WO2023279634A1 - 升档控制方法 - Google Patents

升档控制方法 Download PDF

Info

Publication number
WO2023279634A1
WO2023279634A1 PCT/CN2021/134187 CN2021134187W WO2023279634A1 WO 2023279634 A1 WO2023279634 A1 WO 2023279634A1 CN 2021134187 W CN2021134187 W CN 2021134187W WO 2023279634 A1 WO2023279634 A1 WO 2023279634A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
brake
engine
upshift control
control method
Prior art date
Application number
PCT/CN2021/134187
Other languages
English (en)
French (fr)
Inventor
苏宇
林霄喆
孙艳
谭艳军
付军
张旭
王二朋
王开文
张恒
孙剑斌
李江
赵欣
王瑞平
Original Assignee
义乌吉利自动变速器有限公司
宁波吉利罗佑发动机零部件有限公司
极光湾科技有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 义乌吉利自动变速器有限公司, 宁波吉利罗佑发动机零部件有限公司, 极光湾科技有限公司, 浙江吉利控股集团有限公司 filed Critical 义乌吉利自动变速器有限公司
Publication of WO2023279634A1 publication Critical patent/WO2023279634A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to the technical field of hybrid power, in particular to an upshift control method.
  • the technical problem solved by the present invention is to provide an upshift control method, which can reduce the risk of dual-mass flywheel merging while ensuring smooth, smooth and dynamic shifting, and also reduce the reverse rotation of the P1 spline shaft. Bear torsion.
  • An upshift control method comprising the following steps: S1: pre-charging stage, when the first brake and the second brake meet the preset conditions, the engine torque is reduced to the preset torque, and the pressure of the clutch C0 is adjusted according to the engine torque demand ; S2: Torque stage, the first brake is reduced to the first torque, the second brake is increased to the second torque, and the driving motor torque works according to the preset strategy; S3: Speed stage, the input shaft speed is reduced to Target gear speed, the torque of the second brake increases, the torque of the driving motor increases, and the generator outputs reverse torque; S4: In the closing stage, the engine and the input shaft speed of the driving motor are synchronized, and the first The first brake torque is reduced to zero, the second brake torque is added with safety torque, the generator torque is adjusted to zero, the engine torque is controlled according to the current rotational speed, and the clutch C0 is locked according to the engine torque end.
  • the above step S3 includes: when it is detected that the dual-mass flywheel is about to have an over-limit torque, triggering the slipping mechanism of the clutch C0, and through the clutch C0, within its energy capacity Within the acceptable range, carry out sliding friction control.
  • the aforementioned preset conditions include: the first brake is adjusted to the second torque, and the second brake is precharged to the first torque.
  • the aforementioned preset strategy is an external characteristic strategy.
  • step S1 before the above step S1 includes: when the throttle opening is greater than a set throttle opening threshold and the power downshift will not be triggered in the current gear, it is determined to trigger the power upshift control, otherwise Continue to judge whether to trigger the power upshift control.
  • step S2 includes: the torque of the generator is zero, and the engine maintains the preset torque.
  • step S3 further includes: the second brake maintains the first torque, and the engine maintains the preset torque.
  • the second brake can be used to adjust its torque to assist gear shifting under the condition of allowing the heat capacity and torque capacity to be used, and the load of the P1 spline shaft can be reduced .
  • the shift begins, reduce the engine to the proper torque.
  • DMF dual mass flywheel
  • Fig. 1 is a flow chart of an upshift control method shown in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a 3DHT shown in an embodiment of the present invention.
  • Fig. 3 is a diagram showing the working principle of the embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a step in the shift process shown in the embodiment of the present invention.
  • FIG. 1 is a flow chart showing an upshift control method according to an embodiment of the present invention.
  • the upshift control method of the present invention comprises the following steps:
  • Step S3 includes: triggering the slipping mechanism of the clutch C0 when it is detected that the dual-mass flywheel is about to have a super-current value torque, and performing slipping control through the clutch C0.
