WO2024000963A1 - 一种与碱性水反应制氢的铝 / 碳复合物及其制备方法与应用 - Google Patents

一种与碱性水反应制氢的铝 / 碳复合物及其制备方法与应用 Download PDF

Info

Publication number
WO2024000963A1
WO2024000963A1 PCT/CN2022/128472 CN2022128472W WO2024000963A1 WO 2024000963 A1 WO2024000963 A1 WO 2024000963A1 CN 2022128472 W CN2022128472 W CN 2022128472W WO 2024000963 A1 WO2024000963 A1 WO 2024000963A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
carbon
carbon composite
alkaline water
hydrogen production
Prior art date
Application number
PCT/CN2022/128472
Other languages
English (en)
French (fr)
Inventor
王平
玄登晖
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2024000963A1 publication Critical patent/WO2024000963A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention belongs to the technical field of hydrogen production materials, and specifically relates to an aluminum/carbon composite that reacts with alkaline water to produce hydrogen and its preparation method and application.
  • Hydrogen is a clean and efficient energy carrier. Its large-scale industrial application is expected to fundamentally solve global problems such as energy shortage and environmental pollution. However, safe and efficient storage and transportation of hydrogen are still huge challenges facing the widespread application of hydrogen energy technology. challenge. Since around 2000, the use of hydrogen-rich materials/systems combined with spent fuel regeneration to produce hydrogen on demand has become a chemical hydrogen storage method for mobile or portable devices. Among the many candidate materials/systems, the aluminum-water system has attracted much attention due to its abundant resources, low reaction temperature, the generated hydrogen does not require purification, and the mature aluminum recycling technology.
  • the present invention proposes a method of using carbon materials as modifiers to compound with aluminum, thereby improving its hydrogen production performance in alkaline water.
  • the invention adopts a hydrogen production system and a hydrogen production method by reacting an aluminum/carbon composite with alkaline water.
  • the hydrogen production system consists of a solid composite and an alkaline liquid.
  • the weight ratio of the solid composite and the alkaline liquid is 1:5. ⁇ 1:1000; among them, the solid composite is an aluminum/carbon material composite.
  • the aluminum/carbon composite is prepared by mechanical ball milling.
  • the carbon is finely dispersed in the interior and surface of the aluminum matrix at micro-nano scale.
  • the composite has super affinity. Water-based, good antioxidant properties.
  • the aluminum/carbon composite that reacts with alkaline water to produce hydrogen.
  • the aluminum/carbon composite is composed of an aluminum matrix and a carbon material; the carbon material is dispersed and distributed on the surface of the aluminum matrix in the form of submicron or nanoscale particles. and internally, forming a continuous or quasi-continuous network.
  • the aluminum/carbon composite exhibits super hydrophilicity and good oxidation resistance.
  • the purity of the aluminum matrix is above 99%
  • the carbon material is one or a combination of one or more of carbon nanotubes, graphene, activated carbon, carbon fiber, graphite powder or conductive carbon black.
  • the above-mentioned preparation method of the aluminum/carbon composite for reacting with alkaline water to produce hydrogen includes the following steps:
  • step (1) Ball-mill the aluminum powder and the carbon material heat-treated in step (1) under a protective atmosphere to prepare an aluminum/carbon composite that reacts with alkaline water to produce hydrogen.
  • the protective atmosphere in step (1) is argon.
  • the heat treatment temperature in step (1) is 200-550°C
  • the time is 1-10 hours
  • the heating rate is 10°C/min.
  • the carbon material in step (1) is one or a combination of one or more of carbon nanotubes, graphene, activated carbon, carbon fiber, graphite powder or conductive carbon black.
  • the mass ratio of the aluminum powder and the heat-treated carbon material in step (2) is 1:1 ⁇ 100:1.
  • the mass ratio of the aluminum powder and the heat-treated carbon material in step (2) is 1:1 ⁇ 95:5.
  • the particle size of the aluminum powder in step (2) is 1 to 1000 ⁇ m.
  • the particle size of the aluminum powder in step (2) is 10 ⁇ 200 ⁇ m; the purity is 99.9%.
  • the diameter of the grinding ball used in the ball milling in step (2) is 5 mm-15 mm; the ball-to-material mass ratio of the grinding ball is 5:1 ⁇ 100:1.
  • the diameter of the grinding balls used in the ball milling in step (2) is 5, 10, or 15 mm;
  • the ball milling speed in step (2) is 100 to 2000 rpm, and the ball milling time is 1 minute to 50 hours.
  • the grinding jar and grinding balls of the ball mill in step (2) are agate, zirconia, cemented carbide, polyurethane or stainless steel; the protective atmosphere is argon.
