WO2024004923A1 - 細菌標的型カプシド粒子、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、細菌標的型カプシド粒子の製造方法、細菌標的型カプシド粒子用核酸の製造方法 - Google Patents

細菌標的型カプシド粒子、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、細菌標的型カプシド粒子の製造方法、細菌標的型カプシド粒子用核酸の製造方法 Download PDF

Info

Publication number
WO2024004923A1
WO2024004923A1 PCT/JP2023/023521 JP2023023521W WO2024004923A1 WO 2024004923 A1 WO2024004923 A1 WO 2024004923A1 JP 2023023521 W JP2023023521 W JP 2023023521W WO 2024004923 A1 WO2024004923 A1 WO 2024004923A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
cap
capsid
targeting
nucleic acid
Prior art date
Application number
PCT/JP2023/023521
Other languages
English (en)
French (fr)
Inventor
龍洙 崔
恒太朗 氣駕
Original Assignee
学校法人自治医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人自治医科大学 filed Critical 学校法人自治医科大学
Publication of WO2024004923A1 publication Critical patent/WO2024004923A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof

Definitions

  • the present invention particularly relates to bacteria-targeted capsid particles, therapeutic compositions, disinfectants, foods, bacteria removal methods, sterilization methods, corrosion prevention methods, animal treatment methods, gene introduction methods, bacterial function addition methods, and bacteria-targeted capsid particles.
  • the present invention relates to a method for producing a nucleic acid for bacterial-targeting capsid particles.
  • Phage therapy which is an antibacterial treatment method using bacteriophage (hereinafter referred to as "phage")
  • Phage is a virus that infects bacteria, and it multiplies through the following process. (1) Attach to host bacteria, (2) Inject own nucleic acid (DNA or RNA), (3) Replicate own nucleic acid within the bacterial body. Thereafter, (4) synthesis of a protein (capsid) that forms the outer shell, (5) assembling a daughter phage, and (6) releasing the daughter phage outside the bacterial cell by lysis or the like.
  • Phage therapy is a treatment method that uses the lytic activity of phages, which are viruses that infect bacteria, to kill bacteria.
  • Patent Document 1 describes a sterilization method using a phage equipped with CRISPR-Cas13 that does not multiply. Additionally, attempts are being made to develop phage therapy using gene-defective phages and phagemids.
  • the present invention has been made in view of this situation, and an object of the present invention is to solve the above-mentioned problems.
  • the bacteria-targeted capsid particle of the present invention comprises a phage capsid protein, a nucleic acid injection region of the phage genome, a replication region necessary for nucleic acid replication, and an element for a bacteria-targeted capsid particle including a packaging region. , is characterized by being non-proliferative.
  • the bacteria-targeting capsid particle of the present invention is characterized in that the element for the bacteria-targeting capsid particle contains a foreign gene.
  • the bacteria-targeted capsid particle of the present invention is characterized in that the foreign gene includes any one or any combination of a bactericidal gene, a biofilm degrading gene, an antigen presenting gene, and a transducing gene.
  • the bacteria-targeting capsid particle of the present invention is characterized in that the bactericidal gene produces a secreted bactericidal product that kills surrounding bacteria.
  • the bacteria-targeting capsid particle of the present invention is characterized in that the foreign gene contains a resistance factor that suppresses sterilization of the target bacteria.
  • the therapeutic composition of the present invention is characterized in that it contains the bacteria-targeted capsid particles.
  • the disinfectant of the present invention is characterized in that it contains the bacteria-targeting capsid particles.
  • the food product of the present invention is characterized by containing the bacteria-targeting capsid particles.
  • the method for removing bacteria of the present invention is characterized in that target bacteria are removed using the bacteria-targeting capsid particles.
  • the bacteria removal method of the present invention is characterized in that the target bacteria are present in the bacterial flora of humans, animals, and/or the environment.
  • the bacteria removal method of the present invention is characterized in that the target bacteria are present in food.
  • the sterilization method of the present invention is characterized in that target bacteria are sterilized using the bacteria-targeting capsid particles.
  • the corrosion prevention method of the present invention is characterized in that target bacteria are sterilized by the bacteria-targeting capsid particles to prevent corrosion of articles.
  • the animal treatment method of the present invention is characterized in that the animal is treated with the bacteria-targeted capsid particles.
  • the gene introduction method of the present invention is characterized in that the foreign gene contained in the bacteria-targeting capsid particle is introduced into a target bacterium.
  • the method for adding a bacterial function of the present invention is characterized in that the foreign gene contained in the bacteria-targeting capsid particle is introduced into a target bacterium to add a function to the target bacterium.
  • the method for producing a bacterium-targeted capsid particle of the present invention involves preparing the capsid protein of the phage using a capsid nucleic acid element that does not contain a packaging region and synthesizes a capsid, which is divided from the genome of the phage.
  • the method for producing a bacteria-targeted capsid particle of the present invention includes introducing the capsid nucleic acid element and the element for bacteria-targeting capsid particles into a prepared bacterium for preparation, and transferring the bacterium-targeted capsid particle to the prepared bacterium. It is characterized by being generated internally.
  • the method for producing a bacteria-targeted capsid particle of the present invention is characterized in that the capsid nucleic acid element is introduced by the chromosome or artificial chromosome for the prepared bacteria.
  • the method for producing a bacteria-targeted capsid particle of the present invention is characterized in that the element for the bacteria-targeted capsid particle is introduced by the chromosome or plasmid.
  • the method for producing a nucleic acid for bacterium-targeted capsid particles of the present invention involves dividing and preparing a capsid nucleic acid element that does not contain a packaging region and synthesizes a capsid from a phage genome, and dividing the capsid nucleic acid element of the phage genome.
  • the element for bacteria-targeting capsid particles which includes the nucleic acid injection region, the replication region necessary for nucleic acid replication, and the packaging region, is divided and prepared from other locations, and a non-proliferating nucleic acid for bacteria-targeting capsid particles is prepared. It is characterized by the construction of
  • a phage capsid protein by comprising a phage capsid protein, a nucleic acid injection region, a replication region necessary for nucleic acid replication, and a bacteria-targeting capsid particle element including a packaging region, treatment of drug-resistant bacteria, etc. It is possible to provide effective, non-proliferating, bacteria-targeted capsid particles.
  • FIG. 2 is a diagram showing the structure of a bacteria-targeting capsid particle according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a comparison between conventional phage therapy and an antibacterial treatment method using bacteria-targeted capsid particles according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of the sequence structure of T7 phage and Helper B-CAP according to an example of the present invention.
  • FIG. 2 is a conceptual diagram of the sequence structure of T7 phage and B-CAP according to an example of the present invention.
  • 2 is a schematic diagram and a photograph of electrophoresis results for confirmation of B-CAP construction by PCR method according to an example of the present invention.
  • FIG. 1 is an electron microscope photograph of B-CAP according to an example of the present invention.
  • 1 is a photograph showing the bactericidal activity of B-CAP according to an example of the present invention.
  • 1 is a B-CAP sequence structure of Tan2 phage derived from Staphylococcus aureus, a conceptual diagram of B-CAP synthesis, and a photograph of B-CAP synthesis according to an example of the present invention.
  • FIG. 2 is a conceptual diagram of a test for loading long-chain DNA onto B-CAP according to an example of the present invention.
  • 10 is a graph showing the number of plaques obtained in the test shown in FIG. 9.
  • 10 is a photograph of a plaque obtained in the test shown in FIG. 9.
  • FIG. 9 is an electron microscope photograph of B-CAP according to an example of the present invention.
  • FIG. 9 shows a schematic diagram and a photograph of the electrophoresis results when confirming the loading of long-chain DNA onto the plaques obtained in the test using the PCR method.
  • FIG. 9 is a diagram showing the results of sequencing to confirm the loading of long-chain DNA onto the plaques obtained in the test.
  • FIG. 2 is a conceptual diagram of the construction of bactericidal B-CAP according to an example of the present invention.
  • FIG. 2 is a schematic diagram of the array structure of bactericidal B-CAP according to an example of the present invention.
  • 1 is a photograph showing the bactericidal effect of a bactericidal B-CAP plate according to an example of the present invention.
  • FIG. 1 is a graph showing the bactericidal effect of bactericidal B-CAP in a liquid culture solution according to an example of the present invention.
  • 1 is a photograph showing the bactericidal effect of bactericidal B-CAP according to an example of the present invention against drug-resistant E. coli.
  • FIG. 2 is a conceptual diagram of an antibacterial treatment test for bacterially infected mice using bactericidal B-CAP according to an example of the present invention.
  • 1 is a graph showing the antibacterial therapeutic effect of bactericidal B-CAP according to an example of the present invention on bacterially infected mice.
  • the present inventors generated a DNA construct (element) with a sequence excluding the virion-constituting genes that include a region related to proliferation and synthesizes capsids, and injected this element into lytic phage capsid.
  • the packaging was successful and the present invention was completed.
  • the elements packaged within the phage capsid are injected into the cells of the target host bacterium, similar to bacterial infection of wild phages. Therefore, a product in which this element was packaged was named a non-proliferating Bacteria-targeting capsid particle (hereinafter referred to as "B-CAP").
  • B-CAP therapeutic composition
  • bactericide food
  • bacteria removal method sterilization method
  • corrosion prevention method corrosion prevention method
  • animal treatment method gene introduction method
  • bacterial function addition method and B-CAP according to the present embodiment
  • B-CAP Construction method (manufacturing method) of B-CAP will be explained.
  • the phage genome division method by appropriately dividing the phage chromosome (genome), it is possible to construct B-CAP elements specialized for transduction, DNA replication, and packaging using lytic phages. conduct. Specifically, the phage genome is divided to generate B-CAP elements containing only the genes necessary for DNA injection and DNA replication.
  • This B-CAP element excludes the virion constituent genes that include a region related to proliferation and synthesizes capsids, and includes a nucleic acid injection region, a replication region necessary for nucleic acid replication, and a packaging region.
  • Elements for B-CAP may be constructed chromosomally or plasmids. This plasmid may have a higher copy number than the artificial chromosome.
  • capsid nucleic acid element which is a DNA element for capsid construction to synthesize a phage capsid, from a phage genome other than the B-CAP element. conduct.
  • This capsid nucleic acid element contains Virion but does not contain a packaging region, and is an element specialized for synthesizing capsids.
  • the capsid nucleic acid element may be constructed by a chromosome for the prepared bacteria or a bacterial artificial chromosome (BAC) in order to be stably maintained in the prepared bacteria.
  • B-CAP elements and capsid nucleic acid elements can be introduced into prepared bacteria for preparation, and B-CAP can be produced in the prepared bacteria.
  • the B-CAP element and the capsid nucleic acid element can be introduced into the B-CAP-preparing bacterium by electroporation, liposome, injection, or other gene introduction methods.
  • the bacteria for this preparation for example, common bacteria such as Escherichia coli and Bacillus subtilis can be used.
  • B-CAP elements proliferate within the prepared bacteria.
  • a capsid protein is also produced by the capsid nucleic acid element in the same prepared bacteria, and the propagated element for B-CAP is packaged into this capsid protein. This produces non-proliferating B-CAP particles.
  • B-CAP particles can be obtained in large quantities by methods commonly used by those skilled in the art, such as lysis of prepared bacteria and/or release from the cells, followed by purification by ultracentrifugation.
  • B-CAP according to the present embodiment was constructed using T7 phage that mainly infects E. coli
  • T7 phage which is a model of a propagating phage
  • the B-CAP element was a plasmid-like circular DNA.
  • Helper B-CAP was inserted into an E. coli artificial chromosome (BAC) and named pKLC172.
  • BAC E. coli artificial chromosome
  • B-CAP produced in this way is non-proliferative. Then, the gene-complemented host carrying the other divided capsid nucleic acid element can proliferate only within the prepared bacteria, and this prepared bacterium becomes a "factory" for B-CAP synthesis.
  • the manufactured B-CAP has the same infection mode as wild-type phage, although it is non-proliferative, and can deliver long-chain DNA to target bacteria. That is, B-CAP allows loading of foreign DNA and injection of B-CAP element DNA into the target bacterial body. Furthermore, the injected B-CAP element can exert biological activities derived from its own DNA, including amplification within the target bacterium. Therefore, B-CAP can be applied more efficiently than before as an antibacterial therapeutic agent for bacterial infections, a disinfectant, an intestinal regulator, an oral composition, an antiseptic, and the like.
  • the B-CAP element of B-CAP may include a foreign gene.
  • This foreign gene may include any one or any combination of a biofilm decomposition gene, an antigen presentation gene, a transfer gene, and a bactericidal gene. Specifically, as shown in the Examples below, it is possible to insert foreign long-chain DNA of at least 18.0 kb into the prepared B-CAP. It is possible to include a foreign gene within this long DNA.
  • biofilm decomposition genes are, for example, dextranases, proteases, etc. that cut or degrade the molecular structure of biofilms consisting of bacterial polysaccharides, peptidoglycans, proteins, etc. Good too.
  • the gene product of this biofilm decomposition gene can decompose the bacterial biofilm, making it impossible for the bacteria themselves to survive, and/or making it easier for antibacterial agents and the like to penetrate.
  • the antigen-presenting gene according to this embodiment may be a gene that makes the antigen easier to recognize by the immune system or presents an antigen that is a target of attack.
  • This antigen does not necessarily have to be an antigen against the bacteria that B-CAP infects, but may be an antigen against other pathogenic organisms, viruses, animal tumors, etc. present in the lesion. That is, since the B-CAP according to this embodiment can freely introduce a DNA sequence into the capsid, it can be loaded with the DNA of pathogenic bacteria, intestinal flora bacteria, or other bacteria, or present an antigen on the surface of the phage capsid. It can also be used in the field of phage vaccines. It will also be applicable to cancer treatment and treatment of genetic diseases.
  • the gene for introduction according to this embodiment may be a gene to be introduced into bacteria.
  • various genes can be used to add functions to the bacteria that B-CAP infects. For example, to add this function, genes related to synthesis, secretion, etc. of proteins and various substances can be added.
  • B-CAP can be loaded with foreign long-chain DNA, it is also possible to introduce a plurality of genes.
  • This introduced gene includes, for example, a drug gene, a drug resistance gene, a gene encoding a protein associated with attenuation or potentiation, a toxin gene, a specific metabolite gene, an enzyme gene for producing a specific metabolite, It may be a gene for identifying a bacterium, a reporter gene used for transformation, a sequence containing a restriction enzyme or sticky end used for genetic recombination, a repeat sequence, or another "gene” indicating a genetic type in a broad sense. .
  • the foreign gene according to the present embodiment may cause a loss of drug resistance or cause drug resistance through nucleic acid acquisition and/or nucleic acid mutation.
  • resistant bacteria may arise from the acquisition of foreign DNA or RNA (nucleic acid) and/or nucleic acid mutation, so foreign genes that suppress this nucleic acid acquisition and/or nucleic acid mutation may reduce the antibacterial effect. It becomes possible to increase the
  • the bactericidal gene according to this embodiment may produce a secreted bactericidal product.
  • the bactericidal gene according to this embodiment makes it possible to produce a secreted bactericidal product that sterilizes surrounding bacteria. That is, by loading the B-CAP according to this embodiment with a sterilizing gene that produces a secreted sterilizing product, it is possible to sterilize the target bacterium and the bacterial group around the target bacterium (collective sterilization).
  • B-CAP can be loaded with secretory bactericidal DNA machinery as a foreign gene.
  • This bactericidal DNA machinery may be equipped with, for example, a bacteriocin gene cluster (colicin E1 gene cluster) for producing and secreting bacteriocins.
  • Bacteriocin is an antibacterial protein or peptide produced by bacteria, is secreted outside the bacterial body, and exhibits antibacterial activity against related bacteria. Therefore, by loading B-CAP with a bacteriocin gene group, it becomes possible to sterilize the target bacteria and bacterial groups around the target bacteria, and a remarkable antibacterial effect can be obtained.
  • B-CAP used as a bactericidal agent nonproliferative mass-killing antibacterial capsid (hereinafter referred to as "NM-AB capsid").
  • the NM-AB capsid according to this embodiment exhibits a very strong collective sterilizing effect, and becomes a B-CAP that is nonproliferative but can be efficiently treated.
  • B-CAP B-CAP_ColE1 carrying a bacteriocin gene group is non-proliferative but effective against carbapenem-resistant E. coli. It exhibited strong bactericidal activity against. It also showed a remarkable survival effect on mice infected with this bacterium.
  • FIG. Figure 2 shows the differences in antibacterial treatment with T7 phage, B-CAP, and B-CAP_ColE1.
  • T7 phage is proliferative, multiplies within the target bacterium, and lyses the host during the multiplication process. Because it proliferates, there are concerns about its negative impact on the environment and the spread of genes to other bacteria.
  • B-CAP can kill target bacteria by injecting phage-derived DNA, but its bactericidal power itself is weak because it does not have the ability to multiply.
  • B-CAP can carry a long-chain gene and can transiently express that gene in large amounts within target bacteria. Therefore, it can be used in various ways as a non-propagating capsid. Furthermore, it is equipped with the above-mentioned biofilm removal genes and can be efficiently used for sterilization, etc.
  • B-CAP_ColE1 is an example of NM-AB capsid, which is B-CAP loaded with secreted antimicrobial proteins/peptides (AMPs). B-CAP_ColE1 carries bacteriocin as AMPs. When the NM-AB capsid enters the target bacterial body, it amplifies and synthesizes a large amount of AMPs. AMPs are secreted outside the bacterial body and can also kill surrounding bacteria.
  • B-CAP_ColE1 B-CAP is loaded with Colicin E1 (ColE1), immunity protein (immune gene), and colicin release lysis protein (secretion gene) as a bacteriocin gene group, B-CAP_Col E1 was produced.
  • immunity protein immunogen
  • immunity protein is an example of a resistance factor that suppresses sterilization of target bacteria.
  • a resistance factor gene is an example of a resistance factor that suppresses sterilization of target bacteria.
  • the B-CAP according to this embodiment may be configured to include a plurality of foreign genes. That is, B-CAP according to this embodiment can contain a plurality of foreign genes in one phage. At this time, a plurality of foreign genes may be included within the range that can be included within the capsid. The plurality of foreign genes may be arranged consecutively or as a plurality of sites within the sequence, or may be configured to include a plurality of them. For example, by loading multiple bactericidal genes so that it can be applied to multiple types of bacteria, one B-CAP can be applied to multiple resistant bacteria. Furthermore, in the case of multidrug-resistant bacteria that have multiple resistance genes, it is also possible to improve antibacterial efficiency by installing multiple genes that correspond to all of these genes. Furthermore, it is possible to further enhance the antibacterial effect by loading B-CAP with any combination of the above-mentioned bactericidal genes, biofilm degrading genes, antigen presenting genes, and transducing genes.
  • B-CAP according to embodiments of the present invention can also be used in therapeutic compositions containing it. That is, by administering B-CAP according to the present embodiment for therapeutic purposes, it can be used in antibacterial therapy to kill bacteria. Specifically, B-CAP can provide antibacterial therapy that kills bacteria. This enables antibacterial treatment of infections that are difficult to treat with antibacterial drugs, including infections caused by drug-resistant bacteria. Various formulations similar to conventional phage-based antibacterial treatments can be used to prepare this therapeutic composition.
