WO2024008149A1 - 往复传动机构及动力设备 - Google Patents

往复传动机构及动力设备 Download PDF

Info

Publication number
WO2024008149A1
WO2024008149A1 PCT/CN2023/106075 CN2023106075W WO2024008149A1 WO 2024008149 A1 WO2024008149 A1 WO 2024008149A1 CN 2023106075 W CN2023106075 W CN 2023106075W WO 2024008149 A1 WO2024008149 A1 WO 2024008149A1
Authority
WO
WIPO (PCT)
Prior art keywords
reciprocating
transmission shaft
sleeve
groove
transmission
Prior art date
Application number
PCT/CN2023/106075
Other languages
English (en)
French (fr)
Inventor
傅珂珂
李进
Original Assignee
浙江千机智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江千机智能科技有限公司 filed Critical 浙江千机智能科技有限公司
Publication of WO2024008149A1 publication Critical patent/WO2024008149A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams

Definitions

  • the utility model relates to the technical field of transmission mechanisms, in particular to reciprocating transmission mechanisms and power equipment.
  • the reciprocating transmission mechanism includes a transmission shaft, a reciprocating sleeve and a limiting body.
  • the transmission shaft can rotate around its own axis; a reciprocating groove is provided on the inner wall of the reciprocating sleeve, and the reciprocating groove is a revolving groove.
  • the reciprocating sleeve axis is a closed curved groove, and the wave peaks and wave troughs of the reciprocating groove are arranged at intervals along the axis of the transmission shaft; the limiting body is positioned on the outer wall of the transmission shaft, and the transmission shaft passes through is provided in the reciprocating sleeve, so that the limiting body is inserted into the reciprocating groove; wherein, the limiting body can move in the reciprocating groove, so that the reciprocating sleeve can move relative to the reciprocating groove.
  • the transmission shaft reciprocates along the axis of the transmission shaft.
  • the number of the reciprocating grooves is at least two, each of the reciprocating grooves is spaced along the axis direction of the reciprocating sleeve, and at least one of the limiters is provided in each of the reciprocating grooves. position body, the limiting bodies in different reciprocating grooves can move in the same direction relative to the reciprocating sleeve; or
  • the number of the reciprocating grooves is at least two. Some of the reciprocating grooves are spaced on the inner wall of the reciprocating sleeve along the axis of the reciprocating sleeve. Another part of the reciprocating grooves are spaced on the inner wall of the reciprocating sleeve along the axis of the transmission shaft.
  • a moving body is provided in the reciprocating groove provided on the transmission shaft, and the moving body is limited to The reciprocating sleeve is placed on the reciprocating sleeve, and the moving body can move in the reciprocating groove on the outer wall of the transmission shaft.
  • the moving direction of the moving body relative to the transmission shaft is consistent with the movement direction of the limiting body relative to the transmission shaft.
  • the reciprocating sleeves move in the same direction.
  • the trajectory of the reciprocating groove along the circumferential direction of the transmission shaft is sinusoidal.
  • the circumferential trajectory of a single reciprocating groove along the transmission shaft includes at least two complete and continuous sinusoidal cycles, and the limiting body is penetrated in a single reciprocating groove.
  • the number is less than or equal to the number of sinusoidal cycles of the reciprocating groove, and the limiting bodies in a single reciprocating groove are evenly spaced around the axis of the transmission shaft.
  • a positioning groove is provided on the outer wall of the transmission shaft, and the limiting body includes a universal ball.
  • a part of the universal ball is rollably disposed in the positioning groove, and the other part is protruding. It comes out of the outer wall of the transmission shaft and penetrates into the reciprocating groove.
  • the limiting body further includes a limiting seat and a plurality of balls, the plurality of balls are arranged in the limiting seat, and the universal ball is partially penetrated through the limiting seat.
  • the universal ball and the ball are in contact with the ball, and both the universal ball and the ball can roll relative to the limit seat, and the limit seat is arranged in the positioning groove.
  • the transmission shaft includes a power shaft and a transmission sleeve.
  • the transmission sleeve is sleeved on the power shaft and is limited to the power shaft.
  • the positioning groove is opened in the transmission sleeve. on the outer wall; and/or
  • the inner wall diameter of the reciprocating sleeve is consistent with the outer wall diameter of the transmission shaft.
  • the reciprocating transmission mechanism further includes a housing and a guide member, the reciprocating sleeve and the transmission shaft are both provided in the housing, and the guide member is provided in the housing.
  • a matching structure is formed on the outer wall of the reciprocating sleeve. The matching structure guides and cooperates with the guide member, and the guiding direction of the matching structure relative to the guide member is the axial direction of the transmission shaft.
  • the reciprocating transmission mechanism further includes a power source and an output shaft.
  • the power source is connected to one end of the transmission shaft.
  • the power source is used to drive the transmission shaft to rotate around its own axis.
  • the output shaft is connected to the side of the reciprocating sleeve facing away from the power source; or
  • the reciprocating transmission mechanism further includes a power source and two output shafts.
  • the two output shafts are respectively connected to opposite sides of the reciprocating sleeve.
  • One of the output shafts A power hole is provided on the upper body, and the power source is connected to the transmission shaft through the power hole.
  • the limiting body when the transmission shaft rotates around its own axis, the limiting body is positioned on the outer wall of the transmission shaft, and the transmission shaft is inserted into the reciprocating sleeve, so that the limiting body is inserted into the reciprocating groove.
  • the reciprocating groove is a closed curved groove around the axis of the transmission shaft, the wave peaks and troughs of the reciprocating groove are spaced along the axis of the transmission shaft, and when the limiting body rotates following the transmission shaft, the limiting body is positioned between the peak and the wave trough of the reciprocating groove.
  • the wave troughs slide between each other to achieve the purpose of driving the reciprocating sleeve to reciprocate along the axis of the transmission shaft.
  • the above-mentioned reciprocating transmission mechanism does not have a deflection angle, so there is no problem of deflection friction and work; it has a simple structure and a wide range of applications, and can be used in compressors, pump structures and other situations that require reciprocating movement.
  • the power equipment includes the reciprocating transmission mechanism as mentioned above.
  • Figure 1 is a schematic structural diagram of a reciprocating transmission mechanism in an embodiment
  • Figure 2 is an exploded view of the reciprocating transmission mechanism described in Figure 1;
  • Figure 3 is a schematic structural diagram of the reciprocating sleeve in Figure 2 from another perspective;
  • Figure 4 is a cross-sectional view of the reciprocating transmission mechanism shown in Figure 1 from one perspective;
