WO2024001901A1 - 一种正极材料和含有该正极材料的电池 - Google Patents

一种正极材料和含有该正极材料的电池 Download PDF

Info

Publication number
WO2024001901A1
WO2024001901A1 PCT/CN2023/101673 CN2023101673W WO2024001901A1 WO 2024001901 A1 WO2024001901 A1 WO 2024001901A1 CN 2023101673 W CN2023101673 W CN 2023101673W WO 2024001901 A1 WO2024001901 A1 WO 2024001901A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase structure
cobalt oxide
lithium cobalt
positive electrode
cathode
Prior art date
Application number
PCT/CN2023/101673
Other languages
English (en)
French (fr)
Inventor
叶孔强
曾家江
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2024001901A1 publication Critical patent/WO2024001901A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure belongs to the field of battery technology, and specifically relates to a cathode material and a battery containing the cathode material.
  • Lithium cobalt oxide with O3 phase structure belongs to the R-3m space group and has achieved great success in practical applications.
  • the requirements for energy density become higher and higher, the development of lithium cobalt oxide with O3 phase structure is facing great pressure.
  • Lithium cobalt oxide with an O2 phase structure is expected to have the same excellent structural stability and cycle performance as the industrialized lithium cobalt oxide that belongs to the R-3m space group and has an O3 phase structure.
  • lithium cobalt oxide with O2 phase structure has higher gram capacity and rate, and is a potential candidate for the next generation cathode material.
  • lithium cobalt oxide with O2 phase structure will cycle Diving is a serious problem.
  • the present disclosure provides a cathode material and a battery containing the cathode material.
  • the cathode material has the structural characteristics of both the O2 phase structure lithium cobalt oxide and the O3 phase structure lithium cobalt oxide.
  • the cathode material has high capacity, high rate and high cycle performance.
  • the positive electrode material is a modified lithium cobalt oxide positive electrode material.
  • the angle of the characteristic peak of the positive electrode material (003) is greater than the angle of the characteristic peak of the O2 phase structure lithium cobalt oxide (002).
  • the half-peak width of the characteristic peak of the positive electrode material (003) is greater than the half-peak width of the characteristic peak of the O2 phase structure lithium cobalt oxide (002), and is greater than the half-peak width of the characteristic peak of the O2 phase structure lithium cobalt oxide (002).
  • the (003) characteristic peak is the most typical and main characteristic peak of the cathode material.
  • the inventor of the present disclosure found that the angle of the characteristic peak of the cathode material (003) is larger than that of the O2 phase structure
  • the angle of the characteristic peak of lithium cobalt oxide (002) is smaller than the angle of the characteristic peak of lithium cobalt oxide (003) with O3 phase structure
  • the half-peak width of the characteristic peak of the positive electrode material (003) is larger than the characteristic peak of lithium cobalt oxide (002) with O2 phase structure
  • the half-peak width of the peak is greater than the half-peak width of the characteristic peak of O3 phase structure lithium cobalt oxide (003), and a cathode material with high capacity, high rate and high cycle performance can be obtained.
  • the structural features of the cathode material include crystal face features, that is, the cathode material has both the crystal face features of lithium cobalt oxide with an O2 phase structure and the crystal face features of lithium cobalt oxide with an O3 phase structure.
  • the calculation method of the half-peak width of the characteristic peak is: import the X-ray diffraction test data into Jade software for fitting, that is, the half-peak width data can be obtained.
  • the angle of the characteristic peak of the O3 phase structure lithium cobalt oxide (003) is 18.5° to 19°.
  • the angle of the characteristic peak of the O2 phase structure lithium cobalt oxide (002) is 18.0° to 18.6°.
  • the half-peak width of the characteristic peak of the O3 phase structure lithium cobalt oxide (003) is 0.10° to 0.15°.
  • the half-peak width of the characteristic peak of the O2 phase structure lithium cobalt oxide (002) is 0.15° to 0.30°.
  • the half-maximum width of the characteristic peak of the cathode material (003) is 0.3° to 0.4°.
  • the cathode material after X-ray diffraction testing, has the angle and half-peak width of the characteristic peak of O2 phase structure lithium cobalt oxide (100), as well as other characteristic peaks of O3 phase structure lithium cobalt oxide (except (003) ) angle and half-peak width of characteristic peaks other than characteristic peaks).
