straight line passing through the fixed point C and the intersection area D is parallel to the direction in which the elastic wave is excited (the direction perpendicular to the direction in which the electrode fingers of the IDT electrode 8 extend) when the ellipticity coefficient ⁇ 2/ ⁇ 1 is 1.
  • the ellipticity coefficient ⁇ 2/ ⁇ 1 is other than 1, it is tilted from the direction in which the elastic wave is excited.
  • the direction in which the electrode fingers extend here refers to the direction in which each part of the electrode fingers extends.
  • the elastic wave propagation direction is parallel to a direction perpendicular to the tangent of the curved electrode fingers.
  • the angle ⁇ C between the straight line passing through the fixed point C and the intersection area D and the reference line N is the excitation angle ⁇ C_prop . In the part where the reference line N passes, the excitation angle ⁇ C_prop is 0°.
  • a piezoelectric single crystal is used as a material for the piezoelectric layer 6 of the acoustic wave device 1.
  • the propagation axis is the direction of X propagation.
  • the propagation axis and the reference line N extend in parallel. Therefore, in the elastic wave device 1, the angle ⁇ C is the angle between the straight line passing through the fixed point C and the propagation axis.
  • the propagation axis is not limited to the direction of X propagation, but may be a direction perpendicular to either the direction of 90° X propagation or the direction in which the electrode fingers of the IDT electrode 8 extend.
  • the direction in which the electrode finger extends is the direction in which the tangents of each part of the electrode finger extend.
  • intersection angle ⁇ C_AP1 The angle ⁇ C formed by the reference line N and the edge of the intersection region D on the first bus bar 14 side and a straight line passing through the fixed point C is defined as the intersection angle ⁇ C_AP1 .
  • the absolute values of the intersection angle ⁇ C_AP1 and the intersection angle ⁇ C_AP2 are the same. Therefore, the absolute value of the angle ⁇ C is 0° ⁇
  • the edge of the intersection region D on the first bus bar 14 side, the virtual line connecting the plurality of gaps G1, and the first bus bar 14 extend in parallel.
  • the end edge of the intersection region D on the second bus bar 15 side, the virtual line connecting the plurality of gaps G2, and the second bus bar 15 extend in parallel.
  • a pair of reflectors 9A and 9B are provided on the piezoelectric layer 6.
  • the reflector 9A and the reflector 9B face each other with the IDT electrode 8 in between in the direction in which the propagation axis extends.
  • the reflector 9A has a plurality of electrode fingers 9a.
  • the reflector 9B has a plurality of electrode fingers 9b.
  • the shape of the plurality of electrode fingers 9a of the reflector 9A and the shape of the plurality of electrode fingers 9b of the reflector 9B are respectively shapes corresponding to respective arcs in a plurality of concentric circles.
  • the center of a circle including an arc in the shape of the plurality of electrode fingers 9a and the plurality of electrode fingers 9b coincides with the fixed point C.
  • FIG. 4 is a schematic plan view showing an enlarged part of the IDT electrode in the first embodiment. Note that in FIG. 4, the IDT electrode 8 is indicated by hatching.
  • the duty ratio changes depending on the angle ⁇ C . More specifically, the larger the absolute value of the angle ⁇ C , the smaller the duty ratio. As a result, at any angle ⁇ C in the intersection region D, the resonance frequencies substantially match each other.
  • the antiresonance frequencies within the intersection region D may substantially match each other.
  • one frequency and the other frequency substantially match means that the absolute value of the difference between both frequencies is 2% or less with respect to the reference frequency. That is, when the ratio of the difference between both frequencies to the reference frequency is defined as the frequency change rate, both frequencies substantially matching each other means that the absolute value of the frequency change rate is 2% or less.
  • the reference frequency is the frequency when the angle ⁇ C is 0°.
  • the electrode finger pitch is constant. Therefore, when the wavelength defined by the electrode finger pitch is ⁇ , the wavelength ⁇ at the IDT electrode 8 is constant regardless of the angle ⁇ C . Note that the electrode finger pitch is the distance between the centers of adjacent electrode fingers.
  • the feature of this embodiment is that the resonance frequencies substantially match each other at any angle ⁇ C in the intersection region D. Thereby, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed. Details of this will be shown below along with details of the configuration of this embodiment.
  • FIG. 5 is a diagram showing the relationship between the absolute value of the angle
  • the duty ratio is 0.5 in the portion of the IDT electrode 8 where the angle ⁇ C is 0°.
  • is x and the duty ratio is y, y 1.057 ⁇ 10 ⁇ 4 ⁇ x 3 ⁇ 2.753 ⁇ 10
  • the frequency change rate is ⁇ f/f C0 ⁇ 100.
  • the absolute value of the frequency change rate is
  • the resonance frequency is
  • ⁇ f f C_AP ⁇ f C0 .
  • and the duty ratio is shown in FIG. 5 are as follows.
  • Support substrate 4 material...Si, surface orientation...(111), ⁇ in Euler angles ( ⁇ , ⁇ , ⁇ )...73° First layer 5a; Material: SiN, thickness: 50 nm Second layer 5b; Material: SiO 2 , Thickness: 300 nm Piezoelectric layer 6; Material: LiTaO 3 with rotational Y cut and 55° X propagation, thickness: 400 nm IDT electrode 8; Material...Al, thickness...100nm Logarithm of electrode fingers; 60 pairs Ellipticity coefficient ⁇ 2/ ⁇ 1 in the shape of electrode fingers; 1 Crossing angle; ⁇ C_AP1 ...10°, ⁇ C_AP2 ...-10° Wavelength ⁇ ; 2 ⁇ m Reflector 9A and reflector 9B; logarithm of electrode fingers...20 pairs
  • transverse modes and Rayleigh waves as unnecessary waves can be suppressed. This will be illustrated by comparing the first embodiment and the first comparative example. In addition, in this comparison, the design parameters of the elastic wave device 1 of the first embodiment were as described above.
  • each electrode finger of the IDT electrode 108, reflector 109A, and reflector 109B is linear.
  • the crossing region has a rectangular shape.
  • the intersection width is 41.5 ⁇ .
  • the number of pairs of electrode fingers of the IDT electrode 108 is 60 pairs, and the number of pairs of electrode fingers of the reflector 109A and reflector 109B is 20 pairs each.
  • the duty ratio is 0.5.
  • FIG. 7 is a diagram showing the Q value near the frequency at which the main mode is excited in the first embodiment and the first comparative example.
  • FIG. 8 is a diagram showing return loss near the frequency at which Rayleigh waves occur in the first embodiment and the first comparative example.
  • the lengths of the plurality of electrode fingers are different from each other. Therefore, the phases of the transverse modes occurring in each part of the IDT electrode 8 are difficult to match, and the intensity of the transverse modes as a whole is difficult to increase. Therefore, transverse modes can be suppressed. Furthermore, in the first embodiment, the curvatures of the shapes of the electrode fingers in plan view are different from each other. Therefore, the frequencies at which Rayleigh waves occur are dispersed. Therefore, Rayleigh waves can be suppressed.
  • the IDT electrode 8 only needs to include at least two first electrode fingers 16 or second electrode fingers 17 with different curvatures. In other words, it is sufficient that the total number of electrode fingers having different curvatures is two or more. In this case, Rayleigh waves can be suppressed more reliably.
  • the resonant frequencies in each part substantially match each other. Therefore, since the main mode is suitably excited, deterioration of resonance characteristics can be suppressed.
  • the curvature of the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 increases as it goes from one side to the other in the direction in which the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 are lined up. may change gradually.
  • the present invention utilizes the fact that the propagation characteristics of elastic waves are different at each angle ⁇ C . Details of this will be explained below.
  • the phase velocity of the elastic wave has a dependence on the angle ⁇ C and exhibits unique characteristics depending on the configuration of the substrate. Note that the reciprocal of the phase velocity corresponds to the inverse velocity surface. Therefore, the relationship between the angle ⁇ C and the phase velocity is approximately equal to the inverse velocity surface of the piezoelectric substrate. Therefore, FIG. 9 shows an example of reverse velocity surfaces of piezoelectric substrates having different layer configurations.
  • One piezoelectric substrate is a substrate made only of LiTaO 3 (LT) with rotation Y cut and 42° X propagation. This substrate is referred to as a first piezoelectric substrate.
  • the other piezoelectric substrate is a piezoelectric layer/support substrate bonded substrate.
  • the second piezoelectric substrate is a substrate in which a silicon substrate with a (100) plane orientation, a silicon oxide film, and a lithium tantalate layer are laminated in this order.
  • FIG. 9 is a diagram showing the reverse velocity surface of elastic waves propagating through the first piezoelectric substrate and the second piezoelectric substrate.
  • the reverse velocity surfaces of the first piezoelectric substrate and the second piezoelectric substrate are both line-symmetrical with the x-axis as the axis of symmetry. Note that the direction of the x-axis corresponds to the direction in which the angle ⁇ C is 0°.
  • the reverse velocity surface in the first piezoelectric substrate has a concave shape.
  • the reverse velocity surface of the second piezoelectric substrate has a convex shape.
  • FIG. 10 is a diagram showing inverse velocity surfaces of longitudinal waves, fast transverse waves, and slow transverse waves in the first piezoelectric substrate.
  • the inverse velocity surfaces of the three types of elastic wave modes, longitudinal waves, fast transverse waves, and slow transverse waves, are different from each other.
  • the portions passing through the arrows L1 and L2 in FIG. 10 each correspond to an example where the angle ⁇ C is other than 0°.
  • the interval between the inverse velocity planes of the slow transverse wave and the fast shear wave in the part passing through the arrow L1 is different from the interval between the inverse velocity planes of the slow transverse wave and the fast transverse wave in the part passing through the arrow L2.
  • the interval between the reverse velocity planes of fast transverse waves and longitudinal waves in the part passing through arrow L1 is different from the interval between the reverse velocity planes of fast transverse waves and longitudinal waves in the part passing through arrow L2. That is, when the angles ⁇ C are different from each other, the intervals between the opposite velocity surfaces between different modes are different from each other. The same holds true for the relationship between the main mode used in the elastic wave device and unnecessary waves.
  • the resonance frequencies of the main modes are made substantially the same at each angle ⁇ C. Therefore, at each angle ⁇ C , the frequencies of the unnecessary waves are different from each other. As a result, unnecessary waves are dispersed, and therefore unnecessary waves are suppressed.
  • the phase velocity corresponds to the reciprocal of the inverse velocity surface. Therefore, the relationship between the angle ⁇ C and the phase velocity is approximately equal to the inverse velocity plane in the XY plane of the piezoelectric substrate as shown in FIG. That is, it can be said that the function representing the curved shape of the electrode finger is determined by the shape of the inverse velocity surface in the XY plane of the piezoelectric substrate.
  • the phase velocity of an elastic wave has a dependence on the angle ⁇ C.
  • the impedance frequency characteristic will be a superposition of characteristics in which the resonance frequency at each angle ⁇ C is significantly different from each other. Therefore, the impedance frequency characteristics are significantly deteriorated. Therefore, as in the first embodiment, by changing the duty ratio that affects the frequency according to the angle ⁇ C , it is possible to substantially match the frequencies of the elastic waves excited at each angle ⁇ C. . Therefore, at each angle ⁇ C , the resonance frequencies can be made to substantially match each other. Note that at each angle ⁇ C , the antiresonance frequencies can also be made to substantially match each other. Therefore, the impedance frequency characteristics have substantially the same resonance frequency or antiresonance frequency.
  • parameters such as the electrode finger pitch, electrode finger thickness, piezoelectric layer thickness, and intermediate layer thickness in the piezoelectric substrate that affect the frequency may be changed according to the angle ⁇ C.
  • the intermediate layer is, for example, a dielectric layer.
  • the thickness of the dielectric film may be changed depending on the angle ⁇ C.
  • the resonant frequencies or anti-resonant frequencies can be made to substantially match each other at each angle ⁇ C.
  • parameters other than the thickness of the dielectric film may be changed depending on the angle ⁇ C. In this case, the thickness of the dielectric film may be constant.
  • the reverse velocity surface has a concave shape.
  • the reverse velocity surface has a convex shape. Therefore, as the absolute value of the angle ⁇ C becomes larger, by decreasing the duty ratio, it is possible to substantially match the resonance frequencies in the intersection region.
  • the antiresonance frequencies may substantially match each other at each angle ⁇ C in the intersection region.
  • This example is shown as a first modification of the first embodiment. Since this modification differs from the first embodiment only in the relationship between the angle ⁇ C and the duty ratio, the reference numerals used in the description of the first embodiment will be used in the description of this modification.
  • FIG. 11 is a diagram showing the relationship between the absolute value of the angle
  • the duty ratio is 0.5 in the portion of the IDT electrode 8 where the angle ⁇ C is 0°.
  • is x and the duty ratio is y, y 1.585 ⁇ 10 ⁇ 4 ⁇ x 3 ⁇ 4.201 ⁇ 10
  • /f C0 ⁇ 100 is 1% or less. Thereby, deterioration of resonance characteristics can be suppressed more reliably.
  • the frequency change rate ⁇ f/f C0 ⁇ 100 is ⁇ 0.66% or more and 0.82% or less. Thereby, deterioration of resonance characteristics can be suppressed even more reliably.
  • an example will be shown in which deterioration of the resonance characteristics is suppressed when the resonance frequency is ⁇ 0.66% ⁇ f/f C0 ⁇ 100 ⁇ 0.82%.
  • FIG. 12 is a diagram showing impedance frequency characteristics when the resonant frequencies substantially match each other and the difference ⁇ f between the resonant frequencies is a negative value, and when the difference ⁇ f between the resonant frequencies is 0.
  • FIG. 13 is a diagram showing impedance frequency characteristics when the resonance frequencies substantially match each other and the difference ⁇ f between the resonance frequencies is a positive value, and when the difference ⁇ f between the resonance frequencies is 0.
  • the maximum value of the duty ratio is 0.5.
  • the maximum value of the duty ratio is not limited to the above.
  • the maximum value of the duty ratio is 0.65.
  • the relationship between the angle ⁇ C and the duty ratio is as shown in FIG. 14, so that the resonance frequencies substantially match each other at any angle ⁇ C in the intersection region D. More specifically, in this modification, when the absolute value of the angle
  • is x and the duty ratio is y, y 8.124 ⁇ 10 ⁇ 5 ⁇ x 3 ⁇ 1.449 ⁇ 10 The relational expression -3 ⁇ x 2 -2.101 ⁇ 10 -2 ⁇ x+0.6397 holds true.
  • FIG. 15 is a diagram showing return loss near frequencies where higher-order modes occur in the second modification of the first embodiment and the first comparative example.
  • an example of this is an acoustic wave device in which an IDT electrode provided on a substrate made only of LiNbO 3 with rotational Y cut and 4°X propagation is embedded in a thick SiO 2 film.
  • the duty ratio is not necessarily the maximum or minimum.
  • the length of the offset electrode is defined as the dimension along the direction connecting the proximal end and the distal end of the offset electrode.
  • the impedance ratio was calculated each time the length of the offset electrode was changed. Note that the length of the offset electrode was changed in steps of 0.5 ⁇ in the range of 1 ⁇ or more and 5 ⁇ or less. The results are shown below.
  • FIG. 16 is a diagram showing the relationship between the length of the offset electrode and the impedance ratio.
  • the impedance ratio is 71 dB or more.
  • the auxiliary line E in FIG. 16 is a line that connects the plot when the length of the offset electrode is 1 ⁇ and the plot when the length of the offset electrode is 1.5 ⁇ .
  • the impedance ratio can be made 71 dB or more.
  • the length of the offset electrode is preferably 1.3 ⁇ or more, more preferably 1.5 ⁇ or more. Thereby, the impedance ratio can be increased and the Q characteristic of the main mode can be improved.
  • the length of the offset electrode is preferably 5 ⁇ or less. Thereby, the impedance ratio can be increased and the Q characteristic of the main mode can be improved.
  • the angle ⁇ C formed by the reference line N and the edge portion of the intersection area D on the first bus bar 14 side and a straight line passing through the fixed point C is the intersection angle ⁇ C_AP1 .
  • a straight line passing through the edge portion and the fixed point C and an imaginary line connecting the plurality of gaps G1 extend in parallel. Therefore, the direction in which the virtual line connecting the plurality of gaps G1 extends intersects the direction in which the reference line N extends.
  • the direction in which the propagation axis of the piezoelectric layer 6 extends is the direction of X propagation, and is parallel to the direction in which the reference line N extends. Therefore, the elastic waves excited in the intersection region D tend to leak from the plurality of gaps G1.
  • the length of the first offset electrode 18 is sufficiently long, such as 1.3 ⁇ or more, the leaked elastic waves will be transmitted to the first offset electrode 18 and the first electrode fingers with a sufficiently large number of logarithms. 16. Thereby, the elastic waves can be effectively confined within the intersection region D. Similarly, elastic waves leaked from the plurality of gaps G2 can also be reflected toward the intersection region D side by the second offset electrodes 19 and second electrode fingers 17 having a sufficiently large number of logarithms. Therefore, in the elastic wave device 1, the Q characteristic of the main mode can be made good.
  • the plurality of first offset electrodes 18 in the first embodiment have an arc shape.
  • the plurality of second offset electrodes 19 have an arc shape.
  • the plurality of first offset electrodes 18 and the plurality of second offset electrodes 19 may be linear. In a portion where a plurality of first offset electrodes 18 and a plurality of second offset electrodes 19 are provided, the duty ratio may be constant.
  • the dimension of the gap along the direction in which the tip of the electrode finger and the bus bar face each other is defined as the gap width.
  • the gap width has the same meaning as the dimension of the gap along the direction in which the tip of the electrode finger and the tip of the offset electrode face each other.
  • the impedance ratio was calculated each time the gap width was changed. The results are shown below.
  • FIG. 17 is a diagram showing the relationship between gap width and impedance ratio.
  • the gap width is 0.56 ⁇ or less
  • the impedance ratio is approximately 70 dB. Therefore, the gap width is preferably 0.56 ⁇ or less. Thereby, the impedance ratio can be increased and the Q characteristic can be improved.
  • the piezoelectric substrate 2 includes a support substrate 4, a first layer 5a and a second layer 5b of the dielectric layer 5, and a laminated substrate of the piezoelectric layer 6.
  • the first layer 5a in the first embodiment is a high-sonic membrane.
  • a high-sonic membrane is a relatively high-sonic layer. More specifically, the sound speed of the bulk wave propagating through the high-sonic membrane is higher than the sound speed of the elastic wave propagating through the piezoelectric layer 6 .
  • the second layer 5b is a low sonic velocity film.
  • a low-sonic membrane is a membrane with a relatively low sonic velocity. More specifically, the sound speed of the bulk wave propagating through the low sound speed film is lower than the sound speed of the bulk wave propagating through the piezoelectric layer 6 .
  • a high sonic velocity film, a low sonic velocity film, and a piezoelectric layer 6 are laminated in this order on the piezoelectric substrate 2.
