WO2023282055A1 - 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法 - Google Patents

光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法 Download PDF

Info

Publication number
WO2023282055A1
WO2023282055A1 PCT/JP2022/024795 JP2022024795W WO2023282055A1 WO 2023282055 A1 WO2023282055 A1 WO 2023282055A1 JP 2022024795 W JP2022024795 W JP 2022024795W WO 2023282055 A1 WO2023282055 A1 WO 2023282055A1
Authority
WO
WIPO (PCT)
Prior art keywords
backlight unit
sheet
prism
light source
diffusion sheet
Prior art date
Application number
PCT/JP2022/024795
Other languages
English (en)
French (fr)
Inventor
承亨 蔡
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Priority to KR1020247001014A priority Critical patent/KR20240019337A/ko
Priority to CN202280042731.5A priority patent/CN117561462A/zh
Publication of WO2023282055A1 publication Critical patent/WO2023282055A1/ja
Priority to US18/404,396 priority patent/US20240152005A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present disclosure relates to an optical sheet laminate, a backlight unit, a liquid crystal display device, information equipment, and a method for manufacturing a backlight unit.
  • liquid crystal display devices (hereinafter also referred to as liquid crystal displays) have been widely used as display devices for various information devices such as smartphones and tablet terminals.
  • a backlight for a liquid crystal display a direct type in which a light source is arranged on the back surface of a liquid crystal panel or an edge light type in which a light source is arranged in the vicinity of a side surface of the liquid crystal panel is mainly used.
  • an optical system such as a diffusion sheet or prism sheet is required to diffuse the light from the light source such as LED (Light Emitting Diode) and improve the uniformity of brightness and chromaticity over the entire screen.
  • a sheet is used (see, for example, Patent Document 1).
  • a diffusion sheet in which, for example, inverted pyramid-shaped recesses are arranged two-dimensionally is used, and a prism is usually placed on the upper side (display screen) of the diffusion sheet. Two prism sheets whose ridge lines are perpendicular to each other are arranged.
  • Portable information terminals such as laptops and tablets are required to have even lower power consumption.
  • the optical sheet incorporated in the backlight unit is also required to realize a high-brightness screen with low power consumption.
  • An object of the present disclosure is to realize a high-brightness screen even with low power in a backlight unit.
  • an optical sheet laminate according to the present disclosure is an optical sheet laminate to be incorporated in a backlight unit using a blue light source, wherein at least one surface has a plurality of substantially inverted quadrangular pyramid-shaped concave portions. and a pair of prism sheets whose prism stretching directions are orthogonal to each other, wherein the diffusion sheet is arranged as one sheet or a plurality of sheets are laminated, and the plurality of concave portions are arranged in a two-dimensional matrix form and the crossing angle between the arrangement direction and the prism stretching direction is 20° or more and 70° or less.
  • the angle difference between the concave (inverted quadrangular pyramid) arrangement direction of the diffusion sheet and the prism stretching direction of the prism sheet is Brightness is greater than when near 0° or near 90°. Therefore, it is possible to realize a high-brightness screen even with low power consumption in the backlight unit.
  • the luminance when the intersection angle is 25° or more and 35° or less, or 55° or more and 65° or less, the luminance can be further increased.
  • a backlight unit according to the present disclosure is a backlight unit that is incorporated in a liquid crystal display device and guides light emitted from a blue light source to a display screen side via a color conversion sheet, wherein the display screen and the blue light source are
  • the optical sheet laminate according to the present disclosure described above is provided between, and the diffusion sheet is disposed between the blue light source and the pair of prism sheets.
  • the backlight unit since it includes the above-described optical sheet laminate according to the present disclosure, it is possible to realize a high-brightness screen even with low power.
  • the blue light source may be arranged on a reflective sheet provided on the opposite side of the display screen when viewed from the diffusion sheet. In this way, the light is further diffused by multiple reflections between the diffuser sheet and the reflective sheet, thereby improving luminance uniformity.
  • a plurality of diffusion sheets may be laminated and arranged between the pair of prism sheets and the blue light source. With this configuration, the light coming straight from the blue light source is repeatedly diffused by the plurality of diffusion sheets, so that the luminance uniformity is improved.
  • the distance between the blue light source and the diffusion sheet may be 5 mm or less, preferably 2.5 mm or less, more preferably 1 mm or less. By doing so, the backlight unit can be miniaturized.
  • the color conversion sheet may be arranged between the blue light source and the diffusion sheet, or between the diffusion sheet and the pair of prism sheets. In this way, the light emitted from the blue light source can be converted into white light by the color conversion sheet.
  • a liquid crystal display device includes the aforementioned backlight unit according to the present disclosure and a liquid crystal display panel.
  • the backlight unit according to the present disclosure described above is provided, it is possible to realize a high-brightness screen even with low power.
  • the information equipment according to the present disclosure includes the above-described liquid crystal display device according to the present disclosure.
  • the liquid crystal display device according to the present disclosure since the liquid crystal display device according to the present disclosure is provided, it is possible to realize a high-brightness screen even with low power.
  • a method for manufacturing a backlight unit according to the present disclosure is a method for manufacturing a backlight unit that is incorporated in a liquid crystal display device and guides light emitted from a blue light source to a display screen side via a color conversion sheet, a step of arranging one diffusion sheet or a plurality of laminated diffusion sheets having a plurality of substantially inverted quadrangular pyramid-shaped concave portions on at least one surface thereof on the display screen side as viewed from the light source; arranging on the display screen side a pair of prism sheets whose prism stretching directions are orthogonal to each other, wherein the plurality of recesses are arranged in a two-dimensional matrix, and the intersection angle between the arrangement direction and the prism stretching direction. is 20° or more and 70° or less.
  • the angle between the concave (inverted quadrangular pyramid) arrangement direction of the diffusion sheet and the prism stretching direction of the prism sheet Brightness can be increased more than if the difference is near 0° or near 90°. Therefore, it is possible to obtain a backlight unit capable of realizing a high-brightness screen even with low power consumption.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device including a backlight unit according to an embodiment
  • FIG. FIG. 4 is a cross-sectional view of a backlight unit incorporating the optical sheet laminate according to the embodiment
  • 4 is a cross-sectional view of a diffusion sheet included in the optical sheet laminate according to the embodiment
  • FIG. 4 is a perspective view of a diffusion sheet included in the optical sheet laminate according to the embodiment
  • FIG. FIG. 4 is a diagram showing an example of the relationship between the arrangement direction of concave portions of a diffusion sheet and the extending direction of prisms of a prism sheet in an optical sheet laminate according to an embodiment
  • FIG. 10 is a diagram showing a relationship for explaining arrangement angles of a diffusion sheet (inverted pyramid sheet) and a prism sheet in an optical sheet laminate according to an example.
  • FIG. 10 is a diagram showing changes in luminance when the arrangement angle of diffusion sheets (inverted pyramid sheets) is changed in the optical sheet laminate according to the example.
  • FIG. 10 is a diagram showing changes in luminance when the arrangement angle of the upper prism sheet is changed in the optical sheet laminate according to the example.
  • the liquid crystal display device 50 includes a liquid crystal display panel 5, a first polarizing plate 6 attached to the lower surface of the liquid crystal display panel 5, and a second polarizing plate attached to the upper surface of the liquid crystal display panel 5. 7 and a backlight unit 40 provided on the back side of the liquid crystal display panel 5 with the first polarizing plate 6 interposed therebetween.
  • the liquid crystal display panel 5 includes a TFT substrate 1 and a CF substrate 2 facing each other, a liquid crystal layer 3 provided between the TFT substrate 1 and the CF substrate 2, and the TFT substrate 1 and the CF substrate 2.
  • a frame-shaped sealing material (not shown) is provided to seal the liquid crystal layer 3 between them.
  • the shape of the display screen 50a of the liquid crystal display device 50 viewed from the front (upper side in FIG. 1) is, in principle, rectangular or square, but is not limited thereto, and may be a rectangular shape with rounded corners, an elliptical shape, a circular shape, or the like. Any shape such as a trapezoid or an automobile instrument panel (instrument panel) may be used.
  • liquid crystal display device 50 in each sub-pixel corresponding to each pixel electrode, a voltage of a predetermined magnitude is applied to the liquid crystal layer 3 to change the alignment state of the liquid crystal layer 3 . Thereby, the transmittance of the light incident from the backlight unit 40 through the first polarizing plate 6 is adjusted. The light whose transmittance has been adjusted is emitted through the second polarizing plate 7 to display an image.
  • the liquid crystal display device 50 of the present embodiment can be used for various information devices (for example, in-vehicle devices such as car navigation systems, personal computers, mobile phones, portable information terminals such as notebook computers and tablets, portable game machines, copiers, ticket vending machines, It is used as a display device incorporated in an automatic teller machine, etc.).
  • information devices for example, in-vehicle devices such as car navigation systems, personal computers, mobile phones, portable information terminals such as notebook computers and tablets, portable game machines, copiers, ticket vending machines, It is used as a display device incorporated in an automatic teller machine, etc.).
  • the TFT substrate 1 includes, for example, a plurality of TFTs provided in a matrix on a glass substrate, an interlayer insulating film provided so as to cover each TFT, and a plurality of TFTs provided in a matrix on the interlayer insulating film. and an alignment film provided to cover each pixel electrode.
  • the CF substrate 2 includes, for example, a black matrix provided in a grid pattern on a glass substrate, a color filter including a red layer, a green layer, and a blue layer provided between the grids of the black matrix, and a black matrix and a color filter.
  • a common electrode is provided to cover the filter, and an alignment film is provided to cover the common electrode.
  • the liquid crystal layer 3 is made of a nematic liquid crystal material or the like containing liquid crystal molecules having electro-optical properties.
  • the first polarizing plate 6 and the second polarizing plate 7 each include, for example, a polarizer layer having a unidirectional polarization axis and a pair of protective layers provided to sandwich the polarizer layer.
  • the backlight unit 40 includes a reflective sheet 41, a plurality of blue light sources 42 two-dimensionally arranged on the reflective sheet 41, and an optical sheet provided above the plurality of blue light sources 42. and a laminate 100 .
