WO2024001907A1 - 射频控制方法、装置及电子设备 - Google Patents

射频控制方法、装置及电子设备 Download PDF

Info

Publication number
WO2024001907A1
WO2024001907A1 PCT/CN2023/101722 CN2023101722W WO2024001907A1 WO 2024001907 A1 WO2024001907 A1 WO 2024001907A1 CN 2023101722 W CN2023101722 W CN 2023101722W WO 2024001907 A1 WO2024001907 A1 WO 2024001907A1
Authority
WO
WIPO (PCT)
Prior art keywords
network standard
voltage conversion
conversion chip
electronic device
power amplifier
Prior art date
Application number
PCT/CN2023/101722
Other languages
English (en)
French (fr)
Inventor
李军
易伟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024001907A1 publication Critical patent/WO2024001907A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the field of communication technology, and more specifically, relates to a radio frequency control method, device and electronic equipment.
  • the voltage of the dual-cell battery is stepped down by a 2:1 voltage conversion chip and then supplied to the GSM power amplifier.
  • the voltage conversion chips all use charge pump power supplies, architecture, which achieves a 2:1 voltage conversion effect by continuously switching MOS tube switches, resulting in a large switching noise signal on the power output.
  • the output power directly supplies power to the GSM power amplifier and is easily modulated by the GSM power amplifier.
  • radio frequency signals which leads to problems such as poor radio frequency performance indicators such as Output Radio Frequency Spectrum (ORFS) and Conducted Spurious Emission (CSE) of GSM.
  • the purpose of the embodiments of the present application is to provide a radio frequency control method, device and electronic equipment that can solve the problem of poor GSM radio frequency performance in the prior art when electronic equipment with dual-cell batteries is in the GSM network standard.
  • inventions of the present application provide a radio frequency control method for use in electronic equipment.
  • the electronic equipment includes a first power amplifier, a dual-cell battery module and a voltage conversion chip.
  • the dual-cell battery module passes The voltage conversion chip is connected to the first power amplifier, and the method includes:
  • the switching frequency of the voltage conversion chip is adjusted to improve the isolation of the first power amplifier.
  • inventions of the present application provide a radio frequency control device for use in electronic equipment.
  • the electronic equipment includes a first power amplifier, a dual-cell battery module and a voltage conversion chip.
  • the dual-cell battery module passes The voltage conversion chip is connected to the first power amplifier, and the device includes:
  • a detection module used to detect the network standard in which the electronic device operates
  • An adjustment module configured to adjust the switching frequency of the voltage conversion chip to improve the isolation of the first power amplifier when the network standard in which the electronic device operates is the first network standard.
  • inventions of the present application provide an electronic device.
  • the electronic device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the programs or instructions are processed by the processor.
  • the processor is executed, the steps of the method described in the first aspect are implemented.
  • embodiments of the present application provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the steps of the method described in the first aspect are implemented. .
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect. the method described.
  • embodiments of the present application provide a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the method as described in the first aspect.
  • the switching frequency of the voltage conversion chip is adjusted to improve the isolation of the first power amplifier. That is, when the electronic device works in the first network standard, such as the GSM network standard, the electronic device will adjust the switching frequency of the voltage conversion chip to improve the isolation of the GSM power amplifier. On the basis of the improvement in isolation, it can Reduce the probability that the switching noise signal of the voltage conversion chip affects the radio frequency signal when the voltage conversion chip is working, thereby improving the radio frequency performance of the GSM network standard.
  • Figure 1 is a flow chart of a radio frequency control method provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a power supply system of an example of this application.
  • Figure 3 is a schematic structural diagram of a voltage conversion chip according to an example of this application.
  • Figure 4 is a flow chart of a radio frequency control method according to another example of the present application.
  • Figure 5 is a flow chart of a radio frequency control method according to another example of the present application.
  • Figure 6 is a schematic structural diagram of a radio frequency control device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • the electronic device to which the radio frequency control method is applied is first introduced.
  • the radio frequency circuit 1 of the electronic device may include a transceiver 11, a power management integrated circuit (PMIC) 12, a first radio frequency transmitting unit 13, a second radio frequency transmitting unit 14, and a third radio frequency transmitting unit. 15. Dual-cell battery module 16, power supply chip 17, voltage conversion chip 18.
  • the first radio frequency transmitting unit 13 corresponds to the first network standard, and the first network standard may be the GSM network standard, that is, the first radio frequency transmitting unit 13 is used to transmit GSM radio frequency signals.
  • the second radio frequency transmitting unit 14 corresponds to one of the second network standards, and one of the network standards may be a 4G network standard, that is, one of the second radio frequency transmitting units 13 is used to transmit 4G radio frequency signals.
  • the third radio frequency unit 15 corresponds to another second network standard, and the other network standard may be a 5G network standard, that is, another second radio frequency transmitting unit 13 is used to transmit 5G radio frequency signals.
  • the first radio frequency transmitting unit 13 may also be called a cellular transmit module (TXM). As shown in FIG. 3 , the first radio frequency transmitting unit 13 at least includes a first power amplifier, and the first power amplifier is a GSM power amplifier.
  • the operating voltage of the GSM power amplifier is provided by the dual-cell battery module 16.
  • the interface voltage Vbatt of the dual-cell battery module 16 ranges from 6.8V to 9V.
  • Figure 2 shows that the interface voltage Vbatt of the dual-cell battery module 16 needs to undergo a 2:1 voltage conversion by the voltage conversion module 18 and then be provided to the GSM power amplifier in the first radio frequency transmitting unit 13.
  • the voltage conversion chip 18 is a 2:1 voltage conversion chip. As shown in Figure 3, the voltage conversion chip 18 includes a charge pump module, a control module and a load capacitor C2.
  • the charge pump module includes a first switch Q2, a second switch Q3, a third switch Q4, a fourth switch Q5 and an external capacitor C1.
  • the first switch Q2, the second switch Q3, the third switch Q4, and the fourth switch Q5 may all be MOS transistor switches.