  • the energy of the elastic waves can be effectively confined on the piezoelectric layer 6 side.
  • examples of materials of each layer of the piezoelectric substrate 2 and the IDT electrode 8 in the acoustic wave device 1 are shown.
  • the combination of materials for each layer of the piezoelectric substrate 2 and the IDT electrode 8 may be an appropriate combination of materials that can excite elastic waves.
  • Examples of materials for the high-sonic membrane include aluminum nitride, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, silicon carbide, silicon nitride, sapphire, alumina, zirconia, cordierite, mullite, steatite, forsterite, Ceramics such as magnesia, spinel, and sialon; dielectrics such as aluminum oxide, silicon oxynitride, DLC (diamond-like carbon) films, and diamond; semiconductors such as silicon, polycrystalline silicon, and amorphous silicon; Materials that can be used can be used.
  • the material for the low sound velocity film for example, a material whose main component is glass, silicon oxide, silicon oxynitride, lithium oxide, tantalum pentoxide, or a compound of silicon oxide with fluorine, carbon, or boron can be used. can.
  • the material of the piezoelectric layer 6 for example, lithium tantalate, lithium niobate, zinc oxide, aluminum nitride, crystal, PZT (lead zirconate titanate), etc. can also be used.
  • Examples of materials for the support substrate 4 include aluminum nitride, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, sapphire, magnesia, silicon nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and quartz. Ceramics such as stellite, spinel, and sialon, dielectrics such as aluminum oxide, silicon oxynitride, DLC (diamond-like carbon), and diamond, semiconductors such as silicon, or materials containing the above-mentioned materials as main components can also be used.
  • the spinel mentioned above as an example of the material of the support substrate 4 and the high-sonic film includes an aluminum compound containing oxygen and one or more elements selected from Mg, Fe, Zn, Mn, etc.
  • Examples of the spinel include MgAl 2 O 4 , FeAl 2 O 4 , ZnAl 2 O 4 , and MnAl 2 O 4 .
  • silicon is preferably used as the material for the support substrate 4.
  • the main component refers to a component that accounts for more than 50% by weight.
  • the above-mentioned main component material may exist in any one of single crystal, polycrystal, and amorphous state, or in a mixed state of these.
  • the relationship between the sound speeds in the first layer 5a and the second layer 5b in the dielectric layer 5 is not limited to the above.
  • the layer structure of the piezoelectric substrate 2 is not limited to the above.
  • a third modification and a fourth modification of the first embodiment which differ from the first embodiment only in the configuration of the piezoelectric substrate 2, will be shown.
  • unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • the energy of the elastic waves can be effectively confined on the piezoelectric layer 6 side.
  • a piezoelectric substrate 2A includes a support substrate 4, an acoustic reflection film 7, a dielectric layer 5A, and a piezoelectric layer 6.
  • An acoustic reflection film 7 is provided on the support substrate 4.
  • a dielectric layer 5A is provided on the acoustic reflection film 7.
  • a piezoelectric layer 6 is provided on the dielectric layer 5A.
  • the dielectric layer 5A is a low sound velocity film.
  • the acoustic reflection film 7 is a laminate of multiple acoustic impedance layers. Specifically, the acoustic reflection film 7 includes a plurality of low acoustic impedance layers and a plurality of high acoustic impedance layers.
  • the high acoustic impedance layer is a layer with relatively high acoustic impedance. More specifically, the plurality of high acoustic impedance layers of the acoustic reflection film 7 are a high acoustic impedance layer 13a, a high acoustic impedance layer 13b, and a high acoustic impedance layer 13c.
  • the low acoustic impedance layer is a layer with relatively low acoustic impedance. More specifically, the plurality of low acoustic impedance layers of the acoustic reflection film 7 are a low acoustic impedance layer 12a and a low acoustic impedance layer 12b. The low acoustic impedance layers and the high acoustic impedance layers are alternately stacked. Note that the high acoustic impedance layer 13a is the layer located closest to the piezoelectric layer 6 in the acoustic reflection film 7.
  • the acoustic reflection film 7 has two low acoustic impedance layers and three high acoustic impedance layers. However, the acoustic reflection film 7 only needs to have at least one low acoustic impedance layer and at least one high acoustic impedance layer.
  • silicon oxide or aluminum can be used as the material for the low acoustic impedance layer.
  • a material for the high acoustic impedance layer for example, a metal such as platinum or tungsten, or a dielectric material such as aluminum nitride or silicon nitride can be used. Note that the material of the dielectric layer 5A may be the same as the material of the low acoustic impedance layer.
  • the piezoelectric substrate 2B includes a support substrate 4B and a piezoelectric layer 6.
  • a piezoelectric layer 6 is provided directly on the support substrate 4B. More specifically, the support substrate 4B has a recess 4c.
  • a piezoelectric layer 6 is provided on the support substrate 4B so as to close the recess 4c. Thereby, a hollow portion is provided in the piezoelectric substrate 2B. The hollow portion overlaps at least a portion of the IDT electrode 8 in plan view.
  • the shape of the reflector is also different from the first embodiment, corresponding to the shape of the IDT electrode being different from the first embodiment.
  • FIG. 20 is a schematic plan view of the elastic wave device according to the second embodiment.
  • This embodiment differs from the first embodiment in that the shape of the plurality of electrode fingers in plan view is an elliptical arc shape. This embodiment also differs from the first embodiment in that the duty ratio of the IDT electrode 28 is constant, and the electrode finger pitch is not constant. Other than the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • each of the plurality of electrode fingers in plan view corresponds to each elliptical arc of a plurality of ellipses whose centers of gravity are at the same position. More specifically, the center of gravity is the midpoint between focus A and focus B shown in FIG. When this center of gravity is set to a fixed point C, an area where a straight line passing through the fixed point C intersects each of the adjacent electrode fingers is an intersection area D.
  • FIG. 22 is a diagram showing the relationship between the absolute value of the angle
  • the electrode finger pitch is 1 ⁇ m in the portion of the IDT electrode 28 where the angle ⁇ C is 0°.
  • is x and the electrode finger pitch is y, y -1 ⁇ 10 ⁇ 4 ⁇ x 2 ⁇ 4 ⁇ 10 ⁇ 5 The relational expression ⁇ x+1 is established. As a result, at any angle ⁇ C in the intersection region D, the resonance frequencies substantially match each other.
  • FIG. 23 is a diagram showing return loss near frequencies where higher-order modes occur in the second embodiment and the first comparative example.
  • the reverse velocity surface has a convex shape.
  • the comparative acoustic wave device in FIG. 9 in which the IDT electrode is formed on the first piezoelectric substrate the reverse velocity surface has a concave shape.
  • the first piezoelectric substrate is a substrate made only of LiTaO 3 with rotation Y cut and 42° X propagation.
  • the reverse velocity surface has a convex shape.
  • the thickness of the SiO 2 film is, for example, 0.01 ⁇ to 1 ⁇ .
  • the reverse velocity surface has a convex shape.
  • the thickness of the SiO 2 film is, for example, 0.01 ⁇ to 1 ⁇ .
  • the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 have the following configuration. , unnecessary waves can be suppressed, and deterioration of resonance characteristics can be suppressed. That is, the plurality of first electrode fingers 16 and the plurality of second electrode fingers 17 have a configuration in which the electrode finger pitch is wider as the absolute value of the angle ⁇ C is larger, and the electrode finger pitch is wider as the absolute value of the angle ⁇ C is larger. It is only necessary to have one of the configurations in which the finger pitch is narrow. Note that the case where the reverse velocity surface of the piezoelectric substrate has a convex shape is the case where the piezoelectric substrate includes only a piezoelectric layer using lithium niobate as a material, as described above.
  • the reverse velocity surface of the piezoelectric substrate 2 has a convex shape.
  • the reverse velocity surface of the piezoelectric substrate 2 is formed into a convex shape. can do.
  • the material for the piezoelectric layer 6 for example, lithium tantalate or lithium niobate can be used.
  • FIG. 24 is a schematic plan view of an elastic wave device according to the third embodiment.
  • This embodiment differs from the first embodiment in that the plurality of electrode fingers of the IDT electrode 38 include linear portions.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the intersecting region of the IDT electrode 38 has a first region W1, a second region W2, and a third region W3.
  • the first region W1, the second region W2, and the third region W3 are arranged in a direction in which the first bus bar 14 and the second bus bar 15 face each other. More specifically, the first region W1 and the second region W2 face each other with the third region W3 in between.
  • the first region W1 is located on the first bus bar 14 side.
  • the second region W2 is located on the second bus bar 15 side.
  • the third region W3 includes a portion where the angle ⁇ C is 0°.
  • the shape of the plurality of electrode fingers in plan view is an elliptical arc shape.
  • the shape of the plurality of electrode fingers in plan view is a straight line. In this way, each electrode finger includes portions with different curvatures in plan view.
  • the third region W3 in all of the third region W3, the direction in which the propagation axis of the piezoelectric layer 6 extends (the direction of X propagation) is orthogonal to the direction in which the plurality of electrode fingers extend. Therefore, the third region W3 is a stable region with respect to the propagation axis. Since the intersection region includes the third region W3, deterioration of the fractional band can be suppressed.
  • the resonance frequencies substantially match each other at any angle ⁇ C in the intersection region D, as in the first embodiment.
  • the lengths of the plurality of electrode fingers are different from each other.
  • the curvatures of the arcuate portions of the plurality of electrode fingers in plan view are different from each other. With these, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • each electrode finger includes a portion having a straight line shape.
  • each electrode finger may include a portion having a different curvature in plan view.
  • FIG. 25 is a schematic plan view of the elastic wave device according to the fourth embodiment.
  • This embodiment differs from the first embodiment in that the electrode finger pitch is not constant in the IDT electrode 48 and that the ellipticity coefficient ⁇ 2/ ⁇ 1 is larger than 1.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment. In this embodiment, both the duty ratio and the electrode finger pitch are not constant.
  • the larger the absolute value of the angle ⁇ C the wider the electrode finger pitch.
  • the larger the absolute value of the angle ⁇ C the smaller the duty ratio.
  • the value of the fractional band can be increased, the value of the fractional stopband width can be increased, and the response at the upper end of the stopband can be suppressed.
  • the fractional band is expressed by
  • the stopband is a region where the wavelength of the elastic wave becomes constant due to the elastic wave being confined in a metal grating with a periodic structure.
  • the specific stopband width is the value obtained by dividing the bandwidth of the stopband by the resonance frequency fr. In this specification, the end of the stop zone on the high frequency side is referred to as the upper end.
  • the bandwidth of the stopband is the difference between the frequency at the top of the stopband and the resonant frequency fr.
  • the design parameters of the elastic wave device of this embodiment were as follows. For reference, the results of the first embodiment are also shown.
  • the design parameters of the elastic wave device 1 of the first embodiment are the same as the design parameters when the relationship shown in FIG. 5 is used.
  • FIG. 26 is a diagram showing impedance frequency characteristics in the first embodiment and the fourth embodiment.
  • FIG. 27 is a diagram showing impedance frequency characteristics near the upper end of the stopband in the first embodiment and the fourth embodiment.
  • FIG. 28 is a diagram showing return loss in the first embodiment and the fourth embodiment.
  • the difference between the resonant frequency and the anti-resonant frequency is large. Therefore, it can be seen that the value of the fractional band is large.
  • Arrow F1 in FIG. 27 indicates the response at the upper end of the stopband in the first embodiment.
  • Arrow F4 shows the response at the upper end of the stopband in the fourth embodiment.
  • the frequency of the response at the upper end of the stopband is higher than in the first embodiment.
  • the resonant frequencies are almost the same in the first embodiment and the fourth embodiment. Therefore, in the fourth embodiment, the value of the specific stopband width is also larger than that in the first embodiment.
  • the response at the upper end of the rejection zone can be suppressed.
  • the ellipticity coefficient ⁇ 2/ ⁇ 1 in the shape of the plurality of electrode fingers is larger than 1.
  • FIG. 29 is a schematic plan view of the elastic wave device according to the fifth embodiment.
  • This embodiment differs from the first embodiment in that the electrode finger pitch is not constant in the IDT electrode 58 and that the ellipticity coefficient ⁇ 2/ ⁇ 1 is smaller than 1.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment. In this embodiment, both the duty ratio and the electrode finger pitch are not constant.
  • the larger the absolute value of the angle ⁇ C the narrower the electrode finger pitch.
  • the greater the absolute value of the angle ⁇ C the greater the duty ratio.
  • the value of the fractional band can be made small, higher-order modes can be effectively suppressed, and the response at the upper end of the stopband can be suppressed.
  • impedance frequency characteristics and return loss are shown.
  • the design parameters of the elastic wave device of this embodiment were as follows. For reference, the results of the first embodiment are also shown.
  • the design parameters of the elastic wave device 1 of the first embodiment are the same as the design parameters when the relationship shown in FIG. 5 is used.
  • FIG. 30 is a diagram showing impedance frequency characteristics in the first embodiment and the fifth embodiment.
  • FIG. 31 is a diagram showing phase characteristics around 2.2 times the resonance frequency in the first embodiment and the fifth embodiment.
  • FIG. 32 is a diagram showing return loss in the first embodiment and the fifth embodiment.
  • the difference between the resonant frequency and the anti-resonant frequency is small. Therefore, it can be seen that the value of the fractional band is small. As shown in FIG. 31, it can be seen that in the fifth embodiment, higher-order modes occurring around 2.2 times the resonance frequency can be effectively suppressed.
  • the response at the upper end of the rejection zone can be suppressed.
  • the ellipticity coefficient ⁇ 2/ ⁇ 1 in the shape of the plurality of electrode fingers is smaller than 1.
  • the resonance frequencies or the anti-resonance frequencies can be made to substantially match each other at each angle ⁇ C in the intersection region D.
  • the resonance frequencies or the anti-resonance frequencies may be made to substantially match each other at each angle ⁇ C in the intersection region D. An example of this is illustrated by the sixth embodiment.
  • the sixth embodiment differs from the first embodiment in that in the IDT electrode, the duty ratio is constant and the thickness of the plurality of electrode fingers is not constant.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • FIG. 33 is a diagram showing the relationship between the absolute value of the angle
  • in the IDT electrode the thinner the electrode finger becomes.
  • the resonance frequencies substantially match each other.
  • the lengths of the plurality of electrode fingers are different from each other, similar to the first embodiment. Furthermore, the curvatures of the arcuate portions of the plurality of electrode fingers in plan view are different from each other. With these, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • the configuration of the IDT electrode allows the resonance frequencies or anti-resonance frequencies to substantially match each other at each angle ⁇ C in the intersection region D.
  • the resonance frequencies or anti-resonance frequencies may be made to substantially match each other at each angle ⁇ C in the intersection region D.
  • This example is illustrated by the seventh embodiment and its variations.
  • FIG. 34 is a schematic front sectional view of the elastic wave device of the seventh embodiment. Note that FIG. 34 is a schematic cross-sectional view along the reference line N.
  • This embodiment differs from the first embodiment in that the electrode finger pitch is constant in the IDT electrode.
  • This embodiment also differs from the first embodiment in that a dielectric film 65 is provided on the piezoelectric layer 6 so as to cover the IDT electrode 68.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the sound speed of the transverse wave propagating through the dielectric film 65 of this embodiment is lower than the sound speed of the main mode propagating through the dielectric film 65.
  • the thickness of the dielectric film 65 changes depending on the angle ⁇ C . Specifically, each portion of the dielectric film 65 covers each portion of the IDT electrode 68. The thickness of each portion of the dielectric film 65 differs depending on the angle ⁇ C of the portion of the IDT electrode 68 covered by each portion of the dielectric film 65.
  • FIG. 35 is a diagram showing the relationship between the absolute value
  • the lengths of the plurality of electrode fingers are different from each other, similar to the first embodiment. Furthermore, the curvatures of the arcuate portions of the plurality of electrode fingers in plan view are different from each other. With these, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • the sound speed of the transverse wave propagating through the dielectric film 65 is lower than the sound speed of the main mode propagating through the dielectric film 65.
  • the relationship between the sound speeds of waves propagating through the dielectric film is not limited to the above.
  • a modification of the seventh embodiment, which differs from the seventh embodiment only in the sound speed of the transverse wave propagating through the dielectric film, will be shown below.
  • the sound speed of the transverse wave propagating through the dielectric film is higher than the sound speed of the main mode propagating through the dielectric film.
  • of the angle of the portion of the IDT electrode covered by the dielectric film and the thickness of the dielectric film is as shown in FIG. More specifically, in this modification, the larger the angle ⁇ C of the portion of the IDT electrode covered by the dielectric film, the thicker the dielectric film becomes. As a result, at any angle ⁇ C in the intersection region D, the resonance frequencies substantially match each other. Thereby, in this modification as well, as in the seventh embodiment, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • the resonance frequencies or anti-resonance frequencies substantially match each other at any angle ⁇ C in the intersection region D.
  • at least one of the duty ratio, electrode finger pitch, electrode finger thickness, and dielectric film thickness may be varied depending on the angle ⁇ C.
  • FIG. 37 is a schematic plan view of an elastic wave device according to the eighth embodiment.
  • This embodiment differs from the first embodiment in that each of the plurality of electrode fingers has a wide portion.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the intersecting region D of the IDT electrode 78 has a central region H, a first edge region E1, and a second edge region E2.
  • the first edge region E1 and the second edge region E2 sandwich the central region H in the direction in which the first bus bar 14 and the second bus bar 15 face each other.
  • the first edge region E1 is located on the first bus bar 14 side.
  • the second edge region E2 is located on the second bus bar 15 side.
  • a wide portion 76a is provided in each of the portions of the plurality of first electrode fingers 76 located in the first edge region E1.
  • a wide portion 76b is provided in each portion of the plurality of first electrode fingers 76 located in the second edge region E2.
  • a wide portion 77a is provided in each of the plurality of second electrode fingers 77 located in the first edge region E1.
  • a wide portion 77b is provided in each of the plurality of second electrode fingers 77 located in the second edge region E2.
  • the width of the wide portion of the electrode finger is wider than the width of the portion of the electrode finger located in the central region H.
  • wide portions are provided in the plurality of electrode fingers in the first edge region E1.
  • a low sound velocity region is configured in the first edge region E1.
  • the low sound speed region is a region where the sound speed is lower than the sound speed in the central region H.
  • a plurality of electrode fingers are provided with wide portions.
  • a low sound velocity region is configured in the second edge region E2.
  • it is sufficient that at least one of the plurality of electrode fingers has a wide portion in at least one of the first edge region E1 and the second edge region E2.
  • the high sound velocity region is a region where the sound velocity is higher than the sound velocity in the central region H.
  • the plurality of second electrode fingers 77 out of the plurality of first electrode fingers 76 and the plurality of second electrode fingers 77 are provided. . Thereby, a high sound velocity region is formed in this region.