  • the angle of the characteristic peak of the O2 phase structure lithium cobalt oxide (100) is 36.5° to 37°, and the half-peak width of the characteristic peak of the O2 phase structure lithium cobalt oxide (100) is 0.15° to 0.15°. 0.20°.
  • the cathode material contains an O2 phase structure and an O3 phase structure, wherein the O3 phase structure accounts for 50% to 95% of the entire phase structure. %, more preferably, 70% to 90%, such as 70%, 75%, 80%, 85% or 90%.
  • the proportion of the O2 phase structure in the entire phase structure is 5% to 50%, more preferably, 10% to 30%, such as 10%, 15%, 20%, 25% or 30%.
  • the method of X-ray diffraction refinement is a method known in the art.
  • M is at least one of Al, Mg and Ti.
  • x is 0.9, 0.92, 0.95, 0.96, 0.98, 1, 1.01, 1.02, 1.05, 1.1, 1.2 or 1.25;
  • y is 0.01, 0.02 or 0.03;
  • n is 0.002, 0.005, 0.007 or 0.01.
  • the positive electrode material has a median particle size of 5 ⁇ m to 30 ⁇ m.
  • the present disclosure also provides a method for preparing the above-mentioned cathode material, which method includes the following steps:
  • Lithium cobalt oxide with an O2 phase structure is sintered in an air atmosphere to prepare the positive electrode material.
  • the sintering temperature is 250°C to 850°C (excluding the left endpoint value of 250°C and the right endpoint value of 850°C), more preferably 350°C to 750°C, such as 350°C or 450°C. , 550°C, 650°C or 750°C.
  • the lithium cobalt oxide with O2 phase structure still maintains the complete crystal structure of lithium cobalt oxide with O2 phase; when the sintering temperature exceeds 250°C, the crystal structure of lithium cobalt oxide with O2 phase structure remains intact. Begins to transform into the crystal structure of O3 phase lithium cobalt oxide.
  • the crystal structure of O2 phase lithium cobalt oxide is basically converted into the crystal structure of O3 phase lithium cobalt oxide.
  • the sintering time is 0.5h to 5h, which may be 0.5h, 1h, 2h, 3h, 4h or 5h, and is more preferably 1h to 2h.
  • the temperature rise rate of the sintering is 3°C/min ⁇ 10°C/min, more preferably 5°C/min ⁇ 7°C/min, and can be 5°C/min, 6°C/min or 7°C/min. °C/min.
  • the lithium cobalt oxide with O2 phase structure can be prepared by the following method:
  • the sintering temperature is 700°C to 900°C, and the sintering time is 12h to 20h.
  • the present disclosure also provides a positive electrode sheet, which includes the above-mentioned positive electrode material.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer disposed on at least one side surface of the positive electrode current collector, and the positive electrode active material layer includes the above-mentioned positive electrode material.
  • the positive active material layer further includes a conductive agent and a binder.
  • the mass percentage of each component in the cathode active material layer is: 70wt%-99wt% of the cathode material, 0.5wt%-15wt% of the conductive agent and 0.5wt% - 15% by weight of said binder.
  • the mass percentage of each component in the cathode active material layer is: 80wt%-98wt% of the cathode material, 1wt%-10wt% of the conductive agent, and 1wt%-10wt% of the conductive agent. Binder.
  • the mass percentage of each component in the cathode active material layer is: 90wt%-96wt% of the cathode material, 2wt%-5wt% of the conductive agent, and 2wt%-5wt% of the conductive agent.
  • the adhesive is: 90wt%-96wt% of the cathode material, 2wt%-5wt% of the conductive agent, and 2wt%-5wt% of the conductive agent.
  • the present disclosure also provides a battery, which includes the above-mentioned positive electrode material, or the battery includes the above-mentioned positive electrode sheet.
  • the charging cut-off voltage of the battery is greater than or equal to 4.5V.
  • lithium cobalt oxide with an O2 phase structure is a thermodynamically unstable material, it will gradually turn into a thermodynamically stable lithium cobalt oxide with an O3 phase structure at high temperatures.
  • This disclosure can directionally modify lithium cobalt oxide with an O2 phase structure through annealing (sintering lithium cobalt oxide with an O2 phase structure in an air atmosphere) and controlling the annealing temperature and time.