  • the alkali in the alkaline water is one or a combination of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca(OH) 2 ) or lithium hydroxide (LiOH).
  • the concentration of alkali is 0.1 ⁇ 10 M.
  • the concentration of the base is 0.5 ⁇ 5 M.
  • the weight ratio of the aluminum/carbon composite and alkaline water is 1:5 ⁇ 1:1000.
  • the hydrogen production reaction is carried out in a room temperature environment; the system temperature is not controlled during the hydrogen production reaction.
  • the design principle of the present invention is:
  • the key point is to have fast hydrogen production kinetics in a relatively mild solution without excessive modification costs. Previous studies often only considered the former and ignored the cost issue.
  • the aluminum/carbon composite provided by the present invention simultaneously solves these two problems to a certain extent.
  • the aluminum powder and carbon material are mechanically ball milled under the protection of an argon atmosphere.
  • the carbon material not only acts as a modifier, but also acts as a grinding aid to prevent the aluminum powder from adhering to each other due to cold welding during the ball milling process.
  • the carbon material is fully in contact with the aluminum matrix, which also creates a large number of interfaces, giving the aluminum/carbon composite a fluffy structure, providing a channel for moisture diffusion in the capillary effect, thereby increasing the contact area for the reaction.
  • the passivation film on the aluminum surface is destroyed and the following reaction occurs (1):
  • the present invention provides a modified new method suitable for hydrogen production from aluminum/water.
  • the key difference between this method and the traditional method is that the method is simple, easy to implement, fast and can be mass-produced. It significantly provides hydrogen production power. While learning, it also has low modification cost.
  • the physical mixing ability of the mechanical ball milling method is used to evenly distribute the carbon material on the surface and interior of the aluminum matrix, providing a large interface area and creating a channel for moisture diffusion, which is conducive to increasing the contact area of the reaction; in addition, by regulating the carbon material The proportion and ball milling time further strengthen the interaction between carbon and aluminum matrix, further improving the hydrogen production performance of the aluminum/carbon composite.
  • the aluminum/carbon composite material provided by the present invention and suitable for instant hydrogen production by mobile equipment uses cheap and easily available raw materials, has a simple preparation process, is pollution-free in the entire process, and is convenient for mass production.
  • the present invention provides an aluminum/carbon material-water composite system with high hydrogen production performance, which can achieve rapid hydrogen production kinetics at low alkali concentrations and has excellent oxidation resistance.
  • the comprehensive hydrogen production performance is currently at the top. level.
  • Figure 1b is a scanning electron microscope and the corresponding energy spectrum of the aluminum/carbon composite prepared in Example 1 after reacting in an alkali solution for 10 seconds.
  • Figure 5a is a hydrogen production kinetic curve of the aluminum/carbon composite prepared in Example 1 and pure aluminum powder in an alkaline solution.
  • Figure 5b is a hydrogen production rate curve over time of the aluminum/carbon composite prepared in Example 1 and pure aluminum powder in an alkaline solution.
  • Figure 8b is a hydrogen production rate curve as time changes in an alkali solution as the proportion of carbon material decreases in the aluminum/carbon composite prepared in Example 3 after ball milling for 15 minutes.
  • Figure 10a is a graph showing the change of the contact angle with time on the surface of the aluminum powder compact prepared in Example 5.
  • Figure 10b is a graph showing the change of contact angle with time on the surface of the Al/carbon composite tablet prepared in Example 5.
  • the generated hydrogen is cooled to room temperature through the condenser tube, and then collected in a gas collection bottle.
  • the amount of hydrogen produced is measured by the drainage method, and the hydrogen production volume-time curve is measured.
  • the measured hydrogen production volume is differentiated with time to obtain Hydrogen production rate-time curve.
  • Figure 5a and Figure 5b show the hydrogen production performance (including hydrogen production amount-time curve and hydrogen production rate-time curve) of aluminum/carbon composite and unmodified aluminum powder in alkaline solution.
  • the test results show that: It takes 8 minutes for the modified aluminum powder to achieve complete hydrogen production, and the maximum hydrogen production rate is only 251 mL min -1 g -1 ; while the modified aluminum/carbon composite can achieve complete hydrogen production within 1 minute. , the maximum hydrogen production rate reaches 4556 mL min -1 g -1 (based on the mass of aluminum/carbon composite), which is 18 times that of unmodified aluminum powder.
  • the hydrogen production method and hydrogen production performance test method are the same as in Example 1.
  • Figure 6a and Figure 6b show the comparison of hydrogen production performance of aluminum/carbon material composites in alkaline solution with different ball milling times. The results show that the hydrogen production kinetics of the aluminum/carbon material composite increases as the ball milling time increases, reaching a maximum at 15 minutes; when the ball milling time continues to be extended, the hydrogen production kinetics decrease.