  • a central region H, a low sound velocity region, and a high sound velocity region are arranged in this order from the inside to the outside of the IDT electrode 78. Thereby, the piston mode is established, and the transverse mode can be further suppressed.
  • FIG. 38 is a schematic plan view showing the vicinity of the first edge region and the vicinity of the second edge region of the elastic wave device according to the ninth embodiment.
  • a mass adding film which will be described later, is indicated by hatching.
  • This embodiment differs from the first embodiment in that a mass adding film 72 is provided on each of the plurality of electrode fingers in the first edge region E1 and the second edge region E2.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • a plurality of mass adding films 72 are provided in each of the first edge region E1 and the second edge region. More specifically, one mass adding film 72 is provided on each electrode finger in each of the first edge region E1 and the second edge region E2. Thereby, a low sound velocity region is formed in the first edge region E1 and the second edge region E2. Thereby, the piston mode is established, and the transverse mode can be further suppressed.
  • an appropriate metal may be used as the material of the mass adding film 72.
  • the mass adding film 72 may be made of the same type of metal as the electrode fingers. In this case, the thickness of the electrode fingers in the first edge region E1 and the second edge region E2 is substantially thicker than the thickness of the electrode fingers in the central region H.
  • a metal of a different type from that of the electrode fingers may be used, or an appropriate dielectric material may be used.
  • the mass adding film 72 may be provided over a plurality of electrode fingers.
  • any appropriate dielectric material may be used as the material for the mass adding film 72.
  • the piezoelectric layer 6, the electrode fingers, and the mass adding film 72 are laminated in this order.
  • the piezoelectric layer 6, the mass adding film 72, and the electrode fingers may be stacked in this order. That is, the mass adding film 72 may be located between the piezoelectric layer 6 and the electrode fingers.
  • the mass adding film 72 only needs to overlap the electrode finger in plan view. Note that it is sufficient that at least one electrode finger overlaps the mass adding film 72 in plan view.
  • the low sound velocity region may be configured by both the configuration in which the mass adding film 72 is provided in this embodiment and the configuration in which the wide portion is provided in the eighth embodiment.
  • FIG. 39 is a schematic plan view showing the vicinity of the first edge region and the vicinity of the second edge region of the elastic wave device according to the tenth embodiment.
  • This embodiment has the following points: a dielectric film 75 is provided on the piezoelectric layer 6 so as to cover the IDT electrode 8, and a plurality of mass adding films 73 are provided on the dielectric film 75. This is different from the first embodiment. Other than the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • One mass adding film 73 is provided in each of the portions of the dielectric film 75 provided in the first edge region E1 and the second edge region E2.
  • Each mass-adding film 73 is provided so as to overlap a plurality of electrode fingers in a plan view.
  • Metal is used as the material for each mass adding film 73. Thereby, a low sound velocity region is formed in the first edge region E1 and the second edge region E2. Thereby, the piston mode is established, and the transverse mode can be further suppressed.
  • an appropriate dielectric material may be used as the material for each mass adding film 73.
  • the same type of dielectric as the dielectric film 75 may be used as the material for the mass adding film 73.
  • substantially the thickness of the portion of the dielectric film 75 provided in the first edge region E1 and the second edge region E2 is greater than the thickness of the portion provided in the central region H. thick.
  • the material of the mass adding film 73 may be a dielectric of a different type from that of the dielectric film 75. In this case, the thickness of the portion provided in the first edge region E1 and the second edge region E2 in the dielectric film as a laminate is thicker than the thickness of the portion provided in the central region H.
  • a plurality of mass adding films 73 may be provided in each of the first edge region E1 and the second edge region E2.
  • the low sound velocity region may be configured by both the configuration in which the dielectric film 75 and the mass addition film 73 are provided in this embodiment, and the configuration in which the wide portion is provided in the eighth embodiment.
  • the elastic wave device according to the present invention can be used, for example, in a filter device. An example of this is shown below.
  • FIG. 40 is a circuit diagram of a filter device according to the eleventh embodiment.
  • the filter device 80 of this embodiment is a ladder type filter.
  • the filter device 80 includes a first signal terminal 82 and a second signal terminal 83, a plurality of series arm resonators, and a plurality of parallel arm resonators.
  • all series arm resonators and all parallel arm resonators are elastic wave resonators.
  • all series arm resonators and all parallel arm resonators are elastic wave devices according to the present invention.
  • at least one of the plurality of elastic wave resonators of the filter device 80 may be an elastic wave device according to the present invention.
  • the first signal terminal 82 is an antenna terminal.
  • the antenna terminal is connected to the antenna.
  • the first signal terminal 82 does not necessarily have to be an antenna terminal.
  • the first signal terminal 82 and the second signal terminal 83 may be configured as electrode pads or wiring, for example.
  • the plurality of series arm resonators of this embodiment are a series arm resonator S1, a series arm resonator S2, and a series arm resonator S3.
  • the plurality of series arm resonators are connected in series between the first signal terminal 82 and the second signal terminal 83.
  • the plurality of parallel arm resonators are a parallel arm resonator P1 and a parallel arm resonator P2.
  • a parallel arm resonator P1 is connected between a connection point between the series arm resonator S1 and the series arm resonator S2 and a ground potential.
  • a parallel arm resonator P2 is connected between the connection point between the series arm resonator S2 and the series arm resonator S3 and the ground potential.
  • Filter device 80 may include, for example, a longitudinally coupled resonator type elastic wave filter.
  • the elastic wave resonator in the filter device 80 is an elastic wave device according to the present invention. Therefore, in the elastic wave resonator of the filter device 80, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • the curves in the shape of the plurality of electrode fingers when viewed from above are smooth curves.
  • the curved line in the shape of the plurality of electrode fingers in plan view may be a shape formed by connecting micro-sized straight lines.
  • the curved line in the shape of the plurality of electrode fingers in a plan view may be a shape formed by connecting a plurality of vertices with a curved line.
  • the curve in the shape of the plurality of electrode fingers in plan view does not necessarily have to be a smooth curve. This example will be shown as a fifth modification of the first embodiment.
  • the curve in the shape of each first electrode finger 16A when viewed from above is not a smooth curve.
  • the shape of each first electrode finger 16A in plan view is a shape formed by connecting straight lines. Note that the straight line in this shape is not a minute-sized straight line. More specifically, the length of the straight line in this shape is, for example, about several percent of the total length of the first electrode finger 16A. However, in this shape, the angle between the connected straight lines is large, for example, about 160° or more and less than 180°. Therefore, the shape of each first electrode finger 16A in plan view is a shape that can be approximated to a curve.
  • each second electrode finger 17A in plan view is also the same as the shape of each first electrode finger 16A in plan view. Also in this modification, as in the first embodiment, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • FIG. 42 is a schematic front sectional view of the elastic wave device according to the twelfth embodiment.
  • This embodiment differs from the first embodiment in that the IDT electrode 8 is embedded in a protective film 99.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • a protective film 99 is provided on the piezoelectric layer 6 so as to cover the IDT electrode 8.
  • the thickness of the protective film 99 is thicker than the thickness of the IDT electrode 8.
  • the IDT electrode 8 is embedded in a protective film 99. This prevents the IDT electrode 8 from being easily damaged.
  • the protective film 99 has a first protective layer 99a and a second protective layer 99b.
  • the IDT electrode 8 is embedded in the first protective layer 99a.
  • a second protective layer 99b is provided on the first protective layer 99a.
  • the protective film 99 can provide a plurality of effects.
  • silicon oxide is used as the material for the first protective layer 99a.
  • TCF temperature coefficient of frequency
  • Silicon nitride is used for the second protective layer 99b. Thereby, the moisture resistance of the acoustic wave device can be improved.
  • the IDT electrode 8 is configured similarly to the first embodiment. Thereby, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • the protective film 99 may be a single layer or a laminate of three or more layers.
  • FIG. 43 is a schematic front sectional view of the elastic wave device according to the thirteenth embodiment.
  • This embodiment differs from the first embodiment in that IDT electrodes 8 are provided on both the first main surface 6a and the second main surface 6b of the piezoelectric layer 6. Note that the IDT electrode 8 provided on the second main surface 6b is embedded in the second layer 5b of the dielectric layer 5.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the IDT electrode 8 is configured on the first main surface 6a in the same manner as in the first embodiment. Thereby, unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • IDT electrodes 8 provided on the first main surface 6a and the second main surface 6b of the piezoelectric layer 6 may have different design parameters, for example.
  • the first to third embodiments of the thirteenth embodiment are different from the thirteenth embodiment in at least one of the configuration of the electrode provided on the second main surface of the piezoelectric layer and the laminated structure of the piezoelectric substrate.
  • a third modification is shown.
  • unnecessary waves can be suppressed and deterioration of resonance characteristics can be suppressed.
  • the layer structure of the piezoelectric substrate 92 is different from the thirteenth embodiment.
  • the piezoelectric substrate 92 includes a support substrate 4 , a dielectric layer 95 , and a piezoelectric layer 6 .
  • a dielectric layer 95 is provided on the support substrate 4 .
  • a piezoelectric layer 6 is provided on the dielectric layer 95.
  • the dielectric layer 95 has a frame-like shape. That is, the dielectric layer 95 has through holes.
  • the support substrate 4 closes one of the through holes of the dielectric layer 95.
  • the piezoelectric layer 6 closes the other through hole of the dielectric layer 95.
  • a hollow portion 92c is formed in the piezoelectric substrate 92.
  • a portion of the piezoelectric layer 6 and a portion of the support substrate 4 are opposed to each other with the hollow portion 92c in between.
  • the IDT electrode 8 provided on the second main surface 6b of the piezoelectric layer 6 is located within the hollow portion 92c.
  • a plate-shaped electrode 98 is provided on the second main surface 6b of the piezoelectric layer 6.
  • the IDT electrode 8 and the electrode 98 are opposed to each other with the piezoelectric layer 6 in between.
  • a piezoelectric substrate 92 is configured similarly to the first modification, and the second modification A similar electrode 98 is provided.
  • the electrode 98 is located within the hollow portion 92c.
  • the IDT electrode 8 has the same configuration as the first embodiment.
  • the configurations of the twelfth embodiment, the thirteenth embodiment, and each modified example are adopted even when the configuration of the IDT electrode is a configuration of the present invention other than the configuration of the first embodiment. be able to.
  • First and second bus bars comprising a piezoelectric substrate including a piezoelectric layer and an IDT electrode provided on the piezoelectric layer, the IDT electrodes facing each other; a plurality of first electrode fingers having one end connected to the first bus bar; and a plurality of second electrode fingers having one end connected to the second bus bar;
  • the first and second electrode fingers are inserted into each other, and the portion where the first electrode finger and the second electrode finger overlap in the elastic wave propagation direction is an intersection region, and the plurality of electrode fingers in a plan view
  • An elastic wave device in which the shapes of the first and second electrode fingers include curved portions, and the resonance frequencies or anti-resonance frequencies substantially match each other within the intersection region.
  • the curved portion included in the shape of the plurality of first and second electrode fingers is a circular arc or an elliptical arc, and a circle including the circular arc in the shape of the first and second electrode fingers. or the center of the two foci of the ellipse including the elliptical arc as a fixed point, and a straight line passing through the center of the intersection region in the direction in which the plurality of first and second electrode fingers extend as a reference line;
  • the resonance frequencies or anti-resonance frequencies are approximately the same at any of the angles ⁇ C within the intersection region.
  • first and second bus bars comprising a piezoelectric substrate including a piezoelectric layer and an IDT electrode provided on the piezoelectric layer, the IDT electrodes facing each other; a plurality of first electrode fingers having one end connected to the first bus bar; and a plurality of second electrode fingers having one end connected to the second bus bar;
  • the first and second electrode fingers are inserted into each other, and the portion where the first electrode finger and the second electrode finger overlap in the elastic wave propagation direction is an intersection region, and the plurality of electrode fingers in a plan view
  • the shape of the first and second electrode fingers of the book includes the shape of a circular arc or an elliptical arc, and the center of a circle including the arc in the shape of the first and second electrode fingers, or the center of the ellipse including the elliptical arc in the shape of the first and second electrode fingers.
  • the midpoint of the two focal points is defined as a fixed point, and a straight line passing through the center of the intersection region in the direction in which the plurality of first and second electrode fingers extends is defined as a reference line, and the straight line passing through the fixed point and the reference line are defined as a reference line.
  • An elastic wave device in which, when the angle ⁇ C is the angle ⁇ C , the larger the absolute value of the angle ⁇ C, the narrower the electrode finger pitch.
  • the electrode finger pitch changes according to the angle ⁇ C so that the resonance frequencies or the anti-resonance frequencies substantially match each other at any of the angles ⁇ C in the intersection region.
  • the elastic wave device according to ⁇ 2> or ⁇ 3>.
  • ⁇ 5> The acoustic wave device according to any one of ⁇ 1> to ⁇ 4>, wherein lithium tantalate or lithium niobate is used as a material for the piezoelectric layer.
  • ⁇ 6> The acoustic wave device according to any one of ⁇ 1> to ⁇ 5>, wherein the piezoelectric substrate has a support substrate, and the piezoelectric layer is provided on the support substrate.
  • ⁇ 7> The acoustic wave device according to ⁇ 6>, wherein the piezoelectric substrate has a dielectric layer, and the dielectric layer is provided between the support substrate and the piezoelectric layer.
  • the above-described piezoelectric substrate including a piezoelectric substrate including a piezoelectric layer and an IDT electrode provided on the piezoelectric layer, wherein the piezoelectric substrate is made of lithium tantalate or lithium niobate as a material.
  • One of the substrates includes a laminated piezoelectric layer and a support substrate, and the other includes only the piezoelectric layer using lithium niobate as a material, and the IDT electrodes are opposite to each other.
  • first electrode fingers having one end connected to the first bus bar
  • second electrode fingers having one end connected to the second bus bar; , the plurality of first and second electrode fingers are inserted into each other, and a portion where the first electrode finger and the second electrode finger overlap in the elastic wave propagation direction intersects.
  • a region in which the shape of the plurality of first and second electrode fingers in a plan view includes the shape of a circular arc or an elliptical arc, and the center of a circle that includes the circular arc in the shape of the first and second electrode fingers; , or the fixed point is the midpoint of the two foci of the ellipse including the elliptical arc, and the reference line is a straight line passing through the center of the intersection region in the direction in which the plurality of first and second electrode fingers extend, and the fixed point is
  • the electrode finger pitch of the plurality of first and second electrode fingers is wider as the absolute value of the angle ⁇ C is larger.
  • An elastic wave device having one of a configuration in which the larger the absolute value of the angle ⁇ C , the narrower the electrode finger pitch.
  • the curved portion included in the shape of the plurality of first and second electrode fingers is a circular arc or an elliptical arc, and a circle including the circular arc in the shape of the first and second electrode fingers. or the center of the two foci of the ellipse including the elliptical arc as a fixed point, and a straight line passing through the center of the intersection region in the direction in which the plurality of first and second electrode fingers extend as a reference line;
  • the resonance frequencies or anti-resonance frequencies substantially match each other at any of the angles ⁇ C within the intersection region.
  • ⁇ 12> Further comprising a dielectric film provided on the piezoelectric layer so as to cover the IDT electrode, the curved portion included in the shape of the plurality of first and second electrode fingers, It is in the shape of a circular arc or an elliptical arc, and the fixed point is the center of a circle including the circular arc in the shape of the first and second electrode fingers, or the midpoint of two foci of the ellipse including the elliptical arc, and the intersection area is
  • the reference line is a straight line passing through the center of the plurality of first and second electrode fingers in the direction in which they extend
  • the angle between the straight line passing through the fixed point and the reference line is ⁇ C
  • the thickness of the dielectric film changes according to the angle ⁇ C so that the resonant frequencies or the anti-resonant frequencies substantially match each other at any of the angles ⁇ C.
  • the elastic wave device according to any one of items 1> to ⁇ 11>.
  • ⁇ 13> When ⁇ 2/ ⁇ 1 is the ellipticity coefficient of the shape of the plurality of first and second electrode fingers in a plan view, ⁇ 2> to ⁇ 4>, ⁇ 9> or the elastic wave device according to any one of ⁇ 10>.
  • ⁇ 14> ⁇ 2/ ⁇ 1 1, ⁇ 2> to ⁇ 4>, ⁇ 9> or the elastic wave device according to any one of ⁇ 10>.
  • the plurality of first and second electrode fingers include at least two of the first electrode fingers or the second electrode fingers that have mutually different curvatures in plan view, ⁇ 2> , ⁇ 3>, ⁇ 9>, ⁇ 10>, or the elastic wave device according to any one of ⁇ 13> to ⁇ 15>.
  • Each of the first and second electrode fingers includes a portion having a different curvature in plan view, ⁇ 2>, ⁇ 3>, ⁇ 9>, ⁇ 10> or ⁇ 13> to ⁇ 17 >The elastic wave device according to any one of >.
  • a piezoelectric single crystal is used as a material for the piezoelectric layer, and the piezoelectric layer has a propagation axis, and the plurality of first and second electrode fingers have a curved shape including a shape.
  • the portion is in the shape of a circular arc or an elliptical arc, and the fixed point is the center of a circle including the arc in the shape of the first and second electrode fingers, or the midpoint of two foci of an ellipse including the elliptical arc, and the intersection is
  • the reference line is a straight line passing through the center of the region in the direction in which the plurality of first and second electrode fingers extend, the propagation axis and the reference line extend in parallel, ⁇ 1> to ⁇
  • the elastic wave device according to any one of 20>.
  • the tips of the plurality of first electrode fingers each face the second bus bar across at least a gap, and the shapes of the plurality of first and second electrode fingers are
  • the curved portion is in the shape of a circular arc or an elliptical arc, and the fixed point is the center of a circle including the arc in the shape of the first and second electrode fingers, or the midpoint of two foci of the ellipse including the elliptical arc.
  • the reference line is a straight line passing through the center of the intersection region in the direction in which the plurality of first and second electrode fingers extend, the direction in which the imaginary line connecting each of the gaps extends is the reference line.
  • the elastic wave device according to any one of ⁇ 1> to ⁇ 21>, wherein the line intersects the extending direction.
  • the tips of the plurality of first electrode fingers each face the second bus bar across at least a gap, and the shapes of the plurality of first and second electrode fingers are
  • the curved portion is in the shape of a circular arc or an elliptical arc, and the fixed point is the center of a circle including the arc in the shape of the first and second electrode fingers, or the midpoint of two foci of the ellipse including the elliptical arc.
  • the IDT electrode has a plurality of first offset electrodes and a plurality of second offset electrodes, and each of the plurality of first offset electrodes is connected to the first bus bar.
  • the plurality of second offset electrodes are each connected to the second bus bar, and the tip of the first electrode finger and the tip of the second offset electrode are separated by a gap.
  • the elastic wave devices according to any one of ⁇ 1> to ⁇ 23>, which are opposed to each other at a distance.
  • the intersection area includes a first edge area and a second edge area that sandwich the central area in a direction in which the first bus bar and the second bus bar face each other; wherein the plurality of first and second electrode fingers are wider in the first edge region and the second edge region than in the central region, and have a thickness in the central region.
