WO2024000356A1 - 数据处理方法及装置、数据显示方法及装置、设备和介质 - Google Patents

数据处理方法及装置、数据显示方法及装置、设备和介质 Download PDF

Info

Publication number
WO2024000356A1
WO2024000356A1 PCT/CN2022/102675 CN2022102675W WO2024000356A1 WO 2024000356 A1 WO2024000356 A1 WO 2024000356A1 CN 2022102675 W CN2022102675 W CN 2022102675W WO 2024000356 A1 WO2024000356 A1 WO 2024000356A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
data
display panel
control
measurement data
Prior art date
Application number
PCT/CN2022/102675
Other languages
English (en)
French (fr)
Inventor
杨堃
温晶
陈嘉丰
徐晓冬
何德材
吴建民
王洪
Original Assignee
京东方科技集团股份有限公司
北京中祥英科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京中祥英科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002068.6A priority Critical patent/CN117642707A/zh
Priority to PCT/CN2022/102675 priority patent/WO2024000356A1/zh
Publication of WO2024000356A1 publication Critical patent/WO2024000356A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]

Definitions

  • the present invention relates to the field of computer technology and the field of display panel production and manufacturing, and in particular to a data processing method and device, a data display method and device, equipment and media.
  • the display panel (such as the LCD panel) is the heart of the LCD monitor.
  • the quality of the display panel will directly affect the color, brightness, contrast, viewing angle and other functional parameters and display effects of the monitor.
  • the production steps of display panels are complex, and a mistake in one step may greatly affect the production of display panels. Therefore, a method is urgently needed to monitor the production process of display panels and detect abnormalities in the production process in a timely manner. Condition.
  • the production process of display panels is mainly monitored through Statistical Process Control (SPC) tools.
  • SPC Statistical Process Control
  • the present invention provides a data processing method and device, a data display method and device, equipment and media to solve the deficiencies in related technologies.
  • a data processing method which method includes:
  • the data form information is determined by determining the target parameter value based on the multiple measurement data.
  • the data form information is used to indicate whether the target measurement data of the multiple display panels has multi-group characteristics, and/or the data form information is used to Indicates whether the target measurement data of multiple display panels obeys a normal distribution, and the target measurement data of each display panel is determined based on the multiple measurement data of the display panel;
  • the target control chart is used to indicate the statistical data characteristics of each display panel.
  • the control limits are used to indicate the upper limit and/or lower value of the statistical data characteristics of the display panel that meets the production requirements. limit.
  • the target parameter value includes a first target parameter value
  • the first target parameter value is used to indicate the ratio of the sum of squared deviations between groups and within the group and the degrees of freedom after grouping the target measurement data
  • target parameter values are determined, including:
  • the first target parameter value is determined.
  • the target parameter value includes a second target parameter value, the second target parameter value is used to indicate a probability that the target measurement data of the plurality of display panels obeys a normal distribution;
  • target parameter values are determined, including:
  • the data form information is determined based on the target parameter value, the target parameter value includes a first target parameter value and/or a second target parameter value, the first target parameter value is used to indicate the inter-group and group-to-group values after the target measurement data is grouped.
  • the ratio of the sum of squared deviations to the degrees of freedom, and the second target parameter value is used to indicate the probability that the target measurement data of multiple display panels obeys a normal distribution;
  • Data form information is determined by determining target parameter values based on multiple measurement data, including:
  • the data form information indicates that the target measurement data of the multiple display panels obey a normal distribution
  • the data form information indicates that the target measurement data of the plurality of display panels do not obey the normal distribution.
  • control limits of the target control chart are determined, including any of the following:
  • Process capability index determines the control limits of the target control chart based on multiple sets of target measurement data whose process capability index meets the set conditions
  • the process capability index of the target measurement data of each batch is calculated separately, Based on multiple sets of target measurement data whose process capability index meets the set conditions, determine the control limits of the target control chart;
  • the data form information indicates that the target measurement data of multiple display panels do not obey the normal distribution
  • convert the multiple target measurement data into data that obeys the normal distribution and determine the control limits of the target control chart based on the converted data.
  • the target control chart is determined based on the product characteristics of the display panel, and the product characteristics are used to indicate that the measurement data of the display panel is meter-type data or counting-type data;
  • the process of determining the target control chart includes:
  • the target control chart is determined based on the presence of defective products and product defects in the display panel.
  • the target control chart is determined, including any of the following:
  • the mean-range control chart is used as the target control chart
  • the mean-moving range-range control chart is used as the target control chart
  • the single value-moving range control chart is used as the target control chart
  • the mean value -Standard deviation control chart as target control chart
  • the mean - A Moving Range-Standard Deviation chart serves as the target control chart.
  • the target control chart is determined, including:
  • the defective product rate control chart When there are defective products in the display panel, if the number of defective products is not constant, the defective product rate control chart will be used as the target control chart;
  • the defective number control chart will be used as the target control chart
  • the control chart for the number of defective products per unit product will be used as the target control chart.
  • the method further includes:
  • the product characteristics of the display panel are determined.
  • the display panel to be detected is sampled from multiple candidate display panels according to a preset sampling interval
  • the process of determining the target sampling interval includes:
  • the initial sampling interval is adjusted to obtain the target sampling interval.
  • the method further includes:
  • multiple measurement points in each partition of the display panel are partitioned to obtain partition results for multiple measurement points, and the measurement data of the measurement points in different partitions are processed separately based on the partition results.
  • the display panel is processed by multiple production equipment.
  • Each display panel corresponds to a production information storage structure.
  • the production information storage structure is used to store equipment information of the production equipment that processes the corresponding display panel.
  • Target control The chart includes data points corresponding to each display panel. The data points are used to display the equipment information of the production equipment that processes the display panel in the target control chart after being triggered.
  • the method further includes:
  • each display panel Based on the equipment information recorded in the production information storage structure of each display panel, multiple display panels processed by each production equipment are determined, and the product information of the multiple display panels processed by each production equipment is recorded into the production equipment management model. , The production equipment management model is used to record ,the display panels processed by different production equipment.
  • a data display method which method includes:
  • the target control chart is used to indicate the statistical data characteristics of each display panel
  • the target control chart and control limits are displayed.
  • the target control chart is used to indicate the statistical data characteristics of each display panel, and the control limits are used to indicate the upper limit of the statistical data characteristics of the display panel that meets the production requirements. value and/or lower limit value;
  • control limit is determined based on data morphology information, which is determined based on target parameter values determined through multiple measurement data of each display panel to be detected, and the data morphology information is used to indicate target measurements of multiple display panels. Whether the data has multi-group characteristics, and/or, the data morphology information is used to indicate whether the target measurement data of multiple display panels obeys a normal distribution.
  • the product management interface includes a product model setting control and a control chart selection control
  • the selected candidate control chart is determined as the target control chart.
  • the product management interface also includes a point quantity setting control
  • the method also includes:
  • At least one candidate control chart is displayed in the control chart selection control.
  • the product management interface also includes a partition setting control
  • the method also includes:
  • the partition management interface In response to the triggering operation of the partition setting control, the partition management interface is displayed.
  • the partition management interface is used to partition multiple measurement points in the display panel, obtain partition results of multiple measurement points, and classify different partitions based on the partition results.
  • the measurement data of the measurement points in are processed separately.
  • the product management interface further includes at least one of the following:
  • the data collection management control is used to set the type of measurement data to be collected and the data description information of the measurement data;
  • Equipment management control which is used to obtain equipment information of the production equipment of the display panel
  • Data filtering control the data filtering control is used to set the conditions that the data to be filtered meets and the data filtering method
  • the timing function setting control is used to set the cycle period of the data collection and calculation process.
  • the product management interface also includes control limit management controls and/or specification limit management controls;
  • the control limit management control is used to adjust the determined control limits
  • the specification limit management control is used to adjust the determined specification limits
  • the determined specification limits are determined based on the determined control limits.
  • the target control chart includes data points corresponding to each display panel.
  • the display panels are processed by multiple production equipment.
  • Each display panel corresponds to a production information storage structure.
  • the production information storage structure is used to store the corresponding Display equipment information of the production equipment where the panel is processed;
  • the method also includes:
  • a data processing device which device includes:
  • the acquisition module is used to acquire multiple measurement data of each display panel to be detected
  • a determination module configured to determine data form information through target parameter values determined based on multiple measurement data.
  • the data form information is used to indicate whether the target measurement data of multiple display panels has multi-group characteristics, and/or, The data form information is used to indicate whether the target measurement data of multiple display panels obeys a normal distribution, and the target measurement data of each display panel is determined based on the multiple measurement data of the display panel;
  • the determination module is also used to determine the control limits of the target control chart based on the data form information.
  • the target control chart is used to indicate the statistical data characteristics of each display panel, and the control limits are used to indicate the upper limit of the statistical data characteristics of the display panel that meets the production requirements. limit and/or lower limit.
  • the target parameter value includes a first target parameter value
  • the first target parameter value is used to indicate the ratio of the sum of squared deviations between groups and within the group and the degrees of freedom after grouping the target measurement data
  • the determination module when used to determine target parameter values based on multiple measurement data, is used to:
  • the first target parameter value is determined.
  • the target parameter value includes a second target parameter value, the second target parameter value is used to indicate a probability that the target measurement data of the plurality of display panels obeys a normal distribution;
  • the determination module when used to determine target parameter values based on multiple measurement data, is used to:
  • the data form information is determined based on the target parameter value, the target parameter value includes a first target parameter value and/or a second target parameter value, the first target parameter value is used to indicate the inter-group and group-to-group values after the target measurement data is grouped.
  • the ratio of the sum of squared deviations to the degrees of freedom, and the second target parameter value is used to indicate the probability that the target measurement data of multiple display panels obeys a normal distribution;
  • the determination module when used to determine data form information through target parameter values determined based on multiple measurement data, is used for:
  • the data form information indicates that the target measurement data of the multiple display panels obey a normal distribution
  • the data form information indicates that the target measurement data of the plurality of display panels do not obey the normal distribution.
  • the determining module is used for any of the following when used to determine the control limits of the target control chart based on the data morphology information:
  • Process capability index determines the control limits of the target control chart based on multiple sets of target measurement data whose process capability index meets the set conditions
  • the process capability index of the target measurement data of each batch is calculated separately, Based on multiple sets of target measurement data whose process capability index meets the set conditions, determine the control limits of the target control chart;
  • the data form information indicates that the target measurement data of multiple display panels do not obey the normal distribution
  • convert the multiple target measurement data into data that obeys the normal distribution and determine the control limits of the target control chart based on the converted data.
  • the target control chart is determined based on the product characteristics of the display panel, and the product characteristics are used to indicate that the measurement data of the display panel is meter-type data or counting-type data;
  • the determination module is also used to determine the target control chart based on the product characteristics of the display panel
  • Determination module when used to determine target control charts based on product characteristics of display panels, is used to:
  • the target control chart is determined based on the presence of defective products and product defects in the display panel.
  • the determination module is used for any of the following when determining the target control chart based on the number of measurement points on the display panel and the inter-group difference test results:
  • the mean-range control chart is used as the target control chart
  • the mean-moving range-range control chart is used as the target control chart
  • the single value-moving range control chart is used as the target control chart
  • the mean value -Standard deviation control chart as target control chart
  • the mean - A Moving Range-Standard Deviation chart serves as the target control chart.
  • the determination module when used to determine the target control chart based on the presence of nonconforming products and product defects in the display panel, is used to:
  • the defective product rate control chart When there are defective products in the display panel, if the number of defective products is not constant, the defective product rate control chart will be used as the target control chart;
  • the defective number control chart will be used as the target control chart
  • the control chart for the number of defective products per unit product will be used as the target control chart.
  • the determining module is also configured to determine the product model of the display panel to be detected based on the target instruction in response to receiving the target instruction;
  • the determination module is also used to determine the product characteristics of the display panel based on the product model.
  • the display panel to be detected is sampled from multiple candidate display panels according to a preset sampling interval
  • the process of determining the target sampling interval includes:
  • the initial sampling interval is adjusted to obtain the target sampling interval.
  • the device further includes:
  • the processing module is used to partition multiple measurement points in each partition of the display panel based on multiple measurement data, obtain partition results of multiple measurement points, and measure measurement points in different partitions based on the partition results. Data are processed separately.
  • the display panel is processed by multiple production equipment.
  • Each display panel corresponds to a production information storage structure.
  • the production information storage structure is used to store equipment information of the production equipment that processes the corresponding display panel.
  • Target control The chart includes data points corresponding to each display panel. The data points are used to display the equipment information of the production equipment that processes the display panel in the target control chart after being triggered.
  • the determination module is also used to determine multiple display panels processed by each production equipment based on the equipment information recorded in the production information storage structure of each display panel, and combine the multiple display panels processed by each production equipment.
  • the product information of the panels is recorded in the production equipment management model respectively, and the production equipment management model is used to record display panels processed by different production equipment.
  • a data display device which device includes:
  • Display module used to display the product management interface
  • the processing module is used to obtain the product model of the display panel to be detected through the product management interface, and determine the target control chart based on the product model.
  • the target control chart is used to indicate the statistical data characteristics of each display panel;
  • the display module is also used to display the target control chart and control limits in response to the submission operation on the product management interface.
  • the target control chart is used to indicate the statistical data characteristics of each display panel.
  • the target control chart displays control limits and control limits. Upper and/or lower limit values for statistical data characteristics indicating display panels that meet production requirements;
  • control limit is determined based on data morphology information, which is determined based on target parameter values determined through multiple measurement data of each display panel to be detected, and the data morphology information is used to indicate target measurements of multiple display panels. Whether the data has multi-group characteristics, and/or, the data morphology information is used to indicate whether the target measurement data of multiple display panels obeys a normal distribution.
  • the product management interface includes a product model setting control and a control chart selection control
  • the processing module is used to obtain the product model of the display panel to be inspected through the product management interface and determine the target control chart based on the product model:
  • the selected candidate control chart is determined as the target control chart.
  • the product management interface also includes a point quantity setting control
  • the processing module is also used to obtain the number of measurement points set through the point quantity setting control
  • the display module is also used to display at least one candidate control chart in the control chart selection control based on the product characteristics corresponding to the product model and the number of acquired measurement points.
  • the product management interface also includes a partition setting control
  • the display module is also used to display the partition management interface in response to the triggering operation of the partition setting control.
  • the partition management interface is used to partition multiple measurement points in the display panel to obtain partition results of the multiple measurement points. Based on the partition results, the measurement data of the measurement points in different partitions are processed separately.
  • the product management interface further includes at least one of the following:
  • the data collection management control is used to set the type of measurement data to be collected and the data description information of the measurement data;
  • Equipment management control which is used to obtain equipment information of the production equipment of the display panel
  • Data filtering control the data filtering control is used to set the conditions that the data to be filtered meets and the data filtering method
  • the timing function setting control is used to set the cycle period of the data collection and calculation process.
  • the product management interface also includes control limit management controls and/or specification limit management controls;
  • the control limit management control is used to adjust the determined control limits
  • the specification limit management control is used to adjust the determined specification limits
  • the determined specification limits are determined based on the determined control limits.
  • the target control chart includes data points corresponding to each display panel.
  • the display panels are processed by multiple production equipment.
  • Each display panel corresponds to a production information storage structure.
  • the production information storage structure is used to store the corresponding Display equipment information of the production equipment where the panel is processed;
  • the processing module is also configured to, in response to the trigger operation of any data point in the displayed target control chart, obtain the equipment information of the generation device that processes the display panel from the production information storage structure of the display panel corresponding to the data point. ;
  • the display module is also used to display the obtained device information.
  • a computing device includes a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein when the processor executes the computer program Implement the operations performed by the data processing method provided by the above first aspect and any embodiment of the first aspect.
  • a computing device includes a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein when the processor executes the computer program Implement the above second aspect and the operations performed by the data display method provided by any embodiment of the second aspect.
  • a computer-readable storage medium stores a program.
  • the program is executed by a processor, any one of the above-mentioned first aspects and the first aspect are implemented. Operations performed by the data processing method provided by the embodiment.
  • a computer-readable storage medium stores a program.
  • the program is executed by a processor, any one of the above-mentioned second aspects and the second aspect are implemented.
  • the data provided by the embodiment shows the operations performed by the method.
  • a computer program product includes a computer program.
  • the computer program When the computer program is executed by a processor, it implements the first aspect and any of the embodiments of the first aspect. The operations performed by data processing methods.
  • a computer program product includes a computer program.
  • the computer program When the computer program is executed by a processor, it implements the above-mentioned second aspect and any of the embodiments of the second aspect. The operation performed by the data display method.
  • the present invention determines whether the target measurement data used to indicate multiple optical display panels has multiple groups by acquiring multiple measurement data of each display panel to be detected, and thereby using target parameter values determined based on the multiple measurement data. characteristics and/or whether it obeys the normal distribution of data morphology information, so that the control limits of the target control chart can be determined based on the data morphology information, so that the determined control limits can better meet the true data form of the data, thereby improving the determined Control limits are accurate.
  • Figure 1 is a flow chart of a data processing method according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a sampling rule according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a case of a sampling rule according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of measurement data of a display panel according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of partitions of a display panel according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of the grouping results of a Scan1 group according to an embodiment of the present invention.
  • Figure 7 is a schematic diagram of the grouping results of a Scan2 group according to an embodiment of the present invention.
  • Figure 8 is a schematic diagram of the grouping results of a Scan3 group according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram of the grouping results of a Scan4 group according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a grouping result within a display panel according to an embodiment of the present invention.
  • Figure 11 is a schematic diagram of a determination process of data form information according to an embodiment of the present invention.
  • Figure 12 is a schematic diagram of the determination process of a target control chart according to an embodiment of the present invention.
  • Figure 13 is a schematic diagram of the determination process of another target control chart according to an embodiment of the present invention.
  • Figure 14 is a schematic diagram of a control limit calculation process according to an embodiment of the present invention.
  • Figure 15 is a schematic diagram of a control chart according to an embodiment of the present invention.
  • Figure 16 is a flow chart of a data processing method according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a processing process of a display panel according to an embodiment of the present invention.
  • Figure 18 is a schematic diagram of a production information storage structure according to an embodiment of the present invention.
  • Figure 19 is a schematic diagram of an information entry process according to an embodiment of the present invention.
  • Figure 20 is a flow chart of a data display method according to an embodiment of the present invention.
  • Figure 21 is a schematic diagram of a product management interface according to an embodiment of the present invention.
  • Figure 22 is a schematic diagram of another product management interface according to an embodiment of the present invention.
  • Figure 23 is a schematic diagram of a display form of a target control chart according to an embodiment of the present invention.
  • Figure 24 is a schematic diagram of an information viewing interface according to an embodiment of the present invention.
  • Figure 25 is a schematic diagram of a partition setting interface according to an embodiment of the present invention.
  • Figure 26 is a schematic diagram of another product management interface according to an embodiment of the present invention.
  • Figure 27 is a block diagram of a data processing device according to an embodiment of the present invention.
  • Figure 28 is a block diagram of a data display device according to an embodiment of the present invention.
  • Figure 29 is a schematic structural diagram of a computing device according to an embodiment of the present invention.
  • Figure 30 is a schematic structural diagram of a computing device according to an embodiment of the present invention.
  • the present invention provides a data processing method for the production of thin film transistor liquid crystal displays (Thin Film Transistor Liquid Crystal Display, TFT-LCD) and organic laser displays (Organic Light-Emitting Diode, OLED, or organic light-emitting semiconductor).
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the control limits are determined based on the data form in the process, which improves the accuracy of the determined control limits and provides a scientific method for SPC control limit setting, which can improve the accuracy of control limit calculation after data classification.
  • the present invention also provides a data display method for determining the product model that requires data analysis from the products produced in the TFT-LCD industry production process, and obtaining the product characteristics of the product corresponding to the product model, thereby based on the selected
  • control charts and control limits can be displayed so that relevant technical personnel can monitor the quality of the product production process based on the displayed control charts and control limits.
  • the above data processing method and data display method can be executed by a computing device.
  • the computing device can be a terminal device, such as a desktop computer, a portable computer, a smart phone, a tablet computer, etc.
  • the computing device can also be a server, such as a One server, multiple servers, server clusters, etc.
  • the present invention does not limit the device type and device quantity of the computing device.
  • SPC Statistical Process Control
  • SPC Data Form Classify method The data form is divided into multiple groups, normal, non-normal, etc. through algorithms.
  • Mean-Moving Range-Range (Xbar-Moving Range-Range, Xbar-MR-R) control chart: It is an innovative SPC control chart method that combines three control charts: mean, moving range, and range for alarm Management and analysis.
  • Mean-Moving Range-Std (Xbar-Moving Range-Std, Xbar-MR-S) control chart: It is an innovative SPC control chart method that combines mean, moving range, and standard deviation charts for alarm management and analysis.
  • CPK Complex Process Capability Index
  • Process capability refers to the quality capability demonstrated by a process under fixed production conditions and stable control.
  • Improved process capability index (Complex Process Capability Index Between Within, CPK-BW): It is an improved calculation method for CPK, which increases the management of differences between groups and makes CPK more sensitive.
  • Control limit It is the control limit of the quality characteristic value obtained by applying mathematical statistics method through control chart analysis of historical data to analyze and judge whether the status of the process meets the requirements of the specification.
  • control limits can include upper control limit (Upper Control Limit, UCL) and lower control limit (Lower Control Limit, LCL).
  • Specification limit It is specified by the customer or company and is the capability requirement for the process. Generally, the specification limit is wider than the control limit, otherwise the quality target cannot be met. Among them, the specification limit can include the upper specification limit (Upper Spec Limit, USL) and the lower specification limit (Lower Spec Limit, LSL).
  • Figure 1 is a flow chart of a data processing method according to an embodiment of the present invention. As shown in Figure 1, the method includes:
  • Step 101 Obtain multiple measurement data of each display panel to be detected.
  • the display panel may be a liquid crystal panel.
  • the display panel may be of other types.
  • the present invention does not limit the specific type of the display panel.
  • multiple measurement points can be set on the display panel, and one measurement data can be obtained at each measurement point. Therefore, multiple measurements can be obtained from one display panel. data.
  • the measurement data can be various types of data.
  • the measurement data can be the backlight value obtained after applying a voltage to the display panel, or the measurement data can be alignment accuracy (Alignment Inspection, AI), optionally.
  • the measurement data can also be other types of data, and the present invention does not limit the specific type of measurement data.
  • Step 102 Determine data form information by using target parameter values determined based on multiple measurement data.
  • the target parameter values are used to indicate data characteristics of target measurement data of multiple display panels.
  • the target measurement data of each display panel is based on The multiple measurement data of the display panels determine whether the data form information is used to indicate whether the target measurement data of the multiple display panels have multi-group characteristics, and/or the data form information is used to indicate whether the target measurement data of the multiple display panels comply with normal distribution.
  • the display panel may correspond to multiple measurement data, so that the target measurement data of the display panel may be determined based on the multiple measurement data corresponding to the display panel.
  • Step 103 Based on the data form information, determine the control limits of the target control chart.
  • the target control chart is used to indicate the statistical data characteristics of each display panel.
  • the control limits are used to indicate the upper limit and sum of the statistical data characteristics of the display panel that meets the production requirements. /or lower limit value.
  • the statistical data may be mean, range, moving range, standard deviation, etc.
  • the present invention does not limit the specific type of statistical data.
  • the statistical data characteristics can be data characteristics of statistical data such as mean, range, moving range, standard deviation, etc.
  • the present invention determines whether the target measurement data used to indicate multiple optical display panels has multiple groups by acquiring multiple measurement data of each display panel to be detected, and thereby using target parameter values determined based on the multiple measurement data. characteristics and/or whether it obeys the normal distribution of data morphology information, so that the control limits of the target control chart can be determined based on the data morphology information, so that the determined control limits can better meet the true data form of the data, thereby improving the determined Accuracy of control limits.
  • step 101 since multiple different types of display panels may be produced on a set of production equipment, before step 101, it is necessary to determine which type of display panel is to be processed this time, so that subsequent steps can be based on Corresponding model display panel to handle.
  • the method may further include the following steps:
  • Step 100 In response to receiving the target instruction, determine the product model of the display panel to be detected based on the target instruction.
  • the target command can be triggered by the user through the computing device, and the target command can carry the product model, so that the target command can instruct the computing device to use the display panel corresponding to the product model as the display panel to be detected.
  • the computing device can obtain the display panel of the product model that has been produced as each display panel to be tested, so that each display to be tested can be subsequently panel for processing.
  • the number of display panels of the same product model produced may be large. If all the display panels of the product model that have been produced are processed, it may cause processing failure of the computing equipment. The pressure is too high. Therefore, in more possible implementations, after determining the product model of the display panel to be tested, the display panel of the product model that has been produced can be used as a candidate display panel, so that sampling can be carried out according to the target Sampling is performed from multiple candidate display panels at intervals to obtain a display panel to be detected.
  • the target sampling interval can be obtained by adjusting the initial sampling interval in advance.
  • the initial sampling interval can be adjusted through the following steps to obtain the target sampling interval:
  • Step 1 Determine the first target probability value based on the upper control limit, lower control limit, offset center point and historical standard deviation of historical measurement data.
  • the computing device may have processed the display panel produced by this product model in an earlier time, that is, the computing device may have determined based on historical measurement data.
  • the upper control limit, lower control limit, offset center point and historical standard deviation of historical measurement data are used to determine the first target probability value based on the acquired data.
  • the center point can be the center point of the data distribution calculated theoretically based on historical measurement data. However, during actual use, the center point may shift. To ensure the accuracy of the data processing process, the shift can be obtained by The rear center point is used to offset the rear center point to know the subsequent calculation process.
  • the first target probability value can be determined through the following function:
  • P1 is the first target probability (or not found probability).