  • the preset conditions include: the second brake performs a pre-filling action to adjust the torque to the first torque, and the first brake reduces the torque to the second torque.
  • the first torque is the clutch half-engagement point torque.
  • the oil filling control takes the clutch pressure corresponding to the half-engagement point of the clutch as the oil filling target pressure, takes the current clutch pressure as the actual pressure, and performs calibration optimization according to the oil temperature of different gearboxes and the difference between the clutch oil filling target pressure and the actual pressure.
  • the second torque is the slip torque
  • the reduction of the first brake torque to the slip torque point can be understood as the torque at which the first brake and the system torque reach a balance.
  • the default strategy is the external characteristic strategy.
  • the external characteristics and partial characteristics of the engine are collectively referred to as the speed characteristics of the engine, and the external characteristic curve of the engine is the curve of the engine output power (torque) versus the rotational speed measured when the engine throttle opening is 100%.
  • step S1 includes: when the throttle opening is greater than a set throttle opening threshold and the power downshift will not be triggered in the current gear, determine to trigger the power upshift control, otherwise continue to determine whether to trigger the power upshift control.
  • Step S2 includes: the generator torque is zero, and the engine maintains the preset torque.
  • Step S3 further includes: the second brake maintains the first torque, and the engine maintains the preset torque.
  • the power upshift of the hybrid transmission of the present invention is divided into four stages, which are pre-charging stage, torque stage, speed stage and closing stage.
  • the second brake (ongoing brake, Brake-2) performs a pre-charging action to make the clutch reach the half-engagement point (kiss point), and the first brake (offgoing brake, Brake-1) reduces torque to the slipping torque boundary.
  • the engine starts to perform torque reduction control, and the clutch C0 (Clutch-0) will adjust the pressure according to the engine torque demand.
  • the gear shift starts to reduce the engine to the appropriate torque, not zero torque. This torque can be considered from an economical point of view while reducing the torque while preventing the occurrence of pre-ignition.
  • the input shaft remains unchanged, the offgoing brake starts to reduce torque to the slip torque point, and the second brake (ongoing brake, Brake-2) starts to increase torque to its half combined (kiss point) torque point.
  • the torque of the drive motor works along the external characteristics, the generator maintains zero torque, the engine continues to maintain a low demand torque, and the clutch C0 adjusts the pressure according to the engine demand torque.
  • the input shaft speed is reduced to the target gear speed, and the offgoing brake maintains a half-bonded point (kiss point), the second brake (ongoing brake, Brake-2) actively increases the torque under the condition that the thermal capacity of the brake and the torque allow, the auxiliary speed stage is completed, and the decrease in the input torque is alleviated.
  • the drive motor starts to torque as the speed decreases.
  • the generator reverses the torque, which is used for the reverse acceleration of the input shaft speed reduction, and the engine continues to maintain low torque output.
  • the system detects that the dual-mass flywheel is about to have a super-current value torque, it will trigger the clutch C0 to slip mechanism, prompting the drive motor and engine to produce a certain amount of friction, and at this time, rely on C0 to realize the friction control of the process.
  • the engine, drive motor, and generator are coaxial in parallel mode, and this scheme describes gear shifting in parallel mode. Therefore, co-rotating.
  • Brake2 By using Brake2 to adjust its torque-assisted shifting under the condition of allowable capacity, it can not only ensure the smoothness of shifting, but also reduce the load on the P1 spline shaft. Then the dual mass flywheel and the spline shaft can be protected by using the slipping ability of the clutch C0 reasonably.
  • the clutch C0 adjusts the pressure for external output.
  • the engine and the input shaft of the drive motor rotate at the same speed, the torque of the offgoing brake is reduced to 0, and the torque of the second brake (ongoing brake, Brake-2) is added with a safe torque.