  • the optical sheet laminate 100 has a diffusion sheet 43 arranged on the blue light source 42 side, and a pair of prism sheets 44 and 45 provided above the diffusion sheet 43 (on the display screen 50a side).
  • the optical sheet laminate 100 also has a color conversion sheet 46 between the blue light source 42 and the diffusion sheet 43 .
  • the diffusion sheet 43 may be used by one sheet, or may be used by laminating three or more sheets.
  • a single diffusion sheet 43 may be used.
  • the pair of prism sheets 44 and 45 may be a lower prism sheet 44 and an upper prism sheet 45 whose prism stretching directions (directions in which prism ridgelines extend) are orthogonal to each other.
  • the color conversion sheet 46 may be arranged between the diffusion sheet 43 and the pair of prism sheets 44 and 45 .
  • the reflective sheet 41 is composed of, for example, a white film made of polyethylene terephthalate resin, a silver-deposited film, or the like.
  • the type of the blue light source 42 is not particularly limited, it may be, for example, an LED element, a laser element, or the like, and an LED element may be used from the viewpoint of cost, productivity, and the like.
  • a lens may be attached to the LED element to adjust the light output angle characteristics of the LED.
  • the blue light source 42 emits light with x ⁇ 0.24 and y ⁇ 0.18 in CIE1931 chromaticity coordinates, for example.
  • the LED element may have a rectangular shape when viewed from above, in which case the length of one side is 10 ⁇ m or more (preferably 50 ⁇ m or more). It may be 20 mm or less (preferably 10 mm or less, more preferably 5 mm or less).
  • LED chips of several mm square may be arranged two-dimensionally on the reflective sheet 41 at regular intervals.
  • the center-to-center distance between two adjacent chips may be 0.5 mm or more (preferably 2 mm or more) and 20 mm or less.
  • the diffusion sheet 43 has a base material layer 21 as shown in FIG.
  • the diffusion sheet 43 (base material layer 21) has a first surface 21a serving as a light emitting surface and a second surface 21b serving as a light incident surface. That is, the diffusion sheet 43 is arranged with the second surface 21 b facing the blue light source 42 .
  • the resin serving as the matrix of the base material layer 21 is not particularly limited as long as it is composed of a material that transmits light. Examples include acrylic, polystyrene, polycarbonate, MS (methyl methacrylate-styrene copolymer) resin, polyethylene terephthalate, Polyethylene naphthalate, cellulose acetate, polyimide, and the like may also be used.
  • the base material layer 21 may contain a diffusing agent and other additives, or may contain substantially no additives.
  • Additives that can be contained in the base material layer 21 are not particularly limited. It may be organic particles such as polystyrene, polyamide, and the like.
  • the thickness of the diffusion sheet 43 is not particularly limited, but may be, for example, 3 mm or less (preferably 2 mm or less, more preferably 1.5 mm or less, still more preferably 1 mm or less) and 0.1 mm or more. When the thickness of the diffusion sheet 43 exceeds 3 mm, it becomes difficult to achieve a thin liquid crystal display. If the thickness of the diffusion sheet 43 is less than 0.1 mm, it becomes difficult to make the brightness uniform.
  • the diffusion sheet 43 may be film-like or plate-like.
  • a plurality of recesses 22 having a substantially inverted quadrangular pyramid shape are arranged in a two-dimensional matrix.
  • the plurality of recesses 22 are arranged along two directions orthogonal to each other.
  • Adjacent recesses 22 are separated by ridgelines 111 .
  • the ridgeline 111 extends along two directions in which the recesses 22 are arranged.
  • the center 112 of the recess 22 (the apex of the inverted pyramid) is the deepest part of the recess 22 .
  • the recesses 22 may be provided without gaps on the first surface 21a, or may be provided at predetermined intervals. Moreover, some recesses 22 may be arranged randomly to the extent that the light diffusion effect is not impaired.
  • the apex angle ⁇ of the recesses 22 may be, for example, 90°, the arrangement pitch p of the recesses 22 may be, for example, 100 ⁇ m, and the depth of the recesses 22 may be, for example, 50 ⁇ m.
  • the apex angle ⁇ of the concave portion 22 is a plane (longitudinal section) perpendicular to the surface on which the diffusion sheet 43 is arranged, and is a pair of slopes that pass through the center of the concave portion 22 (apex 112 of the inverted pyramid) and face each other across the center. It is the angle formed by the cross-sectional lines of the slopes in the cross-section that appears when the cross-section is cut perpendicular to the cross-section.
  • the arrangement pitch p of the recesses 22 is the distance between the centers (the apexes 112 of the inverted pyramids) of the adjacent recesses 22 (the distance along the direction parallel to the arrangement surface of the diffusion sheet 43).
  • the second surface 21b of the diffusion sheet 43 may be, for example, a flat surface (mirror surface) or an embossed surface.
  • the diffusion sheet 43 may have a one-layer structure of the base material layer 21 having an uneven shape (recesses 22) on the first surface 21a.
  • the diffusion sheet 43 may have a two-layer structure including a substrate layer having flat surfaces on both sides and a layer having an uneven surface on one side.
  • the diffusion sheet 43 may have a structure of three or more layers including a layer having unevenness on one surface.
  • a method for manufacturing the diffusion sheet 43 is not particularly limited, but for example, an extrusion molding method, an injection molding method, or the like may be used.
  • the procedure for manufacturing a single-layer diffusion sheet with an uneven surface using an extrusion molding method is as follows. First, pellet-shaped plastic particles to which a diffusing agent has been added (along with pellet-shaped plastic particles to which no diffusing agent has been added may be mixed) are put into a single-screw extruder, heated and melted, knead. After that, the molten resin extruded by the T-die is sandwiched between two metal rolls, cooled, transported using guide rolls, and cut into single flat plates by a sheet cutter to produce a diffusion sheet.
  • the reverse shape of the roll surface is transferred to the resin, so that the desired uneven shape is formed on the surface of the diffusion sheet. It can be shaped.
  • the shape transferred to the resin does not always correspond to the shape of the roll surface that is 100% transferred, the shape of the roll surface may be designed by calculating backward from the degree of transfer.
  • pellet-shaped plastic particles necessary for forming each layer are put into each of two single-screw extruders. After that, the same procedure as described above is performed for each layer, and each sheet thus produced may be laminated.
  • a diffusion sheet with a two-layer structure having an uneven surface may be produced as follows. First, pellet-like plastic particles necessary for forming each layer are put into each of two single-screw extruders, melted and kneaded while being heated. After that, the molten resin for each layer is put into one T-die, laminated in the T-die, and the laminated molten resin extruded by the T-die is sandwiched between two metal rolls and cooled. After that, the laminated molten resin may be conveyed using guide rolls and cut into flat plates with a sheet cutter to produce a diffusion sheet having a two-layer structure having an uneven surface.
  • the diffusion sheet may be manufactured as follows by shape transfer using UV (ultraviolet). First, a roll having an inverted shape of the uneven shape to be transferred is filled with an uncured UV curable resin, and the substrate is pressed against the resin. Next, in a state in which the roll filled with the ultraviolet curable resin and the substrate are integrated, the resin is cured by irradiating ultraviolet rays. Next, the sheet on which the concavo-convex shape has been shape-transferred by the resin is separated from the roll. Finally, the sheet is again irradiated with ultraviolet rays to completely harden the resin, thereby producing a diffusion sheet having an uneven surface.
  • UV ultraviolet
  • the notation “substantially inverted quadrangular pyramid” in consideration of the fact that it is difficult to form a geometrically strict inverted quadrangular pyramid recess by a normal shape transfer technique, the notation “substantially inverted quadrangular pyramid” is used, but “substantially “Inverted square pyramid” shall include shapes that can be considered true or substantially inverted square pyramids. Further, the term “substantially” means that it can be approximated, and the term “substantially inverted quadrangular pyramid” means a shape that can be approximated to an inverted quadrangular pyramid. For example, an "inverted quadrangular truncated pyramid" with a flat top is also included in the “substantially inverted quadrangular pyramid” if the top area is small enough to maintain the effects of the present invention. Further, a shape that is deformed from the "inverted square pyramid” within the range of unavoidable variations in shape due to processing accuracy in industrial production is also included in the "substantially inverted square pyramid".
  • the prism sheets 44 and 45 are made mainly of a transparent (for example, colorless and transparent) synthetic resin because they need to transmit light.
  • the prism sheets 44 and 45 may be integrally formed.
  • the lower prism sheet 44 has a substrate layer 44a and a row of projections composed of a plurality of ridge prism portions 44b laminated on the surface of the substrate layer 44a.
  • the upper prism sheet 45 has a substrate layer 45a and a row of projections composed of a plurality of ridge prism portions 45b laminated on the surface of the substrate layer 45a.
  • the ridge prism portions 44b and 45b are laminated in stripes on the surfaces of the substrate layers 44a and 45a, respectively.
  • the ridge prism portions 44b and 45b are triangular prisms whose back surfaces are in contact with the surfaces of the substrate layers 44a and 45a, respectively.
  • the extension direction of the ridge prism portion 44b and the extension direction of the ridge prism portion 45b are orthogonal to each other.
  • the lower limit of the thickness of the prism sheets 44 and 45 (the height from the back surface of the base material layers 44a and 45a to the vertices of the ridge prism portions 44b and 45b) is, for example, about 50 ⁇ m, more preferably about 100 ⁇ m. good.
  • the upper limit of the thickness of the prism sheets 44 and 45 may be approximately 200 ⁇ m, more preferably approximately 180 ⁇ m.
  • the lower limit of the pitch of the ridge prism portions 44b and 45b on the prism sheets 44 and 45 may be, for example, about 20 ⁇ m, more preferably about 25 ⁇ m.
  • the upper limit of the pitch of the prismatic protrusions 44b and 45b on the prism sheets 44 and 45 may be, for example, approximately 100 ⁇ m, more preferably approximately 60 ⁇ m.
  • the apex angles of the ridge prism portions 44b and 45b may be, for example, 85° or more and 95° or less.
  • the lower limit of the refractive index of the ridge prism portions 44b and 45b may be, for example, 1.5, more preferably 1.55.
  • the upper limit of the refractive index of the ridge prism portions 44b and 45b may be, for example, 1.7.
  • Prism sheets 44 and 45 are formed by providing ridge prism portions 44b and 45b, which are shape-transferred using a UV curable acrylic resin, on substrate layers 44a and 45a made of, for example, PET (polyethylene terephthalate) film.
  • substrate layers 44a and 45a made of, for example, PET (polyethylene terephthalate) film.
  • the ridge prism portions 44b and 45b may be formed integrally with the base layers 44a and 45a.
  • the color conversion sheet 46 is a wavelength conversion sheet that converts the light from the blue light source 42 into light having a peak wavelength of any color (for example, green or red).
  • the color conversion sheet 46 converts, for example, blue light with a wavelength of 450 nm into green light with a wavelength of 540 nm and red light with a wavelength of 650 nm.
  • the blue light source 42 that emits blue light with a wavelength of 450 nm is used, the blue light is partially converted into green light and red light by the color conversion sheet 46, so that the light transmitted through the color conversion sheet 46 becomes white light. become.