  • the first target probability can be used to indicate the probability that defective products in the display panels produced within the set time period are not found.
  • NORM.S.DIST is Standard normal distribution function in spreadsheet (Excel) software.
  • the set time period may be a time period that meets the initial sampling interval.
  • Step 2 Determine the expected risk value based on the first target probability value, the initial sampling interval, the hourly output of historical measurement data, and the defective rate and first probability within each set time period.
  • the computing device can also determine the hourly output of the historical measurement data as well as the defective rate and first probability (or occurrence probability) in each set time period based on the historical measurement data, so that in During this data processing process, the hourly output of historical measurement data, as well as the defective rate and first probability in each set time period can be directly obtained, so that the hourly output and the defective rate and first probability in each set time period can be obtained based on the hourly output and each set time period.
  • the defective rate and first probability are used to determine the expected risk value.
  • the first probability is used to indicate the probability that a display panel produced within a set time period will be defective.
  • the set time period includes the first set time period (that is, the offset that may occur within h is the time period from 0 to 1), the second set time period (that is, the time period in which the offset that may occur within h is 1 to 2), and the third set time period (that is, the offset that may occur within h is (time period with an offset greater than 2) for example, the defective rate in the first set time period is A, the first probability (that is, the probability of occurrence) is D, the discovery probability is G, and the second set time period The defective rate within the period is B, the first probability (that is, the probability of occurrence) is E, and the probability of discovery is H. The defective rate within the third set time period is C, and the first probability (that is, the probability of occurrence) is F. , the discovery probability is I, then the expected risk value can be determined through the following formula:
  • the sum of D, E, and F is 1, and the probability of discovery can be f (n, h, k) function, n is the sample size, h is the initial sampling time interval, k is the standard deviation control multiple, n, f, and k can be set according to needs.
  • Step 3 Based on the expected risk value, adjust the initial sampling interval to obtain the target sampling interval.
  • a risk threshold can be set in advance. After the expected risk value is determined through the above step 2, the determined expected risk value can be compared with the risk threshold. When the expected risk value is less than the risk threshold, the initial sampling interval can be adjusted to obtain the target sampling interval.
  • different expected risk values may correspond to different adjustment steps. Therefore, when adjusting the initial sampling interval based on the expected risk value, the initial sampling interval may be adjusted according to the adjustment step corresponding to the expected risk value. On the basis of , the adjustment step size is reduced to realize the adjustment of the initial sampling interval time, thereby obtaining the target sampling interval time.
  • the above is only an exemplary way to adjust the initial sampling interval based on the expected risk value. In more possible implementations, other ways can also be used to adjust the initial sampling interval.
  • the present invention specifically uses This method is not limited.
  • Figure 3 is a diagram according to the present invention.
  • the embodiment shows a case diagram of a sampling rule.
  • the discovery probability, the non-discovery probability that is, the first target probability
  • the discovery probability can be calculated according to the instructions of step one and step two.
  • the values of risk, undiscovered risk, and expected risk can then be compared with the expected risk value and the risk threshold (that is, the custom risk value) through step three to adjust the initial sampling interval.
  • this process is explained by taking the determination of the preset sampling interval based on historical data as an example.
  • this data processing process may also be the first time to process the display panel of this product model.
  • the initial sampling interval can be directly used as the target sampling interval without adjusting the initial sampling interval.
  • the target sampling interval can be determined, so that the display panel of the corresponding product model can be sampled based on the determined target sampling interval, so that the sampled display panel can be used as the display panel to be tested. , so that multiple measurement data of each display panel to be detected can be obtained through step 101.
  • multiple measurement points can be set in the display panel to obtain measurement data of each measurement point to obtain multiple measurements of the display panel. data.
  • HGM Half-Gate Mask
  • 72 measurement points can be set in the display panel, and each measurement point can include multiple pixels.
  • 11664 measurement data can be extracted, that is, 162 measurement data can be extracted at each measurement point.
  • the measurement data from this measurement point can be extracted.
  • the 162 extracted measurement data are averaged, and the average result is used as the measurement data of the measurement point.
  • 72 measurement data corresponding to the 72 measurement points are obtained as multiple measurement data of the display panel. .
  • Figure 4 is a schematic diagram of measurement data of a display panel according to an embodiment of the present invention. As shown in Figure 4, Figure 4 takes the display panel to be detected as an HGM as an example.
  • the display panel can include 72 Measurement points, each measurement point corresponds to one measurement data, so that 72 measurement data as shown in Figure 4 can be obtained.
  • the data form information can be determined through step 102 by using the target parameter value determined based on the multiple measurement data.
  • the target parameter value when determining the data form information by determining the target parameter value based on multiple measurement data, the target parameter value may be determined based on the multiple measurement data first, and then the target parameter value may be determined based on the target parameter value. , determine the data form information.
  • the target parameter value may be used to indicate data characteristics of target measurement data of multiple display panels, and the target measurement data of each display panel is determined based on the multiple measurement data of the display panel.
  • the average value of multiple measurement data of the display panel can be determined as the target measurement data of the display panel, that is, the multiple measurement data of the display panel can be obtained. Average, and the determined average value is used as the target measurement data of the display panel.
  • the above process is explained by taking the direct processing of multiple measurement points of the display panel as an example. Normally, the display panel produced through one production process can be divided into multiple screens for sale. Therefore, When processing the data in the display panel, the data can be processed in partitions.
  • multiple measurement points in the display panel can be partitioned based on multiple measurement data, and partition results of multiple measurement points can be obtained, so that the partition results in different partitions can be determined based on the partition results.
  • the measurement points are processed separately.
  • FIG. 5 is a schematic diagram of a partition of a display panel according to an embodiment of the present invention.
  • the display panel can be divided into A1, A2, A3, A4, B1, B2, B3, and B4. 8 partitions, thereby processing the data in these 8 partitions respectively.
  • these 8 partitions can be sold as a separate display panel after leaving the factory.
  • the average value of the measurement data in each partition can be determined for each partition, and then the average values corresponding to multiple partitions can be averaged to obtain a final The average calculation result is used as the target measurement data of the display panel.
  • multiple partitions can also be processed as one large partition (or group).
  • two partitions can be processed as one group.
  • the partition A1 and partition A2 are used as Scan1 group
  • partition B1 and partition B2 are used as Scan2 group
  • partition A3 and partition A4 are used as Scan3 group
  • partition B3 and partition B4 are used as Scan4 group, thus obtaining 4 groups.
  • the measurement data can be processed based on the group. For example, when determining the target measurement data of each display panel to be detected, for any display panel, the measurement data can be calculated separately. The average value of multiple measurement data of each group in the display panel is then averaged, and the final average result is used as the target measurement data of the display panel.
  • multiple measurement points in each partition of the display panel can also be further divided (or grouped) based on multiple measurement data to obtain more detailed partition results.
  • the partitioning results (that is, the grouping results) process the measurement data of measurement points in different groups separately.
  • a clustering algorithm such as the K-Means method may be used.
  • the grouping results can be verified based on the difference between groups (R Square).
  • the difference between groups is greater than or equal to the set difference threshold, the grouping can be determined The results are reasonable.
  • the differences between groups can be calculated by one-way analysis of variance (Anova) method.
  • the set difference threshold can be any value.
  • the set difference threshold can be 0.8 (that is, 80%), or the set difference threshold can also be other values.
  • the present invention is useful for setting the difference.
  • the specific value of the threshold is not limited.
  • K-Means can be used to further group each Scan group according to the actual engineering conditions, and ensure that each The R Square results in each Scan group are greater than or equal to 80%.
  • the number of groupings using K-Means is ⁇ 2 groups.
  • the grouping results of the Scan1 group can be seen in Figure 6.
  • Figure 6 is shown according to an embodiment of the present invention.
  • the Scan1 group can be divided into 2 groups; the grouping results of the Scan2 group can be seen in Figure 7.
  • Figure 7 is a schematic diagram according to an embodiment of the present invention.
  • the schematic diagram of the grouping results of the Scan2 group is shown in Figure 7.
  • the Scan2 group can be divided into 2 groups; the grouping results of the Scan3 group can be seen in Figure 8.
  • Figure 8 is a Scan3 group according to an embodiment of the present invention.
  • a schematic diagram of the grouping results, as shown in Figure 8, the Scan3 group can be divided into 3 groups; the grouping results of the Scan4 group can be seen in Figure 9, which is a grouping result of the Scan4 group according to an embodiment of the present invention.
  • Schematic diagram, as shown in Figure 9, the Scan4 group can be divided into 2 groups.
  • the display panel shown in Figure 4 can be divided into 9 groups.
  • Figure 10 is a grouping within the display panel according to an embodiment of the present invention. Schematic diagram of the results.
  • the measurement data can be processed based on the grouping results.
  • the display The panel can include multiple groups, and each group can include multiple groups. Therefore, the average of multiple measurement data of each group in the display panel can be calculated separately. For any group, the average value of the measured data included in the group can be calculated separately. The average of the measurement data of multiple groups is averaged to obtain the average of the measurement data of each group, and then the average of the measurement data of multiple groups is averaged again, and the final average result is used as the display panel. Target measurement data.
  • the final determined target measurement data can be more consistent with the actual measurement data of the display panel, thereby improving the accuracy of the determined target measurement data.
  • the subsequent data processing process provides a good data foundation, thereby ensuring the accuracy of the subsequent data processing process.
  • the target measurement data of each display panel can be determined, so that the target parameter value can be determined based on the target measurement data of multiple display panels.
  • the target parameter value may include a first target parameter value and/or a second target parameter value
  • the first target parameter value may be used to indicate the ratio of the sum of squared deviations between groups and within a group to the degrees of freedom after grouping the target measurement data
  • the second target parameter may be used to indicate a probability that the target measurement data of the plurality of display panels obeys a normal distribution.
  • the determination process of the first target parameter value may include the following steps:
  • Step 1 Group the target measurement data of multiple display panels according to time periods to obtain multiple groups of target measurement data.
  • the target measurement data of multiple display panels generated within a period of time can be regarded as a total data set (for example, it can be recorded as the total data set M).
  • a total of m target measurement data in the data set M as an example, according to the equal Time can divide these m target measurement data into N groups (denoted as N1, N2, N3,...), thereby obtaining multiple groups of target measurement data, in which the number of target measurement data included in each group of data can be They are n1, n2, n3,... respectively.
  • Step 2 Determine the sum of inter-group variations and the sum of single-point square sums of multiple sets of target measurement data.
  • the sum of inter-group variation of multiple sets of target measurement data can be determined through the following formula (1):
  • SSB represents the sum of variation between groups
  • Avg represents averaging
  • M is a data set composed of multiple groups of target measurement data.
  • the target measurement data in the data set M can be divided into N groups, and each group of data includes target measurements.
  • the number of data is n.
  • SST represents the sum of single-point square sums
  • Avg represents averaging
  • M is a data set composed of multiple sets of target measurement data. There are m target measurement data in the data set M.
  • Step 3 Determine the first target parameter value based on the sum of variation between groups and the sum of single-point sums of squares.
  • the first target parameter value can be determined through the following formula (3) to formula (5):
  • F is the first target parameter value
  • MS(SE) indicates the first parameter
  • MS(SB) indicates the second parameter
  • SSB indicates the sum of variation between groups
  • SST indicates the sum of square sums of single points
  • the multiple sets of target measurement data include m target measurement data, these m target measurement data are divided into N groups.
  • the determination process of the second target parameter value may be:
  • the Anderson-Darling normality check calculation method can be used to obtain the second target parameter value (which can be recorded as a P value).
  • the data form information can be determined based on the obtained first target parameter value and the second target parameter value.
  • step 103 when determining the data form information based on the target parameter value, any of the following methods may be included:
  • the data form information indicates that the target measurement data of the multiple display panels have multi-group characteristics.
  • the first target parameter can be recorded as F, and the first set threshold can be 2.65. That is, in the case of F>2.65, it can be determined that the target measurement data of multiple display panels have multi-group characteristics. Correspondingly, , in the case of F ⁇ 2.65, it can be determined that the target measurement data of multiple display panels have single group characteristics.
  • the data form information indicates multiple display panels
  • the target measurement data follows a normal distribution.
  • the second target parameter can be recorded as P, and the second set threshold can be 0.05. That is, when F ⁇ 2.65 and P>0.05, it can be determined that the target measurement data of multiple display panels obey the normal distribution. .
  • the data form information indicates that the multiple display panels Target measurement data does not follow a normal distribution.
  • the second target parameter is recorded as P and the second set threshold is 0.05, if F ⁇ 2.65 and P ⁇ 0.05, it can be determined that the target measurement data of multiple display panels do not obey the normal distribution, or in other words , the target measurement data of multiple display panels obey non-normal distribution.
  • Figure 11 is a schematic diagram of a determination process of data form information according to an embodiment of the present invention. As shown in Figure 11, when determining data form information, you can follow the first step of determining the data form information. Perform multi-group verification to determine whether the data has multi-group characteristics. If it is determined that the data does not have multi-group characteristics (or, in other words, the data has single-group characteristics), then perform normality verification on the data. to determine whether the data has single normal characteristics.
  • the data can also be trend checked first to determine whether the data has trend characteristics.
  • trend characteristics that is, each data is independent of each other
  • normality verification is performed on the data to determine whether the data has a single normal characteristic.
  • control limit can be determined through step 104.
  • the control limits can be displayed in the target control chart so that relevant technical personnel can visually observe whether the quality of each product meets the requirements.
  • the target control chart may be predetermined.
  • the corresponding target control chart may be determined based on the product characteristics of the display panel.
  • Display panels with different product characteristics may correspond to different target control charts.
  • product characteristics can be used to indicate that the measurement data of the display panel is metering data or counting data.
  • Metering data can be continuous random variables, and counting data (including piece counting and point counting) can be discrete random variables.
  • any of the following implementation methods may be included:
  • the target control chart is determined based on the number of measurement points of the display panel and the inter-group difference test results.
  • the mean-range can be Control chart, mean-moving range-range Control chart, mean-standard deviation Control chart, individual value-moving range (X-MR) control chart, mean-moving range-standard deviation Select the target control chart in the control chart.
  • the target control chart is determined based on the presence of nonconforming products and product defects in the display panel.
  • the number of defective products control chart (NP-chart) and the defective product rate control chart (NP-chart) can be used. Select the target control chart from P-chart), defective quantity control chart (C-chart), and defective quantity per unit product control chart (U-chart).
  • the mean-range control chart is used as the target control chart
  • the mean-moving range-range control chart is used as the target control chart
  • the single value-moving range control chart is used as the target control chart
  • the mean value -Standard deviation control chart as target control chart
  • the mean - A Moving Range-Standard Deviation chart serves as the target control chart.
  • Figure 12 is a schematic diagram of the determination process of a target control chart according to an embodiment of the present invention.
  • the measurement data is measurement data, if it is displayed If the number of measurement points on the panel is greater than or equal to 10 and there are inter-group differences in the measurement data of each measurement point, you can The chart is used as the target control chart; if the number of measurement points on the display panel is greater than or equal to 10 and there is no inter-group difference in the measurement data of each measurement point, you can use chart as a target control chart; when the number of measurement points is less than 10, if the number of measurement points is 1, you can The chart is used as the target control chart; if the number of measurement points is 1 and there are inter-group differences in the measurement data of each measurement point, you can use The chart is used as the target control chart; if the number of measurement points is 1 and there is no inter-group difference in the measurement data of each measurement point, you can use chart as a target control chart.
  • the defective product rate control chart When there are defective products in the display panel, if the number of defective products is not constant, the defective product rate control chart will be used as the target control chart;
  • the defective number control chart will be used as the target control chart
  • the control chart for the number of defective products per unit product will be used as the target control chart.
  • Figure 13 is a schematic diagram of the determination process of another target control chart according to an embodiment of the present invention.
  • the measurement data is count data
  • the NP-chart can be used as the target control chart
  • the P-chart can be used as the target control chart
  • the C-chart can be used as a target control chart
  • product defects exist in areas other than the set area of the display panel a U-chart can be used as a target control chart.
  • the target control chart can be determined based on the product characteristics, so that the determined target control chart is more consistent with the product characteristics of the display panel, thereby improving the accuracy of the determined target control chart, making the target control chart Can better display the data characteristics of the display panel.
  • the target control chart can be determined through the above process, so that after the control limits are determined, the control limits can be displayed in the determined target control chart.
  • step 104 when determining the control limits of the target control chart based on the data morphology information, any of the following implementation methods may be included:
  • a set number of target measurement data are determined as one group to obtain multiple groups of target measurement data. , calculate the process capability index of each set of target measurement data respectively, and determine the control limits of the target control chart based on the multiple sets of target measurement data whose process capability index meets the set conditions.
  • multi-group control can be selected Picture (such as picture, (Fig., Target measurement data, and then calculate the CPK of each group, in order to remove the groups whose CPK does not meet the set conditions, and then calculate the control limits based on the remaining groups, so that the maximum of the calculated multiple control upper limits is The minimum value of the value and the lower control limit is used as the final control limit.
  • the center line can be taken as the standard line.
  • the set condition can be that the value of CPK is less than the third set threshold, and the third set threshold can be 1.33. That is, the control limits of the target control chart can be determined based on multiple sets of target measurement data with CPK ⁇ 1.33. .
  • CPK represents the process capability index
  • USL represents the upper specification limit
  • LSL represents the lower specification limit
  • MR represents the moving range
  • d 2 is the set parameter value.
  • the CPK calculated using the above method uses data related to the moving range during the calculation process.
  • the moving range is the absolute value of the difference between the mean and the mean of the last SPC data collection. It not only includes intra-group variation, but also Taking into account the variation between groups, the calculated CPK sensitivity is better, and the CPK will not become smaller when the variation between groups increases. As an early warning method, quality personnel can pay more attention to the product quality in the production process. worsening situation.
  • the data form information indicates that the target measurement data of multiple display panels have multi-group characteristics
  • each batch is calculated separately.
  • the process capability index of the target measurement data is determined based on multiple sets of target measurement data whose process capability index meets the set conditions, and the control limits of the target control chart are determined.
  • the target measurement data of multiple display panels has multi-group characteristics, that is, when the first target parameter (that is, F) ⁇ 2.65, batch control can also be selected.
  • Picture such as picture, chart, The panel is divided into different batches to calculate the CPK of the target measurement data in each batch (that is, each divided time period) in order to remove groups whose CPK does not meet the set conditions, and then based on the remaining The control limits are calculated separately for each group, and the maximum value of the multiple calculated upper control limits and the minimum value of the lower control limits are used as the final control limits.
  • the center line can be taken as the standard line.
  • the set condition can be that the value of CPK is less than the third set threshold, and the third set threshold can be 1.33. That is, the control limits of the target control chart can be determined based on multiple sets of target measurement data with CPK ⁇ 1.33. .
  • the production time of the display panel can be compared with the most recent SPC data collection time. If the time difference between the two is greater than 24 hours, it is considered to be a different batch. The operator of the display panel and the collection time The materials used are significantly different from the last SPC data collection, so the difference in equipment process capabilities can be locked in the operators and materials; if the time difference between the two is greater than 24 hours, it is considered to be the same batch, and continue Just use the relevant data from the previous batch (such as date).
  • multiple batches can calculate the control limits according to the normal control limit calculation method, so that the calculation result with CPK>1.33 and the data amount in the batch N>10 can be used as the control limit calculation result that meets the requirements.
  • the upper limit set of all eligible data is UCL
  • the lower limit set of all eligible data is LCL
  • the center line is CL.
  • the maximum upper control limit in the eligible group can be used as the upper control limit.
  • the upper control limit, lower control limit and center line can be determined through the following formulas (10) to (12):
  • UCL is the upper control limit
  • LCL is the lower control limit
  • CL is the center line.
  • the control limits of the target control chart are determined based on the multiple target measurement data that satisfy the normal distribution.
  • the multiple target measurement data are converted into data that obey the normal distribution, based on the converted The data is used to determine the control limits of the target control chart.
  • a non-normal control chart such as picture, chart, Extract the data located in the 99.73% confidence interval as the data to be used, and then use the conventional method to calculate the control limits based on the extracted data.
  • control limits are calculated for non-normal data in the same way as for normal data, the calculated control limits will be overall skewed, making the calculated control limits inconsistent with alarm control. Therefore, based on When calculating control limits for non-normal data, you need to normalize the non-normal data first and then calculate the control limits.
  • the method of opening the root sign can be used to normalize the non-normal data.
  • the mean may have negative values, the following four methods can be used Steps to normalize non-normal data:
  • Step 1 Shift the mean data upward by 2 times the specification limit width so that it becomes a positive value.
  • Step 2 Take the root sign of the shifted data to generate a new mean and a new moving range.
  • Step 3 Calculate the control limits based on the above offset-processed data according to the method of calculating the control limits for normal data.
  • Step 4. Offset the control limit downward by 2 times the width of the specification limit.
  • control limits obtained after processing from steps 1 to 4 above can be used as control limits for non-normal data.
  • Figure 14 is a schematic diagram of a control limit calculation process according to an embodiment of the present invention. As shown in Figure 14, it can be first determined whether the data has multi-group characteristics. After the data has In the case of multi-group characteristics, the batches can be cut according to rules, so that each batch can use the conventional method to calculate the control limit. For any batch, if the CPK of the batch is less than 1.33, there is no need to use the data of the batch.
  • the CPK is not greater than 1.33, there is no need to use the control limit as the final control limit; and if the data does not obey the normal distribution, you can Use the conventional method of calculating control limits for non-normal data to calculate the control limits, and determine the CPK of these data. If the CPK is greater than 1.33, use the control limit as the final control limit. If the CPK is not greater than 1.33, there is no need to use the control limit. This control limit serves as the final control limit.
  • control limits can be calculated according to the following formula (13) to formula (18):
  • control limits can be calculated according to the following formula (19) to formula (24):
  • control limits can be calculated according to the following formula (25) to formula (33):
  • control limits can be calculated according to the following formula (34) to formula (42):
  • control limits can be calculated according to the following formula (43) to formula (48):
  • X represents the single value of the data
  • CL x represents the center line of the single value of the data
  • MR represents the moving range
  • CL MR represents the center line of the moving range
  • UCL x represents the upper control limit of the single value of the data
  • U CLMR represents the upper control limit of the moving range
  • LCL , E 2 , D 3 and D 4 are all set parameter values.
  • control limits can be calculated according to the following formula (49) to formula (51):
  • CL NP represents the center line of the NP-graph
  • UCL NP represents the upper control limit of the NP-graph
  • LCL NP represents the lower control limit of the NP-graph. Indicates the average rate of defective products.
  • control limits can be calculated according to the following formula (52) to formula (54):
  • CL P represents the center line of the P-chart
  • UCL P represents the upper control limit of the P-chart
  • LCL P represents the lower control limit of the P-chart. Indicates the average rate of defective products.
  • control limits can be calculated according to the following formula (55) to formula (57):
  • CL C represents the center line of the C-chart
  • UCL C represents the upper control limit of the C-chart
  • LCL C represents the lower control limit of the C-chart. Indicates the average rate of defective products.
  • control limits can be calculated according to the following formula (58) to formula (60):
  • CL U represents the center line of the U-chart
  • UCL U represents the upper control limit of the U-chart
  • LCL U represents the lower control limit of the U-chart. Indicates the average area of areas where product defects occur.
  • control chart related to the mean in the mean-moving range-standard deviation control chart as an example to further explain the target control chart and control limits.
  • Figure 15 is a schematic diagram of a control chart according to an embodiment of the present invention.
  • the control chart uses the mean as a statistical data feature.
  • the abscissa of each data point in the chart can represent the corresponding Which display panel, the ordinate can represent the mean value of the measurement data of the corresponding display panel, so that the control chart can represent the mean characteristics of each display panel.
  • control chart may also display control limits determined based on the method provided in the above embodiment. Still taking the control chart shown in Figure 15 as an example, the control chart displays the upper control limit, lower control limit and center line. Among them, the upper control limit is a straight line with an ordinate of 8.750904, and the lower control limit is a straight line with an ordinate of 8.750904. is a straight line of 3.2619267, and the center line is a straight line with an ordinate of 6.006415.
  • the product quality of the display panel can be monitored.
  • the computing device displays the target control chart and displays the control limits in the target control chart, and relevant technical personnel can determine whether the quality of each display panel is based on the displayed target control chart and control limits. qualified.
  • the computing device can also display the product quality of the panel for monitoring based on the target control chart and control limits.
  • the computing device can detect whether a data value exceeds the range of the lower control limit and the upper control limit, and thereby sends an alarm message to relevant technical personnel if it detects that a data value exceeds the range of the lower control limit and the upper control limit. After receiving the alarm information, it can be determined that there are products with substandard quality in the display panel just detected.
  • the computing device can obtain the product identification of the display panel whose data value exceeds the lower control limit and the upper control limit, thereby issuing an alarm based on the obtained product identification, so that relevant technical personnel can quickly determine which display panel has unqualified quality. .
  • Figure 16 is a flow chart of a data processing method according to an embodiment of the present invention.
  • you can first select the product model of the display panel to be tested, and then determine the product characteristics of the display panel to be tested based on the selected product model, and establish a device model corresponding to the display panel based on the product model.
  • the device model can Including the main machine, sub-machine, internal mechanism of the equipment (that is, the processing unit in each machine) and Glass plane grouping, so as to realize the determination of the minimum control unit (that is, the grouping result), so as to carry out operations based on the grouping result.
  • Data form classification is used to obtain the data form information (including normality verification, trend verification, multi-group verification, etc.) of the target measurement data of each display panel, so that based on the data form information, the sampling rules (also That is, the display panel obtained by sampling (the target sampling interval) is processed to achieve the determination of the control chart and control limits.
  • the sampling rules also That is, the display panel obtained by sampling (the target sampling interval) is processed to achieve the determination of the control chart and control limits.
  • FIG 16 shows only a flowchart description of the present invention.
  • process of each step please refer to the above embodiments and will not be described again here.
  • the above embodiments introduce the process of determining the control limit through the data processing method provided by the present invention.
  • the display panel is processed by multiple production equipment.
  • Method can also be used to trace the source of data.
  • measurement data that appears during the production process can be divided into two types. One is the measurement data obtained through the production equipment with its own testing machine, and the other is the measurement data obtained through specialized The measurement data obtained by the detection machine. For measurement data obtained through production equipment with its own testing machine, these measurement data contain the equipment information of the production equipment, so no redundant processing is required. For measurement data obtained through specialized testing machines, these measurement data does not include the equipment information of the production equipment, so you need to record the equipment information of the production equipment yourself.
  • each display panel may correspond to a production information storage structure, that is, each product identification may correspond to a production information storage structure, and the production information storage structure may be used to store the corresponding display panel.
  • Equipment information of the production equipment being processed.
  • Figure 17 is a schematic diagram of the processing process of a display panel according to an embodiment of the present invention.
  • the production equipment may include 5APPH01 and 5APPH02, and the testing equipment may include 5AMCD01, 5AMCD02 and 5AMCD03.
  • production equipment 5APPH01 can be used to produce display panels with product identifications Lot1, Lot2 and Lot3
  • production equipment 5APPH02 can be used to produce display panels with product identifications LotA, LotB and LotC, as shown in Figure 17, the product identification is Lot1
  • the measurement data of the display panels of Lot2 and LotA are all included in the test data set corresponding to the test equipment 5AMCD01.
  • the measurement data of the display panels with product identification Lot3 and LotB are all included in the test data set corresponding to the test equipment 5AMCD02.
  • the measurement data of the panel are all included in the test data set corresponding to 5AMCD03.
  • the test equipment 5AMCD01 and 5AMCD02 correspond to multiple display panels with different product identifications, making it difficult to distinguish the production equipment information, and there is a mixed calculation of CPK and control limit information. , it is impossible to distinguish the engineering capabilities of 5APPH01 and 5APPH04 equipment.
  • the data processing method provided by the present invention maintains a production information storage structure for each display panel (that is, each product identification), so that the production equipment information can be distinguished through the production information storage structure.