  • FIG. 5 is a cross-sectional view of the reciprocating transmission mechanism shown in FIG. 1 from another perspective.
  • Reciprocating transmission mechanism 100. Drive shaft; 110. Positioning groove; 120. Power shaft; 130. Transmission sleeve; 200. Reciprocating sleeve; 210. Reciprocating groove; 220. Matching structure; 300. Limiting body; 400. Shell body; 410, shell body; 420, cover; 430, input hole; 440, output hole; 500, guide; 600, output shaft.
  • the reciprocating transmission mechanism 10 in one embodiment of the present invention can at least eliminate the deflection angle and the deflection force friction work.
  • the reciprocating transmission mechanism 10 has a simple structure and good applicability.
  • the reciprocating transmission mechanism 10 includes a transmission shaft 100, a reciprocating sleeve 200 and a limiting body 300.
  • the transmission shaft 100 can rotate around its own axis; a reciprocating groove 210 is provided on the inner wall of the reciprocating sleeve 200, and the reciprocating groove 210 is formed around the reciprocating sleeve 200.
  • the closed curved groove of the axis, and the peaks and troughs of the reciprocating groove 210 are spaced along the axis of the transmission shaft 100; the limiting body 300 is positioned on the outer wall of the transmission shaft 100, and the transmission shaft 100 is inserted into the reciprocating sleeve 200, so that The limiting body 300 is disposed in the reciprocating groove 210 .
  • the limiting body 300 can move in the reciprocating groove 210 so that the reciprocating sleeve 200 can reciprocate relative to the transmission shaft 100 along the axis of the transmission shaft 100 .
  • the axis of the transmission shaft 100 is consistent with the axis of the reciprocating sleeve 200 .
  • the transmission shaft 100 rotates around its own axis
  • the transmission shaft 100 is inserted into the reciprocating sleeve 200, so that the limiting body 300 is inserted into the reciprocating sleeve 200.
  • the reciprocating groove 210 is a closed curved groove around the axis of the transmission shaft 100, the wave peaks and troughs of the reciprocating groove 210 are arranged at intervals along the axis of the transmission shaft 100, and when the limiting body 300 rotates following the transmission shaft 100, the limiting body 300 rotates along the axis of the transmission shaft 100.
  • the above-mentioned reciprocating transmission mechanism 10 does not have a deflection angle, so there is no problem of deflection force friction and work; it has a simple structure and a wide range of applications, and can be used in compressors, pump structures and other situations that require reciprocating movement.
  • the number of reciprocating grooves 210 is at least two. Each reciprocating groove 210 is spaced along the axial direction of the reciprocating sleeve 200 . At least one limiting body 300 is provided in each reciprocating groove 210 . Different reciprocating grooves 210 The inner limiting body 300 can move in the same direction relative to the reciprocating sleeve 200. By providing multiple reciprocating grooves 210 and at least one limiting body 300 in each reciprocating groove 210 to cooperate with the transmission, the output power of the transmission shaft 100 to the reciprocating sleeve 200 can be increased, making it suitable for high-power working conditions.
  • the number of reciprocating grooves 210 is at least two. Some of the reciprocating grooves 210 are spaced on the inner wall of the reciprocating sleeve 200 along the axis of the reciprocating sleeve 200 , and the other part of the reciprocating grooves 210 are spaced along the axis of the transmission shaft 100 is provided on the outer wall of the transmission shaft 100, and each reciprocating groove 210 is spaced along the axis of the transmission shaft 100.
  • a moving body is provided in the reciprocating groove 210 provided on the transmission shaft 100, and the moving body is limited to the reciprocating sleeve 200. And the moving body can move in the reciprocating groove 210 on the outer wall of the transmission shaft 100. The moving direction of the moving body relative to the transmission shaft 100 is consistent with the moving direction of the limiting body 300 relative to the reciprocating sleeve 200 .
  • the trajectory of the reciprocating groove 210 along the circumferential direction of the transmission shaft 100 is sinusoidal.
  • the reciprocating groove 210 arranged in a sinusoidal trajectory is used to ensure that the limiting body 300 can move smoothly in the reciprocating groove 210, ensuring that the reciprocating sleeve 200 moves reciprocally smooth.
  • the trajectory of a single reciprocating groove 210 along the circumferential direction of the transmission shaft 100 includes at least two complete and continuous sinusoidal cycles, and the number of limiting bodies 300 penetrated in the single reciprocating groove 210 is less than or equal to the number of reciprocating grooves 210 .
  • the number of sinusoidal cycles of the groove 210 , and the limiting bodies 300 in a single reciprocating groove 210 are evenly spaced around the axis of the transmission shaft 100 .
  • the trajectory of the reciprocating groove 210 includes two sinusoidal curves, and the number of limiting bodies 300 is also two.
  • the two limiting bodies 300 can be arranged at the valleys of the two sinusoidal curves of the reciprocating groove 210 at the same time.
  • the two limiting bodies 300 are evenly arranged around the axis of the transmission shaft 100 to ensure that the two limiting bodies 300 can move in the same direction.
  • the transmission stability can be further improved.
  • the circumferential trajectory of a single reciprocating groove 210 along the transmission shaft 100 may include three or other numbers of complete and continuous sinusoidal cycles, and the number of corresponding limiting bodies 300 may be three or other numbers. , and each sinusoidal curve is provided with a limiting body 300 to ensure that the limiting body 300 It can move synchronously with respect to the reciprocating sleeve 200 .
  • a positioning groove 110 is provided on the outer wall of the transmission shaft 100.
  • the limiting body 300 includes a universal ball, and part of the universal ball is rollably disposed in the positioning groove 110. , the other part protrudes from the outer wall of the transmission shaft 100 and penetrates into the reciprocating groove 210 . Since the universal ball can roll, the reciprocating movement of the reciprocating sleeve 200 relative to the transmission shaft 100 is realized by the rolling friction of the universal ball instead of the sliding friction of the reciprocating sleeve 200 relative to the transmission shaft 100, further ensuring transmission efficiency. And by providing the positioning groove 110, the position of the universal ball on the transmission shaft 100 can be effectively positioned.
  • the inner wall diameter of the reciprocating sleeve 200 is consistent with the outer wall diameter of the transmission shaft 100 .
  • the reciprocating sleeve 200 and the transmission shaft 100 can have an interference fit to avoid direct contact and friction between the inner wall of the reciprocating sleeve 200 and the transmission shaft 100 .
  • the inner wall diameter of the reciprocating sleeve 200 is slightly larger than the outer wall diameter of the transmission shaft 100 to ensure a small gap between the inner wall of the reciprocating sleeve 200 and the outer wall of the transmission shaft 100 .
  • the transmission shaft 100 includes a power shaft 120 and a transmission sleeve 130.