  • compositions according to embodiments of the invention may also be prepared using any pharmaceutically acceptable carrier, such as saline, isotonic solutions containing dextrose or other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, etc., suitable solubilizing agents such as alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), (including, but not limited to, HCO-50). Moreover, it may further contain appropriate excipients and the like.
  • saline isotonic solutions containing dextrose or other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, etc.
  • suitable solubilizing agents such as alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), (including, but
  • the therapeutic composition of this embodiment may also include a suitable pharmaceutically acceptable carrier to prepare a pharmaceutically acceptable carrier.
  • the carrier may include biocompatible materials such as silicone, collagen, gelatin, and the like. Alternatively, various emulsions may be used. Furthermore, one or more formulation additives selected from diluents, fragrances, preservatives, excipients, disintegrants, lubricants, binders, emulsifiers, plasticizers, etc. may also be included. good.
  • compositions according to embodiments of the invention can be formulated using pharmaceutically acceptable carriers well known in the art in dosage forms suitable for administration for oral administration.
  • the route of administration of the pharmaceutical composition according to the present invention is not particularly limited, and it can be administered orally or parenterally.
  • Parenteral administration includes, for example, intravenous, intraarterial, subcutaneous, intradermal, intramuscular, and intraperitoneal administration, or direct administration, dripping, and application to the bacterial flora or infected site. This method of administration may be performed similarly to conventional phage therapy.
  • the administration interval and dosage should be appropriately selected and changed depending on various conditions such as the disease situation and the subject condition. It is possible to do so.
  • the amount and frequency of administration of the therapeutic composition according to the embodiment of the present invention may be determined as appropriate depending on the purpose of administration and various conditions such as the age and weight of the patient, the symptoms, and the severity of the disease. It is possible to select and change.
  • the frequency and period of administration may be one time, or once to several times a day for several weeks, and the disease state may be monitored, and administration may be performed again or repeatedly depending on the state.
  • compositions of the present invention can also be used in combination with other compositions. Further, the composition of the present invention may be administered simultaneously with other compositions, or may be administered at intervals, but the order of administration is not particularly limited. Furthermore, in the embodiments of the present invention, the period during which the disease is improved or alleviated is not particularly limited, but may be temporary improvement or relief, or improvement or relief for a certain period of time.
  • the therapeutic composition according to the embodiment of the present invention can treat an organism, a part of the body of the organism, or a part thereof extracted or excreted from the organism.
  • This living organism is not particularly limited, and may be, for example, an animal, a plant, or a fungus.
  • the animals include, for example, humans, domestic animal species, wild animals, and the like. Therefore, the therapeutic composition according to the embodiment of the present invention can also be used for animal therapy. That is, B-CAP according to the present embodiment can also be used in animal treatment methods for various animals other than humans.
  • the animal treatment method of the present embodiment can treat bacterial infections in non-human animals using a therapeutic composition containing B-CAP.
  • This animal is also not particularly limited, and broadly includes vertebrates and invertebrates.
  • Vertebrates include fish, amphibians, reptiles, birds, and mammals.
  • mammals include rodents such as mice, rats, ferrets, hamsters, guinea pigs, rabbits, dogs, cats, sheep, pigs, cows, horses, and non-human primates.
  • wild animals include fish, birds including poultry, reptiles, and the like. It also broadly includes crustaceans, including shrimp and insects, and other invertebrates, such as squid. That is, the therapeutic composition according to the embodiment of the present invention can be used not only for human treatment, but also for animal treatment, livestock growth promotion, and other methods.
  • the sterilization method according to the embodiment of the present invention is characterized in that target bacteria are removed (sterilized, sterilized) by B-CAP.
  • the composition containing B-CAP according to the present embodiment can be used as a fungicide (growth inhibitor).
  • This disinfectant can also be included in an appropriate carrier, solution, etc., as described above. That is, the composition containing B-CAP according to the present embodiment can be provided as a disinfectant in various antibacterial products such as detergents, hand washing soaps, gargles, masks and napkins, and air purifier filters. It's okay.
  • the composition containing B-CAP according to the present embodiment can also be used for removing bacterial peptidoglycan, biofilm, and the like.
  • a biofilm degrading gene as the foreign gene for B-CAP.
  • the fungicide according to this embodiment it is possible to remove and suppress the proliferation of bacteria from lesions, bacterial flora, and the environment. That is, it is possible to reduce bacteria present in the bacterial flora of humans, animals, and/or the environment.
  • B-CAP can remove bacteria in food. This is because the B-CAP according to this embodiment does not infect humans even if obtained. Furthermore, it is also possible to provide food from which bacteria have been removed in this way. This makes it possible, for example, to provide safe foods from which food-poisoning bacteria that produce toxins have been reliably removed.
  • B-CAP according to the present embodiment can be used by being included in any cultivated, cultured, or collected food, including various vegetables, meat, seafood, processed foods, dairy products, etc. .
  • the B-CAP according to the present embodiment can also be used in a corrosion prevention method for sterilizing target bacteria and preventing corrosion of foods and non-food items.
  • phages used in phage therapy exhibit strong bactericidal power because they multiply within the bacteria present in the infection nest.
  • clinical use due to the biological property of phages, which is their ability to proliferate, and their practical use has not progressed.
  • sterilizing power is ensured, but there are concerns about negative effects on the ecosystem and unintended side effects.
  • drug resistance genes and toxin genes by phages.
  • phages that do not proliferate were synthesized using a method using phagemids and a method using SaPI, but they had the disadvantages that an inducer such as Mitomycin C was required for synthesis and the amount synthesized was small. .
  • the ideal phage preparation is effective against resistant bacteria, has a high level of safety that has little impact on the ecosystem like non-replicating phages, can be mass-produced, and has antibacterial therapeutic effects. ⁇ Strong antibacterial activity'' is required.
  • B-CAP in contrast, with B-CAP according to the embodiment of the present invention, a foreign gene can be loaded into a long DNA chain while maintaining its non-propagating property using the phage genome division method. will be available for use. That is, by appropriately selecting the foreign gene to be loaded and producing B-CAP, it becomes possible to reliably sterilize bacteria. For example, with a single bactericidal gene, resistance may develop due to bacterial evolution, but by incorporating multiple genes into B-CAP, this can be suppressed and the effect can be maintained for a long time. Additionally, B-CAP can sterilize any type of bacteria due to the foreign genes it carries, making it highly effective against resistant bacteria.
  • the B-CAP according to the embodiment of the present invention can be used as an evolution-adaptive drug because it can respond to the occurrence of new resistant bacteria by simply changing the genes it carries. It is also possible to modify B-CAP itself using genetic engineering techniques to make it compatible with bacteria.
  • the B-CAP according to the embodiment of the present invention is said to be superior in terms of safety than general phages because it does not generate self-replicating phages (progeny phages). Conceivable. Furthermore, in conventional non-propagating phages, there was a problem that if a single gene was defective, there was a high possibility that it would be complemented and become capable of propagation, but B-CAP according to this embodiment has a long-chain phage genome that is defective. Therefore, it is considered almost impossible to complement long-chain DNA from nature. That is, B-CAP has a very low probability of acquiring proliferative properties and is therefore highly safe.
  • B-CAP can only be prepared in gene-complemented preparation bacteria that carry capsid nucleic acid elements (capsimids) that synthesize divided capsids. That is, B-CAP is not produced in nature and can only be prepared by specialized bacteria that serve as a "factory" for B-CAP synthesis. For these reasons, B-CAP has "high safety" and can solve the biological safety problem of antibacterial phage preparations.
  • capsid nucleic acid elements capsid nucleic acid elements
  • B-CAP according to this embodiment is a synthetic capsid that does not self-replicate, the effect of mutations in B-CAP itself can be suppressed. For example, B-CAP does not multiply, so it does not introduce new resistance genes or toxin genes, and it does not spread. Furthermore, since B-CAP does not self-replicate, the possibility that the prophage will be retained by the administered organisms or bacteria in the environment is extremely low, and there is little impact on the ecosystem. Furthermore, in principle, resistant bacteria are less likely to develop. This increases safety. Furthermore, since B-CAP does not self-propagate, it is possible to accurately estimate the dose to be administered. Furthermore, since the B-CAP according to the embodiment of the present invention is derived from natural substances, it is safe and has a low environmental impact. Therefore, it is also possible to provide disinfectants and foods that are safe and have a low environmental impact.
  • B-CAP containing the replication region and packaging region necessary for replication of phage nucleic acid is constructed using a new concept of genome partitioning method that divides the genome of a lytic phage, and is then injected into a phage capsid. This enables the loading of arbitrary long-chain DNA and its mass synthesis.
  • B-CAP can be synthesized with high efficiency, and the cost and time required for synthesis can be significantly reduced.
  • B-CAP can be synthesized in large quantities (approximately 10 10 PFU/ml or more) at low cost, which reduces costs and has great manufacturing advantages.
  • B-CAP has the same infection mode as a wild-type phage, although it is non-proliferative, and can deliver long-chain DNA to target bacteria. Therefore, the B-CAP according to the present embodiment can provide various biological functions including bactericidal activity depending on the properties of the loaded DNA, and thus can create new modalities. That is, B-CAP enables the construction of phage preparations with high bactericidal activity.
  • the B-CAP synthesized in this embodiment can be loaded with foreign DNA and injected into the target bacterial body.
  • the injected DNA can also exert biological activities derived from its own DNA, including amplification within the target bacterium.
  • the phage genome partitioning method using capsimids makes it possible to reduce the length of the B-CAP DNA sequence that can be maintained within the bacterial body to about half that of conventional phages. Therefore, B-CAP also functions as a cloning vector for long-chain DNA, making it possible to maintain highly toxic long-chain genes and to synthesize large amounts of them in a short period of time. That is, it becomes possible to load foreign long-chain DNA onto B-CAP.
  • B-CAP can be used not only to have a bactericidal effect, but also to impart new biological functions.
  • B-CAP according to the present embodiment is equipped with a bactericidal gene that produces a bactericidal substance with strong bactericidal activity even if it is nonproliferative, and the product can be secreted to sterilize the surrounding bacterial group. Therefore, it can compensate for the disadvantage of non-propagating phages, which is that their antibacterial activity is weak because they do not proliferate.
  • B-CAP by loading B-CAP with a bactericidal gene that produces a secreted bactericidal product that sterilizes surrounding bacteria as a foreign gene, B-CAP has antibacterial power that can sterilize bacteria surrounding host bacteria even though it is non-proliferative.
  • psid NM-ABCapsid
  • NM-ABCapsid B-CAP_ColE1 synthesizes bacteriocin (colicin E1), which is a secreted bactericidal protein, within the cells of target bacteria, and has a very strong collective bactericidal effect. showed that. That is, B-CAP_ColE1 also sterilized the bacterial group surrounding the target bacteria, and exhibited a sufficient sterilizing effect even when administered in the same number as the number of bacteria. Specifically, according to the example, in an in vitro experiment, the bactericidal effect of B-CAP_ColE1 was 1000 times that of B-CAP alone. Furthermore, in mouse infection experiments, B-CAP_ColE1 showed significant antibacterial therapeutic effects.
  • bacteriocin colicin E1
  • B-CAP_Col E1 was able to treat carbapenem-resistant E. coli infection, which is a clinically important resistant bacteria, in a mouse infection model, and was able to keep lethally infected mice alive. That is, in the Examples described below, carbapenem-resistant E. coli was intraperitoneally administered to mice, and it showed a remarkable survival effect even on mice infected with the bacterium. That is, B-CAP according to the present embodiment can make it possible to construct a phage preparation that is nonproliferative but has high bactericidal activity.
  • bacteriocins Although the strong antibacterial activity of bacteriocins is expected to be applied to the treatment of bacterial infections, it is necessary to synthesize and purify bacteriocins in large quantities in order to use them for treatment. Furthermore, since bacteriocins exhibit concentration-dependent sterilization, it was necessary to maintain the concentration at the infected site. Therefore, in the development of antibacterial drugs using bacteriocins, it has been important to establish a method for mass-synthesizing bacteriocins and constructing an effective delivery system for bacteriocins to infection foci.
  • B-CAP_ColE1 carries bacteriocin in a safe, non-proliferating phage, and maintains its concentration at the infected site by using an immune gene, which is a resistance factor that suppresses the sterilization of target bacteria.
  • bacteriocins can be secreted to the extent that As a result, the antibacterial therapeutic effect of capsids can be significantly increased.
  • the Helper B-CAP region of the capsid nucleic acid element (capsimid) is loaded onto BAC when B-CAP is produced.
  • general plasmids have a large number of copies, and it is difficult to maintain phage genes and long-chain genes that contain many genes that are toxic to the host. Therefore, by using a plasmid with a low copy number, making the toxic phage gene inducible, and dividing and inserting long-chain DNA into multiple plasmids, it is possible to stably maintain the gene.
  • B-CAP can also hold the minimum necessary region among regions other than the RNA polymerase, DNA replication region, and packaging region as a replication region necessary for nucleic acid replication.
  • the phage genome is directly divided when forming B-CAP, but it is also possible to use other sequences.
  • a sequence of a region usually of about 20 kb and named PICI (Phage-inducible chromosomal island) contained in the bacterial genome may be used.
  • PICI Portion-inducible chromosomal island
  • this PICI is also called SaPI (Staphylococcus aureus pathology islands).
  • PICI or SaPI is similar to a lysogenizing phage that can enter the bacterial genome, but it essentially lacks the virion assembly genes of a phage. Therefore, the genome length is about half that of lysogenic phages.
  • PICI is induced and replicated from the genome during phage infection, and is capable of packaging the genome within the phage capsid. This packaging requires a packaging sequence derived from PICI, and when this region is loaded onto a plasmid, the plasmid can be inserted into a lysogenic phage.
  • PICI that has entered the capsid of a phage is transduced into other bacteria in the same way as a phage, and since PICI is propagated via a phage, it can be used for B-CAP. Furthermore, a configuration in which phage DNA and PICI or SaPI DNA are used simultaneously is also possible.
  • B-CAP was created based on T7 phage, but it can also be constructed using phage other than T7 or other bacteria.
  • T4 phage a model phage of about 170 kb, or other jumbo phages, it becomes possible to carry longer DNA.
  • the present inventors have produced B-CAPs using Escherichia coli phage T7 as an example of a Gram-negative bacterium and Staphylococcus aureus Tan2 phage as an example of a Gram-positive bacterium. That is, phage preparations using B-CAP can be applied to a wide range of bacterial species.
  • B-CAP virus that infect bacteria, RNA viruses, phagemids, etc.
  • B-CAP viruses that infect bacteria, RNA viruses, phagemids, etc.
  • B-CAP may be provided in the form of a prophage integrated into a bacterial genome or plasmid.
  • phagemids can be introduced into cells via any method such as electroporation or using nanoparticles, for example, in the bacteria discrimination method of this embodiment.
  • the foreign gene can be any gene.
  • the foreign gene may include a gene that is expressed concomitantly with, whose expression is regulated, or associated with a drug resistance gene or a toxin gene.
  • the foreign gene may include other pathogenic genes related to pathogenicity and genes that suppress these genes.
  • the foreign gene of this embodiment may be a "gene" in a broad sense, such as a gene mutation sequence, a single base substitution, or a repeat, which is a target for cancer treatment or a genetic disease.
  • B-CAP is used as a therapeutic composition for treating an infectious disease.
  • this treatment can be used not only for infectious disease treatment itself, but also for modifying bacterial flora, pretreatment for fecal transplantation, etc.
  • an antigen-presenting gene as a foreign gene to induce immunity against bacteria necessary for treatment within the bacterial flora.
  • B-CAP can also be used to sterilize food and prevent spoilage.
  • B-CAP according to the embodiment of the present invention can also be used in combination with other compositions. Furthermore, it is also possible to provide a "cocktail" containing multiple types of B-CAP. Furthermore, the composition of the present invention may be administered, sprayed, applied, etc. simultaneously with other compositions.
  • [Method] Bacterial strain and culture conditions
  • the bacterial strains used in this example are shown in Table 1 below.
  • the strain was grown in LB medium (manufactured by BD Difco) at 37°C.
  • Appropriate antibiotics were added to the growth media at the following final concentrations unless otherwise specified: The concentrations were 100 ⁇ g/ml for ampicillin (Amp), 30 ⁇ g/ml for kanamycin (Km), and 34 ⁇ g/ml for chloramphenicol (Cm).
  • MC1061 and USA300 were manufactured by Lucigen.
  • HST08 manufactured by Takara Bio was used.
  • ESBL Extended Spectrum ⁇ -Lactamase
  • Escherichia coli Ec320 and Ec353 were obtained from Dr. Zenzo Nagasawa.
  • DNA used The DNAs used in this example, such as plasmid vectors and BAC (Bacterial Artificial Chromosome), are shown in Table 2 below.
  • Helper B-CAP construct From the T7 phage DNA, a region from gp6.5 to gp12 (8.7 kb) and a region from gp13 to gp17 (9.1 kb) were each amplified by a two-step method using KOD Fx Neo (manufactured by TOYOBO). Furthermore, the region (7.5 kb) from rrnBT1 terminator to TTe terminator of pSMART BAC v2.0 (manufactured by Lucigen) was similarly amplified. The amplified PCR fragment was subjected to gel extraction using a FastGene Gel/PCR Extraction kit (manufactured by NIPPON Genetics), and the concentration was measured.
  • Approximately 100 ng of each fragment was mixed with 10 ⁇ l of NEBuilder (manufactured by New England Biolabs) to make a total of 20 ⁇ l, and the mixture was combined at 50° C. for 1 hour.
  • MC1061 (pKLC172) E. coli harboring Helper B-CAP
  • MC1061 (pKLC172) E. coli harboring Helper B-CAP
  • the ColE1-resistant MC1061R strain was similarly electroporated with pKLC172 to form the "MC1061R (pKLC172)" strain.
  • pKLC172 contained in these strains was confirmed by PCR method and deep sequencing.
  • the MC1061 (pKLC172) strain or MC1061R (pKLC172) strain is an example of prepared bacteria used in each test described below. That is, the MC1061 (pKLC172) strain or the MC1061R (pKLC172) strain was used as a "Propagation Strain" for propagating and producing B-CAP or B-CAP_ColE1.
  • Helper B-CAP for Staphylococcus aureus was prepared in two plasmids.
  • a plasmid in which the tail portion of a Staphylococcus aureus lysogenized phage was made tetracycline inducible was constructed as pLC-tailTan2, and a plasmid in which the head portion was made cadmium inducible was constructed as pNL-headTan2.
  • chloramphenicol and erythromycin were used for each drug resistance.
  • the primer sequences used for PCR are listed in Table 3 and the sequence listing above.
  • B-CAP for E. coli is made from the DNA of T7 phage, from gp17.5 to gp1 (6.8kb), from gp1 to gp2.8 (6.9kb), and from gp3 to gp6.3. (8.2 kb) were each amplified using KOD Fx Neo (manufactured by TOYOBO) in a two-step method. The amplified PCR fragment was subjected to gel extraction using FastGene Gel/PCR Extraction kit (manufactured by NIPPON Genetics), and the concentration was measured.
  • KOD Fx Neo manufactured by TOYOBO
  • NEBuilder manufactured by New England Biolabs
  • the MC1061 (pKLC172) strain carrying Helper B-CAP was cultured in LB medium containing chloramphenicol, and when the OD 600 reached 0.5, the E. coli was cooled and incubated three times with ice-cold 10% glycerol. , washed. The cells were suspended in ice-cold 10% glycerol so as to be concentrated about 500 times as much as when shaken, and used as electrocompetent cells.