  • a QD (quantum dot) sheet, a fluorescent sheet, or the like may be used.
  • a polarizing sheet may be provided above the prism sheets 44 and 45 (on the display screen 50a side).
  • the polarizing sheet prevents the light emitted from the backlight unit 40 from being absorbed by the first polarizing plate 6 of the liquid crystal display device 50, thereby improving the brightness of the display screen 50a.
  • the extending directions of the portions 44b and 45b intersect at 20° or more and 70° or less, more preferably 25° or more and 35° or less or 55° or more and 65° or less.
  • the projection prism portion 44b is not shown for the sake of simplicity.
  • the extending direction of the prism portion 45b satisfies the crossing angle range described above
  • the extending direction of the ridge prism portion 44b also satisfies the crossing angle range described above.
  • the optical sheet laminate 100 of this embodiment is incorporated into a backlight unit 40 using a blue light source 42 .
  • the optical sheet laminate 100 includes a diffusion sheet 43 provided with a plurality of recesses 22 in the shape of a substantially inverted quadrangular pyramid on the first surface 21a, and the extending direction of the ridge prism portions 44b and 45b (hereinafter also referred to as the prism extending direction). ) comprises a pair of prism sheets 44 and 45 orthogonal to each other.
  • the diffusion sheet 43 is arranged singly or in a plurality of layers.
  • the plurality of concave portions 22 are arranged in a two-dimensional matrix, and the crossing angle between the arrangement direction and the prism extending direction is 20° or more and 70° or less.
  • the optical sheet laminate 100 of the present embodiment when compared with the same light source, the same power, and the same optical sheet laminate structure, the concave (inverted quadrangular pyramid) arrangement direction of the diffusion sheet 43 and the prism stretching direction of the prism sheets 44 and 45 are compared. , the luminance is increased more than when the angle difference between is near 0° or near 90°. Therefore, the backlight unit 40 can realize a high-brightness screen even with low power consumption.
  • the luminance can be further increased.
  • the backlight unit 40 of this embodiment is incorporated in the liquid crystal display device 50, and guides the light emitted from the blue light source 42 through the color conversion sheet 46 to the display screen 50a side.
  • the backlight unit 40 includes the optical sheet laminate 100 of the present embodiment between the display screen 50a and the blue light source 42, and the diffusion sheet 43 is arranged between the blue light source 42 and the prism sheets 44 and 45. be.
  • the optical sheet laminate 100 of the present embodiment is provided, it is possible to realize a high-brightness screen even with low power consumption.
  • the blue light source 42 may be arranged on the reflection sheet 41 provided on the opposite side of the display screen 50a when viewed from the diffusion sheet 43 . By doing so, the light is further diffused by multiple reflections between the diffusion sheet 43 and the reflection sheet 41, so that the luminance uniformity is improved.
  • a plurality of diffusion sheets 43 may be laminated and arranged between the prism sheets 44 and 45 and the blue light source 42 . By doing so, the light coming straight from the blue light source 42 is repeatedly diffused by the plurality of diffusion sheets 43, so that the luminance uniformity is improved.
  • the backlight unit 40 of this embodiment if the distance between the blue light source 42 and the diffusion sheet 43 is 5 mm or less, the backlight unit 40 can be miniaturized. Also, in anticipation of future thinning of small- and medium-sized liquid crystal displays, the distance between the blue light source 42 and the diffusion sheet 43 may be more preferably 2.5 mm or less, more preferably 1 mm or less, and ultimately 0 mm.
  • the color conversion sheet 46 may be arranged between the blue light source 42 and the diffusion sheet 43 or between the diffusion sheet 43 and the prism sheets 44 and 45. In this way, the color conversion sheet 46 can convert the light emitted from the blue light source 42 into white light.
  • the diffusion sheet 43 provided with a plurality of substantially inverted quadrangular pyramid-shaped concave portions 22 is provided on the display screen 50a side when viewed from the blue light source 42. and a step of arranging a pair of prism sheets 44 and 45 whose prism stretching directions are orthogonal to each other on the display screen 50a side when viewed from the diffusion sheet 43.
  • the plurality of concave portions 22 are arranged in a two-dimensional matrix, and the diffusion sheet 43 and the pair of prism sheets 44 and 45 are arranged such that the intersection angle between the arrangement direction and the prism stretching direction is 20° or more and 70° or less. is placed.
  • the concave (inverted quadrangular pyramid) arrangement direction of the diffusion sheet 43 and the prisms of the prism sheets 44 and 45 are compared. Brightness can be increased more than when the angle difference with the stretching direction is near 0° or near 90°. Therefore, it is possible to obtain the backlight unit 40 that can realize a high-brightness screen even with low power consumption.
  • the liquid crystal display device 50 of this embodiment includes the backlight unit 40 of this embodiment and the liquid crystal display panel 5 . Therefore, the backlight unit 40 can realize a high-brightness screen even with low power consumption. A similar effect can be obtained with an information device (for example, a portable information terminal such as a notebook computer or a tablet) in which the liquid crystal display device 50 is incorporated.
  • an information device for example, a portable information terminal such as a notebook computer or a tablet
  • optical sheet laminate 100 of the embodiment two diffusion sheets 43 having a thickness of 130 ⁇ m and having the same structure are laminated in the same direction. 45 was used. Two types of the optical sheet laminate 100 of the example were prepared, one in which the color conversion sheet 46 made of a QD sheet was arranged below the diffusion sheet 43 and the other in which the color conversion sheet 46 was not arranged.
  • the diffusion sheet 43 is a transparent polycarbonate sheet with a thickness of 80 ⁇ m, and is formed by using a UV curable resin with a refractive index of 1.587. arranged and formed.
  • the diffusion sheet 43 was arranged so that the surface (first surface 21a) on which the recesses 22 were formed was the light exit surface.
  • the second surface 21b of the diffusion sheet 43 is a flat surface (mirror surface).
  • Prism sheets 44 and 45 were formed by providing base material layers 44a and 45a made of PET films with ridged prism portions 44b and 45b using a UV curable acrylic resin made of acrylate.
  • the lower prism sheet 44 has a total thickness of 145 ⁇ m, and ridged prisms 44 b having a height of 12 ⁇ m and an apex angle of 94° are arranged at a pitch of 25 ⁇ m.
  • the upper prism sheet 45 has a total thickness of 128 ⁇ m, a height of 24 ⁇ m, and ridged prisms 45 b having an apex angle of 93° arranged at a pitch of 51 ⁇ m.
  • a blue light source 42 is placed below the optical sheet laminate 100 of the embodiment (on the side of the diffusion sheet 43), and the optical sheet laminate 100 is changed while changing the arrangement relationship between the diffusion sheet 43 and the prism sheets 44 and 45.
  • the brightness of the light that passed through was examined.
  • an LED array was used in which a plurality of blue LEDs with a peak wavelength of 450 nm (full width at half maximum of 16 nm) were two-dimensionally arranged at a pitch of 2.8 mm.
  • the diffusion sheet 43 is arranged so that one of the arrangement directions of the concave portions 22 is aligned with the reference direction (X-axis direction) (at an arrangement angle of 0°), and is placed downward.
  • the side prism sheet 44 is arranged by rotating the extending direction of the ridge prism portion 44b counterclockwise by 102° with respect to the X-axis (at an arrangement angle of 102°), and the upper prism sheet 45 is arranged so as to rotate the ridge prism portion 45b. was rotated counterclockwise by 12° with respect to the X-axis (with an arrangement angle of 12°).
  • the change in luminance was measured while rotating the arrangement direction (arrangement angle) of the two diffusion sheets (inverted pyramid sheets) 43 counterclockwise by 10° from the initial state by 180°.
  • luminance changes were measured while rotating the orientation (arrangement angle) of the two prism sheets 44 and 45 by 180 degrees counterclockwise from the initial state by 10 degrees. bottom.
  • the optical sheet laminate 100 of the example was placed on the blue light source 42 (LED array), and a transparent glass plate was placed thereon to prevent the sheets from floating.
  • a two-dimensional color luminance meter UA-200 manufactured by Co., Ltd. the luminance in the vertical upward direction (the direction from the LED array toward the glass plate) was measured in a 33 mm square area.
  • the obtained two-dimensional luminance distribution image is corrected for the emission intensity variations of individual LEDs, filtered to suppress bright and dark point noise caused by foreign matter, etc., and then the luminance of all pixels An average value was calculated for
  • FIGS. 7 and 8 show luminance changes obtained in the above-described first luminance measurement and second luminance measurement, respectively.
  • the horizontal axis represents "arrangement angle of the upper prism sheet 45"--"arrangement angle of the diffusion sheet (inverted pyramid sheet) 43" (hereinafter sometimes simply referred to as “arrangement angle difference”). and the arrangement angle difference in the initial state is 12° (see FIG. 6).
  • the "arrangement angle difference” decreases by 10° as the diffusion sheet 43 rotates, and in FIG. 8, as the upper prism sheet 45 rotates, the “arrangement angle difference” increases by 10°. Since the diffusion sheet 43 has an equivalent shape at an arrangement angle of 0° (180°) and 90° (270°), the “arrangement angle difference” was converted as follows. That is, when the "arrangement angle difference” is a negative value, a multiple of 90° is added to the "arrangement angle difference” to convert it into a value between 0° and 90°, and the "arrangement angle difference" is 90°.
  • the multiple of 90 degrees was subtracted from the "arrangement angle difference", and it converted into the value of 0 degrees or more and 90 degrees or less.
  • the "arrangement angle difference” converted as described above is the intersection angle between the arrangement direction of the concave portions 22 of the diffusion sheet 43 and the extending direction of the ridge prism portions 44b and 45b of the prism sheets 44 and 45 (hereinafter simply referred to as " (sometimes called "crossing angle").
  • the luminance is the relative luminance with the luminance measured value in the initial state (when the "arrangement angle difference" is 12°) of the optical sheet laminate 100 provided with the color conversion sheet 46 being 100%.
  • the "crossing angle” is It was found that the brightness increased in the range of 20° to 70°, and in particular, the brightness increased significantly in the range of the "crossing angle” of 25° to 35° or 55° to 65°.
  • the optical sheet laminate 100 is composed of the diffusion sheet 43 , the prism sheets 44 and 45 and the color conversion sheet 46 .
  • the optical sheet laminate 100 may further include optical sheets other than the diffusion sheet 43 , the prism sheets 44 and 45 and the color conversion sheet 46 .
  • the inverted polygonal pyramid shape of the concave portion 22 provided in the first surface 21a of the diffusion sheet 43 included in the optical sheet laminate 100 is an inverted square pyramid.
  • Other shapes, such as an inverted triangular pyramid or an inverted hexagonal pyramid, may also be used.
  • a row of protrusions such as a prism portion may be provided.
  • the second surface 21b of the diffusion sheet 43 is a flat surface (mirror surface) or an embossed surface.
  • a row of protrusions such as a prism portion may be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