  • Figure 18 is a schematic diagram of a production information storage structure according to an embodiment of the present invention.
  • Figure 18 shows the production information storage structure corresponding to the display panel with the product identification LotA and the display panel corresponding to the product identification Lot1.
  • the production equipment used to process the display panel with the product identification Lot1 includes unpacking equipment 1 (specifically Unpacking Equipment 1-unit 1), cleaning equipment 2 (specifically cleaning equipment 2-unit 1), production equipment 5APPH01 (specifically 5APPH01-unit 1 and 5APPH01-unit 2), and test equipment 5AMCD01, thereby realizing the control of production equipment and even equipment
  • the establishment of the unit's storage structure achieves the distinction between equipment machine level and unit (Chamber) level data collection, so that the control limits and CPK are concentrated on the production equipment level or Chamber level process capabilities.
  • a production equipment management model (or SPC minimum unit model) can also be generated based on the production equipment information storage structure of each display panel, and the display panels processed by different production equipment can be recorded through the production equipment management model.
  • the production equipment management model can be a tree-like storage structure associated with the computing equipment, or the production equipment management model can be a table-form storage structure associated with the computing equipment.
  • the production equipment management model can also be other types of storage structures. , the present invention is not limited to this.
  • the storage structure in the form of a table associated with the computing device can be used.
  • the device identification can be used as a table index (such as a table header), so that the product identification of the display panel processed by the corresponding equipment is stored in the corresponding table. location to obtain the production equipment management model.
  • the production equipment management structure can also be shown as the SPC minimum unit model in Figure 18.
  • the production equipment management model shown in Figure 18 records the display panels processed by the production equipment 5APPH01, specifically the units in the production equipment 5APPH01. 2 Processed display panel.
  • the above content introduces the specific forms of the production information storage structure and the production equipment management model.
  • the equipment information recorded in the production information storage structure of each display panel can be used. , determine the multiple display panels processed by each production equipment, and record the product information of the multiple display panels processed by each production equipment into the production equipment management model.
  • the display panel processing process involves multiple equipment and multiple units processing together, it is generally a superposition of multiple exposure processes, and the detection equipment generally completes each exposure process or sputtering process or when The corresponding measurement values are uploaded to facilitate subsequent processing.
  • the production equipment management model only needs to record the last production equipment that performed a certain process, thereby reducing the processing pressure on the computing equipment.
  • Figure 19 is a schematic diagram of an information entry process according to an embodiment of the present invention.
  • the corresponding production equipment management model can be searched based on the equipment identification, so as to obtain the Determine whether the product identification to be queried exists in the production equipment management model (that is, whether the product identification to be queried has been registered in the production equipment management model).
  • the processing process can be ended directly; if it is determined that the product identification to be queried exists in the production equipment management model, the corresponding production information storage structure can be found based on the product identification, so as to match the nearest production equipment from the corresponding production information storage structure (That is, the production equipment that processed the display panel for the last time), and further matches the equipment unit of the latest production equipment, so as to calculate the control chart or control limit based on the matching results to implement the corresponding data processing process.
  • the data points corresponding to each display panel can be displayed in the target control chart later, so that relevant technicians can obtain the corresponding data from the corresponding display panel by triggering the corresponding data points.
  • the equipment information of the production equipment that processes the display panel is displayed, so that the equipment information of the production equipment that processes the display panel is displayed in the target control chart for relevant technical personnel to view.
  • the present invention proposes a data processing solution for the production process of TFT-LCD and OLED industries.
  • By classifying the data form and using corresponding control charts and control limits based on the data form classification results it can solve the problem of unclear data form in related technologies. Problems with inaccurate classification and control limits.
  • a new method for calculating CPK is proposed, which improves the sensitivity of the determined CPK, thereby solving the problem of insufficient referenceability of CPK.
  • the present invention also innovatively proposes two combination control charts, namely tuhe
  • the chart consists of a mean control chart, a moving range control, and a range or standard deviation control chart. It can analyze the mean value of the process and the variation between and within the group when each subgroup belongs to a different point or batch. Monitoring can solve the problem that the traditional Shewhart control chart requires that the in-plane variation be random variation, and the same point needs to be measured. When these conditions cannot be met, the in-plane variation will be non-random variation, which will lead to The technical problem of excessive standard deviation, which ultimately affects the performance of control charts, solves the problem of limited observation capabilities of the dual chart method in the production process of TFT-LCD and OLED.
  • the present invention also innovatively proposes a production information storage structure and a production equipment management model, introduces a product production equipment traceability method, and enables the same type of equipment to be managed separately according to equipment identification, so that the calculation results of the control limit and the calculation result of the CPK are no longer required. It is a mixed data of multiple devices to solve the problem of confusion management of production equipment data in related technologies.
  • the present invention also provides a data display method. See Figure 20.
  • Figure 20 is a flow chart of a data display method according to an embodiment of the present invention. As shown in Figure 20, the method can Includes the following steps:
  • Step 2001 Display the product management interface.
  • Step 2002 Obtain the product model of the display panel to be detected through the product management interface, and determine a target control chart based on the product model.
  • the target control chart is used to indicate the statistical data characteristics of each display panel.
  • Step 2003 In response to the submission operation on the product management interface, the target control chart and control limits are displayed.
  • the target control chart is used to indicate the statistical data characteristics of each display panel.
  • the target control chart displays control limits, and the control limits are used to indicate that the Production requires upper and/or lower values for statistical characteristics of the display panel.
  • the computing device can determine the target control chart and control limits through the above data processing method, and then display the target control chart and control limits.
  • control limit is determined based on data morphology information, which is determined based on target parameter values determined through multiple measurement data of each display panel to be detected, and the data morphology information is used to indicate target measurements of multiple display panels. Whether the data has multi-group characteristics, and/or, the data morphology information is used to indicate whether the target measurement data of multiple display panels obeys a normal distribution.
  • the product management interface may be provided with a product model setting control and a control chart selection control. Based on this, in step 2002, the product model of the display panel to be detected is obtained through the product management interface, and determined based on the product model.
  • Target control chart When the target control chart is used to indicate the statistical data characteristics of each display panel, it can include the following steps:
  • Step 2002-1 Obtain the product model through the product model setting control.
  • Figure 21 is a schematic diagram of a product management interface according to an embodiment of the present invention.
  • the "product model” and the corresponding drop-down box are the product model setting controls, and the drop-down box displays Relevant technicians can select from multiple candidate product models, and the computing device can obtain the selected product model in response to the trigger operation of the relevant technicians.
  • Step 2002-2 Based on the product characteristics corresponding to the product model, display at least one candidate control chart in the control chart selection control.
  • the product characteristics of display panels of different product models are preset. Therefore, after obtaining the product model through step 2002-1, the corresponding product characteristics can be determined, and under different product characteristics
  • the types of control charts that can be used are also preset. Therefore, the computing device can display at least one candidate control chart that can be used under the product characteristics in the control chart selection control according to the determined product characteristics.
  • Figure 22 is a schematic diagram of another product management interface according to an embodiment of the present invention.
  • the "chart type" and the corresponding drop-down box are the control chart selection controls.
  • the optional control chart types corresponding to the product characteristics of the display panel can be displayed in the drop-down box.
  • Relevant technicians can select from multiple control chart types, and the computing device can respond to Relevant technical personnel trigger operations to achieve the determination of target control charts.
  • Step 2002-3 In response to the selection operation of any candidate control chart, determine the selected candidate control chart as the target control chart.
  • the computing device can also display the candidate control chart in the product management interface.
  • a point number setting control is provided so that relevant technicians can set the number of measurement points of the display panel through the point number setting control. Display panels with different numbers of measurement points can use different control charts. Therefore, The computing device may display the candidate control chart based on the number of measurement points set by the relevant technical personnel.
  • relevant technical personnel can set the number of measurement points through the point number setting control, and the computing device can obtain the number of measurement points set through the point number setting control, and then based on the product characteristics corresponding to the product model and The number of measurement points obtained, and at least one candidate control chart is displayed in the control chart selection control.
  • control with the text "Points ⁇ 1" is the point number setting control. Relevant technicians can use this control to set the number of measurement points so that Subsequently, candidate control charts can be displayed based on the product model and the number of measurement points.
  • control chart After completing the selection of the control chart, the relevant technical personnel can perform the submission operation in the product management interface, so that the computing device can start the data collection and processing process to calculate the control limits, thereby passing step 2003 Implement the display of target control charts and control limits.
  • relevant technical personnel can trigger the submission control (that is, the "Submit” button in Figure 22) on the product management interface as shown in Figure 22 to implement the The submission operation is triggered in the system, thereby triggering the process of data collection and data processing to achieve the display of target control charts and control limits.
  • Figure 23 is a schematic diagram showing a display form of a target control chart according to an embodiment of the present invention.
  • Figure 23 uses the target control chart as The figure below shows an example of a target control chart to facilitate understanding by those skilled in the art.
  • control limits including upper control limits, lower control limits, and center lines
  • FIG. 23 shows an example of a target control chart to facilitate understanding by those skilled in the art.
  • control limits are displayed in the target control chart as shown in FIG. 23 so that product quality monitoring can be achieved based on the displayed control limits.
  • the data points corresponding to each display panel can be displayed in the target control chart (as shown in Figure 23, the target control chart in Figure 23 shows that there are 50 display panels corresponding to data points, that is, 50 data points), relevant technical personnel can trigger any data point to view the equipment information of the production equipment used to process the display panel corresponding to the data point.
  • the information for processing the display panel is obtained from the production information storage structure of the display panel corresponding to the data point.
  • Equipment information of production equipment and then display the obtained equipment information.
  • Figure 24 is a schematic diagram of an information viewing interface according to an embodiment of the present invention. If the relevant technical personnel triggers the data point with an abscissa of 38 in the target control chart, the computing device can Display the ordinate value of the data point in the , and obtain the equipment information of the production equipment that processes the display panel corresponding to the data point, and display the obtained equipment information in the information display area below the target control chart to facilitate related technologies Personnel can directly see the production equipment that processes the display panel, enabling data traceability.
  • the product management interface may also include other controls to provide more functions for relevant technical personnel.
  • the product management interface also includes a partition setting control, so that relevant technical personnel can use the partition setting control to divide the display panel into multiple partitions, thereby implementing partition processing of measurement data.
  • a partition setting control so that relevant technical personnel can use the partition setting control to divide the display panel into multiple partitions, thereby implementing partition processing of measurement data. Relevant introduction to partitioning can be found in the above embodiments and will not be described again here.
  • a partition management interface in response to a triggering operation on the partition setting control, a partition management interface is displayed.
  • the partition management interface is used to partition multiple measurement points in the display panel to obtain partitions of multiple measurement points. The result is so that when the computing device processes the collected data, the measurement data of the measurement points in different partitions can be separately processed based on the partition results.
  • the "point partition” control is the partition management control. Relevant technical personnel can trigger the "point partition” control, and the computing device can respond. Upon triggering the "point partition” control, the partition setting interface is displayed so that relevant technicians can partition the display panel through the partition setting interface.
  • Figure 25 is a schematic diagram of a partition setting interface according to an embodiment of the present invention.
  • the display panel can be partitioned through the partition setting interface as shown in Figure 25.
  • the product management interface may also include at least one of the following controls:
  • the product management interface may include a data collection management control, and the data collection management control may be used to set the type of measurement data to be collected and the data description information of the measurement data.
  • the "data collection parameters" and the corresponding drop-down controls, "parameter descriptions” and corresponding drop-down controls in the product management interface can all be used as data collection management controls, among which, “ “Data Collection Parameters” and the corresponding drop-down controls can be used to set the type of measurement data to be collected, and "Parameter Description” and the corresponding drop-down controls can be used to add data description information to the measurement data to be collected.
  • the product management interface may also include a device management control, which is used to obtain device information of the production device that displays the panel;
  • Figure 26 is a schematic diagram of another product management interface according to an embodiment of the present invention.
  • the controls included under the "SPC Modeling" category such as "Test Site”, “Test Equipment” “, “Test Recipe”, “Process Site”, “Process Equipment”, and “Process Chamber/Recipe” controls are all equipment management controls. Relevant technicians can use these equipment management controls to realize production equipment and production process control. settings so that the display panel can be processed later based on the information set by relevant technicians.
  • the product management interface may also include a data filtering control.
  • the data filtering control is used to set the conditions that the data to be filtered meets and the data filtering method.
  • the "upper filter line” and corresponding adjustment controls, “lower filter line” and corresponding adjustment controls, “OOT time limit” and corresponding Adjustment controls can all be used as data filtering controls.
  • the "upper filter line” and the corresponding adjustment controls can be used to set the maximum value of the measurement data used for data processing; the "lower filter line” and the corresponding adjustment controls can be used to set the maximum value of the measurement data used for data processing.
  • the minimum value of measurement data; "OOT time limit” and the corresponding adjustment controls can be used to set the collection time conditions that need to be met for the measurement data used in data processing; "Remove beyond the filter limit” and the corresponding drop-down controls can be Used to set the data filtering method, for example, when data that does not meet the data processing requirements appears, whether to only remove the data that does not meet the data processing requirements, or to discard all the data collected this time.
  • the product management interface may also include a timing function setting control, which is used to set the cycle period of the data collection and calculation process.
  • the drop-down control can be used as a timing function setting control, so that the time interval for data collection and processing can be set through the timing function setting control.
  • the product management interface may also include a start condition setting control, which is used to set conditions for starting the data processing process.
  • the "automatically calculate the minimum number" and the corresponding adjustment control in the product management interface can be used as the start condition setting control.
  • the automatic calculation minimum data is set to 25 , which means that only when the collected data corresponds to 25 display panels, data processing can be performed based on the collected data to determine the control limits.
  • the specification limits can be determined based on the determined control limits. For example, settings can be added based on the upper control limits. value to obtain the upper specification limit, reduce the set value on the basis of the lower control limit to obtain the lower specification limit, and determine the center line as the center value, thereby realizing the determination of the specification limit, where the set value is any positive value.
  • the present invention The specific value of the set value is not limited.
  • the product management interface also includes control limit management controls and/or specification limit management controls. After determining the control limits and specification limits, the computing device can display the determined control limits and specification limits in the control limit management controls and In the specification limit management control, relevant technical personnel can adjust the control limits and specification limits through the product management interface. Among them, the control limit management control is used to adjust the determined control limits, and the specification limit management control is used to adjust the determined specification limits.
  • the "upper limit UCL” and The corresponding adjustment controls, “center line CL” and corresponding adjustment controls, “lower limit LCL” and corresponding adjustment controls can be used as control limit management controls to adjust the determined control limits.
  • the "Upper Limit USL” and corresponding adjustment controls, “Centerline” and corresponding adjustment controls, “Lower Limit LSL” and corresponding adjustment controls in the "Specification-Limit” functional area can be used as specification limit management controls for The determined specification limits are adjusted.
  • control limit management controls and specification limit management controls By setting control limit management controls and specification limit management controls in the product management interface, relevant technical personnel can adjust the determined control limits and specification limits according to actual needs, thereby improving the flexibility of the data processing process.
  • FIG. 27 is a block diagram of a data processing device according to an embodiment of the present invention. As shown in Figure 27, the device includes:
  • the acquisition module 2701 is used to acquire multiple measurement data of each display panel to be detected
  • Determining module 2702 is configured to determine data form information by using target parameter values determined based on multiple measurement data.
  • the data form information is used to indicate whether the target measurement data of multiple display panels has multi-group characteristics, and/or , the data form information is used to indicate whether the target measurement data of multiple display panels obeys a normal distribution, and the target measurement data of each display panel is determined based on multiple measurement data of the display panel;
  • the determination module 2702 is also used to determine the control limits of the target control chart based on the data form information.
  • the target control chart is used to indicate the statistical data characteristics of each display panel, and the control limits are used to indicate the statistical data characteristics of the display panel that meets the production requirements. Upper limit and/or lower limit value.
  • the target parameter value includes a first target parameter value
  • the first target parameter value is used to indicate the ratio of the sum of squared deviations between groups and within the group and the degrees of freedom after grouping the target measurement data
  • the determination module 2702 when used to determine target parameter values based on multiple measurement data, is used to:
  • the first target parameter value is determined.
  • the target parameter value includes a second target parameter value, the second target parameter value is used to indicate a probability that the target measurement data of the plurality of display panels obeys a normal distribution;
  • the determination module 2702 when used to determine target parameter values based on multiple measurement data, is used to:
  • the data form information is determined based on the target parameter value, the target parameter value includes a first target parameter value and/or a second target parameter value, the first target parameter value is used to indicate the inter-group and group-to-group values after the target measurement data is grouped.
  • the ratio of the sum of squared deviations to the degrees of freedom, and the second target parameter value is used to indicate the probability that the target measurement data of multiple display panels obeys a normal distribution;
  • the determination module 2702 when used to determine data form information through target parameter values determined based on multiple measurement data, is used to:
  • the data form information indicates that the target measurement data of the multiple display panels obey a normal distribution
  • the data form information indicates that the target measurement data of the plurality of display panels do not obey the normal distribution.
  • the determination module 2702 when used to determine the control limits of the target control chart based on the data morphology information, is used for any of the following:
  • Process capability index determines the control limits of the target control chart based on multiple sets of target measurement data whose process capability index meets the set conditions
  • the process capability index of the target measurement data of each batch is calculated separately, Based on multiple sets of target measurement data whose process capability index meets the set conditions, determine the control limits of the target control chart;
  • the data form information indicates that the target measurement data of multiple display panels do not obey the normal distribution
  • convert the multiple target measurement data into data that obeys the normal distribution and determine the control limits of the target control chart based on the converted data.
  • the target control chart is determined based on the product characteristics of the display panel, and the product characteristics are used to indicate that the measurement data of the display panel is meter-type data or counting-type data;
  • the determination module 2702 is also used to determine the target control chart based on the product characteristics of the display panel;
  • the determination module 2702 when used to determine the target control chart based on the product characteristics of the display panel, is used for:
  • the target control chart is determined based on the presence of defective products and product defects in the display panel.
  • the determination module 2702 is used for any of the following when determining the target control chart based on the number of measurement points of the display panel and the inter-group difference test results:
  • the mean-range control chart is used as the target control chart
  • the mean-moving range-range control chart is used as the target control chart
  • the single value-moving range control chart is used as the target control chart
  • the mean value -Standard deviation control chart as target control chart
  • the mean - A Moving Range-Standard Deviation chart serves as the target control chart.
  • the determination module 2702 when used to determine the target control chart based on the presence of nonconforming products and product defects in the display panel, is used to:
  • the defective product rate control chart When there are defective products in the display panel, if the number of defective products is not constant, the defective product rate control chart will be used as the target control chart;
  • the defective number control chart will be used as the target control chart
  • the control chart for the number of defective products per unit product will be used as the target control chart.
  • the determination module 2702 is also configured to determine the product model of the display panel to be detected based on the target instruction in response to receiving the target instruction;
  • the determination module 2702 is also used to determine the product characteristics of the display panel based on the product model.
  • the display panel to be detected is sampled from multiple candidate display panels according to a preset sampling interval
  • the process of determining the target sampling interval includes:
  • the initial sampling interval is adjusted to obtain the target sampling interval.
  • the device further includes:
  • the processing module is used to partition multiple measurement points in each partition of the display panel based on multiple measurement data, obtain partition results of multiple measurement points, and measure measurement points in different partitions based on the partition results. Data are processed separately.
  • the display panel is processed by multiple production equipment.
  • Each display panel corresponds to a production information storage structure.
  • the production information storage structure is used to store equipment information of the production equipment that processes the corresponding display panel.
  • Target control The chart includes data points corresponding to each display panel. The data points are used to display the equipment information of the production equipment that processes the display panel in the target control chart after being triggered.
  • the determination module 2702 is also used to determine multiple display panels processed by each production equipment based on the equipment information recorded in the production information storage structure of each display panel, and combine the multiple display panels processed by each production equipment.
  • the product information of the display panels is recorded in the production equipment management model respectively, and the production equipment management model is used to record the display panels processed by different production equipment.
  • FIG. 28 is a block diagram of a data display device according to an embodiment of the present invention. As shown in Figure 28, the device includes:
  • Display module 2801 used to display the product management interface
  • the processing module 2802 is used to obtain the product model of the display panel to be detected through the product management interface, and determine a target control chart based on the product model.
  • the target control chart is used to indicate the statistical data characteristics of each display panel;
  • the display module 2801 is also used to display the target control chart and control limits in response to the submission operation on the product management interface.
  • the target control chart is used to indicate the statistical data characteristics of each display panel.
  • the target control chart displays control limits and control limits. Upper and/or lower limit values used to indicate statistical characteristics of display panels that meet production requirements;
  • control limit is determined based on data morphology information, which is determined based on target parameter values determined through multiple measurement data of each display panel to be detected, and the data morphology information is used to indicate target measurements of multiple display panels. Whether the data has multi-group characteristics, and/or, the data morphology information is used to indicate whether the target measurement data of multiple display panels obeys a normal distribution.
  • the product management interface includes a product model setting control and a control chart selection control
  • the processing module 2802 is used to obtain the product model of the display panel to be detected through the product management interface and determine the target control chart based on the product model:
  • the selected candidate control chart is determined as the target control chart.
  • the product management interface also includes a point quantity setting control
  • the processing module 2802 is also used to obtain the number of measurement points set through the point quantity setting control
  • the display module 2801 is also used to display at least one candidate control chart in the control chart selection control based on the product characteristics corresponding to the product model and the number of acquired measurement points.
  • the product management interface also includes a partition setting control
  • the display module 2801 is also used to display a partition management interface in response to the triggering operation of the partition setting control.
  • the partition management interface is used to partition multiple measurement points in the display panel to obtain partition results for multiple measurement points.
  • the measurement data of measurement points in different partitions are processed separately based on the partition results.
  • the product management interface further includes at least one of the following:
  • the data collection management control is used to set the type of measurement data to be collected and the data description information of the measurement data;
  • Equipment management control which is used to obtain equipment information of the production equipment of the display panel
  • Data filtering control the data filtering control is used to set the conditions that the data to be filtered meets and the data filtering method
  • the timing function setting control is used to set the cycle period of the data collection and calculation process.
  • the product management interface also includes control limit management controls and/or specification limit management controls;
  • the control limit management control is used to adjust the determined control limits
  • the specification limit management control is used to adjust the determined specification limits
  • the determined specification limits are determined based on the determined control limits.
  • the target control chart includes data points corresponding to each display panel.
  • the display panels are processed by multiple production equipment.
  • Each display panel corresponds to a production information storage structure.
  • the production information storage structure is used to store the corresponding Display equipment information of the production equipment where the panel is processed;
  • the processing module 2802 is also configured to, in response to a triggering operation on any data point in the displayed target control chart, obtain the generation equipment for processing the display panel from the production information storage structure of the display panel corresponding to the data point. information;
  • the display module 2801 is also used to display the obtained device information.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the modules described as separate components may or may not be physically separated.
  • the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution in this specification. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • the present invention also provides a computing device. See Figure 29.
  • Figure 29 is a schematic structural diagram of a computing device according to an embodiment of the present invention.
  • the computing device includes a processor 2901, a memory 2902, and a network interface 2903.
  • the memory 2902 is used to store computer program code that can be run on the processor 2901.
  • the processor 2901 is used to implement when executing the computer program code.
  • the network interface 2903 is used to implement input and output functions.
  • the computing device may also include other hardware, which is not limited by the present invention.
  • the present invention also provides a computer-readable storage medium.
  • the computer-readable storage medium can be in various forms.
  • the computer-readable storage medium can be: RAM (Radom Access Memory). ), volatile memory, non-volatile memory, flash memory, storage drives (such as hard drives), solid state drives, any type of storage disk (such as optical disks, DVDs, etc.), or similar storage media, or a combination thereof.
  • the computer-readable medium can also be paper or other suitable media capable of printing the program.
  • the computer program is stored on the computer-readable storage medium. When the computer program is executed by the processor, the data processing method provided by any embodiment of the present invention is implemented.
  • the present invention also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program is executed by a processor, the data processing method provided by any embodiment of the present invention is implemented.
  • the present invention also provides a computing device. See Figure 30.
  • Figure 30 is a schematic structural diagram of a computing device according to an embodiment of the present invention.
  • the computing device includes a processor 3001, a memory 3002, and a network interface 3003.
  • the memory 3002 is used to store computer program code that can be run on the processor 3001.
  • the processor 3001 is used to implement the computer program code when executing the computer program code.
  • the network interface 3003 is used to implement the input and output functions.
  • the computing device may also include other hardware, which is not limited by the present invention.
  • the present invention also provides a computer-readable storage medium.
  • the computer-readable storage medium can be in various forms.
  • the computer-readable storage medium can be: RAM (Radom Access Memory). ), volatile memory, non-volatile memory, flash memory, storage drives (such as hard drives), solid state drives, any type of storage disk (such as optical disks, DVDs, etc.), or similar storage media, or a combination thereof.
  • the computer-readable medium can also be paper or other suitable media capable of printing the program.
  • a computer program is stored on the computer-readable storage medium. When the computer program is executed by the processor, the data display method provided by any embodiment of the present invention is implemented.
  • the present invention also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program is executed by a processor, the data display method provided by any embodiment of the present invention is implemented.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance.
  • plurality refers to two or more than two, unless expressly limited otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • General Factory Administration (AREA)