  • B-CAP of Staphylococcus aureus was constructed by electroporating B-CAP DNA into RNA4220 strain harboring Helper B-CAP DNA. Add 150 ⁇ l of overnight culture to 4 ml TSA top agar medium supplemented with erythromycin (15 ⁇ g/ml), chloramphenicol (15 ⁇ g/ml), CaCl 2 (2.5 ⁇ M), ATc (1 ⁇ g/ml), After mixing, it was poured onto a TSA plate. This plate was cultured overnight in a 37°C incubator.
  • the primer sequences used for PCR are listed in Table 3 and the sequence listing above.
  • Helper B-CAP and B-CAP DNA were prepared.
  • B-CAP was divided into three fragments by PCR, and the foreign gene was amplified by PCR.
  • PCR was performed for Staphylococcus aureus and ColE1 as foreign genes.
  • the template for each PCR was Staphylococcus aureus genomic DNA, pKLC187.
  • Homologous sequences were added to the ends of each fragment so that they could be assembled using NEBuilder.
  • Four gene fragments were assembled using NEBuilder using the homologous sequences.
  • the assembled DNA and Helper B-CAP were electroporated into E.
  • coli competent cells HST08 manufactured by TaKaRa. Electroporation conditions were similar to those described above. The electroporated product was transferred to a total volume of 1 ml of SOC medium, and cultured with shaking at 37°C for 30 minutes. 1 ml of an overnight culture of E. coli MC1061 (pKLC172) harboring Helper B-CAP was added, and 8 ml of LB medium containing 1 mM CaCl 2 was added. Incubate at 37 °C for 30 min, remove 1 ml from approximately 10 ml culture, mix with 3 ml LTA (LB 0.5% agarose containing 1 mM CaCl, 56 °C), and plate on LB plate with chloramphenicol. It was layered. After drying the plate for about 10 minutes, it was cultured in an incubator at 37°C. The primer sequences used for PCR are listed in Table 3 and the sequence listing above.
  • the ColE1 gene sequence was obtained by amplifying the ColE1 gene cassette (containing the immune gene and release gene) from ColE1 DNA (manufactured by NIPPON GENE) by PCR, and amplifying the ColE1 gene cassette (containing the immune gene and release gene) using PCR, and amplifying the ColE1 gene cassette (containing the immune gene and release gene) from ColE1 DNA (manufactured by NIPPON GENE). It was cloned into pKLC23 described in Patent Document 2 and named pKLC146. pKLC146 is designed so that ColE1 is immediately downstream of the arabinose-inducible promoter, followed by the immune gene and release gene.
  • the pKLC146 plasmid was transformed into Escherichia coli MC1061 strain, and after culturing in LB medium containing 0.2% L-arabinose for 12 hours, the supernatant was collected. After centrifugation at 5,000 ⁇ g for 10 minutes, the supernatant was filtered through a 0.22 ⁇ M filter. When this filtrate was added to MC1061, bacterial growth was strongly inhibited. In other words, it was confirmed that ColE1 was synthesized from pKLC146. Thereafter, in order to facilitate the loading of ColE1 into B-CAP, a plasmid was created in which a portion of the T7 phage sequence was inserted into pKLC146 and named pKLC187.
  • the primer sequences used for PCR are listed in Table 3 and the sequence listing above.
  • T7 phage resistant E. coli 200 ⁇ l of E. coli MC1061 strain cultured overnight and 3 ml of LTA (LB 0.5% agarose containing 1 mM CaCl 2 , 56° C.) were mixed and layered on an LB plate. After drying for about 10 minutes to harden the agarose, 5 ⁇ l of T7 phage solution (10 8 PFU (Plaque Forming Unit)/ml) was dropped onto the LTA. After culturing at 37°C for 20 hours, the colonies that appeared were obtained and spread on a new LB plate. The emerging colonies were once again spread on a new LB plate, and the emerging colonies were cultured in LB medium. It was confirmed through an experiment using LTA agar that this colony was resistant to T7 phage, and it was preserved.
  • LTA LB 0.5% agarose containing 1 mM CaCl 2 , 56° C.
  • TEM imaging of phage and B-CAP One drop of the concentrated phage suspension was first placed on a collodion-coated 400-mesh copper grid (Nissin EM Co., Ltd., Japan), and the phages were allowed to adsorb for 10 minutes. Thereafter, the residual liquid was removed using filter paper, and 1% uranyl acetate (negative staining solution) was dropped onto the copper grid. The mesh grid was thoroughly wetted for approximately 5 seconds and then blotted dry. After staining, it was observed using an 80 kV transmission electron microscope (TEM) HT7700 (manufactured by Hitachi). Transmission electron micrographs of the phages were taken with an 8M pixel main digital camera.
  • TEM transmission electron microscope
  • the target phage and B-CAP were added to logarithmically grown host cells at an MOI of 0.1 to 0.01, and the cells were cultured at 37°C until the turbidity of the solution became thin. Thereafter, the supernatant was centrifuged at 5,000 g for 10 minutes, and the supernatant was collected into a new tube.
  • a final concentration of 10 ⁇ g/ml DNase (manufactured by Sigma-Aldrich) and 10 ⁇ g/ml RNase (manufactured by Sigma-Aldrich) were added, stirred at 37°C for 1 hour, and an equal volume of PEG solution (10% (w/v) PEG6000, 5mM Tris-HCl (pH 7.5), 1M NaCl, 5mM MgSO 4 .7H 2 O) were gradually added. After overnight incubation at 4°C, centrifugation was performed at 15,000 g for 30 minutes at 4°C to collect precipitated phages.
  • TE buffer (10mM Tris-HCl (pH 8), 1mM EDTA), add 1/100 volume of 1M EDTA and 1/100 volume of 10% SDS to the phage suspension, and incubate at 68°C for 15 minutes. Incubated for minutes. After incubation, an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1, v/v/v) was added and the solution was mixed well. After centrifugation, the aqueous phase was transferred to a new tube and an equal volume of chloroform:isoamyl alcohol was added at a ratio of 24:1 (v/v) and mixed well again.
  • the aqueous phase containing phage DNA was transferred to a new tube, and 2.5 times the volume of ethanol was added. After incubation at -20°C for 1 hour, centrifugation was performed at 12,000g for 10 minutes at 4°C. The pelleted DNA was washed twice with 1 ml of 70% ethanol, and the obtained DNA was lightly dried and resuspended in an appropriate amount of TE buffer.
  • the MC1061 strain or the ColE1-resistant MC1061R strain was plated on an LB plate and incubated at 37°C for 12 hours. The colonies on the plate were transferred to LB medium and cultured at 37°C for 8 hours. After confirming that the bacteria had grown sufficiently, each culture solution was diluted 100 times with LB medium and cultured at 37° C. for 4 hours with vigorous shaking (400 rpm). When the OD (650 nm) reached approximately 0.5, culturing was started again in LB medium to adjust the OD 600 to 0.25. After 2 hours of culture, B-CAP/B-CAP (ColE1) was added to the growing E.
  • T7 phage and B-CAP were diluted 10 times in SM buffer in the range of 10 -4 to 10 -7 and used.
  • an overnight culture of Escherichia coli MC1061 strain and MC1061 (pKLC172) strain diluted 1:100 with LB culture solution was cultured at 37° C. with stirring until the OD 600 reached about 0.5. Thereafter, 10 ⁇ l of each dilution of T7 phage/B-CAP was added to 100 ⁇ l of the bacterial cell suspension, and cultured at 37° C. for 20 minutes.
  • the entire volume of the culture solution was mixed with 0.5% LTA containing 1 mM CaCl 2 and poured onto the surface of an LB plate. The plates were then incubated overnight at 37°C. The number of plaques on the plate was counted, and PFU/mL was calculated as the phage titer.
  • the extracted DNA was sequenced using a next-generation sequencer. First, each genomic DNA was randomly sheared into short fragments, the ends of the resulting fragments were repaired, A-tails were attached, and the fragments were ligated with Illumina adapters. The adapter-attached fragment was amplified by PCR, size-selected, and purified. The library was quantified using Qubit and real-time PCR, and the size distribution was detected using a bioanalyzer. A paired-end sequencing library was constructed from the plasmid using Nextera XT Library Prep Kit (manufactured by Illumina).
  • Sequencing was performed on the Illumina MiSeq platform (2 x 301 bp) using MiSeq reagent kit version 3 (manufactured by Illumina). The number of reads was 7059496 and 8277786 for B-CAP, 8000044 and 8691738 for B-CAP (ColE1), and 8814734 and 8173908 for pKLC172, respectively. Read sequences were trimmed and assembled do novo into contigs using CLC Genomics Workbench (manufactured by Qiagen). Sequence errors and DNA circulation were evaluated using CLC Genomics Workbench, and RAST ver. The obtained genome was annotated using 2.038.
  • mice survival test To evaluate the effect of B-CAP/B-CAP_ColE1 on the treatment of E. coli infection, 7-week-old Balb/c (Clea, manufactured by Japan) were used in a survival test. Mice were housed for one week to acclimatize to the laboratory environment before starting the assay. First, an overnight culture of carbapenem-resistant E. coli was diluted 1:1000 with fresh LB medium, and further cultured at 37° C. with stirring until the OD 600 reached about 0.5. Thereafter, the bacterial cells were washed twice with PBS and adjusted to a density of approximately 1 ⁇ 10 10 CFU/mL with PBS.
  • B-CAP, B-CAP (ColE1), and T7 phage were precipitated with PEG, dissolved in SM buffer, and dialyzed against PBS for 1 day. Each titer was measured using MC1061 or MC1061 (pKLC172). After the mice were anesthetized, 6 mice in each group were selected and 200 ⁇ l of the bacterial suspension (2 ⁇ 10 9 CFU/mouse) was directly injected intraperitoneally. Anesthetization was applied again, and 1.5 hours later, 200 ⁇ l of PBS containing B-CAP, B-CAP (ColE1), T7 phage, or PBS alone was injected into the same site where the bacterial solution had been injected.
  • FIG. 3(a) shows the results of extracting the DNA of T7 phage, which is a model of lytic phage, reading the sequence with a next-generation sequencer, and performing annotation using RAST ver. 2.0.
  • the sequence length of this T7 phage was 39956 bp.
  • B-CAP DNA which is an element for B-CAP
  • Helper B-CAP DNA which is a capsid nucleic acid element (capsimid).
  • B-CAP DNA was designed to include regions responsible for early genes (host-virus interaction and RNA polymerase), DNA replication, lysis, and packaging.
  • Helper B-CAP DNA for constructing B-CAP was designed to contain the Virion component region. This Helper B-CAP DNA was cloned into BAC (Bacterial Artificial Chromosome) to create pKLC172 in order to stably maintain it within the bacterial body.
  • FIG. 3(b) shows an example in which the Virion structural gene region was cloned into BAC to create pKLC172 as Helper B-CAP of this example.
  • This pKLC172 is a combination of the BAC replication system and all Virion constituent genes of T7 phage.
  • the sequence of pKLC172 was read using a next-generation sequencer, and it was confirmed that it was 25,289 bp. Furthermore, annotation was performed using RAST ver. 2.0.
  • B-CAP DNA was electroporated into Escherichia coli HST08 strain harboring Helper B-CAP DNA
  • B-CAP plaques were formed, and after isolation of the plaques, it was examined whether B-CAP was constructed. Specifically, the genomic DNA of T7 phage and B-CAP was extracted, the sequences were read using a next-generation sequencer, and annotation was performed using RAST ver. 2.0.
  • B-CAP was 22,132 bp, and the early gene, DNA replication, lysis, and packaging regions were retained, but the Virion gene was deleted.
  • FIG. 5(a) shows the configuration of primers for confirmation of T7 phage and B-CAP. Specifically, PCR was performed using each primer set of "B-CAP det1 274bp-f" to "T7 check det5-mini3 (det6) 7009bp mini5221bp-r, det6 as 23,027bp” in Table 3 above.
  • FIG. 5(b) shows the results of electrophoresis performed on a 0.5% agarose gel. As a result, it was confirmed that the genomic DNA size of B-CAP was shortened to approximately 22 kb. It was also confirmed that the length of the PCR (PCR3) fragment of the Virion, lysis, and packaging regions in T7 phage was 23.0 kb, and the length of the fragment of the corresponding region in B-CAP was 5.2 kb.
  • FIG. 6 shows an electron micrograph taken.
  • FIG. 6(a) is a photograph of T7 phage
  • FIG. 6(b) is a photograph of B-CAP.
  • B-CAP has almost the same shape as T7 phage.
  • bactericidal activity of the constructed B-CAP was measured. Specifically, a dilution series of T7 phage and B-CAP was prepared and added dropwise to E. coli MC1061 and MC1061 (pKLC172) cultured on soft agar plates. After 6 hours of incubation at 37°C, the plates were photographed. All assays were performed in triplicate. Figure 7 shows the photograph taken. When E. coli strain MC1061 was infected with B-CAP, bacterial spots without phage plaques were observed only when 2 ⁇ 10 5 or more was spotted on the bacterial lawn of MC1061.
  • B-CAP contains endolysin and toxic genes derived from the T7 phage, it is thought that bactericidal plaques different from those of the phage were formed.
  • the Escherichia coli MC1061 (pKLC172) strain in which the phage genome region that B-CAP does not have was complemented with Helper B-CAP (pKLC172) the growth ability of B-CAP was restored, so even at a lower B-CAP concentration, Bactericidal spots appeared.
  • the plaque size with B-CAP was smaller than that of the complete T7 phage.
  • B-CAP derived from Staphylococcus aureus was further synthesized.
  • the genome of this Staphylococcus aureus Tan2 phage was divided into B-CAP DNA and Helper B-CAP DNA.
  • the structural gene was deleted in the lysogenized Staphylococcus aureus Tan2 phage.
  • a Helper B-CAP plasmid expressing the structural gene was constructed and transformed into Staphylococcus aureus RN4220 in which the structural gene-deficient Tan2 phage had been lysogenized.
  • B-CAP was assembled by adding mitomycin C to this B-CAP synthesizing bacterium and inducing Tan2 phage.
  • FIG. 8 shows an example of B-CAP construction from this Staphylococcus aureus Tan2 phage.
  • FIG. 8(a) shows the gene structure of Tan2 phage and the concept of the region cloned into Helper B-CAP.
  • a Helper B-CAP plasmid for Tan2 phage was constructed by cloning 20,140 bp from the structural gene minor capsid to tail fiber and inserting it into the pLC1 plasmid.
  • FIG. 8(b) shows an example of construction of B-CAP using this Helper B-CAP plasmid.
  • Staphylococcus aureus RN4220 strain in which Tan2 phage was lysogenized was prepared.
  • a "Tan2 without structure genes" bacterium was created by deleting the phage structural gene from the bacterium.
  • the Helper B-CAP plasmid was transformed into RN4220 carrying the Tan2 phage with the structural gene deleted to create a Staphylococcus aureus strain ("S. aureus RN4220::Tan2”) that synthesizes Tan2-based B-CAP. (named “pHelper B-CAP)” was constructed.
  • B-CAP was assembled by adding mitomycin C to this B-CAP synthesizing bacterium to induce Tan2 phage.
  • FIG. 8(c) shows a serial 10-fold dilution of the prepared wild-type Tan2 phage and B-CAP as RN4220 or RN4220 carrying the Helper B-CAP plasmid (hereinafter referred to as "RN4220 (Helper B-CAP)").
  • RN4220 Helper B-CAP
  • FIG. 8(c) shows a serial 10-fold dilution of the prepared wild-type Tan2 phage and B-CAP as RN4220 or RN4220 carrying the Helper B-CAP plasmid (hereinafter referred to as "RN4220 (Helper B-CAP)").
  • RN4220 Helper B-CAP
  • Lytic plaques were observed only in RN4220 (Helper B-CAP), indicating that B-CAP construction was successful.
  • B-CAP uses a phage infection system to inject DNA into target bacteria. Therefore, the present inventors decided to investigate up to what length of DNA can be loaded onto B-CAP. Specifically, we decided to divide the B-CAP genome into three fragments by PCR and insert the DNA sequence derived from Staphylococcus aureus.
  • B-CAP S. aureus DNA
  • DNA fragments of approximately 17, 18, 19, and 20 kb each derived from Staphylococcus aureus were prepared, and the DNA fragments of B-CAP were inserted into the downstream region of gp19, which is the late gene of T7 phage. Assembled.
  • B-CAP DNA was amplified into three fragments by PCR and circularized by combining with DNA fragments of 17 kb, 18 kb, 19 kb, and 20 kb derived from Staphylococcus aureus. These assembled circular DNAs of B-CAP containing sequences derived from Staphylococcus aureus were electroporated into Escherichia coli HST08 strain together with Helper B-CAP plasmid pKLC172. Then, in order to detect the synthesized B-CAP (S.
  • aureus DNA as a plaque
  • the sample after electroporation, Escherichia coli MC1061 (pKLC172), and soft agar were mixed, and chloramphenicol (Cm) was added.
  • Champhenicol Cm
  • Pour onto a LB plate. The reason for adding chloramphenicol is to prevent the wild strain of E. coli HST08 from growing and to allow only B-CAP helper E. coli MC1061 (pKLC172) to grow. After culturing, plaques were obtained.
  • Figure 11 shows representative photographs of B-CAP (S. aureus DNA) plaques.
  • B-CAP S. aureus DNA
  • FIG. 12 shows the results of isolating and amplifying the obtained plaques and confirming the insertion of long-chain DNA by PCR.
  • FIG. 12(a) is a schematic diagram of each fragment.
  • FIG. 12(b) shows the results of electrophoresis on 0.5% agarose gel.
  • FIG. 13 shows the results of similarly obtained plaques isolated, amplified, and sequenced using a next-generation sequencer.
  • FIG. 13(a) is a schematic diagram showing the positions where B-CAP (S. aureus DNA) was sequenced as sequence 1 and sequence 2.
  • FIG. 13(b) shows part of the actual sequence.
  • B-CAP contains lytic enzymes and genes that change host metabolism, so although it cannot proliferate, it is capable of killing infected bacteria.
  • B-CAP does not multiply its progeny, so there is no need to worry about biological risks such as unexpected infection or gene spread.
  • phages unlike phages, they cannot amplify at the site of infection, so their antibacterial activity is expected to be inferior to that of normal phages. Therefore, the present inventors considered imparting antibacterial activity to B-CAP.
  • ColE1 colicin E1
  • ColE1 colicin E1
  • an immunity protein so as not to sterilize the bacteria carrying ColE1, and has a release protein to secrete bacteriocin outside the bacterial body.
  • B-CAP_ColE1 The construction of the bactericidal B-CAP (NM-AB capsid) of this example will be explained with reference to FIG.
  • the ColE1 gene region containing a set of colicin, immunity protein, and release protein was loaded onto B-CAP.
  • the NM-AB capsid structure obtained by loading this gene cassette consisting of the ColE1 gene, the immunity gene, and the release lysis protein gene into B-CAP was named B-CAP_ColE1.
  • B-CAP_ColE1 infects target bacteria and injects DNA into the cells, it produces bactericidal ColE1 and secretes it into the surroundings.
  • FIG. 15 shows the structure of the array of B-CAP (ColE1) of this B-CAP_ColE1.
  • B-CAP_ColE1 DNA is transcribed in the bacterial host injected with B-CAP_ColE1. Then, ColE1, immunity protein, and release protein are produced, and the host bacterium secretes ColE1 out of the bacterial cell by release protein while being protected by the immunity protein. It was predicted that the secreted ColE1 could sterilize a wide range of bacterial groups surrounding the host bacteria.
  • bacteria injected with B-CAP_ColE1 DNA are sterilized by toxic genes such as endolysin derived from B-CAP.
  • toxic genes such as endolysin derived from B-CAP.
  • Figure 16 shows the results of examining this bactericidal power.
  • the photo shows the results of culturing E. coli MC1061 and MC1061R (pKLC172) by planting them on a soft agar plate and spotting solutions containing B-CAP and B-CAP_ColE1 on the plate.
  • “Propagation strain” is MC1061R (pKLC172) obtained by introducing pKLC172 into the ColE1-resistant MC1061R strain, which is a bacterium for obtaining B-CAP_COLE1 and is a comparative example.
  • Host: MC106 is a bacterium used to actually test for bactericidal activity. These tests were repeated three times.
  • B-CAP_ColE1 showed a very strong collective bactericidal effect. Specifically, when B-CAP was added to E. coli MC1061, bactericidal spots were observed at 2 ⁇ 10 5 PFU, but no bactericidal spots were observed at lower concentrations. On the other hand, in B-CAP_ColE1, bactericidal spots were observed even at 2 ⁇ 10 1 PFU. Furthermore, B-CAP_ColE1 formed very small bactericidal plaques with no growth potential. This is probably because the bacteria surrounding the bacteria injected with B-CAP_ColE1 DNA were sterilized by ColE1. In this way, the bactericidal activity of B-CAP_ColE1 on the plate could be confirmed.
  • FIG. 17(a) shows the results for the MC1061 strain
  • FIG. 17(b) shows the results for the MC1061R strain.
  • B-CAP_ColE1 The bactericidal effect of B-CAP_ColE1 on a plate will be explained with reference to FIG. E. coli MC1061, ColE1-resistant MC1061R, carbapenem-resistant clinical isolate E. coli, ESBL E. coli, T7-resistant clinical isolate, and propagation strain MC1061 (pKLC172) were planted on soft agar plates. A dilution series of B-CAP and B-CAP (ColE1) was prepared, spotted on a plate, and photographed after culturing at 37°C. As a result, B-CAP_ColE1 effectively killed clinical isolates of carbapenem-resistant E. coli, Ec89, Ec93, and Ec101.
  • This bactericidal activity was approximately the same as the activity against the laboratory strain MC1061.
  • bactericidal spots due to B-CAP were also confirmed, but the bactericidal spots were thin and the bactericidal activity was judged to be about 1/1000 of that of B-CAP_ColE1.
  • B-CAP_ColE1 similarly showed strong bactericidal activity against Ec320 and Ec353, which are multidrug-resistant ESBL E. coli bacteria.
  • FIG. 19(a) is a time series diagram
  • FIG. 19(b) shows the dosage.
  • 10 CFU of carbapenem-resistant Escherichia coli strain Ec93 isolated clinically was inoculated into the peritoneal cavity of mice, and 1.5 hours later, B-CAP and B-CAP_ColE1 were directly administered into the peritoneal cavity at an MOI of 1 or 0.1. The survival rate of the mice was investigated.
  • phosphate-buffered saline PBS
  • a negative control indicated as "Saline” in the figure
  • a proliferative T7 phage proliferative T7 phage was administered as a positive control
  • FIG. 20 shows the survival curve and body weight change up to 120 hours after administration as the antibacterial therapeutic effect of B-CAP_ColE1.
  • FIG. 20(a) is a survival curve
  • FIG. 20(b) is a graph of body weight changes. Survival and body weight were confirmed every 6 hours until 72 hours after infection, and then 96 and 120 hours later.
  • B-CAP is loaded with a bacteriocin, a secretion gene, and an immunity gene at the same time, so that a large amount of bacteriocin can be synthesized within the cells of B-CAP-infected bacteria, and it can be secreted outside the cells.
  • bacteria-targeted capsid particles can be provided as therapeutic compositions, disinfectants, foods, etc., and can be used industrially.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

