WO2024000275A1 - 显示面板及终端设备 - Google Patents

显示面板及终端设备 Download PDF

Info

Publication number
WO2024000275A1
WO2024000275A1 PCT/CN2022/102397 CN2022102397W WO2024000275A1 WO 2024000275 A1 WO2024000275 A1 WO 2024000275A1 CN 2022102397 W CN2022102397 W CN 2022102397W WO 2024000275 A1 WO2024000275 A1 WO 2024000275A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
light
area
region
transmitting
Prior art date
Application number
PCT/CN2022/102397
Other languages
English (en)
French (fr)
Inventor
徐元杰
谢涛峰
刘庭良
龙跃
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/102397 priority Critical patent/WO2024000275A1/zh
Priority to CN202280002007.XA priority patent/CN117651986A/zh
Publication of WO2024000275A1 publication Critical patent/WO2024000275A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements

Definitions

  • the present disclosure relates to the field of display technology, and specifically, to a display panel and a terminal device.
  • the area of the screen corresponding to the camera usually needs to be opened so that it cannot emit light, which is not conducive to increasing the screen-to-body ratio.
  • the area where the camera is located can also display images, avoid opening holes, and allow normal shooting, but the display effect of the under-screen camera area and the imaging quality after shooting need to be improved.
  • the present disclosure provides a display panel and terminal equipment.
  • a display panel having a plurality of light-transmitting areas and a display area located outside the plurality of light-transmitting areas; the light-transmitting area includes a first light-transmitting area and a third Two light-transmitting areas;
  • the display panel includes:
  • a plurality of pixel units are provided on one side of the substrate, and include a plurality of first pixel units and a plurality of second pixel units.
  • the first pixel units are located in the display area, and any second pixel unit At least part of the second pixel unit is located in the light-transmitting area, and the part of the second pixel unit located in the light-transmitting area is a functional part; both the first light-transmitting area and the second light-transmitting area are provided with a plurality of Functional Department;
  • the first light-transmitting area and the second light-transmitting area each include n sub-area groups arranged along the first direction, and each sub-area group includes m sub-areas arranged along the second direction.
  • the first direction intersects the second direction;
  • the functional parts in the first light-transmitting area are located in odd-numbered sub-area groups, and the functional parts in the second light-transmitting area are located in even-numbered sub-area groups.
  • At least one of the sub-region groups includes a first sub-sub-region group and a second sub-sub-region group arranged along the first direction, and the first sub-sub region group Both the group and the second sub-sub-region group include a plurality of the sub-regions arranged along the second direction;
  • Each of the functional parts in the sub-region group is provided in the sub-regions of the first sub-sub-region group and the second sub-sub-region group, and the first sub-sub-region group and the third sub-sub-region group
  • the sub-regions of the two sub-sub-region groups are each provided with the functional part.
  • each of the sub-region groups includes a first sub-sub-region group and a second sub-sub-region group arranged along the first direction, and the first sub-sub region group Both the group and the second sub-sub-region group include a plurality of the sub-regions arranged along the second direction;
  • Each of the functional portions in the sub-region group is located in the sub-regions of the first sub-sub-region group and the second sub-sub-region group, and the functional portions of the first sub-sub-region group are spaced apart. , the functional parts of the second sub-sub-region group are distributed at intervals.
  • the functional parts of the first sub-sub-region group and the functional parts of the second sub-sub-region group are alternately distributed.
  • the functional parts of the first sub-sub-region group are arranged in one-to-one correspondence with the functional parts of the second sub-sub-region group.
  • the functional parts of the first sub-sub-region group and the second sub-sub-region group in the first light-transmitting area are provided in odd-numbered sub-areas, and the second light-transmitting area
  • the functional parts of the first sub-sub-region group and the second sub-sub-region group are located in even-numbered sub-regions.
  • the sub-regions of the sub-region group provided with the functional part are arranged in at least two rows along the second direction, and the sub-regions of two adjacent rows are located at the same position. arranged in a staggered manner in the first direction.
  • the shape of the sub-region is a parallelogram and has two sides extending along the first direction and two sides forming a specified angle with the second direction. side, the specified angle is an acute angle.
  • the pixel unit includes a pixel circuit and a light-emitting element arranged in a direction away from the substrate, the pixel circuit is used to drive the light-emitting element to emit light; the first The pixel circuit and the light-emitting element of the pixel unit are both located in the display area, and the pixel circuit and the light-emitting element of the second pixel unit are located in the light-transmitting area; the second pixel unit is the functional part.
  • a length of at least some sub-regions in the light-transmitting region is smaller than a length of the pixel unit in the display region.
  • the width of at least some sub-regions in the light-transmitting region is smaller than the length of the pixel unit in the display region.
  • the pixel unit includes a pixel circuit and a light-emitting element arranged in a direction away from the substrate, and the pixel circuit is used to drive the light-emitting element to emit light;
  • the pixel circuit of the second pixel unit is located in the display area, the light-emitting element of the second pixel unit is the functional part, and the functional part is connected to the pixel circuit through a conductive line.
  • the width of the pixel circuits of a part of the first pixel units in the second direction is smaller than the width of the pixel circuits of another part of the first pixel units in the second direction. width.
  • the conductive line is provided between the pixel circuit and the light-emitting element, and extends from the light-transmitting area to the display area.
  • the j-th sub-area in the i-th sub-area group of the first light-transmitting area is provided with the functional part
  • the i-th sub-area group of the second light-transmitting area is provided with the functional part.
  • the jth sub-area in is the transmission area.
  • a display panel having a plurality of light-transmitting areas and a display area located outside the light-transmitting areas; the light-transmitting areas include a first light-transmitting area and a second light-transmitting area. light area;
  • the display panel includes:
  • a plurality of pixel units are provided on one side of the substrate, and include a plurality of first pixel units and a plurality of second pixel units.
  • the first pixel units are located in the display area, and any second pixel unit At least part of the second pixel unit is located in the light-transmitting area, and the part of the second pixel unit located in the light-transmitting area is a functional part; both the first light-transmitting area and the second light-transmitting area are provided with a plurality of Functional Department;
  • the first light-transmitting region and the second light-transmitting region each include a plurality of sub-regions, and the sub-regions of the first light-transmitting region and the sub-regions of the second light-transmitting region are formed in the same manner. Arrangement; the functional parts in the light-transmitting area are located in part of the sub-areas;
  • the length of at least some sub-regions in the light-transmitting region is smaller than the length of the first pixel unit in the display region.
  • the light-transmitting area includes a plurality of sub-region groups extending along the second direction, and each of the sub-region groups is distributed along the first direction; each of the sub-region groups Each area group includes a plurality of the sub-areas distributed along the second direction.
  • the width of the sub-region group is the same as the length of the first pixel unit in the display area, and the width of the sub-region is The length is no greater than 50% of the length of the first pixel unit in the display area;
  • the sub-regions in the same sub-region group are arranged in at least two rows along the first direction.
  • n is a positive integer.
  • At least a part of two sub-areas adjacent in the first direction are provided with the function. department.
  • each of the sub-area groups in any of the light-transmitting areas is provided with the functional part, and each row of sub-areas in the same sub-area group is spaced apart. There are functional parts as described.
  • the functional portion in a row of sub-regions in which the functional portion is provided in the first light-transmitting area, the functional portion is provided in the 2n-1th sub-region. ;
  • the functional portion is provided in the 2nth sub-region.
  • n is a positive integer
  • the sub-regions in the same sub-region group are arranged in at least two rows along the first direction, and the sub-regions in two adjacent rows partially overlap in the second direction.
  • the shape of the sub-region is a parallelogram, and has two sides extending along the second direction and two sides forming a specified angle with the first direction. side, the specified angle is an acute angle.
  • the width of at least some sub-regions in the light-transmitting region is smaller than the length of the first pixel unit in the display region.
  • the light-transmitting area includes a plurality of sub-region groups extending along the first direction, and each of the sub-region groups is distributed along the second direction; each of the sub-region groups is distributed along the second direction.
  • Each of the sub-region groups includes a plurality of the sub-regions distributed along the first direction;
  • n is a positive integer.
  • the width of the sub-region in the light-transmitting area is no greater than 50% of the width of the first pixel unit in the display area.
  • the sub-regions in the same sub-region group are arranged in at least two columns along the second direction.
  • the pixel unit includes a pixel circuit and a light-emitting element arranged in a direction away from the substrate, the pixel circuit is used to drive the light-emitting element to emit light; the first The pixel circuit and the light-emitting element of the pixel unit are both located in the display area, and the pixel circuit and the light-emitting element of the second pixel unit are located in the light-transmitting area; the second pixel unit is the functional part.
  • the display panel further includes a signal line extending along the second direction and passing through the light-transmitting area, and one of the signal lines is connected to at least one row in the display area.
  • the pixel circuit is connected to at least one row of pixel circuits in the light-transmitting area.
  • At least one of the signal lines has a bending portion bent along the first direction, and the bending portion is located in the light-transmitting area and is connected to the light-transmitting area. At least one row of said pixel circuits in the light area are connected.
  • the pixel unit includes a pixel circuit and a light-emitting element arranged in a direction away from the substrate, and the pixel circuit is used to drive the light-emitting element to emit light;
  • the pixel circuit of the second pixel unit is located in the display area, the light-emitting element of the second pixel unit is the functional part, and the functional part is connected to the pixel circuit through a conductive line.
  • a terminal device including:
  • the photosensitive element is located on a side of the substrate away from the plurality of pixel units, and the orthographic projection of the photosensitive element on the substrate at least partially overlaps with the orthographic projection of the light-transmitting area on the substrate.
  • the photosensitive element includes a first photosensitive element and a second photosensitive element, and the orthographic projection of the first photosensitive element on the substrate is aligned with the first light-transmitting area. Orthographic projections of the substrates at least partially overlap;
  • the orthographic projection of the second photosensitive element on the substrate and the orthographic projection of the second light-transmitting area on the substrate at least partially overlap.
  • Figure 1 is a schematic diagram of an embodiment of the terminal device of the present disclosure.
  • FIG. 2 is a partial cross-sectional schematic diagram of an embodiment of the display panel of the present disclosure.
  • FIG. 3 is a top view of a display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a pixel circuit in an embodiment of the display panel of the present disclosure.
  • FIG. 5 is a partial schematic diagram of the first embodiment of the display panel of the present disclosure.
  • FIG. 6 is a partial schematic diagram of a second embodiment of a display panel of the present disclosure.
  • FIG. 7 is a partial schematic diagram of a third embodiment of the display panel of the present disclosure.
  • FIG. 8 is a partial schematic diagram of a fourth embodiment of a display panel of the present disclosure.
  • FIG. 9 is a partial schematic diagram of a fifth embodiment of the display panel of the present disclosure.
  • FIG. 10 is a partial schematic diagram of a sixth embodiment of a display panel of the present disclosure.
  • FIG. 11 is a partial schematic diagram of a seventh embodiment of a display panel of the present disclosure.
  • FIG. 12 is a schematic diagram of the pixel circuit and signal lines of the display panel of the present disclosure.
  • FIG. 13 is a schematic diagram of conductive lines in an embodiment of the display panel of the present disclosure.
  • FIG. 14 is a schematic top view of a pixel circuit in an embodiment of the display panel of the present disclosure.
  • 15 to 18 are schematic top views of some film layers of the pixel circuit in FIG. 14 .
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the first direction Y and the second direction if the display panel rotates, the actual orientations of the first direction Y and the second direction X may change.
  • the display panel PNL can be divided into at least a light-emitting display area AA and a non-light-emitting peripheral area WA outside the display area AA.
  • the display panel PNL may include a substrate SU and a pixel unit, where:
  • the substrate SU can be a flexible transparent material such as polyimide, or a hard transparent material such as glass, and the substrate SU can be a multi-layer or single-layer structure.
  • Each pixel unit can be array-distributed on one side of the substrate SU, and each pixel unit can emit light independently to display an image.
  • Each pixel unit may include a pixel circuit and a light-emitting element LD.
  • the light-emitting element LD is disposed on a side of the pixel circuit away from the substrate SU and is connected to the pixel circuit.
  • the light-emitting element LD can be controlled by the pixel circuit to emit light.
  • LD can be OLED (organic light-emitting diode), QLED (quantum dot light-emitting diode), Micro LED or Mini LED, etc., and it can include a first electrode ANO, a second electrode CAT and an electrode between the first electrode ANO and the second electrode CAT.
  • Emitting layer EL Emitting layer EL.
  • each pixel circuit PC may be located on a circuit layer CL, and the circuit layer CL may form a driving backplane BP with the substrate SU.
  • the circuit layer CL may also include peripheral circuits located within the peripheral area WA.
  • the peripheral circuit can be connected to the light-emitting element LD through the pixel circuit.
  • the pixel circuit can include multiple transistors and can also include capacitors, which can be 3T1C, 7T1C and other pixel circuits.
  • nTmC means that a pixel circuit includes n transistors (indicated by the letter “T") and m capacitors (indicated by the letter “C” express).
  • the 7T1C pixel circuit may include 7 transistors and 1 capacitor, namely a first reset transistor T1, a compensation transistor T2, a driving transistor T3, a writing transistor T4, a first luminescence control transistor T5, and a second luminescence control transistor.
  • the first pole of the first reset transistor T1 is connected to the first reset signal line VIL1 for receiving the reset signal Vinit1, and the second pole is connected to the gate of the driving transistor T3 and the first plate of the storage capacitor Cst. connect.
  • the first electrode of the compensation transistor T2 is connected to the second electrode of the driving transistor T3, and the second electrode is connected to the gate electrode of the driving transistor T3.
  • the first electrode of the writing transistor T4 is connected to the data line DL for receiving the data signal Data, and the second electrode is connected to the first electrode of the driving transistor T3.
  • the first pole of the first light-emitting control transistor T5 and the second plate of the storage capacitor Cst are connected to the power line VDL for receiving the first power signal VDD, and the second pole is connected to the first pole of the driving transistor T3.
  • the first electrode of the second light emitting control transistor T6 is connected to the second electrode of the driving transistor T3, and the second electrode is connected to the first electrode of the light emitting element.
  • the first electrode of the second reset transistor T7 is connected to the second reset signal line VIL2 for receiving the second reset signal Vinit2, and the second electrode is connected to the second electrode of the second light emitting control transistor T6.
  • the second electrode of the light-emitting element can receive the second power signal VSS.
  • the gate of the first reset transistor T1 is connected to the first reset control line REL1 for inputting the first reset control signal RE1
  • the gate of the second reset transistor T7 is connected to the first reset control line REL1.
  • the two reset control lines REL2 are connected and used to input the second reset control signal RE2.
  • the gates of the compensation transistor T2 and the writing transistor T4 are connected to the scan line GL for inputting the scan signal GA
  • the gates of the first light-emitting control transistor T5 and the second light-emitting control transistor T6 are connected to the light-emitting control line EML for inputting the scan signal GA.
  • Light emission control signal EM The pixel circuit can be used to drive the connected light-emitting element to emit light in response to signals provided by each connected signal terminal.
  • the aforementioned first reset signal line VIL1, second reset signal line VIL2, data line DL, power line VDL, first reset control line REL1, second reset control line REL2, scanning line GL and light emitting control line EML can all be called
  • the signal line SL may extend along the second direction X or the first direction Y.
  • the data line DL and the power line VDL may extend along the first direction Y
  • other signal lines SL may extend along the second direction X.
  • transistors can be divided into N-type and P-type transistors according to their characteristics.
  • the transistors all adopt P-type transistors as an example for description. Based on the description and teaching of this implementation method in this disclosure, a person of ordinary skill in the art can easily think of using N-type transistors for at least some of the transistors in the pixel circuit structure of the embodiment of the present disclosure without having to make creative efforts, that is, using N-type transistors.
  • each transistor of the pixel circuit is a P-type low-temperature polysilicon transistor to explain its working principle:
  • the first reset control signal RE1 is a low-level signal
  • the first reset transistor T1 is turned on
  • the gate of the driving transistor T3 and the first plate of the storage capacitor Cst are written with the reset signal Vinit1
  • the N1 node is implemented Initialize to eliminate the influence of the data of the previous frame of image.