  • the transmission sleeve 130 is sleeved on the power shaft 120 and is limited to the power shaft 120.
  • the positioning groove 110 is provided on the outer wall of the transmission sleeve 130. The positioning groove 110 is easily formed through the transmission sleeve 130 to ensure the structural integrity of the power shaft 120 and thereby ensure the reliability of the power output. In other embodiments, the positioning groove 110 can be directly opened on the power shaft 120 and the transmission sleeve 130 can be omitted.
  • the limiting body 300 further includes a limiting seat and a plurality of balls.
  • the plurality of balls are arranged in the limiting seat.
  • the universal ball is partially penetrated in the limiting seat and contacts the balls.
  • the universal ball is in contact with the ball.
  • the balls can roll relative to the limit seat, and the limit seat is arranged in the positioning groove 110 .
  • multiple rolling balls are used to achieve rolling friction between the universal ball and the limit seat, further ensuring the rolling stability of the universal ball.
  • the limiting seat can be omitted, a plurality of balls are directly arranged in the positioning groove 110, and the universal ball is disposed in the positioning groove 110 and contacts the balls.
  • the reciprocating transmission mechanism 10 further includes a housing 400.
  • the complex sleeve 200 and the transmission shaft 100 are both arranged in the housing 400 .
  • the housing 400 can effectively protect the reciprocating sleeve 200 and the transmission shaft 100, ensuring the stability of the transmission between the reciprocating sleeve 200 and the transmission shaft 100.
  • the housing 400 includes a housing body 410 and a cover 420.
  • One side of the housing body 410 is open.
  • the reciprocating sleeve 200 and the transmission shaft 100 are disposed in the housing body 410 from the opening side of the housing body 410.
  • the cover 420 covers the housing 410. on the shell body 410.
  • the reciprocating transmission mechanism 10 further includes a guide 500.
  • the guide 500 is disposed in the housing 400.
  • a matching structure 220 is formed on the outer wall of the reciprocating sleeve 200.
  • the matching structure 220 guides and cooperates with the guide 500, and the matching structure
  • the guiding direction of 220 relative to the guide member 500 is the axial direction of the transmission shaft 100 .
  • one end of the guide member 500 is connected to the cover 420 .
  • the guide member 500 is a rod-shaped structure.
  • the matching structure 220 is a matching sleeve.
  • the matching sleeve is arranged on the outer wall of the reciprocating sleeve 200 .
  • the guide member 500 is inserted into the matching sleeve.
  • the matching sleeve can move along the guiding direction of the guide member 500 synchronously with the reciprocating sleeve 200 .
  • the matching structure 220 can also be a matching groove opened on the outer wall of the reciprocating sleeve 200.
  • the guide member 500 is disposed in the matching groove and can move along the guiding direction in the matching groove.
  • each matching structure 220 is consistent with the number of the guide members 500 , and each guide member 500 is guided and matched with a matching structure 220 .
  • each matching structure 220 is arranged at intervals along the circumferential direction of the reciprocating sleeve 200 .
  • the stability of the guide is further improved.
  • each matching structure 220 is evenly arranged along the circumferential direction of the reciprocating sleeve 200, further improving the uniformity of the force of the reciprocating sleeve 200, thereby ensuring the stability of the reciprocating movement of the reciprocating sleeve 200.
  • the reciprocating transmission mechanism 10 also includes a power source and an output shaft 600.
  • the power source is connected to one end of the transmission shaft 100.
  • the power source is used to drive the transmission shaft 100 to rotate around its own axis.
  • the output shaft 600 is connected to the side of the reciprocating sleeve 200 facing away from the power source.
  • an input hole 430 is provided on one side wall of the housing 400, and an output hole 440 is provided on the opposite side wall.
  • the power source is connected to one end of the transmission shaft 100 through the input hole 430, and the output shaft 600 passes through inside the output hole 440.
  • the power source may also be connected to the transmission shaft 100 through a transmission member.
  • the power source may be connected to the transmission shaft 100 through a gear transmission set.
  • the power source may also be directly connected to the transmission shaft 100 .
  • the reciprocating transmission mechanism 10 may further include two output shafts 600.
  • the two output shafts 600 are respectively connected to opposite sides of the reciprocating sleeve 200.
  • One of the output shafts 600 is provided with a power hole, and the power hole is provided on the reciprocating sleeve 200.
  • the source is connected to the drive shaft 100 through a power hole.
  • the reciprocating sleeve 200 when the power source drives the transmission shaft 100 to rotate, the reciprocating sleeve 200 reciprocates along the axis of the transmission shaft 100, and uses universal balls to realize rolling friction between the reciprocating sleeve 200 and the transmission shaft 100, and utilizes uniform At least two universal balls are arranged so that the reciprocating sleeve 200 receives a uniform reciprocating thrust and will not be affected by deflection force.
  • the reciprocating process of the reciprocating sleeve 200 only has a moving trajectory and thrust along the axis direction of the transmission shaft 100, which can achieve the purpose of performing work in both directions and improve transmission efficiency.
  • the power equipment includes the reciprocating transmission mechanism 10 in any of the above embodiments.
  • the power equipment may be a compressor, and the piston of the compressor may be connected to the reciprocating sleeve 200 .
  • the power equipment can be a plunger pump, and the plunger of the plunger pump is connected to the reciprocating sleeve 200 .
  • the power equipment can be an electric hammer, and the cylinder of the electric hammer is connected to the reciprocating sleeve 200 .
  • the power equipment can also be other devices that require reciprocating power. part.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
  • connection In this utility model, unless otherwise expressly stipulated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. Connect, or integrate; it can be mechanical or electrical; it can be directly connected or Indirect connection through an intermediary may be an internal connection between two elements or an interactive relationship between two elements, unless otherwise expressly limited.
  • connection connection
  • connection Indirect connection through an intermediary may be an internal connection between two elements or an interactive relationship between two elements, unless otherwise expressly limited.
  • the first feature "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are in direct contact through an intermediate medium. indirect contact.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种往复传动机构(10),包括传动轴(100)、往复套(200)及限位体(300)。传动轴绕自身轴线转动时,由于限位体定位在传动轴的外壁上,传动轴穿设于往复套内,以使限位体穿设于往复槽(210)内。且由于往复槽为绕传动轴轴线的闭合型曲线槽,往复槽的波峰与波谷沿传动轴的轴线间隔设置,进而当限位体跟随传动轴转动时,使得限位体在往复槽的波峰与波谷之间滑动,进而实现带动往复套沿传动轴的轴线方向往复移动的目的。上述往复传动机构不存在偏摆角,也就不存在偏向力摩擦做功的问题;且结构简单,适用范围广,能够用于压缩机、泵体结构等需要往复移动的场合。此外,提供了一种包括该往复传动机构的动力设备。