  • the preparation of the Al/carbon composite is the same as in Example 1, except that the mass ratio of aluminum powder to carbon material is different.
  • the hydrogen production method and hydrogen production performance test method are the same as in Example 1.
  • Figure 8a and Figure 8b show the law of the hydrogen production performance curve (including hydrogen production amount-time curve and hydrogen production rate-time curve) when the proportion of carbon material in the aluminum/carbon composite in the alkaline solution continues to decrease: as the carbon material The proportion of carbon materials gradually decreases, and the hydrogen production kinetics gradually deteriorates, indicating that the higher the proportion of carbon materials, the better the modification effect on the aluminum matrix.
  • the Al/carbon composite preparation was the same as in Example 1.
  • the hydrogen production method and hydrogen production performance test method are the same as in Example 1.
  • the hydrogen production kinetics slowed down with the extension of storage time, and the maximum hydrogen production rate also decreased.
  • the hydrogen production kinetics and the maximum hydrogen production rate remained stable, and the sample still showed good performance.
  • the hydrogen production performance shows that the sample has certain antioxidant properties.
  • the Al/carbon composite preparation was the same as in Example 1.
  • Figure 10a and Figure 10b show the surface contact angle changes with time of aluminum powder tablets and Al/carbon composite tablets.
  • the surface contact angle of aluminum powder tablets is stable at 93°, showing hydrophobic characteristics; while water droplets After contacting the Al/carbon composite tablet, it is quickly absorbed and disappears within 0.05 seconds, showing super hydrophilicity.
  • the results of the examples show that the present invention adopts a modification method of mechanical ball milling of aluminum powder and carbon materials to promote hydrogen production from aluminum-water, which can solve the problems of low hydrogen production rate and high modification cost in the prior art.