  • the writing transistor T4 and the compensation transistor T2 can be turned on, and the data signal DA can be written to the gate of the driving transistor T3 and the first plate Cst1 of the storage capacitor Cst. , that is, writing the data signal DA to the N1 node through the N3 node and the N2 node until the potential reaches Vdata+vth.
  • Vdata is the voltage of the data signal Da
  • Vth is the threshold voltage of the driving transistor T3.
  • the scanning signal GA of the writing transistor T4 and the compensation transistor T2 may be the same signal.
  • the second reset control signal RE2 is a low-level signal, causing the second reset transistor T7 to be turned on, and the second reset signal Vinit2 is written into the first electrode of the light-emitting element LD and the second pole of the second light-emitting control transistor T6, Reset the N4 node to implement initialization and further eliminate the influence of the data of the previous frame of image.
  • the light-emitting control signal EM is a low-level signal
  • the first light-emitting control transistor T5 and the second light-emitting control transistor T6 are turned on
  • the driving transistor T3 is the voltage Vdata+Vth stored in the storage capacitor Cst and the first power signal VDD. It is turned on under the action, and at this time, the light-emitting element LD emits light.
  • the transistors and capacitors of the pixel circuit are located on the circuit layer CL.
  • the circuit layer CL can It includes a semiconductor layer SEL, a first gate insulation layer GI1, a first gate electrode layer GAT1, a second gate insulation layer GI2, a second gate electrode layer GAT2, a dielectric layer ILD, and a first gate electrode layer sequentially stacked in a direction away from the substrate SU.
  • the semiconductor layer SEL may include channels of each transistor (T1-T7) and a doped region connecting at least part of the channel. Connection of part of the transistors may be achieved through the doped region.
  • the first gate layer GAT1 may include a first plate Cst1 of the storage capacitor Cst and part of the signal lines SL (scanning line GL, first reset control line REL1, second reset control line REL2 and light emitting control line EML), and the area where these signal lines SL overlap with the semiconductor layer SEL is the gate electrode of each transistor.
  • the gate T11 of the first reset transistor T1 of the pixel circuit of this row, the gate of the second reset transistor T7 of the pixel circuit of the previous row, and the first reset control line REL1 of the pixel circuit of this row may be an integrated structure.
  • the gate T21 of the compensation transistor T2, the gate T41 of the writing transistor T4, and the scanning line GL may have an integrated structure.
  • the gate T31 of the driving transistor T3 and the first plate Cst1 of the storage capacitor Cst may have an integrated structure.
  • the gate T51 of the first light emission control transistor T5, the gate T61 of the second light emission control transistor T6 and the light emission control line EML may have an integrated structure.
  • the gate T71 of the second reset transistor T7 of the pixel circuit of this row, the gate of the first reset transistor T1 of the pixel circuit of the next row, and the second reset control line REL2 of the pixel circuit of this row may be an integrated structure.
  • the second gate layer GAT2 may include the second plate Cst2 of the storage capacitor Cst and part of the signal line SL (the first reset signal line VIL1 and the second reset signal line VIL2).
  • the second gate layer GAT2 A shield electrode BK may also be included.
  • the second plate Cst2 of the storage capacitor Cst has a hollow area.
  • the orthographic projection of the gate T31 of the driving transistor T3 on the substrate SU can cover the orthographic projection of the hollow region on the substrate SU.
  • the orthographic projection of the hollow area on the substrate SU may be a polygon.
  • the dielectric layer ILD is provided with a plurality of via holes, including, for example, a first via hole V1 to a fifteenth via hole V15.
  • the dielectric layer ILD, the second gate insulating layer GI2 and the first gate layer GAT1 in the first to eighth via holes V1 to V8 are removed, exposing the surface of the semiconductor layer SEL.
  • the dielectric layer ILD and the second gate insulating layer GI2 in the ninth via hole V9 are removed, exposing the surface of the first gate layer GAT1.
  • the dielectric layer ILD in the tenth via hole V10 to the fifteenth via hole V15 is removed, exposing the surface of the second gate layer GAT2.
  • the first source and drain layer SD1 may include a portion of the signal line SL (the data line DL and the power line VDL), and may also include a plurality of connection electrodes (for example, the first connection electrode CP1 to the sixth connection electrode CP6).
  • the data line DL may be connected to the writing transistor T4 through the third via V3.
  • the power line VDL can be connected to the shield electrode BK through the twelfth via hole V12, and can also be connected to the second plate Cst2 of the storage capacitor Cst through the thirteenth via hole V13.
  • the shielding electrode BK is used to shield the impact of the data voltage jump on key nodes, prevent the data voltage jump from affecting the potential of the key nodes of the pixel circuit, and improve the display effect.
  • the first connection electrode CP1 may be connected to the first reset transistor T1 through the first via hole V1, and may also be connected to the first reset signal line INL1a through the tenth via hole V10.
  • the second connection electrode CP2 may be connected to the compensation transistor T2 through the second via hole V2, and may also be connected to the gate T31 of the driving transistor T3 through the ninth via hole V9.
  • the third connection electrode CP3 may be connected to the second light emission control transistor T6 through the fifth via hole V5.
  • the fourth connection electrode CP4 may be connected to the second reset transistor T7 through the sixth via hole V6, and may also be connected to the second reset signal line INL2 through the fifteenth via hole V15.
  • the fifth connection electrode CP5 can be connected to the second reset transistor T7 of the previous row of pixel circuits through the seventh via hole V7, and can also be connected to the second reset signal line INL2 through the eleventh via hole V11.
  • the sixth connection electrode CP6 can be connected to the first reset transistor T1 of the next row of pixel circuits through the eighth via hole V8, and can also be connected to the first reset signal line INL1 through the fourteenth via hole V14.
  • the circuit layer CL of the display panel PNL may also include a second source-drain layer and a second planar layer.
  • the second source-drain layer may be disposed on the first planar layer PLN1 away from the substrate SU.
  • the second flat layer may cover the second source and drain layer.
  • the data line DAL and the power line VDL may be located on the second source-drain layer.
  • the light-emitting element LD may be disposed on a side of the second flat layer away from the substrate SU.
  • the above-mentioned pixel circuit is only one implementation mode.
  • the pixel circuit of the present disclosure can also adopt other structures, and is not specifically limited here.
  • the light-emitting element LD can be disposed on a side of the circuit layer CL away from the substrate SU and connected to the pixel circuit.
  • the number of light-emitting elements LD can be multiple and distributed in an array.
  • Each light-emitting element LD can be connected to a pixel circuit PC to form a pixel unit PU.
  • the light-emitting element LD may be an OLED (organic light-emitting diode), QLED (quantum dot light-emitting diode), Micro LED or Mini LED, etc., and may include a first electrode ANO, a second electrode CAT and a first electrode ANO and a second electrode located between the first electrode ANO and the second electrode The luminescent layer EL between CAT.
  • the first electrode ANO can be disposed on the surface of the circuit layer CL away from the substrate SU.
  • the light-emitting layer EL can include a hole injection layer, a hole transport layer, and a light-emitting material layer stacked in a direction away from the driving backplane BP. , electron transport layer and electron injection layer.
  • Each light-emitting element LD can share the second electrode CAT. That is to say, the second electrode CAT can be a continuous whole-layer structure, and the second electrode CAT can extend to the peripheral area and can receive the second power signal VSS.
  • the first electrode ANO is distributed in an array to ensure that each light-emitting element LD can emit light independently.
  • a pixel definition layer PDL can be provided on the surface of the first electrode ANO, which can be provided with openings exposing each first electrode ANO, and the light-emitting layer EL is connected to the first electrode ANO in the opening.
  • the first electrode ANO is stacked.
  • Each light-emitting element LD can at least share a light-emitting material layer, so that the light-emitting color of each light-emitting element LD is the same.
  • a color film layer can be provided on the side of the light-emitting element LD away from the substrate SU. Through the color film layer The filter portion corresponding to each light-emitting element LD realizes color display.
  • the light-emitting material layers of each light-emitting element LD can also be made independent, so that the light-emitting element LD can directly emit monochromatic light, and the light-emitting colors of different light-emitting elements LD can be different, thereby achieving color display.
  • the display panel PNL may also include an encapsulation layer TFE covering each light-emitting element LD.
  • the encapsulation layer TFE may include a first inorganic layer TFE1 and a second inorganic layer TFE2 and a first inorganic layer TFE1 and a second inorganic layer TFE2.
  • the organic layer IJP is between the inorganic layer TFE2.
  • the first inorganic layer TFE1 may cover the light emitting element LD.
  • the display panel PNL may also include other film layers such as a touch layer and a transparent cover plate that are disposed on the side of the encapsulation layer TFE away from the substrate SU, which will not be described in detail here.
  • a light-transmitting area PAT can be set in the display panel PNL.
  • the light-transmitting area PAT can be entirely located in the display area AA, or can be partially located in the display area AA.
  • Some of the pixel units PU are all located in the display area AA, and for any one of the other pixel units PU, at least a part of it can be located in the light-transmitting area PAT, and the part of the pixel unit PU located in the light-transmitting area can be defined
  • It is a functional part FP which may be a pixel circuit PC of the pixel unit PU or a light emitting element LD.
  • the functional part FP may be the entire pixel unit PU.
  • the pixel unit PU can be divided into at least a first pixel unit PU1 and a second pixel unit PU2, the first pixel unit PU1 is located in the display area AA, and at least a part of each second pixel unit PU2 is located in the light-transmitting area, The part of the second pixel unit PU2 located in the light-transmitting area PAT is the functional part FP.
  • the size of the light-transmitting area PAT can match the photosensitive element CAU, and the light transmittance is higher than the display area AA, so that the light-transmitting area PAT can emit light to display images, and can also transmit light for the photosensitive element to capture images.
  • multiple light-transmitting areas PAT may be provided.
  • the light-transmitting area PAT may include at least a first light-transmitting area PAT1 and a second light-transmitting area PAT2.
  • the first light-transmitting area PAT1 and the second light-transmitting area PAT2 are both provided.
  • the photosensitive element CAU can capture images through multiple light-transmitting areas PAT.
  • the pixel unit's blocking of light can be reduced and the transmittance of the light-transmitting area PAT can be improved.
  • light rate to achieve off-screen photography or, the size of the pixel unit PU can be compressed to reduce its blocking of light, thereby improving the light transmittance of the light-transmitting area PAT; or, the pixel unit PU can also be reduced at the same time
  • the density and size improve the light transmittance of the light-transmitting area.
  • the pixel circuits PC in the first light-transmitting area PAT1 and the second light-transmitting area PAT2 can be arranged in a complementary manner, so that the photosensitive element CAU can collect at least two complementary images. Complementary images can be synthesized to obtain clearer images, thereby improving the imaging effect of under-screen photography while ensuring the display effect.
  • the light-emitting elements LD in the first light-transmitting area PAT1 and the second light-transmitting area PAT2 may also be arranged in a complementary manner. That is to say, the functional parts FP of the first light-transmitting area PAT1 and the second light-transmitting area PAT2 are complementary.
  • the functional part FP of the first light-transmitting area PAT1 and the second light-transmitting area PAT2 in this article is complementary refers to: the first light-transmitting area PAT1 and the second light-transmitting area PAT2
  • the position of the functional part FP is different, so that the unblocked areas in the two first light-transmitting areas PAT1 and the second light-transmitting area PAT2 can be superimposed into a complete unblocked light-transmitting area, with the lower part facing the first light-transmitting area
  • the specific scheme of the complementary arrangement of the functional parts FP in the area PAT1 and the second light-transmitting area PAT2 is explained in detail:
  • the light-transmitting area PAT can be divided into multiple sub-areas SPA.
  • the size of the sub-area SPA is limited to the size of the range occupied by the functional part FP.
  • the functional part FP The size of the area enclosed by the boundary in the second direction Way.
  • Each sub-area SPA within the light-transmitting area PAT may be provided with a functional part FP, or may not be provided with a functional part FP.
  • the area without a functional part FP is a transmission area, and the transmittance of the transmission area is higher than that of the sub-area with a functional part FP. area, which can be used to increase light transmittance.
  • each light-transmitting area PAT is the shape of its orthogonal projection on the substrate SU.
  • the shape is circular, etc. Of course, it can also be a triangle, rectangle, trapezoid or other polygon. In addition, it can also be an ellipse, Waisted round shape and other shapes.
  • the first light-transmitting area PAT1 and the second light-transmitting area PAT2 may be distributed along the second direction X, and of course, may also be distributed along the first direction Y.
  • the distance between the first light-transmitting area PAT1 and the second light-transmitting area PAT2 can be smaller than either of the first light-transmitting area PAT1 or the second light-transmitting area PAT2 in the second direction X or the second direction
  • the width in one direction Y for example, if the shape of the light-transmitting area PAT is circular, then the distance between the first light-transmitting area PAT1 and the second light-transmitting area PAT2 is smaller than their diameters.
  • the light-transmitting area PAT can be distributed in a relatively concentrated manner, so that the photosensitive elements can take pictures at the same time.
  • the light-transmitting area PAT can be set at any position in the display area AA.
  • the display area AA is rectangular, and the first light-transmitting area PAT1 and the second light-transmitting area PAT2 can be set at the same corner position of the display area AA, or they can Set them at two corners respectively, or they can also be set at other locations such as the center of the AA area.
  • the boundary of the light-transmitting area PAT may partially coincide with the boundary of the display area AA, or may be at a certain distance from the boundary of the display area AA.
  • Each light-transmitting area PAT has the same shape and size, and the sub-areas SPA of each light-transmitting area PAT are arranged in the same way.
  • each light-transmitting area PAT includes n rows and m columns of sub-areas SPA, n and m are Positive integer.
  • each sub-area SPA has a unique position in the light-transmitting area PAT where it is located, which can be regarded as having a unique coordinate in the light-transmitting area PAT where it is located, and as long as one coordinate can be used in Find the unique sub-area SPA in each light-transmitting area PAT.
  • the light-transmitting area PAT only some sub-areas SPA are provided with functional parts FP, and one functional part FP is provided in one sub-area SPA.
  • the first light-transmitting area PAT1 and the second light-transmitting area PAT2 only one of the two sub-areas SPA with the same position is provided with the functional part FP, so that the area blocked by the functional part FP in the first light-transmitting area PAT1 is in the first light-transmitting area PAT1.
  • the second light-transmitting area PAT2 is not blocked by the functional part FP, and the area in the second light-transmitting area PAT2 that is blocked by the functional part FP is not blocked by the functional part FP in the first light-transmitting area PAT1.
  • the photosensitive element can collect different images of the same scene, and the scene can be obtained by synthesizing the two images.
  • the image can be regarded as being jointly formed by the sub-area SPA of the first light-transmitting area PAT1 and the second light-transmitting area PAT2 where the functional part FP is provided.
  • both the first light-transmitting area PAT1 and the second light-transmitting area PAT2 can be divided into a plurality of sub-area groups BPA extending along the second direction X, and each The sub-area groups BPA may be distributed along the first direction Y; each sub-area group BPA includes a plurality of sub-areas SPA distributed along the second direction X, that is, the sub-area group BPA may extend along the second direction X.
  • the number of functional parts FP in the light-transmitting area PAT can be increased.
  • the size of the functional parts FP in the light-transmitting area PAT can be compressed, for example:
  • the maximum distance of the boundary of the sub-area SPA in the first direction Y is its length; the maximum distance of the boundary of the sub-area SPA in the second direction X is its width.
  • the maximum distance of the boundary of the sub-area group BPA in the first direction Y is its width; the maximum distance of the boundary of the sub-area group BPA in the second direction X is its length.
  • the maximum distance of the boundary of the first pixel unit PU in the first direction Y is its length; the maximum distance of the boundary of the first pixel unit PU in the second direction X is its width.
  • the maximum distance of the boundary of the functional part FP in the first direction Y is its length; the maximum distance of the boundary of the functional part FP in the second direction X is its width.
  • the length of at least part of the sub-area SPA in the light-transmitting area PAT may be smaller than the length of at least part of the first pixel unit PU1 in the display area AA, so that the light is transparent
  • the length of the functional part FP in the area PAT is smaller than the length of the first pixel unit PU1 in the display area AA, so that the functional part FP is compressed in the first direction Y so that the light-transmitting area PAT can be disposed in the first direction Y. More features in FP.
  • the length of at least part of the sub-area SPA in the first light-transmitting area PAT1 and the second light-transmitting area PAT2 is not greater than 50% of the length of at least part of the first pixel unit PU1 in the display area AA.
  • the length of FP in the second direction so that the first light-transmitting area PAT1 and the second light-transmitting area PAT2 are provided with more functional parts FP in the second direction X.
  • the width of the sub-area SPA in the first light-transmitting area PAT1 and the second light-transmitting area PAT2 is no greater than 50% of the width of at least part of the first pixel unit PU1 in the display area AA.
  • the functional portions FP of the first and second light-transmitting areas PAT1 and PAT2 may be compressed along the second direction X and the first direction Y at the same time, so as to increase the first and second light-transmitting areas PAT1 and PAT2.