Description

往复传动机构及动力设备 技术领域
本实用新型涉及传动机构技术领域,特别是涉及往复传动机构及动力设备。
背景技术
在机械传动领域,传统的往复结构如曲柄滑块机构,曲柄摆臂机构等,都存在偏摆角,进而导致存在偏向力摩擦做功,影响往复传动的稳定性及效率。而对于传统的直线电机或伺服电机丝杠往复机构,虽然也能够实现直线往复输出,但是结构控制复杂,成本较高,进而适用性较差。
实用新型内容
基于此,有必要针对上述问题,提供一种能够避免产生偏向力摩擦且降低结构复杂度的往复传动机构及动力设备。
一种往复传动机构,所述往复传动机构包括传动轴、往复套及限位体,所述传动轴能够绕自身轴线转动;所述往复套的内壁上开设有往复槽,所述往复槽为绕所述往复套轴线的闭合型曲线槽,且所述往复槽的波峰与波谷沿所述传动轴的轴线间隔设置;所述限位体定位在所述传动轴的外壁上,所述传动轴穿设于所述往复套内,以使所述限位体穿设于所述往复槽内;其中,所述限位体能够在所述往复槽内移动,以使所述往复套能够相对于所述传动轴沿所述传动轴的轴线往复移动。
在其中一个实施例中,所述往复槽的数量为至少两个,各个所述往复槽沿着所述往复套的轴线方向间隔设置,每一所述往复槽内均设置有至少一所述限 位体,不同所述往复槽内的所述限位体相对于所述往复套可同向移动;或者
所述往复槽的数量为至少两个,部分所述往复槽沿着所述往复套的轴线方向间隔设置于往复套的内壁上,另一部分所述往复槽沿所述传动轴的轴线间隔设置于所述传动轴的外壁上,且各个所述往复槽均沿着所述传动轴的轴线间隔设置,设置于所述传动轴上的所述往复槽内设置有移动体,所述移动体限位于所述往复套上,且所述移动体能够在所述传动轴外壁上的所述往复槽内移动,所述移动体相对于所述传动轴的移动方向与所述限位体相对于所述往复套的移动方向一致。
在其中一个实施例中,所述往复槽沿所述传动轴的周向的轨迹呈正弦曲线。
在其中一个实施例中,单个所述往复槽沿所述传动轴的周向的轨迹包括至少两个完整且连续的正弦曲线周期,单个所述往复槽内穿设有的所述限位体的数量小于或等于所述往复槽的正弦曲线周期数量,且单个所述往复槽内的所述限位体围绕所述传动轴的轴线均匀间隔设置。
在其中一个实施例中,所述传动轴的外壁上开设有定位槽,所述限位体包括万向球,所述万向球的部分可滚动地设置于所述定位槽内,另一部分凸出于所述传动轴的外壁并穿设于所述往复槽内。
在其中一个实施例中,所述限位体还包括限位座及多个滚珠,多个所述滚珠设置于所述限位座内,所述万向球部分穿设于所述限位座内并与所述滚珠抵接,所述万向球与所述滚珠均能够相对于所述限位座滚动,所述限位座设置于所述定位槽内。
在其中一个实施例中,所述传动轴包括动力轴及传动套,所述传动套套设于所述动力轴上并限位于所述动力轴上,所述定位槽开设有于所述传动套的外壁上;和/或
所述往复套的内壁直径与所述传动轴的外壁直径一致。
在其中一个实施例中,所述的往复传动机构还包括壳体及导向件,所述往复套及所述传动轴均设置于所述壳体内,所述导向件设置于所述壳体内,所述往复套的外壁上形成有配合结构,所述配合结构与所述导向件导向配合,且所述配合结构相对于所述导向件的导向方向为所述传动轴的轴线方向。
在其中一个实施例中,所述的往复传动机构还包括动力源及输出轴,所述动力源连接于所述传动轴的一端,所述动力源用于驱动所述传动轴绕自身轴线转动,所述输出轴连接于所述往复套背向于所述动力源的一侧;或者
在其中一个实施例中,所述的往复传动机构还包括动力源及两个输出轴,两个所述输出轴分别连接于所述往复套的相背对的两侧,其中一所述输出轴的上开设有动力孔,所述动力源通过所述动力孔连接于所述传动轴。
上述往复传动机构,当传动轴绕自身轴线转动时,由于限位体定位在传动轴的外壁上,传动轴穿设于往复套内,以使限位体穿设于往复槽内。且由于往复槽为绕传动轴轴线的闭合型曲线槽,往复槽的波峰与波谷沿传动轴的轴线间隔设置,进而当限位体跟随传动轴转动时,使得限位体在往复槽的波峰与波谷之间滑动,进而实现带动往复套沿传动轴的轴线方向往复移动的目的。上述往复传动机构不存在偏摆角,也就不存在偏向力摩擦做功的问题;且结构简单,适用范围广,能够用于压缩机、泵体结构等需要往复移动的场合。
一种动力设备,所述动力设备包括如上所述的往复传动机构。
附图说明
构成本申请的一部分的附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的 不当限定。
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
此外,附图并不是1:1的比例绘制,并且各个元件的相对尺寸在附图中仅示例地绘制,而不一定按照真实比例绘制。在附图中:
图1为一实施例中的往复传动机构的结构示意图;
图2为图1所述的往复传动机构的分解图;
图3为图2中的往复套在另一视角下的结构示意图;
图4为图1所示的往复传动机构在一视角的剖视图;
图5为图1所示的往复传动机构在另一视角的剖视图。