  • the modified lithium cobalt oxide The cathode material has high gram capacity, high rate performance and high cycle performance at the same time.
  • Figure 1 is the X-ray diffraction pattern of Example 1, Comparative Example 1 and Comparative Example 2 of the present disclosure.
  • Figure 2 is an enlarged partial X-ray diffraction pattern of Example 1, Comparative Example 1 and Comparative Example 2 of the present disclosure.
  • the lithium cobalt oxide with O2 phase structure in Preparation Example 1 was sintered in a muffle furnace in air atmosphere.
  • the sintering temperature was 350°C
  • the sintering time was 1h
  • the heating rate was 5°C/min.
  • the O3 phase structure in the cathode material accounts for 70% of the entire phase structure.
  • the lithium cobalt oxide with O2 phase structure in Preparation Example 1 was sintered in a muffle furnace in air atmosphere.
  • the sintering temperature was 550°C
  • the sintering time was 1h
  • the heating rate was 5°C/min.
  • the O3 phase structure in the cathode material accounts for 85% of the entire phase structure.
  • the lithium cobalt oxide with O2 phase structure in Preparation Example 1 was sintered in a muffle furnace in air atmosphere.
  • the sintering temperature was 750°C
  • the sintering time was 1h
  • the heating rate was 5°C/min.
  • the O3 phase structure in the cathode material accounts for 90% of the entire phase structure.
  • the lithium cobalt oxide with O2 phase structure in Preparation Example 1 was sintered in a muffle furnace in an air atmosphere.
  • the sintering temperature was 250°C
  • the sintering time was 1 hour
  • the heating rate was 5°C/min.
  • the O2 phase structure in the cathode material accounts for more than 99% of the entire phase structure.
  • the lithium cobalt oxide with O2 phase structure in Preparation Example 1 was placed in a muffle furnace in an air atmosphere and sintered at a sintering temperature of 850°C, a sintering time of 1 hour, and a heating rate of 5°C/min. After X-ray diffraction refinement, the O3 phase structure in the cathode material accounts for more than 99% of the entire phase structure.
  • the positive electrode materials obtained in the above Examples 1-3 and Comparative Examples 1-2 were dispersed in the nitrogen methylpyrrolidone NMP solvent with the conductive agent SuperP and the binder polyvinylidene fluoride PVDF in a mass ratio of 97:1.5:1.5. , stir evenly in a degassing machine to obtain the positive electrode slurry, and evenly coat the positive electrode slurry on the surface of the aluminum foil, bake it in a 100°C vacuum oven for 12 hours, and then roll and cut to obtain the positive electrode sheet.
  • the button battery prepared above was first subjected to a rate performance test under the conditions of a test temperature of 25°C and a test voltage range of 3.0V to 4.5V.
  • the charge rate was 0.1C
  • the discharge rate was 0.1C and 0.2C.
  • 0.5C, 1C, 2C, 5C the rate performance test is shown in Table 1.
  • the cycle performance test was performed under the conditions of a charge and discharge rate of 0.5C and a voltage range of 3.0V to 4.55V.
  • the test results are shown in Table 1.
  • the angle of the (003) characteristic peak of the cathode material It is greater than the angle of the characteristic peak of lithium cobalt oxide (002) in the O2 phase structure, and smaller than the angle of the characteristic peak of lithium cobalt oxide (003) in the O3 phase structure; the half-peak width of the (003) characteristic peak of the positive electrode material is greater than the angle of the characteristic peak of O2 phase structure cobalt acid.
  • the half-peak width of the characteristic peak of lithium (002) is greater than the half-peak width of the characteristic peak of lithium cobalt oxide (003) in the O3 phase structure.
  • "36-1004>Lithium Cobalt Oxide-LiCoO2” in Figure 1 is cobalt in the O2 phase structure.
  • the standard spectrum of lithium cobalt oxide; "16-0427>LiCoO2-Lithium Cobalt Oxide” is the standard spectrum of lithium cobalt oxide with O3 phase structure.
  • the crystal structure of the O2 phase lithium cobalt oxide is still intact; when the modified annealing (sintering) temperature is 850°C, the crystal structure of the material is basically converted to
  • the crystal structure of O3 phase lithium cobalt oxide can also be known through X-ray diffraction refinement. At this time, the proportion of O3 phase lithium cobalt oxide exceeds 99%.