  • the elastic wave device according to any one of ⁇ 1> to ⁇ 24>, wherein the elastic wave device has at least one of a configuration in which the thickness in the first edge region and the second edge region is thicker than that in the first edge region and the second edge region.
  • ⁇ 26> Further comprising a dielectric film provided on the piezoelectric layer so as to cover the IDT electrode, wherein the intersection region is opposed to the central region, and the first bus bar and the second bus bar are opposed to each other. a first edge region and a second edge region sandwiching the central region in the mutual direction, and the thickness of the dielectric film is greater than the thickness of the portion provided in the central region.
  • ⁇ 27> Further comprising a dielectric film provided on the piezoelectric layer so as to cover the IDT electrode, wherein the intersection region is opposed to the central region, and the first bus bar and the second bus bar are opposed to each other. a first edge region and a second edge region sandwiching the central region in the mutual direction, and provided in the first edge region and the second edge region of the dielectric film.
  • a mass adding film is provided in a portion where the mass adding film is overlapped with the plurality of first and second electrode fingers in a plan view, and a metal is used as a material of the mass adding film.
  • a filter device comprising a plurality of elastic wave resonators, wherein at least one of the elastic wave resonators is the elastic wave device according to any one of ⁇ 1> to ⁇ 27>.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

不要波を抑制することができ、かつ共振特性の劣化を抑制することができる、弾性波装置を提供する。 本発明の弾性波装置は、圧電体層を含む圧電性基板と、圧電体層上に設けられているIDT電極8とを備える。IDT電極8は、互いに対向している第1及び第2のバスバー14及び15と、第1のバスバー14に一端が接続された複数本の第1の電極指16と、第2のバスバー15に一端が接続された複数本の第2の電極指17とを有する。複数本の第1及び第2の電極指16及び17は互いに間挿し合っている。第1の電極指16と第2の電極指17とが弾性波伝搬方向において重なり合っている部分は交叉領域Dである。平面視における複数本の第1及び第2の電極指16及び17の形状は、曲線状の部分を含む。交叉領域D内において、共振周波数同士、または***振周波数同士が略一致している。

Description

弾性波装置及びフィルタ装置
 本発明は、弾性波装置及びフィルタ装置に関する。
 従来、弾性波装置が、携帯電話機のフィルタなどに広く用いられている。下記の特許文献1には、弾性波装置の一例が開示されている。この弾性波装置においては、圧電基板上にIDT(Interdigital Transducer)電極が設けられている。IDT電極の複数の電極指の形状は、曲線の形状を含む。より具体的には、各電極指が、IDT電極が交叉する領域の中央から、共通電極に至るまで、曲線に沿って延びている。
国際公開第2011/108229号
 特許文献1に記載された弾性波装置のIDT電極においては、複数の電極指が延びる方向における中央の部分の電極指ピッチが、該方向における端部の電極指ピッチよりも狭い。そのため、不要波の応答を抑制する効果が得られる。しかしながら、IDT電極の部分毎に共振周波数が異なるため、共振特性が劣化するおそれがある。
 本発明の目的は、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる、弾性波装置及びフィルタ装置を提供することにある。
 本発明に係る弾性波装置のある広い局面では、圧電体層を含む圧電性基板と、前記圧電体層上に設けられているIDT電極とが備えられており、前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指とを有し、前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、平面視における前記複数本の第1及び第2の電極指の形状が、曲線状の部分を含み、前記交叉領域内において、共振周波数同士、または***振周波数同士が略一致している。
 本発明に係る弾性波装置の他の広い局面では、圧電体層を含む圧電性基板と、前記圧電体層上に設けられているIDT電極とが備えられており、前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指とを有し、前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、平面視における前記複数本の第1及び第2の電極指の形状が、円弧または楕円弧の形状を含み、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記角度θの絶対値が大きいほど、電極指ピッチが狭い。
 本発明に係る弾性波装置のさらに他の広い局面では、圧電体層を含む圧電性基板と、前記圧電体層上に設けられているIDT電極とが備えられており、前記圧電性基板が、材料としてタンタル酸リチウムまたはニオブ酸リチウムが用いられた前記圧電体層と、支持基板とが積層されてなる基板、及び材料としてニオブ酸リチウムが用いられた前記圧電体層のみを含む基板のうち一方であり、前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指とを有し、前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、平面視における前記複数本の第1及び第2の電極指の形状が、円弧または楕円弧の形状を含み、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記複数本の第1及び第2の電極指が、前記角度θの絶対値が大きいほど電極指ピッチが広い構成、及び前記角度θの絶対値が大きいほど電極指ピッチが狭い構成のうち一方を有する。
 本発明に係るフィルタ装置は、複数の弾性波共振子を備え、少なくとも1つの前記弾性波共振子が、本発明に従い構成されている弾性波装置である。
 本発明に係る弾性波装置及びフィルタ装置によれば、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。 図2は、図1中のI-I線に沿う模式的断面図である。 図3は、本発明の第1の実施形態におけるIDT電極の構成を説明するための模式的平面図である。 図4は、本発明の第1の実施形態におけるIDT電極の一部を拡大して示す模式的平面図である。 図5は、本発明の第1の実施形態におけるIDT電極の、角度の絶対値|θ|と、デューティ比との関係を示す図である。 図6は、比較例におけるIDT電極の模式的平面図である。 図7は、本発明の第1の実施形態及び第1の比較例における、主モードが励振される周波数付近のQ値を示す図である。 図8は、本発明の第1の実施形態及び第1の比較例における、レイリー波が生じる周波数付近のリターンロスを示す図である。 図9は、第1の圧電性基板及び第2の圧電性基板を伝搬する弾性波の逆速度面を示す図である。 図10は、第1の圧電性基板における、縦波、速い横波、遅い横波の逆速度面を示す図である。 図11は、本発明の第1の実施形態の第1の変形例におけるIDT電極の、角度の絶対値|θ|と、デューティ比との関係を示す図である。 図12は、共振周波数同士が略一致しており、かつ共振周波数の差Δfが負の値である場合、及び共振周波数の差Δfが0である場合のインピーダンス周波数特性を示す図である。 図13は、共振周波数同士が略一致しており、かつ共振周波数の差Δfが正の値である場合、及び共振周波数の差Δfが0である場合のインピーダンス周波数特性を示す図である。 図14は、本発明の第1の実施形態の第2の変形例におけるIDT電極の、角度の絶対値|θ|と、デューティ比との関係を示す図である。 図15は、本発明の第1の実施形態の第2の変形例及び第1の比較例における、高次モードが生じる周波数付近のリターンロスを示す図である。 図16は、オフセット電極の長さと、インピーダンス比との関係を示す図である。 図17は、ギャップ幅と、インピーダンス比との関係を示す図である。 図18は、本発明の第1の実施形態の第3の変形例に係る弾性波装置の模式的正面断面図である。 図19は、本発明の第1の実施形態の第4の変形例に係る弾性波装置の模式的正面断面図である。 図20は、本発明の第2の実施形態に係る弾性波装置の模式的平面図である。 図21は、本発明の第2の実施形態におけるIDT電極の構成を説明するための模式的平面図である。 図22は、本発明の第2の実施形態におけるIDT電極の、角度の絶対値|θ|と、電極指ピッチとの関係を示す図である。 図23は、本発明の第2の実施形態及び第1の比較例における、高次モードが生じる周波数付近のリターンロスを示す図である。 図24は、本発明の第3の実施形態に係る弾性波装置の模式的平面図である。 図25は、本発明の第4の実施形態に係る弾性波装置の模式的平面図である。 図26は、本発明の第1の実施形態及び第4の実施形態における、インピーダンス周波数特性を示す図である。 図27は、本発明の第1の実施形態及び第4の実施形態における、阻止域の上端付近の、インピーダンス周波数特性を示す図である。 図28は、本発明の第1の実施形態及び第4の実施形態におけるリターンロスを示す図である。 図29は、本発明の第5の実施形態に係る弾性波装置の模式的平面図である。 図30は、本発明の第1の実施形態及び第5の実施形態における、インピーダンス周波数特性を示す図である。 図31は、本発明の第1の実施形態及び第5の実施形態における、共振周波数の2.2倍付近の位相特性を示す図である。 図32は、本発明の第1の実施形態及び第5の実施形態におけるリターンロスを示す図である。 図33は、本発明の第6の実施形態におけるIDT電極の角度の絶対値|θ|と、電極指の厚みとの関係を示す図である。 図34は、本発明の第7の実施形態の弾性波装置の模式的正面断面図である。 図35は、本発明の第7の実施形態における、誘電体膜が覆っているIDT電極の部分の角度の絶対値|θ|と、誘電体膜の厚みとの関係を示す図である。 図36は、本発明の第7の実施形態の変形例における、誘電体膜が覆っているIDT電極の部分の角度の絶対値|θ|と、誘電体膜の厚みとの関係を示す図である。 図37は、本発明の第8の実施形態に係る弾性波装置の模式的平面図である。 図38は、本発明の第9の実施形態に係る弾性波装置の、第1のエッジ領域付近及び第2のエッジ領域付近を示す模式的平面図である。 図39は、本発明の第10の実施形態に係る弾性波装置の、第1のエッジ領域付近及び第2のエッジ領域付近を示す模式的平面図である。 図40は、本発明の第11の実施形態に係るフィルタ装置の回路図である。 図41は、本発明の第1の実施形態の第5の変形例におけるIDT電極の一部を拡大して示す模式的平面図である。 図42は、本発明の第12の実施形態に係る弾性波装置の模式的正面断面図である。 図43は、本発明の第13の実施形態に係る弾性波装置の模式的正面断面図である。 図44は、本発明の第13の実施形態の第1の変形例に係る弾性波装置の模式的正面断面図である。 図45は、本発明の第13の実施形態の第2の変形例に係る弾性波装置の模式的正面断面図である。 図46は、本発明の第13の実施形態の第3の変形例に係る弾性波装置の模式的正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。図2は、図1中のI-I線に沿う模式的断面図である。
 図1及び図2に示すように、弾性波装置1は圧電性基板2を有する。圧電性基板2は、圧電性を有する基板である。図2に示すように、圧電性基板2は、支持部材3と、圧電体層6とを有する。より具体的には、支持部材3は、支持基板4と、誘電体層5とを有する。誘電体層5は第1の層5a及び第2の層5bを含む。支持基板4上に第1の層5aが設けられている。第1の層5a上に第2の層5bが設けられている。第2の層5b上に圧電体層6が設けられている。なお、圧電性基板2の層構成は上記に限定されない。例えば、圧電性基板2は、圧電体層6のみからなる基板であってもよい。
 図1に示すように、圧電体層6上にはIDT電極8が設けられている。IDT電極8は複数本の第1の電極指16及び複数本の第2の電極指17を有する。本実施形態においては、平面視における複数本の第1の電極指16及び複数本の第2の電極指17の形状は、円弧の形状である。本明細書において平面視とは、図2における上方に相当する方向から見ることをいう。図2においては、例えば、支持基板4側及び圧電体層6側のうち、圧電体層6側が上方である。なお、平面視における複数本の第1の電極指16及び複数本の第2の電極指17の形状は、曲線状の部分を含んでいればよい。もっとも、本実施形態のように、平面視における複数本の第1の電極指16及び複数本の第2の電極指17の形状が、円弧または楕円弧の形状を含んでいることが好ましい。以下において、IDT電極8の構成の詳細を説明する。
 図1に戻り、IDT電極8は、複数本の第1の電極指16及び複数本の第2の電極指17に加えて、第1のバスバー14及び第2のバスバー15と、複数本の第1のオフセット電極18及び複数本の第2のオフセット電極19とを有する。第1のバスバー14及び第2のバスバー15は互いに対向している。第1のバスバー14に、複数本の第1の電極指16の一方端部がそれぞれ接続されている。第2のバスバー15に、複数本の第2の電極指17の一方端部がそれぞれ接続されている。複数本の第1の電極指16及び複数本の第2の電極指17は、互いに間挿し合っている。そして、第1の電極指16と第2の電極指17とが弾性波伝搬方向において重なり合っている領域が、交叉領域である。以下においては、第1の電極指16及び第2の電極指17を、単に電極指と記載することがある。
 なお、交叉領域は、言い換えれば、複数本の第2の電極指17の先端を結ぶ仮想線である第1の包絡線と、複数本の第1の電極指16の先端を結ぶ仮想線である第2の包絡線との間の領域である。より具体的には、複数本の電極指のうち、複数本の電極指が並ぶ方向における一方端の電極指と、他方端の電極指と、第1の包絡線と、第2の包絡線とに囲まれた領域が、交叉領域である。よって、第1の包絡線は、交叉領域の第1のバスバー14側の端縁部に相当する。第2の包絡線は、交叉領域の第2のバスバー15側の端縁部に相当する。
 さらに、複数本の第1のオフセット電極18の一方端部がそれぞれ、第1のバスバー14に接続されている。第1の電極指16及び第1のオフセット電極18は、交互に並んでいる。複数本の第2のオフセット電極19の一方端部がそれぞれ、第2のバスバー15に接続されている。第2の電極指17及び第2のオフセット電極19は交互に並んでいる。
 複数本の第1の電極指16及び複数本の第2の電極指17、並びに複数本の第1のオフセット電極18及び複数本の第2のオフセット電極19はそれぞれ、基端部及び先端部を含む。第1の電極指16及び第1のオフセット電極18の基端部は、第1のバスバー14に接続されている部分である。第2の電極指17及び第2のオフセット電極19の基端部は、第2のバスバー15に接続されている部分である。第1の電極指16の先端部と、第2のオフセット電極19の先端部とが、ギャップG2を隔てて対向している。さらに、第1の電極指16の先端部は、ギャップG2及び第2のオフセット電極19を隔てて、第2のバスバー15と対向している。一方で、第2の電極指17の先端部と、第1のオフセット電極18の先端部とが、ギャップG1を隔てて対向している。さらに、第2の電極指17の先端部は、ギャップG1及び第1のオフセット電極18を隔てて、第1のバスバー14と対向している。
 以下においては、第1のオフセット電極18及び第2のオフセット電極19を、単にオフセット電極と記載することがある。第1のバスバー14及び第2のバスバー15を、単にバスバーと記載することがある。
 図3は、第1の実施形態におけるIDT電極の構成を説明するための模式的平面図である。
 複数の電極指の平面視における形状はそれぞれ、複数の同心円におけるそれぞれの円弧に相当する形状である。そのため、複数の電極指の形状における円弧を含む円の中心は一致している。該中心を定点Cとする。本実施形態においては、交叉領域Dの第1のバスバー14側の端縁部は、複数のギャップG1と隣接している。交叉領域Dの第2のバスバー15側の端縁部は、複数のギャップG2と隣接している。
 複数の電極指の形状における弧を含む円または楕円の楕円係数をα2/α1としたときに、本実施形態における楕円係数α2/α1は1である。なお、複数の電極指の形状における弧を含む形状が楕円である場合、楕円係数α2/α1は1以外となる。α1は該楕円の長軸及び短軸のうち、交叉領域Dを通る軸の方向に沿う寸法に相当する。α2は該楕円の長軸及び短軸のうち、交叉領域Dを通らない軸の方向に沿う寸法に相当する。
 交叉領域Dの、複数本の第1の電極指16及び複数本の第2の電極指17が延びる方向における中央を通る直線を基準線Nとする。ここでいう複数本の第1の電極指16及び複数本の第2の電極指17が延びる方向とは、曲線状に延びる方向をいう。あるいは、基準線Nは、例えば、交叉領域Dにおける第1のバスバー14側の端縁部、及び第2のバスバー15側の端縁部の間の距離が最も短くなる、上記両端縁部の部分同士を結ぶ方向における、交叉領域Dの中央を通る直線である。本実施形態では、基準線Nは、交叉領域Dの第1のバスバー14側及び第2のバスバー15側の両端縁部が線対称となる対称軸に相当する直線である。上記定点Cは、基準線Nを通り、かつ交叉領域Dの外側に位置する。
 定点Cを通る直線と基準線Nとがなす角の角度をθとする。定点Cを通る直線は無数に存在するが、図3においては、該直線の例を示している。本明細書においては、角度θの正の方向を、平面視したときの反時計回りの方向とする。より具体的には、第2のバスバー15側から第1のバスバー14側に向かう方向が上記正の方向である。
 IDT電極8に交流電圧を印加することにより、交叉領域Dにおいて弾性波が励振される。なお、交叉領域Dは、定点Cを通る無数の直線上に位置するそれぞれの部分を有する。図3には、定点C及び交叉領域Dを通る無数の直線のうちの一例として、直線Mが示されている。例えば、交叉領域Dにおける直線M上に位置する部分において、弾性波が励振される。交叉領域Dにおける、図示しない他の無数の直線上に位置する部分においてもそれぞれ、弾性波が励振される。すなわち、定点C及び交叉領域Dを通る各直線は、楕円係数α2/α1が1のとき、弾性波が励振される方向(IDT電極8の電極指が延びる方向と垂直となる方向)と平行に延びており、楕円係数α2/α1が1以外のとき、弾性波が励振される方向から傾いている。なお、ここでいう電極指が延びる方向とは、電極指の各部分が延びる方向である。上記弾性波伝搬方向は、曲線状の電極指の接線に対して垂直な方向と平行である。定点C及び交叉領域Dを通る直線と、基準線Nとがなす角の角度θは、励振角度θC_propである。基準線Nが通る部分においては、励振角度θC_propは0°である。
 ところで、弾性波装置1の圧電体層6の材料として、圧電単結晶が用いられている。圧電体層6において、伝搬軸はX伝搬の方向である。本実施形態においては、伝搬軸及び基準線Nが平行に延びている。よって、弾性波装置1においては、角度θは、定点Cを通る直線と伝搬軸とがなす角の角度である。なお、伝搬軸は、X伝搬の方向だけでなく、90°X伝搬の方向、あるいは、IDT電極8の電極指が延びる方向のうちいずれかに対して垂直となる方向であってもよい。ここでいう電極指が延びる方向とは、電極指の各部分の接線が延びる方向である。
 交叉領域Dの第1のバスバー14側の端縁部、及び定点Cを通る直線と、基準線Nとがなす角の角度θを交叉角度θC_AP1とする。交叉領域Dの第2のバスバー15側の端縁部、及び定点Cを通る直線と、基準線Nとがなす角の角度θを交叉角度θC_AP2とする。この場合、θC_AP2≦θ≦θC_AP1である。本実施形態では、交叉角度θC_AP1及び交叉角度θC_AP2の絶対値は同じである。よって、角度θの絶対値は、0°≦|θ|≦|θC_AP1|=|θC_AP2|である。