  • the hydrogen system and hydrogen production method have the technical advantages of simple process, high efficiency, safety and low hydrogen production cost, and can provide a mobile hydrogen source for fuel cells of mobile or portable equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种与碱性水反应制氢的铝/碳复合物及其制备方法与应用;所述铝/碳复合物由铝基体和碳材料组成;所述碳材料以亚微米或纳米尺度的颗粒形式弥散分布于铝基体表面及内部,并形成了连续或准连续的网络。本发明通过在保护气氛下将碳材料进行热处理;将铝粉与热处理后的碳材料在保护气氛下进行球磨,制得与碱性水反应制氢的铝/碳复合物。本发明提供的制备方法原料易得、操作简单、便于量产,可以显著改善铝水***的制氢动力学,可在室温环境下与碱性水迅速反应制氢,最高制氢速率位于当前报道顶尖水平。

Description

一种与碱性水反应制氢的铝/碳复合物及其制备方法与应用 技术领域
本发明属于制氢材料技术领域,具体涉及一种与碱性水反应制氢的铝/碳复合物及其制备方法与应用。
背景技术
氢是一种清洁、高效的能源载体,其规模化产业应用有望根本性解决能源短缺、环境污染等全球性问题,但安全、高效地储存和运输氢仍是氢能技术广泛应用所面临的巨大挑战。自2000年前后,利用富氢材料/***与乏燃料再生相结合,按需制氢,已经成为用于移动或便携设备的化学储氢方法。在众多的候选材料/体系中,铝-水体系因其资源丰富、反应温度低、生成的氢气无须纯化以及铝的循环利用技术成熟等特点而备受关注。
然而铝表面连续致密钝化层的形成制约了铝-水体系作为氢源的应用潜力,针对这个问题,目前外国内外已经开发出多种改性手段,但都不能满足实际应用制氢的性能与成本需求。添加高浓度的碱性助剂,如氢氧化钠、氢氧化钾等,可以与氧化铝以及铝反应生成可溶性的偏铝酸盐化物,从而有效破坏钝化层的生成,但高的碱浓度又容易引发容器的应力腐蚀,对氢气发生器提出了苛刻的耐蚀性要求。采用镓、铟、锡、铋等低熔点金属与铝合金化可以通过削弱基体强度,改变钝化膜致密性等作用,从而实现在中性水中具备快速制氢性能(Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction);但材料和改性成本的急剧升高,限制了这类铝基合金的实际应用。此外,铝与Al2O3,MgO等金属氧化物或NaCl,KCl等水溶性无机盐球磨也可以提升在其在中性水中的反应活性,但根据已发表的文献,在长时间的球磨过后,氧化物/盐对铝-水***反应动力学的提升效果相当有限。因此,在不过度增加制备成本的前提下,探索先进的方法来解决铝-水***的钝化问题仍然是当务之急。
鉴于这种情况,本发明提出采用碳材料作为改性剂与铝复合的方法,从而提高其在碱性水中的制氢性能。
技术解决方案
针对现有技术存在的不足,本发明的目的在于提供一种适用于移动设备的与碱性水反应制氢的铝/碳复合物及其制备方法与应用(水反应制氢体系的制氢方法)。该制备方法原料易得、操作简便、便于量产、改性后的铝基复合物在低碱浓度下具备优异的制氢性能,可以解决现有技术中存在的制备成本过高、制氢速率低等问题。
本发明采用铝/碳复合物与碱性水反应制氢体系和制氢方法,制氢体系由固体复合物和碱性液体两部分组成,固体复合物和碱性液体的重量比例在1:5~1:1000;其中,固体复合物为铝/碳材料复合物,铝/碳复合物采用机械球磨法制备,碳以微纳米尺度细小弥散的分散在铝基体内部和表面,复合物具有超亲水性,良好的抗氧化性。
本发明的目的通过以下技术方案实现。
一种与碱性水反应制氢的铝/碳复合物,所述铝/碳复合物由铝基体和碳材料组成;所述碳材料以亚微米或纳米尺度的颗粒形式弥散分布于铝基体表面及内部,并形成了连续或准连续的网络。所述铝/碳复合物,表现出超亲水性及良好的抗氧化性。
优选的,所述铝基体的纯度为99%以上,碳材料为碳纳米管、石墨烯、活性炭、碳纤维、石墨粉或导电炭黑中一种或多种的组合。
优选的,所述铝/碳复合物具有多孔结构,孔尺寸为100 nm~10μm。
上述的与碱性水反应制氢的铝/碳复合物的制备方法,包含以下步骤:
(1)在保护气氛下将碳材料进行热处理;去除吸附的杂质气体与水分;所述碳材料热处理后,具有石墨碳和无定形碳两种相结构;
(2)将铝粉与步骤(1)热处理后的碳材料在保护气氛下进行球磨,制得与碱性水反应制氢的铝/碳复合物。
优选的,步骤(1)所述的保护气氛为氩气。
优选的,步骤(1)所述热处理的温度为200~550℃,时间为1~10小时;升温速率为10℃/min。
优选的,步骤(1)所述碳材料为碳纳米管、石墨烯、活性炭、碳纤维、石墨粉或导电炭黑中一种或多种的组合。
优选的,步骤(2)所述铝粉与热处理后的碳材料的质量比为1:1~100:1。
进一步优选的,步骤(2)所述铝粉与热处理后的碳材料的质量比为1:1~95:5。
优选的,步骤(2)所述铝粉的粒径1~1000μm。
进一步优选的,步骤(2)所述铝粉的粒径10~200μm;纯度为99.9%。
优选的,步骤(2)所述球磨所用的磨球的直径为5 mm-15 mm;所述磨球的球料质量比5:1~100:1。
进一步优选的,步骤(2)所述球磨所用的磨球的直径为5 、10、15 mm;
优选的,步骤(2)所述球磨的转速为100~2000转/分钟,球磨的时间为1分钟~50小时。