  • the number of functional parts FP in the two light-transmitting areas PAT2 increases the resolution of the first light-transmitting area PAT1 and the second light-transmitting area PAT2.
  • Different sub-area groups BPA in the same light-transmitting area PAT may have the same width, but may have different lengths. For example, if the shapes of the first light-transmitting area PAT1 and the second light-transmitting area PAT2 are circular, then at least one sub-area group BPA Extending along the radial direction of the light-transmitting area PAT and passing through the dots of the light-transmitting area PAT, other sub-area groups BPA are symmetrically distributed along the first direction Y on both sides of the sub-area group BPA passing through the dots.
  • the j-th sub-area SPA in the i-th sub-area group BPA in the first light-transmitting area PAT1 and the second light-transmitting area PAT2 only has one functional part FP, and does not set the functional part FP at the same time, i ⁇ n, j ⁇ m , m and n are both positive integers.
  • the functional part FP is provided in the second light-transmitting area PAT2
  • only at least part of the sub-areas SPA of the 2k-th sub-area group BPA is provided with the functional part FP
  • k is a positive integer. That is to say, the functional part FP in the first light-transmitting area PAT1 is located in the odd-numbered sub-area group BPA, while the functional part FP in the second light-transmitting area PAT2 is located in the even-numbered sub-area group BPA, thereby achieving the aforementioned complementation.
  • the functional part FP in each sub-area group BPA can also be used to set the functional part FP in each sub-area group BPA, as long as complementarity can be achieved.
  • the functional part FP in the first light-transmitting area PAT1 is located above it. half, and the functional part FP in the second light-transmitting area PAT2 is located in the lower half.
  • the width of a sub-area group BPA can be equal to the width of the sub-area SPA in the display area AA.
  • the length is the same, and the length of the sub-area SPA is not greater than 50% of the length of at least part of the first pixel unit PU1, for example, 45%, 50%, etc., so that the sub-areas SPA in the same sub-area group BPA are arranged along the first direction Y into at least two lines.
  • each row of at least two rows of sub-areas SPA in the same sub-area group BPA can be defined as a sub-sub-area group BPA, and the same sub-area group BPA includes at least the first sub-area Region group BPA1 and second sub-region group BPA2.
  • Each functional unit FP in one sub-area group BPA is located in the sub-area SPA of the first sub-sub-area group BPA1 and the second sub-sub-area group BPA2, and the first sub-sub-area group BPA1 and the second sub-sub-area group BPA2
  • Each sub-area SPA has a functional department FP.
  • the functional parts FP provided in the same row of sub-areas SPA may be arranged adjacently in sequence along the second direction X, that is, two adjacent functional parts FP are provided in two adjacent sub-areas SPA.
  • one sub-area group BPA provided with the functional part FP there are multiple rows of sub-areas SPA, and at least a part of two adjacent sub-areas SPA in the first direction Y are provided with the functional part FP, for example, the first sub-area
  • the number of functional parts FP of the sub-area group BPA1 and the second sub-sub-area group BPA2 is equal, and they are arranged in one-to-one correspondence in the first direction Y.
  • the difference from the second embodiment is that the functional parts FP provided in the same row of sub-areas SPA can be arranged at intervals, but the first light-transmitting area PAT1 and the third light-transmitting area SPA
  • the distribution pattern of functional parts FP in a row of sub-areas SPA with the same position in the two light-transmitting areas PAT2 should still be complementary.
  • the functional portions FP of the first sub-sub-area group BPA1 and the functional portions FP of the second sub-sub-area group BPA2 are alternately distributed.
  • the functional part FP is provided in the 2k-1th sub-area SPA; in the second light-transmitting area PAT2, the functional part FP is provided In a row of sub-areas SPA, the functional part FP is located in the 2k-th sub-area SPA, and k is a positive integer.
  • each sub-area group BPA in the first light-transmitting area PAT1 and the second light-transmitting area PAT2 is provided with a functional part FP, and within the same sub-area group BPA
  • Each row of sub-areas SPA is provided with functional portions FP at intervals, so that the light-transmissive sub-areas SPA and the functional portions FP can be evenly distributed, which is beneficial to improving the uniformity of the brightness of the light-transmitting area.
  • a sub-area group BPA provided with the functional part FP at most one of the two adjacent sub-areas SPA in the first direction Y is provided with the functional part FP. That is to say, the functional part FP is provided with the functional part FP in the second direction Y. Both are spaced apart in the X and first directions Y. There is at least one sub-area SPA without a functional part FP between two adjacent functional parts FP in the second direction X.
  • the functional part FP is located in the 2k-1th sub-area SPA; in a row of sub-areas SPA provided with the functional part FP in the second light-transmitting area PAT2, the functional part FP is located in the 2k-th sub-area SPA.
  • Sub-area SPA, k is a positive integer. Between two adjacent functional parts FP in the first direction Y, there is at least one sub-area SPA without a functional part FP.
  • the width of a sub-area group BPA can be made the same as the length of at least part of the first pixel unit PU1, and the length of the sub-area SPA is not greater than 50% of the length of at least part of the first pixel unit PU1. %, for example, 45%, 50%, etc., so that the sub-areas SPA within the same sub-area group BPA are arranged in at least two rows along the first direction Y.
  • each sub-area group BPA in any light-transmitting area PAT is provided with a functional part FP, and each row of sub-areas SPA in the same sub-area group BPA is arranged at intervals.
  • the width of a sub-area group BPA can be made the same as the length of at least part of the first pixel unit PU1, and the length of the sub-area SPA is not greater than 50% of the length of at least part of the first pixel unit PU1, for example , 45%, 50%, etc., so that the sub-areas SPA in the same sub-area group BPA are arranged in at least two rows along the first direction Y.
  • the functional part FP In one sub-area group BPA provided with the functional part FP, at least a part of two sub-areas SPA adjacent in the first direction Y are provided with the functional part FP. That is to say, the functional parts FP are distributed at intervals in the second direction .
  • the sixth embodiment of the present disclosure only at least part of the sub-area SPA of the 2k-1th sub-area group BPA in the first light-transmitting area PAT1 is provided with the functional part FP; the second light-transmitting area PAT2 Only at least part of the sub-areas SPA of the 2kth sub-area group BPA are provided with the functional part FP; k is a positive integer.
  • the arrangement of the functional parts FP in this embodiment is similar to that in the second embodiment. The difference is that in this embodiment, the sub-areas SPA in the same sub-area group BPA are arranged in at least two rows along the first direction Y, and are arranged in the same row.
  • Two adjacent rows of sub-areas SPA are staggered in the first direction Y, that is, two adjacent rows of sub-areas SPA partially overlap in the second direction X. That is to say, all sub-areas SPA in the same sub-area group BPA are Distributed along the second direction X, and two rows of sub-areas SPA are alternately distributed along the second direction Dislocation in direction X.
  • the two rows of sub-areas SPA are arranged in the above-mentioned offset manner.
  • the shape of the sub-area SPA can be a parallelogram, with two sides extending along the second direction X and two sides forming a specified angle with the first direction Y, and the specified angle is an acute angle.
  • the boundary of the functional part FP provided in the sub-area SPA of this embodiment can be a parallelogram.
  • the sub-area SPA of this embodiment can be regarded as an inclined arrangement, which is beneficial to improving space utilization. Rate.
  • the light-transmitting area PAT can be divided into a plurality of sub-area groups BPA extending along the first direction Y, and each sub-area group BPA is distributed along the second direction X. ;
  • Each sub-area group BPA includes a plurality of sub-areas SPA distributed along the first direction Y.
  • the sub-area group BPA in this embodiment may refer to the sub-area group BPA in the second embodiment above.
  • the main difference lies in the different extension directions of the sub-area group BPA.
  • only at least part of the sub-area SPA of the 2k-1th sub-area group BPA in the first light-transmitting area PAT1 can be provided with the functional portion FP, and the second light-transmitting area PAT1 can be provided with the functional portion FP.
  • the light area PAT2 only at least part of the sub-areas SPA of the 2kth sub-area group BPA is provided with the functional part FP, and k is a positive integer. That is, only the odd-numbered sub-area groups BPA in the first light-transmitting area PAT1 are provided with the functional part FP, and the functional part FP is provided with the functional part FP.
  • the two light-transmitting areas PAT2 only the even-numbered sub-area group BPA is provided with the functional part FP.
  • the width of the sub-area SPA in the first light-transmitting area PAT1 and the second light-transmitting area PAT2 is no greater than 50% of the width of at least part of the first pixel unit PU1.
  • the sub-areas SPA in the same sub-area group BPA are arranged in at least two columns along the second direction , increase the number of functional parts FP in order to increase the resolution of the light-transmitting area.
  • Two adjacent columns of functional portions FP of the same sub-area group BPA can be arranged in one-to-one correspondence along the second direction X; or, the functional portions FP are spaced apart in both the second direction
  • the above-mentioned first to seventh embodiments are mainly descriptions of the first light-transmitting area PAT1 and the second light-transmitting area PAT2.
  • the display panel PNL may have three or more Multiple light-transmitting areas PAT are sufficient as long as there are at least two complementary light-transmitting areas PAT.
  • Other light-transmitting areas PAT can adopt the same arrangement of functional parts FP as the two complementary light-transmitting areas PAT. Of course, they can also Different, no special restrictions are made here.
  • the functional part FP of the second pixel unit PU2 can be the second pixel unit PU2 itself, and the second pixel units PU2 are located in the first light-transmitting areas PAT1 and The second light-transmitting area PAT2.
  • a portion of the signal line SL connected to the pixel circuit PC of the first pixel unit PU1 in the display area AA can pass through at least one light-transmitting area PAT along the second direction X, and a signal line SL is connected to at least one row of first pixels in the display area AA
  • the pixel circuit PC of the unit PU1 is connected to the pixel circuit PC of at least one row of second pixel units PU2 in the light-transmitting area PAT, so that the one row of second pixel units PU2 in the light-transmitting area PAT can be driven through the same signal line SL.
  • the first light-transmitting area PAT1 and the second light-transmitting area PAT2 may be distributed along the second direction
  • the light area PAT1 is connected to the pixel circuit PC of at least one row of second pixel units PU2 in the second light-transmitting area PAT2.
  • each row sub-area SPA is provided with a functional part FP, such as the first to fourth embodiments above.
  • Part of the signal line SL can be bent along the first direction Y, so that each row of pixel circuits PC in the light-transmitting area PAT can be connected to a signal line SL.
  • at least one signal line SL can have a bending portion bent along the first direction Y.
  • the bending portion is located in the light-transmitting area and connected to at least one row of pixel circuits PC in the light-transmitting area.
  • the bent portion may include a connecting portion extending in the second direction X and an extending portion connected to both ends of the connecting portion, and the extending portion may extend along the first direction Y.
  • the above-mentioned signal line SL may include a scan line GL, a first reset control line REL1, a second reset control line REL2, a first reset signal line INL1 and a second reset signal line INL2.
  • a scan line GL a first reset control line REL1, a second reset control line REL2, a first reset signal line INL1 and a second reset signal line INL2.
  • any signal line SL extending along the second direction Pixel Circuit PC.
  • the light-emitting element LD of the second pixel unit PU2 is located in the light-transmitting area PAT, and the pixel circuit PC of the second pixel unit PU2 and the first pixel unit PU1 are both located in the display area AA.
  • the functional part FP is the light-emitting element LD of the second pixel unit PU2.
  • the pixel circuit PC and the light-emitting element LD of the second pixel unit PU2 can be connected through the conductive line IL.
  • the conductive line IL extends from the display area AA to the light-transmitting area PAT.
  • the second pixel unit PU2 can also include a connecting pixel.
  • the material of the conductive line IL can be a transparent conductive material such as ITO (indium tin oxide).
  • the conductive lines IL can be provided between the light-emitting element LD and the pixel circuit PC, and the conductive lines IL of different second pixel units PU2 can be located on different layers. That is to say, multiple layers of transparent conductive material can be provided adjacent to each other. The two layers are separated by insulating material. Each layer can be provided with conductive lines IL. Of course, each conductive line IL can also be located on the same layer.
  • a part of the pixel circuit PC of the first pixel unit PU1 may be compressed, so that the width of a part of the pixel circuit PC of the first pixel unit PU1 is smaller than that of another part of the first pixel unit PU1.
  • the width of the pixel circuit PC of the pixel unit PU1 thereby leaves space for the pixel circuit PC of the second pixel unit PU2.
  • all the pixel circuits PC of the first pixel unit PU1 can also be compressed along the second direction X; as long as the pixel circuit PC of the second pixel unit PU2 can be accommodated in the display area AA.
  • part of the pixel circuit PC of the second pixel unit PU2 may also be disposed in the peripheral area WA of the display panel PNL.
  • FIG. 13 only shows part of the second pixel unit PU2 and its conductive lines IL.
  • the routing method of the conductive lines IL of other second pixel units PU2 can refer to the method of FIG. 13 , but this is not used as a reference. is limited, as long as the pixel circuit PC located in the display area AA and the light-emitting element LD located in the light-transmitting area PAT can be connected.
  • the embodiments of the present disclosure also provide a terminal device.
  • the terminal device may be a mobile phone, a tablet computer, a television, or other electronic devices with an under-screen camera function, which will not be listed here.
  • the terminal device of the present disclosure may include a display panel PNL and a photosensitive element CAU, where:
  • the display panel PNL can be the display panel PNL in any of the above embodiments.
  • the display panel PNL can be the display panel PNL in any of the above embodiments.
  • the photosensitive element CAU may be disposed on a side of the substrate SU away from the pixel unit PU, and the orthographic projection of the photosensitive element CAU on the substrate SU and the orthographic projection of the light-transmitting area PAT on the substrate SU at least partially overlap.
  • photosensitive elements CAU which may include a first photosensitive element CAU1 and a second photosensitive element CAU2.
  • the first photosensitive element CAU1 and the first light-transmitting area PAT1 are arranged in one-to-one correspondence.
  • the orthographic projection of the first light-transmitting area PAT1 on the substrate SU at least partially overlaps with the orthographic projection of the first light-transmitting area PAT1 on the substrate SU, so that images can be collected through the first light-transmitting area PAT1.
  • the orthographic projection of the second light-transmitting area PAT2 on the substrate SU at least partially overlaps with the orthographic projection of the second light-transmitting area PAT2 on the substrate SU, so that images can be collected through the second light-transmitting area PAT2.
  • the external light can shine through the light-transmitting area PAT onto the corresponding first photosensitive element CAU1 and the second photosensitive element CAU2.
  • the first photosensitive element CAU1 and the second photosensitive element CAU2 can transmit light according to the corresponding light-transmitting area PAT. Generate electrical signals to create images.
  • the first photosensitive element CAU1 and the second photosensitive element CAU2 may include image sensors, such as CCD image sensors or CMOS image sensors.
  • the first photosensitive element CAU1 and the second photosensitive element CAU2 can independently collect images, that is to say, the electrical signals generated by the first photosensitive element CAU1 and the second photosensitive element CAU2 can be used to form a complete image.
  • the terminal device may also include a processor, which can interact with the first photosensitive element CAU1 and the second photosensitive element CAU1 of the photosensitive element CAU.
  • the photosensitive element CAU2 is connected to process the information collected by the first photosensitive element CAU1 and the second photosensitive element CAU2 to synthesize an image.
  • the processor can be a processor on the motherboard of the mobile phone, or it can be a specially set independent processor that can perform image processing.
  • the arrangements of the functional parts FP of the first light-transmitting area PAT1 and the second light-transmitting area PAT2 are complementary, and accordingly, the light-transmitting sub-areas SPA of the two are complementary, so that the first photosensitive element CAU1 and the second light-transmitting area PAT2 are arranged in a complementary manner.
  • the blocked areas of the two photosensitive elements CAU2 are complementary, and a clear image can be synthesized through the electrical signals obtained from the respective unblocked areas of the first photosensitive element CAU1 and the second photosensitive element CAU2.
  • the electrical signals of the blocked and unblocked areas of the first photosensitive element CAU1 and the second photosensitive element CAU2 can be judged by the intensity of the electric signal (for example, voltage or current).
  • the specific method of image synthesis is not particularly limited here.
  • the photosensitive element CAU can generate an image based on visible light, or can also generate an image based on infrared rays or other light.
  • the photosensitive element CAU can include an infrared sensor, which forms an infrared image by receiving infrared rays from the outside, so as to identify fingerprint patterns and iris based on the infrared image. Patterns, facial patterns, etc.
  • the photosensitive element CAU may further include an illuminance sensor, which may measure illuminance around the terminal device, and the display panel PNL may adjust the brightness of the display panel based on the measured illuminance.
  • the photosensitive element CAU can also use LiDAR (Light Detection and Ranging, LIDAR) sensors.
  • the photosensitive element CAU can be used not only in cameras that capture images, but also in small lamps that output light to measure distances by outputting and detecting light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及终端设备,涉及显示技术领域。显示面板具有多个透光区和显示区;透光区包括第一透光区和第二透光区;显示面板包括衬底和像素单元;像素单元包括多个第一像素单元和多个第二像素单元,第一像素单元位于显示区,任一第二像素单元至少部分位于透光区,且第二像素单元位于透光区的部分为功能部;第一透光区和第二透光区均设有多个功能部;第一透光区和第二透光区均包括沿第一方向排布的n个子区域组,每个子区域组包括m个沿第二方向排布的子区域,第一方向和第二方向交叉;第一透光区和第二透光区中的第i个子区域组中的第j个子区域仅一个设置功能部。可保证显示效果的同时,提高屏下摄像的成像效果。