Abstract

本发明涉及一种数据处理方法及装置、数据显示方法及装置、设备和介质。本发明通过获取待检测的各个显示面板的多个测量数据,从而通过基于多个测量数据所确定出的目标参数值,来确定用于指示多个光学显示面板的目标测量数据是否具有多群组特性和/或是否服从正态分布的数据形态信息,从而可以基于数据形态信息实现目标控制图的控制限确定,以使确定出的控制限更加满足数据的真实数据形态,进而提高所确定出的控制限的准确性。

Description

数据处理方法及装置、数据显示方法及装置、设备和介质 技术领域
本发明涉及计算机技术领域和显示面板生产制造领域,尤其涉及一种数据处理方法及装置、数据显示方法及装置、设备和介质。
背景技术
众所周知,显示面板(如液晶面板)是液晶显示器的心脏,显示面板的质量会直接影响到显示器的色彩、亮度、对比度、可视角度等等功能参数和显示效果。然而,显示面板的生产步骤复杂,一个步骤出现失误就可能导致显示面板的生产受到极大影响,因此,亟需一种方法来对显示面板的生产过程进行监控,以及时发现生产过程中的异常情况。
相关技术中,主要是通过统计过程控制(Statistical Process Control,SPC)工具,来对显示面板的生产过程进行监控的。在通过SPC来对显示面板的生产过程进行监控时,需要先选定本次要监控的产品,再基于被选中的产品确定产品特性,从而基于产品特性来进行控制图或控制限的确定。
然而,在当下显示面板生产过程高效率、高产能的生产背景下,产品并非由单一路径产出,而是由多条产线、多台设备、多个设备单元生产的,而不同生产路径生产出的显示面板的数据形态可能存在较大区别,从而使得通过上述过程确定出的控制图或控制限准确性较差,进而导致产品监控过程的监控效果较差。
发明内容
本发明提供一种数据处理方法及装置、数据显示方法及装置、设备和介质,以解决相关技术中的不足。
根据本发明实施例的第一方面,提供一种数据处理方法,该方法包括:
获取待检测的各个显示面板的多个测量数据;
通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布,每个显示面板的目标测量数据基于显示面板的多个测量数据确定;
基于数据形态信息,确定目标控制图的控制限,目标控制图用于指示各个显示面板的统计数据特征,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值。
在一些实施例中,目标参数值包括第一目标参数值,第一目标参数值用于指示目标测量数据分组后组间和组内的偏差平方和与自由度的比值;
基于多个测量数据,确定目标参数值,包括:
对于任一显示面板,确定显示面板的多个测量数据的均值,作为显示面板的目标测量数据;
对多个显示面板的目标测量数据按照时间段进行分组,得到多组目标测量数据;
确定多组目标测量数据的组间变异总和、单点平方和总和;
基于组间变异总和、单点平方和总和,确定第一目标参数值。
在一些实施例中,目标参数值包括第二目标参数值,第二目标参数值用于指示多个显示面板的目标测量数据服从正态分布的概率;
基于多个测量数据,确定目标参数值,包括:
对于任一显示面板,确定显示面板的多个测量数据的均值,作为显示面板的目标测量数据;
对多个显示面板的目标测量数据进行正态性校验,得到第二目标参数值。
在一些实施例中,数据形态信息基于目标参数值确定,目标参数值包括第一目标参数值和/或第二目标参数值,第一目标参数值用于指示目标测量数据分组后组间和组内的偏差平方和与自由度的比值,第二目标参数值用于指示多个显示面板的目标测量数据服从正态分布的概率;
通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息,包括:
在第一目标参数值大于第一设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据具有多群组特性;
在第一目标参数值小于或等于第一设定阈值且第二目标参数值大于等于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据服从正态分布;
在第一目标参数值小于或等于第一设定阈值且第二目标参数值小于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据不服从正态分布。
在一些实施例中,基于数据形态信息,确定目标控制图的控制限,包括下述任一项:
在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下,将设定数量个目标测量数据确定为一组,得到多组目标测量数据,分别计算每组目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下,若多个显示面板对应于多个批次,则分别计算每个批次的目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据服从正态分布的情况下,基于满足正态分布的多个目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据不服从正态分布的情况下,将多个目标测量数据转换为服从正态分布的数据,基于转换后的数据,确定目标控制图的控制限。
在一些实施例中,目标控制图基于显示面板的产品特性确定,产品特性用于指示显示面板的测量数据为计量型数据或计数型数据;
目标控制图的确定过程包括:
在显示面板的产品特性指示显示面板的测量数据为计量型数据的情况下,基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图;
在显示面板的产品特性指示显示面板的测量数据为计数型数据的情况下,基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图。
在一些实施例中,基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图,包括下述任一项:
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-极差控制图作为目标控制图;
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数为第四设定阈值,则以单值-移动极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不是第四设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-标准差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不是第四设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-标准差控制图作为目标控制图。
在一些实施例中,基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图,包括:
在显示面板中存在不合格品的情况下,若不合格品数量为常数,则以不合格品数控制图作为目标控制图;
在显示面板中存在不合格品的情况下,若不合格品数量不是常数,则以不合格品率控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产品缺陷存在于设定区域内,则以不合格数控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产品缺陷不存在于设定区域内,则以单位产品不合格品数控制图作为目标控制图。
在一些实施例中,该方法还包括:
响应于接收到目标指令,基于目标指令,确定待检测的显示面板的产品型号;
基于产品型号,确定显示面板的产品特性。
在一些实施例中,待检测的显示面板按照预设抽样间隔时间从多个候选显示面板中抽样得到;
目标抽样间隔时间的确定过程包括:
基于历史测量数据的上控制限、下控制限、偏移后中心点和历史标准差,确定第一目标概率值;
基于第一目标概率值、初始抽样间隔时间、历史测量数据的每小时产出以及各个设定时间段内的不良率和第一概率,确定期望风险值;
基于期望风险值,对初始抽样时间间隔进行调整,得到目标抽样间隔时间。
在一些实施例中,该方法还包括:
基于多个测量数据,对显示面板各个分区中的多个测量点位进行分区,得到多个测量点位的分区结果,以基于分区结果对不同分区中的测量点位的测量数据分别进行处理。
在一些实施例中,显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息,目标控制图中包括各个显示面板对应的数据点,数据点用于在被触发后在目标控制图中显示对显示面板进行加工的生产设备的设备信息。
在一些实施例中,该方法还包括:
基于各个显示面板的生产信息存储结构中所记录的设备信息,确定经过各个生产设备加工的多个显示面板,将经过各个生产设备加工的多个显示面板的产品信息分别记录到生产设备管理模型中,生产设备管理模型用于记录不同生产设备加工过的显示面板。
根据本发明实施例的第二方面,提供一种数据显示方法,该方法包括:
显示产品管理界面;
通过产品管理界面获取待检测的显示面板的产品型号,并基于产品型号确定目标控制图,目标控制图用于指示各个显示面板的统计数据特征;
响应于在产品管理界面的提交操作,显示目标控制图和控制限,目标控制图用于指示各个显示面板的统计数据特征,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值;
其中,控制限基于数据形态信息确定得到,数据形态信息基于通过待检测的各个显示面板的多个测量数据所确定出的目标参数值确定得到,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布。
在一些实施例中,产品管理界面包括产品型号设置控件和控制图选择控件;
通过产品管理界面获取待检测的显示面板的产品型号,并基于产品型号确定目标控制图,包括:
通过产品型号设置控件获取产品型号;
基于所述产品型号对应的产品特性,在所述控制图选择控件显示至少一个候选控制图;
响应于对任一候选控制图的选中操作,将被选中的候选控制图确定为所述目标控制图。
在一些实施例中,产品管理界面还包括点位数量设置控件;
该方法还包括:
获取通过点位数量设置控件所设置的测量点位数;
基于产品型号对应的产品特性以及所获取到的测量点位数,在控制图选择控件显示至少一个候选控制图。
在一些实施例中,产品管理界面还包括分区设置控件;
该方法还包括:
响应于对分区设置控件的触发操作,显示分区管理界面,分区管理界面用于对显示面板中的多个测量点位进行分区,得到多个测量点位的分区结果,以基于分区结果对不同分区中的测量点位的测量数据分别进行处理。
在一些实施例中,产品管理界面还包括下述至少一项:
数据采集管理控件,数据采集管理控件用于设置待采集的测量数据的类型以及测量数据的数据描述信息;
设备管理控件,设备管理控件用于获取显示面板的生产设备的设备信息;
数据过滤控件,数据过滤控件用于设置待过滤的数据满足的条件以及数据过滤 方式;
定时功能设置控件,定时功能设置控件用于设置数据采集及计算过程的循环周期。
在一些实施例中,产品管理界面还包括控制限管理控件和/或规格限管理控件;
控制限管理控件用于对已确定出的控制限进行调整;
规格限管理控件用于对已确定出的规格限进行调整;
其中,已确定出的规格限基于已确定出的控制限确定得到。
在一些实施例中,目标控制图中包括各个显示面板对应的数据点,显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息;
该方法还包括:
响应于对所显示的目标控制图中任一数据点的触发操作,从数据点对应的显示面板的生产信息存储结构中,获取对显示面板进行加工的生成设备的设备信息;
对所获取到的设备信息进行显示。
根据本发明实施例的第三方面,提供一种数据处理装置,该装置包括:
获取模块,用于获取待检测的各个显示面板的多个测量数据;
确定模块,用于通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布,每个显示面板的目标测量数据基于显示面板的多个测量数据确定;
确定模块,还用于基于数据形态信息,确定目标控制图的控制限,目标控制图用于指示各个显示面板的统计数据特征,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值。
在一些实施例中,目标参数值包括第一目标参数值,第一目标参数值用于指示目标测量数据分组后组间和组内的偏差平方和与自由度的比值;
确定模块,在用于基于多个测量数据,确定目标参数值时,用于:
对于任一显示面板,确定显示面板的多个测量数据的均值,作为显示面板的目 标测量数据;
对多个显示面板的目标测量数据按照时间段进行分组,得到多组目标测量数据;
确定多组目标测量数据的组间变异总和、单点平方和总和;
基于组间变异总和、单点平方和总和,确定第一目标参数值。
在一些实施例中,目标参数值包括第二目标参数值,第二目标参数值用于指示多个显示面板的目标测量数据服从正态分布的概率;
确定模块,在用于基于多个测量数据,确定目标参数值时,用于:
对于任一显示面板,确定显示面板的多个测量数据的均值,作为显示面板的目标测量数据;
对多个显示面板的目标测量数据进行正态性校验,得到第二目标参数值。
在一些实施例中,数据形态信息基于目标参数值确定,目标参数值包括第一目标参数值和/或第二目标参数值,第一目标参数值用于指示目标测量数据分组后组间和组内的偏差平方和与自由度的比值,第二目标参数值用于指示多个显示面板的目标测量数据服从正态分布的概率;
确定模块,在用于通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息时,用于:
在第一目标参数值大于第一设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据具有多群组特性;
在第一目标参数值小于或等于第一设定阈值且第二目标参数值大于等于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据服从正态分布;
在第一目标参数值小于或等于第一设定阈值且第二目标参数值小于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据不服从正态分布。
在一些实施例中,确定模块,在用于基于数据形态信息,确定目标控制图的控制限时,用于下述任一项:
在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下, 将设定数量个目标测量数据确定为一组,得到多组目标测量数据,分别计算每组目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下,若多个显示面板对应于多个批次,则分别计算每个批次的目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据服从正态分布的情况下,基于满足正态分布的多个目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据不服从正态分布的情况下,将多个目标测量数据转换为服从正态分布的数据,基于转换后的数据,确定目标控制图的控制限。
在一些实施例中,目标控制图基于显示面板的产品特性确定,产品特性用于指示显示面板的测量数据为计量型数据或计数型数据;
确定模块,还用于基于显示面板的产品特征确定目标控制图;
确定模块,在用于基于显示面板的产品特征确定目标控制图时,用于:
在显示面板的产品特性指示显示面板的测量数据为计量型数据的情况下,基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图;
在显示面板的产品特性指示显示面板的测量数据为计数型数据的情况下,基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图。
在一些实施例中,确定模块,在用于基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图时,用于下述任一项:
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-极差控制图作为目标控制图;
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数为第四设定阈值,则以单值-移动极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不 是第四设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-标准差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不是第四设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-标准差控制图作为目标控制图。
在一些实施例中,确定模块,在用于基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图时,用于:
在显示面板中存在不合格品的情况下,若不合格品数量为常数,则以不合格品数控制图作为目标控制图;
在显示面板中存在不合格品的情况下,若不合格品数量不是常数,则以不合格品率控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产品缺陷存在于设定区域内,则以不合格数控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产品缺陷不存在于设定区域内,则以单位产品不合格品数控制图作为目标控制图。
在一些实施例中,确定模块,还用于响应于接收到目标指令,基于目标指令,确定待检测的显示面板的产品型号;
确定模块,还用于基于产品型号,确定显示面板的产品特性。
在一些实施例中,待检测的显示面板按照预设抽样间隔时间从多个候选显示面板中抽样得到;
目标抽样间隔时间的确定过程包括:
基于历史测量数据的上控制限、下控制限、偏移后中心点和历史标准差,确定第一目标概率值;
基于第一目标概率值、初始抽样间隔时间、历史测量数据的每小时产出以及各个设定时间段内的不良率和第一概率,确定期望风险值;
基于期望风险值,对初始抽样时间间隔进行调整,得到目标抽样间隔时间。
在一些实施例中,该装置还包括:
处理模块,用于基于多个测量数据,对显示面板各个分区中的多个测量点位进行分区,得到多个测量点位的分区结果,以基于分区结果对不同分区中的测量点位的测量数据分别进行处理。
在一些实施例中,显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息,目标控制图中包括各个显示面板对应的数据点,数据点用于在被触发后在目标控制图中显示对显示面板进行加工的生产设备的设备信息。
在一些实施例中,确定模块,还用于基于各个显示面板的生产信息存储结构中所记录的设备信息,确定经过各个生产设备加工的多个显示面板,将经过各个生产设备加工的多个显示面板的产品信息分别记录到生产设备管理模型中,生产设备管理模型用于记录不同生产设备加工过的显示面板。
根据本发明实施例的第四方面,提供一种数据显示装置,该装置包括:
显示模块,用于显示产品管理界面;
处理模块,用于通过产品管理界面获取待检测的显示面板的产品型号,并基于产品型号确定目标控制图,目标控制图用于指示各个显示面板的统计数据特征;
显示模块,还用于响应于在产品管理界面的提交操作,显示目标控制图和控制限,目标控制图用于指示各个显示面板的统计数据特征,目标控制图中显示有控制限,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值;
其中,控制限基于数据形态信息确定得到,数据形态信息基于通过待检测的各个显示面板的多个测量数据所确定出的目标参数值确定得到,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布。
在一些实施例中,产品管理界面包括产品型号设置控件和控制图选择控件;
处理模块,在用于通过产品管理界面获取待检测的显示面板的产品型号,并基于产品型号确定目标控制图时,用于:
通过产品型号设置控件获取产品型号;
基于产品型号对应的产品特性,在控制图选择控件显示至少一个候选控制图;
响应于对任一候选控制图的选中操作,将被选中的候选控制图确定为目标控制 图。
在一些实施例中,产品管理界面还包括点位数量设置控件;
处理模块,还用于获取通过点位数量设置控件所设置的测量点位数;
显示模块,还用于基于产品型号对应的产品特性以及所获取到的测量点位数,在控制图选择控件显示至少一个候选控制图。
在一些实施例中,产品管理界面还包括分区设置控件;
显示模块,还用于响应于对分区设置控件的触发操作,显示分区管理界面,分区管理界面用于对显示面板中的多个测量点位进行分区,得到多个测量点位的分区结果,以基于分区结果对不同分区中的测量点位的测量数据分别进行处理。
在一些实施例中,产品管理界面还包括下述至少一项:
数据采集管理控件,数据采集管理控件用于设置待采集的测量数据的类型以及测量数据的数据描述信息;
设备管理控件,设备管理控件用于获取显示面板的生产设备的设备信息;
数据过滤控件,数据过滤控件用于设置待过滤的数据满足的条件以及数据过滤方式;
定时功能设置控件,定时功能设置控件用于设置数据采集及计算过程的循环周期。
在一些实施例中,产品管理界面还包括控制限管理控件和/或规格限管理控件;
控制限管理控件用于对已确定出的控制限进行调整;
规格限管理控件用于对已确定出的规格限进行调整;
其中,已确定出的规格限基于已确定出的控制限确定得到。
在一些实施例中,目标控制图中包括各个显示面板对应的数据点,显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息;
处理模块,还用于响应于对所显示的目标控制图中任一数据点的触发操作,从数据点对应的显示面板的生产信息存储结构中,获取对显示面板进行加工的生成设备的设备信息;
显示模块,还用于对所获取到的设备信息进行显示。
根据本发明实施例的第五方面,提供一种计算设备,该计算设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,该处理器执行该计算机程序时实现上述第一方面以及第一方面的任一个实施例所提供的数据处理方法所执行的操作。
根据本发明实施例的第六方面,提供一种计算设备,该计算设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,该处理器执行该计算机程序时实现上述第二方面以及第二方面的任一个实施例所提供的数据显示方法所执行的操作。
根据本发明实施例的第七方面,提供一种计算机可读存储介质,该计算机可读存储介质上存储有程序,该程序被处理器执行时,实现上述第一方面以及第一方面的任一个实施例所提供的数据处理方法所执行的操作。
根据本发明实施例的第八方面,提供一种计算机可读存储介质,该计算机可读存储介质上存储有程序,该程序被处理器执行时,实现上述第二方面以及第二方面的任一个实施例所提供的数据显示方法所执行的操作。
根据本发明实施例的第九方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序,计算机程序被处理器执行时,实现上述第一方面以及第一方面的任一个实施例所提供的数据处理方法所执行的操作。
根据本发明实施例的第十方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序,计算机程序被处理器执行时,实现上述第二方面以及第二方面的任一个实施例所提供的数据显示方法所执行的操作。
本发明通过获取待检测的各个显示面板的多个测量数据,从而通过基于多个测量数据所确定出的目标参数值,来确定用于指示多个光学显示面板的目标测量数据是否具有多群组特性和/或是否服从正态分布的数据形态信息,从而可以基于数据形态信息实现目标控制图的控制限确定,以使确定出的控制限更加满足数据的真实数据形态,进而提高所确定出的控制限的准确。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据本发明实施例示出的一种数据处理方法的流程图。
图2是根据本发明实施例示出的一种抽样规则示意图。
图3是根据本发明实施例示出的一种抽样规则的案例示意图。
图4是根据本发明实施例示出的一种显示面板的测量数据示意图。
图5是根据本发明实施例示出的一种显示面板的分区示意图。
图6是根据本发明实施例示出的一种Scan1群组的分组结果示意图。
图7是根据本发明实施例示出的一种Scan2群组的分组结果示意图。
图8是根据本发明实施例示出的一种Scan3群组的分组结果示意图。
图9是根据本发明实施例示出的一种Scan4群组的分组结果示意图。
图10是根据本发明实施例示出的一种显示面板面内的分组结果示意图。
图11是根据本发明实施例示出的一种数据形态信息的确定过程示意图。
图12是根据本发明实施例示出的一种目标控制图的确定过程示意图。
图13是根据本发明实施例示出的另一种目标控制图的确定过程示意图。
图14是根据本发明实施例示出的一种控制限计算过程的示意图。
图15是根据本发明实施例示出的一种控制图的示意图。
图16是根据本发明实施例示出的一种数据处理方法的流程图。
图17是根据本发明实施例示出的一种显示面板的处理过程示意图。
图18是根据本发明实施例示出的一种生产信息存储结构的示意图。
图19是根据本发明实施例示出的一种信息录入过程的示意图。
图20是根据本发明实施例示出的一种数据显示方法的流程图。
图21是根据本发明实施例示出的一种产品管理界面的界面示意图。
图22是根据本发明实施例示出的另一种产品管理界面的界面示意图。
图23是根据本发明实施例示出的一种目标控制图的显示形式示意图。
图24是根据本发明实施例示出的一种信息查看界面的示意图。
图25是根据本发明实施例示出的一种分区设置界面的示意图。
图26是根据本发明实施例示出的另一种产品管理界面的示意图。
图27是据本发明实施例示出的一种数据处理装置的框图。
图28是据本发明实施例示出的一种数据显示装置的框图。
图29是根据本发明实施例提供的一种计算设备的结构示意图。
图30是根据本发明实施例提供的一种计算设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本发明提供了一种数据处理方法,用于针对薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)以及有机电激光显示(Organic Light-Emitting Diode,OLED,或称有机发光半导体)生产过程中的数据形态进行控制限的确定,提升了所确定出的控制限的准确性,为SPC的控制限设定提供了一种科学方法,从而可以提高数据分类后控制限计算的精准程度。
此外,本发明还提供了一种数据显示方法,用于从TFT-LCD行业生产过程所生产的产品确定需要进行数据分析的产品型号,并获取该产品型号对应产品的产品特性,从而基于所选定的产品型号和产品特征,实现控制图和控制限的显示,以便相关技术人员可以根据所显示的控制图和控制限,来实现对产品生产过程的质量监控。
上述数据处理方法和数据显示方法均可以由计算设备执行,该计算设备可以为终端设备,如台式计算机、便携式计算机、智能手机、平板电脑等,可选地,该计算设备还可以为服务器,如一台服务器、多台服务器、服务器集群等,本发明对计算设备的设备类型和设备数量不加以限定。
在介绍了本发明的应用场景之后,下面对本发明所涉及的技术术语进行介绍。
统计过程控制(Statistical Process Control,SPC):是一种应用统计学原理对产品生产过程进行监控的质量管理类工具。
SPC数据形态分类(SPC Data Form Classify)方法:通过算法将数据形态分为多群组、正态、非正态等。
均值-移动极差-极差(Xbar-Moving Range-Range,Xbar-MR-R)控制图:是一种创新的SPC控制图方法,结合均值、移动极差、极差三种控制图进行报警管理和分析。
均值-移动极差-标准差(Xbar-Moving Range-Std,Xbar-MR-S)控制图:是一种创新的SPC控制图方法,结合均值、移动极差、标准差三种图进行报警管理和分析。
制程能力指数(Complex Process Capability Index,CPK):是现代企业用于表示制程能力的指标。
制程能力:是指一个制程在固定生产条件及稳定管制下所展现的品质能力。
改进制程能力指数(Complex Process Capability Index Between Within,CPK-BW):是对CPK的一种改进计算方法,增加了对组间差异的管理,使CPK的灵敏程度更高。
控制限:是应用数理统计方法在通过对历史数据采用控制图分析得到的质量特性值的控制界限,以分析和判断工序所处状态是否满足规范的要求。其中,控制限可以包括上控制限(Upper Control Limit,UCL)和下控制限(Lower Control Limit,LCL)。
规格限:是由客户或者公司指定的,是对过程的能力要求,一般情况下,规格限要比控制限宽,否则无法满足质量目标。其中,规格限可以包括上规格限(Upper Spec Limit,USL)和下规格限(Lower Spec Limit,LSL)。
方差分析(Analysis of Variance,Anova):用来检验两个及两个以上样本均值是否相等的方法,通过对总变异拆解成组间与组内变异的大小判断来确认均值间的差异是否显著。
在介绍了本发明所涉及的技术术语之后,下面对本发明所提供的数据处理方法的方案进行说明。
参见图1,图1是根据本发明实施例示出的一种数据处理方法的流程图,如图 1所示,该方法包括:
步骤101、获取待检测的各个显示面板的多个测量数据。
其中,显示面板可以为液晶面板,可选地,显示面板还可以为其他类型,本发明对显示面板的具体类型不加以限定。
需要说明的是,对于任一显示面板,该显示面板上可以设置有多个测量点位,每个测量点位处可以获取到一个测量数据,因而,可以从一个显示面板上获取到多个测量数据。
其中,测量数据可以为多种类型的数据,例如,测量数据可以为对显示面板施加电压后所获取到的背光值,或者,测量数据可以为对位精度(Alignment Inspection,AI),可选地,测量数据还可以为其他类型的数据,本发明对测量数据的具体类型不加以限定。
步骤102、通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息,目标参数值用于指示多个显示面板的目标测量数据的数据特性,每个显示面板的目标测量数据基于显示面板的多个测量数据确定,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布。
需要说明的是,对于任一显示面板,该显示面板可以对应于多个测量数据,从而可以基于该显示面板所对应的多个测量数据,来确定该显示面板的目标测量数据。