  • the cathode material of the present disclosure has the characteristics of both O2 phase lithium cobalt oxide and O3 phase lithium cobalt oxide, and has high capacity, high rate performance and excellent cycle performance.

Abstract

本公开属于电池技术领域,具体涉及一种正极材料和含有该正极材料的电池。由于具有O2相结构的钴酸锂是一种热力学不稳定的材料,在高温下会逐渐变成热力学稳定的O3相结构的钴酸锂。本公开通过退火处理(将O2相结构的钴酸锂在空气氛围中进行烧结),控制退火的温度和时间,可以定向对O2相结构的钴酸锂进行改性,改性后的钴酸锂正极材料同时具备高克容量、高倍率性能以及高循环性能。

Description

一种正极材料和含有该正极材料的电池 技术领域
本公开属于电池技术领域,具体涉及一种正极材料和含有该正极材料的电池。
背景技术
目前,商业化的钴酸锂正极材料是一种较好的高电压正极材料,具有O3相结构的钴酸锂属于R-3m空间群,其在实际应用中已经取得了很大的成功。但是,随着对能量密度的要求越来越高,O3相结构的钴酸锂的开发面临很大的压力。具有O2相结构的钴酸锂期待能与已经产业化的属于R-3m空间群并具有O3相结构的钴酸锂具有同样优异的结构稳定性和循环性能。
研究发现,和O3相结构的钴酸锂相比,具有O2相结构的钴酸锂具有更高的克容量和倍率,是下一代正极材料的潜在候选,但是O2相结构的钴酸锂会循环跳水严重的问题。
发明内容
为了改善上述现有技术的不足,本公开提供一种正极材料和含有该正极材料的电池,所述正极材料同时具备O2相结构钴酸锂和O3相结构钴酸锂的结构特征,所述正极材料具备高容量、高倍率和高循环性能。
本公开的目的是通过如下技术方案实现的:
一种正极材料,所述正极材料为改性钴酸锂正极材料,经过X射线衍射测试后,所述正极材料(003)特征峰的角度大于O2相结构钴酸锂(002)特征峰的角度,小于O3相结构钴酸锂(003)特征峰的角度;所述正极材料(003)特征峰的半峰宽大于所述O2相结构钴酸锂(002)特征峰的半峰宽,大于所述O3相结构钴酸锂(003)特征峰的半峰宽。
根据本公开的实施方式,所述(003)特征峰为所述正极材料的最典型、最主要的特征峰。本公开的发明人发现,所述正极材料(003)特征峰的角度大于O2相结构 钴酸锂(002)特征峰的角度,小于O3相结构钴酸锂(003)特征峰的角度;所述正极材料(003)特征峰的半峰宽大于O2相结构钴酸锂(002)特征峰的半峰宽,大于O3相结构钴酸锂(003)特征峰的半峰宽,可以获得同时具有高容量、高倍率和高循环性能的正极材料。
根据本公开的实施方式,所述正极材料的结构特征包括晶面特征,即所述正极材料同时具备O2相结构钴酸锂的晶面特征和O3相结构钴酸锂的晶面特征。
根据本公开的实施方式,特征峰的半峰宽的计算方法为:将X射线衍射测试的数据导入Jade软件中进行拟合,即可以得到半峰宽的数据。
根据本公开的实施方式,所述O3相结构钴酸锂(003)特征峰的角度为18.5°~19°。
根据本公开的实施方式,所述O2相结构钴酸锂(002)特征峰的角度为18.0°~18.6°。
根据本公开的实施方式,所述O3相结构钴酸锂(003)特征峰的半峰宽为0.10°~0.15°。
根据本公开的实施方式,所述O2相结构钴酸锂(002)特征峰的半峰宽为0.15°~0.30°。
根据本公开的实施方式,所述正极材料(003)特征峰的半峰宽为0.3°~0.4°。
根据本公开的实施方式,经过X射线衍射测试,所述正极材料具备O2相结构钴酸锂(100)特征峰的角度和半峰宽,以及O3相结构钴酸锂其他特征峰(除(003)特征峰以外的特征峰)的角度和半峰宽。
根据本公开的实施方式,所述O2相结构钴酸锂(100)特征峰的角度为36.5°~37°,所述O2相结构钴酸锂(100)特征峰的半峰宽为0.15°~0.20°。
根据本公开的实施方式,经过X射线衍***修后,所述正极材料中含有O2相结构和O3相结构,其中,所述O3相结构在整个相结构中所占的比例为50%~95%,更优选,70%~90%,例如为70%、75%、80%、85%或90%。所述O2相结构在整个相结构中所占的比例为5%~50%,更优选,10%~30%,例如为10%、15%、20%、25%或30%。
根据本公开的实施方式,所述X射线衍***修的方法为本领域已知的方法。