Description

显示面板及终端设备 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示面板及终端设备。
背景技术
对于手机、平板电脑等具有摄像头的终端设备的屏幕而言,屏幕对应于摄像头的区域通常需要开孔,从而无法发光,这不利于提高屏占比。目前,虽然存在屏下摄像技术,使得摄像头所在区域也可显示图像,避免开孔,并可正常拍摄,但屏下摄像区域的显示效果和拍摄后的成像质量均有待提高。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种显示面板及终端设备。
根据本公开的一个方面,提供一种显示面板,所述显示面板具有多个透光区和位于所述多个透光区外的显示区;所述透光区包括第一透光区和第二透光区;
所述显示面板包括:
衬底;
多个像素单元,设于所述衬底一侧,且包括多个第一像素单元和多个第二像素单元,所述第一像素单元位于所述显示区,任一所述第二像素单元至少部分位于所述透光区,且所述第二像素单元位于所述透光区的部分为功能部;所述第一透光区和所述第二透光区均设有多个所述功能部;
其中,所述第一透光区和所述第二透光区均包括沿第一方向排布的n个子区域组,每个子区域组包括m个沿第二方向排布的子区域,所述 第一方向和所述第二方向交叉;
所述第一透光区和所述第二透光区中的第i个子区域组中的第j个子区域仅一个设置所述功能部,i≤n,j≤m,m和n均为正整数。
在本公开的一种示例性实施方式中,所述第一透光区内的功能部位于奇数个子区域组,所述第二透光区的功能部位于偶数个子区域组。
在本公开的一种示例性实施方式中,至少一个所述子区域组包括沿所述第一方向排布的第一亚子区域组和第二亚子区域组,所述第一亚子区域组和所述第二亚子区域组均包括沿所述第二方向排布的多个所述子区域;
一所述子区域组内的各所述功能部设于所述第一亚子区域组和所述第二亚子区域组的子区域内,且所述第一亚子区域组和所述第二亚子区域组的子区域均设有所述功能部。
在本公开的一种示例性实施方式中,每个所述子区域组包括沿所述第一方向排布的第一亚子区域组和第二亚子区域组,所述第一亚子区域组和所述第二亚子区域组均包括沿所述第二方向排布的多个所述子区域;
一所述子区域组内的各所述功能部设于所述第一亚子区域组和所述第二亚子区域组的子区域内,所述第一亚子区域组的功能部间隔分布,所述第二亚子区域组的功能部间隔分布。
在本公开的一种示例性实施方式中,在所述第二方向上,所述第一亚子区域组的功能部,与所述第二亚子区域组的功能部交替分布。
在本公开的一种示例性实施方式中,在所述第一方向上,所述第一亚子区域组的功能部,与所述第二亚子区域组的功能部一一对应设置。
在本公开的一种示例性实施方式中,所述第一透光区内的第一亚子区域组和第二亚子区域组的功能部设于奇数个子区域,所述第二透光区内的第一亚子区域组和第二亚子区域组的功能部设于偶数个子区域。
在本公开的一种示例性实施方式中,设置有所述功能部的所述子区域组的子区域沿所述第二方向排列成至少两行,且相邻两行所述子区域在所述第一方向上错位排布。
在本公开的一种示例性实施方式中,所述子区域的形状为平行四边形,且具有两个沿所述第一方向延伸的侧边和两个与所述第二方向呈指 定夹角的侧边,所述指定夹角为锐角。
在本公开的一种示例性实施方式中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电路用于驱动所述发光元件发光;所述第一像素单元的像素电路和发光元件均位于所述显示区内,所述第二像素单元的像素电路和发光元件均位于所述透光区内;所述第二像素单元为所述功能部。
在本公开的一种示例性实施方式中,在所述第二方向上,所述透光区内的至少部分子区域的长度小于所述显示区内的所述像素单元的长度。
在本公开的一种示例性实施方式中,在所述第一方向上,所述透光区内的至少部分子区域的宽度小于所述显示区内的像素单元的长度。
在本公开的一种示例性实施方式中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电路用于驱动所述发光元件发光;
所述第二像素单元的像素电路位于所述显示区,所述第二像素单元的发光元件为所述功能部,且所述功能部通过导电线与所述像素电路连接。
在本公开的一种示例性实施方式中,一部分所述第一像素单元的像素电路在所述第二方向上的宽度小于另一部分所述第一像素单元的像素电路在所述第二方向上的宽度。
在本公开的一种示例性实施方式中,所述导电线设于所述像素电路和所述发光元件之间,且由所述透光区延伸至所述显示区。
在本公开的一种示例性实施方式中,所述第一透光区的第i个子区域组中的第j个子区域设置所述功能部,所述第二透光区的第i个子区域组中的第j个子区域为透射区。
根据本公开的一个方面,提供一种显示面板,所述显示面板具有多个透光区和位于所述透光区外的显示区;所述透光区包括第一透光区和第二透光区;
所述显示面板包括:
衬底;
多个像素单元,设于所述衬底一侧,且包括多个第一像素单元和多 个第二像素单元,所述第一像素单元位于所述显示区,任一所述第二像素单元至少部分位于所述透光区,且所述第二像素单元位于所述透光区的部分为功能部;所述第一透光区和所述第二透光区均设有多个所述功能部;
其中,所述第一透光区和所述第二透光区均包括多个子区域,所述第一透光区的子区域和所述第二透光区内的子区域均以相同的方式排布;所述透光区内的功能部位于部分所述子区域中;
在所述第一透光区和所述第二透光区中,排布位置相同的两所述子区域仅有一个设有所述功能部。
在本公开的一种示例性实施方式中,在第一方向上,所述透光区内的至少部分子区域的长度小于所述显示区内的所述第一像素单元的长度。
在本公开的一种示例性实施方式中,所述透光区包括多个沿第二方向延伸的子区域组,且各所述子区域组沿所述第一方向分布;每个所述子区域组均包括沿所述第二方向分布的多个所述子区域。
在本公开的一种示例性实施方式中,在所述第一方向上,所述子区域组的宽度与所述显示区内的所述第一像素单元的长度相同,且所述子区域的长度不大于所述显示区内的所述第一像素单元的长度的50%;
同一所述子区域组内的所述子区域沿所述第一方向排列成至少两行。
在本公开的一种示例性实施方式中,所述第一透光区中仅第2n-1个所述子区域组的至少部分子区域设有所述功能部;
所述第二透光区中仅第2n个所述子区域组的至少部分子区域设有所述功能部;
n为正整数。
在本公开的一种示例性实施方式中,在设有所述功能部的一个所述子区域组中,至少一部分在所述第一方向上相邻的两所述子区域设有所述功能部。
在本公开的一种示例性实施方式中,任一所述透光区内的各所述子区域组均设有所述功能部,且同一所述子区域组内的各行子区域均间隔设置有所述功能部。
在本公开的一种示例性实施方式中,在设有所述功能部的一个所述 子区域组中,在所述第一方向上相邻的两所述子区域中至多一个设有所述功能部。
在本公开的一种示例性实施方式中,在所述第一透光区的设有所述功能部的一行所述子区域中,所述功能部设于第2n-1个所述子区域;
在所述第二透光区的设有所述功能部的一行所述子区域中,所述功能部设于第2n个所述子区域。
在本公开的一种示例性实施方式中,所述第一透光区中仅第2n-1个所述子区域组的至少部分子区域设有所述功能部;所述第二透光区中仅第2n个所述子区域组的至少部分子区域设有所述功能部;n为正整数;
同一所述子区域组内的所述子区域沿所述第一方向排列成至少两行,且相邻两行所述子区域在所述第二方向上部分交叠。
在本公开的一种示例性实施方式中,所述子区域的形状为平行四边形,且具有两个沿所述第二方向延伸的侧边和两个与所述第一方向呈指定夹角的侧边,所述指定夹角为锐角。
在本公开的一种示例性实施方式中,在第二方向上,所述透光区内的至少部分子区域的宽度小于所述显示区内的所述第一像素单元的长度。
在本公开的一种示例性实施方式中,所述透光区包括多个沿所述第一方向延伸的子区域组,且各所述子区域组沿所述第二方向分布;每个所述子区域组均包括沿所述第一方向分布的多个所述子区域;
所述第一透光区中仅第2n-1个所述子区域组的至少部分子区域设有所述功能部;
所述第二透光区中仅第2n个所述子区域组的至少部分子区域设有所述功能部;
n为正整数。
在本公开的一种示例性实施方式中,在所述第二方向上,所述透光区内的子区域的宽度不大于所述显示区内的所述第一像素单元的宽度的50%,且同一所述子区域组内的所述子区域沿所述第二方向排列成至少两列。
在本公开的一种示例性实施方式中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电路用于驱动所述发 光元件发光;所述第一像素单元的像素电路和发光元件均位于所述显示区内,所述第二像素单元的像素电路和发光元件均位于所述透光区内;所述第二像素单元为所述功能部。
在本公开的一种示例性实施方式中,所述显示面板还包括沿第二方向延伸且穿过所述透光区的信号线,一所述信号线与所述显示区内的至少一行所述像素电路和所述透光区内的至少一行所述像素电路连接。
在本公开的一种示例性实施方式中,至少一所述信号线具有沿所述第一方向弯折的弯折部,所述弯折部位于所述透光区内,且与所述透光区内的至少一行所述像素电路连接。
在本公开的一种示例性实施方式中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电路用于驱动所述发光元件发光;
所述第二像素单元的像素电路位于所述显示区,所述第二像素单元的发光元件为所述功能部,且所述功能部通过导电线与所述像素电路连接。
根据本公开的一个方面,提供一种终端设备,包括:
上述任意一项所述的显示面板;
感光元件,位于所述衬底远离所述多个像素单元的一侧,所述感光元件在所述衬底的正投影与所述透光区在所述衬底的正投影至少部分交叠。
在本公开的一种示例性实施方式中,所述感光元件包括第一感光元件和第二感光元件,所述第一感光元件在所述衬底的正投影与所述第一透光区在所述衬底的正投影至少部分交叠;
所述第二感光元件在所述衬底的正投影与所述第二透光区在所述衬底的正投影至少部分交叠。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合 本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开终端设备一实施方式的示意图。
图2为本公开显示面板一实施方式的局部截面示意图。
图3为本公开显示面板一实施方式的俯视图。
图4为本公开显示面板一实施方式中像素电路的原理图。
图5为本公开显示面板的第一实施方式的局部示意图。
图6为本公开显示面板的第二实施方式的局部示意图。
图7为本公开显示面板的第三实施方式的局部示意图。
图8为本公开显示面板的第四实施方式的局部示意图。
图9为本公开显示面板的第五实施方式的局部示意图。
图10为本公开显示面板的第六实施方式的局部示意图。
图11为本公开显示面板的第七实施方式的局部示意图。
图12为本公开显示面板的像素电路和信号线的示意图。
图13为本公开显示面板一实施方式中的导电线的示意图。
图14为本公开显示面板一实施方式中像素电路的俯视示意图。
图15-图18为图14的像素电路的部分膜层的俯视示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表 示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
本文中的第一方向Y和第二方向X仅为两个相互交叉的方向,在本公开的附图中,第一方向Y可以是纵向,第二方向X可以是横向,但并不限于此,若显示面板发生旋转,则第一方向Y和第二方向X的实际朝向可能发生变化。
如图2和图3所示,本公开实施方式的显示面板PNL至少可划分为可发光的显示区AA和显示区AA外的不发光的***区WA。同时,显示面板PNL可包括衬底SU和像素单元,其中:
衬底SU可为聚酰亚胺等柔性透明材质,也可以是玻璃等硬质透明材质,且衬底SU可以是多层或单层结构。
各像素单元可阵列分布在衬底SU一侧,且每个像素单元可独立发光,以显示图像。每个像素单元可包括像素电路和发光元件LD,发光元件LD设于像素电路远离衬底SU的一侧,且与像素电路连接,可通过像素电路控制发光元件LD发光。LD可以是OLED(有机发光二极管)、QLED(量子点发光二极管)、Micro LED或Mini LED等,其可以包括第一电极ANO、第二电极CAT和位于第一电极ANO和第二电极CAT间的发光层EL。
如图2和图3所示,各像素电路PC可位于一电路层CL,电路层CL可与衬底SU形成驱动背板BP。电路层CL还可包括位于***区WA内的***电路。***电路一方面可通过像素电路与发光元件LD连接,通过控制像素电路可控制通过发光元件LD的电流,从而控制发光元件LD的亮度。
下面对像素电路和发光器件进行详细说明:
像素电路可包括多个晶体管,还可以包括电容,其可以是3T1C、7T1C等像素电路,nTmC表示一个像素电路包括n个晶体管(用字母“T”表示)和m个电容(用字母“C”表示)。以7T1C的像素电路为例,其可包括7个晶体管和1个电容,即第一复位晶体管T1、补偿晶体管T2、 驱动晶体管T3、写入晶体管T4、第一发光控制晶体管T5、第二发光控制晶体管T6、第二复位晶体管T7以及存储电容Cst。
如图4所示,第一复位晶体管T1的第一极与第一复位信号线VIL1连接,用于接收复位信号Vinit1,第二极与驱动晶体管T3的栅极和存储电容Cst的第一极板连接。补偿晶体管T2的第一极与驱动晶体管T3的第二极连接,第二极与驱动晶体管T3的栅极连接。写入晶体管T4的第一极与数据线DL连接,用于接收数据信号Data,第二极与驱动晶体管T3的第一极连接。第一发光控制晶体管T5的第一极和存储电容Cst的第二极板与电源线VDL连接,用于接收第一电源信号VDD,第二极与驱动晶体管T3的第一极连接。第二发光控制晶体管T6的第一极与驱动晶体管T3的第二极连接,第二极与发光元件的第一电极连接。第二复位晶体管T7的第一极与第二复位信号线VIL2连接,用于接收第二复位信号Vinit2,第二极与第二发光控制晶体管T6的第二极连接。发光元件的第二电极可接收第二电源信号VSS。
同时,为了控制各晶体管的导通和关断,第一复位晶体管T1的栅极与第一复位控制线REL1连接,用于输入第一复位控制信号RE1,第二复位晶体管T7的栅极与第二复位控制线REL2连接,用于输入第二复位控制信号RE2。补偿晶体管T2和写入晶体管T4的栅极与扫描线GL连接,用于输入扫描信号GA,第一发光控制晶体管T5和第二发光控制晶体管T6的栅极与发光控制线EML连接,用于输入发光控制信号EM。该像素电路可以用于响应于所连接的各信号端提供的信号,驱动所连接的发光元件发光。
前述的第一复位信号线VIL1、第二复位信号线VIL2、数据线DL、电源线VDL以及第一复位控制线REL1、第二复位控制线REL2、扫描线GL和发光控制线EML均可称作信号线SL,且信号线SL可以沿第二方向X或第一方向Y延伸,例如,数据线DL和电源线VDL沿第一方向Y延伸,其它信号线SL可沿第二方向X延伸。