光学シート積層体100は、青色光源42を用いたバックライトユニット40に組み込まれる。光学シート積層体100は、第1面21aに略逆四角錐状の複数の凹部22が設けられた拡散シート43と、プリズム延伸方向が互いに直交する一対のプリズムシート44及び45とを備える。拡散シート43は、1枚で又は複数枚積層して配置される。複数の凹部22は、二次元マトリクス状に配列され、当該配列方向と前記プリズム延伸方向との交差角度は、20°以上70°以下である。

Description

光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
 本開示は、光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法に関するものである。
 近年、スマートフォンやタブレット端末などの各種情報機器の表示装置として、液晶表示装置(以下、液晶ディスプレイということもある。)が広く利用されている。液晶ディスプレイのバックライトとしては、光源が液晶パネルの背面に配置される直下型方式、又は、光源が液晶パネルの側面の近傍に配置されるエッジライト方式が主流となっている。
 直下型バックライトを採用する場合、LED(Light Emitting Diode)等の光源からの光を拡散させて画面全体に亘って輝度や色度の均一性を上げるために、拡散シートやプリズムシート等の光学シートが使用される(例えば特許文献1参照)。
 ノートパソコンやタブレットなどの薄型ディスプレイの直下型バックライトユニットにおいては、例えば逆ピラミッド状の凹部が2次元配列された拡散シートが用いられると共に、拡散シートの上側(表示画面)には、通常、プリズム稜線が互いに直交する2枚のプリズムシートが配置される。
特開2011-129277号公報
 ノートパソコンやタブレットなど持ち運びして使用される携帯情報端末では、さらなる低消費電力が求められている。これに伴い、バックライトユニットに組み込まれる光学シートについても、低電力で高輝度な画面を実現できることが求められている。
 本開示は、バックライトユニットにおいて低電力でも高輝度な画面を実現することを目的とする。
 前記の目的を達成するために、本開示に係る光学シート積層体は、青色光源を用いたバックライトユニットに組み込まれる光学シート積層体であって、少なくとも一面に略逆四角錐状の複数の凹部が設けられた拡散シートと、プリズム延伸方向が互いに直交する一対のプリズムシートとを備え、前記拡散シートは、1枚で又は複数枚積層して配置され、前記複数の凹部は、二次元マトリクス状に配列され、当該配列方向と前記プリズム延伸方向との交差角度は、20°以上70°以下である。
 本開示に係る光学シート積層体によると、同じ光源、同じ電力、同じ光学シート積層構成で比較して、拡散シートの凹部(逆四角錐)配列方向とプリズムシートのプリズム延伸方向との角度差が0°近傍又は90°近傍である場合よりも、輝度が増大する。従って、バックライトユニットにおいて低電力でも高輝度な画面を実現することができる。
 本開示に係る光学シート積層体において、前記交差角度が、25°以上35°以下、又は55°以上65°以下であると、輝度をより一層増大させることができる。
 本開示に係るバックライトユニットは、液晶表示装置に組み込まれ、青色光源から発せられた光を色変換シートを介して表示画面側に導くバックライトユニットであって、前記表示画面と前記青色光源との間に、前述の本開示に係る光学シート積層体を備え、前記拡散シートは、前記青色光源と前記一対のプリズムシートとの間に配置される。
 本開示に係るバックライトユニットによると、前述の本開示に係る光学シート積層体を備えるため、低電力でも高輝度な画面を実現することができる。
 本開示に係るバックライトユニットにおいて、前記青色光源は、前記拡散シートから見て前記表示画面の反対側に設けられた反射シートの上に配置されてもよい。このようにすると、拡散シートと反射シートとの間での多重反射によって光がさらに拡散されるので、輝度均一性が向上する。
 本開示に係るバックライトユニットにおいて、前記拡散シートは、複数枚積層して前記一対のプリズムシートと前記青色光源との間に配置されてもよい。このようにすると、複数枚の拡散シートによって、青色光源から直進してきた光が繰り返し拡散されるので、輝度均一性が向上する。
 本開示に係るバックライトユニットにおいて、前記青色光源と前記拡散シートとの間の距離は、5mm以下、好ましくは2.5mm以下、さらに好ましくは1mm以下であってもよい。このようにすると、バックライトユニットを小型化することができる。
 本開示に係るバックライトユニットにおいて、前記色変換シートは、前記青色光源と前記拡散シートとの間、又は、前記拡散シートと前記一対のプリズムシートとの間に配置されてもよい。このようにすると、色変換シートによって、青色光源を発した光を白色光に変換することができる。
 本開示に係る液晶表示装置は、前述の本開示に係るバックライトユニットと、液晶表示パネルとを備える。
 本開示に係る液晶表示装置によると、前述の本開示に係るバックライトユニットを備えるため、低電力でも高輝度な画面を実現することができる。
 本開示に係る情報機器は、前述の本開示に係る液晶表示装置を備える。
 本開示に係る情報機器によると、前述の本開示に係る液晶表示装置を備えるため、低電力でも高輝度な画面を実現することができる。
 本開示に係るバックライトユニットの製造方法は、液晶表示装置に組み込まれ、青色光源から発せられた光を色変換シートを介して表示画面側に導くバックライトユニットの製造方法であって、前記青色光源から見て前記表示画面側に、少なくとも一面に略逆四角錐状の複数の凹部が設けられた拡散シートを1枚で又は複数枚積層して配置する工程と、前記拡散シートから見て前記表示画面側に、プリズム延伸方向が互いに直交する一対のプリズムシートを配置する工程とを備え、前記複数の凹部は、二次元マトリクス状に配列され、当該配列方向と前記プリズム延伸方向との交差角度が、20°以上70°以下となるように、前記拡散シート及び前記一対のプリズムシートが配置される。
 本開示に係るバックライトユニットの製造方法によると、同じ光源、同じ電力、同じ光学シート積層構成で比較して、拡散シートの凹部(逆四角錐)配列方向とプリズムシートのプリズム延伸方向との角度差が0°近傍又は90°近傍である場合よりも、輝度を増大させることができる。従って、低電力でも高輝度な画面を実現できるバックライトユニットを得ることができる。
 本開示によると、バックライトユニットにおいて低電力でも高輝度な画面を実現することができる。
実施形態に係るバックライトユニットを備える液晶表示装置の断面図である。 実施形態に係る光学シート積層体が組み込まれたバックライトユニットの断面図である。 実施形態に係る光学シート積層体に含まれる拡散シートの断面図である。 実施形態に係る光学シート積層体に含まれる拡散シートの斜視図である。 実施形態に係る光学シート積層体における拡散シートの凹部配列方向とプリズムシートのプリズム延伸方向との関係の一例を示す図でる。 実施例に係る光学シート積層体における拡散シート(逆ピラミッドシート)及びプリズムシートの配置角を説明する関係を示す図でる。 実施例に係る光学シート積層体において拡散シート(逆ピラミッドシート)の配置角を変化させた場合の輝度変化を示す図である。 実施例に係る光学シート積層体において上側プリズムシートの配置角を変化させた場合の輝度変化を示す図である。
 (実施形態)
 以下、実施形態に係る光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法について、図面を参照しながら説明する。尚、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。
 <液晶表示装置の構成>
 図1に示すように、液晶表示装置50は、液晶表示パネル5と、液晶表示パネル5の下面に貼付された第1偏光板6と、液晶表示パネル5の上面に貼付された第2偏光板7と、液晶表示パネル5の背面側に第1偏光板6を介して設けられたバックライトユニット40とを備えている。
 液晶表示パネル5は、互いに対向するように設けられたTFT基板1及びCF基板2と、TFT基板1とCF基板2との間に設けられた液晶層3と、TFT基板1とCF基板2との間に液晶層3を封入するために枠状に設けられたシール材(図示省略)とを備える。
 液晶表示装置50の表示画面50aを正面(図1の上方)から見た形状は、原則、長方形又は正方形であるが、これに限らず、長方形の角が丸くなった形状、楕円形、円形、台形、又は、自動車のインストルメントパネル(インパネ)などの任意の形状であってもよい。