附图标记说明:
10、往复传动机构;100、传动轴;110、定位槽;120、动力轴;130、传
动套;200、往复套;210、往复槽;220、配合结构;300、限位体;400、壳体;410、壳本体;420、盖体;430、输入孔;440、输出孔;500、导向件;600、输出轴。
具体实施方式
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下 做类似改进,因此本实用新型不受下面公开的具体实施例的限制。
参阅图1至图3,本实用新型一实施例中的往复传动机构10,至少能够消除偏摆角,消除偏向力摩擦做功,且往复传动机构10的结构简单,适用性好。具体地,往复传动机构10包括传动轴100、往复套200及限位体300,传动轴100能够绕自身轴线转动;往复套200的内壁上开设有往复槽210,往复槽210为绕往复套200轴线的闭合型曲线槽,且往复槽210的波峰与波谷沿传动轴100的轴线间隔设置;限位体300定位在传动轴100的外壁上,传动轴100穿设于往复套200内,以使限位体300穿设于往复槽210内。其中,限位体300能够在往复槽210内移动,以使往复套200能够相对于传动轴100沿传动轴100的轴线往复移动。在本实施例中,传动轴100的轴线与往复套200的轴线一致。
一并参阅图4,当传动轴100绕自身轴线转动时,由于限位体300定位在传动轴100的外壁上,传动轴100穿设于往复套200内,以使限位体300穿设于往复槽210内。且由于往复槽210为绕传动轴100轴线的闭合型曲线槽,往复槽210的波峰与波谷沿传动轴100的轴线间隔设置,进而当限位体300跟随传动轴100转动时,使得限位体300在往复槽210的波峰与波谷之间移动,进而实现带动往复套200沿传动轴100的轴线方向往复移动的目的。上述往复传动机构10不存在偏摆角,也就不存在偏向力摩擦做功的问题;且结构简单,适用范围广,能够用于压缩机、泵体结构等需要往复移动的场合。
一实施例中,往复槽210的数量为至少两个,各个往复槽210沿着往复套200的轴线方向间隔设置,每一往复槽210内均设置有至少一限位体300,不同往复槽210内的限位体300相对于往复套200可同向移动。通过设置多个往复槽210,且每一往复槽210内均设置有至少一个限位体300配合传动,能够提高传动轴100输出动力至往复套200的功率,可以适用于大功率工作状态下。
另一实施例中,往复槽210的数量为至少两个,部分往复槽210沿着往复套200的轴线方向间隔设置于往复套200的内壁上,另一部分往复槽210沿传动轴100的轴线间隔设置于传动轴100的外壁上,且各个往复槽210均沿着传动轴100的轴线间隔设置,设置于传动轴100上的往复槽210内设置有移动体,移动体限位于往复套200上,且移动体能够在传动轴100外壁上的往复槽210内移动。其中移动体相对于传动轴100的移动方向与限位体300相对于往复套200的移动方向一致。
参阅图2至图4,一实施例中,往复槽210沿传动轴100的周向的轨迹呈正弦曲线。当传动轴100带动限位体300在往复槽210内移动时,利用呈正弦曲线轨迹布置的往复槽210,保证限位体300在往复槽210内能够顺滑移动,保证往复套200往复移动的平稳。
在本实施例中,单个往复槽210沿传动轴100的周向的轨迹包括至少两个完整且连续的正弦曲线周期,单个往复槽210内穿设有的限位体300的数量小于或等于往复槽210的正弦曲线周期数量,且单个往复槽210内的限位体300围绕传动轴100的轴线均匀间隔设置。例如,在本实施例中,往复槽210的轨迹包括两个正弦曲线,限位体300的数量也为两个,两个限位体300能够同时布置于往复槽210的两个正弦曲线的波谷位置或同时布置在两个正弦曲线的波峰位置,且此时的两个限位体300围绕传动轴100的轴线均匀设置,以保证两个限位体300能够同向移动。通过均匀布置的限位体300与正弦曲线型的往复槽210的配合,能够进一步提高传动稳定性。
在其他实施例中,单个往复槽210沿传动轴100的周向的轨迹可以包括三个或其他数目个完整且连续的正弦曲线周期,对应的限位体300的数量可以为三个或其他数目个,且每一正弦曲线对应设置一限位体300,以保证限位体300 相对于往复套200能够同步移动。
参阅图2、图4及图5,一实施例中,传动轴100的外壁上开设有定位槽110,限位体300包括万向球,万向球的部分可滚动地设置于定位槽110内,另一部分凸出于传动轴100的外壁并穿设于往复槽210内。由于万向球可滚动,进而使得往复套200相对于传动轴100的往复移动是利用万向球的滚动摩擦实现,而非是往复套200相对于传动轴100的滑动摩擦,进一步保证传动效率。且通过设置定位槽110能够有效定位万向球在传动轴100上的位置。