非増殖性で殺菌効果等が高い細菌標的型カプシド粒子を提供する。 ファージのカプシドタンパク質は、ファージのゲノムから分割された、パッケージング領域を含まない、主にVirion領域を含み、カプシドを合成するカプシド核酸エレメン卜により調製される。細菌標的型カプシド粒子(Bacteria-targeting capsid particle、B-CAP)用エレメントは、ファージのゲノムのカプシド核酸エレメン卜以外の箇所から分割された、核酸注入領域、核酸の複製に必要な複製領域、並びにパッケージング領域を含む。これらがアセンブリされた細菌標的型カプシド粒子(B-CAP)は、非増殖性であるものの、殺菌効果等を含めた新たな生物学的機能を付与する長鎖DNAの搭載を可能にする。

Description

細菌標的型カプシド粒子、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、細菌標的型カプシド粒子の製造方法、細菌標的型カプシド粒子用核酸の製造方法
 本発明は、特に細菌標的型カプシド粒子、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、細菌標的型カプシド粒子の製造方法、細菌標的型カプシド粒子用核酸の製造方法に関する。
 従来から、数多くの抗菌薬が開発され、様々な細菌感染症が治療されてきた。しかしながら、抗菌薬の使用から間もなく薬剤耐性菌(抗菌薬、抗生物質が効かない細菌)が報告され始めた。今や耐性菌は地球上のいたるところに存在し、臨床で使用されているほぼ全ての抗菌薬に対して耐性菌が出現している。抗菌薬の開発を遥かに上回るスピードで耐性菌が現れるため、細菌感染症が再び人類の健康を脅かす世界的問題となってきている。すなわち、抗菌薬開発と耐性菌変遷の歴史を鑑みると、耐性菌の出現は避けられそうになく、更に、新たな耐性菌が現れても対応できる進化適応型医薬品は存在しないことが危惧されている。このような危機的状況のなか、世界各国が薬剤耐性対策アクションプランを策定し、耐性菌に対する新たな予防、診断、治療法の開発を推進している。
 ここで、従来から、バクテリオファージ(bacteriophage、以下、「ファージ」という。)を用いた抗菌治療法であるファージセラピーが知られている。ファージは、細菌に感染するウイルスで、以下の過程を経て増殖する。(1)宿主細菌に付着、(2)自身の核酸(DNA又はRNA)を注入し、(3)菌体内で自身の核酸の複製を行う。その後、(4)外殻となる構成タンパク質(カプシド)を合成、(5)娘ファージを組み立て、(6)溶菌等により娘ファージを菌体外に放出する。ファージセラピーは、細菌に感染するウイルスであるファージの溶菌活性を利用して殺菌する治療法であり、1915年のファージの発見により試みられ、近年、臨床応用が加速化してきている。
 しかしながら、ファージは増殖し、遺伝子を伝播することから、予期せぬ細菌進化の誘発や毒素遺伝子の伝播、生態系への悪影響が懸念されている。
 そこで、特許文献1には、増殖しないCRISPR-Cas13を搭載したファージによる殺菌方法が記載されている。また、遺伝子欠損ファージやファージミドを利用したファージセラピー開発も試みられている。
国際公開第2014/204726号
Kiga K.他、「Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria」、Nature Communications、2020年、vol. 11(1):2934 De Graaf,F.K.及びOudega,B.、「Production and release of cloacin DF13 and related colicins」、Curr. Top. Microbiol. Immunol、1986、vol.125、p.183-205
 しかしながら、特許文献1に記載したような、従来の増殖しないファージでは、感染した菌しか殺菌ができない等の限界があり、薬剤耐性菌の治療等により効果的なファージ等が求められていた。
 本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消することを課題とする。
 本発明の細菌標的型カプシド粒子は、ファージのカプシドタンパク質と、前記ファージのゲノムの核酸注入領域、核酸の複製に必要な複製領域、並びにパッケージング領域を含む細菌標的型カプシド粒子用エレメントとを備え、非増殖性であることを特徴とする。
 本発明の細菌標的型カプシド粒子は、前記細菌標的型カプシド粒子用エレメントは、外来遺伝子を含むことを特徴とする。
 本発明の細菌標的型カプシド粒子は、前記外来遺伝子は、殺菌遺伝子、バイオフィルム分解遺伝子、抗原提示用遺伝子、及び導入用遺伝子のいずれか又は任意の組み合わせを含むことを特徴とする。
 本発明の細菌標的型カプシド粒子は、前記殺菌遺伝子により、周囲の菌を殺菌する分泌性の殺菌産物を生成することを特徴とする。
 本発明の細菌標的型カプシド粒子は、前記外来遺伝子は、標的細菌の殺菌を抑える抵抗因子を含むことを特徴とする。
 本発明の治療用組成物は、前記細菌標的型カプシド粒子を含むことを特徴とする。
 本発明の殺菌剤は、前記細菌標的型カプシド粒子を含むことを特徴とする。
 本発明の食品は、前記細菌標的型カプシド粒子を含むことを特徴とする。
 本発明の細菌除去方法は、前記細菌標的型カプシド粒子により標的細菌を除去することを特徴とする。
 本発明の細菌除去方法は、標的細菌は、ヒト、動物、及び/又は環境中の細菌叢に存在することを特徴とする。
 本発明の細菌除去方法は、標的細菌は、食品内に存在することを特徴とする。
 本発明の殺菌方法は、前記細菌標的型カプシド粒子により標的細菌を殺菌することを特徴とする。
 本発明の腐食予防方法は、前記細菌標的型カプシド粒子により標的細菌を殺菌し、物品の腐食を予防することを特徴とする。
 本発明の動物治療方法は、前記細菌標的型カプシド粒子により動物を治療することを特徴とする。
 本発明の遺伝子導入方法は、前記細菌標的型カプシド粒子に含まれる前記外来遺伝子を標的細菌に導入することを特徴とする。
 本発明の細菌機能追加方法は、前記細菌標的型カプシド粒子に含まれる前記外来遺伝子を標的細菌に導入し、該標的細菌に機能を追加することを特徴とする。
 本発明の細菌標的型カプシド粒子の製造方法は、ファージのゲノムから分割された、パッケージング領域を含まず、カプシドを合成するカプシド核酸エレメン卜により前記ファージのカプシドタンパク質を調製し、前記ファージのゲノムの前記カプシド核酸エレメン卜以外の箇所から分割された、核酸注入領域、核酸の複製に必要な複製領域、並びに前記パッケージング領域を含む細菌標的型カプシド粒子用エレメントを、前記カプシドタンパク質にパッケージングし、非増殖性の細菌標的型カプシド粒子を生成することを特徴とする。
 本発明の細菌標的型カプシド粒子の製造方法は、前記カプシド核酸エレメン卜及び前記細菌標的型カプシド粒子用エレメントを、調製用の調製細菌内に導入して、前記細菌標的型カプシド粒子を前記調製細菌内で生成させることを特徴とする。
 本発明の細菌標的型カプシド粒子の製造方法は、前記カプシド核酸エレメン卜は、前記調製細菌用の染色体又は人工染色体により導入されることを特徴とする。
 本発明の細菌標的型カプシド粒子の製造方法は、前記細菌標的型カプシド粒子用エレメントは、前記染色体又はプラスミドにより導入されることを特徴とする。
 本発明の細菌標的型カプシド粒子用核酸の製造方法は、ファージゲノムから、パッケージング領域を含まず、カプシドを合成するカプシド核酸エレメン卜を分割して調製し、前記ファージゲノムの前記カプシド核酸エレメン卜以外の箇所から、核酸注入領域、核酸の複製に必要な複製領域、並びに前記パッケージング領域を含む細菌標的型カプシド粒子用エレメントを分割して調製し、非増殖性の細菌標的型カプシド粒子用核酸を構築することを特徴とする。
 本発明によれば、ファージのカプシドタンパク質と、核酸注入領域、核酸の複製に必要な複製領域、並びにパッケージング領域を含む細菌標的型カプシド粒子用エレメントとを備えることで、薬剤耐性菌の治療等に効果的な、非増殖性の細菌標的型カプシド粒子を提供することができる。
本発明の実施形態に係る細菌標的型カプシド粒子の構造を示す図である。 従来のファージ療法と、本発明の実施形態に係る細菌標的型カプシド粒子による抗菌治療方法との比較を示す概念図である。 本発明の実施例に係るT7ファージ及びHelper B-CAPの配列構造の概念図である。 本発明の実施例に係るT7ファージ及びB-CAPの配列構造の概念図である。 本発明の実施例に係るPCR法でのB-CAP構築の確認についての模式図及び電気泳動結果の写真である。 本発明の実施例に係るB-CAPの電子顕微鏡による写真である。 本発明の実施例に係るB-CAPの殺菌活性を示す写真である。 本発明の実施例に係る黄色ブドウ球菌由来のTan2ファージのB-CAP配列構造、B-CAP合成の概念図、及びB-CAP合成の写真である。 本発明の実施例に係るB-CAPへの長鎖DNAの搭載の試験の概念図である。 図9に示す試験で得られたプラーク数を示すグラフである。 図9に示す試験で得られたプラークの写真である。 図9に試験で得られたプラークへの長鎖DNAの搭載をPCR法で確認する際の模式図及び電気泳動結果の写真である。 図9に試験で得られたプラークへの長鎖DNAの搭載をシーケンシングで確認した結果を示す図である。 本発明の実施例に係る殺菌性B-CAPの構築の概念図である。 本発明の実施例に係る殺菌性B-CAPの配列構造の模式図である。 本発明の実施例に係る殺菌性B-CAPのプレートによる殺菌効果を示す写真である。 本発明の実施例に係る殺菌性B-CAPの液体培養液中での殺菌効果を示すグラフである。 本発明の実施例に係る殺菌性B-CAPの薬剤耐性大腸菌に対する殺菌効果を示す写真である。 本発明の実施例に係る殺菌性B-CAPの細菌感染マウスに対する抗菌治療試験の概念図である。 本発明の実施例に係る殺菌性B-CAPの細菌感染マウスに対する抗菌治療効果を示すグラフである。
<実施形態>
 増殖性のファージは予期せぬ細菌進化の誘発や毒素遺伝子の伝播、生態系への悪影響が懸念されている。
 このため、本発明者らは、非増殖性であり薬剤耐性菌の治療等により効果的なファージを作製しようと考えた。そして、本発明者らは、鋭意実験を繰り返し、DNA注入とDNA複製に必要なファージゲノムエレメントを有する、「細菌にDNAを注入できる非増殖性ファージカプシド粒子」の構築を行うことを着想した。そこで、本発明者らは、増殖性に関連しカプシドを合成する領域を含むビリオン(Virion)構成遺伝子を除外した配列を持つDNA構造物(エレメント)を生成し、そのエレメントの溶菌ファージカプシドへのパッケージングに成功し、本発明を完成させるに至った。ファージカプシド内にパッケージングされたエレメントは、野生ファージの細菌感染と同様に、対象宿主細菌の細胞内に注入される。このため、このエレメントがパッケージングされたものを、非増殖性の細菌標的型カプシド粒子(Bacteria-targeting capsid particle、以下「B-CAP」という。)と名付けた。
 以下で、本実施形態に係るB-CAP、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、B-CAPの製造方法、B-CAP用核酸の製造方法について具体的且つ詳細に説明する。
(B-CAPの構築)
 まず、B-CAPの構築法(製造方法)について説明する。まず、本実施形態に係るファージゲノム分割法として、ファージの染色体(ゲノム)を適切に分割することで、溶菌ファージでトランスダクションとDNA複製とパッケージングに特化したB-CAP用エレメントの構築を行う。具体的には、ファージのゲノムを分割して、DNA注入とDNA複製に必要な遺伝子群のみを含むB-CAP用エレメントを生成する。このB-CAP用エレメントは、増殖性に関連しカプシドを合成する領域を含むビリオン(Virion)構成遺伝子を除外し、核酸注入領域、核酸の複製に必要な複製領域、並びにパッケージング領域を含む。
 B-CAP用エレメントは、染色体又はプラスミドにより構築されてもよい。このプラスミドは、人工染色体よりコピー数が多くてもよい。
 一方、ファージのゲノムから、B-CAP用エレメント以外の箇所、すなわち、ファージカプシドを合成するカプシド構築用のDNAエレメントであるカプシド核酸エレメン卜(以下、「カプシミド(capsimid)」という。)の構築も行う。このカプシド核酸エレメン卜は、Virionを含むもののパッケージング領域を含まず、カプシドを合成することに特化したエレメントとなる。
 本実施形態において、カプシド核酸エレメン卜は、調製細菌内で安定的に維持するため、調製細菌用の染色体又は細菌の人工染色体(Bacterial artificial chromosome、BAC)により構築されてもよい。
 このように、B-CAP用エレメントとカプシド核酸エレメン卜とを構築することで、非増殖性のB-CAP用核酸を製造することができる。
 これら、B-CAP用エレメント及びカプシド核酸エレメン卜は、調製用の調製細菌内に導入して、B-CAPを調製細菌内で生成させることが可能である。具体的には、B-CAP調製用細菌内に、エレクトロポレーション、リポソーム、インジェクション、その他の遺伝子導入方法により、B-CAP用エレメント及びカプシド核酸エレメン卜を調製細菌内に導入可能である。
 この調製細菌は、例えば、大腸菌や枯草菌等の一般的な細菌を用いることが可能である。また、B-CAPが感染しDNAを注入する標的となる標的細菌と同種又は近縁種の細菌を、調製細菌とすることも可能である。
 この上で、本実施形態に係るB-CAPの製造方法では、調製細菌内で、B-CAP用エレメントが増殖する。また、同じ調製細菌内で、カプシド核酸エレメン卜によりカプシドタンパク質も生成され、増殖したB-CAP用エレメントが、このカプシドタンパク質にパッケージングされる。これにより、非増殖性のB-CAP粒子が生成される。このB-CAP粒子は、調製細菌の溶菌及び/又は菌体外へ放出させ、超遠心により精製する等の当業者に一般的な手法により、大量に取得可能となる。
 図1により、本実施形態に係るB-CAPの構築を、大腸菌に主に感染するT7ファージにて行った一例について説明する。
 本実施形態においては、後述する実施例に示すように、増殖ファージのモデルであるT7ファージのゲノムをB-CAP用エレメントと、カプシド核酸エレメン卜であるHelper B-CAPの領域に分割し、アセンブリした。B-CAP用エレメントは、プラスミド様の円形DNAとした。一方、Helper B-CAPは、大腸菌の人工染色体(Bacterial artificial chromosome、BAC)に挿入し、pKLC172と名付けた。この上で、B-CAP用エレメントのDNAとpKLC172とを大腸菌HST08株、MC1061株、及びMC1061R株に、それぞれエレクトロポレーションすることで、T7ファージのカプシドにパッケージングされ、DNAを標的細菌に導入できるB-CAPを作製することができた。
 このようにして製造されるB-CAPは、非増殖性である。そして、分割されたもう片方のカプシド核酸エレメン卜を保有する遺伝子補完ホス卜の調製細菌内のみで増殖が可能となり、この調製細菌はB-CAP合成の「工場」になる。
 一方、製造されたB-CAPは、非増殖性ながら野生型ファージと同じ感染様式を持ち、長鎖DNAを標的細菌にデリバリーすることができる。すなわち、B-CAPは、外来性DNAの搭載と標的菌体内へ、B-CAP用エレメントDNAの注入が可能である。また注入されたB-CAP用エレメントは、標的細菌内での増幅を含め、自身のDNAに由来する生物学的活性を発揮できる。
 このため、B-CAPは、従来より効率的に、細菌感染症の抗菌治療薬、消毒剤、整腸剤、口腔用構成物、防腐剤等として応用が可能である。
 ここで、本実施形態に係るB-CAPのB-CAP用エレメントは、外来遺伝子を含んでもよい。この外来遺伝子は、バイオフィルム分解遺伝子、抗原提示用遺伝子、導入用遺伝子、及び殺菌遺伝子のいずれか又は任意の組み合わせを含んでいてもよい。
 具体的には、後述する実施例で示すように、作製したB-CAPには少なくとも18.0kbの外来の長鎖DNAを挿入することが可能である。この長鎖DNA内に、外来遺伝子を含ませることが可能である。
 このうち、本実施形態に係るバイオフィルム分解遺伝子は、例えば、細菌の多糖質、ペプチドグリカン、タンパク質等からなるバイオフィルムの分子構造を切断したり、分解したりするデキストラナーゼ、プロテアーゼ等であってもよい。このバイオフィルム分解遺伝子の遺伝子産物により、細菌のバイオフィルムを分解し、細菌自体の生存を不可能とし、及び/又は抗菌剤等が浸透しやすくすることができる。
 また、本実施形態に係る抗原提示用遺伝子は、免疫系に認識しやすくしたり、攻撃の標的となる抗原を提示したりする遺伝子であってもよい。この抗原は、必ずしも、B-CAPが感染する細菌に対する抗原でなくても、病巣に存在する他の病原生物、ウイルス、動物の腫瘍等に対する抗原であってもよい。すなわち、本実施形態に係るB-CAPは、カプシド内に自由にDNA配列を導入できるため、病原細菌、腸内フローラの細菌、その他の細菌のDNAを搭載、又はファージカプシド表面に抗原を提示させるファージワクチン分野にも利用可能である。また、がん治療や遺伝性疾患の治療にも適用可能となる。
 また、本実施形態に係る導入用遺伝子は、細菌に導入される遺伝子であってもよい。この導入用遺伝子は、B-CAPが感染する細菌への機能追加を行うための各種遺伝子を用いることが可能である。たとえば、この機能追加として、タンパクや各種物質の合成、分泌等に係る遺伝子を追加可能である。また、上述のように、B-CAPには、外来の長鎖DNAを搭載可能であるため、複数の遺伝子を導入することも可能である。この導入用遺伝子は、例えば、薬剤遺伝子、薬剤耐性遺伝子、弱毒化又は強毒化に関連するタンパク質をコードする遺伝子、毒素遺伝子、特定の代謝産物遺伝子、特定の代謝産物を生成するための酵素遺伝子、菌を特定するための遺伝子、形質転換に用いたレポーター遺伝子、遺伝子組み換えに用いられた制限酵素や粘着末端を含む配列、リピート配列、その他の広義の遺伝型を示す「遺伝子」であってもよい。
 また、本実施形態に係る外来遺伝子は、核酸取得及び/又は核酸変異によって薬剤耐性を失わせ、又は薬剤耐性を生じさせるものであってもよい。
 具体的には、耐性菌は、外来のDNA又はRNA(核酸)取得、及び/又は核酸変異によって生じることがあるため、この核酸取得及び/又は核酸変異を抑制させるような外来遺伝子により、抗菌効果を高めることが可能となる。
 また、本実施形態に係る殺菌遺伝子は、分泌性の殺菌産物を生成するものであってもよい。具体的には、本実施形態に係る殺菌遺伝子により、周囲の菌を殺菌する分泌性の殺菌産物を生成することが可能である。すなわち、本実施形態に係るB-CAPに、分泌性の殺菌産物を生成する殺菌遺伝子を搭載することで、標的細菌と標的細菌周辺の細菌群を殺菌(集団殺菌)できる。
 たとえば、B-CAPに、外来遺伝子として、分泌性の殺菌性DNAマシナリーを搭載可能である。この殺菌性DNAマシナリーとしては、例えば、バクテリオシンを生成、分泌するためのバクテリオシン遺伝子群(colicin E1 gene cluster)を搭載してもよい。バクテリオシンは、細菌が産生する抗菌性のタンパク質又はペプチドであり、菌体外に分泌され、類縁菌に対して抗菌活性を示す。このため、B-CAPにバクテリオシン遺伝子群を搭載することで、標的細菌と標的細菌周辺の細菌群を殺菌することが可能となり、著しい抗菌効果が得られる。
 本発明者らは、このように、殺菌剤として用いるB-CAPを、非増殖性集団殺菌型抗菌カプシド(Nonproliferative mass-killing antibacterial capsid。以下、「NM-ABカプシド」という。)と名付けた。
 ここで、本実施形態に係るNM-ABカプシドは、非常に強い集団殺菌効果を示し、非増殖性であるものの効率的に治療が可能なB-CAPとなる。
 具体的には、後述の実施例で示すように、NM-ABカプシドの一例として、バクテリオシン遺伝子群を搭載したB-CAP(B-CAP_ColE1)は、非増殖性でありながら、カルバペネム耐性大腸菌に対して強い殺菌活性を発揮した。また、当菌に感染されたマウスに対しても著しい生存効果を示した。
 図2により、本実施形態に係るNM-ABカプシドを含むB-CAPによる抗菌治療方法の概念について説明する。
 図2は、T7ファージ、B-CAP、及びB-CAP_ColE1による抗菌治療の違いを示す。
 T7ファージは増殖性であり、標的となる細菌の菌体内で増殖し、増殖過程で宿主を溶菌する。増殖するため、環境への悪影響や、他の細菌への遺伝子伝播が懸念される。
 一方、B-CAPは、ファージ由来のDNAを注入することで標的細菌を殺菌できるが、増殖性が無いため殺菌力そのものは弱い。一方、B-CAPは長鎖遺伝子を搭載することができ、標的細菌内でその遺伝子を一過的に大量に発現させることが可能である。このため、非増殖製のカプシドとして、各種利用が可能である。さらに、上述のバイオフィルム除去遺伝子等を搭載し、殺菌等にも効率的に利用可能である。
 B-CAP_ColE1は、NM-ABカプシドの一例であり、B-CAPに分泌性の抗菌タンパク質/ペプチド(AMPs)を搭載したものである。B-CAP_ColE1は、AMPsとして、バクテリオシンを搭載している。NM-ABカプシドは、標的となる菌体内に入ると増幅し、AMPsを大量に合成する。AMPsは菌体外に分泌され、周囲の細菌も殺菌することができる。