  • the charge pump module is the core part of the entire voltage conversion chip 18 .
  • the normal working principle is: in the first step, Q2/Q4 is turned on, Q3/Q5 is turned off, the external capacitor C1 and the load capacitor C2 divide the input battery voltage Vbatt, and the voltage at the V2 point is 0.5*Vbatt. At this time The voltage at V3 point is the same as that at V2 point.
  • the second step Q2/Q4 is turned off, Q3/Q5 is turned on, and the external capacitor C1 and the load capacitor C2 form a loop discharge.
  • the voltage at the V3 point is consistent with the V1 point, and the voltage is 0.5*Vbatt.
  • the switching operating frequencies of Q2/Q4 and Q3/Q5 are different. In this way, because the switching tubes are constantly switching, the effective value of the output voltage V3 is 0.5*Vbatt, but there is a large Switching noise, so that the output power supply directly supplies power to the GSM power amplifier, there will be problems with GSM's ORFS, CSE and other radio frequency indicators.
  • FIG. 1 is a flow chart of a radio frequency control method provided by an embodiment of the present application.
  • This method can be applied to electronic devices, which can be mobile phones, tablets, notebooks, etc. This computer, etc.
  • the electronic device includes a first power amplifier, a dual-cell battery module and a voltage conversion chip.
  • the dual-cell battery module is connected to the first power amplifier through the voltage conversion chip.
  • the first power amplifier may be a GSM power amplifier
  • the dual-cell battery module may be the dual-cell battery module 16 shown in FIG. 2
  • the voltage conversion chip may be the voltage conversion chip 18 shown in FIG. 2 .
  • the method may include steps 1100 to 1200, which will be described in detail below.
  • Step 1100 Detect the network standard in which the electronic device operates.
  • the network standard in which the electronic device works can be any network standard such as GSM network standard, 5G network standard, 4G network standard, etc.
  • the network standard in which the modem in the electronic device works can be detected, and the network standard in which the modem works can be determined as the network standard in which the electronic device works.
  • the electronic device can configure the switches in the voltage conversion chip according to the default state.
  • Switching frequency which usually refers to the number of times a switch can turn on per second.
  • the electronic device can be configured with a switching frequency of each switch in the voltage conversion chip of 200KHz to 1.0MHz.
  • the electronic device may configure the switching frequency of each switch in the voltage conversion chip to be 250KHz by default.
  • the dual-cell battery module can provide the voltage required for the operation of the GSM power amplifier through the voltage conversion chip. Since the voltage conversion chip works between 200KHz and 1.0MHz by default, the GSM power The isolation of the amplifier is small and it is easy to modulate the switching noise onto the radio frequency signal, making the radio frequency performance index of GSM poor.
  • the switching frequency of the voltage conversion chip needs to be adjusted to the first switching frequency to improve the isolation of the first power amplifier, that is, the GSM power amplifier.
  • the switching frequency of the voltage conversion chip To the first switching frequency, in order to improve the isolation of the first power amplifier, that is, the GSM power amplifier, please refer to the following embodiments.
  • Step 1200 When the network standard in which the electronic device operates is the first network standard, adjust the switching frequency of the voltage conversion chip to improve the isolation of the first power amplifier.
  • the first network standard may be a GSM network standard, and correspondingly, the first power amplifier is a GSM power amplifier.
  • the switching frequency of the voltage conversion chip is different, and the isolation degree of the GSM power amplifier is also different accordingly.
  • the isolation degree is used to measure the ability of the first power amplifier to suppress noise signals. The greater the isolation degree, the stronger the ability of the first power amplifier to suppress noise.
  • the unit of isolation degree is dB.
  • the first power amplifier includes a power supply network and a radio frequency network. This step of improving the isolation of the first power amplifier may further include: improving the isolation between the power supply network and the radio frequency network to prevent power switching noise from being modulated into radio frequency signals. on, affecting RF performance indicators.
  • step 1200 may further include adjusting the switching frequency of the voltage conversion chip to improve the isolation of the first power amplifier. : When the network standard in which the electronic device operates is the first network standard, the switching frequency of the voltage conversion chip is adjusted to the first switching frequency to improve the isolation of the first power amplifier.
  • the dual-cell battery module uses voltage conversion The chip provides the working voltage of the GSM power amplifier. Since the switch of the voltage conversion chip is constantly switching, there is a switching noise signal, and because the switching frequency of the voltage conversion chip is between 200KHz and 1.0MHz, the isolation of the GSM power amplifier is very small. This makes it very easy to modulate the switching noise signal onto the radio frequency signal through the GSM power amplifier, resulting in poor radio frequency performance indicators such as GSM's ORFS and CSE.
  • the first network standard is the GSM network standard
  • the first switching frequency may be 1.2 MHz, where the first switching frequency is tested based on experimental data.
  • the isolation degree of the GSM power amplifier is the first value.
  • the isolation degree of the GSM power amplifier is the third value. binary value.
  • the second value is greater than the first value, and when the switching frequency of the switch in the voltage conversion chip is 1.2 MHZ, the isolation degree of the GSM power amplifier is the largest, so that the GSM power amplifier has the best radio frequency performance.
  • the measured current increases by about 4mA. Since the maximum current in the transmission time slot of the GSM network standard is more than 1.8A, the current only increases by about 4mA in the transmission time slot.
  • the power consumption in user scenarios is within controllable range.
  • the switching frequency of the switch in the voltage conversion chip will be adjusted to 1.2MHz. Because when the switching frequency is 1.2MHz, the isolation of the GSM power amplifier Maximum, the switching noise signal can be suppressed to a greater extent, avoiding the switching noise signal from being modulated onto the RF signal, improving the RF performance indicators such as ORFS and CSE of GSM, and ensuring the RF performance of GSM.
  • the switching frequency of the voltage conversion chip is adjusted to 1.2MHz.