  • the motor maintains continuous output, the generator torque reaches 0, the engine torque outputs the characteristic torque according to the current speed, and the clutch C0 is locked according to the engine torque.
  • the second brake (ongoing brake, Brake-2) torque, driving motor torque, generator torque, engine torque, and clutch C0 torque can be appropriately changed according to actual conditions to combine optimal control.
  • the execution sequence of the second brake (ongoing brake, Brake-2) torque, drive motor torque, generator torque, engine torque, and clutch C0 torque can be flexibly controlled to start and end.
  • the torque control gradient can be optimized according to the actual situation.
  • Figure 4 shows a step in the shifting process and can be used as a reference. This figure is used to illustrate how to protect the coupling relationship of related hardware during the shift process; it can be used to analyze the torque relationship during the shift process.
  • the formulas in the attached drawings can be used for the selection of hardware boundaries; they can also be used for the design and formulation of shift time and shift torque.
  • the upshift control strategy described in the present invention can also be transformed into a control strategy for a power downshift shift process.
  • the engine is reduced to an appropriate torque at the beginning of shifting, and the torque reduction is completed under the premise of preventing pre-ignition.
  • For the speed phase of the shifting process use Brake2 to adjust its torque-assisted shifting under the condition of allowable capacity, which can not only ensure the smoothness of shifting, but also reduce the load on the P1 spline shaft.
  • the dual-mass flywheel and the spline shaft of the P1 module are effectively protected, preventing the dual-mass flywheel from lapping and the spline shaft from breaking.
  • the introduction of multiple torque control units is used to control gear shifting, and the operability and flexibility are higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

一种升档控制方法,包括以下步骤:预充阶段,当第一制动器与第二制动器满足预设条件时,发动机减扭矩至预设扭矩,离合器C0根据发动机扭矩需求调整压力;扭矩阶段,第一制动器调整至第一扭矩,第二制动器调整至第二扭矩,驱动电机扭矩沿外特性工作;转速阶段,输入轴转速至目标档位转速,第二制动器增大扭矩,驱动电机扭矩增大,发电机输出反向扭矩;闭合阶段,发动机与驱动电机输入轴转速同步,第一制动器扭矩降低为零,第二制动器扭矩附加安全扭矩,发电机扭矩为零,发动机扭矩根据当前转速进行外特性扭矩控制,离合器C0根据发动机扭矩进行锁止。

