WO2024001609A1 - 一种电池自加热***的控制方法 - Google Patents

一种电池自加热***的控制方法 Download PDF

Info

Publication number
WO2024001609A1
WO2024001609A1 PCT/CN2023/095541 CN2023095541W WO2024001609A1 WO 2024001609 A1 WO2024001609 A1 WO 2024001609A1 CN 2023095541 W CN2023095541 W CN 2023095541W WO 2024001609 A1 WO2024001609 A1 WO 2024001609A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
space voltage
control
voltage vector
control method
Prior art date
Application number
PCT/CN2023/095541
Other languages
English (en)
French (fr)
Inventor
顾明磊
张恺
谢宇
李昭明
黄良赛
Original Assignee
东风汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东风汽车集团股份有限公司 filed Critical 东风汽车集团股份有限公司
Publication of WO2024001609A1 publication Critical patent/WO2024001609A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature

Definitions

  • the present application relates to the technical field of electric vehicles, and in particular to a control method for a battery self-heating system.
  • the relevant patent outputs the three-phase alternating current output from the motor in a predetermined current cycle loading method. The current circulates inside the three-phase winding of the motor. There is also the problem of slow battery heating efficiency.
  • This application provides a control method for a battery self-heating system to solve the problem of slow battery self-heating rate.
  • Embodiments of the present application provide a control method for a battery self-heating system.
  • the control method includes: obtaining the rotor position of a permanent magnet synchronous motor; selecting at least three control points from preset space voltage vector points, wherein the control points including the one closest to the magnetic pole distance of the motor rotor space voltage vector; determine multiple phase states of the inverter corresponding to the control point from a preset space voltage vector control table; send control instructions to the motor controller based on the state of the phases to cause the inverter to The device switches sequentially between multiple phase states.
  • Figure 1 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another control method for a battery self-heating system provided by an embodiment of the present application
  • Figure 3 is a schematic flow chart of another control method of a battery self-heating system provided by an embodiment of the present application.
  • Figure 4 is a three-space voltage vector diagram provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another control method for a battery self-heating system provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another control method for a battery self-heating system provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of another control method of a battery self-heating system provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another control method for a battery self-heating system provided by an embodiment of the present application.
  • Figure 9 is a four-space voltage vector diagram provided by an embodiment of the present application.
  • FIG. 10 is a schematic flow chart of another battery self-heating system control method provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart of another control method of a battery self-heating system provided by an embodiment of the present application.
  • Figure 12 is a flowchart of another control method for a battery self-heating system provided by an embodiment of the present application. schematic diagram;
  • Figure 13 is a six-space voltage vector diagram provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of an optimization system for a battery self-heating system provided by an embodiment of the present application.
  • first ⁇ second ⁇ involved are only used to distinguish different objects, and do not indicate the similarities or connections between the objects. It should be understood that the orientation descriptions “above”, “below”, “outside” and “inside” are the orientations during normal use, and the “left” and “right” directions represent those in the specific corresponding schematic diagram. The indicated left and right directions may or may not be the left and right directions in normal use.
  • connection includes both direct connection and indirect connection unless otherwise specified.
  • the control method of the battery self-heating system provided in the specific embodiment is applicable to any different type of electric vehicle, for example, the control method of the battery self-heating system is suitable for battery self-heating of pure electric vehicles; for example, the control method of the battery self-heating system is suitable for battery self-heating of hybrid vehicles. Similarly, the control method of the battery self-heating system is suitable for cars of different specifications and types. As an example, the control method of the battery self-heating system is suitable for battery self-heating of household pure electric cars; as an example, the control method of the battery self-heating system The method is suitable for battery self-heating of commercial pure electric passenger cars; for the convenience of explanation, the following is an example of using the control method for battery self-heating of household pure electric cars.
  • Figure 1 is a schematic flow chart of a control method for a battery self-heating system provided by an embodiment of the present application. As shown in Figure 1, the flow of the control method includes:
  • Step S1 Obtain the rotor position of the permanent magnet synchronous motor.
  • the control system is used to obtain the specific position of the permanent magnet synchronous motor rotor in the motor. Any method that can obtain the position of the permanent magnet synchronous motor rotor meets the requirements of this case.
  • the motor is equipped with a position sensor, and the position is used to obtain the position of the permanent magnet synchronous motor rotor.
  • the sensor acquires the rotor position of the permanent magnet synchronous motor.
  • the permanent magnet synchronous motor is mainly composed of rotor, end cover, stator and other components. The starting and operation of a permanent magnet synchronous motor is formed by the interaction of the magnetic fields generated by the stator winding, the rotor squirrel cage winding and the permanent magnet.
  • stator rotating magnetic field When the motor is stationary, a three-phase symmetrical current is passed through the stator winding to generate a stator rotating magnetic field.
  • the stator rotating magnetic field generates a current in the cage winding relative to the rotation of the rotor, forming a rotor rotating magnetic field.
  • the stator rotating magnetic field interacts with the rotor rotating magnetic field.
  • Asynchronous torque causes the rotor to accelerate from standstill. In this process, the rotor permanent magnetic field and the stator rotating magnetic field rotate at different speeds, resulting in alternating torque.
  • the speed of the rotor's permanent magnetic field and the stator's rotating magnetic field are nearly equal.
  • the speed of the stator's rotating magnetic field is slightly larger than that of the rotor's permanent magnetic field. They interact to generate torque and pull the rotor into a synchronous operating state. In synchronous operation, no current is generated in the rotor winding. At this time, only the permanent magnets on the rotor generate a magnetic field, which interacts with the rotating magnetic field of the stator to generate driving torque.
  • Step S2 Select at least three control points from the preset space voltage vector points, where the control The points include the space voltage vector closest to the magnetic pole distance of the motor rotor.
  • the space voltage vector like the space current vector and the magnetic flux vector, is a type of control vector of the variable frequency speed regulation system.
  • the space voltage vector is based on the overall generation effect of the three-phase waveform and aims to approximate the ideal circular rotating magnetic field trajectory of the motor air gap. It generates three-phase modulation waveforms at one time and controls them in a way that the inscribed polygon approximates a circle.
  • the axes of the three-phase windings of the motor stator are 120 degrees apart in space.
  • the three-phase stator sine wave phase voltages are added to the three-phase windings respectively, defining three stator space voltage vectors so that their directions are always on the axis of each phase winding, and The magnitude fluctuates with time according to the sinusoidal law, and the angle of the time phases is also 120 degrees.
  • the switching actions of the upper and lower bridge arms of each phase of the three-phase inverter circuit are opposite.
  • the three-phase inverter circuit corresponds to a total of eight output voltage states, six of which The effective working vectors are two zero vectors, so the working state of the inverter only switches six times in one cycle, corresponding to six space voltage vectors.
  • the six space voltage vectors are referred to as the six space voltage vector points V1, V2, V3, V4, V5 and V6 below.
  • the six space voltage vector points are evenly distributed. Any two adjacent points are respectively connected with the center. The angle formed by connecting the points is 60 degrees.
  • Select at least three control points from the preset space voltage vector points Specifically, it can be understood as selecting at least three space voltages from the preset six space voltage vectors.