 なお、IDT電極8においては、交叉領域Dの第1のバスバー14側の端縁部と、複数のギャップG1を結ぶ仮想線と、第1のバスバー14とは平行に延びている。同様に、交叉領域Dの第2のバスバー15側の端縁部と、複数のギャップG2を結ぶ仮想線と、第2のバスバー15とは平行に延びている。
 圧電体層6上には1対の反射器9A及び反射器9Bが設けられている。反射器9A及び反射器9Bは、伝搬軸が延びる方向において、IDT電極8を挟み互いに対向している。反射器9Aは複数の電極指9aを有する。反射器9Bは複数の電極指9bを有する。平面視における、反射器9Aの複数の電極指9aの形状、及び反射器9Bの複数の電極指9bの形状はそれぞれ、複数の同心円におけるそれぞれの円弧に相当する形状である。複数の電極指9a及び複数の電極指9bの形状における円弧を含む円の中心は、定点Cと一致している。
 図4は、第1の実施形態におけるIDT電極の一部を拡大して示す模式的平面図である。なお、図4においては、IDT電極8をハッチングにより示す。
 IDT電極8においては、デューティ比が、角度θに応じて変化している。より具体的には、角度θの絶対値が大きいほど、デューティ比が小さい。これにより、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。なお、交叉領域D内における***振周波数同士が略一致していてもよい。本明細書において、一方の周波数及び他方の周波数が略一致しているとは、双方の周波数の差の絶対値が、基準周波数に対して2%以下であることをいう。すなわち、双方の周波数の差の基準周波数に対する比率を周波数変化率としたときに、双方の周波数同士が略一致しているとは、周波数変化率の絶対値が2%以下であることをいう。なお、基準周波数とは、角度θが0°のときの周波数のことである。
 弾性波装置1のIDT電極8においては、電極指ピッチは一定である。そのため、電極指ピッチにより規定される波長をλとしたとき、IDT電極8における波長λは、角度θによらず一定である。なお、電極指ピッチとは、隣り合う電極指同士の中心間距離である。
 本実施形態の特徴は、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致していることにある。それによって、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。この詳細を、本実施形態の構成の詳細と共に、以下において示す。
 図5は、第1の実施形態におけるIDT電極の、角度の絶対値|θ|と、デューティ比との関係を示す図である。
 図5に示すように、第1の実施形態では、IDT電極8における、角度θが0°である部分においては、デューティ比は0.5である。そして、角度の絶対値|θ|が大きいほど、デューティ比が小さい。より具体的には、本実施形態においては、角度の絶対値|θ|をx、デューティ比をyとしたときに、y=1.057×10-4×x-2.753×10-3×x-4.803×10-4×x+0.5の関係式が成立する。それによって、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。
 ここで、角度θの絶対値が最大である部分の周波数、及び角度θが0°である部分の周波数の差をΔfとし、角度θが0°である部分の周波数をfC0とし、周波数変化率をΔf/fC0×100とする。なお、周波数変化率の絶対値は、|Δf|/fC0×100である。第1の実施形態においては、共振周波数について、|Δf|/fC0×100≦2%である。より詳細には、角度θの絶対値が最大である、θ=θC_AP1またはθ=θC_AP2の部分の周波数をfC_APとしたときに、Δf=fC_AP-fC0である。第1の実施形態では、|fC_AP-fC0|/fC0×100≦2%である。
 なお、角度の絶対値|θ|と、デューティ比との関係を図5に示す関係とした弾性波装置1の設計パラメータは、以下の通りである。
 支持基板4;材料…Si、面方位…(111)、オイラー角(φ,θ,ψ)におけるψ…73°
 第1の層5a;材料…SiN、厚み…50nm
 第2の層5b;材料…SiO、厚み…300nm
 圧電体層6;材料…回転Yカット55°X伝搬のLiTaO、厚み…400nm
 IDT電極8;材料…Al、厚み…100nm
 電極指の対数;60対
 電極指の形状における楕円係数α2/α1;1
 交叉角度;θC_AP1…10°、θC_AP2…-10°
 波長λ;2μm
 反射器9A及び反射器9B;電極指の対数…20対
 第1の実施形態においては、不要波としての、横モード及びレイリー波を抑制することができる。これを、第1の実施形態及び第1の比較例を比較することにより示す。なお、該比較では、第1の実施形態の弾性波装置1の設計パラメータは上記の通りとした。
 第1の比較例においては、図6に示すように、IDT電極108、反射器109A及び反射器109Bの各電極指は直線状である。IDT電極108においては、交叉領域は矩形状である。複数の電極指が延びる方向を電極指延伸方向とし、交叉領域の電極指延伸方向に沿う寸法を交叉幅としたときに、交叉幅は41.5λである。IDT電極108の電極指の対数は60対であり、反射器109A及び反射器109Bの電極指の対数はそれぞれ20対である。IDT電極108においては、デューティ比は0.5である。
 図7は、第1の実施形態及び第1の比較例における、主モードが励振される周波数付近のQ値を示す図である。図8は、第1の実施形態及び第1の比較例における、レイリー波が生じる周波数付近のリターンロスを示す図である。
 図7に示すように、第1の比較例では、Q値の周波数特性において、大きなリップルが生じている。このリップルは横モードに起因する。これに対して、第1の実施形態においては、横モードに起因するリップルが抑制されていることがわかる。図8に示すように、第1の実施形態では、第1の比較例よりも、不要波としてのレイリー波が大幅に抑制されていることがわかる。これらのように、第1の実施形態においては、不要波を抑制することができる。
 第1の実施形態においては、複数の電極指の長さは互いに異なる。そのため、IDT電極8の各部分において生じる横モードの位相が一致し難く、全体として横モードの強度が高くなり難い。従って、横モードを抑制することができる。さらに、第1の実施形態においては、各電極指の平面視における形状の曲率が、互いに異なる。そのため、レイリー波が生じる周波数は分散される。従って、レイリー波を抑制することができる。
 なお、例えば、IDT電極8には、曲率が異なる少なくとも2本の第1の電極指16または第2の電極指17が含まれていればよい。言い換えれば、曲率が異なる電極指の合計が2本以上であればよい。この場合、レイリー波をより確実に抑制することができる。
 一方で、第1の実施形態においては、上記のように、各部分における共振周波数同士が略一致している。よって、主モードが好適に励振されるため、共振特性の劣化を抑制することができる。なお、複数本の第1の電極指16及び複数本の第2の電極指17が並ぶ方向における一方から他方に向かうにつれて、複数本の第1の電極指16及び第2の電極指17の曲率が徐々に変化していてもよい。
 本発明は、弾性波の伝搬特性が、それぞれの角度θにおいて互いに異なることを利用している。この詳細を以下において説明する。
 弾性波の位相速度は角度θに対する依存性を有し、基板の構成に応じて固有の特性を示す。なお、位相速度の逆数は、逆速度面に相当する。よって、角度θと位相速度との関係は、圧電性基板の逆速度面と概ね等しい。そこで、図9において、層構成が互いに異なる圧電性基板の逆速度面の例を示す。一方の圧電性基板は、回転Yカット42°X伝搬のLiTaO(LT)のみからなる基板である。この基板を第1の圧電性基板とする。他方の圧電性基板は、圧電体層/支持基板の貼合せ基板である。この基板を第2の圧電性基板とする。第2の圧電性基板は、より具体的には、面方位が(100)であるシリコン基板、酸化ケイ素膜及びタンタル酸リチウム層がこの順序において積層された基板である。
 図9は、第1の圧電性基板及び第2の圧電性基板を伝搬する弾性波の逆速度面を示す図である。
 第1の圧電性基板及び第2の圧電性基板の逆速度面は、いずれもx軸を対称軸とする線対称である。なお、x軸の方向は、角度θが0°である方向に相当する。第1の圧電性基板における逆速度面は凹形状である。一方で、第2の圧電性基板における逆速度面は凸形状である。このように、基板を伝搬する弾性波の角度θに対する依存性は、基板の構成によって異なる。さらに、弾性波のモードが異なる場合には、同じ基板における角度θに対する依存性は異なる。これを図10により示す。
 図10は、第1の圧電性基板における、縦波、速い横波及び遅い横波の逆速度面を示す図である。
 図10に示すように、3種の弾性波のモードである、縦波、速い横波及び遅い横波の逆速度面は、互いに異なる。図10中の矢印L1及びL2を通る部分はそれぞれ、角度θが0°以外である場合の例に相当する。矢印L1を通る部分における遅い横波及び速い横波の逆速度面の間隔と、矢印L2を通る部分における遅い横波及び速い横波の逆速度面の間隔とは互いに異なる。同様に、矢印L1を通る部分における速い横波及び縦波の逆速度面の間隔と、矢印L2を通る部分における速い横波及び縦波の逆速度面の間隔とは互いに異なる。すなわち、角度θが互いに異なる場合においては、異なるモード同士の間の逆速度面の間隔が互いに異なる。これは、弾性波装置において利用する主モードと、不要波との関係でも同様である。
 第1の実施形態では、それぞれの角度θにおいて、主モードの共振周波数を略一致させている。そのため、それぞれの角度θにおいては、不要波の周波数が互いに異なることとなる。それによって、不要波が分散されるため、不要波が抑制される。
 主モードの共振周波数を略一致させていることを、以下においてより詳細に説明する。上記のように、位相速度は、逆速度面の逆数に相当する。よって、角度θと位相速度との関係は、図10に示すような、圧電性基板のXY面内の逆速度面と概ね等しい。すなわち、電極指の曲線状の形状を表す関数は、圧電性基板のXY面内の逆速度面の形状によって決められるといえる。弾性波の位相速度は角度θに対する依存性を有する。
 もっとも、単に電極指の形状を曲線状にしただけでは、インピーダンス周波数特性としては、それぞれの角度θにおける共振周波数が互いに大きく異なる特性を重ね合わせたものになる。そのため、インピーダンス周波数特性が大きく劣化する。そこで、第1の実施形態のように、周波数に影響するデューティ比を、角度θに応じて変化させることにより、それぞれの角度θにおいて励振される弾性波の周波数を略一致させることができる。よって、それぞれの角度θにおいて、共振周波数同士を略一致させることができる。なお、それぞれの角度θにおいて、***振周波数同士を略一致させることもできる。従って、共振周波数または***振周波数が略一致したインピーダンス周波数特性になる。
 デューティ比に限られず、周波数に影響する電極指ピッチ、電極指の厚み、圧電体層の厚み、圧電性基板内の中間層の厚みなどのパラメータを、角度θに応じて変化させてもよい。上記中間層は、例えば、誘電体層である。圧電性基板上に、IDT電極を覆うように誘電体膜が設けられている場合には、誘電体膜の厚みを、角度θに応じて変化させてもよい。これらの場合においても、それぞれの角度θにおいて、共振周波数同士または***振周波数同士を略一致させることができる。もっとも、圧電性基板上に、IDT電極を覆うように誘電体膜が設けられている場合においても、誘電体膜の厚み以外のパラメータを角度θに応じて変化させてもよい。この場合、誘電体膜の厚みは一定であってもよい。
 なお、特許文献1に記載の弾性波装置においては、逆速度面が凹形状である。このとき、IDT電極において、複数の電極指が延びる方向における中央の部分の電極指ピッチを、該方向における端部の電極指ピッチよりも狭くして、不要波の応答の抑制を図ったとしても、IDT電極の部分毎に共振周波数が異なるため、共振特性が劣化してしまう。これに対し、第1の実施形態においては、逆速度面は凸形状である。このため、角度θの絶対値が大きくなるほど、デューティ比を小さくすることにより、交叉領域における共振周波数を略一致させることができる。
 上記のように、交叉領域における、それぞれの角度θにおいて、***振周波数同士が略一致していてもよい。この例を、第1の実施形態の第1の変形例として示す。本変形例は、角度θと、デューティ比との関係のみが第1の実施形態と異なるため、本変形例の説明には、第1の実施形態の説明において用いた符号を援用する。
 図11は、第1の実施形態の第1の変形例におけるIDT電極の、角度の絶対値|θ|と、デューティ比との関係を示す図である。
 図11に示すように、本変形例では、IDT電極8における、角度θが0°である部分においては、デューティ比は0.5である。そして、角度の絶対値|θ|が大きいほど、デューティ比が小さい。より具体的には、本実施形態においては、角度の絶対値|θ|をx、デューティ比をyとしたときに、y=1.585×10-4×x-4.201×10-3×x+3.478×10-4×x+0.5の関係式が成立する。それによって、交叉領域Dにおける、いずれの角度θにおいても、***振周波数同士が略一致している。本変形例においても、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 ところで、共振周波数または***振周波数について、周波数変化率の絶対値|Δf|/fC0×100が、1%以下であることが好ましい。それによって、共振特性の劣化をより確実に抑制することができる。共振周波数または***振周波数について、周波数変化率Δf/fC0×100が、-0.66%以上、0.82%以下であることがさらに好ましい。それによって、共振特性の劣化をより一層確実に抑制することができる。以下において、共振周波数について、-0.66%≦Δf/fC0×100≦0.82%である場合に、共振特性の劣化が抑制されている例を示す。
 図12は、共振周波数同士が略一致しており、かつ共振周波数の差Δfが負の値である場合、及び共振周波数の差Δfが0である場合のインピーダンス周波数特性を示す図である。図13は、共振周波数同士が略一致しており、かつ共振周波数の差Δfが正の値である場合、及び共振周波数の差Δfが0である場合のインピーダンス周波数特性を示す図である。
 図12に示すように、Δf/fC0×100=-0.35%である場合、及びΔf/fC0×100=-0.66%である場合の双方において、Δf/fC0×100=0%である場合に対して、共振周波数付近の特性が大きくは劣化していないことがわかる。同様に、図13に示すように、Δf/fC0×100=0.39%である場合、及びΔf/fC0×100=0.82%である場合の双方において、Δf/fC0×100=0%である場合に対して、共振周波数付近の特性が大きくは劣化していないことがわかる。
 第1の実施形態においては、デューティ比の最大値は0.5である。もっとも、デューティ比の最大値は上記に限定されない。第1の実施形態の第2の変形例においては、デューティ比の最大値は0.65である。本変形例においては、角度θと、デューティ比との関係が図14に示す関係であることにより、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。より具体的には、本変形例においては、角度の絶対値|θ|をx、デューティ比をyとしたときに、y=8.124×10-5×x-1.449×10-3×x-2.101×10-2×x+0.6397の関係式が成立する。
 第2の変形例においても、第1の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。なお、第2の変形例においては、横モード及びレイリー波に加えて、高次モードも抑制することができる。この効果の詳細を以下において示す。なお、第2の変形例と、図6に示した第1の比較例とを比較した。
 図15は、第1の実施形態の第2の変形例及び第1の比較例における、高次モードが生じる周波数付近のリターンロスを示す図である。
 図15に示すように、第2の変形例においては、第1の比較例よりも、高次モードが抑制されていることがわかる。より具体的には、第2の変形例においては、主モードが励振される周波数の2倍の周波数付近における高次モードを抑制することができる。なお、圧電性基板の逆速度面によって、デューティ比と各モードの周波数との関係は異なる。よって、圧電性基板の構成や、圧電性基板上の構成によっては、角度の絶対値|θ|が大きいほどデューティ比が大きいときに、全ての角度θの部分において、共振周波数同士または***振周波数同士が略一致する場合もある。この場合、デューティ比が最も小さい部分と、定点Cとを通る直線が基準線Nである。この例としては、回転Yカット-4°X伝搬のLiNbOのみからなる基板上に設けられたIDT電極を、厚みが厚いSiO膜に埋め込んだ弾性波装置などを挙げることができる。あるいは、基準線Nが通る、角度θが0°である励振部において、デューティ比が最大または最小とは、必ずしもならない。
 次に、オフセット電極の基端部及び先端部を結ぶ方向に沿う寸法をオフセット電極の長さとする。第1の実施形態において、オフセット電極の長さを変化させる毎にインピーダンス比を算出した。なお、オフセット電極の長さは、1λ以上、5λ以下の範囲において、0.5λ刻みで変化させた。この結果を以下において示す。
 図16は、オフセット電極の長さと、インピーダンス比との関係を示す図である。
 図16に示すように、オフセット電極の長さが1.5λ以上、5λ以下である場合において、インピーダンス比が71dB以上となっていることがわかる。なお、図16中の補助線Eは、オフセット電極の長さが1λのときのプロットと、1.5λのときのプロットとを結ぶ線である。補助線Eにより示されるように、オフセット電極の長さが1.3λ以上の場合に、インピーダンス比を71dB以上にできることがわかる。オフセット電極の長さは、1.3λ以上であることが好ましく、1.5λ以上であることがより好ましい。それによって、インピーダンス比を大きくすることができ、主モードのQ特性を良好とすることができる。他方、オフセット電極の長さは、5λ以下であることが好ましい。それによって、インピーダンス比を大きくすることができ、主モードのQ特性を良好とすることができる。
 これは以下の理由による。図3に示すように、交叉領域Dの第1のバスバー14側の端縁部、及び定点Cを通る直線と、基準線Nとがなす角の角度θは交叉角度θC_AP1である。該端縁部及び定点Cを通る直線と、複数のギャップG1を結ぶ仮想線とは平行に延びている。よって、複数のギャップG1を結ぶ仮想線が延びる方向が、基準線Nが延びる方向と交叉している。そして、圧電体層6の伝搬軸が延びる方向は、X伝搬の方向であり、基準線Nが延びる方向と平行である。そのため、交叉領域Dにおいて励振された弾性波が、複数のギャップG1から漏洩しがちになる。
 これに対して、第1のオフセット電極18の長さが1.3λ以上と十分に長い場合には、漏洩した弾性波が、十分に多い対数の第1のオフセット電極18及び第1の電極指16によって反射される。これにより、弾性波を交叉領域D内に効果的に閉じ込めることができる。同様に、複数のギャップG2から漏洩した弾性波も、十分に多い対数の第2のオフセット電極19及び第2の電極指17によって、交叉領域D側に反射させることができる。従って、弾性波装置1において、主モードのQ特性を良好とすることができる。
 図1などに示すように、第1の実施形態における複数本の第1のオフセット電極18は円弧状である。IDT電極8における、複数本の第1のオフセット電極18が設けられている部分においては、第1のバスバー14に近づく程、デューティ比が小さくなっている。同様に、複数本の第2のオフセット電極19は円弧状である。IDT電極8における、複数本の第2のオフセット電極19が設けられている部分においては、第2のバスバー15に近づく程、デューティ比が小さくなっている。なお、複数本の第1のオフセット電極18及び複数本の第2のオフセット電極19は、直線状であってもよい。複数本の第1のオフセット電極18及び複数本の第2のオフセット電極19が設けられている部分においては、デューティ比は一定であってもよい。
 ここで、電極指の先端部とバスバーとが互いに対向する方向に沿うギャップの寸法をギャップ幅とする。なお、第1の実施形態においては、ギャップ幅は、電極指の先端部とオフセット電極の先端部とが互いに対向する方向に沿うギャップの寸法と同義である。ギャップ幅を変化させる毎に、インピーダンス比を算出した。この結果を以下において示す。
 図17は、ギャップ幅と、インピーダンス比との関係を示す図である。
 図17に示すように、ギャップ幅が0.56λ以下である場合において、インピーダンス比が約70dBとなっていることがわかる。よって、ギャップ幅は、0.56λ以下であることが好ましい。これにより、インピーダンス比を大きくすることができ、Q特性を良好とすることができる。
 図2に示すように、第1の実施形態においては、圧電性基板2は、支持基板4、誘電体層5の第1の層5a及び第2の層5b、並びに圧電体層6の積層基板である。より詳細には、第1の実施形態における第1の層5aは高音速膜である。高音速膜は相対的に高音速な層である。より具体的には、高音速膜を伝搬するバルク波の音速は、圧電体層6を伝搬する弾性波の音速よりも高い。他方、第2の層5bは低音速膜である。低音速膜は相対的に低音速な膜である。より具体的には、低音速膜を伝搬するバルク波の音速は、圧電体層6を伝搬するバルク波の音速よりも低い。
 第1の実施形態では、圧電性基板2において、高音速膜、低音速膜及び圧電体層6がこの順序で積層されている。それによって、弾性波のエネルギーを圧電体層6側に効果的に閉じ込めることができる。なお、図7及び図8に示した比較に係る弾性波装置1の設計パラメータでは、弾性波装置1における圧電性基板2の各層やIDT電極8の材料の例を示した。もっとも、上記の材料に限定されるものではない。圧電性基板2の各層やIDT電極8の材料の組み合わせは、弾性波が励振される適宜の材料の組み合わせとすればよい。