此外,按照晶体管的特性区分可以将晶体管分为N型和P型晶体管。本公开实施例以晶体管均采用P型晶体管为例进行说明。基于本公开对该实现方式的描述和教导,本领域普通技术人员在无需做出创造性劳动前 提下,能够容易想到将本公开实施例的像素电路结构中至少部分晶体管采用N型晶体管,即采用N型晶体管或N型晶体管和P型晶体管组合的实现方式,因此,这些实现方式也是在本公开实施例的保护范围内的。
下面以像素电路的各晶体管均为P型低温多晶硅晶体管为例,对其工作原理进行说明:
在复位阶段:第一复位控制信号RE1为低电平信号,第一复位晶体管T1导通,驱动晶体管T3的栅极和存储电容Cst的第一极板被写入复位信号Vinit1,对N1节点实现初始化,消除上一帧图像的数据的影响。
在写入阶段:通过扫描信号GA为低电平信号,可使写入晶体管T4和补偿晶体管T2导通,向驱动晶体管T3的栅极和存储电容Cst的第一极板Cst1写入数据信号DA,即经过N3节点和N2节点向N1节点写入数据信号DA,直至电位达到Vdata+vth。其中,Vdata为数据信号Da的电压,Vth为驱动晶体管T3的阈值电压。写入晶体管T4和补偿晶体管T2的扫描信号GA可为同一信号。同时,第二复位控制信号RE2为低电平信号,使第二复位晶体管T7导通,发光元件LD的第一电极和第二发光控制晶体管T6的第二极被写入第二复位信号Vinit2,对N4节点进行复位,实现初始化,进一步消除上一帧图像的数据的影响。
在发光阶段:发光控制信号EM为低电平信号,第一发光控制晶体管T5和第二发光控制晶体管T6导通,驱动晶体管T3在存储电容Cst存储的电压Vdata+Vth和第一电源信号VDD的作用下导通,此时,发光元件LD发光。
在一些实施方式中,如图2以及图14-图18所示,像素电路的晶体管和电容均位于电路层CL,以像素电路的晶体管的为顶栅型低温多晶硅晶体管为例,电路层CL可包括沿远离衬底SU的方向依次堆叠的半导体层SEL、第一栅绝缘层GI1、第一栅极层GAT1、第二栅绝缘层GI2、第二栅极层GAT2、介电层ILD、第一源漏层SD1、钝化层PVX和第一平坦层PLN1。其中,
如图15所示,半导体层SEL可包括各晶体管(T1-T7)的沟道以及连接至少部分沟道的掺杂区,通过掺杂区可实现部分晶体管的连接。
如图16所示,第一栅极层GAT1可包括存储电容Cst的第一极板 Cst1和部分信号线SL(扫描线GL、第一复位控制线REL1、第二复位控制线REL2和发光控制线EML),且这些信号线SL与半导体层SEL交叠的区域为各晶体管的栅极。举例而言,本行像素电路的第一复位晶体管T1的栅极T11、上一行像素电路的第二复位晶体管T7的栅极和本行像素电路的第一复位控制线REL1可以为一体结构。补偿晶体管T2的栅极T21、写入晶体管T4的栅极T41和扫描线GL可以为一体结构。驱动晶体管T3的栅极T31和存储电容Cst的第一极板Cst1可以为一体结构。第一发光控制晶体管T5的栅极T51、第二发光控制晶体管T6的栅极T61和发光控制线EML可以为一体结构。本行像素电路的第二复位晶体管T7的栅极T71、下一行像素电路的第一复位晶体管T1的栅极以及本行像素电路的第二复位控制线REL2可以为一体结构。
如图17所示,第二栅极层GAT2可包括存储电容Cst的第二极板Cst2和部分信号线SL(第一复位信号线VIL1和第二复位信号线VIL2),第二栅极层GAT2还可包括屏蔽电极BK。存储电容Cst的第二极板Cst2具有一个镂空区域。驱动晶体管T3的栅极T31在衬底SU上的正投影可以覆盖该镂空区域在衬底SU上的正投影。镂空区域在衬底SU上的正投影可以为多边形。
如图18所示,介电层ILD开设有多个过孔,例如包括第一过孔V1至第十五过孔V15。其中,第一过孔V1至第八过孔V8内的介电层ILD、第二栅绝缘层GI2和第一栅极层GAT1被去掉,暴露出半导体层SEL的表面。第九过孔V9内的介电层ILD和第二栅绝缘层GI2被去掉,暴露出第一栅极层GAT1的表面。第十过孔V10至第十五过孔V15内的介电层ILD被去掉,暴露出第二栅极层GAT2的表面。
如图14所示,第一源漏层SD1可包括部分信号线SL(数据线DL和电源线VDL),还可包括多个连接电极(例如,第一连接电极CP1至第六连接电极CP6)。数据线DL可以通过第三过孔V3与写入晶体管T4的连接。电源线VDL可以通过第十二过孔V12与屏蔽电极BK连接,还可以通过第十三过孔V13与存储电容Cst的第二极板Cst2连接。屏蔽电极BK用于屏蔽数据电压跳变对关键节点的影响,避免数据电压跳变影响像素电路的关键节点的电位,提高显示效果。第一连接电极CP1可 以通过第一过孔V1与第一复位晶体管T1连接,还可以通过第十过孔V10与第一复位信号线INL1a连接。第二连接电极CP2可以通过第二过孔V2与补偿晶体管T2连接,还可以通过第九过孔V9与驱动晶体管T3的栅极T31连接。第三连接电极CP3可以通过第五过孔V5与第二发光控制晶体管T6连接。第四连接电极CP4可以通过第六过孔V6与第二复位晶体管T7连接,还可以通过第十五过孔V15与第二复位信号线INL2连接。第五连接电极CP5可以通过第七过孔V7与上一行像素电路的第二复位晶体管T7连接,还可以通过第十一过孔V11与第二复位信号线INL2连接。第六连接电极CP6可以通过第八过孔V8与下一行像素电路的第一复位晶体管T1连接,还可以通过第十四过孔V14与第一复位信号线INL1连接。
此外,在本公开的一些实施方式中,显示面板PNL的电路层CL还可包括第二源漏层和第二平坦层,第二源漏层可设于第一平坦层PLN1远离衬底SU的表面,第二平坦层可覆盖第二源漏层。数据线DAL和电源线VDL可位于第二源漏层。发光元件LD可设于第二平坦层远离衬底SU的一侧。
上述的像素电路的仅为一种实施方式,本公开的像素电路还可采用其它结构,在此不做特殊限定。
如图2所示,发光元件LD可设于电路层CL远离衬底SU的一侧,且与像素电路连接。发光元件LD的数量可以有多个,且阵列分布。每个发光元件LD可连接一个像素电路PC,形成像素像素单元PU。该发光元件LD可以是OLED(有机发光二极管)、QLED(量子点发光二极管)、Micro LED或Mini LED等,其可以包括第一电极ANO、第二电极CAT和位于第一电极ANO和第二电极CAT间的发光层EL。
以OLED为例,第一电极ANO可设于电路层CL远离衬底SU的表面,发光层EL可包括沿远离驱动背板BP的方向层叠的空穴注入层、空穴传输层、发光材料层、电子传输层和电子注入层。各个发光元件LD可共用第二电极CAT,也就是说,第二电极CAT可以是连续的整层结构,且第二电极CAT可延伸至***区,并可接收第二电源信号VSS,第一电 极ANO则阵列分布,确保各发光元件LD可以独立发光。此外,为了限定发光元件LD的发光范围,防止串扰,可在设置在第一电极ANO的表面设置像素定义层PDL,其可设有露出各第一电极ANO的开口,发光层EL在开口内与第一电极ANO层叠。
各发光元件LD可至少共用发光材料层,使得各发光元件LD的发光颜色相同,此时,为了实现彩色显示,可在发光元件LD远离衬底SU的一侧设置彩膜层,通过彩膜层中与各发光元件LD对应的滤光部,实现彩色显示。当然,各个发光元件LD的发光材料层也可以使独立的,使得发光元件LD可以直接发出单色光,且不同发光元件LD的发光颜色可以不同,从而实现彩色显示。
此外,如图2所示,显示面板PNL还可包括覆盖各发光元件LD的封装层TFE,封装层TFE可包括第一无机层TFE1和第二无机层TFE2以及位于第一无机层TFE1和第二无机层TFE2之间的有机层IJP。第一无机层TFE1可覆盖发光元件LD。进一步的,显示面板PNL还可以包括设置在封装层TFE远离衬底SU的一侧的触控层、透明盖板等其它膜层,在此不再详述。
如图1所示,为了实现屏下摄像,可在显示面板PNL中设置透光区PAT,透光区PAT可全部位于显示区AA内,也可部分位于显示区AA内。一部分像素单元PU全部位于显示区AA内,而对于另一部分像素单元PU中的任意一个而言,其至少一部分可设于透光区PAT内,且像素单元PU位于透光区内的部分可定义为功能部FP,该功能部FP可以是像素单元PU的像素电路PC,也可以是发光元件LD。当然,功能部FP也可以是像素单元PU的全部。为此,可将像素单元PU至少分为第一像素单元PU1和第二像素单元PU2,第一像素单元PU1位于显示区AA内,而每个第二像素单元PU2的至少一部分位于透光区,第二像素单元PU2位于透光区PAT内的部分即为功能部FP。
透光区PAT的大小可与感光元件CAU相匹配,且透光率高于显示区AA,使得透光区PAT既可以发光,以显示图像,也可以透光,以供感光元件拍摄图像。进一步的,透光区PAT可设置多个,例如,透光区 PAT至少可包括第一透光区PAT1和第二透光区PAT2,第一透光区PAT1和第二透光区PAT2均设有第二像素单元PU2的功能部FP。感光元件CAU可通过多个透光区PAT拍摄图像。如图1和图3所示,通过使透光区PAT内的像素单元PU的密度小于显示区AA内的像素单元PU的密度,可减少像素单元对光线的遮挡,提高透光区PAT的透光率,实现屏下摄像;或者,也可以通过对像素单元PU的尺寸进行压缩,减小其对光线的遮挡,从而提高透光区PAT透光率;或者,还可以同时减小像素单元PU的密度和尺寸,提高透光区的透光率。
为了提高屏下摄像的成像效果,可使第一透光区PAT1和第二透光区PAT2内的像素电路PC的排布方式互补,使得感光元件CAU可以采集到至少两幅互补的图像,通过对互补的图像进行合成,可以得到更加清晰的图像,从而可以在保证显示效果的前提下,提高屏下摄像的成像效果。当然,也可以第一透光区PAT1和第二透光区PAT2内的发光元件LD的排布方式互补。也就是说,第一透光区PAT1和第二透光区PAT2的功能部FP互补。
由于像素单元PU对光线有一定的遮挡作用,本文中的第一透光区PAT1和第二透光区PAT2的功能部FP互补是指:第一透光区PAT1和第二透光区PAT2的功能部FP的位置不同,使得两个第一透光区PAT1和第二透光区PAT2内未被遮挡的区域可以叠加成一个完整的不被遮挡的透光区,下面对第一透光区PAT1和第二透光区PAT2内的功能部FP的排布方式互补的具体方案进行详细说明:
为了便于描述功能部FP的分布方式,可对透光区PAT进行划分,在其中划分出多个子区域SPA,子区域SPA的范围的大小以功能部FP占据的范围的大小为限,功能部FP在第二方向X上的边界和在第一方向Y上的边界围成的区域的大小即为一个子区域SPA的大小,因而可用子区域SPA描述透光区PAT内的功能部FP的排布方式。透光区PAT内的每个子区域SPA均可以设置功能部FP,也可以不设置功能部FP,不设置功能部FP的区域为透射区,透射区的透光率高于设置功能部FP的子区域,从而可用于提高透光率。
各个透光区PAT的形状为其在衬底SU上的正投影的形状,该形状均为圆形等,当然,也可以是三角形、矩形、梯形或其它多边形,此外,还可以是椭圆形、腰圆形等其它形状。第一透光区PAT1和第二透光区PAT2可沿第二方向X分布,当然,也可以沿第一方向Y分布。同时,为了便于感光元件CAU采集图像,可使第一透光区PAT1和第二透光区PAT2的间距小于第一透光区PAT1和第二透光区PAT2任一个在第二方向X或第一方向Y上的宽度,例如,透光区PAT的形状为圆形,则第一透光区PAT1和第二透光区PAT2的间距小于二者的直径。从而可使透光区PAT相对集中的分布,以便感光元件同时进行拍摄。
此外,透光区PAT可以设置在显示区AA的任意位置,例如,显示区AA为矩形,第一透光区PAT1和第二透光区PAT2可设置在显示区AA的同一拐角位置,也可以分别设置在两个拐角位置,或者,还可以设置在AA区的中心等其它位置。进一步的,透光区PAT的边界可与显示区AA的边界部分重合,也可以与显示区AA的边界具有一定的距离。
各透光区PAT的形状和大小相同,且各透光区PAT的子区域SPA均以相同的方式排布,例如,各个透光区PAT均包括n行和m列子区域SPA,n和m为正整数。同时,每个子区域SPA在其所处的透光区PAT中具有唯一的位置,可视为每个子区域SPA在其所处的透光区PAT中具有唯一的坐标,而只要通过一个坐标可以在每个透光区PAT中找到唯一的子区域SPA。
在透光区PAT中,仅部分子区域SPA设有功能部FP,且一个子区域SPA内设置一个功能部FP。在第一透光区PAT1和第二透光区PAT2中,位置相同的两子区域SPA仅有一个设有功能部FP,使得第一透光区PAT1内的被功能部FP遮挡的区域在第二透光区PAT2中不被功能部FP遮挡,第二透光区PAT2内的被功能部FP遮挡的区域在第一透光区PAT1中不被功能部FP遮挡。基于此,由于第一透光区PAT1和第二透光区PAT2的功能部FP互补排布,使得感光元件可以对同一场景采集到不同的图像,通过对两个图像的合成可以得到该场景的图像,可视为利用第一透光区PAT1和第二透光区PAT2的设置功能部FP的子区域SPA共同成像。
如图5所示,在本公开的第一实施方式中,可将第一透光区PAT1 和第二透光区PAT2均划分为多个沿第二方向X延伸的子区域组BPA,且各子区域组BPA可沿第一方向Y分布;每个子区域组BPA均包括沿第二方向X分布的多个子区域SPA,即子区域组BPA可沿第二方向X延伸。
进一步的,为了提高透光区的分辨率,可增加透光区PAT的功能部FP的数量,为此,可对透光区PAT内的功能部FP的尺寸进行压缩,举例而言:
为了描述描述,可进行如下定义:
子区域SPA的边界在第一方向Y上的最大距离为其长度;子区域SPA的边界在第二方向X上的最大距离为其宽度。
子区域组BPA的边界在第一方向Y上的最大距离为其宽度;子区域组BPA的边界在第二方向X上的最大距离为其长度。
第一像素单元PU的边界在第一方向Y上的最大距离为其长度;第一像素单元PU的边界在第二方向X上的最大距离为其宽度。
功能部FP的边界在第一方向Y上的最大距离为其长度;功能部FP的边界在第二方向X上的最大距离为其宽度。
在本公开的一些实施方式中,在第一方向Y上,可使透光区PAT内的至少部分子区域SPA的长度小于显示区AA内的至少部分第一像素单元PU1的长度,使得透光区PAT内的功能部FP的长度小于显示区AA内的第一像素单元PU1的长度,从而在第一方向Y上对功能部FP进行压缩,以便使透光区PAT在第一方向Y可以设置更多的功能部FP。例如,第一透光区PAT1和第二透光区PAT2内的至少部分子区域SPA的长度不大于显示区AA内的至少部分第一像素单元PU1的长度的50%。
在本公开的另一些实施方式中,在第二方向X上,可使透光区PAT内的子区域SPA的宽度不大于显示区AA内的至少部分第一像素单元PU1的宽度,使得功能部FP在第二方向X上的长度小于显示区AA内的第一像素单元PU1的宽度,从而对第一透光区PAT1和第二透光区PAT2的功能部FP在第二方向X上进行压缩,以便使第一透光区PAT1和第二透光区PAT2在第二方向X上设置更多的功能部FP。例如,第一透光区PAT1和第二透光区PAT2内的子区域SPA的宽度不大于显示区 AA内的至少部分第一像素单元PU1的宽度的50%。
在本公开的其它实施方式中,可以同时沿第二方向X和第一方向Y压缩第一透光区PAT1和第二透光区PAT2的功能部FP,以便增加第一透光区PAT1和第二透光区PAT2的功能部FP的数量,从而增大第一透光区PAT1和第二透光区PAT2的分辨率。
下面以多个实施方式分别描述透光区PAT的子区域SPA的分布方式:
同一透光区PAT内的不同子区域组BPA的宽度可以相同,但长度可以不同,例如,第一透光区PAT1和第二透光区PAT2的形状为圆形,则至少一个子区域组BPA沿透光区PAT的径向延伸,且通过透光区PAT的圆点,其它子区域组BPA沿第一方向Y对称分布于该通过圆点的子区域组BPA的两侧。
第一透光区PAT1和第二透光区PAT2中的第i个子区域组BPA中的第j个子区域SPA仅一个设置功能部FP,而不同时设置功能部FP,i≤n,j≤m,m和n均为正整数。
进一步的,第一透光区PAT1中仅第2k-1个子区域组BPA的至少部分子区域SPA设有功能部FP。第二透光区PAT2中仅第2k个子区域组BPA的至少部分子区域SPA设有功能部FP,k为正整数。也就是说,第一透光区PAT1中的功能部FP位于奇数个子区域组BPA,而第二透光区PAT2的功能部FP位于偶数个子区域组BPA,从而实现前文提到的互补。
当然,也可以采用其它的方式在各子区域组BPA内设置功能部FP,只要能实现互补即可,例如,在第一方向Y上,第一透光区PAT1内的功能部FP位于其上半部分,而第二透光区PAT2内的功能部FP位于其下半部分。
如图6所示,在本公开的第二实施方式中,基于上述的第一实施方式,在第一方向Y上,可使一子区域组BPA的宽度与显示区AA内的子区域SPA的长度相同,且子区域SPA的长度不大于至少部分第一像素单元PU1的长度的50%,例如,45%、50%等,使得同一子区域组BPA内的子区域SPA沿第一方向Y排列成至少两行。
为了便于描述,可将同一子区域组BPA内的子区域SPA中的至少两行子区域SPA中的每一行定义为一亚子区域组BPA,且同一子区域组BPA内至少包括第一亚子区域组BPA1和第二亚子区域组BPA2。
一子区域组BPA内的各功能部FP设于第一亚子区域组BPA1和第二亚子区域组BPA2的子区域SPA内,且第一亚子区域组BPA1和第二亚子区域组BPA2的子区域SPA均设有功能部FP。设于同一行子区域SPA的功能部FP可以沿第二方向X依次相邻设置,即相邻两功能部FP设置在相邻的两子区域SPA。同时,在设有功能部FP的一个子区域组BPA中,具有多行子区域SPA,且至少一部分在第一方向Y上相邻的两子区域SPA设有功能部FP,例如,第一亚子区域组BPA1和第二亚子区域组BPA2的功能部FP的数量相等,且在第一方向Y上一一对应设置。
如图7所示,在本公开的第三实施方式中,与第二实施方式的不同点在于:设于同一行子区域SPA的功能部FP可以间隔设置,但第一透光区PAT1和第二透光区PAT2中位置相同的一行子区域SPA中功能部FP的分布方式仍应互补。例如,在同一子区域组BPA中,在第二方向X上,第一亚子区域组BPA1的功能部FP,与第二亚子区域组BPA2的功能部FP交替分布。进一步的,对于第一透光区PAT1和第二透光区PAT2中位置相同的两行子区域SPA,在第二方向X上,第一透光区PAT1的一行子区域SPA的奇数个子区域SPA设有功能部FP,第二透光区PAT2的一行子区域SPA的偶数个子区域SPA设有功能部FP。也就是说,在第一透光区PAT1的设有功能部FP的一行子区域SPA中,功能部FP设于第2k-1个子区域SPA;在第二透光区PAT2的设有功能部FP的一行子区域SPA中,功能部FP设于第2k个子区域SPA,k为正整数。
如图8所示,在本公开的第四实施方式中,第一透光区PAT1和第二透光区PAT2内的各子区域组BPA均设有功能部FP,且同一子区域组BPA内的各行子区域SPA均间隔设置有功能部FP,如此可以使可透光的子区域SPA和功能部FP均匀分散分布,有利于提高透光区的亮度的均一性。
进一步的,在设有功能部FP的一个子区域组BPA中,在第一方向Y上相邻的两子区域SPA中至多一个设有功能部FP,也就是说,功能部FP在第二方向X和第一方向Y上均间隔分布,在第二方向X上相邻的两功能部FP之间至少具有一个无功能部FP的子区域SPA,例如,在第一透光区PAT1的设有功能部FP的一行子区域SPA中,功能部FP设于第2k-1个子区域SPA;在第二透光区PAT2的设有功能部FP的一行子区域SPA中,功能部FP设于第2k个子区域SPA,k为正整数。而在第一方向Y上相邻的两功能部FP之间,至少具有一个无功能部FP的子区域SPA。
进一步的,在第一方向Y上,可使一子区域组BPA的宽度与至少部分第一像素单元PU1的长度相同,且子区域SPA的长度不大于至少部分第一像素单元PU1的长度的50%,例如,45%、50%等,使得同一子区域组BPA内的子区域SPA沿第一方向Y排列成至少两行。
如图9所示,在本公开的第五实施方式中,任意透光区PAT内的各子区域组BPA均设有功能部FP,且同一子区域组BPA内的各行子区域SPA均间隔设置有功能部FP。在第一方向Y上,可使一子区域组BPA的宽度与至少部分第一像素单元PU1的长度相同,且子区域SPA的长度不大于至少部分第一像素单元PU1的长度的50%,例如,45%、50%等,使得同一子区域组BPA内的子区域SPA沿第一方向Y排列成至少两行。
在设有功能部FP的一个子区域组BPA中,至少一部分在第一方向Y上相邻的两子区域SPA设有功能部FP。也就是说,功能部FP在第二方向X上间隔分布,但在第一方向Y上,同一子区域组BPA内的两功能部FP可以相邻设置,即二者之间无其它子区域SPA。
如图10所示,在本公开的第六实施方式中,第一透光区PAT1中仅第2k-1个子区域组BPA的至少部分子区域SPA设有功能部FP;第二透光区PAT2中仅第2k个子区域组BPA的至少部分子区域SPA设有功能部FP;k为正整数。本实施方式的功能部FP的排布方式与第二实施方式类似,不同点在于,本实施方式中的同一子区域组BPA内的子区域 SPA沿第一方向Y排列成至少两行,且相邻两行子区域SPA在第一方向Y上错位排布,即相邻两行子区域SPA在第二方向X上部分交叠,也就是说,同一子区域组BPA内的全部子区域SPA均沿第二方向X分布,且两行子区域SPA沿第二方向X交替分布,位于同一行的相邻两子区域SPA之间存在位于另一行的一子区域SPA的部分区域,从而实现第二方向X上的错位。
进一步的,在第二方向X上,可使一子区域组BPA的宽度与至少部分第一像素单元PU1的长度相同,且子区域SPA的长度大于至少部分第一像素单元PU1的长度的50%,但小于至少部分第一像素单元PU1的长度,例如,75%、80%等,以便以上述错位的方式设置两行子区域SPA。
进一步的,可使子区域SPA的形状为平行四边形,且具有两个沿第二方向X延伸的侧边和两个与第一方向Y呈指定夹角的侧边,指定夹角为锐角。相应的,设于本实施方式的子区域SPA的功能部FP的边界可以是平行四边形,相较于矩形的子区域SPA,本实施方式的子区域SPA可视为倾斜设置,有利于提高空间利用率。
如图11所示,在本公开的第七实施方式中,可将透光区PAT划分为多个沿第一方向Y延伸的子区域组BPA,且各子区域组BPA沿第二方向X分布;每个子区域组BPA均包括沿第一方向Y分布的多个子区域SPA。本实施方式的子区域组BPA可参考上文的第二实施方式中的子区域组BPA,主要区别在于子区域组BPA的延伸方向不同。
为了在本实施方式中实现功能部FP的互补排布,可使第一透光区PAT1中仅第2k-1个子区域组BPA的至少部分子区域SPA设有功能部FP,并使第二透光区PAT2中仅第2k个子区域组BPA的至少部分子区域SPA设有功能部FP,k为正整数,即第一透光区PAT1中仅奇数个子区域组BPA设有功能部FP,而第二透光区PAT2中仅偶数个子区域组BPA设有功能部FP。
进一步的,第一透光区PAT1和第二透光区PAT2内的子区域SPA的宽度不大于至少部分第一像素单元PU1的宽度的50%。同一子区域组BPA内的子区域SPA沿第二方向X排列成至少两列,一列子区域SPA 中的各子区域SPA可沿第一方向Y分布,以便在不减小透光率的前提下,增加功能部FP的数量,以便增大透光区的分辨率。同一子区域组BPA的相邻两列功能部FP可沿第二方向X一一对应设置;或者,功能部FP在第二方向X和第一方向Y上均间隔分布,在第二方向X上相邻的两像功能部FP之间至少具有一个无功能部FP的子区域SPA,在第一方向Y上相邻的两功能部FP之间至少具有一个无功能部FP的子区域SPA。
需要说明的是,上述的第一至第七实施方式主要是针对第一透光区PAT1和第二透光区PAT2的说明,在本公开的一些实施方式中,显示面板PNL可以有三个或者更多个透光区PAT,只要至少有两个互补的透光区PAT即可,其它透光区PAT可以与两个互补的透光区PAT采用相同的功能部FP排布方式,当然,也可以不同,在此不做特殊限定。
如图12所示,基于上文中提到的显示面板PNL,可使第二像素单元PU2的功能部FP即为第二像素单元PU2自身,第二像素单元PU2均位于第一透光区PAT1和第二透光区PAT2。连接显示区AA的第一像素单元PU1的像素电路PC的部分信号线SL可沿第二方向X穿过至少一个透光区PAT,且一信号线SL与显示区AA内的至少一行第一像素单元PU1的像素电路PC和透光区PAT内的至少一行第二像素单元PU2的像素电路PC连接,从而可通过同一信号线SL驱动透光区PAT内的一行第二像素单元PU2。例如,第一透光区PAT1和第二透光区PAT2可沿第二方向X分布,部分信号线SL可依次穿过第一透光区PAT1和第二透光区PAT2,且与第一透光区PAT1和第二透光区PAT2中的至少一行第二像素单元PU2的像素电路PC连接。
如图12所示,在本公开的一些实施方式中,若存在沿第二方向X延伸的子区域组BPA,且一子区域组BPA包括至少两行子区域SPA,且同一子区域组BPA的各行子区域SPA均设有功能部FP,例如上文中的第一至第四实施方式。可使部分信号线SL沿第一方向Y弯折,以便使透光区PAT的每一行像素电路PC均能连接一信号线SL。具体来说,可使至少一信号线SL具有沿第一方向Y弯折的弯折部,弯折部位于透光区内,且与透光区内的至少一行像素电路PC连接。弯折部可包括第二 方向X延伸的连接部和连接于连接部两端的延伸部,延伸部可沿第一方向Y延伸。
以上文中的7T1C像素电路PC为例,上述的信号线SL可以包括扫描线GL、第一复位控制线REL1、第二复位控制线REL2、第一复位信号线INL1和第二复位信号线INL2中的一个或多个,在一些实施方式中,连接透光区PAT的任意一行第二像素单元PU2的像素电路PC的沿第二方向X延伸的任意信号线SL均同时连接一行位于第一像素单元PU1的像素电路PC。
如图13所示,在本公开的一些实施方式中,第二像素单元PU2的发光元件LD位于透光区PAT,第二像素单元PU2的像素电路PC和第一像素单元PU1均位于显示区AA,也就是说,功能部FP为第二像素单元PU2的发光元件LD。第二像素单元PU2的像素电路PC和发光元件LD可通过导电线IL连接,导电线IL从显示区AA延伸至透光区PAT内,也就是说,第二像素单元PU2还可包括一连接像素电路PC和发光元件LD的导电线IL。同时,为了避免导电线IL对透光率造成较大影响,导电线IL的材料可为ITO(氧化铟锡)等透明导电材料。
此外,导电线IL可设于发光元件LD和像素电路PC之间,且不同的第二像素单元PU2的导电线IL可以位于不同层,也就是说,可以设置多层透明导电材料层,相邻两层用绝缘材料分隔。每一层均可设有导电线IL。当然,各导电线IL也可以位于同一层。
为了在显示区AA内容纳第二像素单元PU2的像素电路PC,可对一部分第一像素单元PU1的像素电路PC进行压缩,使一部分第一像素单元PU1的像素电路PC的宽度小于另一部分第一像素单元PU1的像素电路PC的宽度,从而为第二像素单元PU2的像素电路PC留出空间。
当然,也可以对所有第一像素单元PU1的像素电路PC均沿第二方向X进行压缩;只要能使显示区AA内容纳第二像素单元PU2的像素电路PC即可。此外,也可以将部分第二像素单元PU2的像素电路PC设置与显示面板PNL的***区WA内。
需要说明的是,图13中仅示出了部分第二像素单元PU2及其导电 线IL,其它第二像素单元PU2的导电线IL的走线方式可参考图13的方式,但不以此为限,只要能将位于显示区AA的像素电路PC和位于透光区PAT的发光元件LD连接起来即可。
本公开实施方式还提供一种终端设备,该终端设备可以是手机、平板电脑、电视或其它具有屏下摄像功能的电子设备,在此不再一一列举。如图1所示,本公开的终端设备可包括显示面板PNL和感光元件CAU,其中:
显示面板PNL以是上述任意实施方式的显示面板PNL,其结构可参考上文中的驱动背板BP和显示面板PNL的实施方式,在此不再详述。
感光元件CAU可设于衬底SU远离像素单元PU的一侧,感光元件CAU在衬底SU的正投影与透光区PAT在衬底SU的正投影至少部分交叠。
在本公开的一些实施方式中,感光元件CAU的数量为多个,其可包括第一感光元件CAU1和第二感光元件CAU2,第一感光元件CAU1与第一透光区PAT1一一对应设置,举例而言,第一透光区PAT1在衬底SU的正投影与第一透光区PAT1在衬底SU的正投影至少部分交叠,从而可透过第一透光区PAT1采集图像。第二透光区PAT2在衬底SU的正投影与第二透光区PAT2在衬底SU的正投影至少部分交叠,从而可透过第二透光区PAT2采集图像。
外界的光线可透过透光区PAT照射到对应的第一感光元件CAU1和第二感光元件CAU2上,第一感光元件CAU1和第二感光元件CAU2可根据对应的透光区PAT透过的光线产生电信号,以便生成图像。第一感光元件CAU1和第二感光元件CAU2可包括图像传感器,例如CCD图像传感器或CMOS图像传感器等。
在此不做特殊限定。第一感光元件CAU1和第二感光元件CAU2可独立采集图像,也就是说,第一感光元件CAU1和第二感光元件CAU2产生的电信号均可以用于形成一副完整的图像。
此外,为了对感光元件CAU从多个透光区PAT拍摄的图像进行合成,最终得到更加清晰的图像,终端设备还可包括处理器,其可与感光 元件CAU的第一感光元件CAU1和第二感光元件CAU2连接,可对各第一感光元件CAU1和第二感光元件CAU2采集到的信息进行处理,合成一个图像。以终端设备为手机为例,该处理器可以是手机主板上的处理器,也可以是专门设置的独立的可以进行图像处理的处理器。
举例而言,第一透光区PAT1和第二透光区PAT2的功能部FP的排布方式互补,相应的,二者的可透光的子区域SPA互补,使得第一感光元件CAU1和第二感光元件CAU2被遮挡的区域互补,通过第一感光元件CAU1和第二感光元件CAU2各自的未被遮挡的区域获取的电信号,可合成出清晰的图像。第一感光元件CAU1和第二感光元件CAU2的遮挡和未遮挡区域的电信号可通过电信号的强度(例如电压或电流)来判断。图像合成的具体方式在此不做特殊限定。
感光元件CAU可以基于可见光来生成图像,还可基于红外线或其它光线来生成图像,例如,感光元件CAU可包括红外线传感器,通过接收外界的红外线形成红外线图像,以便于根据红外线图像识别指纹图案、虹膜图案、面部图案等。或者,感光元件CAU还可以包括照度传感器,其可以测量终端设备周围的照度,并且显示面板PNL可以基于所测量的照度来调节显示面板的亮度。此外,感光元件CAU还可以采用激光雷达(Light Detection and Ranging,LIDAR)传感器等。
感光元件CAU不仅可以用于拍摄图像的相机,还可用于通过输出并检测光来测量距离、用于输出光的小型灯。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (36)