 ここで、本実施形態に係るB-CAP_ColE1では、B-CAPにバクテリオシン遺伝子群として、Colicin E1(ColE1)、immunity protein(免疫遺伝子)、co licin release lysis protein(分泌遺伝子)を搭載して、B-CAP_Col E1を作製した。
 このうち、immunity protein(免疫遺伝子)は、標的細菌の殺菌を抑える抵抗因子の一例である。このようにB-CAPの外来遺伝子として、抵抗因子の遺伝子を含めることで、NM-ABカプシドが標的細菌に感染した後に、分泌性の殺菌産物が十分生成されるまで、この標的細菌が殺菌されるのを抑えることができる。
 なお、本実施形態に係るB-CAPに搭載する外来遺伝子は複数であるように構成してもよい。すなわち、本実施形態に係るB-CAPは、一つのファージ内に、複数の外来遺伝子を含ませることが可能である。この際、カプシド内に含ませることが可能な範囲で、複数の外来遺伝子を含ませてもよい。この複数の外来遺伝子は、配列内に連続して又は複数の部位として並べても、複数含むように構成してもよい。
 たとえば、複数の種類の細菌に適用可能なように複数の殺菌遺伝子を搭載することで、一つのB-CAPを複数の耐性菌に適用可能となる。さらに、複数の耐性遺伝子を持つような多剤耐性菌の場合、これら全てに対応するような遺伝子を複数搭載して、抗菌効率を向上させることも可能である。さらに、B-CAPに、上述の殺菌遺伝子、バイオフィルム分解遺伝子、抗原提示用遺伝子、及び導入用遺伝子の任意の組み合わせを搭載させることで、抗菌効果をより高めることも可能である。
(治療用組成物)
 本発明の実施形態に係るB-CAPは、これを含む治療用組成物の用途にも用いることが可能である。
 すなわち、本実施形態に係るB-CAPを治療用に投与させることで、細菌を殺菌する抗菌治療法に用いることが可能である。具体的には、B-CAPにより、細菌を殺菌する抗菌治療法を実現可能である。これにより、薬剤耐性菌の感染症を含む、抗菌薬で治療が難しい感染症の抗菌治療を可能にすることができる。
 この治療用組成物製造には、従来のファージを用いた抗菌治療法と同様の各種配合物を用いることが可能である。
 また、本発明の実施形態に係る治療用組成物は、任意の製剤上許容しうる担体(例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム等が挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50等を挙げることができるが、それらに限定されない)と共に投与することが可能である。また、適切な賦形剤等を更に含んでもよい。
 また、本実施形態の治療用組成物は、製剤上許容しうる担体を調製するために、適切な薬学的に許容可能なキャリアを含み得る。このキャリアとしては、シリコーン、コラーゲン、ゼラチン等の生体親和性材料を含んでもよい。あるいはまた、種々の乳濁液であってもよい。さらには、例えば、希釈剤、香料、防腐剤、賦形剤、崩壊剤、滑沢剤、結合剤、乳化剤、可塑剤等から選択される1又は2以上の製剤用添加物を含有させてもよい。
 本発明の実施形態に係る治療用組成物は、経口投与のための投与に適した投与形態において、当該分野で周知の製剤上許容しうる担体を用いて処方され得る。
 本発明に係る医薬組成物の投与経路は、特に限定されず、経口的な投与又は非経口的に投与を行うことが可能である。非経口投与としては、例えば、静脈内、動脈内、皮下、真皮内、筋肉内、腹腔内の投与、又は、細菌叢や感染部位への直接投与、滴下、塗布等が可能である。この投与方法は、従来のファージセラピーと同様に行ってもよい。
 また、本発明の実施形態に係る治療用組成物を上述の治療に用いるためには、投与間隔及び投与量は、疾患の状況、さらに対象の状態などの種々の条件に応じて適宜選択及び変更することが可能である。
 本発明の実施形態に係る治療用組成物の1回の投与量及び投与回数は、投与の目的により、さらに患者の年齢及び体重、症状及び疾患の重篤度などの種々の条件に応じて適宜選択及び変更することが可能である。
 投与回数及び期間は、1回のみでもよいし、1日1回~数回、数週間程度投与し、疾患の状態をモニターし、その状態により再度又は繰り返し投与を行ってもよい。
 本発明の実施形態に係る治療用の組成物は、他の組成物等と併用することも可能である。また、他の組成物と同時に本発明の組成物を投与してもよく、また間隔を空けて投与してもよいが、その投与順序は特に問わない。
 また、本発明の実施形態において、疾患が改善又は軽減される期間は特に限定されないが、一時的な改善又は軽減であってもよいし、一定期間の改善又は軽減であってもよい。
 また、本発明の実施形態に係る治療用組成物は、生物、生物の体内の一部分、又は生物より摘出又は排出されたその一部分について、治療用の対象とすることができる。
 この生物は特に限定されず、例えば、動物、植物、及び菌類等であってもよい。この動物は、例えば、ヒト、家畜動物種、野生動物等を含む。
 このため、本発明の実施形態に係る治療用組成物は、動物の治療を行う動物治療にも用いることが可能である。すなわち、本実施形態に係るB-CAPは、ヒト以外の各種動物を対象とした動物治療方法にも用いることが可能である。
 具体的には、本実施形態の動物治療方法は、B-CAPを含む治療用組成物により、ヒト以外の動物における細菌による感染症を治療することが可能である。
 この動物も、特に限定されるものではなく、脊椎動物及び無脊椎動物を広く含む。脊椎動物としては、魚類、両生類、は虫類、鳥類、及び哺乳類を含む。具体的には、例えば、哺乳類としては、げっ歯類、例えば、マウス、ラット、フェレット、ハムスター、モルモット、又はウサギ、イヌ、ネコ、ヒツジ、ブタ、ウシ、ウマ、又は非ヒューマンの霊長類等であってもよい。また、野生動物としては、哺乳類の他にも、魚類、家禽を含む鳥類、爬虫類等を含む。また、エビや昆虫等を含む甲殻類、その他のイカ等の無脊椎動物等も広く含む。
 すなわち、本発明の実施形態に係る治療用組成物は、ヒトの治療の他に、動物の治療、家畜の発育増進等の方法にも用いることができる。
 また、本発明の実施形態に係る殺菌方法は、B-CAPにより標的細菌を除去(殺菌、滅菌)することを特徴とする。
 このように、本実施形態に係るB-CAPを含む組成物を、殺菌剤(増殖抑制剤)の用途に用いることが可能である。この殺菌剤も、上述のように適切な担体、溶液等に含ませておくことが可能である。すなわち、本実施形態に係るB-CAPを含む組成物は、消毒薬として、洗剤、手洗い用せっけん、うがい薬、マスクやナプキン、空気清浄機のフィルター等、各種の抗菌用品に含ませて提供されてもよい。
 また、本実施形態に係るB-CAPを含む組成物を、細菌のペプチドグリカン、バイオフィルム等を除去する用途で利用することも可能である。この場合、上述のように、B-CAPの外来遺伝子として、バイオフィルム分解遺伝子を搭載することが好適である。
 この本実施形態に係る殺菌剤を、塗布、散布等することで、病巣、細菌叢、及び環境中から細菌の除去及び増殖抑制を行うことが可能である。すなわち、ヒト、動物、及び/又は環境中の細菌叢に存在する細菌を減少させることができる。
 また、本発明の実施形態に係る細菌除去方法においては、食品内又は外に存在する細菌を除去することも可能である。具体的には、B-CAPを含むことを特徴とする食品を提供することもできる。すなわち、本実施形態に係るB-CAPにより、食品内の細菌を除去することが可能である。これは、本実施形態に係るB-CAPは、取得してもヒトには感染しないためである。また、このように細菌を除去した食品を提供することも可能となる。これにより、例えば、毒素を産生する食中毒菌を確実に除去した安全な食品を提供することが可能となる。ここで、本実施形態に係るB-CAPは、各種野菜、食肉、魚介類、加工食品、乳製品等を含む栽培、養殖、採取等された任意の食品に含ませて用いることが可能である。
 さらに、本実施形態に係るB-CAPは、標的細菌を殺菌し、食品及び食品以外の物品の腐食を予防する、腐食予防方法の用途に用いることも可能である。
 以上のように構成することで、以下のような効果を得ることができる。
 従来から、抗菌薬が細菌感染症の治療において最も重要な役割を果たしてきた。しかし、抗菌薬の効かない薬剤耐性菌の出現とその急速な蔓延により、既存の抗菌薬が無力化されつつある。薬剤耐性菌は世界規模で蔓延しているため、新しい抗菌薬の開発が求められている。しかし、抗菌薬の開発を遥かに上回るスピードで耐性菌が現れ、更に新規抗菌薬の開発が行き詰まっているため、耐性菌の問題が解決できなくなりつつあった。このため、細菌感染症が再び人類の健康を脅かす世界的問題となってきている。
 また、従来、ファージの薬剤耐性菌に対する殺菌効果が認められ、ファージセラピーを展開しようとする動きがある。ファージセラピーで使用されるファージは感染巣に存在する細菌内で増殖するため、強い殺菌力を発揮する。しかし、増殖性というファージ自身の生物学的性質から臨床使用が懸念され、実用化が進んでいない。すなわち、抗菌治療にファージの増殖性を利用した場合、殺菌力は確保されるが、生態系への悪影響や意図しない副作用が心配される。また、ファージによる薬剤耐性遺伝子や毒素遺伝子の伝播も懸念される。
 このため、ファージ療法を社会的に使用可能とさせるためには、治療確度を上げること、標的をコントロールすること、安全性を上げることが課題であることがわかってきた。
 そのため、改変ファージによりこれらの問題を解決する試みが行われている。具体的には、ファージのゲノムを部分的に欠損させ、非増殖型ファージにすることも考えられる。
 たとえば、非増殖性ファージの合成として、Amber変異の導入等で必須遺伝子の機能欠損により増殖能を失わせることが知られていた。また、遺伝子欠損はプラスミドによる遺伝子の相補で増殖能が戻ることも知られていた。しかし、ファージゲノムの大幅削除や複数遺伝子の欠損は技術的に困難と思われ、その作業は全く行われてこなかった。
 実際に、本発明者らもプラスミドによる長鎖遺伝子欠損ファージの合成を試みたが失敗に終わった。具体的には、ファージのterS遺伝子を欠損させてプラスミドで相補することにより、非増殖性のファージカプシドを作製した。この際、ファージミドを利用した方法とSaPIを利用した方法で増殖しないファージを合成したが、合成にはMitomycin C等の誘導剤が必要であったり、合成量が少なかったりするという不利点があった。
 さらに、非増殖性ファージは、増殖しないため、一般的にその殺菌力が弱いことが知られている。実際、非増殖製ファージを利用した場合、増殖しないために治療には非常に多くの投与量が必要となる。後述の実施例でも、非増殖性のB-CAPのみを大腸菌に作用させても、MOI=1では、ほとんど殺菌効果が得られなかった。
 すなわち、非増殖性ファージは、感染部位で増幅できるファージのメリットが失われ、実際の抗菌治療に要するファージが大量に必要になる点でも、治療に用いるには現実的ではなかった。
 これらの理由から、通常のファージや非増殖性ファージは、抗菌治療剤としての利用が難しかった。理想的なファージ製剤は、耐性菌に効果がある「耐性菌への効力」、非増殖性ファージのように生態系への影響が少ない「高い安全性」、「量産性」、及び抗菌治療効果の高い「強い抗菌力」が求められている。
 これに対して、本発明の実施形態に係るB-CAPでは、ファージゲノム分割法により、非増殖性の性質を保ったまま、外来遺伝子を長鎖のDNA内に搭載可能であるため、効率的に利用可能となる。すなわち、搭載する外来遺伝子を適切に選択してB-CAPを作製することで、確実に細菌を殺菌等することが可能となる。たとえば、単独の殺菌遺伝子では細菌の進化により耐性が生じることがあるものの、B-CAPに複数の遺伝子を搭載することで、これを抑制して効果を長く保つことができる。
 また、B-CAPは、搭載する外来遺伝子により、どんな細菌も殺菌対象にできるため、「耐性菌への効力」が高くなる。すなわち、本発明の実施形態に係るB-CAPは、新たな耐性菌が生じた場合、搭載する遺伝子を変更するだけで対応できるため、進化適応型医薬品となりうる。また、遺伝子工学的技術を用いてB-CAP自体を改変して、細菌に対応することも可能である。
 さらに、本発明の実施形態に係るB-CAPは、「高い安全性」として、自己増殖するファージ(増殖ファージ、progeny pharge)を生成しないため、一般的なファージよりも安全面で優位であると考えられる。また、従来の非増殖性ファージにおいては、単独の遺伝子欠損だと補完されて増殖可能となる可能性が高いという問題があったものの、本実施形態に係るB-CAPは長鎖ファージゲノムが欠損しており、自然界から長鎖DNAを補完することはほぼ不可能であると考えられる。すなわち、B-CAPは、増殖性を獲得する確率は極めて低いため、安全性が高い。さらに、B-CAPは、分割されたカプシドを合成するカプシド核酸エレメン卜(カプシミド)を保有する遺伝子補完する調製細菌内のみで調製が可能である。すなわち、B-CAPは、自然界では生成されず、B-CAP合成の「工場」となる専用の調製細菌でなければ調製ができない。
 これらの理由から、B-CAPは、「高い安全性」を備え、抗菌ファージ製剤の生物学的安全性問題を解決できる。
 さらに、本実施形態に係るB-CAPは、自己増殖しない合成カプシドであるため、B-CAP自体の変異による作用を抑えられる。たとえば、B-CAPは、増殖しないため耐性遺伝子や毒素遺伝子を新たに取り込むこともなく、伝播もしない。また、B-CAPが自己増殖しないことで、投与された生物や環境中の細菌にプロファージが保持される可能性も極めて低くなり、生態系への影響が少ない。さらに、原理的に、耐性菌が発生しにくい。これにより、安全性を高められる。さらには、B-CAPは自己増殖しないので、投与用量を的確に見積もることが可能となる。
 また、本発明の実施形態に係るB-CAPは、自然物由来であるので安全で環境負荷が低い。このため、安全で環境負荷が低い殺菌剤や食品を提供することも可能となる。
 また、「量産性」について、従来、非増殖性ファージのゲノムアセンブリは酵母を利用した煩雑な手法を使用するものの、本実施形態に係るB-CAPでは、合成する際のゲノムアセンブリを全てin vitroで行うことが可能となり、量産性を担保できる。すなわち、本実施形態では溶菌ファージのゲノムを分割するゲノム分割法という新しい概念により、ファージの核酸の複製に必要な複製領域、並びにパッケージング領域を含んだB-CAPを構築し、ファージカプシドへの任意の長鎖DNA搭載とその大量合成を可能にした。
 B-CAPゲノムのアセンブリをin vitroでダイレクトに行うことで、高効率でB-CAPの合成ができるようになり、その合成コストや時聞を大幅に削減できる。また、製剤化に関しても、大量(約1010PFU/ml以上)のB-CAPを安価に合成できるため、コストを削減して製造上のメリットが大きい。
 本実施形態に係るB-CAPは、非増殖性ながら野生型ファージと同じ感染様式を持ち、長鎖DNAを標的細菌にデリバリーすることができる。このため、本実施形態に係るB-CAPは、搭載DNAの性質により、殺菌活性を含む様々な生物学的の機能を付与できるため、新しいモダリティを創出することができる。すなわち、B-CAPは、高い殺菌力を持つファージ製剤の構築を可能にする。
 本実施形態で合成したB-CAPは、外来性DNAの搭載と標的菌体内へのDNA注入が可能である。また注入されたDNAは、標的細菌内での増幅を含め、自身のDNAに由来する生物学的活性を発揮できる。
 また、カプシミドを利用したファージゲノム分割法により、菌体内で維持できるB-CAPのDNA配列の長さを、従来のファージの約半分まで減らすことが可能となる。このため、B-CAPは長鎖DNAのクローニングベクターとしても機能し、毒性の強い長鎖遺伝子の維持、短時間での大量合成を可能にする。すなわち、B-CAPに外来の長鎖DNAを搭載することが可能となる。実際に、後述の実施例では、B-CAPにおいて黄色ブドウ球菌由来の18kbの長鎖DNAを搭載することに成功している。
 すなわち、B-CAPにより、殺菌効果等に加え、新たな生物学的機能を付与するのにも利用可能である。
 ここで、本実施形態に係るB-CAPは、非増殖性であっても、殺菌活性が強い殺菌物質を作り出す殺菌遺伝子を搭載することで、その産物が分泌されて周囲の細菌群を殺菌できるため、「増殖しないため抗菌活性が弱い」という非増殖性ファージのデメリットを補完できる。
 たとえば、B-CAPに、外来遺伝子として周囲の菌を殺菌する分泌性の殺菌産物を生成する殺菌遺伝子を搭載することで、非増殖性にも関わらず宿主細菌の周囲の細菌も殺菌できる抗菌力プシド(NM-ABCapsid)を構築することができる。
 実際に、後述する実施例にて、NM-ABCapsidであるB-CAP_ColE1は、標的細菌の菌体内で、分泌性の殺菌タンパク質であるバクテリオシン(colicin E1)を合成し、非常に強い集団殺菌効果を示した。すなわち、B-CAP_ColE1は、標的細菌の周囲の細菌群も殺菌し、菌数と同数の投与でも十分な殺菌効果を発揮した。具体的には、実施例によれば、in vitro実験で、B-CAP_ColE1の殺菌効果は、単体のB-CAPの1000倍であった。
 さらに、マウスの感染実験において、B-CAP_ColE1は顕著な抗菌治療効果を示した。具体的には、B-CAP_Col E1は、マウス感染モデルで示した臨床で非常に重要な耐性菌であるカルバペネム耐性大腸菌感染を治療でき、致死性の感染マウスを生存させることができた。すなわち、後述の実施例では、マウスに対してカルバペネム耐性大腸菌を腹腔投与し、当菌に感染されたマウスに対しても著しい生存効果を示した。
 すなわち、本実施形態に係るB-CAPは、非増殖性ながら高い殺菌力を持つファージ製剤の構築を可能にすることができる。
 また、バクテリオシンの強い抗菌活性は細菌感染症治療への応用が期待されているものの、治療に用いるにはバクテリオシンを大量に合成、精製する必要性があった。また、バクテリオシンは濃度依存的な殺菌を示すため、感染局所で濃度が維持される必要があった。そのためバクテリオシンを利用した抗菌薬創生において、バクテリオシンの大量合成方法の確立と感染巣へのバクテリオシンの効果的なデリバリーシステムの構築は重要な課題であった。
 これに対して、本実施形態に係るB-CAP_ColE1は、安全な非増殖性のファージにバクテリオシンを搭載しつつ、標的細菌の殺菌を抑える抵抗因子であるimmune geneにより、感染局所で濃度が維持される程度、バクテリオシンを分泌することができる。これにより、カプシドによる抗菌治療効果を著しく上げることができる。
 なお、上述の実施形態においては、B-CAPを作製する際に、カプシド核酸エレメン卜(カプシミド)のHelper B-CAP領域をBACに搭載する例について記載した。
 しかしながら、カプシド核酸エレメン卜を、細菌のゲノムやプラスミドに搭載することも可能である。この際、一般的なプラスミドはコピー数が多く、宿主にとってtoxicな遺伝子を多く持つファージの遺伝子や長鎖遺伝子を維持することは困難である。このため、コピー数が少ないプラスミドを用い、toxicなファージの遺伝子を誘導性にし、長鎖DNAを複数のプラスミドに分割挿入する等により安定維持することが可能となる。
 また、B-CAPからは、非必須遺伝子を削除したり、Helper B-CAP側に一部の必須遺伝子を移したりすることも可能である。これにより、より長鎖DNAを搭載することも可能である。
 さらに、ゲノム上に溶原化しているファージのB-CAPを作製する場合、溶原化に必要な領域を削除することも可能である。この場合、B-CAPに載せる必要のない領域(Virion等)を染色体上に残し、B-CAPに必要な領域(核酸の複製に必要な複製領域、及びパッケージング領域)等のみをB-CAPとして構築することも可能である。
 また、B-CAPには、核酸の複製に必要な複製領域として、RNA polymerase、DNA replication領域、及びパッケージング領域以外の領域のうち、必要最小限の領域を保持することも可能である。
 また、上述の実施形態では、B-CAPを形成する際に、ファージのゲノムを直接分割したものの、それ以外の配列を用いることも可能である。
 たとえば、B-CAPの構築の際に、細菌のゲノムに含まれるPICI(Phage-inducible chromosomal island)と名付けられている、通常20kb程度の領域の配列を用いてもよい。このPICIは、黄色ブドウ球菌の場合は、SaPI(Staphylococcus aureus pathogenicity islands)とも呼ばれている。
 PICI又はSaPIは、細菌のゲノムに入り込むことができる溶原化ファージと類似しているが、基本的にファージのビリオン構成遺伝子を持たない。このため、溶原化ファージの半分ほどのゲノム長となる。PICIはコンパクトな構造にも関わらず、ファージ感染時にゲノムから誘発、複製され、ファージのカプシド内にゲノムをパッケージングさせることが可能である。このパッケージングにはPICI由来のパッケージング配列が必要で、この領域をプラスミドに搭載すると、溶原ファージの中にそのプラスミドを挿入できる。また、ファージのカプシドに入り込んだPICIは、ファージ同様に他の細菌にトランスダクションされることが知られ、PICIはファージを介して伝播されていくため、B-CAPに用いることが可能である。
 さらに、ファージのDNAとこのPICI又はSaPIのDNAとを同時に用いるような構成も可能である。