根据本公开的实施方式,所述正极材料的化学式为LixNayCozMnO2,其中,0.85<x<1.3,0<y≤0.03,0.001<n<0.02,且z+n=1,M为Al、Mg和Ti中的至少一种。示例性地,x为0.9、0.92、0.95、0.96、0.98、1、1.01、1.02、1.05、1.1、1.2或1.25;y为0.01、0.02或0.03;n为0.002、0.005、0.007或0.01。
根据本公开的实施方式,所述正极材料的中值粒径为5μm~30μm。
本公开还提供上述正极材料的制备方法,所述方法包括如下步骤:
将O2相结构的钴酸锂在空气氛围中进行烧结,制备得到所述正极材料。
根据本公开的实施方式,所述烧结的温度为250℃~850℃(不包括左端点值250℃和右端点值850℃),更优选为350℃~750℃,例如为350℃、450℃、550℃、650℃或750℃。
当所述烧结温度为250℃时,O2相结构的钴酸锂还保持完整的O2相钴酸锂的晶体结构;当所述烧结温度超过250℃时,O2相结构的钴酸锂的晶体结构开始向O3相钴酸锂的晶体结构转变。当所述烧结温度为850℃时,O2相钴酸锂的晶体结构基本转换成O3相钴酸锂的晶体结构。
根据本公开的实施方式,所述烧结的时间为0.5h~5h,可以为0.5h、1h、2h、3h、4h或5h,更优选为1h~2h。
根据本公开的实施方式,所述烧结的升温速率为3℃/min~10℃/min,更优选为5℃/min~7℃/min,可以为5℃/min、6℃/min或7℃/min。
根据本公开的实施方式,所述O2相结构的钴酸锂可以通过如下方法制备:
(1)将四氧化三钴、碳酸钠和含M元素的金属氧化物,按化学计量比进行称料、混合、烧结,得到含钠氧化物;
(2)将上述含钠氧化物和氢氧化锂或其水合物按照重量比1:(1.0~2.0)混合,并按1:(10~40)的重量比加入去离子水,在反应釜中进行离子交换,所述离子交换的温度为80℃~150℃,所述离子交换的时间为24h~48h;
(3)所述离子交换完成后用去离子水多次洗涤,除去残留的氢氧化锂或其水合物,真空烘箱中干燥,得到所述O2相结构的钴酸锂。
根据本公开的实施方式,步骤(1)中,所述M元素为Al、Mg和Ti的至少一种,所述化学计量比为n(Na):n(Co):n(M)=(0.64~0.75):1:(0.001~0.02)。
根据本公开的实施方式,步骤(1)中,所述烧结的温度为700℃~900℃,所述烧结的时间为12h~20h。
本公开还提供一种正极片,所述正极片包括上述正极材料。
根据本公开的实施方式,所述正极片包括正极集流体和设置在所述正极集流体至少一侧表面的正极活性物质层,所述正极活性物质层包括上述正极材料。
根据本公开的实施方式,所述正极活性物质层还包括导电剂和粘结剂。
根据本公开的实施方式,所述正极活性物质层中各组分的质量百分含量为:70wt%-99wt%的所述正极材料、0.5wt%-15wt%的所述导电剂和0.5wt%-15wt%的所述粘结剂。
优选地,所述正极活性物质层中各组分的质量百分含量为:80wt%-98wt%的所述正极材料、1wt%-10wt%的所述导电剂和1wt%-10wt%的所述粘结剂。
还优选地,所述正极活性物质层中各组分的质量百分含量为:90wt%-96wt%的所述正极材料、2wt%-5wt%的所述导电剂和2wt%-5wt%的所述粘结剂。
本公开还提供一种电池,所述电池包括上述正极材料,或者所述电池包括上述的正极片。
根据本公开的实施方式,所述电池的充电截止电压大于等于4.5V。
本公开的有益效果:
由于具有O2相结构的钴酸锂是一种热力学不稳定的材料,在高温下会逐渐变成热力学稳定的O3相结构的钴酸锂。本公开通过退火处理(将O2相结构的钴酸锂在空气氛围中进行烧结),控制退火的温度和时间,可以定向对O2相结构的钴酸锂进行改性,改性后的钴酸锂正极材料同时具备高克容量、高倍率性能以及高循环性能。
附图说明
图1为本公开实施例1、对比例1和对比例2的X射线衍射图谱。
图2为本公开实施例1、对比例1和对比例2局部X射线衍射放大图谱。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
制备例1
1)将碳酸钠、四氧化三钴和Al2O3按摩尔比n(Na):n(Co):n(Al)=0.72:1:0.02称重混合,置于空气氛围的马弗炉中烧结,烧结温度为800℃,烧结时间为16h,得到含钠氧化物;
2)将上述含钠氧化物和一水氢氧化锂按照重量比1:1.34混合,并按1:20的重量比加入去离子水,在反应釜中进行离子交换,离子交换温度为120℃,离子交换时间为48h;
3)上述离子交换完成后用去离子水多次洗涤,除去残留的氢氧化锂,在120℃的真空烘箱中干燥,得到O2相结构的钴酸锂。