 高音速膜の材料としては、例えば、窒化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、炭化ケイ素、窒化ケイ素、サファイア、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア、スピネル、サイアロンなどのセラミック、酸化アルミニウム、酸窒化ケイ素、DLC(ダイヤモンドライクカーボン)膜、ダイヤモンドなどの誘電体、もしくはシリコン、多結晶シリコン、アモルファスシリコンなどの半導体、または上記材料を主成分とする材料を用いることができる。
 低音速膜の材料としては、例えば、ガラス、酸化ケイ素、酸窒化ケイ素、酸化リチウム、五酸化タンタル、または、酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料を用いることができる。
 圧電体層6の材料としては、例えば、タンタル酸リチウム、ニオブ酸リチウム、酸化亜鉛、窒化アルミニウム、水晶、またはPZT(チタン酸ジルコン酸鉛)などを用いることもできる。圧電体層6の材料として、タンタル酸リチウムまたはニオブ酸リチウムが用いられることが好ましい。
 支持基板4の材料としては、例えば、窒化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、サファイア、マグネシア、窒化ケイ素、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、スピネル、サイアロンなどのセラミック、酸化アルミニウム、酸窒化ケイ素、DLC(ダイヤモンドライクカーボン)、ダイヤモンドなどの誘電体、もしくはシリコンなどの半導体、または上記材料を主成分とする材料を用いることもできる。なお、支持基板4及び高音速膜の材料の例として挙げた上記スピネルには、Mg、Fe、Zn、Mnなどから選ばれる1以上の元素と酸素とを含有するアルミニウム化合物が含まれる。上記スピネルの例としては、MgAl、FeAl、ZnAl、MnAlを挙げることができる。支持基板4の材料として、シリコンが用いられることが好ましい。
 本明細書において主成分とは、占める割合が50重量%を超える成分をいう。上記主成分の材料は、単結晶、多結晶、及びアモルファスのうちいずれかの状態、もしくは、これらが混在した状態で存在していてもよい。
 なお、誘電体層5においての、第1の層5a及び第2の層5bにおける音速の関係は上記に限定されない。さらに、圧電性基板2の層構成は上記に限定されない。以下において、圧電性基板2の構成のみが第1の実施形態と異なる、第1の実施形態の第3の変形例及び第4の変形例を示す。第3の変形例及び第4の変形例においても、第1の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。さらに、弾性波のエネルギーを圧電体層6側に効果的に閉じ込めることができる。
 図18に示す第3の変形例においては、圧電性基板2Aは、支持基板4と、音響反射膜7と、誘電体層5Aと、圧電体層6とを有する。支持基板4上に音響反射膜7が設けられている。音響反射膜7上に誘電体層5Aが設けられている。誘電体層5A上に圧電体層6が設けられている。誘電体層5Aは低音速膜である。
 音響反射膜7は複数の音響インピーダンス層の積層体である。具体的には、音響反射膜7は、複数の低音響インピーダンス層と、複数の高音響インピーダンス層とを有する。高音響インピーダンス層は、相対的に音響インピーダンスが高い層である。音響反射膜7の複数の高音響インピーダンス層は、より具体的には、高音響インピーダンス層13a、高音響インピーダンス層13b及び高音響インピーダンス層13cである。一方で、低音響インピーダンス層は、相対的に音響インピーダンスが低い層である。音響反射膜7の複数の低音響インピーダンス層は、より具体的には、低音響インピーダンス層12a及び低音響インピーダンス層12bである。低音響インピーダンス層及び高音響インピーダンス層は交互に積層されている。なお、高音響インピーダンス層13aが、音響反射膜7において最も圧電体層6側に位置する層である。
 音響反射膜7は、低音響インピーダンス層を2層有し、高音響インピーダンス層を3層有する。もっとも、音響反射膜7は、低音響インピーダンス層及び高音響インピーダンス層をそれぞれ少なくとも1層ずつ有していればよい。
 低音響インピーダンス層の材料としては、例えば、酸化ケイ素またはアルミニウムなどを用いることができる。高音響インピーダンス層の材料としては、例えば、白金またはタングステンなどの金属や、窒化アルミニウムまたは窒化ケイ素などの誘電体を用いることができる。なお、誘電体層5Aの材料は、低音響インピーダンス層の材料と同じであってもよい。
 図19に示す第4の変形例においては、圧電性基板2Bは、支持基板4Bと、圧電体層6とを有する。支持基板4B上に直接的に圧電体層6が設けられている。より具体的には、支持基板4Bは凹部4cを有する。支持基板4B上に、凹部4cを塞ぐように、圧電体層6が設けられている。これにより、圧電性基板2Bに中空部が設けられている。中空部は、平面視において、IDT電極8の少なくとも一部と重なっている。
 以下において、本発明の第1の実施形態以外の例を示す。以下の各例においては、IDT電極の形状が第1の実施形態と異なることに対応して、反射器の形状も第1の実施形態と異なっている。
 図20は、第2の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態は、平面視における複数の電極指の形状が楕円弧の形状である点において第1の実施形態と異なる。本実施形態は、IDT電極28において、デューティ比が一定であり、かつ電極指ピッチが一定でない点においても、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 複数の電極指の平面視における形状はそれぞれ、重心が同じ位置である複数の楕円におけるそれぞれの楕円弧に相当する形状である。より詳細には、図21に示す焦点A及び焦点Bの中点が重心である。この重心を定点Cとしたときに、定点Cを通る直線が、隣り合う電極指のそれぞれと交叉する領域が交叉領域Dである。本実施形態における楕円係数α2/α1は、α2/α1<1である。より具体的には、α2/α1=0.72である。もっとも、楕円係数α2/α1は上記に限定されない。
 図22は、第2の実施形態におけるIDT電極の、角度の絶対値|θ|と、電極指ピッチとの関係を示す図である。
 図22に示すように、本実施形態では、IDT電極28における、角度θが0°である部分においては、電極指ピッチは1μmである。そして、角度の絶対値|θ|が大きいほど、電極指ピッチが狭い。より具体的には、本実施形態においては、角度の絶対値|θ|をx、電極指ピッチをyとしたときに、y=-1×10-4×x-4×10-5×x+1の関係式が成立する。それによって、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。
 本実施形態においても、第1の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。なお、本実施形態においては、横モード及びレイリー波に加えて、高次モードも抑制することができる。この効果の詳細を以下において示す。なお、本実施形態と、図6に示した第1の比較例とを比較した。
 図23は、第2の実施形態及び第1の比較例における、高次モードが生じる周波数付近のリターンロスを示す図である。
 図23に示すように、第2の実施形態においては、第1の比較例よりも、高次モードが抑制されていることがわかる。より具体的には、第2の実施形態においては、主モードが励振される周波数の2倍の周波数付近における高次モードを抑制することができる。これは、電極指ピッチが一定ではないため、主モード以外のモードが生じる周波数が分散されることによる。もっとも、本実施形態においては、共振周波数が上記のように略一致しているため、主モードが生じる周波数はほぼ一定となり、共振特性の劣化は抑制される。
 第2の実施形態においては、第1の実施形態と同様に、逆速度面が凸形状となる。一方で、図9における比較に係る、第1の圧電性基板上にIDT電極を形成した弾性波装置では、逆速度面は凹形状になる。なお、第1の圧電性基板は、回転Yカット42°X伝搬のLiTaOのみからなる基板である。このとき、第2の実施形態と同様に、デューティ比を一定として、それぞれの角度θにおいて周波数を略一致させたときには、角度θの絶対値が大きいほど、電極指ピッチが狭くなる。従って、逆速度面が凹形状の場合、電極指の形状を、角度θの絶対値が大きいほど電極指ピッチを広くする曲線の形状とすると、電極指ピッチを変化させるだけでは、それぞれの角度θにおいて周波数を合わせられず、共振特性が劣化する。これに対して、デューティ比を一定として、角度θの絶対値が大きいほど、電極指ピッチを狭くすることにより、周波数を略一致させることができるため、特性が良好になる。
 また、回転Yカット-4°X伝搬のLiNbOのみからなる基板上に設けられたIDT電極を、厚みが厚いSiO膜に埋め込んだ弾性波装置の場合、逆速度面が凸形状になる。なお、該SiO膜の厚みは、例えば0.01λ~1λである。このとき、デューティ比を一定として、角度θの絶対値が大きいほど、電極指ピッチを広くすることにより、周波数を略一致させることができるため、特性が良好になる。
 あるいは、回転Yカット128.5°X伝搬のLiNbOのみからなる基板上に設けられたIDT電極を、厚みが厚いSiO膜に埋め込んだ弾性波装置の場合、逆速度面が凸形状になる。なお、該SiO膜の厚みは、例えば0.01λ~1λである。このとき、第2の実施形態と同様に、デューティ比を一定として、角度θの絶対値が大きいほど、電極指ピッチを狭くすることにより、周波数を略一致させることができるため、特性が良好になる。
 以上より、圧電性基板における逆速度面が凸形状である場合には、複数本の第1の電極指16及び複数本の第2の電極指17が、以下の構成を有していることにより、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。すなわち、複数本の第1の電極指16及び複数本の第2の電極指17は、角度θの絶対値が大きいほど電極指ピッチが広い構成、及び角度θの絶対値が大きいほど電極指ピッチが狭い構成のうち一方を有していればよい。なお、圧電性基板における逆速度面が凸形状である場合とは、上記のように、圧電性基板が、材料としてニオブ酸リチウムが用いられた圧電体層のみを含む基板である場合である。
 あるいは、図2に示すように、圧電性基板2が、圧電体層6と、支持基板4とが積層されてなる基板である場合、圧電性基板2の逆速度面は凸形状である。なお、圧電体層6及び支持基板4が、直接的に積層されているか、誘電体層5を介して間接的に積層されているかに関わらず、圧電性基板2の逆速度面を凸形状とすることができる。この場合、圧電体層6の材料としては、例えば、タンタル酸リチウムまたはニオブ酸リチウムを用いることができる。
 図24は、第3の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態は、IDT電極38の複数の電極指が、直線状の部分を含む点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 IDT電極38の交叉領域は、第1の領域W1と、第2の領域W2と、第3の領域W3とを有する。第1の領域W1、第2の領域W2及び第3の領域W3は、第1のバスバー14及び第2のバスバー15が互いに対向する方向において並んでいる。より具体的には、第1の領域W1及び第2の領域W2は、第3の領域W3を挟み互いに対向している。第1の領域W1は第1のバスバー14側に位置している。第2の領域W2は第2のバスバー15側に位置している。第3の領域W3は、角度θが0°である部分を含む。
 第1の領域W1及び第2の領域W2においては、複数の電極指の平面視における形状は楕円弧の形状である。他方、第3の領域W3においては、複数の電極指の平面視における形状は直線の形状である。このように、それぞれの電極指が、平面視における形状の曲率が異なる部分を含む。
 本実施形態では、第3の領域W3の全てにおいて、圧電体層6の伝搬軸が延びる方向(X伝搬の方向)と、複数の電極指が延びる方向とが直交している。そのため、第3の領域W3は、伝搬軸に対して安定した領域である。交叉領域が第3の領域W3を有することによって、比帯域の劣化を抑制することができる。
 なお、本実施形態においても、第1の実施形態と同様に、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。加えて、複数の電極指の長さが互いに異なる。さらに、複数の電極指の、平面視において弧状である部分の曲率が互いに異なる。これらにより、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 本実施形態では、各電極指が直線の形状である部分を含む。もっとも、各電極指が直線の形状を含まない場合においても、各電極指が、平面視における形状の曲率が異なる部分を含んでいてもよい。この場合、電極指の曲率が、角度θの絶対値が大きくなるにつれて徐々に変化していることが好ましい。それによって、弾性波装置の電気的特性が劣化し難い。
 図25は、第4の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態は、IDT電極48において、電極指ピッチが一定でない点、及び楕円係数α2/α1が1より大きい点で第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。本実施形態においては、デューティ比及び電極指ピッチの双方が一定ではない。
 より具体的には、本実施形態においては、角度θの絶対値が大きいほど、電極指ピッチが広い。他方、角度θの絶対値が大きいほど、デューティ比が小さい。それによって、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士または***振周波数同士が略一致している。本実施形態においても、第1の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 さらに、本実施形態においては、比帯域の値を大きくすることができ、比阻止域幅の値を大きくすることができ、かつ阻止域の上端の応答を抑制することができる。なお、比帯域は、共振周波数をfr、***振周波数をfaとしたときに、|fr-fa|/frにより表わされる。阻止域とは、弾性波が周期構造の金属グレーティングに閉じ込められることにより、弾性波の波長が一定となる領域である。比阻止域幅とは、阻止域の帯域幅を共振周波数frにより割った値である。本明細書においては、阻止域の高域側の端部を上端と記載する。阻止域の帯域幅は、阻止域の上端の周波数及び共振周波数frの差である。
 上記効果の詳細として、インピーダンス周波数特性及びリターンロスを示す。本実施形態の弾性波装置の設計パラメータは以下の通りとした。なお、参考として、第1の実施形態の結果も併せて示す。第1の実施形態の弾性波装置1の設計パラメータは、上記図5に示す関係としたときの設計パラメータと同じである。
 IDT電極の電極指の対数;60対
 電極指の形状における楕円係数α2/α1;1.1
 オフセット電極の長さ;3.5λ
 交叉角度;θc_AP1…10°、θc_AP2…-10°
 反射器の電極指の対数;20対
 図26は、第1の実施形態及び第4の実施形態における、インピーダンス周波数特性を示す図である。図27は、第1の実施形態及び第4の実施形態における、阻止域の上端付近の、インピーダンス周波数特性を示す図である。図28は、第1の実施形態及び第4の実施形態におけるリターンロスを示す図である。
 図26に示すように、第4の実施形態においては、共振周波数及び***振周波数の差が大きくなっている。よって、比帯域の値が大きくなっていることがわかる。図27中の矢印F1は、第1の実施形態における阻止域の上端の応答を示す。矢印F4は、第4の実施形態における阻止域の上端の応答を示す。図27に示すように、第4の実施形態においては、第1の実施形態よりも、阻止域の上端の応答の周波数が高くなっている。他方、図26に示すように、第1の実施形態及び第4の実施形態においては、共振周波数はほぼ同じである。よって、第4の実施形態においては、第1の実施形態よりも、比阻止域幅の値も大きくなっている。
 加えて、図28に示すように、第4の実施形態においては、阻止域の上端の応答を抑制できることがわかる。第4の実施形態においては、複数の電極指の形状における楕円係数α2/α1が1よりも大きい。それによって、阻止域の上端の周波数が分散されている。従って、阻止域の上端の周波数の応答を抑制することができる。
 図29は、第5の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態は、IDT電極58において、電極指ピッチが一定でない点、及び楕円係数α2/α1が1より小さい点で第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。本実施形態においては、デューティ比及び電極指ピッチの双方が一定ではない。
 より具体的には、本実施形態においては、角度θの絶対値が大きいほど、電極指ピッチが狭い。他方、角度θの絶対値が大きいほど、デューティ比が大きい。それによって、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士または***振周波数同士が略一致している。本実施形態においても、第1の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 さらに、本実施形態においては、比帯域の値を小さくすることができ、高次モードを効果的に抑制することができ、かつ阻止域の上端の応答を抑制することができる。上記効果の詳細として、インピーダンス周波数特性及びリターンロスを示す。本実施形態の弾性波装置の設計パラメータは以下の通りとした。なお、参考として、第1の実施形態の結果も併せて示す。第1の実施形態の弾性波装置1の設計パラメータは、上記図5に示す関係としたときの設計パラメータと同じである。
 IDT電極の電極指の対数;60対
 電極指の形状における楕円係数α2/α1;0.9
 オフセット電極の長さ;3.5λ
 交叉角度;θc_AP1…10°、θc_AP2…-10°
 反射器の電極指の対数;20対
 図30は、第1の実施形態及び第5の実施形態における、インピーダンス周波数特性を示す図である。図31は、第1の実施形態及び第5の実施形態における、共振周波数の2.2倍付近の位相特性を示す図である。図32は、第1の実施形態及び第5の実施形態におけるリターンロスを示す図である。
 図30に示すように、第5の実施形態においては、共振周波数及び***振周波数の差が小さくなっている。よって、比帯域の値が小さくなっていることがわかる。図31に示すように、第5の実施形態においては、共振周波数の2.2倍付近に生じる高次モードを効果的に抑制できていることがわかる。
 加えて、図32に示すように、第5の実施形態においては、阻止域の上端の応答を抑制できることがわかる。第5の実施形態においては、複数の電極指の形状における楕円係数α2/α1が1よりも小さい。それによって、阻止域の上端の周波数が分散されている。従って、阻止域の上端の周波数の応答を抑制することができる。
 ところで、第1~第5の実施形態においては、デューティ比または電極指ピッチを調整することにより、交叉領域Dにおける、それぞれの角度θにおいて、共振周波数同士または***振周波数同士を略一致させている。もっとも、複数の電極指の厚みを調整することにより、交叉領域Dにおける、それぞれの角度θにおいて、共振周波数同士または***振周波数同士を略一致させてもよい。この例を、第6の実施形態により示す。
 第6の実施形態は、IDT電極において、デューティ比が一定であり、かつ複数の電極指の厚みが一定でない点で第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 図33は、第6の実施形態におけるIDT電極の、角度の絶対値|θ|と、電極指の厚みとの関係を示す図である。
 図33に示すように、第6の実施形態では、IDT電極における、角度の絶対値|θ|が大きいほど、電極指の厚みが薄い。それによって、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。
 加えて、第6の実施形態においても、第1の実施形態と同様に、複数の電極指の長さが互いに異なる。さらに、複数の電極指の、平面視において弧状である部分の曲率が互いに異なる。これらにより、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 第1~第6の実施形態においては、IDT電極の構成により、交叉領域Dにおける、それぞれの角度θにおいて、共振周波数同士または***振周波数同士を略一致させている。もっとも、IDT電極を覆う誘電体膜の厚みを調整することにより、交叉領域Dにおける、それぞれの角度θにおいて、共振周波数同士または***振周波数同士を略一致させてもよい。この例を、第7の実施形態及びその変形例により示す。
 図34は、第7の実施形態の弾性波装置の模式的正面断面図である。なお、図34は、基準線Nに沿う模式的断面図である。
 本実施形態は、IDT電極において、電極指ピッチが一定である点で第1の実施形態と異なる。本実施形態は、圧電体層6上にIDT電極68を覆うように誘電体膜65が設けられている点においても、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 本実施形態の誘電体膜65を伝搬する横波の音速は、誘電体膜65を伝搬する主モードの音速よりも低い。誘電体膜65の厚みは、角度θに応じて変化している。具体的には、誘電体膜65の各部分は、IDT電極68の各部分を覆っている。そして、誘電体膜65の各部分の厚みは、誘電体膜65の各部分が覆っている、IDT電極68の部分の角度θに応じて異なっている。
 図35は、第7の実施形態における、誘電体膜が覆っているIDT電極の部分の角度の絶対値|θ|と、誘電体膜の厚みとの関係を示す図である。