 さらに、上述の実施形態においては、T7ファージを基に、B-CAPを作製したものの、T7以外のファージ、他の細菌でも構築可能である。
 たとえば~170kb程度あるモデルファージのT4ファージや、その他ジャンボファージを利用することで、より長いDNAを搭載することが可能になる。
 さらに、本発明者らは、大腸菌ファージT7をグラム陰性菌の事例として、また黄色ブドウ球菌のTan2ファージをグラム陽性菌の事例として、それぞれのB-CAPの作製を行っている。すなわち、B-CAPを利用したファージ製剤は幅広い細菌種に適用できる。
 また、上述の実施形態においては、B-CAP用に一般的なバクテリオファージを用いる例について説明した。しかしながら、一般的なバクテリオファージとは異なる、細菌に感染するウイルス(Virus)、RNAウイルス、ファージミド等をB-CAPとして用いることも可能である。また、B-CAPは、プロファージの状態で細菌のゲノムやプラスミドにインテグレートされた状態で提供されてもよい。また、ファージミドは、例えば、本実施形態の細菌判別方法では、エレクトロポレーション及びナノ粒子を用いたような任意の手法を介して細胞に導入することが可能である。
 上述の実施形態においては、外来遺伝子として、殺菌遺伝子、バイオフィルム分解遺伝子、抗原提示用遺伝子、及び導入用遺伝子を用いる例について説明した。
 しかしながら、外来遺伝子は、任意の遺伝子を対象とすることが可能である。さらに、外来遺伝子は、薬剤耐性遺伝子又は毒素遺伝子に付随して発現したり、発現制御されたり、関連したりするような遺伝子を含んでいてもよい。これに加え、外来遺伝子は、その他の病原性に関係がある病原遺伝子及びこれを抑える遺伝子を含んでいてもよい。
 さらに、本実施形態の外来遺伝子は、がん治療や遺伝性疾患の標的となる遺伝子変異の配列、一塩基置換、リピート等の広義の「遺伝子」であってもよい。この場合、細菌自体を、薬剤の運び手(キャリアー)として治療用に投与することも可能である。すなわち、この外来遺伝子の細胞に対応した薬剤を、対象の細菌の細胞質等に含ませておき、溶菌により組織や標的細胞周辺に散布するといった用途にも適用可能である。この場合、プロファージが含まれる細菌自体を提供することも可能である。また、特定の免疫反応により活性化されるようなプロファージを含んでもよい。
 また、上述の実施形態においては、B-CAPを感染症治療の治療用組成物として用いる例について記載した。
 しかしながら、この治療には、感染症治療そのものだけでなく、細菌叢の改変や、糞便移植の前処理等にも使用できる。具体的には、外来遺伝子として抗原提示用遺伝子を用いて、細菌叢内の治療上必要となる菌に対する免疫を誘発することも可能である。
 さらに、FDA(米国食品医薬品局)がファージの食品添加を認めているように、B-CAPを食品の除菌や腐敗予防にも使用可能である。
 また、本発明の実施形態に係るB-CAPは、他の組成物等と併用することも可能である。さらに、複数の種類のB-CAPを含む「カクテル」として提供することも可能である。また、本発明の組成物を、他の組成物と同時に投与、散布、塗布等をしてもよい。
 以下で、本発明の実施形態に係るB-CAPの構築(製造)、殺菌(細菌除去)、動物治療方法について、具体的な実験を基にして、実施例としてさらに具体的に説明する。しかしながら、この実施例は一例にすぎず、これに限定されるものではない。
〔手法〕
(菌株と培養条件)
 本実施例で使用した菌株を下記の表1に示す。菌株はLB培地(BD Difco社製)で、37℃にて増殖させた。特に明記されていない限り、適切な抗生物質を次の最終濃度で増殖培地に添加した。アンピシリン(Amp)の場合は100μg/ml、カナマイシン(Km)の場合は30μg/ml、クロラムフェニコール(Cm)の場合は34μg/mlであった。
Figure JPOXMLDOC01-appb-T000001
 このうち、MC1061、USA300は、Lucigen社製のものを用いた。HST08は、タカラバイオ社製を用いた。ESBL(Extended Spectrum β-Lactamase)大腸菌であるEc320、Ec353は、Zenzo Nagasawa博士から入手した。
(使用したDNA)
 本実施例で使用したDNAとして、プラスミドベクター、BAC(Bacterial Artificial Chromosome)等のDNAを下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
(使用したプライマー)
 本実施例で使用したプライマーを、下記の表3及び配列表に示す。
Figure JPOXMLDOC01-appb-T000003
(ヘルパーB-CAPのコンストラクト) 
 T7ファージのDNAから、gp6.5からgp12までの領域(8.7kb)、gp13からgp17までの領域(9.1kb)をそれぞれKOD Fx Neo(TOYOBO社製)で2ステップ法にて増幅した。さらにpSMART BAC v2.0 (Lucigen社製)のrrnBT1 terminatorからTTe terminatorまでの領域(7.5kb)も、同様に増幅した。増幅したPCR断片はFastGene Gel/PCR Extraction kit(NIPPON Genetics社製)にてGel extractionを行い、濃度を測定した。それぞれの断片を約100ngと、NEBuilder(New England Biolabs社製)10μlでトータル20μlにし、50℃1時間で結合させた。次にMC1061大腸菌のエレクトロコンピテントセルの準備を行った。まず対数増殖期にあるOD600=0.5のMC1061大腸菌100mlを氷上で20分間静置し、その後氷冷10%グリセロールで3回、洗った。最終的に200~400μlの10%グリセロールで懸濁した。エレクトロコンピテントセル50μlに対し5μlのDNAを加え、氷冷1mmキュベット内に移し、ELEPO21により、エレクトロポレーションを行った。エレクトロポレーションの条件は、Poring Pulse 電圧:1,500V、パルス幅:2.5m秒、パルス間隔:50m秒、回数:1回、極性:+、Transfer Pulse 電圧:150V、パルス幅:50m秒、パルス間隔:50m秒、回数:5回、極性:+/-である。その後、エレクトロポレーションした大腸菌を1mlのSOC培地に入れて30分間37℃でインキュベートし、50μlをクロラムフェニコール入りのLBプレートに播いた。8個のコロニーを取得し、B-CAPの合成効率が良い菌株をHelper B-CAPを保有する大腸菌(以下、「MC1061(pKLC172)」株という。)とした。さらに、ColE1耐性のあるMC1061R株についても、pKLC172で同様にエレクトロポレーションして「MC1061R(pKLC172)」株を形成した。これらの株に含まれるpKLC172は、PCR法とディープシーケンシングによって確認した。また、このMC1061(pKLC172)株又はMC1061R(pKLC172)株は、後述する各試験にて使用する調製細菌の例である。すなわち、MC1061(pKLC172)株又はMC1061R(pKLC172)株は、B-CAP又はB-CAP_ColE1を増殖させ製造するための「Propagation Strain(増殖用株)」として用いた。
 黄色ブドウ球菌用のHelper B-CAPは、2つのプラスミドに分けて作製した。黄色ブドウ球菌の溶原化ファージのテイル部分をテトラサイクリン誘導性にしたプラスミドをpLC-tailTan2として、ヘッド部分をカドミウム誘導性にしたプラスミドをpNL-headTan2として構築した。それぞれの薬剤耐性は、クロラムフェニコールとエリスロマイシンを用いた。
 PCRに利用したプライマー配列は、上述の表3及び配列表に記載した。
(B-CAPの生成)
 大腸菌用のB-CAPでは、T7ファージのDNAから、gp17.5からgp1までの領域(6.8kb)、gp1からgp2.8までの領域(6.9kb)、gp3からgp6.3までの領域(8.2kb)をそれぞれKOD Fx Neo(TOYOBO社製)で2ステップ法にて増幅した。増幅したPCR断片はFastGene Gel/PCR Extraction kit(NIPPON Genetics社製)にてゲル抽出を行い、濃度を測定した。それぞれの断片を約100ngと、NEBuilder(New England Biolabs社製)10μlでトータル20μlにし、50℃4時間でアセンブリした。Helper B-CAPを保有するMC1061(pKLC172)株を、クロラムフェニコールを含むLB培地で培養し、OD600=0.5となった時点で大腸菌を冷却し、氷冷10%グリセロールで3回、洗浄した。振盪時の500倍ほどに濃縮されるように氷冷10%グリセロールで懸濁し、エレクトロコンピテントセルとした。エレクトロコンピテントセル50μlに対して、5μlの作製したB-CAP反応液を加え、氷冷した1mmキュベットに混合液を移した。B-CAP作製と同じ条件でエレクトロポレーションを行い、1mlのSOC培地に入れて30分間37℃でインキュベートした。その後、培養産物全量と3mlのLTA(1mM CaCl2を含んだLB0.5%アガロース、56℃)を混ぜてLBプレート上に重層した。LBプレートを10分ほど乾燥させた後、37℃のインキュベーターで8時間ほどが経過すると、B-CAPのプラークが現れた。作製したB-CAPは、PCR法とディープシーケンシングによって確認した。
 黄色ブドウ球菌のB-CAPは、Helper B-CAP DNAを保有するRNA4220株に、B-CAP DNAを、エレクトロポレーションを行うことで構築した。エリスロマイシン(15μg/ml)、クロラムフェニコール(15μg/ml)、CaCl2(2.5μM)、ATc(1μg/ml)を添加した4ml TSAトップ寒天培地に150μlのオーバーナイト培養物を添加し、混合後、TSAプレート上に流した。このプレートを37℃のインキュベーターで一晩培養した。
 PCRに使用したプライマー配列は、上述の表3及び配列表に記載している。
(外来遺伝子を搭載するB-CAPの生成)
 まず、Helper B-CAPとB-CAPのDNAを準備した。外来遺伝子をB-CAPに挿入するため、B-CAPをPCRで3断片化したものと、外来遺伝子をPCRで増幅したものを作製した。外来遺伝子として黄色ブドウ球菌とColE1のPCRを行った。それぞれのPCRのテンプレートは、黄色ブドウ球菌のゲノムDNA、pKLC187である。それぞれの断片の末端に、NEBuilderでアセンブリできるように相同配列を付加した。その相同配列により4つの遺伝子断片をNEBuilderによりアセンブリした。アセンブリしたDNAとHelper B-CAPを大腸菌のコンピテントセルであるHST08(TaKaRa社製)にエレクトロポレーションした。エレクトロポレーションの条件は上述のものと同様であった。エレクトロポレーションした産物を全量1mlのSOC培地に移し、30分間37℃で振盪培養した。Helper B-CAPを保有する大腸菌であるMC1061(pKLC172)を一晩培養したものを1ml加え、1mM CaCl2を含む8mlのLB培地を加えた。30分間37℃でインキュベートし、約10mlの培養液から1mlをとり、3mlのLTA(1mM CaCl2を含むLB0.5%アガロース、56℃)と混ぜて、クロラムフェニコール入りのLBプレート上に重層した。プレートを10分ほど乾燥させた後、37℃のインキュベーターで培養した。
 PCRに利用したプライマー配列は、上述の表3及び配列表に記載している。
(黄色ブドウ球菌及びColE1配列の準備)
 黄色ブドウ球菌(Methicillin-resistant S.aureus、MRSA)とColE1のDNA配列を、B-CAPに搭載するために準備した。20mL 37℃で一晩振盪し、遠心してペレットを1mL TE Bufferで懸濁した。そこに10μl of Achromopeptidase (50U/μl)、5μl of Lysostaphin(10mg/ml)and 1μl of RNaseを加え、37℃で2時間培養し、165μlの10% SDSと12.5μlのプロテイナーゼKを加えた。57℃で2時間培養し、1.2mlのTE飽和フェノールを加え良く混合した。12000×gで10分間遠心後、上清を新しいチューブに移した。サンプルと同量のクロロホルム イソアミルアルコール(25:1)を加えて混合し、再び12000×gで10分間遠心した。上清に2.5倍量エタノール、1/10 3M酢酸ナトリウムを加え、-20℃で冷却した後に遠心し、最後に70%エタノールで洗浄し、黄色ブドウ球菌のDNAサンプルとした。ColE1遺伝子配列はColE1 DNA(NIPPON GENE社製)から、ColE1の遺伝子カセット(immune gene(免疫遺伝子)、release gene(分泌遺伝子)を含む)をPCRで増幅し、アラビノース誘導性の発現ベクターである非特許文献2に記載のpKLC23にクローニングし、pKLC146と名付けた。pKLC146は、アラビノース誘導性プロモーターのすぐ下流にColE1がくるように、その後、immune gene、release geneが並ぶように設計してある。
 pKLC146プラスミドを大腸菌MC1061株にトランスフォーメーションし、0.2% L-arabinoseを含むLB培地で12時間培養後、上清を採取した。5,000×gで10分間遠心後、上清を0.22μMのフィルターで濾過した。この濾液をMC1061に加え、細菌の増殖が強く抑制された。つまりColE1がpKLC146から合成されていることを確認した。その後、B-CAPへのColE1搭載を容易にするため、pKLC146にT7ファージの配列を一部挿入したプラスミドを作製し、pKLC187と名付けた。
 PCRに利用したプライマー配列は上述の表3及び配列表に記載している。
(T7ファージ耐性大腸菌の調製)
 一晩、培養した大腸菌MC1061株200μlと3mlのLTA(1mM CaCl2を含むLB0.5%アガロース、56℃)とを混合し、LBプレート上に重層した。10分程度乾燥してagaroseが固まった後、LTAの上から5μlのT7ファージ溶液(108PFU(Plaque Forming Unit)/ml)を滴下した。37℃で20時間培養後、現れたコロニーを取得し、新しいLBプレート上に塗り広げた。出てきたコロニーをもう一度新しいLBプレートに塗り広げ、出てきたコロニーをLB培地で培養した。このコロニーがT7ファージに対して耐性であることを、LTAアガーを利用した実験で確認し、保存した。
(ファージ及びB-CAPのTEMイメージング)
 濃縮されたファージ懸濁液をまずコロジオンコートされた400メッシュの銅グリッド(日新EM株式会社、日本)に1滴落とし、ファージを10分間吸着させた。その後,残留液をろ紙で除去し,1%酢酸ウラニル(ネガティブ染色液)を銅グリッドに滴下した。メッシュグリッドを約5秒間完全に濡らしてからブロッティングで乾燥させた。染色後,80kVの透過型電子顕微鏡(Transmission electron microscopy、TEM)であるHT7700(日立社製)で観察した。ファージの透過型電子顕微鏡写真を8Mピクセルのメインデジタルカメラで撮影した。
(ファージ及びB-CAPからのDNA抽出)
 対数増殖した宿主細胞に0.1~0.01のMOIで目的のファージ及びB-CAPを加え、37℃で溶液の濁度が薄くなるまで培養した。その後、上清を5,000gで10分間遠心分離し、この上清を新しいチューブに回収した。最終濃度の10μg/ml DNase(Sigma-Aldrich社製)と10μg/ml RNase(Sigma-Aldrich社製)を加え、37℃で1時間攪拌し、等量のPEG溶液(10%(w/v)PEG6000、5mM Tris-HCl(pH7.5)、1M NaCl,5mM MgSO4・7H2O)を徐々に加えた。4℃で一晩インキュベートした後、15000g、30分、4℃で遠心分離を行い、沈殿したファージを回収した。ファージペレットをTEバッファー(10mM Tris-HCl(pH8)、1mM EDTA)に再懸濁し、1/100量の1M EDTAと1/100量の10%SDSをファージ懸濁液に加え,68℃で15分間インキュベートした。インキュベート後、等量のフェノール:クロロホルム:イソアミルアルコール(25:24:1、v/v/v)を加え、溶液をよく混合した。遠心分離した後、水相を新しいチューブに移し、等量のクロロホルム:イソアミルアルコールを24:1(v/v)の割合で加え、再びよく混合した。遠心後、ファージDNAを含む水相を新しいチューブに移し、2.5倍量のエタノールを加えた。-20℃で1時間インキュベートした後、4℃で12,000g、10分間の遠心を行った。ペレット化したDNAを1mlの70%エタノールで2度洗浄し、取得されたDNAを軽く乾燥させ、適量のTEバッファーに再懸濁した。
(プレートによる細菌増殖抑制試験)
 一晩培養した細菌100μlと、3mlのLBソフトアガー(LB、0.5% agarose、1mM CaCl、1mM CaCl2、56℃)と混合し、丸型のLBプレートに素早く流し込んだ。角形のプレートの場合は、流し込む容量を2倍にした。室温で5分間放置した後,B-CAPもしくはファージを、細菌細胞を含む上部寒天に2μlずつ直接スポットし,プレートを37℃で培養した。約6時間のインキュベーション後、プラークの形成を観察し、写真を撮影した。
(培養液による細菌増殖抑制試験)
 MC1061株、又はColE1耐性のあるMC1061R株をLBプレートにプレーティングし、37℃で12時間インキュベートした。プレート上のコロニーを含むLB培地に移し、37℃で8時間培養した。菌が十分に増殖したことを確認した後、各培養液をLB培地で100倍に希釈し、激しく振とう(400rpm)しながら37℃で4時間培養した。OD(650nm)が約0.5に達したとき、LB培地で再びOD600=0.25に合わせ、培養を開始した。培養2時間後、増殖中の大腸菌液にB-CAP/B-CAP(ColE1)を約MOI=0.001、0.01、0.1、1(106、107、108、109PFU/ml)となるように加え、再び24時間振盪培養を続けた。その間、1時間毎に細菌の濁度を測定した。
(ファージのタイターの測定)
 T7ファージ及びB-CAPを10-4から10-7の範囲で、SMバッファーにて10倍ずつ希釈して使用した。一方、LB培養液で1:100に希釈した大腸菌MC1061株及びMC1061(pKLC172)株の一晩培養液を、37℃でOD600が約0.5になるまで撹拌しながら培養した。その後、100μlの菌体懸濁液にT7ファージ/B-CAPの各希釈液を10μlずつ加え、37℃で20分間培養した。その後、培養液の全量を1mM CaCl2を含む0.5%LTAと混合し、LBプレートの表面に流し込んだ。その後、プレートを37℃で一晩インキュベートした。プレート上のプラークの数をカウントし、ファージのタイター(力価)として、PFU/mLを算出した。
(抽出DNAの全ゲノムシーケンシング)
 次世代シーケンサーにより、抽出されたDNAの配列の読み取り(シーケンシング)を行った。まず、各ゲノムDNAをランダムにせん断して短い断片にし、得られたフラグメントは末端を修復し、A-tailを付け、さらにイルミナアダプターとライゲーションした。アダプターの付いた断片はPCRで増幅し、サイズを選択して精製した。ライブラリーはQubitとリアルタイムPCRで定量し、バイオアナライザーでサイズ分布を検出した。Nextera XT Library Prep Kit(Illumina社製)を用いて,プラスミドからペアエンドシーケンシングライブラリを構築した。シークエンシングは、MiSeq reagent kit version 3(Illumina社製)を用いてIllumina MiSeq platform(2×301bp)で行った。リード数はそれぞれ、B-CAPでは7059496、8277786、B-CAP(ColE1)では8000044、8691738、pKLC172では8814734、8173908であった。リード配列をトリミングし、CLC Genomics Workbench(Qiagen社製)を用いてコンティグにdo novoでアセンブルした。CLC Genomics Workbenchを用いてシーケンスエラーやDNAの循環を評価し、RAST ver.2.038を用いて得られたゲノムのアノテーションを行った。
(マウス生存試験)
 大腸菌感染症の治療に対するB-CAP/B-CAP_ColE1の効果を評価するために、7週齢のBalb/c(Clea、Japan社製)を生存試験に使用した。マウスは、アッセイを開始する前に、1週間飼育して実験室の環境に慣らした。まず、カルバペネム耐性大腸菌の一晩培養液を新鮮なLB培地で1:1000に希釈し、さらに37℃で撹拌しながら培養し、OD600が約0.5になるまで培養した。その後、菌体をPBSで2回洗浄し、PBSで約1×1010CFU/mLの密度に調整した。B-CAP、B-CAP(ColE1)、T7ファージはPEG沈殿後、SMバッファーで溶かし、PBSで透析を1日行った。それぞれのタイター(力価)はMC1061又はMC1061(pKLC172)を利用して測定した。