  1. 一种显示面板,其中,所述显示面板具有多个透光区和位于所述多个透光区外的显示区;所述透光区包括第一透光区和第二透光区;
    所述显示面板包括:
    衬底;
    多个像素单元,设于所述衬底一侧,且包括多个第一像素单元和多个第二像素单元,所述第一像素单元位于所述显示区,任一所述第二像素单元至少部分位于所述透光区,且所述第二像素单元位于所述透光区的部分为功能部;所述第一透光区和所述第二透光区均设有多个所述功能部;
    其中,所述第一透光区和所述第二透光区均包括沿第一方向排布的n个子区域组,每个子区域组包括m个沿第二方向排布的子区域,所述第一方向和所述第二方向交叉;
    所述第一透光区和所述第二透光区中的第i个子区域组中的第j个子区域仅一个设置所述功能部,i≤n,j≤m,m和n均为正整数。
  2. 根据权利要求1所述的显示面板,其中,所述第一透光区内的功能部位于奇数个子区域组,所述第二透光区的功能部位于偶数个子区域组。
  3. 根据权利要求1所述的显示面板,其中,至少一个所述子区域组包括沿所述第一方向排布的第一亚子区域组和第二亚子区域组,所述第一亚子区域组和所述第二亚子区域组均包括沿所述第二方向排布的多个所述子区域;
    一所述子区域组内的各所述功能部设于所述第一亚子区域组和所述第二亚子区域组的子区域内,且所述第一亚子区域组和所述第二亚子区域组的子区域均设有所述功能部。
  4. 根据权利要求1所述的显示面板,其中,每个所述子区域组包括沿所述第一方向排布的第一亚子区域组和第二亚子区域组,所述第一亚子区域组和所述第二亚子区域组均包括沿所述第二方向排布的多个所述子区域;
    一所述子区域组内的各所述功能部设于所述第一亚子区域组和所述 第二亚子区域组的子区域内,所述第一亚子区域组的功能部间隔分布,所述第二亚子区域组的功能部间隔分布。
  5. 根据权利要求4所述的显示面板,其中,在所述第二方向上,所述第一亚子区域组的功能部,与所述第二亚子区域组的功能部交替分布。
  6. 根据权利要求4所述的显示面板,其中,在所述第一方向上,所述第一亚子区域组的功能部,与所述第二亚子区域组的功能部一一对应设置。
  7. 根据权利要求6所述的显示面板,其中,所述第一透光区内的第一亚子区域组和第二亚子区域组的功能部设于奇数个子区域,所述第二透光区内的第一亚子区域组和第二亚子区域组的功能部设于偶数个子区域。
  8. 根据权利要求1所述的显示面板,其中,设置有所述功能部的所述子区域组的子区域沿所述第二方向排列成至少两行,且相邻两行所述子区域在所述第一方向上错位排布。
  9. 根据权利要求8所述的显示面板,其中,所述子区域的形状为平行四边形,且具有两个沿所述第一方向延伸的侧边和两个与所述第二方向呈指定夹角的侧边,所述指定夹角为锐角。
  10. 根据权利要求1-9任一项所述的显示面板,其中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电路用于驱动所述发光元件发光;所述第一像素单元的像素电路和发光元件均位于所述显示区内,所述第二像素单元的像素电路和发光元件均位于所述透光区内;所述第二像素单元为所述功能部。
  11. 根据权利要求1-10任一项所述的显示面板,其中,在所述第二方向上,所述透光区内的至少部分子区域的长度小于所述显示区内的所述像素单元的长度。
  12. 根据权利要求1-11任一项所述的显示面板,其中,在所述第一方向上,所述透光区内的至少部分子区域的宽度小于所述显示区内的像素单元的长度。
  13. 根据权利要求1-9任一项所述的显示面板,其中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电 路用于驱动所述发光元件发光;
    所述第二像素单元的像素电路位于所述显示区,所述第二像素单元的发光元件为所述功能部,且所述功能部通过导电线与所述像素电路连接。
  14. 根据权利要求13所述的显示面板,其中,一部分所述第一像素单元的像素电路在所述第二方向上的宽度小于另一部分所述第一像素单元的像素电路在所述第二方向上的宽度。
  15. 根据权利要求13所述的显示面板,其中,所述导电线设于所述像素电路和所述发光元件之间,且由所述透光区延伸至所述显示区。
  16. 根据权利要求1-13任一项所述的显示面板,其中,所述第一透光区的第i个子区域组中的第j个子区域设置所述功能部,所述第二透光区的第i个子区域组中的第j个子区域为透射区。
  17. 一种显示面板,其中,所述显示面板具有多个透光区和位于所述透光区外的显示区;所述透光区包括第一透光区和第二透光区;
    所述显示面板包括:
    衬底;
    多个像素单元,设于所述衬底一侧,且包括多个第一像素单元和多个第二像素单元,所述第一像素单元位于所述显示区,任一所述第二像素单元至少部分位于所述透光区,且所述第二像素单元位于所述透光区的部分为功能部;所述第一透光区和所述第二透光区均设有多个所述功能部;
    其中,所述第一透光区和所述第二透光区均包括多个子区域,所述第一透光区的子区域和所述第二透光区内的子区域均以相同的方式排布;所述透光区内的功能部位于部分所述子区域中;
    在所述第一透光区和所述第二透光区中,排布位置相同的两所述子区域仅有一个设有所述功能部。
  18. 根据权利要求17所述的显示面板,其中,在第一方向上,所述透光区内的至少部分子区域的长度小于所述显示区内的所述第一像素单元的长度。
  19. 根据权利要求18所述的显示面板,其中,所述透光区包括多个 沿第二方向延伸的子区域组,且各所述子区域组沿所述第一方向分布;每个所述子区域组均包括沿所述第二方向分布的多个所述子区域。
  20. 根据权利要求19所述的显示面板,其中,在所述第一方向上,所述子区域组的宽度与所述显示区内的所述第一像素单元的长度相同,且所述子区域的长度不大于所述显示区内的所述第一像素单元的长度的50%;
    同一所述子区域组内的所述子区域沿所述第一方向排列成至少两行。
  21. 根据权利要求20所述的显示面板,其中,所述第一透光区中仅第2n-1个所述子区域组的至少部分子区域设有所述功能部;
    所述第二透光区中仅第2n个所述子区域组的至少部分子区域设有所述功能部;
    n为正整数。
  22. 根据权利要求21所述的显示面板,其中,在设有所述功能部的一个所述子区域组中,至少一部分在所述第一方向上相邻的两所述子区域设有所述功能部。
  23. 根据权利要求20所述的显示面板,其中,任一所述透光区内的各所述子区域组均设有所述功能部,且同一所述子区域组内的各行子区域均间隔设置有所述功能部。
  24. 根据权利要求23所述的显示面板,其中,在设有所述功能部的一个所述子区域组中,在所述第一方向上相邻的两所述子区域中至多一个设有所述功能部。
  25. 根据权利要求23所述的显示面板,其中,在所述第一透光区的设有所述功能部的一行所述子区域中,所述功能部设于第2n-1个所述子区域;
    在所述第二透光区的设有所述功能部的一行所述子区域中,所述功能部设于第2n个所述子区域。
  26. 根据权利要求19所述的显示面板,其中,所述第一透光区中仅第2n-1个所述子区域组的至少部分子区域设有所述功能部;所述第二透光区中仅第2n个所述子区域组的至少部分子区域设有所述功能部;n为正整数;
    同一所述子区域组内的所述子区域沿所述第一方向排列成至少两行,且相邻两行所述子区域在所述第二方向上部分交叠。
  27. 根据权利要求26所述的显示面板,其中,所述子区域的形状为平行四边形,且具有两个沿所述第二方向延伸的侧边和两个与所述第一方向呈指定夹角的侧边,所述指定夹角为锐角。
  28. 根据权利要求18或19所述的显示面板,其中,在第二方向上,所述透光区内的至少部分子区域的宽度小于所述显示区内的所述第一像素单元的长度。
  29. 根据权利要求28所述的显示面板,其中,所述透光区包括多个沿所述第一方向延伸的子区域组,且各所述子区域组沿所述第二方向分布;每个所述子区域组均包括沿所述第一方向分布的多个所述子区域;
    所述第一透光区中仅第2n-1个所述子区域组的至少部分子区域设有所述功能部;
    所述第二透光区中仅第2n个所述子区域组的至少部分子区域设有所述功能部;
    n为正整数。
  30. 根据权利要求29所述的显示面板,其中,在所述第二方向上,所述透光区内的子区域的宽度不大于所述显示区内的所述第一像素单元的宽度的50%,且同一所述子区域组内的所述子区域沿所述第二方向排列成至少两列。
  31. 根据权利要求17-30任一项所述的显示面板,其中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电路用于驱动所述发光元件发光;所述第一像素单元的像素电路和发光元件均位于所述显示区内,所述第二像素单元的像素电路和发光元件均位于所述透光区内;所述第二像素单元为所述功能部。
  32. 根据权利要求31任一项所述的显示面板,其中,所述显示面板还包括沿第二方向延伸且穿过所述透光区的信号线,一所述信号线与所述显示区内的至少一行所述像素电路和所述透光区内的至少一行所述像素电路连接。
  33. 根据权利要求32所述的显示面板,其中,至少一所述信号线具 有沿所述第一方向弯折的弯折部,所述弯折部位于所述透光区内,且与所述透光区内的至少一行所述像素电路连接。
  34. 根据权利要求17-30任一项所述的显示面板,其中,所述像素单元包括沿远离所述衬底的方向设置的像素电路和发光元件,所述像素电路用于驱动所述发光元件发光;
    所述第二像素单元的像素电路位于所述显示区,所述第二像素单元的发光元件为所述功能部,且所述功能部通过导电线与所述像素电路连接。
  35. 一种终端设备,其中,包括:
    权利要求1-34任一项所述的显示面板;
    感光元件,位于所述衬底远离所述多个像素单元的一侧,所述感光元件在所述衬底的正投影与所述透光区在所述衬底的正投影至少部分交叠。
  36. 根据权利要求35所述的终端设备,其中,所述感光元件包括第一感光元件和第二感光元件,所述第一感光元件在所述衬底的正投影与所述第一透光区在所述衬底的正投影至少部分交叠;
    所述第二感光元件在所述衬底的正投影与所述第二透光区在所述衬底的正投影至少部分交叠。
PCT/CN2022/102397 2022-06-29 2022-06-29 显示面板及终端设备 WO2024000275A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/102397 WO2024000275A1 (zh) 2022-06-29 2022-06-29 显示面板及终端设备
CN202280002007.XA CN117651986A (zh) 2022-06-29 2022-06-29 显示面板及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102397 WO2024000275A1 (zh) 2022-06-29 2022-06-29 显示面板及终端设备