  • the GSM power amplifier has the maximum isolation. This can suppress the switching noise signal to the greatest extent, prevent the switching noise signal from being modulated onto the radio frequency signal, improve GSM's ORFS, CSE and other radio frequency performance indicators, and ensure the radio frequency performance of GSM.
  • step 1200 adjusts the switching frequency of the voltage conversion chip to the first switching frequency to improve the first power amplifier when the network standard in which the electronic device operates is the first network standard.
  • the degree of isolation may further include: when the network standard in which the electronic device works is the first network standard, determining the working mode of the first network standard; when the working mode of the first network standard is time division dual In the case of working mode, in During the first period of time, the switching frequency of the voltage conversion chip is adjusted to the first switching frequency to improve the isolation of the first power amplifier.
  • the first time period is a time slot for transmitting radio frequency signals through the first network standard. It can be understood that since the above example requires the switching frequency of the voltage conversion chip to be adjusted in all GSM transmit time slots and receive time slots, the conversion efficiency of the voltage conversion chip is reduced and the power consumption is increased. In this example, the switching frequency of the voltage conversion chip is adjusted only through the time slot of the GSM network standard for transmitting radio frequency signals to achieve better power consumption.
  • the switching frequency of the voltage conversion chip is adjusted to 1.2MHz only within the transmission time slot of the GSM network standard, because when the switching frequency is 1.2MHz,
  • the GSM power amplifier has the highest isolation, which can suppress the switching noise signal to a greater extent and prevent the switching noise signal from being modulated onto the radio frequency signal. This improves GSM's ORFS, CSE and other radio frequency performance indicators and ensures the radio frequency performance of GSM.
  • the switching frequency of each switch in the voltage conversion chip can be configured to be between 200KHz and 1.0MHz. For example, the default configuration of the switching frequency of each switch in the voltage conversion chip is 250KHz.
  • the electronic equipment works in the GSM network standard.
  • the switching frequency of the switch in the voltage conversion chip is adjusted to 1.2MHz only during the transmission time slot of the GSM network standard.
  • the power consumption loss is only 1/8 of the above example.
  • the increase in power consumption is negligible.
  • the switching frequency of the voltage conversion chip is adjusted to improve the isolation of the first power amplifier. That is, when the electronic device works in the first network standard, such as the GSM network standard, the electronic device will adjust the switching frequency of the voltage conversion chip to improve the isolation of the GSM power amplifier. On the basis of the improvement in isolation, it can Reduce the probability that the switching noise signal of the voltage conversion chip affects the radio frequency signal when the voltage conversion chip is working, thereby improving the radio frequency performance of the GSM network standard.
  • the radio frequency control method may include the following steps:
  • Step 401 Detect the network standard in which the modem works. If it is detected that the network standard in which the modem works is the GSM network standard, step 402 is executed. Otherwise, step 403 is executed.
  • Step 402 When it is detected that the network standard in which the modem works is the GSM network standard, the switching frequency of the voltage conversion chip is adjusted and locked to 1.2MHz, and the process ends.
  • Step 403 When it is detected that the network standard in which the modem works is not the GSM network standard, the switching frequency of the voltage conversion chip is configured as 250KHz by default, and the process ends.
  • the radio frequency control method may include the following steps:
  • Step 501 Detect the network standard in which the modem works. If it is detected that the network standard in which the modem works is the GSM network standard, step 502 is executed. Otherwise, step 505 is executed.
  • Step 502 When it is detected that the modem operates in a GSM network standard, further detect whether the modem operates in a transmission time slot of the GSM network standard. If yes, perform step 503. Otherwise, perform step 504.
  • Step 503 When it is detected that the modem is operating in the transmission time slot of the GSM network standard, the switching frequency of the voltage conversion chip is adjusted and locked to 1.2 MHz, and the process ends.
  • Step 504 When it is detected that the modem is working in the receiving time slot of the GSM network standard, the switching frequency of the voltage conversion chip is configured as 250KHz by default, and the process ends.
  • Step 505 When it is detected that the network standard in which the modem works is not the GSM network standard, the switching frequency of the voltage conversion chip is configured as 250KHz by default, and the process ends.
  • radio frequency control method in the embodiment of the present application can be applied to other scenarios, such as the working scenario of an audio power amplifier.
  • radio frequency control device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 1. To avoid duplication, details will not be described here.
  • the execution subject may be a radio frequency control device.
  • a radio frequency control device executing a radio frequency control method is used as an example to illustrate the radio frequency control device provided by the embodiment of the present application.
  • the embodiment of the present application also provides a radio frequency control device 500 for use in electronic equipment.
  • the electronic equipment includes a first power amplifier, a dual-cell battery module and a voltage conversion chip.
  • the dual-cell battery module is connected to the first power amplifier through the voltage conversion chip.
  • the device 600 includes a detection module 601 and an adjustment module 602 .
  • the detection module 601 is used to detect the network standard in which the electronic device operates.
  • the adjustment module 602 is configured to adjust the switching frequency of the voltage conversion chip to improve the isolation of the first power amplifier when the network standard in which the electronic device operates is the first network standard.
  • the adjustment module 602 is specifically configured to: adjust the switching frequency of the voltage conversion chip to the first switching frequency when the network standard in which the electronic device operates is the first network standard, to improve the isolation of the first power amplifier.
  • the adjustment module 602 is specifically configured to: determine the working mode of the first network standard when the network standard in which the electronic device operates is the first network standard;
  • the switching frequency of the voltage conversion chip is adjusted to the first switching frequency during the first time period to increase the first switching frequency.
  • the first network standard is a GSM network standard
  • the first switching frequency is 1.2 MHz.
  • the adjustment module 602 is specifically used to improve the isolation between the power supply network and the radio frequency network.
  • the switching frequency of the voltage conversion chip when it is detected that the electronic device is operating in the first network standard, the switching frequency of the voltage conversion chip is adjusted to improve the isolation of the first power amplifier. That is, when the electronic device works in the first network standard, such as the GSM network standard, the electronic device will adjust the switching frequency of the voltage conversion chip to improve the isolation of the GSM power amplifier. On the basis of the improvement in isolation, it can Reduce the probability that the switching noise signal of the voltage conversion chip affects the radio frequency signal when the voltage conversion chip is working, thereby improving the radio frequency performance of the GSM network standard.