 液晶表示装置50では、各画素電極に対応する各サブ画素において、液晶層3に所定の大きさの電圧を印加して液晶層3の配向状態を変える。これにより、バックライトユニット40から第1偏光板6を介して入射した光の透過率が調整される。透過率が調整された光は第2偏光板7を介して出射されて画像が表示される。
 本実施形態の液晶表示装置50は、種々の情報機器(例えばカーナビゲーション等の車載装置、パーソナルコンピュータ、携帯電話、ノートパソコンやタブレット等の携帯情報端末、携帯型ゲーム機、コピー機、券売機、現金自動預け払い機など)に組み込まれる表示装置として用いられる。
 TFT基板1は、例えば、ガラス基板上にマトリクス状に設けられた複数のTFTと、各TFTを覆うように設けられた層間絶縁膜と、層間絶縁膜上にマトリクス状に設けられ且つ複数のTFTにそれぞれ接続された複数の画素電極と、各画素電極を覆うように設けられた配向膜とを備える。CF基板2は、例えば、ガラス基板上に格子状に設けられたブラックマトリクスと、ブラックマトリクスの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルターと、ブラックマトリクス及びカラーフィルターを覆うように設けられた共通電極と、共通電極を覆うように設けられた配向膜とを備える。液晶層3は、電気光学特性を有する液晶分子を含むネマチック液晶材料等により構成される。第1偏光板6及び第2偏光板7は、例えば、一方向の偏光軸を有する偏光子層と、その偏光子層を挟持するように設けられた一対の保護層とを備える。
 <バックライトユニット及び光学シート積層体の構成>
 図2に示すように、バックライトユニット40は、反射シート41と、反射シート41上に2次元状に配置された複数の青色光源42と、複数の青色光源42の上側に設けられた光学シート積層体100とを備える。光学シート積層体100は、青色光源42の側に配置された拡散シート43と、拡散シート43の上側(表示画面50aの側)に設けられた一対のプリズムシート44及び45とを有する。また、光学シート積層体100は、青色光源42と拡散シート43との間に色変換シート46を有する。
 本実施形態では、同じ構造の拡散シート43を例えば2枚積層してバックライトユニット40に設ける。拡散シート43は1枚で用いてもよいし、或いは、3枚以上積層して用いてもよい。特に、バックライトユニット40の白色光源40の精密配置等によって輝度均一性を十分に大きくできる場合には、拡散シート43を1枚で用いてもよい。一対のプリズムシート44及び45は、プリズム延伸方向(プリズム稜線の延びる方向)が互いに直交する下側プリズムシート44及び上側プリズムシート45であってもよい。色変換シート46は、拡散シート43と一対のプリズムシート44及び45との間に配置されてもよい。
 反射シート41は、例えば、白色のポリエチレンテレフタレート樹脂製のフィルム、銀蒸着フィルム等により構成される。
 青色光源42の種類は特に限定されないが、例えばLED素子やレーザー素子等であってもよく、コスト、生産性等の観点からLED素子を用いてもよい。LEDの出光角度特性を調節するために、LED素子にレンズを装着してもよい。青色光源42は、例えば、CIE1931の色度座標においてx<0.24、y<0.18の光を発する。青色光源42がLED素子から構成される場合、LED素子(チップ)は、平面視した場合に長方形状を有していてもよく、その場合、一辺の長さは10μm以上(好ましくは50μm以上)20mm以下(好ましくは10mm以下、より好ましくは5mm以下)であってもよい。数mm角のLEDチップが、2次元的に一定の間隔で反射シート41上に配置されてもよい。複数のLEDチップを等間隔で配置する場合、隣り合う2つのチップの中心間距離は、0.5mm以上(好ましくは2mm以上)20mm以下であってもよい。
 拡散シート43は、図3に示すように、基材層21を有する。拡散シート43(基材層21)は、光出射面となる第1面21aと、光入射面となる第2面21bとを有する。すなわち、拡散シート43は、第2面21bを青色光源42の方に向けて配置される。基材層21のマトリックスとなる樹脂は、光を透過させる材料で構成されていれば、特に限定されないが、例えば、アクリル、ポリスチレン、ポリカーボネート、MS(メチルメタクリレート・スチレン共重合)樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、セルロールアセテート、ポリイミド等であってもよい。基材層21は、拡散剤その他の添加剤を含んでいてもよいし、或いは、実質的に添加剤を含有しなくてもよい。基材層21に含有可能な添加剤は、特に限定されないが、例えば、シリカ、酸化チタン、水酸化アルミニウム、硫酸バリウム等の無機粒子であってもよいし、例えば、アクリル、アクリルニトリル、シリコーン、ポリスチレン、ポリアミド等の有機粒子であってよい。
 拡散シート43の厚さは、特に限定されないが、例えば、3mm以下(好ましくは2mm以下、より好ましくは1.5mm以下、更に好ましくは1mm以下)で0.1mm以上であってもよい。拡散シート43の厚さが3mmを超えると、液晶ディスプレイの薄型化の達成が難しくなる。拡散シート43の厚さが0.1mmを下回ると、輝度を均一にすることが難しくなる。拡散シート43は、フィルム状であってもよいし、プレート(板)状であってもよい。
 拡散シート43の第1面21aには、図4に示すように、略逆四角錐状(逆ピラミッド状)の複数の凹部22が2次元マトリクス状に配列される。言い換えると、複数の凹部22は、互いに直交する2方向に沿って配列される。隣り合う凹部22同士は、稜線111によって区画される。稜線111は、凹部22が配列される2方向に沿って延びる。凹部22の中心(逆ピラミッドの頂点)112は、凹部22の最深部である。図4では、簡単のため、凹部22が5×5のマトリクス状に配置された様子を例示しているが、凹部22の実際の配列数ははるかに多い。複数の凹部22の2次元配列において、各凹部22は、第1面21aに隙間無く設けられてもよいし、所定の間隔をあけて設けられてもよい。また、光拡散効果が損なわれない程度に、一部の凹部22がランダムに配列されてもよい。
 凹部22の頂角θは例えば90°であり、凹部22の配列ピッチpは例えば100μmであり、凹部22の深さは例えば50μmであってもよい。凹部22の頂角θとは、拡散シート43の配置面に対して垂直な面(縦断面)で、凹部22の中心(逆ピラミッドの頂点112)を通り且つ当該中心を挟んで向き合う一対の斜面を垂直に横切るように切断したときに現れる断面において、斜面の断面線同士がなす角のことである。また、凹部22の配列ピッチpとは、隣り合う凹部22の中心(逆ピラミッドの頂点112)同士の間の距離(拡散シート43の配置面に平行な方向に沿った距離)のことである。
 拡散シート43の第2面21bは、例えば平坦面(鏡面)又はエンボス加工面であってもよい。拡散シート43は、第1面21aに凹凸形状(凹部22)を持つ基材層21の1層構造で構成してもよい。拡散シート43は、両面が平坦な基材層と、一面に凹凸形状を持つ層との2層構造で構成してもよい。拡散シート43は、一面に凹凸形状を持つ層を含む3層以上の構造で構成してもよい。拡散シート43の製造方法は、特に限定されないが、例えば、押し出し成型法、射出成型法などを用いてもよい。
 押し出し成型法を用いて、凹凸形状を表面に持つ単層の拡散シートを製造する手順は次の通りである。まず、拡散剤が添加されたペレット状のプラスチック粒子(併せて、拡散剤が添加されていないペレット状のプラスチック粒子を混合してもよい)を単軸押し出し機に投入し、加熱しながら溶融、混錬する。その後、T-ダイスにより押し出された溶融樹脂を2本の金属ロールで挟んで冷却した後、ガイドロールを用いて搬送し、シートカッター機により枚葉平板に切り落とすことによって、拡散シートを作製する。ここで、所望の凹凸形状を反転した形状を表面に持つ金属ロールを使用して溶融樹脂を挟むことにより、ロール表面の反転形状が樹脂に転写されるので、所望の凹凸形状を拡散シート表面に賦形することができる。また、樹脂に転写された形状は、必ずしもロール表面の形状が100%転写されたものとはならないので、転写度合いから逆算して、ロール表面の形状を設計してもよい。
 押し出し成型法を用いて、凹凸形状を表面に持つ2層構造の拡散シートを製造する場合は、例えば、2つの単軸押し出し機のそれぞれに、各層の形成に必要なペレット状のプラスチック粒子を投入した後、各層毎に前述と同様の手順を実施し、作製された各シートを積層すればよい。