 図35に示すように、本実施形態では、誘電体膜65が覆っているIDT電極68の部分の角度θが大きいほど、誘電体膜65の厚みが薄い。それによって交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。
 加えて、本実施形態においても、第1の実施形態と同様に、複数の電極指の長さが互いに異なる。さらに、複数の電極指の、平面視において弧状である部分の曲率が互いに異なる。これらにより、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 第7の実施形態では、誘電体膜65を伝搬する横波の音速は、誘電体膜65を伝搬する主モードの音速よりも低い。もっとも、誘電体膜を伝搬する波の音速の関係は上記に限定されない。誘電体膜を伝搬する横波の音速のみが第7の実施形態と異なる、第7の実施形態の変形例を以下において示す。
 第7の実施形態の変形例においては、誘電体膜を伝搬する横波の音速は、該誘電体膜を伝搬する主モードの音速よりも高い。そして、本変形例においては、誘電体膜が覆っているIDT電極の部分の角度の絶対値|θ|と、誘電体膜の厚みとの関係は、図36に示す通りである。より具体的には、本変形例では、誘電体膜が覆っているIDT電極の部分の角度θが大きいほど、誘電体膜の厚みが厚い。それによって、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士が略一致している。これにより、本変形例においても、第7の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 第1~第7の実施形態においては、交叉領域Dにおける、いずれの角度θにおいても、共振周波数同士、または***振周波数同士が略一致している構成をそれぞれ示した。本発明においては、デューティ比、電極指ピッチ、電極指の厚み及び誘電体膜の厚みのうち少なくともいずれかを、角度θに応じて異ならせればよい。これにより、上記のように、共振周波数同士、または***振周波数同士を略一致させればよい。
 以下において、第8~第10の実施形態により、ピストンモードを利用する構成の例を示す。第8~第10の実施形態においても、第1の実施形態などと同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。特に、横モードをより一層抑制することができる。
 図37は、第8の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態は、複数の電極指がそれぞれ、幅広部を有する点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 IDT電極78の交叉領域Dは、中央領域Hと、第1のエッジ領域E1及び第2のエッジ領域E2とを有する。第1のエッジ領域E1及び第2のエッジ領域E2は、第1のバスバー14及び第2のバスバー15が互いに対向する方向において、中央領域Hを挟んでいる。第1のエッジ領域E1は第1のバスバー14側に位置している。第2のエッジ領域E2は第2のバスバー15側に位置している。
 複数本の第1の電極指76における第1のエッジ領域E1に位置する部分にそれぞれ、幅広部76aが設けられている。複数本の第1の電極指76における第2のエッジ領域E2に位置する部分にそれぞれ、幅広部76bが設けられている。同様に、複数本の第2の電極指77における第1のエッジ領域E1に位置する部分にそれぞれ、幅広部77aが設けられている。複数本の第2の電極指77における第2のエッジ領域E2に位置する部分にそれぞれ、幅広部77bが設けられている。電極指における幅広部の幅は、該電極指における中央領域Hに位置する部分の幅よりも広い。
 本実施形態においては、第1のエッジ領域E1において、複数の電極指に幅広部が設けられている。それによって、第1のエッジ領域E1において低音速領域が構成されている。なお、低音速領域とは、音速が中央領域Hにおける音速よりも低い領域である。同様に、第2のエッジ領域E2において、複数の電極指に幅広部が設けられている。それによって、第2のエッジ領域E2において低音速領域が構成されている。もっとも、複数の電極指のうち少なくとも1本の電極指が、第1のエッジ領域E1及び第2のエッジ領域E2のうち少なくとも一方において、幅広部を有していればよい。
 ギャップG1が並んでいる領域においては、複数本の第1の電極指76及び複数本の第2の電極指77のうち、複数本の第1の電極指76のみが設けられている。それによって、該領域において高音速領域が構成されている。なお、高音速領域とは、音速が中央領域Hにおける音速よりも高い領域である。同様に、ギャップG2が並んでいる領域においては、複数本の第1の電極指76及び複数本の第2の電極指77のうち、複数本の第2の電極指77のみが設けられている。それによって、該領域において高音速領域が構成されている。
 IDT電極78における内側から外側にかけて、中央領域H、低音速領域及び高音速領域が、この順序において配置されている。これにより、ピストンモードが成立し、横モードをより一層抑制することができる。
 図38は、第9の実施形態に係る弾性波装置の、第1のエッジ領域付近及び第2のエッジ領域付近を示す模式的平面図である。図38においては、後述する質量付加膜をハッチングにより示す。
 本実施形態は、第1のエッジ領域E1及び第2のエッジ領域E2において、複数の電極指上にそれぞれ、質量付加膜72が設けられている点において第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 より具体的には、本実施形態においては、第1のエッジ領域E1及び第2のエッジ領域にそれぞれ、複数の質量付加膜72が設けられている。より詳細には、第1のエッジ領域E1及び第2のエッジ領域E2のそれぞれにおいて、電極指上に1つずつ、質量付加膜72が設けられている。それによって、第1のエッジ領域E1及び第2のエッジ領域E2において低音速領域が構成されている。これにより、ピストンモードが成立し、横モードをより一層抑制することができる。
 本実施形態のように、質量付加膜72が複数の電極指に至っていない場合には、質量付加膜72の材料には、適宜の金属が用いられていてもよい。質量付加膜72の材料には、電極指と同じ種類の金属が用いられていてもよい。この場合、実質的には、第1のエッジ領域E1及び第2のエッジ領域E2における電極指の厚みが、中央領域Hにおける該電極指の厚みよりも厚い。もっとも、質量付加膜72の材料には、電極指と異なる種類の金属が用いられてもよく、あるいは、適宜の誘電体が用いられていてもよい。
 なお、質量付加膜72は、複数の電極指上にわたり設けられていてもよい。この場合、質量付加膜72の材料として、適宜の誘電体が用いられていればよい。
 本実施形態においては、圧電体層6、電極指及び質量付加膜72の順序において積層されている。もっとも、圧電体層6、質量付加膜72及び電極指の順序において積層されていてもよい。すなわち、質量付加膜72は、圧電体層6及び電極指の間に位置していてもよい。質量付加膜72は、平面視において、電極指と重なっていればよい。なお、少なくとも1本の電極指が、平面視において質量付加膜72と重なっていればよい。
 本実施形態における質量付加膜72が設けられた構成、及び第8の実施形態における幅広部が設けられた構成の双方によって、低音速領域が構成されていてもよい。
 図39は、第10の実施形態に係る弾性波装置の、第1のエッジ領域付近及び第2のエッジ領域付近を示す模式的平面図である。
 本実施形態は、圧電体層6上に、IDT電極8を覆うように誘電体膜75が設けられている点、及び誘電体膜75上に複数の質量付加膜73が設けられている点において第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 誘電体膜75における、第1のエッジ領域E1及び第2のエッジ領域E2に設けられている部分のそれぞれに、質量付加膜73が1つずつ設けられている。各質量付加膜73は、平面視において、複数の電極指と重なるように設けられている。各質量付加膜73の材料として金属が用いられている。それによって、第1のエッジ領域E1及び第2のエッジ領域E2において低音速領域が構成されている。これにより、ピストンモードが成立し、横モードをより一層抑制することができる。
 もっとも、各質量付加膜73の材料として、適宜の誘電体が用いられていてもよい。質量付加膜73の材料には、誘電体膜75と同じ種類の誘電体が用いられていてもよい。この場合、実質的には、誘電体膜75における、第1のエッジ領域E1及び第2のエッジ領域E2に設けられている部分の厚みが、中央領域Hに設けられている部分の厚みよりも厚い。他方、質量付加膜73の材料には、誘電体膜75と異なる種類の誘電体が用いられていてもよい。この場合、積層体としての誘電体膜における、第1のエッジ領域E1及び第2のエッジ領域E2に設けられている部分の厚みが、中央領域Hに設けられている部分の厚みよりも厚い。
 なお、第1のエッジ領域E1及び第2のエッジ領域E2のそれぞれに、複数の質量付加膜73が設けられていてもよい。
 本実施形態における誘電体膜75及び質量付加膜73が設けられた構成、並びに第8の実施形態における幅広部が設けられた構成の双方によって、低音速領域が構成されていてもよい。
 本発明に係る弾性波装置は、例えば、フィルタ装置に用いることができる。この例を以下において示す。
 図40は、第11の実施形態に係るフィルタ装置の回路図である。
 本実施形態のフィルタ装置80はラダー型フィルタである。フィルタ装置80は、第1の信号端子82及び第2の信号端子83と、複数の直列腕共振子及び複数の並列腕共振子とを有する。フィルタ装置80においては、全ての直列腕共振子及び全ての並列腕共振子は弾性波共振子である。さらに、全ての直列腕共振子及び全ての並列腕共振子は本発明に係る弾性波装置である。もっとも、フィルタ装置80の複数の弾性波共振子のうち少なくとも1つの弾性波共振子が、本発明に係る弾性波装置であればよい。
 第1の信号端子82はアンテナ端子である。アンテナ端子はアンテナに接続される。もっとも、第1の信号端子82は、必ずしもアンテナ端子ではなくともよい。第1の信号端子82及び第2の信号端子83は、例えば、電極パッドとして構成されていてもよく、配線として構成されていてもよい。
 本実施形態の複数の直列腕共振子は、具体的には、直列腕共振子S1、直列腕共振子S2及び直列腕共振子S3である。複数の直列腕共振子は、第1の信号端子82及び第2の信号端子83の間に、互いに直列に接続されている。複数の並列腕共振子は、具体的には、並列腕共振子P1及び並列腕共振子P2である。直列腕共振子S1及び直列腕共振子S2の間の接続点とグラウンド電位との間に、並列腕共振子P1が接続されている。直列腕共振子S2及び直列腕共振子S3の間の接続点とグラウンド電位との間に、並列腕共振子P2が接続されている。なお、フィルタ装置80の回路構成は上記に限定されない。フィルタ装置80は、例えば、縦結合共振子型弾性波フィルタを含んでいてもよい。
 フィルタ装置80における弾性波共振子は、本発明に係る弾性波装置である。よって、フィルタ装置80の弾性波共振子において、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 ところで、上記の各実施形態の弾性波装置における、平面視したときの複数の電極指の形状においての曲線は、滑らかな曲線である。なお、平面視における複数の電極指の形状においての曲線は、微小なサイズの直線を接続して形成された形状であってもよい。平面視における複数の電極指の形状においての曲線は、複数の頂点同士を、曲線により接続して形成された形状であってもよい。あるいは、平面視における複数の電極指の形状においての曲線は、必ずしも滑らかな曲線でなくともよい。この例を、第1の実施形態の第5の変形例として示す。
 図41により拡大して示す第5の変形例におけるIDT電極8Aでは、平面視したときの各第1の電極指16Aの形状においての曲線は、滑らかな曲線ではない。具体的には、平面視における各第1の電極指16Aの形状は、直線を接続して形成された形状である。なお、該形状における直線は、微小なサイズの直線ではない。より具体的には、該形状における直線の長さは、例えば、第1の電極指16Aの全長の数%程度である。もっとも、該形状においては、接続された直線同士がなす角の角度は、例えば、160°以上、180°未満程度と大きい。そのため、各第1の電極指16Aの平面視における形状は、曲線に近似可能な形状である。
 各第2の電極指17Aの平面視における形状も、各第1の電極指16Aの平面視における形状と同様である。本変形例においても、第1の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 図42は、第12の実施形態に係る弾性波装置の模式的正面断面図である。
 本実施形態は、IDT電極8が保護膜99に埋め込まれている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 具体的には、圧電体層6上に、IDT電極8を覆うように、保護膜99が設けられている。保護膜99の厚みは、IDT電極8の厚みよりも厚い。IDT電極8は保護膜99に埋め込まれている。これにより、IDT電極8が破損し難い。
 保護膜99は第1の保護層99a及び第2の保護層99bを有する。第1の保護層99aにIDT電極8が埋め込まれている。第1の保護層99a上に第2の保護層99bが設けられている。それによって、保護膜99により複数の効果を得ることができる。具体的には、本実施形態においては、第1の保護層99aの材料として、酸化ケイ素が用いられている。これにより、弾性波装置における周波数温度係数(TCF)の絶対値を小さくすることができる。よって、弾性波装置の温度特性を改善することができる。第2の保護層99bには、窒化ケイ素が用いられている。これにより、弾性波装置の耐湿性を高めることができる。
 加えて、本実施形態においても、IDT電極8が第1の実施形態と同様に構成されている。それによって、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 なお、第1の保護層99a及び第2の保護層99bの材料は上記に限定されない。保護膜99は単層であってもよく、3層以上の積層体であってもよい。
 図43は、第13の実施形態に係る弾性波装置の模式的正面断面図である。
 本実施形態は、圧電体層6の第1の主面6a及び第2の主面6bの双方にIDT電極8が設けられている点において第1の実施形態と異なる。なお、第2の主面6bに設けられたIDT電極8は、誘電体層5における第2の層5bに埋め込まれている。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 圧電体層6の第1の主面6aに設けられたIDT電極8及び第2の主面6bに設けられたIDT電極8は、圧電体層6を挟み互いに対向している。本実施形態の弾性波装置では、第1の主面6a上において、IDT電極8が第1の実施形態と同様に構成されている。それによって、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 なお、圧電体層6の第1の主面6a及び第2の主面6bに設けられたIDT電極8は、例えば、設計パラメータが互いに異なっていてもよい。
 以下において、圧電体層の第2の主面に設けられた電極の構成、及び圧電性基板の積層構造のうち少なくとも一方のみが第13の実施形態と異なる、第13の実施形態の第1~第3の変形例を示す。第1~第3の変形例においても、第13の実施形態と同様に、不要波を抑制することができ、かつ共振特性の劣化を抑制することができる。
 図44に示す第1の変形例においては、圧電性基板92の層構成が、第13の実施形態と異なる。具体的には、圧電性基板92は、支持基板4と、誘電体層95と、圧電体層6とを有する。支持基板4上に誘電体層95が設けられている。誘電体層95上に圧電体層6が設けられている。本変形例においては、誘電体層95は枠状の形状を有する。すなわち、誘電体層95は貫通孔を有する。
 支持基板4は、誘電体層95の貫通孔の一方を塞いでいる。圧電体層6は、誘電体層95の貫通孔の他方を塞いでいる。これにより、圧電性基板92において中空部92cが構成されている。圧電体層6の一部及び支持基板4の一部は、中空部92cを挟み互いに対向している。圧電体層6の第2の主面6bに設けられたIDT電極8は、中空部92c内に位置している。
 図45に示す第2の変形例においては、圧電体層6の第2の主面6bに、板状の電極98が設けられている。IDT電極8及び電極98は、圧電体層6を挟み互いに対向している。
 図46に示す第3の変形例においては、圧電性基板92が第1の変形例と同様に構成されており、かつ圧電体層6の第2の主面6bに、第2の変形例と同様の電極98が設けられている。電極98は、中空部92c内に位置している。
 第12の実施形態、第13の実施形態及び各変形例においては、IDT電極8が第1の実施形態と同様の構成である場合の例を示した。もっとも、第12の実施形態、第13の実施形態及び各変形例のそれぞれの構成は、IDT電極の構成が、第1の実施形態以外の本発明の構成とされている場合においても、採用することができる。
 以下において、本発明に係る弾性波装置及びフィルタ装置の形態の例をまとめて記載する。
 <1>圧電体層を含む圧電性基板と、前記圧電体層上に設けられているIDT電極と、を備え、前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指と、を有し、前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、平面視における前記複数本の第1及び第2の電極指の形状が、曲線状の部分を含み、前記交叉領域内において、共振周波数同士、または***振周波数同士が略一致している、弾性波装置。
 <2>前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致している、<1>に記載の弾性波装置。
 <3>圧電体層を含む圧電性基板と、前記圧電体層上に設けられているIDT電極と、を備え、前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指と、を有し、前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、平面視における前記複数本の第1及び第2の電極指の形状が、円弧または楕円弧の形状を含み、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記角度θの絶対値が大きいほど、電極指ピッチが狭い、弾性波装置。
 <4>前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致するように、電極指ピッチが、前記角度θに応じて変化している、<2>または<3>に記載の弾性波装置。
 <5>前記圧電体層の材料として、タンタル酸リチウムまたはニオブ酸リチウムが用いられている、<1>~<4>のいずれか1つに記載の弾性波装置。
 <6>前記圧電性基板が支持基板を有し、前記支持基板上に前記圧電体層が設けられている、<1>~<5>のいずれか1つに記載の弾性波装置。
 <7>前記圧電性基板が誘電体層を有し、前記支持基板及び前記圧電体層の間に前記誘電体層が設けられている、<6>に記載の弾性波装置。
 <8>前記支持基板の材料としてシリコンが用いられている、<6>または<7>に記載の弾性波装置。
 <9>圧電体層を含む圧電性基板と、前記圧電体層上に設けられているIDT電極と、を備え、前記圧電性基板が、材料としてタンタル酸リチウムまたはニオブ酸リチウムが用いられた前記圧電体層と、支持基板とが積層されてなる基板、及び材料としてニオブ酸リチウムが用いられた前記圧電体層のみを含む基板のうち一方であり、前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指と、を有し、前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、平面視における前記複数本の第1及び第2の電極指の形状が、円弧または楕円弧の形状を含み、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記複数本の第1及び第2の電極指が、前記角度θの絶対値が大きいほど電極指ピッチが広い構成、及び前記角度θの絶対値が大きいほど電極指ピッチが狭い構成のうち一方を有する、弾性波装置。
 <10>前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致している、<3>または<9>に記載の弾性波装置。
 <11>前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致するように、デューティ比及び前記複数本の第1及び第2の電極指の厚みのうち少なくとも一方が、前記角度θに応じて変化している、<1>~<10>のいずれか1つに記載の弾性波装置。
 <12>前記圧電体層上に、前記IDT電極を覆うように設けられている誘電体膜をさらに備え、前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記交叉領域内において、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致するように、前記誘電体膜の厚みが、前記角度θに応じて変化している、<1>~<11>のいずれか1つに記載の弾性波装置。
 <13>α2/α1を、平面視における前記複数本の第1及び第2の電極指の形状の楕円係数としたときに、α2/α1>1である、<2>~<4>、<9>または<10>のいずれか1つに記載の弾性波装置。
 <14>α2/α1を、平面視における前記複数本の第1及び第2の電極指の形状の楕円係数としたときに、α2/α1=1である、<2>~<4>、<9>または<10>のいずれか1つに記載の弾性波装置。
 <15>α2/α1を、平面視における前記複数本の第1及び第2の電極指の形状の楕円係数としたときに、α2/α1<1である、<2>~<4>、<9>または<10>のいずれか1つに記載の弾性波装置。