实施例1
将制备例1的O2相结构的钴酸锂置于空气氛围的马弗炉中烧结,烧结温度为350℃,烧结时间为1h,升温速率为5℃/min,经过X射线衍***修后,所述正极材料中O3相结构在整个相结构中所占的比例为70%。
实施例2
将制备例1的O2相结构的钴酸锂置于空气氛围的马弗炉中烧结,烧结温度为550℃,烧结时间为1h,升温速率为5℃/min,经过X射线衍***修后,所述正极材料中O3相结构在整个相结构中所占的比例为85%。
实施例3
将制备例1的O2相结构的钴酸锂置于空气氛围的马弗炉中烧结,烧结温度为750℃,烧结时间为1h,升温速率为5℃/min,经过X射线衍***修后,所述正极材料中O3相结构在整个相结构中所占的比例为90%。
对比例1
将制备例1的O2相结构的钴酸锂置于空气氛围的马弗炉中烧结,烧结温度为250℃,烧结时间为1h,升温速率为5℃/min。经过X射线衍***修后,所述正极材料中O2相结构在整个相结构中所占的比例超过99%。
对比例2
将制备例1的O2相结构的钴酸锂置于空气氛围的马弗炉中烧结,烧结温度为850℃,烧结时间为1h,升温速率为5℃/min。经过X射线衍***修后,所述正极材料中O3相结构在整个相结构中所占的比例超过99%。
测试例1
将上述实施例1-3和对比例1-2得到的正极材料,分别与导电剂SuperP和粘结剂聚偏氟乙烯PVDF,按照质量比97:1.5:1.5分散于氮甲基吡咯烷酮NMP溶剂中,在脱泡机中搅拌均匀,得到正极浆料,并将该正极浆料均匀涂覆在铝箔表面,置于100℃真空烘箱烘烤12h,然后辊压、裁切,得到正极片。
在手套箱中将该正极片和锂片负极,PP/PE/PP三层隔膜,使用1mol/L LiPF6/(EC+DEC)电解液(体积比1:1),组装成纽扣电池进行电化学测试。
将上述制得的纽扣电池,在测试温度为25℃,测试电压区间为3.0V~4.5V的条件下,先进行倍率性能测试,其中充电倍率为0.1C,放电倍率依次为0.1C、0.2C、0.5C、1C、2C、5C,倍率性能测试如表1所示。然后在充放电倍率为0.5C,电压区间3.0V~4.55V的条件下进行循环性能测试,测试结果如表1所示。
表1实施例和对比例的纽扣电池的性能测试结果

从图1和图2中实施例1、对比例1和对比例2的X射线衍射图谱可以看出:通过本公开的方法获得的正极材料中,所述正极材料的(003)特征峰的角度大于O2相结构钴酸锂(002)特征峰的角度,小于O3相结构钴酸锂(003)特征峰的角度;所述正极材料的(003)特征峰的半峰宽大于O2相结构钴酸锂(002)特征峰的半峰宽,大于O3相结构钴酸锂(003)特征峰的半峰宽,其中,图1中的“36-1004>Lithium Cobalt Oxide-LiCoO2”是O2相结构钴酸锂的标准图谱;“16-0427>LiCoO2-Lithium Cobalt Oxide”是O3相结构钴酸锂的标准图谱。
进一步地,在改性退火处理(烧结)温度为250℃时,还保持完整的O2相钴酸锂的晶体结构;在改性退火(烧结)温度为850℃时,材料的晶体结构以基本转换成O3相钴酸锂的晶体结构,通过X射线衍***修也可以得知,此时O3相钴酸锂的占比超过了99%。
从表1中实施例和对比例的具体测试结果可以看出,采用本公开的电池容量比O2相结构的钴酸锂(对比例1)高,倍率性能和其相当,循环性能和O3相结构的钴酸锂(对比例2)相当。所以,本公开的正极材料同时具有O2相钴酸锂和O3相钴酸锂的特征,且具备高容量、高倍率性能和优异的循环性能。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种正极材料,其特征在于,所述正极材料为改性钴酸锂正极材料,经过X射线衍射测试后,所述正极材料(003)特征峰的角度大于O2相结构钴酸锂(002)特征峰的角度,小于O3相结构钴酸锂(003)特征峰的角度;所述正极材料(003)特征峰的半峰宽大于O2相结构钴酸锂(002)特征峰的半峰宽,大于O3相结构钴酸锂(003)特征峰的半峰宽。
  2. 根据权利要求1所述的正极材料,其特征在于,所述O3相结构钴酸锂(003)特征峰的角度为18.5°~19°;
    和/或,所述O2相结构钴酸锂(002)特征峰的角度为18.0°~18.6°。
  3. 根据权利要求1或2所述的正极材料,其特征在于,所述O3相结构钴酸锂(003)特征峰的半峰宽为0.10°~0.15°;
    和/或,所述O2相结构钴酸锂(002)特征峰的半峰宽为0.15°~0.30°;
    和/或,所述正极材料(003)特征峰的半峰宽为0.3°~0.4°。