 或いは、以下のように、凹凸形状を表面に持つ2層構造の拡散シートを作製してもよい。まず、2つの単軸押し出し機のそれぞれに、各層の形成に必要なペレット状のプラスチック粒子を投入し、加熱しながら溶融、混錬する。その後、各層となる溶融樹脂を1つのT-ダイスに投入し、当該T-ダイス内で積層し、当該T-ダイスにより押し出された積層溶融樹脂を2本の金属ロールで挟んで冷却する。その後、ガイドロールを用いて積層溶融樹脂を搬送し、シートカッター機により枚葉平板に切り落とすことによって、凹凸形状を表面に持つ2層構造の拡散シートを作製してもよい。
 また、UV(紫外線)を用いた賦形転写によって、以下のように拡散シートを製造してもよい。まず、転写したい凹凸形状の反転形状を有するロールに未硬化の紫外線硬化樹脂を充填し、当該樹脂に基材を押し当てる。次に、紫外線硬化樹脂が充填されたロールと基材とが一体になっている状態で、紫外線を照射して樹脂を硬化させる。次に、樹脂によって凹凸形状が賦形転写されたシートをロールからはく離させる。最後に、再度シートに紫外線照射を行って樹脂を完全硬化させ、凹凸形状を表面に持つ拡散シートを作製する。
 尚、本開示では、通常の形状転写技術により幾何学的に厳密な逆四角錐の凹部を形成することが難しいことを考慮して、「略逆四角錐」との表記を用いるが、「略逆四角錐」は、真正の又は実質的に逆四角錐とみなせる形状を含むものとする。また、「略」とは、近似可能であることを意味し、「略逆四角錐」とは、逆四角錐に近似可能な形状をいう。例えば、頂部が平坦な「逆四角錐台形」についても、本発明の作用効果が失われない程度に頂部面積が小さいものは、「略逆四角錐」に包含されるものとする。また、工業生産上の加工精度に起因する不可避的な形状のばらつきの範囲内で「逆四角錐」から変形した形状も、「略逆四角錐」に包含される。
 プリズムシート44及び45は、光線を透過させる必要があるので、透明(例えば無色透明)の合成樹脂を主成分として形成される。プリズムシート44及び45は、一体に形成されてもよい。下側プリズムシート44は、基材層44aと、基材層44aの表面に積層される複数の突条プリズム部44bからなる突起列とを有する。同様に、上側プリズムシート45は、基材層45aと、基材層45aの表面に積層される複数の突条プリズム部45bからなる突起列とを有する。突条プリズム部44b及び45bはそれぞれ、基材層44a及び45aの表面にストライプ状に積層される。突条プリズム部44b及び45bはそれぞれ、裏面が基材層44a及び45aの表面に接する三角柱状体である。突条プリズム部44bの延伸方向と突条プリズム部45bの延伸方向とは、互いに直交する。これにより、拡散シート43から入射される光線を下側プリズムシート44によって法線方向側に屈折させ、さらに下側プリズムシート44から出射される光線を上側プリズムシート45によって表示画面50aに対して略垂直に進むように屈折させることができる。
 プリズムシート44及び45の厚さ(基材層44a及び45aの裏面から突条プリズム部44b及び45bの頂点までの高さ)の下限は、例えば、50μm程度、より好ましくは100μm程度であってもよい。プリズムシート44及び45の厚さの上限は、200μm程度、より好ましくは180μm程度であってもよい。プリズムシート44及び45における突条プリズム部44b及び45bのピッチの下限は、例えば、20μm程度、より好ましくは25μm程度であってもよい。プリズムシート44及び45における突条プリズム部44b及び45bのピッチの上限は、例えば、100μm程度、より好ましくは60μm程度であってもよい。突条プリズム部44b及び45bの頂角は、例えば、85°以上95°以下であってもよい。突条プリズム部44b及び45bの屈折率の下限は、例えば、1.5、より好ましくは1.55であってもよい。突条プリズム部44b及び45bの屈折率の上限は、例えば、1.7であってもよい。
 プリズムシート44及び45は、例えばPET(polyethylene terephthalate)フィルムからなる基材層44a及び45aに、UV硬化型アクリル系樹脂を用いて形状転写された突条プリズム部44b及び45bを設けたものであってもよいし、或いは、突条プリズム部44b及び45bが基材層44a及び45aと一体成形されたものであってもよい。
 色変換シート46は、青色光源42からの光を、任意の色(例えば緑色や赤色)の波長をピーク波長とする光に変換する波長変換シートである。色変換シート46は、例えば、波長450nmの青色光を、波長540nmの緑色光と波長650nmの赤色光に変換する。この場合、波長450nmの青色光を発する青色光源42を用いると、色変換シート46によって青色光が部分的に緑色光と赤色光に変換されるので、色変換シート46を透過した光は白色光になる。色変換シート46としては、例えば、QD(量子ドット)シートや蛍光シート等を用いてもよい。
 図示は省略しているが、プリズムシート44及び45の上側(表示画面50aの側)に偏光シートを設けてもよい。偏光シートは、バックライトユニット40から出射された光が液晶表示装置50の第1偏光板6に吸収されることを防止することによって、表示画面50aの輝度を向上させる。
 以上に説明した本実施形態の光学シート積層体100において、例えば図5に示すように、拡散シート43の凹部22の配列方向(X方向及びY方向)と、プリズムシート44及び45の突条プリズム部44b及び45bの延伸方向とは、20°以上70°以下、より好ましくは25°以上35°以下又は55°以上65°以下で交差する。尚、図5では、簡単のため、突条プリズム部44bの図示を省略しているが、突条プリズム部44bの延伸方向と突条プリズム部45bの延伸方向とは互いに直交するため、突条プリズム部45bの延伸方向が前述の交差角度範囲を満たす場合、突条プリズム部44bの延伸方向も前述の交差角度範囲を満たす。
 <実施形態の特徴>
 本実施形態の光学シート積層体100は、青色光源42を用いたバックライトユニット40に組み込まれる。光学シート積層体100は、第1面21aに略逆四角錐状の複数の凹部22が設けられた拡散シート43と、突条プリズム部44b及び45bの延伸方向(以下、プリズム延伸方向ということもある)が互いに直交する一対のプリズムシート44及び45とを備える。拡散シート43は、1枚で又は複数枚積層して配置される。複数の凹部22は、二次元マトリクス状に配列され、当該配列方向と前記プリズム延伸方向との交差角度は、20°以上70°以下である。
 本実施形態の光学シート積層体100によると、同じ光源、同じ電力、同じ光学シート積層構成で比較して、拡散シート43の凹部(逆四角錐)配列方向とプリズムシート44及び45のプリズム延伸方向との角度差が0°近傍又は90°近傍である場合よりも、輝度が増大する。従って、バックライトユニット40において低電力でも高輝度な画面を実現することができる。
 本実施形態の光学シート積層体100において、前記交差角度が、25°以上35°以下、又は55°以上65°以下であると、輝度をより一層増大させることができる。
 本実施形態のバックライトユニット40は、液晶表示装置50に組み込まれ、青色光源42から発せられた光を色変換シート46を介して表示画面50a側に導く。バックライトユニット40は、表示画面50aと青色光源42との間に、本実施形態の光学シート積層体100を備え、拡散シート43は、青色光源42とプリズムシート44及び45との間に配置される。
 本実施形態のバックライトユニット40によると、本実施形態の光学シート積層体100を備えるため、低電力でも高輝度な画面を実現することができる。
 本実施形態のバックライトユニット40において、青色光源42は、拡散シート43から見て表示画面50aの反対側に設けられた反射シート41の上に配置されてもよい。このようにすると、拡散シート43と反射シート41との間での多重反射によって光がさらに拡散されるので、輝度均一性が向上する。
 本実施形態のバックライトユニット40において、拡散シート43は、複数枚積層してプリズムシート44及び45と青色光源42との間に配置されてもよい。このようにすると、複数枚の拡散シート43によって、青色光源42から直進してきた光が繰り返し拡散されるので、輝度均一性が向上する。
 本実施形態のバックライトユニット40において、青色光源42と拡散シート43との間の距離が5mm以下であると、バックライトユニット40を小型化することができる。また、今後の中小型液晶ディスプレイの薄型化をにらみ、青色光源42と拡散シート43との距離をより好ましくは2.5mm以下、さらに好ましくは1mm以下、究極的には0mmとしてもよい。
 本実施形態のバックライトユニット40において、色変換シート46は、青色光源42と拡散シート43との間、又は、拡散シート43とプリズムシート44及び45との間に配置されてもよい。このようにすると、色変換シート46によって、青色光源42を発した光を白色光に変換することができる。