步骤103、基于数据形态信息,确定目标控制图的控制限,目标控制图用于指示各个显示面板的统计数据特征,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值。
其中,统计数据可以为均值、极差、移动极差、标准差等,本发明对统计数据的具体类型不加以限定。相应地,统计数据特征可以为均值、极差、移动极差、标准差等统计数据的数据特征。
本发明通过获取待检测的各个显示面板的多个测量数据,从而通过基于多个测量数据所确定出的目标参数值,来确定用于指示多个光学显示面板的目标测量数据是否具有多群组特性和/或是否服从正态分布的数据形态信息,从而可以基于数据形态信息实现目标控制图的控制限确定,以使确定出的控制限更加满足数据的真实数据形态,进而提高所确定出的控制限的准确性。
在介绍了本发明所提供的数据处理方法的基本实现过程之后,下面介绍该数据处理方法的各个可选实施例。
需要说明的是,由于在一套生产设备上,可能会生产出多种不同型号的显示面板,因而在步骤101之前,需要先确定本次要处理的是哪个型号的显示面板,以便后续可以基于对应型号的显示面板来进行处理。
在一些实施例中,在步骤101之前,该方法还可以包括如下步骤:
步骤100、响应于接收到目标指令,基于目标指令,确定待检测的显示面板的产品型号。
其中,目标指令可以由用户通过计算设备触发,目标指令可以携带产品型号,以便目标指令可以指示计算设备将对应产品型号的显示面板作为待检测的显示面板。
在通过上述过程确定出本次需要处理的显示面板的产品型号后,计算设备即可获取到已生产的该产品型号的显示面板,作为待检测的各个显示面板,以便后续可以对待检测的各个显示面板进行处理。
需要说明的是,由于在实际生产过程中,所生产的同种产品型号的显示面板的数量可能较多,如果对已生产的该产品型号的显示面板均进行处理,可能会导致计算设备的处理压力过大,因而,在更多可能的实现方式中,可以在确定出待检测的显示面板的产品型号后,可以将已生产的该产品型号的显示面板作为候选显示面板,从而可以按照目标抽样间隔时间从多个候选显示面板中进行抽样,以得到待检测的显示面板。
其中,目标抽样间隔时间可以是通过预先对初始抽样间隔时间进行调整得到的,在一种可能的实现方式中,可以通过如下步骤实现对初始抽样间隔时间的调整,以获取到目标抽样间隔时间:
步骤一、基于历史测量数据的上控制限、下控制限、偏移后中心点和历史标准差,确定第一目标概率值。
需要说明的是,在进行本次数据处理过程之前,计算设备可能已经对该产品型号在较早时间内生产的显示面板进行了处理,也即是,计算设备可能已经基于历史测量数据确定出了历史测量数据的上控制限、下控制限、偏移后中心点和历史标准差等数据,因而,在本次数据处理过程中或本次数据处理过程之前,可以获取已测量出的历史测量数据的上控制限、下控制限、偏移后中心点和历史标准差,从而基于所获取 到的数据,来进行第一目标概率值的确定。其中,中心点可以是基于历史测量数据通过理论计算得出的数据分布的中心点,然而在实际使用过程中,中心点可能发生偏移,为保证数据处理过程的准确性,通过可以获取偏移后中心点,从而以偏移后中心点来知道后续的计算过程。
在一种可能的实现方式中,可以通过如下函数来确定第一目标概率值:
P1=(NORM.S.DIST((UCL-偏移后中心点)/历史标准差,1)-NORM.S.DIST((LCL-偏移后中心点)/历史标准差,1))
其中,P1即为第一目标概率(或称未发现概率),第一目标概率可以用于指示未发现设定时间段内生产的显示面板中的不合格品的概率,NORM.S.DIST为表格(Excel)软件中的标准正态分布函数。
需要说明的是,设定时间段可以为时长满足初始抽样间隔时间的时间段。
步骤二、基于第一目标概率值、初始抽样间隔时间、历史测量数据的每小时产出以及各个设定时间段内的不良率和第一概率,确定期望风险值。
此外,在历史处理过程中,计算设备还可以基于历史测量数据确定出历史测量数据的每小时产出以及各个设定时间段内的不良率和第一概率(或称发生概率),从而使得在本次数据处理过程中,可以直接获取到历史测量数据的每小时产出、以及各个设定时间段内的不良率和第一概率,以便可以基于每小时产出、以及各个设定时间段内的不良率和第一概率,来进行期望风险值的确定。
其中,第一概率用于指示设定时间段内生产的显示面板出现不合格品的概率。
参见图2,图2是根据本发明实施例示出的一种抽样规则示意图,如图2所示,以设定时间段包括第一设定时间段(也即是h内可能发生的偏移量为0~1的时间段)、第二设定时间段(也即是h内可能发生的偏移量为1~2的时间段)和第三设定时间段(也即是h内可能发生的偏移量大于2的时间段)为例,第一设定时间段内的不良率为A、第一概率(也即是发生概率)为D、发现概率为G,第二设定时间段内的不良率为B、第一概率(也即是发生概率)为E、发现概率为H,第三设定时间段内的不良率为C、第一概率(也即是发生概率)为F、发现概率为I,则可以通过如下公式实现期望风险值的确定:
期望风险=UPH*h*(A*D*(1-G)+B*E*(1-H)+C*F*(1-I))
需要说明的是,未发现概率可以通过“未发现概率=1-发现概率”的公式计算得到,D、E、F三者的和值为1,发现概率可以为f(n,h,k)函数,n为样本量,h为初始抽样时间间隔,k为标准差管控倍数,n、f、k可以根据需求自行设定。
步骤三、基于期望风险值,对初始抽样时间间隔进行调整,得到目标抽样间隔时间。
需要说明的是,可以预先设置有一个风险阈值,在通过上述步骤二确定出期望风险值后,即可将所确定出的期望风险值与风险阈值进行比较,在期望风险值小于风险阈值的情况下,可以对初始抽样间隔时间进行调整,以得到目标抽样间隔时间。
可选地,不同的期望风险值可以对应于不同的调整步长,因而,在基于期望风险值对初始抽样间隔时间进行调整时,可以按照期望风险值对应的调整步长,在初始抽样间隔时间的基础上减小该调整步长,以实现对初始抽样间隔时间的调整,从而得到目标抽样间隔时间。
上述仅为一种基于期望风险值对初始抽样间隔时间进行调整的示例性方式,在更多可能的实现方式中,还可以采用其他方式来对初始抽样间隔时间进行调整,本发明对具体采用哪种方式不加以限定。
以对位精度作为测量数据的显示面板为例,通过上述步骤一和步骤二获取到的样本量(也即是n)、初始抽样间隔时间(也即是h)、标准差管控倍数(也即是k)、偏移量、第一概率(也即是发生概率)、历史中心点、历史标准差、不良率、上控制限、下控制限的值可以参见图3,图3是根据本发明实施例示出的一种抽样规则的案例示意图,通过所获取到的上述取值,即可按照步骤一和步骤二的指示计算出发现概率、未发现概率(也即是第一目标概率)、发现风险、未发现风险以及期望风险的取值,以便后续可以通过步骤三,对期望风险值和风险阈值(也即是自定义风险值)进行比较,以实现初始抽样间隔时间的调整。
上述过程是以基于历史数据来实现预设抽样间隔时间的确定为例来进行说明的,可选地,本次数据处理过程还有可能是首次对该产品型号的显示面板进行处理,此时,可以直接将初始抽样间隔时间作为目标抽样间隔时间,而无需对初始抽样间隔时间进行调整。
通过上述过程,即可实现目标抽样间隔时间的确定,以便可以基于所确定出的目标抽样间隔时间,来对相应产品型号的显示面板进行抽样,从而将抽样得到的显示 面板作为待检测的显示面板,以便后续可以通过步骤101,来获取每个待检测的显示面板的多个测量数据。
需要说明的是,在获取任一显示面板的多个测量数据时,可以在显示面板中设置多个测量点位,从而获取每个测量点位的测量数据,以得到该显示面板的多个测量数据。
以待检测的显示面板为栅极半色调膜(Half-Gate Mask,HGM)为例,显示面板中可以设置有72个测量点位,每个测量点位可以包括多个像素点,在获取这72个测量点位的测量数据时,可以在抽取11664个测量数据,也即是,在每个测量点位上抽取162个测量数据,对于任一测量点位,可以对从该测量点位上抽取的162个测量数据取平均,从而将取平均得到的结果作为该测量点位的测量数据,以此类推,得到72个测量点位对应的72个测量数据,作为显示面板的多个测量数据。
参见图4,图4是根据本发明实施例示出的一种显示面板的测量数据示意图,如图4所示,图4以待检测的显示面板为HGM为例,该显示面板中可以包括72个测量点位,每个测量点位对应于一个测量数据,从而使得可以获取到如图4所示的72个测量数据。
在通过上述过程获取到显示面板的多个测量数据之后,即可通过步骤102,通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息。
在一些实施例中,对于步骤102,在通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息时,可以先基于多个测量数据,确定目标参数值,进而基于目标参数值,确定数据形态信息。
其中,目标参数值可以用于指示多个显示面板的目标测量数据的数据特性,每个显示面板的目标测量数据基于显示面板的多个测量数据确定。
下面,对确定各个显示面板的目标测量数据的过程进行介绍。
在一种可能的实现方式中,对于任一显示面板,可以确定显示面板的多个测量数据的均值,作为显示面板的目标测量数据,也即是,可以对该显示面板的多个测量数据取平均,从而将所确定出的平均值,作为该显示面板的目标测量数据。
上述过程是以直接对显示面板的多个测量点位进行处理为例来进行说明的,通常情况下,通过一次生产过程所生产出的显示面板可以被划分为多个屏幕来进行销售,因而,在对显示面板中的数据进行处理时,可以分区对数据进行处理。
例如,在一种可能的实现方式中,可以基于多个测量数据,对显示面板中的多个测量点位进行分区,得到多个测量点位的分区结果,以基于分区结果对不同分区中的测量点位分别进行处理。
参见图5,图5是根据本发明实施例示出的一种显示面板的分区示意图,如图5所示,可以将显示面板划分为A1、A2、A3、A4、B1、B2、B3、B4这8个分区,从而分别对这8个分区中的数据进行处理。另外,这8个分区在出厂后都可以被作为一个单独的显示面板来销售。
例如,在基于上述分区结果来确定显示面板的目标测量数据时,可以对各个分区分别确定每个分区中的测量数据的均值,进而再对多个分区对应的均值取平均,以得到一个最终的均值计算结果,作为显示面板的目标测量数据。
另外,为便于处理,还可以将多个分区作为一个大的分区(或称群组)来进行处理,如图5所示,可以将2个分区作为一个群组来进行处理,例如,将分区A1和分区A2作为Scan1群组,将分区B1和分区B2作为Scan2群组,将分区A3和分区A4作为Scan3群组,将分区B3和分区B4作为Scan4群组,从而得到4个群组。
在通过上述过程实现群组的划分后,后续即可基于群组来实现测量数据的处理,例如,在确定每个待检测的显示面板的目标测量数据时,对于任一显示面板,可以分别计算该显示面板中每个群组的多个测量数据的平均值,从而再对多个群组对应的测量数据平均值取平均,进而将最终取平均得到的结果作为显示面板的目标测量数据。
需要说明的是,即使是同一分区中的测量点位,也有可能是由同一生产设备的不同生产单元加工得到的,甚至有可能是被不同的生产设备加工得到的,因而,在更多可能的实现方式中,还可以基于多个测量数据,对显示面板各个分区中的多个测量点位进行更细化的分区(或称分组),得到更加细化的分区结果,以基于更加细化的分区结果(也即是分组结果)对不同群组中的测量点位的测量数据分别进行处理。
在一些实施例中,在对显示面板各个分区中的多个测量点位进行更细化的分区(也即是分组)时,可以采用聚类算法如K-Means方法实现。
需要说明的是,在采用K-Means方法实现分组时,可以基于组间差异(R Square)来对分组结果进行验证,在组间差异大于或等于设定差异阈值的情况下,即可确定分组结果合理。其中,组间差异可以通过单因子方差分析(Anova)方法计算得到。
可选地,设定差异阈值可以为任意取值,例如,设定差异阈值可以为0.8(也即是80%),或者,设定差异阈值还可以为其他取值,本发明对设定差异阈值的具体取值不加以限定。
仍以待检测的显示面板为如图4所示的HGA为例,结合如图5所示的分区方式,可以根据实际工程状况应用K-Means对每个Scan群组进一步进行分组,且保证每个Scan群组内R Square结果大于等于80%,通常情况下,应用K-Means进行分组的数量≥2组,则Scan1群组的分组结果可以参见图6,图6是根据本发明实施例示出的一种Scan1群组的分组结果示意图,如图6所示,Scan1群组可以分为2个分组;Scan2群组的分组结果可以参见图7,图7是根据本发明实施例示出的一种Scan2群组的分组结果示意图,如图7所示,Scan2群组可以分为2个分组;Scan3群组的分组结果可以参见图8,图8是根据本发明实施例示出的一种Scan3群组的分组结果示意图,如图8所示,Scan3群组可以分为3个分组;Scan4群组的分组结果可以参见图9,图9是根据本发明实施例示出的一种Scan4群组的分组结果示意图,如图9所示,Scan4群组可以分为2个分组。
基于此,如图4所示的显示面板面内可以被分为9个分组,这9个分组的示意可以参见图10,图10是根据本发明实施例示出的一种显示面板面内的分组结果示意图。
在通过上述过程实现显示面板的面内分组后,即可基于分组结果来实现测量数据的处理,例如,在确定每个待检测的显示面板的目标测量数据时,对于任一显示面板,该显示面板中可以包括多个群组,每个群组可以包括多个分组,因而可以分别计算该显示面板中每个分组的多个测量数据的平均值,对于任一群组,再对该群组所包括的多个分组的测量数据平均值取平均,以得到每个群组的测量数据平均值,进而对多个群组的测量数据平均值再取平均,将最终取平均得到的结果作为显示面板的目标测量数据。
通过上述按照不同程度的分区方式来对测量数据进行处理的方式,可以使得最终确定出的目标测量数据更加符合显示面板的实际测量数据情况,从而提高所确定出的目标测量数据的准确性,以为后续的数据处理过程提供良好的数据基础,进而保证后续数据处理过程的准确程度。
需要说明的是,无论采用上述哪种方式,均可以实现各个显示面板的目标测量数据的确定,从而即可基于多个显示面板的目标测量数据,来进行目标参数值的确定。
其中,目标参数值可以包括第一目标参数值和/或第二目标参数值,第一目标参数值可以用于指示目标测量数据分组后组间和组内的偏差平方和与自由度的比值,第二目标参数可以用于指示多个显示面板的目标测量数据服从正态分布的概率。
下面,分别对确定第一目标参数值和第二目标参数值的过程进行介绍。
在一些实施例中,第一目标参数值的确定过程可以包括如下步骤:
步骤一、对多个显示面板的目标测量数据按照时间段进行分组,得到多组目标测量数据。
例如,可以将一段时间内生成的多个显示面板的目标测量数据作为一个总数据集(例如,可以记为总数据集M),以数据集M中共有m个目标测量数据为例,按照相等时间可以将这m个目标测量数据分割为N组(记为N1、N2、N3、...),从而得到多组目标测量数据,其中,每组数据所包括的目标测量数据的个数可以分别为n1、n2、n3、...。
步骤二、确定多组目标测量数据的组间变异总和、单点平方和总和。
在一种可能的实现方式中,可以通过如下公式(1)来确定多组目标测量数据的组间变异总和:
Figure PCTCN2022102675-appb-000001
其中,SSB表示组间变异总和,Avg表示取平均,M为多组目标测量数据所组成的数据集,数据集M中的目标测量数据可以为分为N组,各组数据所包括的目标测量数据的个数为n。
此外,可以通过如下公式(2)来确定多组目标测量数据的单点平方和总和:
Figure PCTCN2022102675-appb-000002
其中,SST表示单点平方和总和,Avg表示取平均,M为多组目标测量数据所组成的数据集,数据集M中共有m个目标测量数据。
步骤三、基于组间变异总和、单点平方和总和,确定第一目标参数值。
在一种可能的实现方式中,可以通过如下公式(3)至公式(5)实现第一目标 参数值的确定:
F=MS(SB)/MS(SE)            (3)
MS(SB)=SST-SSB/(m-(N-1))           (4)
MS(SE)=SSB/(N-1)         (5)
其中,F为第一目标参数值,MS(SE)表示第一参数,MS(SB)表示第二参数,SSB表示组间变异总和,SST表示单点平方和总和,多组目标测量数据共包括m个目标测量数据,这m个目标测量数据被分割为N组。
在另一些实施例中,第二目标参数值的确定过程可以为:
对多个显示面板的目标测量数据进行正态性校验,得到第二目标参数值。
在一种可能的实现方式中,可以采用Anderson-Darling正态性校验计算方法,以获得第二目标参数值(可以记为P值)。
在通过上述过程获取到第一目标参数值和第二目标参数值之后,即可基于所获取到的第一目标参数值和第二目标参数值,实现数据形态信息的确定。
在一些实施例中,对于步骤103,在基于目标参数值,确定数据形态信息时,可以包括如下任一种方式:
在一种可能的实现方式中,在第一目标参数值大于第一设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据具有多群组特性。
其中,第一目标参数可以记为F,第一设定阈值可以为2.65,也即是,在F>2.65的情况下,可以确定多个显示面板的目标测量数据具有多群组特征,相应地,在F≤2.65的情况下,可以确定多个显示面板的目标测量数据具有单群组特性。
在另一种可能的实现方式中,在第一目标参数值小于或等于第一设定阈值且第二目标参数值大于等于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据服从正态分布。
其中,第二目标参数可以记为P,第二设定阈值可以为0.05,也即是,在F≤2.65且P>0.05的情况下,可以确定多个显示面板的目标测量数据服从正态分布。
在另一种可能的实现方式中,在第一目标参数值小于或等于第一设定阈值且第二目标参数值小于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目 标测量数据不服从正态分布。
其中,在第二目标参数记为P、第二设定阈值为0.05的情况下,若F≤2.65且P<0.05,即可确定多个显示面板的目标测量数据不服从正态分布,或者说,多个显示面板的目标测量数据服从非正态分布。
上述确定数据形态信息的过程可以参见图11,图11是根据本发明实施例示出的一种数据形态信息的确定过程示意图,如图11所示,在确定数据形态信息时,可以遵循先对数据进行多群组校验,以确定数据是否具有多群组特性,在确定数据不具有多群组特性(或者说,数据具有单群组特性)的情况下,再对数据进行正态校验,以确定数据是否具有单一正态特性。
此外,在确定数据不具有多群组特性(或者说,数据具有单群组特性)的情况下,还可以先对数据进行趋势性校验,以确定数据是否具有趋势性特性,在确定数据不具备趋势性特性(也即是各个数据互相独立)的情况下,再对数据进行正态校验,以确定数据是否具有单一正态特性。
在通过上述过程确定出数据形态信息之后,即可通过步骤104,来进行控制限的确定。其中,控制限可以是显示在目标控制图中的,以便相关技术人员可以直观地观察到各个产品的质量是否满足要求。
需要说明的是,目标控制图可以是预先确定出来的,例如,可以基于显示面板的产品特性来确定对应的目标控制图,不同产品特性的显示面板可以对应于不同的目标控制图。其中,产品特性可以用于指示显示面板的测量数据为计量型数据或计数型数据,计量型数据可以是连续型随机变量,计数型数据(包括计件和计点)可以是离散型随机变量。
在一些实施例中,在基于产品特性来进行目标控制图的确定时,可以包括如下任一种实现方式:
在一种可能的实现方式中,在显示面板的产品特性指示显示面板的测量数据为计量型数据的情况下,基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图。
需要说明的是,在测量数据为计量型数据的情况下,可以基于显示面板的测量点位数以及组间差异检验结果,从均值-极差
Figure PCTCN2022102675-appb-000003
控制图、均值-移动极差-极差
Figure PCTCN2022102675-appb-000004
控制图、均值-标准差
Figure PCTCN2022102675-appb-000005
控制图、单值-移动极差(X-MR)控制图、均值-移动极差-标准差
Figure PCTCN2022102675-appb-000006
控制图中进行目标控制图的选择。
在另一种可能的实现方式中,在显示面板的产品特性指示显示面板的测量数据为计数型数据的情况下,基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图。
需要说明的是,在测量数据为计数型数据的情况下,可以基于显示面板中不合格品数和产品缺陷的存在情况,从不合格品数控制图(NP-图)、不合格品率控制图(P-图)、不合格数控制图(C-图)、单位产品不合格品数控制图(U-图)中进行目标控制图的选择。
下面,分别对上述两种实现方式进行详细介绍。
首先,对在显示面板的产品特性指示显示面板的测量数据为计量型数据的情况下,基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图的过程进行介绍:
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-极差控制图作为目标控制图;
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数为第四设定阈值,则以单值-移动极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不是第四设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-标准差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不是第四设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-标准差控制图作为目标控制图。
上述各个可选实现方式可以参见图12,图12是根据本发明实施例示出的一种目标控制图的确定过程示意图,如图12所示,在测量数据为计量型数据的情况下,如果显示面板的测量点位数大于或等于10且各个测量点位的测量数据存在组间差异,则 可以以
Figure PCTCN2022102675-appb-000007
图作为目标控制图;如果显示面板的测量点位数大于或等于10且各个测量点位的测量数据不存在组间差异,则可以以
Figure PCTCN2022102675-appb-000008
图作为目标控制图;在测量点位数小于10的情况下,如果测量点位数为1,则可以以
Figure PCTCN2022102675-appb-000009
图作为目标控制图;如果测量点位数为1且各个测量点位的测量数据存在组间差异,则可以以
Figure PCTCN2022102675-appb-000010
图作为目标控制图;如果测量点位数为1且各个测量点位的测量数据不存在组间差异,则可以以
Figure PCTCN2022102675-appb-000011
图作为目标控制图。
下面,对基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图的过程进行介绍:
在显示面板中存在不合格品的情况下,若不合格品数量为常数,则以不合格品数控制图作为目标控制图;
在显示面板中存在不合格品的情况下,若不合格品数量不是常数,则以不合格品率控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产品缺陷存在于设定区域内,则以不合格数控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产品缺陷不存在于设定区域内,则以单位产品不合格品数控制图作为目标控制图。
上述各个可选实现方式可以参见图13,图13是根据本发明实施例示出的另一种目标控制图的确定过程示意图,如图13所示,在测量数据为计数型数据的情况下,如果显示面板为不合格品,且作为不合格品的显示面板的数量N为常数,则可以以NP-图作为目标控制图;如果显示面板为不合格品,且作为不合格品的显示面板的数量N不是常数,则可以以P-图作为目标控制图;在显示面板为合格品但显示面板中存在缺陷的情况下,如果产品缺陷存在于显示面板的设定区域内,则可以以C-图作为目标控制图;如果产品缺陷存在于显示面板的设定区域以外的区域内,则可以以U-图作为目标控制图。
通过上述过程即可基于产品特性实现目标控制图的确定,以使得所确定出的目标控制图更加符合显示面板的产品特性,从而可以提高所确定出的目标控制图的准确性,使得目标控制图可以更好地展示显示面板的数据特性。
通过上述过程即可实现目标控制图的确定,以便在确定出控制限之后,可以将控制限显示在所确定出的目标控制图中。
在一些实施例中,对于步骤104,在基于数据形态信息,确定目标控制图的控制限时,可以包括如下任一种实现方式:
在一种可能的实现方式中,在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下,将设定数量个目标测量数据确定为一组,得到多组目标测量数据,分别计算每组目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限。
需要说明的是,在多个显示面板的目标测量数据具有多群组特性的情况下,也即是,在第一目标参数(也即是F)≥2.65的情况下,可以选用多群组控制图(如
Figure PCTCN2022102675-appb-000012
图、
Figure PCTCN2022102675-appb-000013
图、X-MR图)作为目标控制图,在这种情况下,可以按照群组数量等分时间,也即是,将设定数量个目标测量数据确定为一组,从而即可得到多组目标测量数据,进而计算每个群组的CPK,以便去除CPK不满足的设定条件的群组,进而基于剩下的群组分别计算控制限,从而将所计算出的多个控制上限的最大值与控制下限的最小值作为最终控制限。此外,中心线取规格线即可。
其中,设定条件可以为CPK的取值小于第三设定阈值,第三设定阈值可以为1.33,也即是,可以基于CPK<1.33的多组目标测量数据,确定目标控制图的控制限。
需要说明的是,在计算每个群组的CPK时,可以通过如下公式实现:
CPK=Min(C PU-BW,C PL-BW)         (6)
Figure PCTCN2022102675-appb-000014
Figure PCTCN2022102675-appb-000015
Figure PCTCN2022102675-appb-000016
其中,CPK表示过程能力指数,USL表示上规格限,LSL表示下规格限,
Figure PCTCN2022102675-appb-000017
表 示数据均值,MR表示移动极差,d 2为设定参数值。
采用上述方式计算出的CPK,在计算过程中使用的是与移动极差相关的数据,而移动极差是均值与上一次SPC数据采集均值之差的绝对值,不仅包含组内变异,还可以兼顾组间变异,从而使得计算出的CPK敏感度更好,不会出现组间变异增大时CPK变小的情况,作为一种预警手段,可以使得品质人员更能关注生产过程中的产品质量变差的情况。
在另一种可能的实现方式中,在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下,若多个显示面板对应于多个批次,则分别计算每个批次的目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限。
需要说明的是,在多个显示面板的目标测量数据具有多群组特性的情况下,也即是,在第一目标参数(也即是F)≥2.65的情况下,还可以选用批次控制图(如
Figure PCTCN2022102675-appb-000018
图、
Figure PCTCN2022102675-appb-000019
图、X-MR图)作为目标控制图,在这种情况下,可以以时间为单位(时间划分由工厂根据实际生产状况确定,例如每超过12小时划分为一个批次),将多个显示面板划分为不同批次,从而计算每个批次(也即是所划分的每个时间段)内的目标测量数据的CPK,以便去除CPK不满足的设定条件的群组,进而基于剩下的群组分别计算控制限,从而将所计算出的多个控制上限的最大值与控制下限的最小值作为最终控制限。此外,中心线取规格线即可。
其中,设定条件可以为CPK的取值小于第三设定阈值,第三设定阈值可以为1.33,也即是,可以基于CPK<1.33的多组目标测量数据,确定目标控制图的控制限。
需要说明的是,在将多个显示面板划分为不同批次时,可以通过如下过程实现:
对于任一显示面板,可以将该显示面板的生产时间与最近一次是SPC数据采集时间进行比较,如二者之间的时间差大于24小时则认为是不同批次,该显示面板的操作人员以及取用材料都与上一次SPC数据采集时有明显差异,因此可以将设备制程能力的不同锁定在操作人员以及物料之上;而如二者之间的时间差大于24小时则认为是同一批次,继续沿用上一批次的相关数据(如日期)即可。
需要说明的是,多个批次可以分别按照正态控制限计算方法来计算控制限,从而可以取CPK>1.33且批次内数据量N>10的计算结果作为符合要求的控制限计算结果,假设所有符合条件的数据上限集合为UCL,所有符合条件的数据下限集合为LCL, 中心线为CL,则在确定最终的控制限时,可以取符合条件的组中上控制限最大值作为上控制限,取符合条件的组中下控制限最小值作为下控制限,取上控制限与下控制限平均值作为中心线。
例如,可以通过如下公式(10)至公式(12)实现上控制限、下控制限以及中心线的确定:
UCL=Max(UCL)              (10)
LCL=Min(LCL)               (11)
CL=(Max(UCL)+Min(LCL))/2          (12)
其中,UCL为上控制限,LCL为下控制限,CL为中心线。
在另一种可能的实现方式中,在数据形态信息指示多个显示面板的目标测量数据服从正态分布的情况下,基于满足正态分布的多个目标测量数据,确定目标控制图的控制限。
需要说明的是,在多个显示面板的目标测量数据服从正态分布的情况下,也即是,在F<2.65、P≥0.05的情况下,可以选用正态控制图(如
Figure PCTCN2022102675-appb-000020
图、
Figure PCTCN2022102675-appb-000021
图、X-MR图)作为目标控制图,在这种情况下,并使用常规方式,基于满足正态分布的多个目标测量数据计算控制限即可。
在另一种可能的实现方式中,在数据形态信息指示多个显示面板的目标测量数据不服从正态分布的情况下,将多个目标测量数据转换为服从正态分布的数据,基于转换后的数据,确定目标控制图的控制限。
需要说明的是,在多个显示面板的目标测量数据不服从正态分布的情况下,也即是,在F<2.65、P<0.05的情况下,可以选用非正态控制图(如
Figure PCTCN2022102675-appb-000022
图、
Figure PCTCN2022102675-appb-000023