Publications (1)

Publication Number Publication Date
WO2024000275A1 true WO2024000275A1 (zh) 2024-01-04

Family

ID=89383439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102397 WO2024000275A1 (zh) 2022-06-29 2022-06-29 显示面板及终端设备

Country Status (2)

Country Link
CN (1) CN117651986A (zh)
WO (1) WO2024000275A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230797A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 表示装置、および電子機器
CN108428729A (zh) * 2018-05-14 2018-08-21 云谷(固安)科技有限公司 显示面板及其制备方法
WO2019062236A1 (zh) * 2017-09-30 2019-04-04 昆山国显光电有限公司 显示屏、显示屏驱动方法及其显示装置
CN110071161A (zh) * 2019-05-06 2019-07-30 武汉天马微电子有限公司 显示面板和显示装置
CN111028765A (zh) * 2020-01-03 2020-04-17 武汉天马微电子有限公司 显示面板和显示装置
US20200395418A1 (en) * 2019-01-28 2020-12-17 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, manufacturing method thereof, and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230797A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 表示装置、および電子機器
WO2019062236A1 (zh) * 2017-09-30 2019-04-04 昆山国显光电有限公司 显示屏、显示屏驱动方法及其显示装置
CN108428729A (zh) * 2018-05-14 2018-08-21 云谷(固安)科技有限公司 显示面板及其制备方法
US20200395418A1 (en) * 2019-01-28 2020-12-17 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, manufacturing method thereof, and display device
CN110071161A (zh) * 2019-05-06 2019-07-30 武汉天马微电子有限公司 显示面板和显示装置
CN111028765A (zh) * 2020-01-03 2020-04-17 武汉天马微电子有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN117651986A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
JP2023520267A (ja) 表示基板および表示装置
WO2021244251A1 (zh) 显示基板和显示装置
WO2022067967A1 (zh) 显示面板、显示装置及终端设备
US20230337492A1 (en) Array substrate, display panel and display device
WO2021258910A1 (zh) 显示基板及显示装置
WO2021238484A1 (zh) 显示基板及显示装置
US20240212597A1 (en) Display Substrate, Preparation Method Thereof, and Display Apparatus
TWI829365B (zh) 顯示裝置、電源供應裝置以及像素
WO2023109137A1 (zh) 显示面板及显示装置
KR20230147741A (ko) 표시 패널 및 표시 장치
CN115769296A (zh) 显示基板及其制备方法、显示装置
WO2022206053A1 (zh) 显示面板及显示装置
US20240194134A1 (en) Display Substrate and Preparation Method Thereof, Display Apparatus
WO2023143568A1 (zh) 显示面板、显示模组及显示装置
WO2024000275A1 (zh) 显示面板及终端设备
WO2022041243A1 (zh) 一种显示基板及其制作方法、显示装置
US20230354655A1 (en) Display Substrate, Preparation Method Thereof, and Display Apparatus
WO2022041244A1 (zh) 一种显示基板及其制作方法、显示装置
WO2021226785A1 (zh) 显示面板和显示装置
US20220328597A1 (en) Display substrate and display device
WO2024040389A9 (zh) 显示面板和显示装置
WO2024031531A1 (zh) 显示面板及显示装置
WO2023201537A1 (zh) 显示基板及显示装置
WO2022226996A1 (zh) 显示基板以及显示装置
WO2022227043A1 (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002007.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18245352

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948390

Country of ref document: EP

Kind code of ref document: A1