  • the radio frequency control device in the embodiment of the present application may be an electronic device or a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a mobile internet device (Mobile Internet Device, MID), or augmented reality (AR)/virtual reality (VR). ) device, robot, wearable device, ultra-mobile personal computer (UMPC), netbook or personal digital assistant
  • PDA personal digital assistant
  • PDA personal digital assistant
  • NAS Network Attached Storage
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the radio frequency control device in the embodiment of the present application may be a device with an operating system.
  • the operating system can be an Android operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of this application.
  • the radio frequency control device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 1. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides an electronic device 700, including a processor 701 and a memory 702.
  • the memory 702 stores programs or instructions that can be run on the processor 701.
  • each step of the above-mentioned radio frequency control method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 8 is a schematic diagram of the hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 800 includes but is not limited to: radio frequency unit 801, network module 802, audio output unit 803, input unit 804, sensor 805, display unit 806, user input unit 807, interface unit 808, memory 809, processor 810 and other components. .
  • the electronic device 800 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 810 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the electronic device shown in Figure 8 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here. .
  • the processor 810 is used to detect the network standard in which the electronic device operates; when the network standard in which the electronic device operates is the first network standard, adjust the switching frequency of the voltage conversion chip to improve the First power amplifier isolation.
  • the switching frequency of the voltage conversion chip is adjusted to improve the isolation of the first power amplifier.
  • the electronic device when the electronic device works in the first network standard, such as the GSM network standard, the electronic device will adjust the switching frequency of the voltage conversion chip to improve the isolation of the GSM power amplifier. On the basis of the improvement in isolation, it can Reduce the probability that the switching noise signal of the voltage conversion chip affects the radio frequency signal when the voltage conversion chip is working, thereby improving the radio frequency performance of the GSM network standard.
  • the processor 810 is also configured to adjust the switching frequency of the voltage conversion chip to the first switching frequency when the network standard in which the electronic device operates is the first network standard, so as to improve the switching frequency of the voltage conversion chip. Describe the isolation of the first power amplifier.
  • the processor 810 is also configured to determine the working mode of the first network standard when the network standard in which the electronic device operates is the first network standard; When the working mode is the time division duplex mode, the switching frequency of the voltage conversion chip is adjusted to the first switching frequency within the first time period to improve the isolation of the first power amplifier; wherein, the third A time period is a time slot for transmitting radio frequency signals through the first network standard.
  • the first network standard is a GSM network standard
  • the first switching frequency is 1.2 MHz.
  • the processor 810 is also used to improve the isolation between the power supply network and the radio frequency network.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
  • the graphics processor 8041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 At least one. Touch panel 8071, also known as touch screen.