在本实施例中,往复套200的内壁直径与传动轴100的外壁直径一致。例如往复套200与传动轴100之间可以过盈配合,避免往复套200内壁与传动轴100之间直接接触摩擦。在其他实施例中,往复套200的内壁直径略大于传动轴100的外壁直径,以保证往复套200内壁与传动轴100的外壁之间具有较小间隙。
一实施例中,传动轴100包括动力轴120及传动套130,传动套130套设于动力轴120上并限位于动力轴120上,定位槽110开设有于传动套130的外壁上。通过传动套130便于形成定位槽110,保证动力轴120的结构完整性,进而保证动力输出的可靠性。在其他实施例中,定位槽110可以直接开设于动力轴120上,传动套130可以省略。
一实施例中,限位体300还包括限位座及多个滚珠,多个滚珠设置于限位座内,万向球部分穿设于限位座内并与滚珠抵接,万向球与滚珠均能够相对于限位座滚动,所述限位座设置于定位槽110内。当万向球在滚动时,利用多个滚珠实现万向球与限位座之间的滚动摩擦,进一步保证万向球滚动的稳定性。
在其他实施例中,限位座还可以省略,多个滚珠直接设置于定位槽110内,万向球穿设于定位槽110内并与滚珠抵接。
参阅图1、图2及图5,一实施例中,往复传动机构10还包括壳体400,往 复套200及传动轴100均设置于壳体400内。通过壳体400能够有效保护往复套200与传动轴100,保证往复套200与传动轴100之间传动的稳定性。
具体地,壳体400包括壳本体410及盖体420,壳本体410的一侧开口,往复套200及传动轴100由壳本体410的开口侧设置于壳本体410内,盖体420盖设于壳本体410上。
一实施例中,往复传动机构10还包括导向件500,导向件500设置于壳体400内,往复套200的外壁上形成有配合结构220,配合结构220与导向件500导向配合,且配合结构220相对于导向件500的导向方向为传动轴100的轴线方向。具体地,导向件500的一端连接于盖体420上。通过配合结构220与导向件500之间配合,不仅能够限制往复套200相对于传动轴100转动,且保证往复套200沿着导向方向的稳定地往复移动。
在本实施例中,导向件500为杆状结构。配合结构220为配合套,配合套设置于往复套200的外壁上,导向件500穿设于配合套内,且配合套能够与往复套200同步沿着导向件500的导向方向移动。
在另一实施例中,配合结构220还可以为开设于往复套200外壁上的配合凹槽,导向件500穿设于配合凹槽内,且能够在配合凹槽内沿着导向方向移动。
一实施例中,导向件500为至少两个,配合结构220的数量与导向件500的数量一致,每一导向件500均与一配合结构220导向配合。且各个配合结构220沿着往复套200的周向间隔设置。通过设置至少两个导向件500与配合结构220导向配合,进一步提高导向的稳定性。进一步地,各个配合结构220沿着往复套200的周向均匀布置,进一步提高往复套200受力的均匀性,进而保证往复套200输出往复移动的稳定性。
参阅图4及图5,一实施例中,往复传动机构10还包括动力源及输出轴600, 动力源连接于传动轴100的一端,动力源用于驱动传动轴100绕自身轴线转动,输出轴600连接于往复套200背向于动力源的一侧。通过设置动力源便于将转动输出至传动轴100,实现传动轴100的转动。而通过输出轴600便于将往复套200的往复移动通过输出轴600输出至其他部件。
具体地,壳体400的一侧壁上开设有输入孔430,相对的另一侧壁上开设有输出孔440,动力源通过输入孔430连接于传动轴100的一端,输出轴600穿设于输出孔440内。
一实施例中,动力源还可以通过传动件连接于传动轴100。例如,动力源可以通过齿轮传动组连接于传动轴100。在另一实施例中,动力源还可以直接连接于传动轴100。
一实施例中,往复传动机构10还可以包括两个输出轴600,两个输出轴600分别连接于往复套200的相背对的两侧,其中一输出轴600的上开设有动力孔,动力源通过动力孔连接于传动轴100。通过设置两个输出轴600便于实现往复套200的双向输出,进一步提高传动效率。
上述往复传动机构10,动力源驱动传动轴100转动时,往复套200沿着传动轴100的轴线往复运动,并利用万向球实现往复套200与传动轴100之间的滚动摩擦,且利用均匀布置的至少两个万向球,使得往复套200受到均匀的往复推力,不会受到偏向力的影响。往复套200的往复过程只有沿着传动轴100的轴线方向的移动轨迹及推力,可实现双向做功的目的,提高传动效率。
一实施例中,动力设备包括上述任一实施例中往复传动机构10。例如动力设备可以为压缩机,压缩机的活塞可以连接于往复套200。或者动力设备可以为柱塞泵,柱塞泵的柱塞连接于往复套200。或者动力设备可以为电锤,电锤的缸体连接于往复套200。在其他实施例中,动力设备还可以为其他需要往复动力的 部件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以 通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