图、X-MR图)作为目标控制图,在这种情况下,可以先通过JohnSon/BoxCox的方法将不服从正态分布的数据转换为符合正态分布的数据,再从转换得到的数据中取出位于99.73%信赖区间中的数据作为要使用的数据,进而基于所取出的数据,使用常规方式计算控制限即可。
需要说明的是,非正态数据如果按照与正态数据相同的方法来进行控制限的计算,计算得到的控制限会整体侧偏,使得计算得到的控制限不符合报警管控,因而, 在基于非正态数据进行控制限的计算时,需要先将非正态数据正态化,再进行控制限的计算。
其中,在将非正态数据转换为正态数据时,可以使用了开根号的方法实现非正态数据的正态化,但考虑到均值可能有负值存在,因而,可以采用如下4个步骤实现非正态数据的正态化:
步骤1、将均值数据向上偏移2倍规格限宽度,使其变为正值。
需要说明的是,在此步骤之前,可以预先剔除与0值的差距超过2倍规格限宽的数值,以保证剩余的均值数据偏移后均为正值,从而可以保证数据处理过程的顺利进行,以提高数据处理过程的准确性。
步骤2、对偏移后的数据开根号,产生新的均值和新的移动极差。
需要说明的是,极差和标准差仍然可以使用原有数值,以保证数据的西格玛数值不会发生偏移,从而可以保证数据处理过程的准确性。
步骤3、按照计算正态数据的控制限的方法,来基于上述经过偏移处理的数据来计算控制限。
步骤4、将控制限向下偏移2倍规格限宽度。
需要说明的是,通过上述步骤1至步骤4处理后得到控制限即可作为非正态数据的控制限。
上述计算控制限的过程可以参见图14,图14是根据本发明实施例示出的一种控制限计算过程的示意图,如图14所示,可以先确定数据是否具有多群组特性,在数据具有多群组特性的情况下,可以按规则切割批次,以便每批次使用常规方式来计算控制限,对于任一批次,如果该批次的CPK小于1.33,则无需采用该批次的数据进行控制限的计算,而如果该批次的CPK不小于1.33,则确定基于该批次的数据计算出的控制限是否是上控制限的最大上限,或者是否是下控制限的最小下限,如果是,则可以将该控制限作为最终的控制限,如果不是,则无需以该控制限作为最终的控制限。此外,在数据不具备多群组特性的情况下,确定数据是否服从正态分布,如果数据服从正态分布,则可以使用正态数据计算控制限的常规方式来进行控制限的计算,并确定这些数据的CPK,如果CPK大于1.33,则以该控制限作为最终的控制限,如果CPK不大于1.33,则无需以该控制限作为最终的控制限;而如果数据不服从正态分布,则可以使用非正态数据计算控制限的常规方式来进行控制限的计算,并确定这些数据的 CPK,如果CPK大于1.33,则以该控制限作为最终的控制限,如果CPK不大于1.33,则无需以该控制限作为最终的控制限。
需要说明的是,对于不同类型的控制图,其计算控制限的常规方式有所不同,下面分别对如何计算不同类型的控制图的控制限的过程进行介绍。
对于
Figure PCTCN2022102675-appb-000024
控制图,可以按照如下公式(13)至公式(18)来计算控制限:
Figure PCTCN2022102675-appb-000025
Figure PCTCN2022102675-appb-000026
Figure PCTCN2022102675-appb-000027
Figure PCTCN2022102675-appb-000028
Figure PCTCN2022102675-appb-000029
Figure PCTCN2022102675-appb-000030
其中,
Figure PCTCN2022102675-appb-000031
表示数据均值,
Figure PCTCN2022102675-appb-000032
表示数据均值的中心线,R表示极差,CL R表示极差的中心线,
Figure PCTCN2022102675-appb-000033
表示极差的均值,
Figure PCTCN2022102675-appb-000034
表示数据均值的上控制限,UCL R表示极差的上控制限,
Figure PCTCN2022102675-appb-000035
表示数据均值的下控制限,LCL R表示极差的下控制限,A 2、D 3、D 4均为设定参数值。
对于
Figure PCTCN2022102675-appb-000036
控制图,可以按照如下公式(19)至公式(24)来计算控制限:
Figure PCTCN2022102675-appb-000037
Figure PCTCN2022102675-appb-000038
Figure PCTCN2022102675-appb-000039
Figure PCTCN2022102675-appb-000040
Figure PCTCN2022102675-appb-000041
Figure PCTCN2022102675-appb-000042
其中,
Figure PCTCN2022102675-appb-000043
表示数据均值,
Figure PCTCN2022102675-appb-000044
表示数据均值的中心线,S表示标准差,CL s表示标准差的中心线,
Figure PCTCN2022102675-appb-000045
表示标准差的均值,
Figure PCTCN2022102675-appb-000046
表示数据均值的上控制限,UCL s表示标准差的上控制限,
Figure PCTCN2022102675-appb-000047
表示数据均值的下控制限,LCL s表示标准差的下控制限,A 3、B 3、B 4均为设定参数值。
对于
Figure PCTCN2022102675-appb-000048
控制图,可以按照如下公式(25)至公式(33)来计算控制限:
Figure PCTCN2022102675-appb-000049
Figure PCTCN2022102675-appb-000050
Figure PCTCN2022102675-appb-000051
Figure PCTCN2022102675-appb-000052
Figure PCTCN2022102675-appb-000053
Figure PCTCN2022102675-appb-000054
Figure PCTCN2022102675-appb-000055
Figure PCTCN2022102675-appb-000056
Figure PCTCN2022102675-appb-000057
其中,
Figure PCTCN2022102675-appb-000058
表示数据均值,
Figure PCTCN2022102675-appb-000059
表示数据均值的中心线,MR表示移动极差,CL MR表示移动极差的中心线,R表示极差,CL R表示极差的中心线,
Figure PCTCN2022102675-appb-000060
表示极差的均值,
Figure PCTCN2022102675-appb-000061
表示数据均值的上控制限,UCL MR表示移动极差的上控制限,UCL R表示极差的上控制限,
Figure PCTCN2022102675-appb-000062
表示数据均值的下控制限,LCL MR表示移动极差的下控制限,LCL R 表示极差的下控制限,E 2、D 3、D 4均为设定参数值。
对于
Figure PCTCN2022102675-appb-000063
控制图,可以按照如下公式(34)至公式(42)来计算控制限:
Figure PCTCN2022102675-appb-000064
Figure PCTCN2022102675-appb-000065
Figure PCTCN2022102675-appb-000066
Figure PCTCN2022102675-appb-000067
Figure PCTCN2022102675-appb-000068
Figure PCTCN2022102675-appb-000069
Figure PCTCN2022102675-appb-000070
Figure PCTCN2022102675-appb-000071
Figure PCTCN2022102675-appb-000072
其中,
Figure PCTCN2022102675-appb-000073
表示数据均值,
Figure PCTCN2022102675-appb-000074
表示数据均值的中心线,MR表示移动极差,CL MR表示移动极差的中心线,S表示标准差,CL s表示标准差的中心线,
Figure PCTCN2022102675-appb-000075
表示标准差的均值,
Figure PCTCN2022102675-appb-000076
表示数据均值的上控制限,UCL MR表示移动极差的上控制限,UCL s表示标准差的上控制限,
Figure PCTCN2022102675-appb-000077
表示数据均值的下控制限,LCL MR表示移动极差的下控制限,LCL s表示标准差的下控制限,E 2、B 3、B 4、D 3、D 4均为设定参数值。
对于X-MR控制图,可以按照如下公式(43)至公式(48)来计算控制限:
Figure PCTCN2022102675-appb-000078
Figure PCTCN2022102675-appb-000079
Figure PCTCN2022102675-appb-000080
Figure PCTCN2022102675-appb-000081
Figure PCTCN2022102675-appb-000082
Figure PCTCN2022102675-appb-000083
其中,X表示数据单值,CL x表示数据单值的中心线,MR表示移动极差,CL MR表示移动极差的中心线,
Figure PCTCN2022102675-appb-000084
表示移动极差的均值,UCL x表示数据单值的上控制限, UCLMR表示移动极差的上控制限,LCL x表示数据单值的下控制限,LCLM R表示移动极差的下控制限,E 2、D 3、D 4均为设定参数值。
对于NP-图,可以按照如下公式(49)至公式(51)来计算控制限:
Figure PCTCN2022102675-appb-000085
Figure PCTCN2022102675-appb-000086
Figure PCTCN2022102675-appb-000087
其中,CL NP表示NP-图的中心线,UCL NP表示NP-图的上控制限,LCL NP表示NP-图的下控制限,
Figure PCTCN2022102675-appb-000088
表示不合格品率的均值。
对于P-图,可以按照如下公式(52)至公式(54)来计算控制限:
Figure PCTCN2022102675-appb-000089
Figure PCTCN2022102675-appb-000090
Figure PCTCN2022102675-appb-000091
其中,CL P表示P-图的中心线,UCL P表示P-图的上控制限,LCL P表示P-图的下控制限,
Figure PCTCN2022102675-appb-000092
表示不合格品率的均值。
对于V-图,可以按照如下公式(55)至公式(57)来计算控制限:
Figure PCTCN2022102675-appb-000093
Figure PCTCN2022102675-appb-000094
Figure PCTCN2022102675-appb-000095
其中,CL C表示C-图的中心线,UCL C表示C-图的上控制限,LCL C表示C-图的下控制限,
Figure PCTCN2022102675-appb-000096
表示不合格品率的均值。
对于U-图,可以按照如下公式(58)至公式(60)来计算控制限:
Figure PCTCN2022102675-appb-000097
Figure PCTCN2022102675-appb-000098
Figure PCTCN2022102675-appb-000099
其中,CL U表示U-图的中心线,UCL U表示U-图的上控制限,LCL U表示U-图的下控制限,
Figure PCTCN2022102675-appb-000100
表示出现产品缺陷的区域面积的均值。
为便于理解,下面以均值-移动极差-标准差控制图中与均值相关的控制图为例,来对目标控制图和控制限进行进一步的解释说明。
参见图15,图15是根据本发明实施例示出的一种控制图的示意图,如图15所示,该控制图以均值作为统计数据特征,图中每个数据点的横坐标可以表示对应于哪个显示面板,纵坐标可以表示对应显示面板的测量数据的均值,从而使得该控制图可以表示各个显示面板的均值特征。
此外,控制图中还可以显示有基于上述实施例所提供的方法所确定出的控制限。仍以如图15所示的控制图为例,该控制图中即显示有上控制限、下控制限和中心线,其中,上控制限为纵坐标为8.750904的直线,下控制限为纵坐标为3.2619267的直线,中心线为纵坐标为6.006415的直线。
通过控制图中所显示的控制限,即可实现对显示面板的产品质量的监控。
在一种可能的实现方式中,计算设备在显示目标控制图并在目标控制图中显示控制限,相关技术人员即可根据所显示的目标控制图和控制限,来确定各个显示面板 的质量是否合格。
在另一种可能的实现方式中,计算设备还可以自行基于目标控制图和控制限,来显示面板的产品质量进行监控。
例如,计算设备可以检测是否有数据值超出下控制限和上控制限的范围,从而在检测到有数据值超出下控制限和上控制限的范围的情况下,发出报警信息,以便相关技术人员在接收到报警信息后,可以确定刚刚检测的显示面板中存在质量不合格的产品。
可选地,计算设备可以获取数据值超出下控制限和上控制限的显示面板的产品标识,从而基于获取到的产品标识进行报警,以便相关技术人员可以快速确定质量不合格的显示面板是哪个。
上述各个可选实施例可以按照如图16所示的顺序进行组合,以实现本发明所提供的数据处理方法,参见图16,图16是根据本发明实施例示出的一种数据处理方法的流程图,可以先选定待检测的显示面板的产品型号,从而根据所选定的产品型号,确定待检测的显示面板的产品特性,并基于产品型号建立该显示面板对应的设备模型,设备模型可以包括主机台、子机台、设备内机构(也即是各个机台内的处理单元)和Glass面内分组,从而实现最小管控单元(也即是分组结果)的确定,以便基于分组结果来进行数据形态分类,以获取到各个显示面板的目标测量数据的数据形态信息(包括正态校验、趋势性校验、多群组校验等),从而基于数据形态信息,对按照抽样规则(也即是目标抽样间隔时间)抽样得到的显示面板进行处理,以实现控制图和控制限的确定。
图16所示仅为有关本发明的流程性说明,各个步骤的具体实现过程可以参见上述实施例,此处不再赘述。
上述各个实施例介绍了通过本发明所提供的数据处理方法实现控制限确定的过程,此外,在显示面板的生产过程中,显示面板经过多个生产设备加工得到,通过本发明所提供的数据处理方法,还可以用于追溯数据来源。
需要说明的是,数据来源追溯需要履历信息,在生产过程中出现的测量数据可以分为两种,一种是通过自带测试机的生产设备获取到的测量数据,另一种是通过专门的检测机获取到的测量数据。对于通过自带测试机的生产设备获取到的测量数据,这些测量数据中包含生产设备的设备信息,因而无需进行多余处理即可,而对于通过 专门的检测机获取到的测量数据,这些测量数据中并不包含生产设备的设备信息,因而需要自行对生产设备的设备信息进行记录。
另外,需要说明的是,对于通过专门的检测机获取到的测量数据,虽然测量数据中不包含生产设备的设备信息,但测量数据中可以包含产品标识(也即是产品Lot ID),因而,在一些实施例中,每个显示面板可以对应于一个生产信息存储结构,也即是,每个产品标识可以对应于一个生产信息存储结构,该生产信息存储结构可以用于存储对对应显示面板进行加工的生产设备的设备信息。
参见图17,图17是根据本发明实施例示出的一种显示面板的处理过程示意图,以检测参数为DI CD为例,生产设备可以包括5APPH01和5APPH02,测试设备可以包括5AMCD01、5AMCD02和5AMCD03,其中,生产设备5APPH01可以用于生产产品标识为Lot1、Lot2和Lot3的显示面板,生产设备5APPH02可以用于生产产品标识为LotA、LotB和LotC的显示面板,如图17所示,产品标识为Lot1、Lot2、LotA的显示面板的测量数据全部纳入测试设备5AMCD01对应的测试数据集,产品标识为Lot3、LotB的显示面板的测量数据全部纳入测试设备5AMCD02对应的测试数据集,产品标识为LotC的显示面板的测量数据全部纳入5AMCD03对应的测试数据集,其中,测试设备5AMCD01和5AMCD02均对应于不同产品标识的多个显示面板,从而使得生产设备信息难以区分,CPK以及控制限信息存在混合计算的情况,无法区分5APPH01、5APPH04设备的工程能力。
而本发明所提供的数据处理方法通过为每个显示面板(也即是每个产品标识)维护一个生产信息存储结构,以便可以通过该生产信息存储结构实现生产设备信息的区分。
参见图18,图18是根据本发明实施例示出的一种生产信息存储结构的示意图,图18展示出了产品标识为LotA的显示面板对应的生产信息存储结构以及产品标识为Lot1的显示面板对应的生产信息存储结构,其中,用于对产品标识为LotA的显示面板进行加工的生产设备包括拆包设备1(具体为拆包设备1-单元1)、清洗设备2(具体为清洗设备2-单元1)、生产设备5APPH04(具体为5APPH04-单元1和5APPH04-单元3)、测试设备5AMCD01;用于对产品标识为Lot1的显示面板进行加工的生产设备包括拆包设备1(具体为拆包设备1-单元1)、清洗设备2(具体为清洗设备2-单元1)、生产设备5APPH01(具体为5APPH01-单元1和5APPH01-单元2)、测试设备5AMCD01,从而实现对包含生产设备甚至设备单元的存储结构的建立,达到区 分设备机台级别、单元(Chamber)级别的数据采集,从而使控制限以及CPK集中在生产设备级或Chamber级别的制程能力上。
此外,还可以基于各个显示面板的生产设备信息存储结构生成一个生产设备管理模型(或称SPC最小单位模型),通过该生产设备管理模型来记录不同生产设备加工过的显示面板。
其中,生产设备管理模型可以为计算设备所关联的树状存储结构,或者,生产设备管理模型可以为计算设备所关联的表格形式的存储结构,可选地,生产设备管理模型还可以为其他类型,本发明对此不加以限定。
以生产设备管理模型可以为计算设备所关联的表格形式的存储结构为例,可以以设备标识作为表格索引(如表头),从而将经过对应设备加工的显示面板的产品标识存储至表格中对应的位置处,以得到生产设备管理模型。
此外,生产设备管理结构还可以如图18中的SPC最小单位模型所示,如图18所示的生产设备管理模型中记录有生产设备5APPH01加工过的显示面板,具体为生产设备5APPH01中的单元2加工过的显示面板。
上述内容介绍了生产信息存储结构和生产设备管理模型的具体形式,可选地,在基于生产信息存储结构生成生产设备管理模型时,可以基于各个显示面板的生产信息存储结构中所记录的设备信息,确定经过各个生产设备加工的多个显示面板,将经过各个生产设备加工的多个显示面板的产品信息分别记录到生产设备管理模型中。
需要说明的是,由于在显示面板加工过程中会涉及到多设备多单元共同进行处理的情况,一般为多次曝光工艺叠加,而检测设备一般在做完每一次曝光工艺或喷溅工艺或时检测相应的测量值上传,为便于后续处理,生产设备管理模型仅需记录最后一次进行某种加工的生产设备即可,从而可以减少计算设备的处理压力。
参见图19,图19是根据本发明实施例示出的一种信息录入过程的示意图,如图19所示,在进行数据溯源时,可以向基于设备标识查找对应的生产设备管理模型,从而从该生产设备管理模型中确定是否存在待查询的产品标识(也即是待查询的产品标识是否已在该生产设备管理模型中注册),若确定该生产设备管理模型中不存在待查询的产品标识,则直接结束处理过程即可;若确定该生产设备管理模型中存在待查询的产品标识,则可以基于产品标识查找对应的生产信息存储结构,从而从对应的生产信息存储结构中匹配到最近生产设备(也即是最后一次对该显示面板进行加工的生 产设备),并进一步匹配最近生产设备的设备单元,从而根据匹配得到的结果进行控制图或控制限的计算,以实现相应的数据处理过程。
通过为每个显示面板维护一个生产设备信息存储结构,后续可以在目标控制图中显示各个显示面板对应的数据点,以便相关技术人员可以通过触发相应数据点,来从对应显示面板中获取对该显示面板进行加工的生产设备的设备信息,从而在目标控制图中显示对该显示面板进行加工的生产设备的设备信息,以供相关技术人员进行查看。
本发明提出了一种针对TFT-LCD以及OLED行业生产过程的数据处理方案,通过将数据形态分类,并基于数据形态分类结果来采用相应的控制图和控制限,以解决相关技术中数据形态未分类而控制限不精准的问题。而且,提出了一种计算CPK的新方法,提高了所确定出的CPK的灵敏度,从而可以解决了CPK的可参考性不足的问题。
另外,本发明还创新性地提出了两种组合控制图,也即是
Figure PCTCN2022102675-appb-000101
图和
Figure PCTCN2022102675-appb-000102
图,该图由均值控制图,移动极差控制以及极差或标准差控制图构成,可在每个子组属于不同点位或批次的情况下对制程的均值及组间和组内的变异进行监控,从而可以解决传统休哈特控制图要求面内变异为随机变异,且需要对同一点位进行量测,当无法满足这些条件时,会导致面内变异呈非随机性变异,进而导致标准差过大,最终影响控制图绩效的技术问题,解决了TFT-LCD、OLED生产过程中双图法观察能力有限的问题。
此外,本发明还创新性地提出了生产信息存储结构和生产设备管理模型,引入产品生产设备追溯方法,使相同类型设备按照设备标识分开管理,使得控制限的计算结果和CPK的计算结果不再是多个设备的混合数据,以解决相关技术中生产设备数据混淆管理的问题。
在另一些实施例中,本发明还提供了一种数据显示方法,参见图20,图20是根据本发明实施例示出的一种数据显示方法的流程图,如图20所示,该方法可以包括如下步骤:
步骤2001、显示产品管理界面。
步骤2002、通过产品管理界面获取待检测的显示面板的产品型号,并基于产品 型号确定目标控制图,目标控制图用于指示各个显示面板的统计数据特征。
步骤2003、响应于在产品管理界面的提交操作,显示目标控制图和控制限,目标控制图用于指示各个显示面板的统计数据特征,目标控制图中显示有控制限,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值。
需要说明的是,响应于在产品管理界面的提交操作,计算设备即可通过上述数据处理方法实现目标控制图和控制限的确定,进而对目标控制图和控制限进行显示。
其中,控制限基于数据形态信息确定得到,数据形态信息基于通过待检测的各个显示面板的多个测量数据所确定出的目标参数值确定得到,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布。
在一些实施例中,产品管理界面中可以设置有产品型号设置控件和控制图选择控件,基于此,对于步骤2002,在通过产品管理界面获取待检测的显示面板的产品型号,并基于产品型号确定目标控制图,目标控制图用于指示各个显示面板的统计数据特征时,可以包括如下步骤:
步骤2002-1、通过产品型号设置控件获取产品型号。
参见图21,图21是根据本发明实施例示出的一种产品管理界面的界面示意图,如图21所示,“产品型号”以及对应的下拉框即为产品型号设置控件,下拉框中显示有多个候选的产品型号,相关技术人员可以从多个候选的产品型号中进行选择,计算设备即可响应于相关技术人员的触发操作,获取被选中的产品型号。
步骤2002-2、基于产品型号对应的产品特性,在控制图选择控件显示至少一个候选控制图。
需要说明的是,不同产品型号的显示面板的产品特性都是预先设定好的,因而,在通过步骤2002-1获取到产品型号后,即可确定出对应的产品特性,而不同产品特性下可使用的控制图类型也是预先设定好的,因而,计算设备可以根据所确定出的产品特性,在控制图选择控件显示该产品特性下可使用的至少一个候选控制图。
参见图22,图22是根据本发明实施例示出的另一种产品管理界面的界面示意图,如图21所示,“图表类型”以及对应的下拉框即为控制图选择控件,在确定出产品型号对应的产品特性后,即可在下拉框中显示有该显示面板的产品特性对应的可选的控制图类型,相关技术人员可以从多个控制图类型中进行选择,计算设备即可响应 于相关技术人员的触发操作,实现目标控制图的确定。
步骤2002-3、响应于对任一候选控制图的选中操作,将被选中的候选控制图确定为目标控制图。
上述过程是以确定出产品型号后,直接基于产品型号对应的产品特性来进行候选控制图的显示为例来进行说明的,在更多可能的实现方式中,计算设备还可以在产品管理界面中提供点位数量设置控件,以便相关技术人员可以通过点位数量设置控件来设置显示面板的测量点位的数量,而测量点位数量不同的显示面板所能使用的控制图也是不同的,因而,计算设备可以基于相关技术人员所设置的测量点位的数量,来进行候选控制图的显示。
在一些实施例中,相关技术人员可以通过点位数量设置控件来设置测量点位数,计算设备可以获取通过点位数量设置控件所设置的测量点位数,进而基于产品型号对应的产品特性以及所获取到的测量点位数,在控制图选择控件显示至少一个候选控制图。
仍以图22所示的产品管理界面为例,显示文字为“点数≥1”的控件即为点位数量设置控件,相关技术人员即可通过该控件来对测量点位的数量进行设置,以便后续可以基于产品型号和测量点位数,来进行候选控制图的显示。
需要说明的是,在完成控制图的选定后,相关技术人员即可在产品管理界面中进行提交操作,以便计算设备可以开启数据采集及处理的过程,以计算得到控制限,从而通过步骤2003实现目标控制图和控制限的显示。
仍以图22所示的产品管理界面为例,相关技术人员可以在如图22所示的产品管理界面触发提交控件(也即是图22中的“提交”按钮),以实现在产品管理界面中触发提交操作,从而触发数据采集和数据处理的过程,以实现目标控制图和控制限的显示。
参见图23,图23是根据本发明实施例示出的一种目标控制图的显示形式示意图,图23以目标控制图为
Figure PCTCN2022102675-appb-000103
图为例,展示出了一种目标控制图的示例,便于本领域技术人员进行理解。此外,如图23中所显示的目标控制图中显示有控制限(包括上控制限、下控制限和中心线),以便可以基于所显示的控制限实现产品质量监控。
需要说明的是,在对目标控制图进行显示时,可以在目标控制图中显示各个显示面板对应的数据点(如图23所示,图23的目标控制图中即显示有50个显示面板对 应的数据点,也即是50个数据点),相关技术人员可以触发任一数据点,以查看用于对该数据点对应的显示面板进行加工的生产设备的设备信息。
在一种可能的实现方式中,响应于对所显示的目标控制图中任一数据点的触发操作,从数据点对应的显示面板的生产信息存储结构中,获取对所述显示面板进行加工的生产设备的设备信息,进而对所获取到的设备信息进行显示。
参见图24,图24是根据本发明实施例示出的一种信息查看界面的示意图,若相关技术人员在目标控制图中触发了横坐标为38的数据点,则计算设备即可在目标控制图中显示该数据点的纵坐标值,并获取对该数据点对应的显示面板进行加工的生产设备的设备信息,并在目标控制图下方的信息展示区域中显示获取到的设备信息,以便相关技术人员可以直接看到对该显示面板进行加工的生产设备,实现数据溯源。
需要说明的是,上述实施例仅简单介绍了产品管理界面中的几个控件,在更多可能的实现方式中,产品管理界面中还可以包括其他控件,以为相关技术人员提供更多的功能。
在一些实施例中,产品管理界面还包括分区设置控件,以便相关技术人员可以通过分区设置控件,来将显示面板划分为多个分区,从而可以实现对测量数据的分区处理。有关分区的相关介绍可以参见上述实施例,此处不再赘述。
在一种可能的实现方式中,响应于对分区设置控件的触发操作,显示分区管理界面,分区管理界面用于对显示面板中的多个测量点位进行分区,得到多个测量点位的分区结果,以便计算设备在对采集到的数据进行处理的过程中,可以基于分区结果对不同分区中的测量点位的测量数据分别进行处理。
仍以如图21所示的产品管理界面为例,如图21所示,“点位分区”控件即为分区管理控件,相关技术人员可以触发该“点位分区”控件,计算设备即可响应于对该“点位分区”控件的触发操作,显示分区设置界面,以便相关技术人员可以通过分区设置界面来对显示面板进行分区。
参见图25,图25是根据本发明实施例示出的一种分区设置界面的示意图,即可通过如图25所示的分区设置界面来对显示面板进行分区。
在另一些实施例中,产品管理界面还可以包括下述至少一种控件:
例如,产品管理界面可以包括数据采集管理控件,数据采集管理控件可以用于设置待采集的测量数据的类型以及测量数据的数据描述信息。
以如图21所示的产品管理界面为例,该产品管理界面中的“数据采集参数”以及对应的下拉控件、“参数描述”以及对应的下拉控件均可以作为数据采集管理控件,其中,“数据采集参数”以及对应的下拉控件可以用于设置待采集的测量数据的类型,“参数描述”以及对应的下拉控件可以用于为待采集的测量数据添加数据描述信息。
又例如,产品管理界面还可以包括设备管理控件,设备管理控件用于获取显示面板的生产设备的设备信息;
参见图26,图26是根据本发明实施例示出的另一种产品管理界面的示意图,如图26所示,“SPC建模”分类下所包括的控件,如“测试站点”、“测试设备”、“测试Recipe”、“工艺站点”、“工艺设备”、“工艺Chamber/Recipe”控件均为设备管理控件,相关技术人员可以通过这些设备管理控件,即可实现有关生产设备及生产过程的设置,以便后续可以基于相关技术人员所设置的信息来对显示面板进行加工。
又例如,产品管理界面还可以包括数据过滤控件,数据过滤控件用于设置待过滤的数据满足的条件以及数据过滤方式。
仍以如图21所示的产品管理界面为例,该产品管理界面中的“上过滤线”以及对应的调整控件、“下过滤线”以及对应的调整控件、“OOT时间限制”以及对应的调整控件均可以作为数据过滤控件。其中,“上过滤线”以及对应的调整控件可以用于设置进行数据处理时所使用的测量数据的最大值;“下过滤线”以及对应的调整控件可以用于设置进行数据处理时所使用的测量数据的最小值;“OOT时间限制”以及对应的调整控件可以用于设置进行数据处理时所使用的测量数据的需要满足的采集时间条件;“超出过滤限移除”以及对应的下拉控件可以用于设置数据过滤方式,例如,在出现不符合数据处理要求的数据时,是仅移除不符合数据处理要求的数据,还是将本次所采集到的数据全部丢弃。
又例如,产品管理界面还可以包括定时功能设置控件,定时功能设置控件用于设置数据采集及计算过程的循环周期。
仍以如图21所示的产品管理界面为例,该产品管理界面中的“循环类型”以及对应的下拉控件、“每周某天”以及对应的下拉控件、“每月某天”以及对应的下拉控件均可以作为定时功能设置控件,以便通过该定时功能设置控件来设置每隔多 长时间来进行一次数据采集及处理过程。
此外,产品管理界面还可以包括开始条件设置控件,开始条件设置控件用于设置开启数据处理过程的条件。