 <16>前記複数本の第1及び第2の電極指が、平面視における形状の曲率が互いに異なる、少なくとも2本の前記第1の電極指または前記第2の電極指を含む、<2>、<3>、<9>、<10>または<13>~<15>のいずれか1つに記載の弾性波装置。
 <17>前記複数本の第1及び第2の電極指が並ぶ方向における一方から他方に向かうにつれて、前記複数本の第1及び第2の電極指の前記曲率が徐々に変化している、<16>に記載の弾性波装置。
 <18>それぞれの前記第1及び第2の電極指が、平面視における形状の曲率が異なる部分を含む、<2>、<3>、<9>、<10>または<13>~<17>のいずれか1つに記載の弾性波装置。
 <19>前記第1及び第2の電極指の前記曲率が、前記角度θの絶対値が大きくなるにつれて徐々に変化している、<18>に記載の弾性波装置。
 <20>平面視における前記複数本の第1及び第2の電極指の形状が、直線の形状を含む、<18>に記載の弾性波装置。
 <21>前記圧電体層の材料として、圧電単結晶が用いられており、前記圧電体層が伝搬軸を有し、前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線としたときに、前記伝搬軸及び前記基準線が平行に延びている、<1>~<20>のいずれか1つに記載の弾性波装置。
 <22>前記複数本の第1の電極指の先端部がそれぞれ、前記第2のバスバーと、少なくともギャップを隔てて対向しており、前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線としたときに、各前記ギャップ同士を結ぶ仮想線が延びる方向が、前記基準線が延びる方向と交叉している、<1>~<21>のいずれか1つに記載の弾性波装置。
 <23>前記複数本の第1の電極指の先端部がそれぞれ、前記第2のバスバーと、少なくともギャップを隔てて対向しており、前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線としたときに、前記IDT電極における、前記基準線が通る部分の電極指ピッチにより規定される波長をλとしたときに、各前記第1の電極指の先端部と、前記第2のバスバーとが対向する方向に沿う各前記ギャップの寸法が、0.56λ以下である、<1>~<22>のいずれか1つに記載の弾性波装置。
 <24>前記IDT電極が、複数本の第1のオフセット電極及び複数本の第2のオフセット電極を有し、前記複数本の第1のオフセット電極がそれぞれ、前記第1のバスバーに接続されており、前記複数本の第2のオフセット電極がそれぞれ、前記第2のバスバーに接続されており、前記第1の電極指の先端部と、前記第2のオフセット電極の先端部とが、ギャップを隔てて対向している、<1>~<23>のいずれか1つに記載の弾性波装置。
 <25>前記交叉領域が、中央領域と、前記第1のバスバー及び前記第2のバスバーが対向し合う方向において前記中央領域を挟んでいる、第1のエッジ領域及び第2のエッジ領域と、を有し、前記複数本の第1及び第2の電極指が、前記中央領域における幅よりも前記第1のエッジ領域及び前記第2のエッジ領域における幅が広い構成、並びに前記中央領域における厚みよりも前記第1のエッジ領域及び前記第2のエッジ領域における厚みが厚い構成のうち少なくとも一方の構成を有する、<1>~<24>のいずれか1つに記載の弾性波装置。
 <26>前記圧電体層上に、前記IDT電極を覆うように設けられている誘電体膜をさらに備え、前記交叉領域が、中央領域と、前記第1のバスバー及び前記第2のバスバーが対向し合う方向において前記中央領域を挟んでいる、第1のエッジ領域及び第2のエッジ領域と、を有し、前記誘電体膜における、前記中央領域に設けられている部分の厚みよりも、前記誘電体膜における、前記第1のエッジ領域及び前記第2のエッジ領域に設けられている部分の厚みが厚い、<1>~<25>のいずれか1つに記載の弾性波装置。
 <27>前記圧電体層上に、前記IDT電極を覆うように設けられている誘電体膜をさらに備え、前記交叉領域が、中央領域と、前記第1のバスバー及び前記第2のバスバーが対向し合う方向において前記中央領域を挟んでいる、第1のエッジ領域及び第2のエッジ領域と、を有し、前記誘電体膜における、前記第1のエッジ領域及び前記第2のエッジ領域に設けられている部分に、平面視において前記複数本の第1及び第2の電極指と重なるように、質量付加膜が設けられており、前記質量付加膜の材料として金属が用いられている、<1>~<26>のいずれか1つに記載の弾性波装置。
 <28>複数の弾性波共振子を備え、少なくとも1つの前記弾性波共振子が、<1>~<27>のいずれか1つに記載の弾性波装置である、フィルタ装置。
1…弾性波装置
2,2A,2B…圧電性基板
3…支持部材
4,4B…支持基板
4c…凹部
5,5A…誘電体層
5a,5b…第1,第2の層
6…圧電体層
7…音響反射膜
8,8A…IDT電極
9A,9B…反射器
9a,9b…電極指
12a,12b…低音響インピーダンス層
13a,13b,13c…高音響インピーダンス層
14,15…第1,第2のバスバー
16,17…第1,第2の電極指
16A,17A…第1,第2の電極指
18,19…第1,第2のオフセット電極
28,38,48,58…IDT電極
65…誘電体膜
68…IDT電極
72,73…質量付加膜
75…誘電体膜
76,77…第1,第2の電極指
76a,76b,77a,77b…幅広部
78…IDT電極
80…フィルタ装置
82,83…第1,第2の信号端子
92…圧電性基板
92c…中空部
95…誘電体層
98…電極
99…保護膜
99a、99b…第1,第2の保護層
108…IDT電極
109A,109B…反射器
C…定点
D…交叉領域
E1,E2…第1,第2のエッジ領域
G1,G2…ギャップ
H…中央領域
P1,P2…並列腕共振子
S1~S3…直列腕共振子
W1~W3…第1~第3の領域

Claims (28)

  1.  圧電体層を含む圧電性基板と、
     前記圧電体層上に設けられているIDT電極と、
    を備え、
     前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指と、を有し、
     前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、
     平面視における前記複数本の第1及び第2の電極指の形状が、曲線状の部分を含み、
     前記交叉領域内において、共振周波数同士、または***振周波数同士が略一致している、弾性波装置。
  2.  前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致している、請求項1に記載の弾性波装置。
  3.  圧電体層を含む圧電性基板と、
     前記圧電体層上に設けられているIDT電極と、
    を備え、
     前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指と、を有し、
     前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、
     平面視における前記複数本の第1及び第2の電極指の形状が、円弧または楕円弧の形状を含み、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記角度θの絶対値が大きいほど、電極指ピッチが狭い、弾性波装置。
  4.  前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致するように、電極指ピッチが、前記角度θに応じて変化している、請求項2または3に記載の弾性波装置。
  5.  前記圧電体層の材料として、タンタル酸リチウムまたはニオブ酸リチウムが用いられている、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記圧電性基板が支持基板を有し、
     前記支持基板上に前記圧電体層が設けられている、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記圧電性基板が誘電体層を有し、
     前記支持基板及び前記圧電体層の間に前記誘電体層が設けられている、請求項6に記載の弾性波装置。
  8.  前記支持基板の材料としてシリコンが用いられている、請求項6または7に記載の弾性波装置。
  9.  圧電体層を含む圧電性基板と、
     前記圧電体層上に設けられているIDT電極と、
    を備え、
     前記圧電性基板が、材料としてタンタル酸リチウムまたはニオブ酸リチウムが用いられた前記圧電体層と、支持基板とが積層されてなる基板、及び材料としてニオブ酸リチウムが用いられた前記圧電体層のみを含む基板のうち一方であり、
     前記IDT電極が、互いに対向している第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指と、を有し、
     前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、
     平面視における前記複数本の第1及び第2の電極指の形状が、円弧または楕円弧の形状を含み、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記複数本の第1及び第2の電極指が、前記角度θの絶対値が大きいほど電極指ピッチが広い構成、及び前記角度θの絶対値が大きいほど電極指ピッチが狭い構成のうち一方を有する、弾性波装置。
  10.  前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致している、請求項3または9に記載の弾性波装置。
  11.  前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記交叉領域内における、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致するように、デューティ比及び前記複数本の第1及び第2の電極指の厚みのうち少なくとも一方が、前記角度θに応じて変化している、請求項1~10のいずれか1項に記載の弾性波装置。
  12.  前記圧電体層上に、前記IDT電極を覆うように設けられている誘電体膜をさらに備え、
     前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線とし、前記定点を通る直線と前記基準線とがなす角の角度をθとしたときに、前記交叉領域内において、いずれの前記角度θにおいても、共振周波数同士、または***振周波数同士が略一致するように、前記誘電体膜の厚みが、前記角度θに応じて変化している、請求項1~11のいずれか1項に記載の弾性波装置。
  13.  α2/α1を、平面視における前記複数本の第1及び第2の電極指の形状の楕円係数としたときに、α2/α1>1である、請求項2~4、9または10のいずれか1項に記載の弾性波装置。
  14.  α2/α1を、平面視における前記複数本の第1及び第2の電極指の形状の楕円係数としたときに、α2/α1=1である、請求項2~4、9または10のいずれか1項に記載の弾性波装置。
  15.  α2/α1を、平面視における前記複数本の第1及び第2の電極指の形状の楕円係数としたときに、α2/α1<1である、請求項2~4、9または10のいずれか1項に記載の弾性波装置。
  16.  前記複数本の第1及び第2の電極指が、平面視における形状の曲率が互いに異なる、少なくとも2本の前記第1の電極指または前記第2の電極指を含む、請求項2、3、9、10または13~15のいずれか1項に記載の弾性波装置。
  17.  前記複数本の第1及び第2の電極指が並ぶ方向における一方から他方に向かうにつれて、前記複数本の第1及び第2の電極指の前記曲率が徐々に変化している、請求項16に記載の弾性波装置。
  18.  それぞれの前記第1及び第2の電極指が、平面視における形状の曲率が異なる部分を含む、請求項2、3、9、10または13~17のいずれか1項に記載の弾性波装置。
  19.  前記第1及び第2の電極指の前記曲率が、前記角度θの絶対値が大きくなるにつれて徐々に変化している、請求項18に記載の弾性波装置。
  20.  平面視における前記複数本の第1及び第2の電極指の形状が、直線の形状を含む、請求項18に記載の弾性波装置。
  21.  前記圧電体層の材料として、圧電単結晶が用いられており、
     前記圧電体層が伝搬軸を有し、
     前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線としたときに、前記伝搬軸及び前記基準線が平行に延びている、請求項1~20のいずれか1項に記載の弾性波装置。
  22.  前記複数本の第1の電極指の先端部がそれぞれ、前記第2のバスバーと、少なくともギャップを隔てて対向しており、
     前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線としたときに、各前記ギャップ同士を結ぶ仮想線が延びる方向が、前記基準線が延びる方向と交叉している、請求項1~21のいずれか1項に記載の弾性波装置。
  23.  前記複数本の第1の電極指の先端部がそれぞれ、前記第2のバスバーと、少なくともギャップを隔てて対向しており、
     前記複数本の第1及び第2の電極指の形状が含む曲線状の部分は、円弧または楕円弧の形状であり、
     前記第1及び第2の電極指の形状における前記円弧を含む円の中心、または前記楕円弧を含む楕円の2つの焦点の中点を定点とし、前記交叉領域の、前記複数本の第1及び第2の電極指が延びる方向における中央を通る直線を基準線としたときに、前記IDT電極における、前記基準線が通る部分の電極指ピッチにより規定される波長をλとしたときに、各前記第1の電極指の先端部と、前記第2のバスバーとが対向する方向に沿う各前記ギャップの寸法が、0.56λ以下である、請求項1~22のいずれか1項に記載の弾性波装置。
  24.  前記IDT電極が、複数本の第1のオフセット電極及び複数本の第2のオフセット電極を有し、
     前記複数本の第1のオフセット電極がそれぞれ、前記第1のバスバーに接続されており、前記複数本の第2のオフセット電極がそれぞれ、前記第2のバスバーに接続されており、
     前記第1の電極指の先端部と、前記第2のオフセット電極の先端部とが、ギャップを隔てて対向している、請求項1~23のいずれか1項に記載の弾性波装置。
  25.  前記交叉領域が、中央領域と、前記第1のバスバー及び前記第2のバスバーが対向し合う方向において前記中央領域を挟んでいる、第1のエッジ領域及び第2のエッジ領域と、を有し、
     前記複数本の第1及び第2の電極指が、前記中央領域における幅よりも前記第1のエッジ領域及び前記第2のエッジ領域における幅が広い構成、並びに前記中央領域における厚みよりも前記第1のエッジ領域及び前記第2のエッジ領域における厚みが厚い構成のうち少なくとも一方の構成を有する、請求項1~24のいずれか1項に記載の弾性波装置。
  26.  前記圧電体層上に、前記IDT電極を覆うように設けられている誘電体膜をさらに備え、
     前記交叉領域が、中央領域と、前記第1のバスバー及び前記第2のバスバーが対向し合う方向において前記中央領域を挟んでいる、第1のエッジ領域及び第2のエッジ領域と、を有し、
     前記誘電体膜における、前記中央領域に設けられている部分の厚みよりも、前記誘電体膜における、前記第1のエッジ領域及び前記第2のエッジ領域に設けられている部分の厚みが厚い、請求項1~25のいずれか1項に記載の弾性波装置。
  27.  前記圧電体層上に、前記IDT電極を覆うように設けられている誘電体膜をさらに備え、
     前記交叉領域が、中央領域と、前記第1のバスバー及び前記第2のバスバーが対向し合う方向において前記中央領域を挟んでいる、第1のエッジ領域及び第2のエッジ領域と、を有し、
     前記誘電体膜における、前記第1のエッジ領域及び前記第2のエッジ領域に設けられている部分に、平面視において前記複数本の第1及び第2の電極指と重なるように、質量付加膜が設けられており、
     前記質量付加膜の材料として金属が用いられている、請求項1~26のいずれか1項に記載の弾性波装置。
  28.  複数の弾性波共振子を備え、
     少なくとも1つの前記弾性波共振子が、請求項1~27のいずれか1項に記載の弾性波装置である、フィルタ装置。
PCT/JP2023/020462 2022-07-07 2023-06-01 弾性波装置及びフィルタ装置 WO2024009660A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109771 2022-07-07
JP2022109771 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024009660A1 true WO2024009660A1 (ja) 2024-01-11

Family

ID=89453149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020462 WO2024009660A1 (ja) 2022-07-07 2023-06-01 弾性波装置及びフィルタ装置

Country Status (1)

Country Link
WO (1) WO2024009660A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750548A (ja) * 1993-05-31 1995-02-21 Canon Inc 弾性表面波素子
JPH08222992A (ja) * 1994-12-15 1996-08-30 Kazuhiko Yamanouchi 弾性表面波コンボルバ
JPH0974330A (ja) * 1995-09-04 1997-03-18 Canon Inc 弾性表面波素子及びこれを用いた通信システム
WO2016208446A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 フィルタ装置
JP2017187420A (ja) * 2016-04-07 2017-10-12 戸田 耕司 音振感知装置
JP2019080093A (ja) * 2017-10-20 2019-05-23 株式会社村田製作所 弾性波装置
WO2019139076A1 (ja) * 2018-01-11 2019-07-18 株式会社村田製作所 弾性波装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750548A (ja) * 1993-05-31 1995-02-21 Canon Inc 弾性表面波素子
JPH08222992A (ja) * 1994-12-15 1996-08-30 Kazuhiko Yamanouchi 弾性表面波コンボルバ
JPH0974330A (ja) * 1995-09-04 1997-03-18 Canon Inc 弾性表面波素子及びこれを用いた通信システム
WO2016208446A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 フィルタ装置
JP2017187420A (ja) * 2016-04-07 2017-10-12 戸田 耕司 音振感知装置
JP2019080093A (ja) * 2017-10-20 2019-05-23 株式会社村田製作所 弾性波装置
WO2019139076A1 (ja) * 2018-01-11 2019-07-18 株式会社村田製作所 弾性波装置

Similar Documents

Publication Publication Date Title
US11824518B2 (en) Acoustic wave device
US11444601B2 (en) Acoustic wave device
US20220224311A1 (en) Acoustic wave device
US20220182037A1 (en) Acoustic wave device
US20240154596A1 (en) Acoustic wave device and filter device
US20230198495A1 (en) Acoustic wave device
US20240080009A1 (en) Piezoelectric bulk wave device
US20220216843A1 (en) Acoustic wave device
US11996828B2 (en) Filter device
US20240154595A1 (en) Acoustic wave device
US20220368305A1 (en) Acoustic wave device
WO2018193933A1 (ja) 弾性波装置、帯域通過型フィルタ及びマルチプレクサ
WO2024009660A1 (ja) 弾性波装置及びフィルタ装置
KR20230146602A (ko) 탄성파 장치
CN115997342A (zh) 弹性波装置
WO2024029360A1 (ja) 弾性波装置及びフィルタ装置
WO2024029361A1 (ja) 弾性波装置及びフィルタ装置
WO2024116813A1 (ja) 弾性波装置及びフィルタ装置
WO2024117050A1 (ja) 弾性波装置及びフィルタ装置
WO2024135259A1 (ja) 弾性波装置及びフィルタ装置
WO2024085062A1 (ja) 弾性波装置及び弾性波素子
WO2024043345A1 (ja) 弾性波装置
US20240154601A1 (en) Acoustic wave device and method of manufacturing the same
US20240030886A1 (en) Acoustic wave device
WO2024034603A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835196

Country of ref document: EP

Kind code of ref document: A1