Claims (10)

  1. 一种往复传动机构,其特征在于,所述往复传动机构包括:
    传动轴,所述传动轴能够绕自身轴线转动;
    往复套,所述往复套的内壁上开设有往复槽,所述往复槽为绕所述往复套轴线的闭合型曲线槽,且所述往复槽的波峰与波谷沿所述传动轴的轴线间隔设置;及
    限位体,所述限位体定位在所述传动轴的外壁上,所述传动轴穿设于所述往复套内,以使所述限位体穿设于所述往复槽内;其中,所述限位体能够在所述往复槽内移动,以使所述往复套能够相对于所述传动轴沿所述传动轴的轴线往复移动。
  2. 根据权利要求1所述的往复传动机构,其特征在于,所述往复槽的数量为至少两个,各个所述往复槽沿着所述往复套的轴线方向间隔设置,每一所述往复槽内均设置有至少一所述限位体,不同所述往复槽内的所述限位体相对于所述往复套可同向移动;或者
    所述往复槽的数量为至少两个,部分所述往复槽沿着所述往复套的轴线方向间隔设置于往复套的内壁上,另一部分所述往复槽沿所述传动轴的轴线间隔设置于所述传动轴的外壁上,且各个所述往复槽均沿着所述传动轴的轴线间隔设置,设置于所述传动轴上的所述往复槽内设置有移动体,所述移动体限位于所述往复套上,且所述移动体能够在所述传动轴外壁上的所述往复槽内移动,所述移动体相对于所述传动轴的移动方向与所述限位体相对于所述往复套的移动方向一致。
  3. 根据权利要求1所述的往复传动机构,其特征在于,所述往复槽沿所述传动轴的周向的轨迹呈正弦曲线。
  4. 根据权利要求3所述的往复传动机构,其特征在于,单个所述往复槽沿 所述传动轴的周向的轨迹包括至少两个完整且连续的正弦曲线周期,单个所述往复槽内穿设有的所述限位体的数量小于或等于所述往复槽的正弦曲线周期数量,且单个所述往复槽内的所述限位体围绕所述传动轴的轴线均匀间隔设置。
  5. 根据权利要求1所述的往复传动机构,其特征在于,所述传动轴的外壁上开设有定位槽,所述限位体包括万向球,所述万向球的部分可滚动地设置于所述定位槽内,另一部分凸出于所述传动轴的外壁并穿设于所述往复槽内。
  6. 根据权利要求5所述的往复传动机构,其特征在于,所述限位体还包括限位座及多个滚珠,多个所述滚珠设置于所述限位座内,所述万向球部分穿设于所述限位座内并与所述滚珠抵接,所述万向球与所述滚珠均能够相对于所述限位座滚动,所述限位座设置于所述定位槽内。
  7. 根据权利要求6所述的往复传动机构,其特征在于,所述传动轴包括动力轴及传动套,所述传动套套设于所述动力轴上并限位于所述动力轴上,所述定位槽开设有于所述传动套的外壁上;和/或
    所述往复套的内壁直径与所述传动轴的外壁直径一致。
  8. 根据权利要求1-7任一项所述的往复传动机构,其特征在于,还包括壳体及导向件,所述往复套及所述传动轴均设置于所述壳体内,所述导向件设置于所述壳体内,所述往复套的外壁上形成有配合结构,所述配合结构与所述导向件导向配合,且所述配合结构相对于所述导向件的导向方向为所述传动轴的轴线方向。
  9. 根据权利要求1-7任一项所述的往复传动机构,其特征在于,还包括动力源及输出轴,所述动力源连接于所述传动轴的一端,所述动力源用于驱动所述传动轴绕自身轴线转动,所述输出轴连接于所述往复套背向于所述动力源的一侧;或者
    还包括动力源及两个输出轴,两个所述输出轴分别连接于所述往复套的相背对的两侧,其中一所述输出轴的上开设有动力孔,所述动力源通过所述动力孔连接于所述传动轴。
  10. 一种动力设备,其特征在于,所述动力设备包括如权利要求1-9任一项所述的往复传动机构。
PCT/CN2023/106075 2022-07-06 2023-07-06 往复传动机构及动力设备 WO2024008149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221724443.1 2022-07-06
CN202221724443.1U CN217814821U (zh) 2022-07-06 2022-07-06 往复传动机构及动力设备