  4. 根据权利要求1-3任一项所述的正极材料,其特征在于,经过X射线衍射测试,所述正极材料具备O2相结构钴酸锂(100)特征峰的角度和半峰宽,以及O3相结构钴酸锂除(003)特征峰以外的其他特征峰的角度和半峰宽。
  5. 根据权利要求4所述的正极材料,其特征在于,所述O2相结构钴酸锂(100)特征峰的角度为36.5°~37°,所述O2相结构钴酸锂(100)特征峰的半峰宽为0.15°~0.20°。
  6. 根据权利要求1-5任一项所述的正极材料,其特征在于,经过X射线衍***修后,所述正极材料中O3相结构在整个相结构中所占的比例为50%~95%,所述正极材料中O2相结构在整个相结构中所占的比例为5%~50%。
  7. 根据权利要求1-6任一项所述的正极材料,其特征在于,经过X射线衍***修后,所述正极材料中O3相结构在整个相结构中所占的比例为70%~90%,所述正极材料中O2相结构在整个相结构中所占的比例为10%~30%。
  8. 根据权利要求1-7任一项所述的正极材料,其特征在于,所述正极材料的化学式为LixNayCozMnO2,其中,0.85<x<1.3,0<y≤0.03,0.001<n<0.02,M为Al、Mg和Ti中的至少一种。
  9. 根据权利要求1-8任一项所述的正极材料,其特征在于,所述正极材料的中值粒径为5μm~30μm。
  10. 一种权利要求1-9任一项所述的正极材料的制备方法,其特征在于,所述制备方法包括如下步骤:
    将O2相结构的钴酸锂在空气氛围中进行烧结,制备得到所述正极材料。
  11. 一种正极片,其特征在于,所述正极片包括权利要求1-9任一项所述的正极材料和/或权利要求10所述的正极材料的制备方法制备得到的正极材料。
  12. 根据权利要求11所述的正极片,其特征在于,所述正极片包括正极集流体和设置在所述正极集流体至少一侧表面的正极活性物质层,所述正极活性物质层包括所述正极材料;
    优选地,所述正极活性物质层还包括导电剂和粘结剂。
  13. 根据权利要求11所述的正极片,其特征在于,所述正极活性物质层中各组分的质量百分含量为:70wt%-99wt%的所述正极材料、0.5wt%-15wt%的所述导电剂和0.5wt%-15wt%的所述粘结剂。
  14. 一种电池,其特征在于,所述电池包括权利要求1-9任一项所述的正极材料、权利要求10所述的正极材料的制备方法制备得到的正极材料和权利要求11-13任一项所述的正极片中的至少一种。
  15. 根据权利要求14所述的电池,其特征在于,所述电池的充电截止电压大于等于4.5V。
PCT/CN2023/101673 2022-07-01 2023-06-21 一种正极材料和含有该正极材料的电池 WO2024001901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210774803.7A CN117374271A (zh) 2022-07-01 2022-07-01 一种改性正极材料和含有该改性正极材料的电池
CN202210774803.7 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024001901A1 true WO2024001901A1 (zh) 2024-01-04

Family

ID=89383238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101673 WO2024001901A1 (zh) 2022-07-01 2023-06-21 一种正极材料和含有该正极材料的电池

Country Status (2)

Country Link
CN (1) CN117374271A (zh)
WO (1) WO2024001901A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129509A (ja) * 2008-12-01 2010-06-10 Sanyo Electric Co Ltd 非水電解質電池
CN112758989A (zh) * 2019-10-21 2021-05-07 丰田自动车株式会社 正极活性物质的制造方法和锂离子电池的制造方法
CN112768645A (zh) * 2019-10-21 2021-05-07 丰田自动车株式会社 正极活性物质的制造方法和锂离子电池的制造方法
CN114956210A (zh) * 2022-06-28 2022-08-30 西安交通大学 一种不同层状结构单晶锂离子电池正极材料及其制备方法和应用