  • the vector is applied to the three-phase winding of the motor. For example, using battery self-heating based on three space voltage vectors, three space voltage vectors of V1, V2 and V4 are selected and applied to the three-phase winding of the motor.
  • space voltage vectors V1, V3, V4 and V6 are selected and applied to the three-phase winding of the motor.
  • V1, V2, V3, V4, V5 and V6 are selected and applied to the three-phase winding of the motor. Solutions for different space voltage vectors will be described in detail below, where the control points include the space voltage vector closest to the magnetic pole distance of the motor rotor, where the nearest can be understood as the magnetic pole distance from the motor rotor among the six space voltage vectors.
  • V1 belongs to one of the selected control points, that is, V1 is one of the output space voltage vectors.
  • Step S3 Determine multiple phase states of the inverter corresponding to the control points from the preset space voltage vector control table.
  • the motor inverter has six switches Q1, Q2, Q3, Q4, Q5 and Q6.
  • Each switch includes an IGBT (Insulated Gate Bipolar Transistor) module.
  • IGBT Insulated Gate Bipolar Transistor
  • the control table here can be understood as a table that summarizes the control methods of the space voltage vector generated by the combination of the on and off of the six switches of the inverter. Specifically, the inverter How do the on-off combinations of the six switches correspond to the space voltage vector?
  • switches Q1, Q6, and Q2 are turned on, and switches Q4, Q3, and Q5 are turned off, the space voltage vector V1 will be output, and switches Q4, Q3, and Q2 will be turned off.
  • the switches Q1, Q6 and Q5 output the space voltage vector V2, which belongs to the existing conventional technology and will not be described in details.
  • the multiple phase states of the inverter corresponding to the control point can be understood as each space voltage vector corresponding to different on-off combinations of the six switches of the inverter.
  • the specific operating principle can be understood as: for the space voltage vector that needs to be output, the control system queries the space voltage vector control table to determine the on-off combination status of the six switches of the inverter. For example, if the space voltage vector V1 needs to be output, then Judge the six switches of the inverter to turn on switches Q1, Q6 and Q2, and turn off switches Q4, Q3 and Q5.
  • Step S4 Send a control instruction to the motor controller based on the phase state to cause the inverter to switch between multiple phase states in sequence.
  • the control system queries the space voltage vector control table to determine the on-off combination status of the six switches of the inverter, and then adjusts the inverter in sequence according to the sequence of the space voltage vector that needs to be output.
  • the combined on-off state of the six switches of the inverter allows the inverter to switch between multiple phase states in sequence. It should be noted that a After the space voltage vector output sequence within the cycle is determined, the cycle will be carried out according to the previously set output sequence in the later period, and the space voltage vector output sequence will not be adjusted. For example, if the space voltage vector output sequence is V1, V2, V4, then the space voltage vector output sequence will be V1, V2 in the later period.
  • the interval time can be the same as the space voltage vector output time, or it can be different. Each interval time needs to be consistent, and each space voltage vector output time needs to be consistent.
  • the specific interval time And the space voltage vector output time is not specifically limited.
  • Embodiments of the present application provide a control method for a battery self-heating system.
  • the control method includes: obtaining the rotor position of a permanent magnet synchronous motor; selecting at least three control points from preset space voltage vector points, where the control points include and The space voltage vector with the closest magnetic pole spacing of the motor rotor; determine the multiple phase states of the inverter corresponding to the control points from the preset space voltage vector control table; send control instructions to the motor controller based on the phase states to make the inverter
  • the inverter switches between multiple phase states in sequence. Utilize the high-frequency self-heating technology of the battery core to create high-frequency current through the motor controller, and utilize the impedance characteristics of the battery core under high-frequency AC current to achieve self-heating. Based on the control of the space voltage vector, the current in the three-phase winding of the motor is reduced. Internal circulation increases the bus current, thereby increasing the battery heating rate, while making full use of existing components to reduce the cost of vehicle heating accessories.
  • FIG. 2 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application. Based on FIG. 1, step S2 in FIG. 2 includes:
  • Step S21 Select three control points from preset space voltage vector points.
  • three control points are selected from six space voltage vectors, that is, three space voltage vectors are selected, in which the control points include the space voltage vector closest to the magnetic pole distance of the motor rotor.
  • the angle between the extension direction of the N pole of the motor rotor and the line connecting the center of the motor rotor and V1 is within plus or minus 30 degrees, including 30 degrees.
  • the N pole of the motor rotor is located near V1. That is, the space voltage closest to the magnetic pole distance of the motor rotor The vector is V1.
  • Select three control points from the preset space voltage vector points which can be any combination.
  • the space voltage vector with the closest magnetic pole spacing of the motor rotor is V1
  • the three space voltage vectors can be V1, V3, and V2. , it can also be V1, V2, or V4, and there is no specific limit.
  • Figure 3 is a control method for a battery self-heating system provided by an embodiment of the present application.
  • Flow chart, based on Figure 2, step S21 in Figure 3 includes:
  • Step S211 Select three control points at intervals from the preset space voltage vector points.
  • three control points are selected from six space voltage vectors, that is, three space voltage vectors are selected, and the three space voltage vectors are V1, V2, V4 or V3, V6, and V5.
  • the angle between the extension direction of the N pole of the motor rotor and the line connecting the center of the motor rotor and V1 is within plus or minus 30 degrees, including 30 degrees. It can be understood that the N pole of the motor rotor is located near V1, that is The space voltage vector closest to the magnetic pole distance of the motor rotor is V1, then the three selected space voltage vectors are V1, V2, and V4.
  • the N pole of the motor rotor is located near V2 and V4, and the three selected space voltage vectors are also V1, V2, and V4.
  • the angle between the extension direction of the N pole of the motor rotor and the line connecting the center of the motor rotor and V3 is within plus or minus 30 degrees, including 30 degrees.
  • the N pole of the motor rotor is located near V3, that is The space voltage vector closest to the magnetic pole distance of the motor rotor is V3, then the three selected space voltage vectors are V3, V6, and V5.
  • the N pole of the motor rotor is located near V5 and V6, and the three selected space voltage vectors are also V3, V6, and V5.
  • the space voltage vector V1 is output, and the application time is t1;
  • the third step is to output the space voltage vector V2, and the application time is t2;
  • the fourth step is not to output any space voltage vector for a period of time
  • the fifth step is to output the space voltage vector V4, and the application time is t4;
  • the vector output times t1, t2, and t4 are not specifically limited.
  • FIG. 5 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application. Based on FIG. 1 , step S2 in FIG. 2 also includes:
  • Step S22 Select four control points from preset space voltage vector points.
  • four control points are selected from six space voltage vectors, that is, four space voltage vectors are selected, where the control points include the space voltage vector closest to the magnetic pole distance of the motor rotor.
  • the extension direction of the N pole of the motor rotor is in the angle between the line connecting the center of the motor rotor and V1 and the line connecting the center of the motor rotor and V3, that is, the space voltage vector closest to the magnetic pole distance of the motor rotor is V1 and V3.
  • Select four control points from the preset space voltage vector points which can be any combination and must include V1 and V3.
  • the space voltage vectors closest to the magnetic pole spacing of the motor rotor are V1 and V3.
  • the four space voltages The vectors can be V1, V3, V2, and V6, or they can be V1, V3, V4, and V6 without specific limitations.
  • Figure 6 is a control method for a battery self-heating system provided by an embodiment of the present application.
  • Schematic flow chart, based on Figure 5, step S22 in Figure 6 includes:
  • Step S221 Select two pairs of opposite points from the preset space voltage vector points.
  • the relative point can be specifically understood as a control point in the space voltage vector control table where the corresponding voltage vector is located on the same straight line and in opposite directions.
  • V1 and V6 are relative points
  • V3 and V4 are relative points
  • V2 and V5 are relative points.
  • the extension direction of the N pole of the motor rotor is at the angle between the line connecting the center of the motor rotor and V1 and the line connecting the center of the motor rotor and V3.
  • the four space voltage vector points are V1, V3, V6 and V4.
  • the extension direction of the N pole of the motor rotor is at the angle between the line connecting the center of the motor rotor and V3 and the line connecting the center of the motor rotor and V2.
  • the four space voltage vector points are V3, V4, V2 and V5.
  • FIG. 7 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application. Based on FIG. 6 , step S4 in FIG. 7 includes:
  • Step S41 Select two pairs of relative points to switch sequentially.
  • each space voltage vector V1, V6, V4 and V3 are used to apply to the three-phase winding of the motor.
  • the application time of each space voltage vector remains consistent. Selecting two pairs of relative points to switch sequentially includes two situations. One is that the order of applying each space voltage vector is any vector of the above four space vectors, the relative vector, and the adjacent vector. The relative vectors of the adjacent vectors are in sequence.
  • the reference point is the sequence of V1, V6, V3, and V4;
  • the order of application of each space voltage vector is any vector of the above four space vectors, the relative vector, the adjacent vector of the relative vector, and the adjacent vectors, in order point, that is, the sequence of V1, V6, V4, and V3; each time it is applied, no vector will be output for a period of time, and the time is adjustable.
  • the current must always be applied in this order to obtain the corresponding current response.
  • FIG. 8 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application. Based on FIG. 7 , step S41 in FIG. 8 includes:
  • Step S411 Two pairs of relative points are switched in sequence. When two pairs of relative points are switched, Control points are adjacent points.
  • each space voltage vector is any vector of the above four space vectors, the relative vector, the adjacent vector of the relative vector, and the adjacent vectors are the reference points in sequence, that is, the order of V1, V6, V4, and V3; each subsequent application No vector is output for a period of time, which is adjustable.
  • the current must always be applied in this order to obtain the corresponding current response.
  • a battery self-heating control method based on four space voltage vectors is provided. This method includes:
  • the first step is to output the space voltage vector V1, the application time is t1, and the time is adjustable;
  • the third step is to output the space voltage vector V6, and the application time is t6;
  • the fourth step is not to output any space voltage vector for a period of time
  • the fifth step is to output the space voltage vector V4, and the application time is t4;
  • Step 6 Do not output any space voltage vector for a period of time
  • the seventh step is to output the space voltage vector V3, and the application time is t3;
  • Step 8 Do not output any space voltage vector for a period of time
  • FIG. 10 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application. Based on FIG. 1 , step S2 in FIG. 2 also includes:
  • Step S23 Select six control points from the preset space voltage vector points.
  • six control points are selected from six space voltage vectors, that is, all six space voltage vectors are selected.
  • FIG. 11 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application. Based on FIG. 10 , in FIG. 11 Step S4 includes:
  • Step S42 Select six control points and switch them in sequence at intervals.
  • V1, V2, V3, V4, V5 and V6 are used to apply to the three-phase winding of the motor.
  • the application time of each space voltage vector remains consistent.
  • the reference point can be in the order of V1, V6, V5, V3, V4, V2; for example, the reference point can also be in the order of V1, V6, V3, V4, V2, V5; no vector will be output after each application to maintain A period of time, the time is adjustable.
  • the current must always be applied in this order to obtain the corresponding current response.
  • FIG. 12 is a schematic flowchart of a control method for a battery self-heating system provided by an embodiment of the present application. Based on FIG. 11 , step S42 in FIG. 12 includes:
  • Step S421 The six control points are divided into three pairs, and the three pairs of relative points are switched in sequence, and the control points when switching any two pairs of relative points are adjacent points.
  • space voltage vectors V1, V2, V3, V4, V5 and V6 are used to apply to the three-phase winding of the motor.
  • the application time of each space voltage vector remains consistent.
  • the six control points are three pairs, V1 and V6, V3 and V4, and V2 and V5.
  • the application order of each space voltage vector is any vector, relative vector, another pair of vectors and their relative vectors, and the last pair of vectors and their relative vectors.
  • each pair of vectors needs to be output within a cycle, and the vectors when switching between the two pairs of vectors are adjacent vectors, which are the reference points in sequence, that is, the sequence of V1, V6, V2, V5, V4, and V3; each time a subsequent Do not lose The output of any vector is maintained for a period of time, and the time is adjustable.
  • the current must always be applied in this order to obtain the corresponding current response.
  • a battery self-heating control method based on six space voltage vectors is provided. This method includes:
  • the first step is to output the space voltage vector V1, the application time is t1, and the time is adjustable;
  • the third step is to output the space voltage vector V6, and the application time is t6;
  • the fourth step is not to output any space voltage vector for a period of time
  • the fifth step is to output the space voltage vector V2, and the application time is t2;
  • Step 6 Do not output any space voltage vector for a period of time
  • the seventh step is to output the space voltage vector V5, and the application time is t5;
  • Step 8 Do not output any space voltage vector for a period of time
  • Step 9 Output the space voltage vector V4, and the application time is t4;
  • Step 10 Do not output any space voltage vector for a period of time
  • Step 11 Output the space voltage vector V3, and the application time is t3;
  • Step 12 Do not output any space voltage vector for a period of time
  • the optimization system includes: an acquisition module 100 and a processing module 200 .
  • the acquisition module 100 is used to acquire the permanent magnet synchronous motor rotor position.
  • the processing module 200 selects at least three control points from preset space voltage vector points.
  • the processing module 200 is also used to determine multiple phase states of the inverter corresponding to the control point from the preset space voltage vector control table; the processing module 200 is also used to determine the phase state of the inverter based on the state of the phase.
  • the motor controller sends control commands to cause the inverter to switch between multiple phase states in sequence.
  • the acquisition module 100 selects three control points from preset space voltage vector points. In some embodiments, the acquisition module 100 selects three control points at intervals from preset space voltage vector points.
  • the acquisition module 100 selects four control points from preset space voltage vector points. In some embodiments, the acquisition module 100 selects at least a pair of relative points from preset space voltage vector points, where the relative points are control points in the space voltage vector control table where the corresponding voltage vectors are located on the same straight line and in opposite directions. . In some embodiments, the acquisition module 100 selects two pairs of relative points from preset space voltage vector points. In some embodiments, the processing module 200 is used to select two pairs of relative points to switch sequentially. In some embodiments, the processing module 200 is also used to switch two pairs of relative points in sequence, where the control points when switching between the two pairs of relative points are adjacent points.
  • the acquisition module 100 selects six control points from preset space voltage vector points.
  • the processing module 200 is also used to select six control points to switch in sequence at intervals.
  • the six control points are three pairs, and the processing module 200 is also used to switch three pairs of relative points in sequence, where the control points when switching any two pairs of relative points are adjacent points.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电池自加热***的控制方法,包括:获取永磁同步电机转子位置;从预设的空间电压矢量点中选取至少三个控制点,其中控制点中包括与电机转子的磁极间距最近的空间电压矢量;从预设的空间电压矢量控制表中确定与控制点对应的逆变器的多个相位状态;基于相位的状态向电机控制器发送控制指令,使逆变器在多个相位状态之间依次切换。该控制方法基于空间电压示矢量的控制,减少电流在电机三相绕组内部循环,提高母线电流,从而提高电池加热的速率。