 マウスに麻酔をかけた後、各群6匹のマウスを選び、200μlの細菌懸濁液(2×109CFU/マウス)を腹腔内に直接注入した。再度麻酔をかけ、1時間半後に、B-CAP、B-CAP(ColE1)、T7ファージを含むPBS、又はPBSのみを200μl、菌液が注入された同じ部位に注入した。マウスの後背部の皮下に塩酸メデトミジン、ミダゾラム、酒石酸ブトルファノール 混合麻酔薬を200μl注射し、その後アチパメゾールで麻酔から覚醒させ、最長で5日間生存を観察した。感染後48時間及び72時間の時点で各治療群の累積死亡率とその時点での体重を記録した。そして、独立した3つの実験のデータからKaplan-Meier生存曲線を作成し、ソフトウェアPrism 8を用いてlog-rankテストで分析した。
〔結果〕
(ファージゲノム分割法によるB-CAPの構築)
 図3及び図4により、B-CAPの構築(合成、製造)について説明する。
 図3(a)は、溶菌ファージのモデルであるT7ファージのDNAを抽出し、次世代シーケンサーにより配列を読み、RAST ver2.0を利用してアノテーションを行った結果を示す。このT7ファージの配列長は39956bpであった。
 本実施例では、B-CAPの合成用に、T7ファージのゲノムをB-CAP用エレメントであるB-CAP DNAと、カプシド核酸エレメン卜(カプシミド)であるHelper B-CAP DNAとに2分割した。分割したDNAは、それぞれアセンブリを行った。
 このうち、B-CAP DNAは、Early genes(Host-virus interactionとRNA polymerase)、DNA replication、lysisとpackagingを担う領域が含まれるように設計した。
 B-CAPを構築するためのHelper B-CAP DNAはVirion構成領域が含まれるように設計した。このHelper B-CAP DNAは菌体内で安定的に維持するためにBAC(Bacterial artificial chromosome)にクローニングし、pKLC172を作製した。
 図3(b)は、本実施例のHelper B-CAPとして、Virion構造遺伝子領域をBACにクローニングし、pKLC172を作製した例を示す。このpKLC172はBACのreplication systemとT7ファージのVirion構成遺伝子全てを結合させたものである。pKLC172は次世代シーケンサーにより配列を読み、25289bpであることを確認した。さらに、RAST ver2.0を利用してアノテーションを行った。
 次に、図4により、作製されたB-CAPの配列構造について説明する。
 B-CAP DNAをHelper B-CAP DNAを保有する大腸菌HST08株にエレクトロポレーションすると、B-CAPのプラークができ、そのプラークを単離後、B-CAPが構築されているかを調べた。具体的には、T7ファージとB-CAPのゲノムDNAを抽出し、次世代シーケンサーにより配列を読みとり、RAST ver2.0でアノテーションを行った。
 全ゲノム配列を調べた結果、B-CAPは22132bpであり、Early gene、DNA replication、Lysis、Packaging領域は保持していたが、Virion遺伝子は欠損していた。
 図5により、精製したT7ファージ及びB-CAPのDNAを鋳型として、PCR法でB-CAP構築の確認を行った結果について説明する。
 図5(a)は、T7ファージ及びB-CAPの確認用のプライマーの構成を示す。具体的には、上述の表3の「B-CAP det1 274bp-f」~「T7 check det5-mini3(det6) 7009bp mini5221bp-r,   det6 as 23,027bp」の各プライマーセットでPCRを行った。
 図5(b)は、0.5%のアガロースゲルで電気泳動を行った結果を示す。これにより、B-CAPのゲノムDNAサイズが約22kbまで短くなっていることを確認した。T7ファージにおけるVirion、lysis、packaging領域のPCR(PCR3)のフラグメントの長さは23.0kbとなり、B-CAPにおける相当領域のフラグメントの長さは5.2kbとなっていることも確認した。
 次に、T7ファージとB-CAPとを精製して、ネガティブ染色を行い、電子顕微鏡で撮影した。
 図6に、撮影された電子顕微鏡写真を示す。図6(a)はT7ファージ、図6(b)はB-CAPの写真である。
 結果として、B-CAPはT7ファージの形状とほぼ同じであることが確認された。
 次に、構築したB-CAPの殺菌活性について測定した。具体的には、T7ファージ及びB-CAPの希釈系列を作製し、ソフトアガープレート上で培養した大腸菌MC1061及びMC1061(pKLC172)に滴下した。37℃で6時間培養した後に、プレートの写真を撮った。全てのアッセイは、3回ずつ行われた。
 図7に、撮影された写真を示す。B-CAPを大腸菌MC1061株に感染させたところ、2×105以上をMC1061のBacterial lawn(菌叢)にスポットした場合のみ、ファージプラークのない殺菌斑(Bactericidal spots)を確認した。B-CAPはT7ファージ由来のエンドライシンやtoxicな遺伝子が含まれるため、ファージとは異なる殺菌斑が形成されたと考えられる。
 その一方で、B-CAPが持たないファージのゲノム領域をHelper B-CAP(pKLC172)で補完した大腸菌MC1061(pKLC172)株では、B-CAPの増殖性が回復したため、より少ないB-CAP濃度でも殺菌斑が生じた。しかし、B-CAPによるプラークサイズは、完全なT7ファージのものよりは小さかった。
 本実施例では、さらに黄色ブドウ球菌由来のB-CAPの合成を行った。
 ここでは、この黄色ブドウ球菌のTan2ファージのゲノムをB-CAP DNAとHelper B-CAP DNAに分割した。具体的には、溶原化した黄色ブドウ球菌のTan2ファージにおいて、構造遺伝子を欠損させた。さらに、構造遺伝子を発現するHelper B-CAPプラスミドを構築し、構造遺伝子欠損Tan2ファージが溶原化した黄色ブドウ球菌RN4220に形質転換した。このB-CAP合成菌にマイトマイシンCを添加し、Tan2ファージを誘導することでB-CAPを組み上げた。
 図8にこの黄色ブドウ球菌のTan2ファージからのB-CAP構築の例を示す。
 図8(a)は、Tan2ファージの遺伝子構造と、Helper B-CAPにクローニングした領域の概念を示す。このTan2ファージでは、構造遺伝子であるminor capsidからtail fiberまでの20140bpをクローニングし、pLC1プラスミドに挿入することで、Tan2ファージ用Helper B-CAPプラスミドを構築した。
 図8(b)は、このHelper B-CAPプラスミドを用いたB-CAPの構築の例を示す。ここでは、まず、Tan2ファージが溶原化した黄色ブドウ球菌RN4220株を作製した。そして、その菌からファージの構造遺伝子を欠損させた、「Tan2 without structure genes」の菌を作製した。この上で、構造遺伝子を欠損させたTan2ファージを保有するRN4220にHelper B-CAPプラスミドを形質転換して、Tan2ベースのB-CAPを合成する黄色ブドウ球菌株(「S. aureus RN4220::Tan2 (pHelper B-CAP)」と名付けた。)を構築した。このB-CAP合成菌にマイトマイシンCを添加して、Tan2ファージを誘導することで、B-CAPを組み上げた。
 図8(c)は、作製した野生型Tan2ファージとB-CAPの連続10倍希釈液をRN4220、又はHelper B-CAPプラスミドを保有するRN4220(以下、「RN4220(Helper B-CAP)」という。)を含む寒天培地上にスポットし、一晩培養した後、溶菌斑を観察した。RN4220(Helper B-CAP)でのみ溶菌斑が観察されたことから、B-CAP構築に成功していることが示された。
(B-CAPへの長鎖DNAの搭載)
 B-CAPはファージの感染システムを利用して、標的細菌にDNAを注入できる。そこで、本発明者らは、B-CAPにどの程度の長さのDNAまでが搭載可能かを調べることにした。具体的には、B-CAPゲノムをPCRで3つの断片にし、黄色ブドウ球菌由来のDNA配列を挿入することにした。
 図9により、B-CAPへの長鎖DNAの搭載の試験について説明する。ここでは、B-CAPに黄色ブドウ球菌の染色体由来の長鎖DNA断片を挿入し、B-CAP(S. aureus DNA)を得た。具体的には、黄色ブドウ球菌由来のDNA断片は、それぞれ約17、18、19、20kbを準備し、T7ファージのlate geneであるgp19の下流の領域に挿入されるようにB-CAPのDNAにアセンブリした。本実施例では、B-CAP DNAをPCRで3断片に増幅し、17kb、18kb、19kb、20kbの黄色ブドウ球菌由来のDNA断片と結合させて環状化した。これらアセンブリした黄色ブドウ球菌由来の配列を含むB-CAPの環状DNAを、Helper B-CAPプラスミドであるpKLC172と共に、大腸菌HST08株にエレクトロポレーションした。その後、合成されたB-CAP(S. aureus DNA)をプラークとして検出するために、エレクトロポレーション後のサンプルと大腸菌MC1061(pKLC172)とソフトアガーとを混合し、クロラムフェニコール(Cm)入りのLBプレート上に注いだ。クロラムフェニコールを入れた理由は、大腸菌HST08の野生株を増殖させず、B-CAPのHelper大腸菌であるMC1061(pKLC172)のみが増殖できるようにするためである。培養後、プラークを得た。
 図10に、各長さの長鎖DNAを導入して得られたプラーク数を示す。各バーは、標準偏差と平均とを示す(n=3)。
 図11は、B-CAP(S. aureus DNA)のプラークの代表的な写真を示す。
 B-CAPのHelper大腸菌であるMC1061(pKLC172)の菌叢上にできたプラークをカウントしたところ、17kbと18kbのDNAを挿入したB-CAPからは、それぞれ約150個、約40個のプラークを確認できた。
 その一方で、19kbと20kbの挿入を試みたB-CAPからも数個プラークが確認されたが、これらのプラークは全てDNAが挿入されていない野生型のB-CAPであった。
 ここで、黄色ブドウ球菌由来の17kbと18kbのDNA配列が、B-CAPに挿入されていることを、PCR法とサンガー法のシーケンシングで確認した。
 図12は、得られたプラークを単離、増幅し、PCR法により長鎖DNAの挿入を確認した結果を示す。図12(a)は、各フラグメントの模式図である。図12(b)は、0.5%アガロースゲルで電気泳動した結果を示す。
 図13は、同様に得られたプラークを単離、増幅し、次世代シーケンサーでシークエンシングした結果を示す。図13(a)は、B-CAP(S. aureus DNA)のシーケンスを行った位置を、シーケンス1及びシーケンス2として示す模式図である。図13(b)は、実際のシーケンスの一部を示す。
 以上の結果から、B-CAPには少なくとも18kbの長さの外来DNAを挿入できることが分かった。
(殺菌性遺伝子の搭載による強力な殺菌性B-CAP(NM-ABカプシド)の構築)
 次に、B-CAPを利用した抗菌剤の開発を試みた。上述の図7に示したように、B-CAPには溶菌酵素や宿主のメタボリズムを変化させる遺伝子が含まれているので、増殖はできないものの、感染した細菌を殺菌することが可能である。
 ここで、B-CAPは通常のファージとは異なり子孫を増やさないため、予測されない感染や遺伝子伝播等の生物学的危険性の心配はない。しかしながら、ファージのように感染局所での増幅ができないため、抗菌力は通常のファージより劣ることが予想される。そこで本発明者らは、B-CAPに抗菌力を付与することを考えた。
 本実施例では、菌体外に分泌される因子として、非特許文献2に記載された、大腸菌のプラスミドにコードされている、大腸菌殺菌性バクテリオシンであるコリシン(colicin E1、以下、「ColE1」という。)を利用した。ColE1は、ColE1を保有する細菌自身を殺菌させないように、immunity proteinと一緒にコードされており、菌体外へバクテリオシンを分泌させるためにrelease proteinを保有する。
 図14により、本実施例の殺菌性B-CAP(NM-ABカプシド)の構築について説明する。
 本実施例では、コリシン、immunity protein、及びrelease proteinがセットになったColE1の遺伝子領域をB-CAPに搭載した。このColE1遺伝子、immunity遺伝子とrelease lysis protein遺伝子で構成された遺伝子カセットをB-CAPに搭載して得られたNM-ABカプシド構造物を、B-CAP_ColE1と名付けた。B-CAP_ColE1は標的細菌に感染して細胞内にDNAを注入すると、殺菌性のColE1を産生して周囲に分泌する。
 図15は、このB-CAP_ColE1のB-CAP(ColE1)の配列の構造を示す。ここでは、T7ファージとB-CAPの全DNAを抽出し、次世代シーケンサーのシーケンシングにより配列を読み、RASTver2.0を利用してアノテーションした。B-CAP_ColE1のゲノム長は24322bpであった。これにより、ColE1、immunity protein、release proteinが全て挿入されていることを確認した。
 B-CAP_ColE1が注入された細菌宿主で、B-CAP_ColE1のDNAが転写される。そして、ColE1、immunity protein、release proteinが産生され、宿主細菌はimmunity proteinに守られながらColE1をrelease proteinによって菌体外に分泌する。分泌されたColE1は、宿主細菌周囲の細菌群を広い範囲で殺菌できることが予想された。
 一方で、B-CAP_ColE1のDNAが注入された細菌は、B-CAP由来のendolysin等のtoxicな遺伝子により殺菌される。
 このように、非増殖性であるにも関わらず、広範囲の細菌を殺菌できる抗菌製剤ができると考え、B-CAP_ColE1の殺菌力を調べた。
 図16は、この殺菌力を調べた結果を示す。写真は、大腸菌MC1061及びMC1061R(pKLC172)をソフトアガープレート上に植え、B-CAPとB-CAP_ColE1それぞれを含む溶液をプレート上にスポットして培養した結果である。「Propagation strain」は、ColE1耐性のあるMC1061R株にpKLC172を導入したMC1061R(pKLC172)で、B-CAP_COLE1を取得するための菌であり、比較例である。Host:MC106は、実際に殺菌力を調べるための菌である。これらの試験は、3回繰り返された。
 結果として、B-CAPは非増殖性であったため、殺菌効果はあまり確認できなかったが、B-CAP_ColE1は非常に強い集団殺菌効果を示した。
 具体的には、大腸菌MC1061にB-CAPを添加したところ、2×105PFUでは殺菌斑が確認されたが、それ以下では殺菌斑が、ほぼ確認されなかった。一方、B-CAP_ColE1では、2×101PFUでも殺菌斑が確認された。また、B-CAP_ColE1は増殖性のない非常に小さな殺菌斑を形成した。これはおそらく、B-CAP_ColE1のDNAを注入された細菌周囲の細菌が、ColE1により殺菌されたためと考えられる。
 このように、プレート上におけるB-CAP_ColE1の殺菌力を確認できた。
 図17により、液体培養液中でのB-CAP_ColE1の殺菌力を調べた結果について説明する。MC1061株及びT7耐性株であるMC1061R株を液体培養し、2時間後にB-CAP及びB-CAP_ColE1を約MOI=1、0.1、0.01、0.01で加え、細菌の増殖を調べた。具体的には、増殖期の各細菌を希釈して培養し、2時間後にMOIが約1、0.1、0.01、0.001となるようにB-CAP又はB-CAP_ColE1を加えた。
 図17中の各系列は、4つの独立の実験結果の平均値を示す。図17(a)はMC1061、図17(b)はMC1061R株の結果である。B-CAPをMOI=1で大腸菌株MC1061株に加えたとき、増殖カーブが少し緩やかになったが、MOI=0.1、0.01、0.001で加えた時は増殖カーブに変化は生じなかった。B-CAPをMOI=1で加えたときに増殖カーブが緩やかになったのは、MC1061がB-CAPのDNAにコードされているエンドライシン等により殺菌されたからであると考えられる。一方で、B-CAP_ColE1は、MC1061の増殖を、B-CAPよりも圧倒的に少ない量で抑制した。
 よりMOI=0.001のときのB-CAP_ColE1の殺菌効果は、MOI=1のB-CAPよりも強く、B-CAP_ColE1はMOIを上げていくとさらに強い抗菌活性を示すこともわかった。B-CAP_ColE1添加後3時間からは、OD600が減少していることから、B-CAP_ColE1は静菌性ではなく殺菌性に作用していることが示唆された。また、ColE1耐性大腸菌であるMC1061R株では、B-CAP_ColE1による殺菌活性がほとんど確認されなかったことから、MC1061株に対するB-CAP_ColE1の殺菌効果は、ColE1によるものであることが示された。
(殺菌性B-CAPの薬剤耐性大腸菌に対する殺菌効果)
 大腸菌を含む腸内細菌科細菌の薬剤耐性は、世界レベルで大変深刻な問題である。実際にカルバペネム耐性腸内細菌科細菌(CRE)とESBL産生大腸菌はWHOではCRITICAL priority、CDCではCREがUrgent Threadsに、ESBL産生大腸菌がSerious Threadsにそれぞれ分類されている。
 そこで我々は、B-CAP_ColE1がこれらの薬剤耐性大腸菌の臨床分離株に効果があるかを調べた。
 図18により、プレート上でのB-CAP_ColE1の殺菌効果について説明する。大腸菌MC1061、ColE1耐性のMC1061R、カルバペネム耐性の臨床分離大腸菌、ESBL大腸菌、T7耐性の臨床分離株、Propagation strainであるMC1061 (pKLC172)をソフトアガープレート上に植えた。B-CAPとB-CAP(ColE1)の希釈系列を作製し、プレート上にスポットして37℃で培養後に写真を撮った。
 結果として、B-CAP_ColE1は、カルバペネム耐性大腸菌の臨床分離株であるEc89、Ec93、Ec101を効果的に殺菌した。この殺菌活性は、実験室株であるMC1061に対する活性とほぼ同程度であった。また、B-CAPによる殺菌斑も確認されたが、殺菌斑は薄く、B-CAP_ColE1の1/1000程度の殺菌力であると判断した。また、B-CAP_ColE1は、多剤耐性菌である ESBL大腸菌であるEc320やEc353に対しても、同様に強い殺菌活性を示した。
 この結果から、B-CAP_ColE1は臨床で深刻な問題となっている薬剤耐性大腸菌に対しても、殺菌活性があることがわかった。
(殺菌性B-CAPの細菌感染マウスに対する抗菌治療効果)
 次に、B-CAP(ColE1)の抗菌治療効果を調べるために、マウスの細菌感染モデルを用いて細菌感染症の抗菌治療試験を行った。
 図19により、この抗菌治療試験について説明する。図19(a)は時系列図、図19(b)は、投与量を示す。ここでは、臨床で分離したカルバペネム耐性大腸菌Ec93株の菌液をマウスの腹腔に10CFU接種し、1.5時間後にB-CAP及びB-CAP_ColE1をMOI=1又は0.1で腹腔に直接投与して、マウスの生存率を調べた。
 また、陰性コントロールとしてリン酸緩衝生理食塩水(Phosphate-buffered saline、PBS)を投与した群(図中で、「Saline」として示す。)、陽性コントロールとして増殖性のT7ファージ投与群も用意した。
 図20に、このB-CAP_ColE1の抗菌治療効果として、投与後120時間後までの生存曲線と体重変化とを示した。図20(a)が生存曲線、図20(b)が体重変化のグラフである。感染後72時間までは6時間毎に、その後の96時間後と120時間後に生存と体重を確認した。
 B-CAPとPBS投与群(Saline)は差がなく、B-CAP_ColE1投与群とPBS投与群(Saline)は有意差があった。ここでは、p値を、ログランク検定(Mantel-Cox test)にて計算した。結果は、グループあたり6匹のマウスを使用して実行された3つの独立した実験の集計値として表した。結果として、p=0.0006であった。
 B-CAP投与群、及び陰性コントロールのPBS投与群(Saline)は、感染18時間後から30時間後までの間に全頭が死んだ。その一方で、B-CAP_ColE1投与群は、MOI=0.1で120時間後に1匹の死亡が確認されたが、それ以外マウスは全てが生存した。
 また、経時的体重測定の結果では、治療成功群は42時間あたりを下限のピークに、その後少しずつ回復していくことが確認された。陽性コントロールとして用いた増殖性のT7ファージ投与群も全例回復した。
 この結果から、B-CAP_ColE1は非増殖性にも関わらず、薬剤耐性大腸菌の抗菌治療に使用できることや少量でも治療効果があることが示唆された。
(まとめ)
 本実施例では、B-CAPにバクテリオシン、分泌遺伝子と免疫遺伝子とを同時に搭載することにより、B-CAP感染細菌の菌体内で大量にバクテリオシンを合成させ、それを菌体外に分泌できる抗菌製剤としてB-CAP(ColE1)を構築した。さらに、B-CAP_ColE1はMOI=0.1でもマウス大腸菌腹腔感染モデルに対して強い治療効果を示した。B-CAPは、非増殖性で安全性を確保しながらも、MOI=0.1で治療効果が得られる本製剤は、安全性と治療確度に課題があったファージセラピーにおいて、非常に有効な一手になると考えられる。
 本発明によれば、細菌標的型カプシド粒子(B-CAP)を治療用組成物、殺菌剤、食品等として提供でき、産業上利用可能である。