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 8072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • Memory 809 can be used to store software programs as well as various data.
  • the memory 809 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 809 may include volatile memory or non-volatile memory, or memory 809 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the memory 809 may include a program storage area and a data storage area, where the program storage area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store the program according to the mobile Data created by the use of the terminal (such as audio data, phone book, etc.), etc. Additionally, memory 809 can Including high-speed random access memory, it may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 810 operates or executes software programs and/or modules stored in the memory 809 and calls data stored in the memory 809 .
  • the processor 810 may include one or more processing units; optionally, the processor 810 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 810.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above radio frequency control method embodiment is implemented and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above radio frequency control method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-a-chip or system-on-a-chip.
  • Embodiments of the present application provide a computer program product.
  • the program product is stored in a storage medium.
  • the program product is executed by at least one processor to implement each process of the above radio frequency control method embodiment, and can achieve the same technical effect. , to avoid repetition, will not be repeated here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种射频控制方法、装置及电子设备,应用于电子设备,所述电子设备包括第一功率放大器、双电芯电池模组和电压转换芯片,所述双电芯电池模组通过所述电压转换芯片与所述第一功率放大器连接,所述方法包括:检测所述电子设备工作的网络制式;在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。

Description

射频控制方法、装置及电子设备
相关申请的交叉引用
本申请主张2022年06月28日在中国提交的中国专利申请号202210762826.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,更具体地,涉及一种射频控制方法、装置及电子设备。
背景技术
目前主流的手机终端射频功率放大器的供电方案中,例如在手机终端处于GSM(Global System for Mobile Communications)网络制式的情况下,电池直接为GSM功率放大器提供工作电压。然而,随着目前智能手机充电方案的提升,大功率充电方案正在逐渐普及,而且,电池也大多采用双电芯方案。
相关技术中,在双电芯电池方案中,双电芯电池的电压经过2:1电压转换芯片降压后提供至GSM功率放大器供电,然而,由于电压转换芯片均使用电荷泵(Charge pump)电源架构,其通过MOS管开关不停切换来达到2:1电压转换效果,使得在电源输出上存在较大的开关噪声信号,这样输出的电源直接给GSM功率放大器供电,极易通过GSM功率放大器调制到射频信号上,这样就导致GSM的输出无线电频谱(Output Radio Frequency Spectrum,ORFS)、传导杂散辐射(Conducted spurious emission,CSE)等射频性能指标差的问题。
发明内容
本申请实施例的目的是提供一种射频控制方法、装置及电子设备,能够解决现有技术中双电芯电池的电子设备处于GSM网络制式时GSM射频性能差的问题。
第一方面,本申请实施例提供一种射频控制方法,应用于电子设备,所述电子设备包括第一功率放大器、双电芯电池模组和电压转换芯片,所述双电芯电池模组通过所述电压转换芯片与所述第一功率放大器连接,所述方法包括:
检测所述电子设备工作的网络制式;
在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。
第二方面,本申请实施例提供一种射频控制装置,应用于电子设备,所述电子设备包括第一功率放大器、双电芯电池模组和电压转换芯片,所述双电芯电池模组通过所述电压转换芯片与所述第一功率放大器连接,所述装置包括:
检测模块,用于检测所述电子设备工作的网络制式;
调整模块,用于在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法。
在本申请实施例中,在检测到电子设备工作于第一网络制式的情况下,会调整电压转换芯片所工作的开关频率,以提升第一功率放大器的隔离度。即,在电子设备工作于第一网络制式例如GSM网络制式时,电子设备会将电压转换芯片所工作的开关频率进行调整,以提升GSM功率放大器的隔离度,在隔离度提升的基础上,能够降低电压转换芯片工作时的开关噪声信号影响到射频信号的概率,进而提升GSM网络制式的射频性能。
附图说明
图1为本申请实施例提供的射频控制方法的流程图;
图2为本申请一个例子的供电***的结构示意图;
图3为本申请一个例子的电压转换芯片的结构示意图;
图4为本申请另一例子的射频控制方法的流程图;
图5为本申请另一例子的射频控制方法的流程图;
图6是本申请实施例提供的射频控制装置的结构示意图;
图7为本申请实施例提供的电子设备的结构示意图;
图8为本申请另一实施例提供的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在介绍本申请实施例提供的射频控制方法之前,首先介绍下该射频控制方法应用的电子设备。
请参见图2,该电子设备的射频电路1可以包括收发器11、电源管理芯片(Power Management Integrated Circuits,PMIC)12、第一射频发射单元13、第二射频发射单元14、第三射频发射单元15、双电芯电池模组16、供电芯片17、电压转换芯片18。其中,第一射频发射单元13对应第一网络制式,第一网络制式可以为GSM网络制式,即第一射频发射单元13用于发射GSM射频信号。第二射频发射单元14对应其中一个第二网络制式,该其中一个网络制式可以为4G网络制式,即其中一个第二射频发射单元13用于发射4G射频信号。第三射频单元15对应另外一个第二网络制式,该另外一个网络制式可以为5G网络制式,即另外一个第二射频发射单元13用于发射5G射频信号。
其中,第一射频发射单元13也可以称之为蜂窝发射模块(TXM),如图3所示,该第一射频发射单元13至少包括第一功率放大器,该第一功率放大器为GSM功率放大器。GSM功率放大器的工作电压由双电芯电池模组16提供,双电芯电池模组16的接口电压Vbatt的范围为6.8V~9V,在采用双电芯电池模组方案时,如图2所示,双电芯电池模组16的接口电压Vbatt需要经过电压转换模块18进行2:1电压转换后提供至第一射频发射单元13中的GSM功率放大器供电。