Publications (1)

Publication Number Publication Date
WO2024008149A1 true WO2024008149A1 (zh) 2024-01-11

Family

ID=83962216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106075 WO2024008149A1 (zh) 2022-07-06 2023-07-06 往复传动机构及动力设备

Country Status (2)

Country Link
CN (1) CN217814821U (zh)
WO (1) WO2024008149A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217814821U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动机构及动力设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2249333Y (zh) * 1995-03-29 1997-03-12 王关林 套筒活塞传动装置
CN1254800A (zh) * 1998-11-21 2000-05-31 张寿龄 柱塞式旋转往复机构
WO2000031440A1 (fr) * 1998-11-21 2000-06-02 Shouling Zhang Systeme de piston rotatif a mouvement alternatif
US20170361386A1 (en) * 2016-06-20 2017-12-21 Tsan-Yang Lu Reciprocating tool
CN209059338U (zh) * 2018-01-31 2019-07-05 重庆西山科技股份有限公司 螺旋环槽式往复传动机构以及往复锯
CN110242415A (zh) * 2019-07-19 2019-09-17 西北农林科技大学 一种基于三周期曲沟球轴承的双缸内燃机
CN211050167U (zh) * 2019-08-01 2020-07-21 深圳市倍轻松科技股份有限公司 同轴往复机芯及筋膜枪
CN113719439A (zh) * 2021-08-24 2021-11-30 浙江千机智能科技有限公司 传动结构、传动连接机构及空压机
CN215059263U (zh) * 2021-04-30 2021-12-07 永康市光逸科技有限公司 传动机构
CN217814821U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动机构及动力设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2249333Y (zh) * 1995-03-29 1997-03-12 王关林 套筒活塞传动装置
CN1254800A (zh) * 1998-11-21 2000-05-31 张寿龄 柱塞式旋转往复机构
WO2000031440A1 (fr) * 1998-11-21 2000-06-02 Shouling Zhang Systeme de piston rotatif a mouvement alternatif
US20170361386A1 (en) * 2016-06-20 2017-12-21 Tsan-Yang Lu Reciprocating tool
CN209059338U (zh) * 2018-01-31 2019-07-05 重庆西山科技股份有限公司 螺旋环槽式往复传动机构以及往复锯
CN110242415A (zh) * 2019-07-19 2019-09-17 西北农林科技大学 一种基于三周期曲沟球轴承的双缸内燃机
CN211050167U (zh) * 2019-08-01 2020-07-21 深圳市倍轻松科技股份有限公司 同轴往复机芯及筋膜枪
CN215059263U (zh) * 2021-04-30 2021-12-07 永康市光逸科技有限公司 传动机构
CN113719439A (zh) * 2021-08-24 2021-11-30 浙江千机智能科技有限公司 传动结构、传动连接机构及空压机
CN217814821U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动机构及动力设备

Also Published As

Publication number Publication date
CN217814821U (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2024008149A1 (zh) 往复传动机构及动力设备
WO2024008153A1 (zh) 往复传动组件及动力机构
WO2024008137A1 (zh) 用泵设备及柱塞泵
WO2024008144A1 (zh) 电锤
JP4007637B2 (ja) 可変容量圧縮機
KR101193399B1 (ko) 용량가변형 사판식 압축기
WO2022228466A1 (zh) 传动机构
CN201814810U (zh) 能直线往复平移的按摩器
WO2024093340A1 (zh) 动力设备
WO2024008146A1 (zh) 往复传动机构及动力设备
WO2024008143A1 (zh) 动力设备
CN210142956U (zh) 一种伸缩旋转机芯
WO2024008133A1 (zh) 用泵设备
US11371496B2 (en) Eccentric sleeve for crankshaft of compressor, crankshaft, crankshaft assembly and compressor
WO2024008135A1 (zh) 电锤
WO2024008136A1 (zh) 动力设备
CN109713842A (zh) 一种外转子螺旋电机及传动机构
JP6562296B2 (ja) ピストンの往復運動機構、ポンプ、コンプレッサー、及び真空ポンプ
WO2023103874A1 (zh) 流体机械、换热设备、流体机械的运行方法
CN209358369U (zh) 一种外转子螺旋电机及传动机构
CN211550423U (zh) 一种旋转运动转换直线往复运动的装置
WO2023226414A1 (zh) 流体机械和换热设备
WO2023226415A1 (zh) 流体机械和换热设备
WO2023226409A1 (zh) 流体机械和换热设备
WO2023213021A1 (zh) 同轴往复运动机构及器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834916

Country of ref document: EP

Kind code of ref document: A1