仍以如图21所示的产品管理界面为例,该产品管理界面中的“自动计算最低数目”以及对应的调整控件即可以作为开始条件设置控件,在自动计算最低数据被设置为25的情况下,即表示在采集到的数据为25个显示面板对应的数据的情况下,才可以基于采集到的数据进行数据处理,以实现控制限的确定。
在更多可能的实现方式中,在通过上述数据处理方法确定出控制限后,即可基于所确定出的控制限来进行规格限的确定,例如,可以在上控制限的基础上增加设定值以得到上规格限,在下控制限的基础上减少设定值以得到下规格限,将中心线确定为中心值,从而实现规格限的确定,其中,设定值为任意正数值,本发明对设定值的具体取值不加以限定。
上述仅为确定规格限的一种示例性方式,可选地,还可以采用其他方式来实现规格限的确定,例如,根据客户需求制定规格限,等等,本发明对具体采用哪种方式不加以限定。
而产品管理界面还包括控制限管理控件和/或规格限管理控件,计算设备在确定出控制限和规格限后,即可将所确定出的控制限和规格限分别显示在控制限管理控件和规格限管理控件中,以便相关技术人员可以通过产品管理界面实现控制限和规格限的调整。其中,控制限管理控件用于对已确定出的控制限进行调整,规格限管理控件用于对已确定出的规格限进行调整。
仍以如图21所示的产品管理界面为例,该产品管理界面中“主图-Limit”、“副图-Limit”、“三图-Limit”三个功能分区中的“上限UCL”以及对应的调整控件、“中心线CL”以及对应的调整控件、“下限LCL”以及对应的调整控件即可以作为控制限管理控件,用于对已确定出的控制限进行调整。而“规格-Limit”功能分区中的“上限USL”以及对应的调整控件、“中心线”以及对应的调整控件、“下限LSL”以及对应的调整控件即可以作为规格限管理控件,用于对已确定出的规格限进行调整。
通过在产品管理界面中设置控制限管理控件和规格限管理控件,以便相关技术人员可以根据实际需求来对已确定出的控制限和规格限进行调整,从而可以提高数据处理过程的灵活性。
本发明的实施例还提出了一种数据处理装置,参见图27,图27是据本发明实施例示出的一种数据处理装置的框图,如图27所示,该装置包括:
获取模块2701,用于获取待检测的各个显示面板的多个测量数据;
确定模块2702,用于通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布,每个显示面板的目标测量数据基于显示面板的多个测量数据确定;
确定模块2702,还用于基于数据形态信息,确定目标控制图的控制限,目标控制图用于指示各个显示面板的统计数据特征,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值。
在一些实施例中,目标参数值包括第一目标参数值,第一目标参数值用于指示目标测量数据分组后组间和组内的偏差平方和与自由度的比值;
确定模块2702,在用于基于多个测量数据,确定目标参数值时,用于:
对于任一显示面板,确定显示面板的多个测量数据的均值,作为显示面板的目标测量数据;
对多个显示面板的目标测量数据按照时间段进行分组,得到多组目标测量数据;
确定多组目标测量数据的组间变异总和、单点平方和总和;
基于组间变异总和、单点平方和总和,确定第一目标参数值。
在一些实施例中,目标参数值包括第二目标参数值,第二目标参数值用于指示多个显示面板的目标测量数据服从正态分布的概率;
确定模块2702,在用于基于多个测量数据,确定目标参数值时,用于:
对于任一显示面板,确定显示面板的多个测量数据的均值,作为显示面板的目标测量数据;
对多个显示面板的目标测量数据进行正态性校验,得到第二目标参数值。
在一些实施例中,数据形态信息基于目标参数值确定,目标参数值包括第一目标参数值和/或第二目标参数值,第一目标参数值用于指示目标测量数据分组后组间和 组内的偏差平方和与自由度的比值,第二目标参数值用于指示多个显示面板的目标测量数据服从正态分布的概率;
确定模块2702,在用于通过基于多个测量数据所确定出的目标参数值,来确定数据形态信息时,用于:
在第一目标参数值大于第一设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据具有多群组特性;
在第一目标参数值小于或等于第一设定阈值且第二目标参数值大于等于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据服从正态分布;
在第一目标参数值小于或等于第一设定阈值且第二目标参数值小于第二设定阈值的情况下,确定数据形态信息指示多个显示面板的目标测量数据不服从正态分布。
在一些实施例中,确定模块2702,在用于基于数据形态信息,确定目标控制图的控制限时,用于下述任一项:
在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下,将设定数量个目标测量数据确定为一组,得到多组目标测量数据,分别计算每组目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据具有多群组特性的情况下,若多个显示面板对应于多个批次,则分别计算每个批次的目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据服从正态分布的情况下,基于满足正态分布的多个目标测量数据,确定目标控制图的控制限;
在数据形态信息指示多个显示面板的目标测量数据不服从正态分布的情况下,将多个目标测量数据转换为服从正态分布的数据,基于转换后的数据,确定目标控制图的控制限。
在一些实施例中,目标控制图基于显示面板的产品特性确定,产品特性用于指示显示面板的测量数据为计量型数据或计数型数据;
确定模块2702,还用于基于显示面板的产品特征确定目标控制图;
确定模块2702,在用于基于显示面板的产品特征确定目标控制图时,用于:
在显示面板的产品特性指示显示面板的测量数据为计量型数据的情况下,基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图;
在显示面板的产品特性指示显示面板的测量数据为计数型数据的情况下,基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图。
在一些实施例中,确定模块2702,在用于基于显示面板的测量点位数以及组间差异检验结果,确定目标控制图时,用于下述任一项:
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-极差控制图作为目标控制图;
在显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数为第四设定阈值,则以单值-移动极差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不是第四设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-标准差控制图作为目标控制图;
在显示面板的测量点位数小于或等于第三设定阈值的情况下,若测量点位数不是第四设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-标准差控制图作为目标控制图。
在一些实施例中,确定模块2702,在用于基于显示面板中不合格品和产品缺陷的存在情况,确定目标控制图时,用于:
在显示面板中存在不合格品的情况下,若不合格品数量为常数,则以不合格品数控制图作为目标控制图;
在显示面板中存在不合格品的情况下,若不合格品数量不是常数,则以不合格品率控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产品缺陷存在于设定区域内,则以不合格数控制图作为目标控制图;
在显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若产 品缺陷不存在于设定区域内,则以单位产品不合格品数控制图作为目标控制图。
在一些实施例中,确定模块2702,还用于响应于接收到目标指令,基于目标指令,确定待检测的显示面板的产品型号;
确定模块2702,还用于基于产品型号,确定显示面板的产品特性。
在一些实施例中,待检测的显示面板按照预设抽样间隔时间从多个候选显示面板中抽样得到;
目标抽样间隔时间的确定过程包括:
基于历史测量数据的上控制限、下控制限、偏移后中心点和历史标准差,确定第一目标概率值;
基于第一目标概率值、初始抽样间隔时间、历史测量数据的每小时产出以及各个设定时间段内的不良率和第一概率,确定期望风险值;
基于期望风险值,对初始抽样时间间隔进行调整,得到目标抽样间隔时间。
在一些实施例中,该装置还包括:
处理模块,用于基于多个测量数据,对显示面板各个分区中的多个测量点位进行分区,得到多个测量点位的分区结果,以基于分区结果对不同分区中的测量点位的测量数据分别进行处理。
在一些实施例中,显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息,目标控制图中包括各个显示面板对应的数据点,数据点用于在被触发后在目标控制图中显示对显示面板进行加工的生产设备的设备信息。
在一些实施例中,确定模块2702,还用于基于各个显示面板的生产信息存储结构中所记录的设备信息,确定经过各个生产设备加工的多个显示面板,将经过各个生产设备加工的多个显示面板的产品信息分别记录到生产设备管理模型中,生产设备管理模型用于记录不同生产设备加工过的显示面板。
本发明的实施例还提出了一种数据显示装置,参见图28,图28是据本发明实施例示出的一种数据显示装置的框图,如图28所示,该装置包括:
显示模块2801,用于显示产品管理界面;
处理模块2802,用于通过产品管理界面获取待检测的显示面板的产品型号,并基于产品型号确定目标控制图,目标控制图用于指示各个显示面板的统计数据特征;
显示模块2801,还用于响应于在产品管理界面的提交操作,显示目标控制图和控制限,目标控制图用于指示各个显示面板的统计数据特征,目标控制图中显示有控制限,控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值;
其中,控制限基于数据形态信息确定得到,数据形态信息基于通过待检测的各个显示面板的多个测量数据所确定出的目标参数值确定得到,数据形态信息用于指示多个显示面板的目标测量数据是否具有多群组特性,和/或,数据形态信息用于指示多个显示面板的目标测量数据是否服从正态分布。
在一些实施例中,产品管理界面包括产品型号设置控件和控制图选择控件;
处理模块2802,在用于通过产品管理界面获取待检测的显示面板的产品型号,并基于产品型号确定目标控制图时,用于:
通过产品型号设置控件获取产品型号;
基于产品型号对应的产品特性,在控制图选择控件显示至少一个候选控制图;
响应于对任一候选控制图的选中操作,将被选中的候选控制图确定为目标控制图。
在一些实施例中,产品管理界面还包括点位数量设置控件;
处理模块2802,还用于获取通过点位数量设置控件所设置的测量点位数;
显示模块2801,还用于基于产品型号对应的产品特性以及所获取到的测量点位数,在控制图选择控件显示至少一个候选控制图。
在一些实施例中,产品管理界面还包括分区设置控件;
显示模块2801,还用于响应于对分区设置控件的触发操作,显示分区管理界面,分区管理界面用于对显示面板中的多个测量点位进行分区,得到多个测量点位的分区结果,以基于分区结果对不同分区中的测量点位的测量数据分别进行处理。
在一些实施例中,产品管理界面还包括下述至少一项:
数据采集管理控件,数据采集管理控件用于设置待采集的测量数据的类型以及 测量数据的数据描述信息;
设备管理控件,设备管理控件用于获取显示面板的生产设备的设备信息;
数据过滤控件,数据过滤控件用于设置待过滤的数据满足的条件以及数据过滤方式;
定时功能设置控件,定时功能设置控件用于设置数据采集及计算过程的循环周期。
在一些实施例中,产品管理界面还包括控制限管理控件和/或规格限管理控件;
控制限管理控件用于对已确定出的控制限进行调整;
规格限管理控件用于对已确定出的规格限进行调整;
其中,已确定出的规格限基于已确定出的控制限确定得到。
在一些实施例中,目标控制图中包括各个显示面板对应的数据点,显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息;
处理模块2802,还用于响应于对所显示的目标控制图中任一数据点的触发操作,从数据点对应的显示面板的生产信息存储结构中,获取对显示面板进行加工的生成设备的设备信息;
显示模块2801,还用于对所获取到的设备信息进行显示。
上述装置中各个模块的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本说明书方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本发明还提供了一种计算设备,参见图29,图29是根据本发明实施例提供的一种计算设备的结构示意图。如图29所示,计算设备包括处理器2901、存储器2902和网络接口2903,存储器2902用于存储可在处理器2901上运行的计算机程序代码, 处理器2901用于在执行该计算机程序代码时实现本发明任一实施例所提供的数据处理方法,网络接口2903用于实现输入输出功能。在更多可能的实现方式中,计算设备还可以包括其他硬件,本发明对此不做限定。
本发明还提供了一种计算机可读存储介质,计算机可读存储介质可以是多种形式,比如,在不同的例子中,计算机可读存储介质可以是:RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、DVD等),或者类似的存储介质,或者它们的组合。特殊的,计算机可读介质还可以是纸张或者其他合适的能够打印程序的介质。计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现本发明任一实施例所提供的数据处理方法。
本发明还提供了一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现本发明任一实施例所提供的数据处理方法。
本发明还提供了一种计算设备,参见图30,图30是根据本发明实施例提供的一种计算设备的结构示意图。如图30所示,计算设备包括处理器3001、存储器3002和网络接口3003,存储器3002用于存储可在处理器3001上运行的计算机程序代码,处理器3001用于在执行该计算机程序代码时实现本发明任一实施例所提供的数据显示方法,网络接口3003用于实现输入输出功能。在更多可能的实现方式中,计算设备还可以包括其他硬件,本发明对此不做限定。
本发明还提供了一种计算机可读存储介质,计算机可读存储介质可以是多种形式,比如,在不同的例子中,计算机可读存储介质可以是:RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、DVD等),或者类似的存储介质,或者它们的组合。特殊的,计算机可读介质还可以是纸张或者其他合适的能够打印程序的介质。计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现本发明任一实施例所提供的数据显示方法。
本发明还提供了一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现本发明任一实施例所提供的数据显示方法。
在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种数据处理方法,其特征在于,所述方法包括:
    获取待检测的各个显示面板的多个测量数据;
    通过基于所述多个测量数据所确定出的目标参数值,来确定数据形态信息,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否具有多群组特性,和/或,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否服从正态分布,每个显示面板的目标测量数据基于所述显示面板的多个测量数据确定;
    基于所述数据形态信息,确定目标控制图的控制限,所述目标控制图用于指示各个显示面板的统计数据特征,所述控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值。
  2. 根据权利要求1所述的方法,其特征在于,所述目标参数值包括第一目标参数值,所述第一目标参数值用于指示所述目标测量数据分组后组间和组内的偏差平方和与自由度的比值;
    所述基于所述多个测量数据,确定目标参数值,包括:
    对于任一显示面板,确定所述显示面板的多个测量数据的均值,作为所述显示面板的目标测量数据;
    对所述多个显示面板的目标测量数据按照时间段进行分组,得到多组目标测量数据;
    确定所述多组目标测量数据的组间变异总和、单点平方和总和;
    基于所述组间变异总和、所述单点平方和总和,确定所述第一目标参数值。
  3. 根据权利要求1所述的方法,其特征在于,所述目标参数值包括第二目标参数值,所述第二目标参数值用于指示所述多个显示面板的目标测量数据服从正态分布的概率;
    所述基于所述多个测量数据,确定目标参数值,包括:
    对于任一显示面板,确定所述显示面板的多个测量数据的均值,作为所述显示面板的目标测量数据;
    对所述多个显示面板的目标测量数据进行正态性校验,得到所述第二目标参数值。
  4. 根据权利要求1所述的方法,其特征在于,所述数据形态信息基于所述目标参 数值确定,所述目标参数值包括第一目标参数值和/或第二目标参数值,所述第一目标参数值用于指示所述目标测量数据分组后组间和组内的偏差平方和与自由度的比值,所述第二目标参数值用于指示所述多个显示面板的目标测量数据服从正态分布的概率;
    所述通过基于所述多个测量数据所确定出的目标参数值,来确定数据形态信息,包括:
    在所述第一目标参数值大于第一设定阈值的情况下,确定所述数据形态信息指示所述多个显示面板的目标测量数据具有多群组特性;
    在所述第一目标参数值小于或等于第一设定阈值且所述第二目标参数值大于等于第二设定阈值的情况下,确定所述数据形态信息指示所述多个显示面板的目标测量数据服从正态分布;
    在所述第一目标参数值小于或等于第一设定阈值且所述第二目标参数值小于第二设定阈值的情况下,确定所述数据形态信息指示所述多个显示面板的目标测量数据不服从正态分布。
  5. 根据权利要求1所述的方法,其特征在于,所述基于所述数据形态信息,确定目标控制图的控制限,包括下述任一项:
    在所述数据形态信息指示所述多个显示面板的目标测量数据具有多群组特性的情况下,将设定数量个目标测量数据确定为一组,得到多组目标测量数据,分别计算每组目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定所述目标控制图的控制限;
    在所述数据形态信息指示所述多个显示面板的目标测量数据具有多群组特性的情况下,若所述多个显示面板对应于多个批次,则分别计算每个批次的目标测量数据的过程能力指数,基于过程能力指数满足设定条件的多组目标测量数据,确定所述目标控制图的控制限;
    在所述数据形态信息指示所述多个显示面板的目标测量数据服从正态分布的情况下,基于满足正态分布的多个目标测量数据,确定所述目标控制图的控制限;
    在所述数据形态信息指示所述多个显示面板的目标测量数据不服从正态分布的情况下,将所述多个目标测量数据转换为服从正态分布的数据,基于转换后的数据,确定所述目标控制图的控制限。
  6. 根据权利要求1所述的方法,其特征在于,所述目标控制图基于所述显示面板的产品特性确定,所述产品特性用于指示所述显示面板的测量数据为计量型数据或计数型数据;
    所述目标控制图的确定过程包括:
    在所述显示面板的产品特性指示所述显示面板的测量数据为计量型数据的情况下,基于所述显示面板的测量点位数以及组间差异检验结果,确定所述目标控制图;
    在所述显示面板的产品特性指示所述显示面板的测量数据为计数型数据的情况下,基于所述显示面板中不合格品和产品缺陷的存在情况,确定所述目标控制图。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述显示面板的测量点位数以及组间差异检验结果,确定所述目标控制图,包括下述任一项:
    在所述显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-极差控制图作为所述目标控制图;
    在所述显示面板的测量点位数大于第三设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-极差控制图作为所述目标控制图;
    在所述显示面板的测量点位数小于或等于第三设定阈值的情况下,若所述测量点位数为第四设定阈值,则以单值-移动极差控制图作为所述目标控制图;
    在所述显示面板的测量点位数小于或等于第三设定阈值的情况下,若所述测量点位数不是第四设定阈值,且组间差异检验结果指示不存在组间差异的情况下,以均值-标准差控制图作为所述目标控制图;
    在所述显示面板的测量点位数小于或等于第三设定阈值的情况下,若所述测量点位数不是第四设定阈值,且组间差异检验结果指示存在组间差异的情况下,以均值-移动极差-标准差控制图作为所述目标控制图。
  8. 根据权利要求6所述的方法,其特征在于,所述基于所述显示面板中不合格品和产品缺陷的存在情况,确定所述目标控制图,包括:
    在所述显示面板中存在不合格品的情况下,若不合格品数量为常数,则以不合格品数控制图作为所述目标控制图;
    在所述显示面板中存在不合格品的情况下,若不合格品数量不是常数,则以不合格品率控制图作为所述目标控制图;
    在所述显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若 所述产品缺陷存在于设定区域内,则以不合格数控制图作为所述目标控制图;
    在所述显示面板中不存在不合格品,但存在有产品缺陷的显示面板的情况下,若所述产品缺陷不存在于设定区域内,则以单位产品不合格品数控制图作为所述目标控制图。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    响应于接收到目标指令,基于所述目标指令,确定待检测的显示面板的产品型号;
    基于所述产品型号,确定所述显示面板的产品特性。
  10. 根据权利要求1所述的方法,其特征在于,所述待检测的显示面板按照目标抽样间隔时间从多个候选显示面板中抽样得到;
    所述目标抽样间隔时间的确定过程包括:
    基于历史测量数据的上控制限、下控制限、偏移后中心点和历史标准差,确定第一目标概率值;
    基于所述第一目标概率值、初始抽样间隔时间、所述历史测量数据的每小时产出以及各个设定时间段内的不良率和第一概率,确定期望风险值;
    基于所述期望风险值,对所述初始抽样时间间隔进行调整,得到所述目标抽样间隔时间。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述多个测量数据,对所述显示面板中的多个测量点位进行分区,得到所述多个测量点位的分区结果,以基于所述分区结果对不同分区中的测量点位的测量数据分别进行处理。
  12. 根据权利要求1所述的方法,其特征在于,所述显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,所述生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息,所述目标控制图中包括各个显示面板对应的数据点,所述数据点用于在被触发后在所述目标控制图中显示对所述显示面板进行加工的生产设备的设备信息。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于各个显示面板的生产信息存储结构中所记录的设备信息,确定经过各个生产 设备加工的多个显示面板,将经过各个生产设备加工的多个显示面板的产品信息分别记录到生产设备管理模型中,所述生产设备管理模型用于记录不同生产设备加工过的显示面板。
  14. 一种数据显示方法,其特征在于,所述方法包括:
    显示产品管理界面;
    通过所述产品管理界面获取待检测的显示面板的产品型号,并基于所述产品型号确定目标控制图,所述目标控制图用于指示各个显示面板的统计数据特征;
    响应于在所述产品管理界面的提交操作,显示目标控制图和控制限,所述目标控制图用于指示各个显示面板的统计数据特征,所述控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值;
    其中,所述控制限基于数据形态信息确定得到,所述数据形态信息基于通过待检测的各个显示面板的多个测量数据所确定出的目标参数值确定得到,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否具有多群组特性,和/或,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否服从正态分布。
  15. 根据权利要求14所述的方法,其特征在于,所述产品管理界面包括产品型号设置控件和控制图选择控件;
    所述通过所述产品管理界面获取待检测的显示面板的产品型号,并基于所述产品型号确定目标控制图,包括:
    通过所述产品型号设置控件获取所述产品型号;
    基于所述产品型号对应的产品特性,在所述控制图选择控件显示至少一个候选控制图;
    响应于对任一候选控制图的选中操作,将被选中的候选控制图确定为所述目标控制图。
  16. 根据权利要求15所述的方法,其特征在于,所述产品管理界面还包括点位数量设置控件;
    所述方法还包括:
    获取通过所述点位数量设置控件所设置的测量点位数;
    基于所述产品型号对应的产品特性以及所获取到的测量点位数,在所述控制图选 择控件显示至少一个候选控制图。
  17. 根据权利要求14所述的方法,其特征在于,所述产品管理界面还包括分区设置控件;
    所述方法还包括:
    响应于对所述分区设置控件的触发操作,显示分区管理界面,所述分区管理界面用于对所述显示面板中的多个测量点位进行分区,得到所述多个测量点位的分区结果,以基于所述分区结果对不同分区中的测量点位的测量数据分别进行处理。
  18. 根据权利要求14所述的方法,其特征在于,所述产品管理界面还包括下述至少一项:
    数据采集管理控件,所述数据采集管理控件用于设置待采集的测量数据的类型以及所述测量数据的数据描述信息;
    设备管理控件,所述设备管理控件用于获取所述显示面板的生产设备的设备信息;
    数据过滤控件,所述数据过滤控件用于设置待过滤的数据满足的条件以及数据过滤方式;
    定时功能设置控件,所述定时功能设置控件用于设置数据采集及计算过程的循环周期。
  19. 根据权利要求14所述的方法,其特征在于,所述产品管理界面还包括控制限管理控件和/或规格限管理控件;
    所述控制限管理控件用于对已确定出的控制限进行调整;
    所述规格限管理控件用于对已确定出的规格限进行调整;
    其中,已确定出的规格限基于已确定出的控制限确定得到。
  20. 根据权利要求14所述的方法,其特征在于,所述目标控制图中包括各个显示面板对应的数据点,所述显示面板经过多个生产设备加工得到,每个显示面板对应于一个生产信息存储结构,所述生产信息存储结构用于存储对对应显示面板进行加工的生产设备的设备信息;
    所述方法还包括:
    响应于对所显示的目标控制图中任一数据点的触发操作,从所述数据点对应的显 示面板的生产信息存储结构中,获取对所述显示面板进行加工的生成设备的设备信息;
    对所获取到的设备信息进行显示。
  21. 一种数据处理装置,其特征在于,所述装置包括:
    获取模块,用于获取待检测的各个显示面板的多个测量数据;
    确定模块,用于通过基于所述多个测量数据所确定出的目标参数值,来确定数据形态信息,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否具有多群组特性,和/或,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否服从正态分布,每个显示面板的目标测量数据基于所述显示面板的多个测量数据确定;
    所述确定模块,还用于基于所述数据形态信息,确定目标控制图的控制限,所述目标控制图用于指示各个显示面板的统计数据特征,所述控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值。
  22. 一种数据显示装置,其特征在于,所述装置包括:
    显示模块,用于显示产品管理界面;
    处理模块,用于通过所述产品管理界面获取待检测的显示面板的产品型号,并基于所述产品型号确定目标控制图,所述目标控制图用于指示各个显示面板的统计数据特征;
    所述显示模块,还用于响应于在所述产品管理界面的提交操作,显示目标控制图和控制限,所述目标控制图用于指示各个显示面板的统计数据特征,所述控制限用于指示满足生产要求的显示面板的统计数据特征的上限值和/或下限值;
    其中,所述控制限基于数据形态信息确定得到,所述数据形态信息基于通过待检测的各个显示面板的多个测量数据所确定出的目标参数值确定得到,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否具有多群组特性,和/或,所述数据形态信息用于指示所述多个显示面板的目标测量数据是否服从正态分布。
  23. 一种计算设备,其特征在于,所述计算设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至13中任一项所述的数据处理方法所执行的操作,或者,所述处理器执行所述计算机程序时实现如权利要求14至20中任一项所述的数据显示方法所执行的操作。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时,实现如权利要求1至13中任一项所述的数据处理方法所执行的操作,或者,所述程序被处理器执行时,实现如权利要求14至20中任一项所述的数据显示方法所执行的操作。
PCT/CN2022/102675 2022-06-30 2022-06-30 数据处理方法及装置、数据显示方法及装置、设备和介质 WO2024000356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002068.6A CN117642707A (zh) 2022-06-30 2022-06-30 数据处理方法及装置、数据显示方法及装置、设备和介质
PCT/CN2022/102675 WO2024000356A1 (zh) 2022-06-30 2022-06-30 数据处理方法及装置、数据显示方法及装置、设备和介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102675 WO2024000356A1 (zh) 2022-06-30 2022-06-30 数据处理方法及装置、数据显示方法及装置、设备和介质