 本実施形態のバックライトユニット40の製造方法では、青色光源42から見て表示画面50a側に、略逆四角錐状の複数の凹部22が設けられた拡散シート43を1枚で又は複数枚積層して配置する工程と、拡散シート43から見て表示画面50a側に、プリズム延伸方向が互いに直交する一対のプリズムシート44及び45を配置する工程とを備える。複数の凹部22は、二次元マトリクス状に配列され、当該配列方向と前記プリズム延伸方向との交差角度が、20°以上70°以下となるように、拡散シート43と一対のプリズムシート44及び45が配置される。
 本実施形態のバックライトユニット40の製造方法によると、同じ光源、同じ電力、同じ光学シート積層構成で比較して、拡散シート43の凹部(逆四角錐)配列方向とプリズムシート44及び45のプリズム延伸方向との角度差が0°近傍又は90°近傍である場合よりも、輝度を増大させることができる。従って、低電力でも高輝度な画面を実現できるバックライトユニット40を得ることができる。
 本実施形態の液晶表示装置50は、本実施形態のバックライトユニット40と、液晶表示パネル5とを備える。このため、バックライトユニット40によって、低電力でも高輝度な画面を実現することができる。液晶表示装置50が組み込まれた情報機器(例えばノートパソコンやタブレットなどの携帯情報端末)でも同様の効果を得ることができる。
 (実施例)
 以下、実施例について説明する。
 実施例の光学シート積層体100として、厚さ130μmで同じ構造の拡散シート43を同じ向きに2枚重ねたものの上に、プリズム延伸方向が互いに直交する下側プリズムシ-ト44及び上側プリズムシ-ト45を配置したものを用いた。尚、実施例の光学シート積層体100は、拡散シート43の下側にQDシートからなる色変換シート46を配置したものと、色変換シート46を配置しないものの2種類を用意した。
 拡散シート43は、厚さ80μmの透明なポリカーボネートシート上に、屈折率1.587のUV硬化樹脂を用いて、頂角90°、深さ50μmの逆ピラミッド形状の凹部22をピッチ100μmで2次元配列して形成した。拡散シート43は、凹部22の形成面(第1面21a)が光出射面となるように配置した。拡散シート43の第2面21bは、平坦面(鏡面)とした。
 プリズムシート44及び45は、PETフィルムからなる基材層44a及び45aに、アクリレートからなるUV硬化型アクリル系樹脂を用いて突条プリズム部44b及び45bを設けて形成した。下側プリズムシ-ト44は、総厚さが145μmで、高さ12μm、頂角94°の突条プリズム部44bをピッチ25μmで配列した。上側プリズムシ-ト45は、総厚さが128μmで、高さ24μm、頂角93°の突条プリズム部45bをピッチ51μmで配列した。
 実施例の光学シート積層体100の下側(拡散シート43の側)に青色光源42を配置し、拡散シート43とプリズムシート44及び45との配置関係を変化させながら、光学シート積層体100を通過した光の輝度を調べた。青色光源42としては、ピーク波長450nm(半値全幅16nm)の青色LEDが2.8mmピッチで2次元的に複数配置されたLEDアレイを用いた。
 輝度測定の初期状態として、図6に示すように、拡散シート43は、凹部22の配列方向の1つを基準方向(X軸方向)に一致させて(配置角0°で)配置し、下側プリズムシート44は、突条プリズム部44bの延伸方向をX軸に対して反時計回りに102°回転させて(配置角102°で)配置し、上側プリズムシート45は、突条プリズム部45bの延伸方向をX軸に対して反時計回りに12°回転させて(配置角12°で)配置した。
 第1輝度測定として、前記初期状態から、2枚の拡散シート(逆ピラミッドシート)43の配置向き(配置角)を反時計回りに10°ずつ180°回転させながら、輝度変化を測定した。また、比較のため、第2輝度測定として、前記初期状態から、2枚のプリズムシート44及び45の配置向き(配置角)を反時計回りに10°ずつ180°回転させながら、輝度変化を測定した。
 各輝度測定では、青色光源42(LEDアレイ)の上に、実施例の光学シート積層体100を配置し、さらにその上にシート類の浮きを抑えるために透明ガラス板を載せて、トプコンテクノハウス社製の2次元色彩輝度計UA-200を用いて、鉛直方向上向き(LEDアレイからガラス板に向かう方向)の輝度を33mm四方の範囲について測定した。得られた二次元輝度分布画像に対して、個々のLEDの発光強度バラツキに対する補正を行い、異物等に起因する輝点・暗点ノイズを抑えるためのフィルタリング処理を行った後、全画素の輝度について平均値を算出した。
 図7及び図8にそれぞれ、前述の第1輝度測定及び第2輝度測定で得られた輝度変化を示す。図7及び図8において、横軸は、「上側プリズムシ-ト45の配置角」-「拡散シート(逆ピラミッドシート)43の配置角」(以下、単に「配置角差」ということもある)を表し、初期状態の配置角差は12°(図6参照)である。
 尚、図7では、拡散シート43の回転に伴い、「配置角差」が10°ずつ減り、図8では、上側プリズムシート45の回転に伴い、「配置角差」が10°ずつ増えるが、拡散シート43が配置角0°(180°)及び90°(270°)で等価な形状を有することから、「配置角差」は以下のように換算した。すなわち、「配置角差」がマイナスの値の場合は、「配置角差」に90°の倍数を加算して0°以上90°以下の値に換算し、「配置角差」が90°を超える場合は、「配置角差」から90°の倍数を減算して0°以上90°以下の値に換算した。このようにすると、横軸の同じ「配置角差」に対して、縦軸の輝度測定値は複数存在する。また、以上のように換算した「配置角差」は、拡散シート43の凹部22の配列方向とプリズムシート44及び45の突条プリズム部44b及び45bの延伸方向との交差角度(以下、単に「交差角度」ということもある)に等しくなる。
 また、図7及び図8において、輝度は、色変換シート46を設けた光学シート積層体100の初期状態(「配置角差」が12°のとき)の輝度測定値を100%とした相対輝度で表している。
 図7及び図8に示すように、色変換シート46の有無に関わらず、「配置角差」が20°~70°の範囲(つまり「交差角度」が20°~70°の範囲)で、「配置角差」が0°近傍又は90°近傍(つまり「交差角度」が0°近傍又は90°近傍)のときと比べて、輝度が有意に増大している。特に、「配置角差」が30°近傍及び60°近傍(つまり「交差角度」が30°近傍及び60°近傍)で相対輝度は極大値となり、当該極大値となる「配置角差」の±5°の範囲で比較的大きな輝度が得られている。
 以上に説明したように、実施例の光学シート積層体100では、拡散シート43の配置角を変化させた場合でも、プリズムシート44及び45の配置角を変化させた場合でも、「交差角度」が20°~70°の範囲で輝度が増大し、特に、「交差角度」が25°~35°又は55°~65°の範囲で輝度が顕著に増大することが分かった。
 (その他の実施形態)
 前記実施形態(実施例を含む。以下同じ。)では、拡散シート43とプリズムシート44及び45と色変換シート46とから光学シート積層体100を構成した。しかし、光学シート積層体100は、拡散シート43、プリズムシート44、45及び色変換シート46以外の他の光学シートをさらに含んでいてもよい。
 また、前記実施形態では、光学シート積層体100に含まれる拡散シート43の第1面21aに設ける凹部22の逆多角錐形状を逆四角錐としたが、これに代えて、二次元配置可能な他の形状、例えば逆三角錐や逆六角錐としてもよい。或いは、二次元配置可能な凹部22に代えて、突条プリズム部等の突起列を設けてもよい。また、拡散シート43の第2面21bは、平坦面(鏡面)又はエンボス加工面としたが、拡散シート43の第2面21bに、二次元配置可能な逆多角錐形状の凹部や、突条プリズム部等の突起列を設けてもよい。
 以上、本開示についての実施形態を説明したが、本開示は前述の実施形態のみに限定されず、開示の範囲内で種々の変更が可能である。すなわち、前述の実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。
   1  TFT基板
   2  CF基板
   3  液晶層
   5  液晶表示パネル
   6  第1偏光板
   7  第2偏光板
  21  基材層
  21a  第1面
  21b  第2面
  22  凹部
  40  バックライトユニット
  41  反射シート
  42  青色光源
  43  拡散シート
  44  下側プリズムシート
  44a  基材層
  44b  突条プリズム部
  45  上側プリズムシート
  45a  基材層
  45b  突条プリズム部
  46  色変換シート
  50  液晶表示装置
  50a  表示画面
 100  光学シート積層体
 111  稜線
 112  凹部中心(逆ピラミッド頂点)