优选的,步骤(2)所述球磨的磨罐及磨球为玛瑙、氧化锆、硬质合金、聚氨酯或不锈钢;所述的保护气氛为氩气。
上述的与碱性水反应制氢的铝/碳复合物在与碱性水反应制氢中的应用。
优选的,所述碱性水中的碱为氢氧化钠(NaOH)、氢氧化钾(KOH)、氢氧化钙(Ca(OH) 2)或氢氧化锂(LiOH)中一种或多种的组合,碱的浓度为0.1~10 M。
进一步优选的,碱的浓度为0.5~5 M。
优选的,所述铝/碳复合物和碱性水的重量比为1:5~1:1000。
优选的,制氢反应在室温环境中进行;制氢反应过程中不对体系温度进行控制。
本发明的设计原理是:
对于铝水反应制氢改性方法,关键点是在相对温和的溶液中具备快速制氢动力学,并且无需过高的改性成本。以往的研究往往只考虑前者而忽略了成本问题,而本发明所提供的铝/碳复合物同时对这两个问题进行了一定程度上的解决。首先,将铝粉和碳材料在氩气氛保护下机械球磨,在这个过程,碳材料不仅充当改性剂,而且还可以充当助磨剂防止铝粉在球磨过程中由冷焊现象导致的相互粘连;此外,碳材料与铝基体充分地接触,也创造了大量的界面,使铝/碳复合物具备蓬松的结构,提供了毛细效应中水分扩散的通道,进而增大了反应的接触面积,当接触到碱溶液时,铝表面的钝化膜被破坏,发生如下反应 (1):
Al 2O 3 + 3H 2O + 2OH - → 2[Al(OH) 4] -                          (1)
随后渗透进铝/碳复合物的碱性水溶液接触到铝基体,发生反应 (2)
2Al + 6H 2O + 2OH - → 2[Al(OH) 4] -  + 3H 2↑                        (2)
有益效果
本发明的优点及有益效果在于:
(1) 本发明提供了适用于铝/水制氢的改性新方法,该刚发区别于传统方法的关键之处在于方法简单易行,快速且可大量生产,在显著提供了制氢动力学的同时兼具低改性成本。利用机械球磨法的物理混合能力,使碳材料均匀地分布于铝基体的表面及内部,提供大量的界面面积,创造了水分扩散的通道,有利于提高反应的接触面积;此外通过调控碳材料所占的比例与球磨时间进一步强化碳与铝基体的相互作用,进一步改善铝/碳复合物的制氢性能。
(2) 本发明提供的适用于移动设备即时制氢的铝/碳复合材料采用的原材料廉价易得,制备工艺简单、全程无污染、便于量产。
(3) 本发明提供了高制氢性能铝/碳材料-水复合体系,可在低碱浓度下实现快速的制氢动力学,且具有优异的抗氧化性,综合制氢性能位于目前的顶尖水平。
附图说明
图1a为实施例1制备的球磨15分钟Al:碳材料=5的铝/碳复合物制备态的扫描电镜及对应的能谱图。
图1b为实施例1制备的铝/碳复合物在碱溶液中反应10秒后的扫描电镜及对应的能谱图。
图2a为实施例1制备的球磨15分钟Al:碳材料=5的铝/碳复合物高脚环形暗场透射电镜及对应的能谱分析图。
图2b为实施例1制备的球磨15分钟Al:碳材料=5的铝/碳复合物透射电镜及对应区域的电子衍射图片。
图2c为实施例1制备的球磨15分钟Al:碳材料=5的铝/碳复合物高分辨透射电镜结果图。
图3为实施例1制备的球磨15分钟Al:碳材料=5的铝/碳复合物的XRD图。
图4为实施例1制备的球磨15分钟Al:碳材料=5的铝/碳复合物的拉曼光谱。
图5a为实施例1制备的铝/碳复合物与纯铝粉在碱溶液中的制氢动力学曲线。
图5b为实施例1制备的铝/碳复合物与纯铝粉在碱溶液中的随时间变化的的制氢速率曲线。
图6a为实施例2制备的不同球磨时间的Al:碳材料=5的铝/碳复合物在碱溶液中的制氢动力学曲线。
图6b为实施例2制备的不同球磨时间的Al:碳材料=5的铝/碳复合物在碱溶液中的随时间变化的的制氢速率曲线。
图7a为实施例2制备的球磨10分钟的Al:碳材料=5的铝/碳复合物扫描电镜及对应能的谱分析图。
图7b为实施例2制备的球磨20分钟的Al:碳材料=5的铝/碳复合物扫描电镜及对应能的谱分析图。
图7c为实施例2制备的球磨1小时的Al:碳材料=5的铝/碳复合物扫描电镜及对应能的谱分析图。
图8a为实施例3制备的球磨15分钟铝/碳复合物中随碳材料比例降低在碱溶液中的制氢动力学曲线。
图8b为实施例3制备的球磨15分钟铝/碳复合物中随碳材料比例降低在碱溶液中的随时间变化的的制氢速率曲线。
图9a为实施例4制备的球磨15分钟Al:碳材料=5的铝/碳复合物随着在空气中放置时间延长在碱溶液中的制氢动力学曲线。
图9b为实施例4制备的球磨15分钟Al:碳材料=5的铝/碳复合物随着在空气中放置时间延长在碱溶液中的随时间变化的的制氢速率曲线。
图10a为实施例5制备的铝粉压片表面接触角随时间的变化图。
图10b为实施例5制备的Al/碳复合物压片表面接触角随时间的变化图。
本发明的实施方式
以下结合附图和实施例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
实施例 1
Al/碳复合物的合成、结构与制氢性能
Al/碳复合物制备
选取所应用的碳材料(活性碳)将其在氩气氛下加热至400 ℃,升温速率10 ℃/分钟,经3小时恒温处理后随炉冷却至室温。随后在手套箱中将粒径25μm的铝粉、热处理后的碳材料与磨球(5mm,10mm,15mm的磨球按照质量比为5:2:1混合)按照1:30的质量比装入球磨罐,铝粉与碳材料质量比为5:1,在1000转每分钟的转速下球磨15分钟,制得目标铝/碳复合物。
铝/碳复合物的物相/结构表征:
扫描电镜观察以及对应的能谱分析(图1a和图1b)发现:机械球磨后,大量不同尺寸的碳颗粒镶嵌在铝基体上,但在反应进行10秒后再次对样品进行观察,发现碳颗粒大量从铝基体上脱落,铝基体上出现了脱嵌形成的凹坑。
高脚环形暗场透射电镜观察及对应的能谱分析(图2a)进一步确认了铝碳在亚微米到纳米尺度的均匀复合,碳材料在铝基体中形成了连续或准连续的网络。选取电子衍射(图2b)确认了铝的衍射环,高分辨透射电子显微镜观察(图2c)到了碳材料中的特征非晶碳形貌。
XRD分析(图3)显示了清晰指认的铝的尖锐衍射峰,以及碳材料对应的非晶峰。
拉曼光谱(图4)出现的D峰和G峰以及I D/I G=1.06同样证明了以非晶碳为主要组成相的碳材料的存在。
制氢方法:
在室温环境下(25 ℃)将1 g铝/碳复合物置于两颈烧瓶中,通过恒压漏斗将1 M NaOH 溶液100 mL注入两颈烧瓶,反应过程中不对体系温度进行控制。(以铝粉作为对比实验)
制氢性能测试:
产生的氢气通过冷凝管冷却至室温,后经过集气瓶收集,并通过排水法测量产生氢气的量,测得制氢量-时间曲线;将测得的制氢量对时间进行微分,测得制氢速率-时间曲线。
图5a和图5b给出了铝/碳复合物与未经改性铝粉在碱溶液中的制氢性能(包括制氢量-时间曲线及制氢速率-时间曲线),测试结果表明:未经改性的铝粉要经过8分钟才能实现完全制氢,最高制氢速率仅为251 mL min -1g -1 ;而改性后的铝/碳复合物可以实现1分钟之内完全制氢,最高制氢速率达到4556 mL min -1g -1(以铝/碳复合物的质量计),是未改性铝粉的18倍。
性能测试结果表明:铝粉与碳材料经过机械球磨改性后,在低碱浓度环境中的制氢动力学得到了显著的提升。
实施例 2
球磨时间对铝/碳材料复合物制氢性能的影响、铝/碳材料复合物的微观结构随球磨时间的变化。
Al/碳复合物制备与实施例1相同,区别仅在于球磨时间不同。
制氢方法及制氢性能测试方法同实施例1。
图6a和图6b给出了不同球磨时间铝/碳材料复合物在碱溶液中的制氢性能对比情况。结果显示,铝/碳材料复合物的制氢动力学随着球磨时间的增长而升高,在到达15分钟时达到最高;当继续延长球磨时间时,却导致了制氢动力学的下降。
不同球磨时间铝/碳复合物的形貌表征
根据扫描电镜结合能谱分析(图7a、图7b和图7c)发现,碳颗粒随着球磨时间的延长逐渐破碎,并镶嵌在铝基体上,阻止了铝表面钝化膜的生成,同时为水分子进入铝基体内部提供了窗口和扩散通道;但由于纯铝具有良好的塑性和形变能力,碳颗粒很快在铝相互焊合粘连的的过程中被包覆在基体内部。(能谱中碳信号逐渐减弱乃至消失)
实施例 3
碳材料比例对铝/碳复合物制氢性能的影响。
Al/碳复合物制备与实施例1相同,区别仅在于铝粉与碳材料质量比不同。
制氢方法及制氢性能测试方法同实施例1。
图8a和图8b给出了在碱溶液中铝/碳复合物中碳材料比例不断降低制氢性能曲线的规律(包括制氢量-时间曲线及制氢速率-时间曲线):随着碳材料的比例逐渐降低,制氢动力学逐渐变差,说明碳材料的比例越高,对铝基体的改性效果越好。
实施例 4
在空气中放置对铝/碳复合物制氢性能的影响。
Al/碳复合物制备与实施例1相同。
制氢方法及制氢性能测试方法同实施例1。
图9a和图9b给出了在碱溶液中Al:碳材料=5的铝/碳复合物随着在空气中放置时间的延长制氢性能的变化(包括制氢量-时间曲线及制氢速率-时间曲线)。制氢动力学随着放置时间的延长而有减慢,最高制氢速率也随之下降,但放置时间到达12小时后,制氢动力学与最高制氢速率保持稳定,样品依旧表现出了良好的制氢性能,这表明样品有一定的抗氧化性能。
实施例 5
Al/碳复合物的亲水性测试
Al/碳复合物制备与实施例1相同。
使用压片机将相同质量未经处理的铝粉与Al/碳复合物分别压制为直径为10 mm,厚度1 mm的圆形压片,进行表面接触角测试。
图10a和图10b给出了铝粉压片及Al/碳复合物压片的表面接触角随时间的变化,铝粉压片的表面接触角稳定在93°,表现出疏水的特性;而水滴在接触到Al/碳复合物压片0.05秒以内就迅速被压片所吸收而消失,表现出超亲水性。
实施例的结果表明:本发明采用将铝粉与碳材料机械球磨促进铝-水制氢的改性方法,可以解决现有技术中存在的制氢速率低、改性成本过高等问题,该制氢体系及制氢方法具有工艺简单、高效、安全且制氢成本较低等技术优点,可为移动或便携设备的燃料电池提供移动氢源。
以上实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种与碱性水反应制氢的铝/碳复合物,其特征在于,所述铝/碳复合物由铝基体和碳材料组成;所述碳材料以亚微米或纳米尺度的颗粒形式弥散分布于铝基体表面及内部,并形成了连续或准连续的网络。
  2. 根据权利要求1所述的与碱性水反应制氢的铝/碳复合物,其特征在于,所述铝基体的纯度为99%以上,碳材料为碳纳米管、石墨烯、活性炭、碳纤维、石墨粉或导电炭黑中一种或多种的组合。
  3. 权利要求1或2所述的与碱性水反应制氢的铝/碳复合物的制备方法,其特征在于,包含以下步骤:
    (1)在保护气氛下将碳材料进行热处理;
    (2)将铝粉与步骤(1)热处理后的碳材料在保护气氛下进行球磨,制得与碱性水反应制氢的铝/碳复合物。
  4. 根据权利要求3所述的与碱性水反应制氢的铝/碳复合物的制备方法,其特征在于:步骤(1)所述的保护气氛为氩气;所述热处理的温度为200~550 ℃,时间为1~10小时。