Description

一种电池自加热***的控制方法
相关申请的交叉引用
本申请基于申请号为202210758352.8、申请日为2022年6月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及电动汽车技术领域,尤其涉及一种电池自加热***的控制方法。
背景技术
电池在低温环境下充放电性能大幅下降,寿命衰减、而且易发生析锂导致起火、***等安全风险。为改善低温使用性能,低温环境下需要给充放电电池进行加热处理。目前主流的电池加热技术有液冷管道加热、加热膜加热等,加热速率慢,同时易出现温差过大故障,导致客户抱怨。相关专利将电机输出的三相交流电以预定的电流周期加载方式输出,电流在电机三相绕组内部循环,同样存在电池加热效率较慢的问题。
发明内容
本申请提供一种电池自加热***的控制方法,以解决电池自加热速率慢的问题。
本申请实施例提供一种电池自加热***的控制方法,所述控制方法包括:获取永磁同步电机转子位置;从预设的空间电压矢量点中选取至少三个控制点,其中所述控制点中包括与所述电机转子的磁极间距最近的所述 空间电压矢量;从预设的空间电压矢量控制表中确定与所述控制点对应的逆变器的多个相位状态;基于所述相位的状态向电机控制器发送控制指令,使所述逆变器在多个所述相位状态之间依次切换。
附图说明
图1为本申请实施例提供的一种电池自加热***的控制方法的流程示意图;
图2为本申请实施例提供的另一种电池自加热***的控制方法的流程示意图;
图3为本申请实施例提供的另一种电池自加热***的控制方法的流程示意图;
图4为本申请实施例提供的一种三空间电压矢量图;
图5为本申请实施例提供的另一种电池自加热***的控制方法的流程示意图;
图6为本申请实施例提供的另一种电池自加热***的控制方法的流程示意图;
图7为本申请实施例提供的另一种电池自加热***的控制方法的流程示意图;
图8为本申请实施例提供的另一种电池自加热***的控制方法的流程示意图;
图9为本申请实施例提供的一种四空间电压矢量图;
图10为本申请实施例提供的另一种电池自加热***控制方法的流程示意图;
图11为本申请实施例提供的另一种电池自加热***的控制方法的流程示意图;
图12为本申请实施例提供的另一种电池自加热***的控制方法的流程 示意图;
图13为本申请实施例提供的一种六空间电压矢量图;
图14为本申请实施例提供的一种电池自加热***的优化***的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在具体实施例中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如通过不同的具体技术特征的组合可以形成不同的实施例和技术方案。为了避免不必要的重复,本申请中各个具体技术特征的各种可能的组合方式不再另行说明。
在以下的描述中,所涉及的术语“第一\第二\...”仅仅是区别不同的对象,不表示各对象之间具有相同或联系之处。应该理解的是,所涉及的方位描述“上方”、“下方”、“外”、“内”均为正常使用状态时的方位,“左”、“右”方向表示在具体对应的示意图中所示意的左右方向,可以为正常使用状态的左右方向也可以不是。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。术语“连接”在未特别说明的情况下,既包括直接连接也包括间接连接。
在具体实施方式中提供的电池自加热***的控制方法适用于任何不同 类型的电动汽车,示例性的,电池自加热***的控制方法适用于纯电汽车的电池自加热;示例性的,电池自加热***的控制方法适用于混动汽车的电池自加热。同理该电池自加热***的控制方法适用于不同规格类型的汽车,示例性的,电池自加热***的控制方法适用于家用纯电轿车的电池自加热;示例性的,电池自加热***的控制方法适用于商用纯电客车的电池自加热;为了便于说明,以下均以该控制方法用于家用纯电轿车的电池自加热为例进行示例性说明。
在一些实施例中,请参阅图1,图1为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,如图1所示,该控制方法的流程包括:
步骤S1、获取永磁同步电机转子位置。
需要说明的是,利用控制***获取永磁同步电机转子在电机中所处的具***置,任何能够获取永磁同步电机转子位置的方式均符合本案的要求,例如,电机设置有位置传感器,利用位置传感器获取永磁同步电机转子位置。需要说明的是,永磁同步电动机主要是由转子、端盖及定子等各部件组成。永磁同步电动机的启动和运行是由定子绕组、转子鼠笼绕组和永磁体这三者产生的磁场的相互作用而形成。电动机静止时,给定子绕组通入三相对称电流,产生定子旋转磁场,定子旋转磁场相对于转子旋转在笼型绕组内产生电流,形成转子旋转磁场,定子旋转磁场与转子旋转磁场相互作用产生的异步转矩使转子由静止开始加速转动。在这个过程中,转子永磁磁场与定子旋转磁场转速不同,会产生交变转矩。当转子加速到速度接近同步转速的时候,转子永磁磁场与定子旋转磁场的转速接近相等,定子旋转磁场速度稍大于转子永磁磁场,它们相互作用产生转矩将转子牵入到同步运行状态。在同步运行状态下,转子绕组内不再产生电流。此时转子上只有永磁体产生磁场,它与定子旋转磁场相互作用,产生驱动转矩。
步骤S2、从预设的空间电压矢量点中选取至少三个控制点,其中控制 点中包括与电机转子的磁极间距最近的空间电压矢量。