然而,电压转换芯片18为2:1电压转换芯片,如图3所示,该电压转换芯片18包括电荷泵(Charge pump)模块、控制模块和负载电容C2。其中,电荷泵模块包括第一开关Q2、第二开关Q3、第三开关Q4、第四开关Q5和外部电容C1。其中,第一开关Q2、第二开关Q3、第三开关Q4、第四开关Q5可以均为MOS管开关。其中,电荷泵模块是整个电压转换芯片18的核心部分。正常工作原理为:第一步Q2/Q4导通,Q3/Q5关断,外部电容C1与负载电容C2分压对输入的电池电压Vbatt进行分压,在V2点电压为0.5*Vbatt,此时V3点电压与V2点一致。
第二步Q2/Q4关断,Q3/Q5导通,外部电容C1与负载电容C2形成一个环路放电,此时V3点电压与V1点一致,电压为0.5*Vbatt。当第一功率放大器消耗不同工作电流的时候,Q2/Q4、Q3/Q5开关工作频率不同,这样,因为开关管在不停的进行切换,输出电压V3有效值为0.5*Vbatt,但是存在较大的开关噪声,这样输出的电源直接给GSM功率放大器供电,就存在GSM的ORFS、CSE等射频指标差的问题。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的射频控制方法进行详细地说明。
请参看图1,其是本申请实施例提供的一种射频控制方法的流程图。该方法可以应用于电子设备中,该电子设备可以为手机、平板电脑、笔记 本电脑等。该电子设备包括第一功率放大器、双电芯电池模组和电压转化芯片,双电芯电池模组通过电压转换芯片与第一功率放大器连接。其中,该第一功率放大器可以是GSM功率放大器,该双电芯电池模组可以是图2所示的双电芯电池模组16,电压转换芯片可以是图2所示的电压转换芯片18。如图1所示,该方法可以包括步骤1100~步骤1200,以下予以详细说明。
步骤1100,检测所述电子设备工作的网络制式。
本实施例中,电子设备工作的网络制式可以是GSM网络制式、5G网络制式、4G网络制式等任何一种网络制式。
在具体实施时,在电子设备处于开机状态的情况下,可以检测电子设备中的调制解调器Modem工作的网络制式,并将该调制解调器Modem工作的网络制式确定为电子设备工作的网络制式。
在此,在电子设备工作的网络制式为除GSM网络制式以外的一种网络制式,即电子设备未工作在GSM网络制式的情况下,电子设备可以按照默认状态配置电压转换芯片中的各个开关的开关频率,该开关频率通常是指开关每秒可以导通的次数。具体的,电子设备可以配置电压转换芯片中的各个开关的开关频率为200KHz~1.0MHz。示例性地,电子设备默认可以配置电压转换芯片中的各个开关的开关频率为250KHz。
反之,在电子设备工作在GSM网络制式的情况下,双电芯电池模组通过电压转换芯片可以提供GSM功率放大器工作所需的电压,由于电压转换芯片默认工作于200KHz~1.0MHz,导致GSM功率放大器的隔离度较小,极易将开关噪声调制到射频信号上,使得GSM的射频性能指标差。在此,需要将电压转换芯片的开关频率调整至第一开关频率,以提升第一功率放大器即GSM功率放大器的隔离度,关于如何将电压转换芯片的开关频率调整 至第一开关频率,以提升第一功率放大器即GSM功率放大器的隔离度可以参照以下实施例。
步骤1200,在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。
其中,第一网络制式可以为GSM网络制式,对应地,第一功率放大器为GSM功率放大器。
本实施例中,电压转换芯片的开关频率不同,GSM功率放大器的隔离度也相应不同。其中,隔离度用于衡量第一功率放大器抑制噪声信号的能力,隔离度越大,第一功率放大器抑制噪声的能力越强,隔离度的单位为dB。本例子中,第一功率放大器包括电源网络和射频网络,本步骤提升第一功率放大器的隔离度可以进一步包括:提升电源网络与射频网络之间的隔离度,进而避免电源开关噪声调制至射频信号上,影响射频性能指标。
在一个例子中,本步骤1200在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度可以进一步包括:在所述电子设备工作的网络制式为第一网络制式的情况下,将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度。
可以理解的是,在电子设备工作于GSM网络制式,且电压转换芯片的开关频率位于200KHz~1.0MHz,例如默认电压转换芯片的开关频率为250MHz的情况下,双电芯电池模组通过电压转换芯片提供GSM功率放大器工作的电压,由于电压转换芯片工作时开关不停切换存在开关噪声信号,且由于电压转换芯片的开关频率位于200KHz~1.0MHz的情况下,GSM功率放大器的隔离度非常小,使得极易通过GSM功率放大器将开关噪声信号调制到射频信号上,导致GSM的ORFS、CSE等射频性能指标差的问题。
其中,第一网络制式为GSM网络制式,第一开关频率可以为1.2MHz,其中,该第一开关频率是根据实验数据测试得到。例如在电压转换芯片的开关频率位于200KHz~1.0MHz的情况下,GSM功率放大器的隔离度为第一数值,在电压转换芯片的开关频率为1.2MHz的情况下,GSM功率放大器的隔离度为第二数值。其中,第二数值大于第一数值,并且,电压转换芯片中开关的开关频率为1.2MHZ的情况下,GSM功率放大器的隔离度最大,使得GSM功率放大器的射频性能最好。而且,由于1.2MHz开关切换频率场景,在实测电流较250KHz开关频率对比,电流增加约4mA,由于GSM网络制式的发射时隙最大电流达1.8A以上,仅在发射时隙增加约4mA的电流,对用户场景的功耗在可控范围内。
在具体实施时,其在电子设备工作于GSM网络制式的情况下,会将电压转换芯片中开关的开关频率调整至1.2MHz,由于在开关频率为1.2MHz的情况下,GSM功率放大器的隔离度最大,便可更大程度的抑制开关噪声信号,避免开关噪声信号调制到射频信号上,提高了GSM的ORFS、CSE等射频性能指标,保证了GSM的射频性能。
根据本例子,在电子设备工作于GSM网络制式的情况下,将电压转换芯片的开关频率调整至1.2MHz,在电压转换芯片的开关频率为1.2MHz的情况下,GSM功率放大器的隔离度最大,从而能够最大程度的抑制开关噪声信号,避免开关噪声信号调制到射频信号上,提高了GSM的ORFS、CSE等射频性能指标,保证了GSM的射频性能。
在一个例子中,本步骤1200在所述电子设备工作的网络制式为第一网络制式的情况下,将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度还可以进一步包括:在所述电子设备工作的网络制式为第一网络制式的情况下,确定所述第一网络制式的工作模式;在所述第一网络制式的工作模式为时分双工模式的情况下,在 第一时间段内将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度。
其中,第一时间段为通过第一网络制式发射射频信号的时隙。可以理解的是,由于上述例子需要在GSM的发射时隙和接收时隙全时隙都会调整电压转换芯片的开关频率,导致电压转换芯片的转换效率降低,功耗增加。本例子中,仅通过GSM网络制式发射射频信号的时隙,来调整电压转换芯片的开关频率,达到功耗更优的目的。
在具体实施时,在电子设备工作于GSM网络制式的情况下,仅在GSM网络制式的发射时隙内将电压转换芯片的开关频率调整至1.2MHz,由于在开关频率为1.2MHz的情况下,GSM功率放大器的隔离度最大,便可更大程度的抑制开关噪声信号,避免开关噪声信号调制到射频信号上,提高了GSM的ORFS、CSE等射频性能指标,保证了GSM的射频性能。而在GSM网络制式的发射时隙内,则可以配置电压转换芯片中的各个开关的开关频率位于200KHz~1.0MHz,例如默认配置电压转换芯片中的各个开关的开关频率为250KHz。
根据本例子,其在电子设备工作于GSM网络制式,仅在GSM网络制式的发射时隙才将电压转换芯片中开关的开关频率调整至1.2MHz,其功耗损失仅为上述例子的1/8(GSM网络制式的发射时隙为1/8时隙),即1/8*4=0.5mA,该功耗的增加可以忽略不计。
在本申请实施例中,在检测到电子设备工作于第一网络制式的情况下,会调整电压转换芯片所工作的开关频率,以提升第一功率放大器的隔离度。即,在电子设备工作于第一网络制式例如GSM网络制式时,电子设备会将电压转换芯片所工作的开关频率进行调整,以提升GSM功率放大器的隔离度,在隔离度提升的基础上,能够降低电压转换芯片工作时的开关噪声信号影响到射频信号的概率,进而提升GSM网络制式的射频性能。
接下来示出一个例子的射频控制方法,参照图4,该射频控制方法可以包括如下步骤:
步骤401,检测调制解调器Modem工作的网络制式,在检测到调制解调器Modem工作的网络制式为GSM网络制式的情况下,执行步骤402,反之,执行步骤403。
步骤402,在检测到调制解调器Modem工作的网络制式为GSM网络制式的情况下,将电压转换芯片的开关频率调整并锁定至1.2MHz,流程结束。
步骤403,在检测到调制解调器Modem工作的网络制式不为GSM网络制式的情况下,默认配置电压转换芯片的开关频率为250KHz,流程结束。
接下来示出一个例子的射频控制方法,参照图5,该射频控制方法可以包括如下步骤:
步骤501,检测调制解调器Modem工作的网络制式,在检测到调制解调器Modem工作的网络制式为GSM网络制式的情况下,执行步骤502,反之,执行步骤505。