  5. 根据权利要求3所述的与碱性水反应制氢的铝/碳复合物的制备方法,其特征在于:步骤(2)所述铝粉与热处理后的碳材料的质量比为1:1~100:1;所述铝粉的粒径1~1000 μm。
  6. 根据权利要求3所述的与碱性水反应制氢的铝/碳复合物的制备方法,其特征在于:步骤(2)所述球磨所用的磨球的直径为5 mm-15 mm;所述磨球的球料质量比5:1~100:1;
    所述球磨的转速为100~2000转/分钟,球磨的时间为1分钟~50小时。
  7. 根据权利要求3所述的与碱性水反应制氢的铝/碳复合物的制备方法,其特征在于:步骤(2)所述球磨的磨罐及磨球为玛瑙、氧化锆、硬质合金、聚氨酯或不锈钢;所述的保护气氛为氩气。
  8. 权利要求1或2所述的与碱性水反应制氢的铝/碳复合物在与碱性水反应制氢中的应用。
  9. 根据权利要求8所述的应用,其特征在于:所述碱性水中的碱为氢氧化钠、氢氧化钾、氢氧化钙或氢氧化锂中一种或多种的组合,碱的浓度为0.1~10 M;
    所述铝/碳复合物和碱性水的重量比为1:5~1:1000。
  10. 根据权利要求8所述的应用,其特征在于:制氢反应在室温环境中进行;制氢反应过程中不对体系温度进行控制。
PCT/CN2022/128472 2022-06-28 2022-10-30 一种与碱性水反应制氢的铝 / 碳复合物及其制备方法与应用 WO2024000963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210744531.6A CN115057409B (zh) 2022-06-28 2022-06-28 一种与碱性水反应制氢的铝/碳复合物及其制备方法与应用
CN202210744531.6 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024000963A1 true WO2024000963A1 (zh) 2024-01-04

Family

ID=83204264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128472 WO2024000963A1 (zh) 2022-06-28 2022-10-30 一种与碱性水反应制氢的铝 / 碳复合物及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115057409B (zh)
WO (1) WO2024000963A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057409B (zh) * 2022-06-28 2024-03-08 华南理工大学 一种与碱性水反应制氢的铝/碳复合物及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094694A (zh) * 1993-04-30 1994-11-09 田祖培 用铝炭嵌合物制备氢气的方法及其装置
CN101463435A (zh) * 2007-12-21 2009-06-24 成均馆大学校产学协力团 碳材料在铝中的包封
CN102009950A (zh) * 2010-09-21 2011-04-13 上海大学 一种中性和常温下水解制氢用铝基复合物及其制备方法
US20140154173A1 (en) * 2011-07-25 2014-06-05 H2 Catalyst, Llc Methods and systems for producing hydrogen
CN105819399A (zh) * 2016-03-28 2016-08-03 浙江吉利控股集团有限公司 一种可控制制氢速度的制氢反应
CN108640084A (zh) * 2018-07-10 2018-10-12 上海交通大学 一种水解制氢的铝基材料及制备与制氢方法
CN109338167A (zh) * 2018-10-22 2019-02-15 昆明理工大学 一种碳纳米管复合材料的制备方法
CN110065927A (zh) * 2019-04-26 2019-07-30 北京理工大学 一种具有高产氢速率的Al-Bi-C复合物及其制备方法
CN115057409A (zh) * 2022-06-28 2022-09-16 华南理工大学 一种与碱性水反应制氢的铝/碳复合物及其制备方法与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094694A (zh) * 1993-04-30 1994-11-09 田祖培 用铝炭嵌合物制备氢气的方法及其装置
CN101463435A (zh) * 2007-12-21 2009-06-24 成均馆大学校产学协力团 碳材料在铝中的包封
CN102009950A (zh) * 2010-09-21 2011-04-13 上海大学 一种中性和常温下水解制氢用铝基复合物及其制备方法
US20140154173A1 (en) * 2011-07-25 2014-06-05 H2 Catalyst, Llc Methods and systems for producing hydrogen
CN105819399A (zh) * 2016-03-28 2016-08-03 浙江吉利控股集团有限公司 一种可控制制氢速度的制氢反应