需要说明的是,交流电动机绕组的电压、电流、磁链等物理量都是随时间变化的,空间电压矢量和空间电流矢量、磁通矢量一样,是变频调速***控制矢量的一种。空间电压矢量是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。电动机定子三相绕组的轴线,在空间相差120度,三相定子正弦波相电压分别加在三相绕组上,定义三个定子空间电压矢量,使其方向始终处于各相绕组的轴线上,而大小随时间按正弦规律波动,时间相位互相错开的角度也是120度,三相逆变器电路每相上下桥臂开关动作相反,则三相逆变电路共对应八个输出电压状态,其中六个有效工作矢量,两个零矢量,因此一个周期内逆变器的工作状态只切换六次,对应形成六个空间电压矢量。
为了便于说明,以下将六个空间电压矢量对应称为六个空间电压矢量点V1、V2、V3、V4、V5和V6,六个空间电压矢量点均匀分布,任意相邻两个点分别与中心位点连线,形成的夹角为60度,从预设的空间电压矢量点中选取至少三个控制点,具体可以理解为,在预设的六个空间电压矢量中至少选取三个空间电压矢量施加到电机三相绕组,例如,采用基于三空间电压矢量的电池自加热,选取V1、V2和V4三个空间电压矢量施加到电机三相绕组。例如,采用基于四空间电压矢量的电池自加热,选取V1、V3、V4和V6四个空间电压矢量施加到电机三相绕组。例如,采用基于六空间电压矢量的电池自加热,则选取V1、V2、V3、V4,V5和V6六个空间电压矢量施加到电机三相绕组。针对不同空间电压矢量的方案将在下文进行详细描述,其中控制点中包括与电机转子的磁极间距最近的空间电压矢量,此处最近的可以理解为在六个空间电压矢量中离电机转子的磁极最近的,具体可以理解为,在选择空间电压矢量施加到电机三相绕组时,离 电机转子的磁极最近的空间电压矢量。例如,电机转子的磁极的N极的延伸方向正对于V1,则V1属于选取的控制点之一,即V1为输出空间电压矢量之一。
步骤S3、从预设的空间电压矢量控制表中确定与控制点对应的逆变器的多个相位状态。
具体的,电机逆变器具有六个开关Q1、Q2,Q3、Q4,Q5和Q6,每个开关包括IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)模块,通过逆变器六个开关的开通关断组合产生的空间电压矢量。其次,从预设的空间电压矢量控制表中,此处的控制表可以理解为将逆变器六个开关的开通关断组合产生的空间电压矢量的控制方式汇总生成的表格,具体逆变器六个开关的开通关断组合如何对应空间电压矢量,例如,开通开关Q1、Q6和Q2,关断开关Q4、Q3和Q5,则输出空间电压矢量V1,开通开关Q4、Q3和Q2,关断开关Q1、Q6和Q5,则输出空间电压矢量V2,属于现有常规技术,具体不再赘述。并将控制表录入控制***。控制点对应的逆变器的多个相位状态,可以理解为,每个空间电压矢量对应逆变器六个开关的不同的开通关断组合。具体操作原理可以理解为,针对需要输出的空间电压矢量,控制***经过查询空间电压矢量控制表,从而判断逆变器六个开关的开通关断组合状态,例如,需要输出空间电压矢量V1,则判断逆变器六个开关开通开关Q1、Q6和Q2,关断开关Q4、Q3和Q5。
步骤S4、基于相位的状态向电机控制器发送控制指令,使逆变器在多个相位状态之间依次切换。
具体的,在针对需要输出的空间电压矢量,控制***经过查询空间电压矢量控制表,从而判断逆变器六个开关的开通关断组合状态之后,按照需要输出的空间电压矢量顺序,依次调整逆变器六个开关的开通关断组合状态,从而使逆变器在多个相位状态之间依次切换。需要说明的是,一个 周期内空间电压矢量输出顺序确定后,后期按照此前设定的输出顺序进行循环,不再调整空间电压矢量输出顺序,例如,空间电压矢量输出顺序为V1、V2、V4,则后期按照V1、V2、V4,V1、V2、V4,V1、V2、V4……进行循环。其次,空间电压矢量切换之间可以间隔一定时间,间隔时间可以与空间电压矢量输出时间相同,也可以不同,每个间隔时间需要保持一致,每个空间电压矢量输出时间需要保持一致,具体间隔时间以及空间电压矢量输出时间不做具体限定。
本申请实施例提供一种电池自加热***的控制方法,该控制方法包括:获取永磁同步电机转子位置;从预设的空间电压矢量点中选取至少三个控制点,其中控制点中包括与电机转子的磁极间距最近的空间电压矢量;从预设的空间电压矢量控制表中确定与控制点对应的逆变器的多个相位状态;基于相位的状态向电机控制器发送控制指令,使逆变器在多个相位状态之间依次切换。利用电芯高频自加热技术,通过电机控制器制造高频电流,利用电芯在高频交流电流下的阻抗特性,实现自加热,基于空间电压示矢量的控制,减少电流在电机三相绕组内部循环,提高母线电流,从而提高电池加热的速率,同时充分利用现有部件,减少整车加热附件成本。
在一些实施例中,结合图2和图4所示,图2为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图1,图2中的步骤S2包括:
步骤S21、从预设的空间电压矢量点中选取三个控制点。
具体的,基于三空间电压矢量,从六个空间电压矢量选取三个控制点,即选取三个空间电压矢量,其中控制点中包括与电机转子的磁极间距最近的空间电压矢量。具体可以理解为,电机转子的N极延伸方向与电机转子中心和V1的连线之间的夹角在正负30度以内,包括30度,可以理解为电机转子的N极位于V1的附近,即与电机转子的磁极间距最近的空间电压 矢量为V1。从预设的空间电压矢量点中选取三个控制点,可以为任意的组合,示例性的,电机转子的磁极间距最近的空间电压矢量为V1,三个空间电压矢量可以为V1、V3、V2,也可以为V1、V2、V4,具体不做限定。
在一些实施例中,为了能够减少电流在电机三相绕组内部循环,提高母线电流,结合图3和图4所示,图3为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图2,图3中的步骤S21包括:
步骤S211、从预设的空间电压矢量点中选取间隔的三个控制点,
具体的,基于三空间电压矢量,从六个空间电压矢量选取三个控制点,即选取三个空间电压矢量,三个空间电压矢量为V1、V2、V4或者V3、V6、V5。示例性的,电机转子的N极延伸方向与电机转子中心和V1的连线之间的夹角在正负30度以内,包括30度,可以理解为电机转子的N极位于V1的附近,即与电机转子的磁极间距最近的空间电压矢量为V1,则所选的三个空间电压矢量为V1、V2、V4。同理电机转子的N极位于V2和V4的附近,所选的三个空间电压矢量同样为V1、V2、V4。示例性的,电机转子的N极延伸方向与电机转子中心和V3的连线之间的夹角在正负30度以内,包括30度,可以理解为电机转子的N极位于V3的附近,即控与电机转子的磁极间距最近的空间电压矢量为V3,则所选的三个空间电压矢量为V3、V6、V5。同理电机转子的N极位于V5和V6的附近,所选的三个空间电压矢量同样为V3、V6、V5。
使用V1、V2和V4或V3、V5和V6三个空间电压矢量施加到电机三相绕组。各空间电压矢量施加时间保持一致。各空间电压矢量施加顺序任意,但循环过程中一直按照此顺序施加,得到对应的电流响应。示例性的,如图4所示,以电机转子位置位于V1附近为例,提供基于三空间电压矢量的电池自加热控制方法。此方法包括:
第一步,输出空间电压矢量V1,施加时间为t1;
第二步,不输出任何空间电压矢量,维持一段时间;
第三步,输出空间电压矢量V2,施加时间为t2;
第四步,不输出任何空间电压矢量,维持一段时间;
第五步,输出空间电压矢量V4,施加时间为t4;
第六步,不输出任何空间电压矢量维持一段时间;重复第一步至第六步。需要说明的是施加时间相等,即t1=t2=t4,每个间隔时间需要保持一致,每个空间电压矢量输出时间需要保持一致,具体两次输出空间电压矢量之间的间隔维持时间以及空间电压矢量输出时间t1,t2,t4不做具体限定。
在一些实施例中,结合图5和图9所示,图5为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图1,图2中的步骤S2还包括:
步骤S22、从预设的空间电压矢量点中选取四个控制点。
具体的,基于四空间电压矢量,从六个空间电压矢量选取四个控制点,即选取四个空间电压矢量,其中控制点中包括与电机转子的磁极间距最近的空间电压矢量。具体可以理解为,例如,电机转子的N极延伸方向在电机转子中心和V1连线与电机转子中心和V3连线之间的夹角中,即与电机转子的磁极间距最近的空间电压矢量为V1和V3。从预设的空间电压矢量点中选取四个控制点,可以为任意的组合,必须包含V1和V3,示例性的,电机转子的磁极间距最近的空间电压矢量为V1和V3,四个空间电压矢量可以为V1、V3、V2和V6,也可以为V1、V3、V4和V6具体不做限定。
在一些实施例中,为了能够减少电流在电机三相绕组内部循环,提高母线电流,结合图6和图9所示,图6为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图5,图6中的步骤S22包括:
步骤S221、从预设的空间电压矢量点中选取两对相对点。
具体的,基于四空间电压矢量,从六个空间电压矢量选取四个控制点, 即选取四个空间电压矢量,四个空间电压矢量点为两对相对点。相对点具体可以理解为空间电压矢量控制表中对应的电压矢量位于同一直线,且方向相反的控制点。具体的,V1和V6为相对点,V3和V4为相对点,V2和V5为相对点。示例性的,电机转子的N极延伸方向在电机转子中心和V1连线与电机转子中心和V3连线之间的夹角中,四个空间电压矢量点为V1、V3、V6和V4。示例性的,电机转子的N极延伸方向在电机转子中心和V3连线与电机转子中心和V2连线之间的夹角中,四个空间电压矢量点为V3、V4、V2和V5。
在一些实施例中,结合图7和图9所示,图7为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图6,图7中的步骤S4包括:
步骤S41、选取两对相对点按顺序依次切换。
具体的,为了便于说明,使用V1、V6、V4和V3、四个空间电压矢量施加到电机三相绕组。各空间电压矢量施加时间保持一致。选取两对相对点按顺序依次切换包括两种情况,其一,各空间电压矢量施加顺序为上述四空间矢量的任一矢量、相对矢量、相邻矢量,相邻矢量的相对矢量的、依次为参考点,即V1、V6、V3、V4的顺序;其二,各空间电压矢量施加顺序为上述四空间矢量的任一矢量、相对矢量、相对矢量的相邻矢量,相邻矢量,依次为参考点,即V1、V6、V4、V3的顺序;每施加一次后续不输出任何矢量维持一段时间,该时间可调。循环过程中需始终按照此顺序施加,得到对应的电流响应。
在一些实施例中,结合图8和图9所示,图8为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图7,图8中的步骤S41包括:
步骤S411、两对相对点按顺序依次切换,其中两对相对点的切换时的 控制点为相邻点。
具体的,同样为了便于说明,使用V1、V6、V4和V3、四个空间电压矢量施加到电机三相绕组。使用V1、V6、V4和V3、四个空间电压矢量施加到电机三相绕组。各空间电压矢量施加时间保持一致。各空间电压矢量施加顺序为上述四空间矢量的任一矢量、相对矢量、相对矢量的相邻矢量,相邻矢量,依次为参考点,即V1、V6、V4、V3的顺序;每施加一次后续不输出任何矢量维持一段时间,该时间可调。循环过程中需始终按照此顺序施加,得到对应的电流响应。示例性的,如图9所示,以电机转子位置位于V1和V3之间为例,提供基于四空间电压矢量的电池自加热控制方法。此方法包括:
第一步,输出空间电压矢量V1,施加时间为t1,时间可调;
第二步,不输出任何空间电压矢量,维持一段时间;
第三步,输出空间电压矢量V6,施加时间为t6;
第四步,不输出任何空间电压矢量,维持一段时间;
第五步,输出空间电压矢量V4,施加时间为t4;
第六步,不输出任何空间电压矢量,维持一段时间;
第七步,输出空间电压矢量V3,施加时间为t3;
第八步,不输出任何空间电压矢量,维持一段时间;
重复第一步至第八步。需要说明的是施加时间相等,即t1=t3=t4=t6。每个间隔时间需要保持一致,每个空间电压矢量输出时间需要保持一致,具体两次输出空间电压矢量之间的间隔维持时间以及空间电压矢量输出时间t1,t3,t4,t6不做具体限定。
在一些实施例中,结合图10和图13所示,图10为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图1,图2中的步骤S2还包括:
步骤S23、从预设的空间电压矢量点中选取六个控制点。
具体的,基于六空间电压矢量,从六个空间电压矢量选取六个控制点,即选取六个空间电压矢量全部选择。
在一些实施例中,结合图11和图13所示如图11所示,图11为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图10,图11中的步骤S4包括:
步骤S42、选取六个控制点按顺序间隔依次切换。
具体的,为了便于说明,使用V1、V2、V3、V4、V5和V6六个空间电压矢量施加到电机三相绕组。各空间电压矢量施加时间保持一致。选取六个控制点按顺序间隔依次切换可以为任何形式的间隔依次切换。例如,参考点可以为V1、V6、V5、V3、V4、V2的顺序;例如,参考点也可以为V1、V6,V3、V4,V2、V5的顺序;每施加一次后续不输出任何矢量维持一段时间,该时间可调。循环过程中需始终按照此顺序施加,得到对应的电流响应。
在一些实施例中,结合图12和图13所示,图12为本申请实施例提供的一种电池自加热***的控制方法的流程示意图,基于图11,图12中的步骤S42包括:
步骤S421、六个控制点为三对,三对相对点按顺序依次切换,其中任意两对相对点的切换时的控制点为相邻点。
具体的,使用V1、V2、V3、V4、V5和V6六个空间电压矢量施加到电机三相绕组。各空间电压矢量施加时间保持一致。六个控制点为三对,V1和V6,V3和V4,V2和V5。各空间电压矢量施加顺序为任一矢量、相对矢量、另一对矢量及其相对矢量,最后一对矢量及其相对矢量。即每对矢量在一个循环内均需输出,且两对矢量的切换时的矢量为相邻矢量,依次为参考点,即V1、V6、V2、V5、V4、V3的顺序;每施加一次后续不输 出任何矢量维持一段时间,该时间可调。循环过程中需始终按照此顺序施加,得到对应的电流响应。示例性的,如图13所示,以电机转子位置位于V1和V3之间为例,提供基于六空间电压矢量的电池自加热控制方法。此方法包括:
第一步,输出空间电压矢量V1,施加时间为t1,时间可调;
第二步,不输出任何空间电压矢量,维持一段时间;
第三步,输出空间电压矢量V6,施加时间为t6;
第四步,不输出任何空间电压矢量,维持一段时间;
第五步,输出空间电压矢量V2,施加时间为t2;
第六步,不输出任何空间电压矢量,维持一段时间;
第七步,输出空间电压矢量V5,施加时间为t5;
第八步,不输出任何空间电压矢量,维持一段时间;
第九步,输出空间电压矢量V4,施加时间为t4;
第十步,不输出任何空间电压矢量,维持一段时间;
第十一步,输出空间电压矢量V3,施加时间为t3;
第十二步,不输出任何空间电压矢量,维持一段时间;
重复第一步至第十二步。需要说明的是施加时间相等,即t1=t2=t3=t4=t5=t6。每个间隔时间需要保持一致,每个空间电压矢量输出时间需要保持一致,具体两次输出空间电压矢量之间的间隔维持时间以及空间电压矢量输出时间t1,t2,t3,t4,t5,t6不做具体限定。
本申请实施例还提供一种电池自加热***的优化***,如图14所示,该优化***包括:获取模块100和处理模块200。获取模块100用于获取永磁同步电机转子位置。处理模块200从预设的空间电压矢量点中选取至少三个控制点。处理模块200还用于从预设的空间电压矢量控制表中确定与控制点对应的逆变器的多个相位状态;处理模块200还基于相位的状态向 电机控制器发送控制指令,使逆变器在多个相位状态之间依次切换。
在一些实施例中,如图14所示,获取模块100从预设的空间电压矢量点中选取三个控制点。在一些实施例中,获取模块100从预设的空间电压矢量点中选取间隔的三个控制点。
在一些实施例中,如图14所示,获取模块100从预设的空间电压矢量点中选取四个控制点。在一些实施例中,获取模块100从预设的空间电压矢量点中选取至少一对相对点,其中,相对点为空间电压矢量控制表中对应的电压矢量位于同一直线,且方向相反的控制点。在一些实施例中,获取模块100从预设的空间电压矢量点中选取两对相对点。在一些实施例中,处理模块200用于选取两对相对点按顺序依次切换。在一些实施例中,处理模块200还用于两对相对点按顺序依次切换,其中两对相对点的切换时的控制点为相邻点。
在一些实施例中,如图14所示,获取模块100从预设的空间电压矢量点中选取六个控制点。在一些实施例中,处理模块200还用于选取六个控制点按顺序间隔依次切换。在一些实施例中,六个控制点为三对,处理模块200还用于三对相对点按顺序依次切换,其中任意两对相对点的切换时的控制点为相邻点。
以上所述,仅为本申请的可选实施例而已,并非用于限定本申请的保护范围。