步骤502,在检测到调制解调器Modem工作的网络制式为GSM网络制式的情况下,进一步检测调制解调器Modem是否工作于GSM网络制式的发射时隙,是的话,执行步骤503,反之,执行步骤504。
步骤503,在检测到调制解调器Modem工作于GSM网络制式的发射时隙的情况下,将电压转换芯片的开关频率调整并锁定至1.2MHz,流程结束。
步骤504,在检测到调制解调器Modem工作于GSM网络制式的接收时隙的情况下,默认配置电压转换芯片的开关频率为250KHz,流程结束。
步骤505,在检测到调制解调器Modem工作的网络制式不为GSM网络制式的情况下,默认配置电压转换芯片的开关频率为250KHz,流程结束。
需要说明的是,本申请实施例的射频控制方法可以应用于其他场景,例如音频功率放大器的工作场景等。
需要说明的是,本申请实施例提供的射频控制装置能够实现图1的方法实施例实现的各个过程,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的射频控制方法,执行主体可以为射频控制装置。本申请实施例中以射频控制装置执行射频控制方法为例,说明本申请实施例提供的射频控制装置。
与上述实施例相对应,参见图6,本申请实施例还提供一种射频控制装置500,应用于电子设备,所述电子设备包括第一功率放大器、双电芯电池模组和电压转换芯片,所述双电芯电池模组通过所述电压转换芯片与所述第一功率放大器连接,所述装置600包括检测模块601和调整模块602。
检测模块601,用于检测所述电子设备工作的网络制式。
调整模块602,用于在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。
在一个实施例中,所述调整模块602,具体用于:在所述电子设备工作的网络制式为第一网络制式的情况下,将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度。
在一个实施例中,所述调整模块602,具体用于:在所述电子设备工作的网络制式为第一网络制式的情况下,确定所述第一网络制式的工作模式;
在所述第一网络制式的工作模式为时分双工模式的情况下,在第一时间段内所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第 一功率放大器的隔离度;其中,所述第一时间段为通过所述第一网络制式发射射频信号的时隙。
在一个实施例中,所述第一网络制式为GSM网络制式,所述第一开关频率为1.2MHz。
在一个实施例中,所述调整模块602,具体用于提升所述电源网络和所述射频网络之间的隔离度。
在本申请的实施例中,在检测到电子设备工作于第一网络制式的情况下,会调整电压转换芯片所工作的开关频率以提升第一功率放大器的隔离度。即,在电子设备工作于第一网络制式例如GSM网络制式时,电子设备会将电压转换芯片所工作的开关频率进行调整,以提升GSM功率放大器的隔离度,在隔离度提升的基础上,能够降低电压转换芯片工作时的开关噪声信号影响到射频信号的概率,进而提升GSM网络制式的射频性能。
本申请实施例中的射频控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理
(personal digital assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的射频控制装置可以为具有操作***的装置。该操作***可以为安卓(Android)操作***,可以为ios操作***,还可以为其他可能的操作***,本申请实施例不作具体限定。
本申请实施例提供的射频控制装置能够实现图1的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图7所示,本申请实施例还提供一种电子设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的程序或指令,该程序或指令被处理器701执行时实现上述射频控制方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图8为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、处理器810等部件。
本领域技术人员可以理解,电子设备800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器810逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图8中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器810,用于检测所述电子设备工作的网络制式;在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。
根据本实施例,在检测到电子设备工作于第一网络制式的情况下,会调整电压转换芯片所工作的开关频率以提升第一功率放大器的隔离度。
即,在电子设备工作于第一网络制式例如GSM网络制式时,电子设备会将电压转换芯片所工作的开关频率进行调整,以提升GSM功率放大器的隔离度,在隔离度提升的基础上,能够降低电压转换芯片工作时的开关噪声信号影响到射频信号的概率,进而提升GSM网络制式的射频性能。
在一个实施例中,处理器810,还用于在所述电子设备工作的网络制式为第一网络制式的情况下,将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度。
在一个实施例中,处理器810,还用于在所述电子设备工作的网络制式为第一网络制式的情况下,确定所述第一网络制式的工作模式;在所述第一网络制式的工作模式为时分双工模式的情况下,在第一时间段内将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度;其中,所述第一时间段为通过所述第一网络制式发射射频信号的时隙。
在一个实施例中,所述第一网络制式为GSM网络制式,所述第一开关频率为1.2MHz。
在一个实施例中,处理器810,还用于提升所述电源网络和所述射频网络之间的隔离度。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072中的 至少一种。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括易失性存储器或非易失性存储器,或者,存储器809可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器809包括但不限于这些和任意其它适合类型的存储器。存储器809可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据移动终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器809可以 包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据。处理器810可包括一个或多个处理单元;可选地,处理器810集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述射频控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述射频控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片、***芯片、芯片***或片上***芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述射频控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、 物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种射频控制方法,应用于电子设备,所述电子设备包括第一功率放大器、双电芯电池模组和电压转换芯片,所述双电芯电池模组通过所述电压转换芯片与所述第一功率放大器连接,所述方法包括:
    检测所述电子设备工作的网络制式;
    在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。
  2. 根据权利要求1所述的方法,其中,所述在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度,包括:
    在所述电子设备工作的网络制式为第一网络制式的情况下,将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度。
  3. 根据权利要求1所述的方法,其中,所述在所述电子设备工作的网络制式为第一网络制式的情况下,将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度,包括:
    在所述电子设备工作的网络制式为第一网络制式的情况下,确定所述第一网络制式的工作模式;
    在所述第一网络制式的工作模式为时分双工模式的情况下,在第一时间段内将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度;