CN108640084A (zh) * 2018-07-10 2018-10-12 上海交通大学 一种水解制氢的铝基材料及制备与制氢方法
CN109338167A (zh) * 2018-10-22 2019-02-15 昆明理工大学 一种碳纳米管复合材料的制备方法
CN110065927A (zh) * 2019-04-26 2019-07-30 北京理工大学 一种具有高产氢速率的Al-Bi-C复合物及其制备方法
CN115057409A (zh) * 2022-06-28 2022-09-16 华南理工大学 一种与碱性水反应制氢的铝/碳复合物及其制备方法与应用

Also Published As

Publication number Publication date
CN115057409B (zh) 2024-03-08
CN115057409A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
Liu et al. Issues and opportunities facing hydrolytic hydrogen production materials
Zhu et al. A promising regeneration of waste carbon residue from spent Lithium-ion batteries via low-temperature fluorination roasting and water leaching
CN102583357B (zh) 以石灰石为原料制备石墨烯的方法
CN108199030A (zh) 锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法
CN114956037A (zh) 一种钠离子电池负极用碳材料及其制备方法以及钠离子电池负极极片和钠离子电池
WO2018205761A1 (zh) 一种以硅酸盐玻璃为原料制备三维多孔硅的方法
CN103723705A (zh) 一种石墨烯/纳米铝复合物及其制备方法
WO2024000963A1 (zh) 一种与碱性水反应制氢的铝 / 碳复合物及其制备方法与应用
CN111916724A (zh) 免洗高镍单晶镍钴锰酸锂正极材料的制备方法及应用
CN113526474B (zh) 氮化锂颗粒以及其制备方法和制备设备
CN115092941A (zh) 利用低温碱熔法从煤气化细灰中回收残碳及硅酸钠的方法及应用
Zhang et al. Hierarchical K2Mn4O8 nanoflowers: A novel photothermal conversion material for efficient solar vapor generation
CN106011554B (zh) 一种水解制氢铝合金及其制备方法
Xuan et al. Rapid hydrogen generation from the reaction of aluminum/activated charcoal composite with alkaline solution
CN110180523A (zh) 一种非金属多孔碳纳米催化剂及其制备方法
CN110950322B (zh) 一种利用赤泥和原煤制备碳纳米管复合碳材料的方法
CN111515380B (zh) 一种高容量镁基复合储氢材料及其制备方法
CN105970031B (zh) 一种水解制氢铝合金及其制备方法
Wang et al. Low-temperature and efficient preparation of starfish-like Mo2C/C composites from waste biomass
Zhang et al. Preparation and characterization of activated aluminum powder by magnetic grinding method for hydrogen generation
CN107585738B (zh) 一种Mg-Mg2Si复合水解制氢材料及其制备方法与用于水解制氢的方法
Xu et al. Magnesium-Based Hydrogen Storage Alloys: Advances, Strategies, and Future Outlook for Clean Energy Applications
Hou et al. Investigation on environmental stability and hydrolytic hydrogen production behavior of Mg30La alloy modified by activated carbon/expandable graphite
CN113019158A (zh) 一种以高炉渣为主要原料干压成型制备膜蒸馏脱盐用多孔硅灰石陶瓷膜的方法
CN108448077B (zh) 一种以油页岩废渣为原料制备Si/C复合材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949047

Country of ref document: EP

Kind code of ref document: A1