Publications (1)

Publication Number Publication Date
WO2024000356A1 true WO2024000356A1 (zh) 2024-01-04

Family

ID=89383510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102675 WO2024000356A1 (zh) 2022-06-30 2022-06-30 数据处理方法及装置、数据显示方法及装置、设备和介质

Country Status (2)

Country Link
CN (1) CN117642707A (zh)
WO (1) WO2024000356A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117708615A (zh) * 2024-02-04 2024-03-15 芯联集成电路制造股份有限公司 产品的检测方法及加工设备的监控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI266249B (en) * 2002-05-16 2006-11-11 Mosel Vitelic Inc Statistical process control method and system thereof
CN102540944A (zh) * 2012-01-13 2012-07-04 顺德职业技术学院 嵌入式多功能统计过程控制装置及方法
CN109100117A (zh) * 2018-07-04 2018-12-28 惠科股份有限公司 一种变异数值的检测方法
CN110987493A (zh) * 2019-11-14 2020-04-10 深圳市华星光电半导体显示技术有限公司 设备异常检测方法、装置、存储介质及电子设备
CN114429256A (zh) * 2020-10-29 2022-05-03 北京中祥英科技有限公司 数据监测方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI266249B (en) * 2002-05-16 2006-11-11 Mosel Vitelic Inc Statistical process control method and system thereof
CN102540944A (zh) * 2012-01-13 2012-07-04 顺德职业技术学院 嵌入式多功能统计过程控制装置及方法
CN109100117A (zh) * 2018-07-04 2018-12-28 惠科股份有限公司 一种变异数值的检测方法
CN110987493A (zh) * 2019-11-14 2020-04-10 深圳市华星光电半导体显示技术有限公司 设备异常检测方法、装置、存储介质及电子设备
CN114429256A (zh) * 2020-10-29 2022-05-03 北京中祥英科技有限公司 数据监测方法、装置、电子设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 November 2015, XI'AN UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY, CN, article TIAN, WENXING: "Research on SPC (Statistical Process Control) for Nested Process Parameters in the Semiconductor Manufacturing", pages: 1 - 86, XP009551637 *
CHEN JIAFENG, YANG QINYUE, XIE JIABING, WANG LEI, HUANG YUAN, YANG KAIXIN: "Refined Management-Discussion on the Establishment of SPC Control Charts Based on Differences in Process Equipment", DIANZI SHIJIE - ELECTRONICS WORLD, DIANZI SHIJIE ZAZHISHE, CN, no. 20, 30 October 2019 (2019-10-30), CN , pages 5 - 9, XP009551578, ISSN: 1003-0522, DOI: 10.19353/j.cnki.dzsj.2019.20.001 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117708615A (zh) * 2024-02-04 2024-03-15 芯联集成电路制造股份有限公司 产品的检测方法及加工设备的监控方法
CN117708615B (zh) * 2024-02-04 2024-05-17 芯联集成电路制造股份有限公司 产品的检测方法及加工设备的监控方法

Also Published As

Publication number Publication date
CN117642707A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN107862338A (zh) 基于双检验法的海洋环境监测数据质量管理方法及***
TW201135381A (en) Manufacturing execution system with virtual-metrology capabilities and manufacturing system including the same
TW201329909A (zh) 智慧型缺陷診斷方法
TW201702776A (zh) 光學薄膜製程即時監測系統及其方法
WO2024000356A1 (zh) 数据处理方法及装置、数据显示方法及装置、设备和介质
US20220035356A1 (en) Equipment failure diagnosis support system and equipment failure diagnosis support method
JP4568786B2 (ja) 要因分析装置および要因分析方法
WO2020181759A1 (zh) 微型变压器生产线的设备故障和潜在不良品智能预测***
TWI239469B (en) Semiconductor process and yield analysis integrated real-time management method
CN109844664A (zh) 量化并减小总测量不确定度
JP2009020717A (ja) 状態監視方法及び状態監視装置並びにプログラム
US8340800B2 (en) Monitoring a process sector in a production facility
WO2022133895A1 (zh) 基于设备监理的火电设备质量数据处理方法及装置
JP2011054804A (ja) 半導体製造装置の管理方法およびシステム
WO2023184281A9 (zh) 一种检测参数分析方法及装置
TW202013104A (zh) 資料處理、資料處理裝置以及電腦可讀取記錄媒體
JP5751333B2 (ja) 管理装置、管理方法、プログラムおよび記録媒体
RU2470352C1 (ru) Способ статистического регулирования технологического процесса (варианты)
US11609836B2 (en) Operation method and operation device of failure detection and classification model
TWM495616U (zh) 機台測機複合式顯示與監控裝置
JP5604196B2 (ja) マクロ検査方法および検査システム
TWM618950U (zh) 運用人工智慧之產品製程異常分析平台
TWM618947U (zh) 運用人工智慧之全異常定位分析平台
CN113155862A (zh) 一种偏光膜卷材良率的模拟方法
TWI701185B (zh) 自行車產品之數據分析系統及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948468

Country of ref document: EP

Kind code of ref document: A1