Claims (10)

  1. 一种电池自加热***的控制方法,所述控制方法包括:
    获取永磁同步电机转子位置;
    从预设的空间电压矢量点中选取至少三个控制点,其中所述控制点中包括与所述电机转子的磁极间距最近的所述空间电压矢量;
    从预设的空间电压矢量控制表中确定与所述控制点对应的逆变器的多个相位状态;
    基于所述相位的状态向电机控制器发送控制指令,使所述逆变器在多个所述相位状态之间依次切换。
  2. 根据权利要求1所述的控制方法,其中,所述从预设的空间电压矢量点中选取至少三个控制点包括:
    从预设的空间电压矢量点中选取三个控制点。
  3. 根据权利要求2所述的控制方法,其中,所述从预设的空间电压矢量点中选取三个控制点包括:
    从所述预设的空间电压矢量点中选取间隔的三个所述控制点。
  4. 根据权利要求1所述的控制方法,其中,所述从预设的空间电压矢量点中选取至少三个控制点包括:
    从预设的空间电压矢量点中选取四个控制点。
  5. 根据权利要求4所述的控制方法,其中,所述从预设的空间电压矢量点中选取至少一对相对点包括:
    从预设的空间电压矢量点中选取两对相对点。
  6. 根据权利要求5所述的控制方法,其中,所述基于所述相位的状态向电机控制器发送控制指令,使所述逆变器在多个所述相位状态之间依次切换包括:
    所述选取两对相对点按顺序依次切换。
  7. 根据权利要求6所述的控制方法,其中,所述选取两对相对点按顺序依次切换包括:
    所述两对相对点按顺序依次切换,其中两对相对点的切换时的控制点为相邻点。
  8. 根据权利要求1所述的控制方法,其中,所述从预设的空间电压矢量点中选取至少三个控制点包括:
    从预设的空间电压矢量点中选取六个控制点。
  9. 根据权利要求8所述的控制方法,其中,所述基于所述相位的状态向电机控制器发送控制指令,使所述逆变器在多个所述相位状态之间依次切换包括:
    所述选取六个控制点按顺序间隔依次切换。
  10. 根据权利要求9所述的控制方法,其中,所述选取六个控制点按顺序间隔依次切换包括:
    所述六个控制点为三对,所述三对相对点按顺序依次切换,其中任意两对相对点的切换时的控制点为相邻点。
PCT/CN2023/095541 2022-06-29 2023-05-22 一种电池自加热***的控制方法 WO2024001609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210758352.8A CN115158100A (zh) 2022-06-29 2022-06-29 一种电池自加热***的控制方法
CN202210758352.8 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001609A1 true WO2024001609A1 (zh) 2024-01-04

Family

ID=83488802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095541 WO2024001609A1 (zh) 2022-06-29 2023-05-22 一种电池自加热***的控制方法

Country Status (2)

Country Link
CN (1) CN115158100A (zh)
WO (1) WO2024001609A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115158100A (zh) * 2022-06-29 2022-10-11 东风汽车集团股份有限公司 一种电池自加热***的控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469266A (en) * 1987-09-08 1989-03-15 Toshiba Corp Three-phase pwm signal generation circuit for inverter device
JP2003111490A (ja) * 2001-10-01 2003-04-11 Daikin Ind Ltd インバータ制御方法およびその装置
CN108512473A (zh) * 2018-03-12 2018-09-07 武汉科技大学 三相四开关永磁同步电机调速***的直接转矩控制方法
CN109039189A (zh) * 2018-07-17 2018-12-18 东南大学 基于几何法的永磁同步电机两矢量预测控制***及方法
CN111181465A (zh) * 2020-02-25 2020-05-19 浙江大学 一种开绕组永磁同步电机***的直接转矩控制方法和装置
CN112117941A (zh) * 2020-08-01 2020-12-22 南通长江电器实业有限公司 一种基于模型预测电流控制的开绕组永磁同步电机容错控制方法
CN113002366A (zh) * 2021-04-30 2021-06-22 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池加热***和加热方法
CN115158100A (zh) * 2022-06-29 2022-10-11 东风汽车集团股份有限公司 一种电池自加热***的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469266A (en) * 1987-09-08 1989-03-15 Toshiba Corp Three-phase pwm signal generation circuit for inverter device
JP2003111490A (ja) * 2001-10-01 2003-04-11 Daikin Ind Ltd インバータ制御方法およびその装置
CN108512473A (zh) * 2018-03-12 2018-09-07 武汉科技大学 三相四开关永磁同步电机调速***的直接转矩控制方法
CN109039189A (zh) * 2018-07-17 2018-12-18 东南大学 基于几何法的永磁同步电机两矢量预测控制***及方法
CN111181465A (zh) * 2020-02-25 2020-05-19 浙江大学 一种开绕组永磁同步电机***的直接转矩控制方法和装置
CN112117941A (zh) * 2020-08-01 2020-12-22 南通长江电器实业有限公司 一种基于模型预测电流控制的开绕组永磁同步电机容错控制方法
CN113002366A (zh) * 2021-04-30 2021-06-22 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池加热***和加热方法
CN115158100A (zh) * 2022-06-29 2022-10-11 东风汽车集团股份有限公司 一种电池自加热***的控制方法

Also Published As

Publication number Publication date
CN115158100A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US9685898B2 (en) Quasi vector motor controller
US20090237021A1 (en) Apparatus for carrying out improved control of rotary machine
CN112977173B (zh) 一种电动汽车及其动力电池脉冲加热***和加热方法
US20090237022A1 (en) Apparatus for carrying out improved control of rotary machine
El Badsi et al. Bus-clamping-based DTC: An attempt to reduce harmonic distortion and switching losses
KR20200075937A (ko) 모터 구동 시스템을 이용한 충전 시스템의 제어 장치
WO2024001609A1 (zh) 一种电池自加热***的控制方法
EP3651353A1 (en) Inverter control device
US20170250623A1 (en) Parallel inverter scheme for separating conduction and switching losses
CN108370226A (zh) 交流旋转电机的控制装置
Sun et al. Four-switch inverter fed PMSM DTC with SVM approach for fault tolerant operation
Aisyah et al. A new optimal DTC switching strategy for open-end windings induction machine using a dual-inverter
CN105915122B (zh) 基于直接转矩控制的五相逆变器双电机***容错控制方法
Do et al. Improved of dynamic torque by field oriented control based fuzzy logic for bldc motor
CN206727920U (zh) 一种多相永磁纯方波电机控制***
Abdelghani et al. Direct torque control of two induction motors using the nine-switch inverter
Zhang et al. Direct torque control with a modified switching table for a direct matrix converter based AC motor drive system
JP2022550333A (ja) エネルギー変換装置及び車両
Kiyota et al. Principle of a novel dual-mode reluctance motor for electric vehicle applications
CN104333277B (zh) 永磁同步牵引电机的起动方法及相关设备
JP6861096B2 (ja) 電動車両の電源システム
Kong et al. Field-weakening speed extension of BLDCM based on instantaneous power theory
Xu et al. Research on Symmetrical Six-Phase PMSM Two-Motor Inversed-Series Connection System
Xu et al. Two-axis vector control of double stator linear and rotary permanent magnet machine considering orthogonally coupling effect
Latrech et al. Dual star induction machine driven by direct torque control using sliding mode speed controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829794

Country of ref document: EP

Kind code of ref document: A1