Claims (10)

  1.  青色光源を用いたバックライトユニットに組み込まれる光学シート積層体であって、
     少なくとも一面に略逆四角錐状の複数の凹部が設けられた拡散シートと、
     プリズム延伸方向が互いに直交する一対のプリズムシートとを備え、
     前記拡散シートは、1枚で又は複数枚積層して配置され、
     前記複数の凹部は、二次元マトリクス状に配列され、当該配列方向と前記プリズム延伸方向との交差角度は、20°以上70°以下である
    光学シート積層体。
  2.  前記交差角度は、25°以上35°以下、又は55°以上65°以下である
    請求項1に記載の光学シート積層体。
  3.  液晶表示装置に組み込まれ、青色光源から発せられた光を色変換シートを介して表示画面側に導くバックライトユニットであって、
     前記表示画面と前記青色光源との間に、請求項1又は2に記載の光学シート積層体を備え、
     前記拡散シートは、前記青色光源と前記一対のプリズムシートとの間に配置される
    バックライトユニット。
  4.  前記青色光源は、前記拡散シートから見て前記表示画面の反対側に設けられた反射シートの上に配置される
    請求項3に記載のバックライトユニット。
  5.  前記拡散シートは、複数枚積層して前記一対のプリズムシートと前記青色光源との間に配置される
    請求項3に記載のバックライトユニット。
  6.  前記青色光源と前記拡散シートとの間の距離は、5mm以下である
    請求項3に記載のバックライトユニット。
  7.  前記色変換シートは、前記青色光源と前記拡散シートとの間、又は、前記拡散シートと前記一対のプリズムシートとの間に配置される
    請求項3に記載のバックライトユニット。
  8.  請求項3~7のいずれか1項に記載のバックライトユニットと、
     液晶表示パネルとを備える
    液晶表示装置。
  9.  請求項8に記載の液晶表示装置を備える情報機器。
  10.  液晶表示装置に組み込まれ、青色光源から発せられた光を色変換シートを介して表示画面側に導くバックライトユニットの製造方法であって、
     前記青色光源から見て前記表示画面側に、少なくとも一面に略逆四角錐状の複数の凹部が設けられた拡散シートを1枚で又は複数枚積層して配置する工程と、
     前記拡散シートから見て前記表示画面側に、プリズム延伸方向が互いに直交する一対のプリズムシートを配置する工程とを備え、
     前記複数の凹部は、二次元マトリクス状に配列され、当該配列方向と前記プリズム延伸方向との交差角度が、20°以上70°以下となるように、前記拡散シート及び前記一対のプリズムシートが配置される
    バックライトユニットの製造方法。
PCT/JP2022/024795 2021-07-06 2022-06-22 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法 WO2023282055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247001014A KR20240019337A (ko) 2021-07-06 2022-06-22 광학 시트 적층체, 백라이트 유닛, 액정표시장치, 정보기기, 및 백라이트 유닛의 제조방법
CN202280042731.5A CN117561462A (zh) 2021-07-06 2022-06-22 光学片层叠体、背光单元、液晶显示装置、信息设备以及背光单元的制造方法
US18/404,396 US20240152005A1 (en) 2021-07-06 2024-01-04 Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-111866 2021-07-06
JP2021111866A JP7506640B2 (ja) 2021-07-06 2021-07-06 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/404,396 Continuation US20240152005A1 (en) 2021-07-06 2024-01-04 Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit

Publications (1)

Publication Number Publication Date
WO2023282055A1 true WO2023282055A1 (ja) 2023-01-12

Family

ID=84800210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024795 WO2023282055A1 (ja) 2021-07-06 2022-06-22 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法

Country Status (6)

Country Link
US (1) US20240152005A1 (ja)
JP (2) JP7506640B2 (ja)
KR (1) KR20240019337A (ja)
CN (1) CN117561462A (ja)
TW (1) TWI819681B (ja)
WO (1) WO2023282055A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506640B2 (ja) 2021-07-06 2024-06-26 恵和株式会社 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
JP7509721B2 (ja) 2021-07-06 2024-07-02 恵和株式会社 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
JP7289001B2 (ja) * 2021-09-28 2023-06-08 恵和株式会社 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010840A1 (ja) * 2008-07-22 2010-01-28 日本ゼオン株式会社 光拡散板、光拡散板の製造方法、面光源装置、及び表示装置
JP2020079920A (ja) * 2018-03-30 2020-05-28 恵和株式会社 光拡散板積層体、バックライトユニット、及び液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191847A (zh) * 2006-12-01 2008-06-04 鸿富锦精密工业(深圳)有限公司 光学板
JP2010117707A (ja) * 2008-10-16 2010-05-27 Asahi Kasei E-Materials Corp 光拡散板及び直下型点光源バックライト装置
JP2011129277A (ja) 2009-12-15 2011-06-30 Toppan Printing Co Ltd バックライトユニット及びディスプレイ装置
KR20140066237A (ko) * 2011-09-20 2014-05-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 백라이트 장치
JP5919964B2 (ja) * 2012-03-31 2016-05-18 大日本印刷株式会社 導光板、面光源装置、表示装置
WO2018179450A1 (ja) * 2017-04-01 2018-10-04 サンテックオプト株式会社 積層光学シート
KR20210009883A (ko) * 2019-07-18 2021-01-27 주식회사 엘지화학 화합물, 이를 포함하는 감광성 형광 수지 조성물, 색변환 필름, 백라이트 유닛 및 디스플레이 장치
JP7506640B2 (ja) 2021-07-06 2024-06-26 恵和株式会社 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010840A1 (ja) * 2008-07-22 2010-01-28 日本ゼオン株式会社 光拡散板、光拡散板の製造方法、面光源装置、及び表示装置
JP2020079920A (ja) * 2018-03-30 2020-05-28 恵和株式会社 光拡散板積層体、バックライトユニット、及び液晶表示装置

Also Published As

Publication number Publication date
TWI819681B (zh) 2023-10-21
US20240152005A1 (en) 2024-05-09
JP7506640B2 (ja) 2024-06-26
KR20240019337A (ko) 2024-02-14
JP2023113670A (ja) 2023-08-16
CN117561462A (zh) 2024-02-13
TW202309626A (zh) 2023-03-01
JP2023008355A (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2023282055A1 (ja) 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
US20240201539A1 (en) Optical Sheet Laminate, Backlight Unit, Liquid Crystal Display Device, Information Equipment, And Production Method For Backlight Unit
US20240231148A9 (en) Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
WO2023007917A1 (ja) 光学シート積層体、バックライトユニット、液晶表示装置、及び情報機器
JP7275341B1 (ja) 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
JP7289001B2 (ja) 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
WO2023145199A1 (ja) 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
WO2022196162A1 (ja) 光拡散シート、バックライトユニット、液晶表示装置及び情報機器
TWI847182B (zh) 光學片積層體、背光單元、液晶顯示裝置、資訊設備、以及背光單元之製造方法
WO2024147312A1 (ja) 光拡散シート、バックライトユニット、液晶表示装置、及び情報機器
WO2023090189A1 (ja) 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及び光学シート積層体の製造方法
JP2022144447A (ja) 光拡散シート、バックライトユニット、液晶表示装置及び情報機器
JP2023113017A (ja) 光拡散シート、バックライトユニット、液晶表示装置及び情報機器
KR20240108506A (ko) 광확산 시트, 백라이트 유닛, 액정표시장치, 정보기기, 및 백라이트 유닛의 제조방법
TW202422168A (zh) 光擴散片、背光單元、液晶顯示裝置、以及資訊機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280042731.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247001014

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001014

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837472

Country of ref document: EP

Kind code of ref document: A1