    其中,所述第一时间段为通过所述第一网络制式发射射频信号的时隙。
  4. 根据权利要求2或3所述的方法,其中,所述第一网络制式为GSM网络制式,所述第一开关频率为1.2MHz。
  5. 根据权利要求1所述的方法,其中,所述第一功率放大器包括电源网络和射频网络,所述提升所述第一功率放大器的隔离度,包括:
    提升所述电源网络和所述射频网络之间的隔离度。
  6. 一种射频控制装置,应用于电子设备,所述电子设备包括第一功率放大器、双电芯电池模组和电压转换芯片,所述双电芯电池模组通过所述电压转换芯片与所述第一功率放大器连接,所述装置包括:
    检测模块,用于检测所述电子设备工作的网络制式;
    调整模块,用于在所述电子设备工作的网络制式为第一网络制式的情况下,调整所述电压转换芯片的开关频率,以提升所述第一功率放大器的隔离度。
  7. 根据权利要求6所述的装置,其中,所述调整模块,具体用于:
    在所述电子设备工作的网络制式为第一网络制式的情况下,将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度。
  8. 根据权利要求6所述的装置,其中,所述调整模块,具体用于:
    在所述电子设备工作的网络制式为第一网络制式的情况下,确定所述第一网络制式的工作模式;
    在所述第一网络制式的工作模式为时分双工模式的情况下,在第一时间段内将所述电压转换芯片的开关频率调整至第一开关频率,以提升所述第一功率放大器的隔离度;
    其中,所述第一时间段为通过所述第一网络制式发射射频信号的时隙。
  9. 一种电子设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-5任一项所述的射频控制方法的步骤。
  10. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-5任一项所述的射频控制方法的步骤。
  11. 一种电子设备,包括所述电子设备被配置用于执行如权利要求1至5任一项所述的射频控制方法的步骤。
  12. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至5任一项所述的射频控制方法的步骤。
  13. 一种计算机程序产品,包括所述计算机程序包含用于执行权利要求1至5任一项所述的射频控制方法的步骤。
PCT/CN2023/101722 2022-06-28 2023-06-21 射频控制方法、装置及电子设备 WO2024001907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210762826.6 2022-06-28
CN202210762826.6A CN114978229A (zh) 2022-06-28 2022-06-28 射频控制方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024001907A1 true WO2024001907A1 (zh) 2024-01-04

Family

ID=82967434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101722 WO2024001907A1 (zh) 2022-06-28 2023-06-21 射频控制方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN114978229A (zh)
WO (1) WO2024001907A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978229A (zh) * 2022-06-28 2022-08-30 维沃移动通信有限公司 射频控制方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689806A (zh) * 2007-05-07 2010-03-31 诺基亚公司 射频功率放大器的电源
CN102239642A (zh) * 2008-12-04 2011-11-09 高通股份有限公司 具有频率选择的开关式电压调节器
KR20200099057A (ko) * 2019-02-12 2020-08-21 주식회사 실리콘마이터스 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
CN114978229A (zh) * 2022-06-28 2022-08-30 维沃移动通信有限公司 射频控制方法、装置及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217748B (zh) * 2008-01-08 2011-02-16 北京天碁科技有限公司 一种td-scdma终端及其射频功放省电方法
CN201315584Y (zh) * 2008-07-23 2009-09-23 芯通科技(成都)有限公司 一体化td-scdma干线放大器模块
US9331637B2 (en) * 2013-10-07 2016-05-03 Nokia Technologies Oy Hybrid DC-DC converters for power amplifiers
CN112468176B (zh) * 2020-11-23 2022-02-15 维沃移动通信有限公司 射频电路的供电方法、装置、射频电路和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689806A (zh) * 2007-05-07 2010-03-31 诺基亚公司 射频功率放大器的电源
CN102239642A (zh) * 2008-12-04 2011-11-09 高通股份有限公司 具有频率选择的开关式电压调节器
KR20200099057A (ko) * 2019-02-12 2020-08-21 주식회사 실리콘마이터스 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
CN114978229A (zh) * 2022-06-28 2022-08-30 维沃移动通信有限公司 射频控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN114978229A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN106782431B (zh) 一种屏幕背光亮度调节方法、装置及移动终端
CN111179861B (zh) 一种亮度校准方法、装置、存储介质以及终端
CN109104203B (zh) 通信方法、电子装置及计算机可读存储介质
WO2024001907A1 (zh) 射频控制方法、装置及电子设备
US20230403354A1 (en) Method for Adjusting Parameter of Audio Service and Terminal
CN108832297B (zh) 一种天线工作方法和移动终端
US20130097453A1 (en) Apparatus and method for controlling cpu in portable terminal
CN108307485B (zh) 无线网络扫描方法、装置、终端设备及存储介质
CN112330564B (zh) 图像处理方法、装置、电子设备以及可读存储介质
WO2023202527A1 (zh) 电源电路的控制方法、装置、电子设备和可读存储介质
US20180262707A1 (en) Method for Processing Ordered Broadcast and Electronic Device
WO2023241437A1 (zh) 充电电路、方法、装置和电子设备
CN114978207B (zh) 天线调谐方法和电子设备
CN109309511B (zh) 一种射频电路及无线通信装置
CN113489508B (zh) 供电控制方法、供电控制装置、电子设备和可读存储介质
CN113114279B (zh) 射频电路、电子设备及信号处理方法
CN115694537A (zh) 射频电路、射频控制方法、装置和电子设备
CN115664453A (zh) 射频电路、控制方法及装置、电子设备和可读存储介质
KR102608378B1 (ko) 안테나의 성능을 최적화하기 위한 전자 장치의 구조 및 그에 관한 방법
CN115277930B (zh) 供电方法、装置及电子设备
CN114025419B (zh) 射频功率的调节方法、调节装置、电子设备和存储介质
CN114337872B (zh) 网络信号测量方法及装置
CN110972220B (zh) 一种无线通信方法、装置、存储介质及终端设备
CN111918014B (zh) 一种显示视频图像的方法及装置
WO2023236650A1 (zh) 控制电路、电子设备、硬件安全防护方法及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830086

Country of ref document: EP

Kind code of ref document: A1