Claims (21)

  1.  ファージのカプシドタンパク質と、
     前記ファージのゲノムの核酸注入領域、核酸の複製に必要な複製領域、並びにパッケージング領域を含む細菌標的型カプシド粒子用エレメントとを備え、非増殖性である
     ことを特徴とする細菌標的型カプシド粒子。
  2.  前記細菌標的型カプシド粒子用エレメントは、外来遺伝子を含む
     ことを特徴とする請求項1に記載の細菌標的型カプシド粒子。
  3.  前記外来遺伝子は、殺菌遺伝子、バイオフィルム分解遺伝子、抗原提示用遺伝子、及び導入用遺伝子のいずれか又は任意の組み合わせを含む
     ことを特徴とする請求項2に記載の細菌標的型カプシド粒子。
  4.  前記殺菌遺伝子により、周囲の菌を殺菌する分泌性の殺菌産物を生成する
     ことを特徴とする請求項3に記載の細菌標的型カプシド粒子。
  5.  前記外来遺伝子は、標的細菌の殺菌を抑える抵抗因子を含む
     ことを特徴とする請求項4に記載の細菌標的型カプシド粒子。
  6.  請求項1乃至5のいずれか1項に記載の細菌標的型カプシド粒子を含む
     ことを特徴とする治療用組成物。
  7.  請求項1乃至5のいずれか1項に記載の細菌標的型カプシド粒子を含む
     ことを特徴とする殺菌剤。
  8.  請求項1乃至5のいずれか1項に記載の細菌標的型カプシド粒子を含む
     ことを特徴とする食品。
  9.  請求項1乃至5のいずれか1項に記載の細菌標的型カプシド粒子により標的細菌を除去する
     ことを特徴とする細菌除去方法。
  10.  標的細菌は、ヒト、動物、及び/又は環境中の細菌叢に存在する
     ことを特徴とする請求項9に記載の細菌除去方法。
  11.  標的細菌は、食品内に存在する
     ことを特徴とする請求項9に記載の細菌除去方法。
  12.  請求項1乃至5のいずれか1項に記載の細菌標的型カプシド粒子により標的細菌を殺菌する
     ことを特徴とする殺菌方法。
  13.  請求項1乃至5のいずれか1項に記載の細菌標的型カプシド粒子により標的細菌を殺菌し、物品の腐食を予防する
     ことを特徴とする腐食予防方法。
  14.  請求項1乃至5のいずれか1項に記載の細菌標的型カプシド粒子により動物を治療する
     ことを特徴とする動物治療方法。
  15.  請求項2乃至5のいずれか1項に記載の細菌標的型カプシド粒子に含まれる前記外来遺伝子を標的細菌に導入する
     ことを特徴とする遺伝子導入方法。
  16.  請求項2乃至5のいずれか1項に記載の細菌標的型カプシド粒子に含まれる前記外来遺伝子を標的細菌に導入し、該標的細菌に機能を追加する
     ことを特徴とする細菌機能追加方法。
  17.  ファージのゲノムから分割された、パッケージング領域を含まず、カプシドを合成するカプシド核酸エレメン卜により前記ファージのカプシドタンパク質を調製し、
     前記ファージのゲノムの前記カプシド核酸エレメン卜以外の箇所から分割された、核酸注入領域、核酸の複製に必要な複製領域、並びに前記パッケージング領域を含む細菌標的型カプシド粒子用エレメントを、前記カプシドタンパク質にパッケージングし、
     非増殖性の細菌標的型カプシド粒子を生成する
     ことを特徴とする細菌標的型カプシド粒子の製造方法。
  18.  前記カプシド核酸エレメン卜及び前記細菌標的型カプシド粒子用エレメントを、調製用の調製細菌内に導入して、前記細菌標的型カプシド粒子を前記調製細菌内で生成させる
     ことを特徴とする請求項17に記載の細菌標的型カプシド粒子の製造方法。
  19.  前記カプシド核酸エレメン卜は、前記調製細菌用の染色体又は人工染色体により導入される
     ことを特徴とする請求項18に記載の細菌標的型カプシド粒子の製造方法。
  20.  前記細菌標的型カプシド粒子用エレメントは、前記染色体又はプラスミドにより導入される
     ことを特徴とする請求項19に記載の細菌標的型カプシド粒子の製造方法。
  21.  ファージゲノムから、パッケージング領域を含まず、カプシドを合成するカプシド核酸エレメン卜を分割して調製し、
     前記ファージゲノムの前記カプシド核酸エレメン卜以外の箇所から、核酸注入領域、核酸の複製に必要な複製領域、並びに前記パッケージング領域を含む細菌標的型カプシド粒子用エレメントを分割して調製し、
     非増殖性の細菌標的型カプシド粒子用核酸を構築する
     ことを特徴とする細菌標的型カプシド粒子用核酸の製造方法。
PCT/JP2023/023521 2022-06-29 2023-06-26 細菌標的型カプシド粒子、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、細菌標的型カプシド粒子の製造方法、細菌標的型カプシド粒子用核酸の製造方法 WO2024004923A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022104184 2022-06-29
JP2022-104184 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024004923A1 true WO2024004923A1 (ja) 2024-01-04

Family

ID=89383039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023521 WO2024004923A1 (ja) 2022-06-29 2023-06-26 細菌標的型カプシド粒子、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、細菌標的型カプシド粒子の製造方法、細菌標的型カプシド粒子用核酸の製造方法

Country Status (1)

Country Link
WO (1) WO2024004923A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225246A1 (ja) * 2018-05-22 2019-11-28 学校法人自治医科大学 抗菌ファージ、治療用組成物、殺菌剤、食品、細菌判別キット、治療用組成物製造方法、細菌除去方法、細菌判別方法、及び動物治療方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225246A1 (ja) * 2018-05-22 2019-11-28 学校法人自治医科大学 抗菌ファージ、治療用組成物、殺菌剤、食品、細菌判別キット、治療用組成物製造方法、細菌除去方法、細菌判別方法、及び動物治療方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AZAM AA HAERUMAN, TAN XIN-EE, VEERANARAYANAN SRIVANI, KIGA KOTARO, CUI LONGZHU: "Bacteriophage Technology and Modern Medicine", ANTIBIOTICS (BASEL, SWITZERLAND) 2015, vol. 10, no. 8, pages 999, XP093124981, ISSN: 2079-6382, DOI: 10.3390/antibiotics10080999 *
KIGA KOTARO, TAN XIN-EE, IBARRA-CHÁVEZ RODRIGO, WATANABE SHINYA, AIBA YOSHIFUMI, SATO’O YUSUKE, LI FENG-YU, SASAHARA TEPPEI, CUI B: "Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria", NATURE COMMUNICATIONS, vol. 11, no. 1, 1 December 2020 (2020-12-01), XP055888259, DOI: 10.1038/s41467-020-16731-6 *
KIGA, KOTARO; CUI, LONGZHU: "New strategies for cell therapy III. Utilization of microorganisms and nanostructures 15. Phage technology and modern medicine", EXPERIMENTAL MEDICINE, YODOSHA CO., LTD., JP, vol. 38, no. 17, 1 January 2020 (2020-01-01), JP , pages 2999 - 3005, XP009552230, ISSN: 0288-5514 *

Similar Documents

Publication Publication Date Title
Li et al. Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus
US20230310525A1 (en) Bacteriophage variants having extended host-range, methods for preparation and uses thereof in transducing nucleic acids into hosts of interest
Silva et al. Influence of environmental variables in the efficiency of phage therapy in aquaculture
Chen et al. Isolation and characterization of specific phages to prepare a cocktail preventing Vibrio sp. Va-F3 infections in shrimp (Litopenaeus vannamei)
JP6923862B2 (ja) 抗菌ファージ、治療用組成物、殺菌剤、食品、細菌判別キット、治療用組成物製造方法、細菌除去方法、細菌判別方法、及び動物治療方法
CN102131927B (zh) 可调型基因***机制组合物和方法
JP5079885B2 (ja) 新規バクテリオファージおよびこれを含む抗菌組成物
Pérez-Pascual et al. Gnotobiotic rainbow trout (Oncorhynchus mykiss) model reveals endogenous bacteria that protect against Flavobacterium columnare infection
CN112680423A (zh) 一株能同时裂解四种细菌的宽谱大肠杆菌噬菌体及其组合物、试剂盒和应用
Kim et al. Two novel bacteriophages control multidrug-and methicillin-resistant Staphylococcus pseudintermedius biofilm
JP2017505615A (ja) 治療的な使用のための、核酸送達のための治療用ファージおよび方法
US8685697B1 (en) Listeria monocytogenes bacteriophages and uses thereof
EP3443106B1 (en) Phage-mediated manipulation of wolbachia
CN110612349A (zh) 新型铜绿假单胞菌噬菌体Pse-AEP-3及其用于抑制铜绿假单胞菌的增殖的用途
Hwang et al. Safety of using Escherichia coli bacteriophages as a sanitizing agent based on inflammatory responses in rats
WO2024004923A1 (ja) 細菌標的型カプシド粒子、治療用組成物、殺菌剤、食品、細菌除去方法、殺菌方法、腐食予防方法、動物治療方法、遺伝子導入方法、細菌機能追加方法、細菌標的型カプシド粒子の製造方法、細菌標的型カプシド粒子用核酸の製造方法
JP5662806B2 (ja) 細菌中の接合性プラスミドの低減方法
Sekar et al. Growth enhancement of shrimp and reduction of shrimp infection by Vibrio parahaemolyticus and white spot syndrome virus with dietary administration of Bacillus sp. Mk22
JP2007084492A (ja) バクテリオファージを含む、細菌性感染症治療用の薬剤
Chu et al. A controllable bacterial lysis system to enhance biological safety of live attenuated Vibrio anguillarum vaccine
Pyzik et al. Experimental Phage Therapies in Companion Animals with A Historical Review
KR20230092787A (ko) 항생제 내성 균주 사멸능을 갖는 신규 박테리오 파지 및 이의 용도
EP3215174B1 (en) Monocins and methods of use
WO2007128765A2 (en) Compositions comprising lytic enzymes of bacteriophages for treating bacterial infections
KR101896512B1 (ko) 신규한 사이트로박터 프렌디 특이 박테리오파지 cf1 및 이를 포함하는 항균 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23828679

Country of ref document: EP

Kind code of ref document: A1