CN115036474A (zh) * 2022-05-25 2022-09-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129509A (ja) * 2008-12-01 2010-06-10 Sanyo Electric Co Ltd 非水電解質電池
CN112758989A (zh) * 2019-10-21 2021-05-07 丰田自动车株式会社 正极活性物质的制造方法和锂离子电池的制造方法
CN112768645A (zh) * 2019-10-21 2021-05-07 丰田自动车株式会社 正极活性物质的制造方法和锂离子电池的制造方法
CN115036474A (zh) * 2022-05-25 2022-09-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池
CN114956210A (zh) * 2022-06-28 2022-08-30 西安交通大学 一种不同层状结构单晶锂离子电池正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN117374271A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7236631B2 (ja) ニッケル三元正極材料の表面改質方法
JP4973825B2 (ja) 非水電解質二次電池用正極活物質の製造法、非水電解質二次電池
JP5382343B2 (ja) 非水電解質二次電池用Li−Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6089433B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP4998753B2 (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池
TW480768B (en) Non-aqueous electrolyte secondary cell
JP2020109771A (ja) リチウム二次電池用正極活物質及びこれを含むリチウム二次電池
JP5482977B2 (ja) 非水電解液二次電池用コバルト酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
WO2009119104A1 (ja) オキシ水酸化コバルト粒子粉末及びその製造法ならびにコバルト酸リチウム粒子粉末、その製造法、およびそれを使用した非水電解質二次電池
CN106602024B (zh) 一种表面原位修饰型富锂材料及其制备方法
WO2014040410A1 (zh) 一种富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
WO2014075416A1 (zh) 富锂正极材料、锂电池正极和锂电池
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
JP2022081638A (ja) リチウム二次電池用正極活物質、その製造方法、およびこれを含むリチウム二次電池
TW202141831A (zh) 鋰電池及其負極材料
WO2023226665A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
CN113839040A (zh) 高镍三元正极材料及其制备方法、锂离子电池
JP2012033389A (ja) 正極活物質及びその製造方法並びにリチウムイオン二次電池
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
WO2024066809A1 (zh) 正极材料及其制备方法、正极极片、二次电池和电子设备
CN113582253A (zh) 一种四元正极材料及其制备方法和应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
WO2024001901A1 (zh) 一种正极材料和含有该正极材料的电池
CN116895744A (zh) 一种长循环钠离子电池正极材料的制备方法及钠离子电池
CN107516729B (zh) 一种用于对称型二次电池的过渡金属层含锂层状电极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830080

Country of ref document: EP

Kind code of ref document: A1