Description

升档控制方法 技术领域
本发明涉及混合动力技术领域,特别涉及一种升档控制方法。
背景技术
变速器的发展经历了手动变速器,自动变速器,手自一体变速器,双离合变速器,以及当前的混动变速器。变速器中一个关键的技术是换档控制,随着变速器的发展,变速器的换档方法也随之更新。
当前市场上有出现发动机与电机刚联或间接刚性连接时轴裂的现象,有双质量飞轮的发动机出现过并圈的问题,这些现象设计初期不易被察觉,容易发生。市面上关于自动变速器和混动变速器等以AT换档控制策略和DCT换档策略居多,但这两种方法均未很好的考虑混动变速器的物理硬件结构特性。
例如,大扭矩动力升档换档时,发动机出大扭矩,P3电机反向出大负扭矩,在换档的转速阶段,P1花键轴受到了极大的反向扭矩冲击,此时,双质量飞轮若按照传统的设计方法或设计偏小,会存在很大的并圈风险。使用发动机扭矩降0方法换档可行,但又不利于发动机燃烧,即不利于经济性,容易引发早燃。
因此,亟需一种灵活的升档控制方法来解决上述问题。
技术问题
本发明解决的技术问题在于,提供了一种升档控制方法,能在保证换档顺畅、顺利和动力性的同时减小双质量飞轮并圈的风险,也减小P1花键轴的反向承扭。
技术解决方案
本发明解决其技术问题是采用以下的技术方案来实现的:
一种升档控制方法,包括以下步骤:S1:预充阶段,当第一制动器与第二制动器满足预设条件时,发动机减扭矩至预设扭矩,且离合器C0根据所述发动机扭矩需求调整压力;S2:扭矩阶段,所述第一制动器减小至第一扭矩,所述第二制动器增大至第二扭矩,驱动电机扭矩按预设策略进行工作;S3:转速阶段,输入轴转速降低至目标档位转速,所述第二制动器扭矩增大,所述驱动电机扭矩增大,发电机输出反向扭矩;S4:闭合阶段,所述发动机与所述驱动电机输入轴转速同步,所述第一制动器扭矩降低为零,所述第二制动器扭矩附加安全扭矩,所述发电机扭矩调整为零,所述发动机扭矩根据当前转速进行外特性扭矩控制,所述离合器C0根据所述发动机扭矩进行锁止。
在本发明的较佳实施例中,上述步骤S3包括:在检测到双质量飞轮即将有超限值扭矩出现时,触发所述离合器C0打滑机制,并通过所述离合器C0,在其能量所能承受范围内,进行滑摩控制。
在本发明的较佳实施例中,上述预设条件包括:所述第一制动器进行调整扭矩至所述第二扭矩,所述第二制动器预充并至所述第一扭矩。
在本发明的较佳实施例中,上述预设策略为外特性策略。
在本发明的较佳实施例中,上述步骤S1之前包括:在油门开度大于一个设定的油门开度阈值且当前档位下不会触发动力降档时,判定触发动力升档控制,否则继续判断是否触发动力升档控制。
在本发明的较佳实施例中,上述步骤S2包括:发电机扭矩为零,所述发动机保持所述预设扭矩。
在本发明的较佳实施例中,上述步骤S3还包括:第二制动器保持所述第一扭矩,所述发动机保持所述预设扭矩。
有益效果
本发明采用上述技术方案达到的技术效果是:对于换档过程的转速阶段,可以利用第二制动器在允许使用热容量及扭矩容量条件下调整其扭矩辅助换档,可以减少P1花键轴的载荷量。换档开始时,降低发动机到合适扭矩。使用离合器C0的打滑能力来保护双质量飞轮以及P1模块花键轴。在保证换档顺畅、顺利和动力性的同时,减小双质量飞轮(DMF)并圈的风险,也减小P1花键轴的反向承扭。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明。
附图说明
图1为本发明实施例示出的升档控制方法的流程图。
图2为本发明实施例示出的3DHT原理图。
图3为本发明实施例示出的工作原理图。
图4为本发明实施例示出的换档过程中一步骤的示意图。
本发明的实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明的实施例保护的范围。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,而且所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
请参考图1至图4,图1为本发明实施例示出升档控制方法的流程图。
如图1所示,本发明的升档控制方法包括以下步骤:
S1:预充阶段,当第一制动器与第二制动器满足预设条件时,发动机减扭矩至预设扭矩, 且离合器C0根据所述发动机扭矩需求调整压力。
S2:扭矩阶段,所述第一制动器减小至第一扭矩,所述第二制动器增大至第二扭矩,驱动电机扭矩按预设策略进行工作。
S3:转速阶段,输入轴转速降低至目标档位转速,所述第二制动器扭矩增大,所述驱动电机扭矩增大,发电机输出反向扭矩。
S4:闭合阶段,所述发动机与所述驱动电机输入轴转速同步,所述第一制动器扭矩降低为零,所述第二制动器扭矩附加安全扭矩,所述发电机扭矩调整为零,所述发动机扭矩根据当前转速进行外特性扭矩控制,所述离合器C0根据所述发动机扭矩进行锁止。
步骤S3包括:在检测到双质量飞轮即将有超现值扭矩出现时,触发所述离合器C0打滑机制,并通过所述离合器C0进行滑摩控制。
预设条件包括:所述第二制动器进行预充油动作调整扭矩至所述第一扭矩,所述第一制动器减扭矩至所述第二扭矩。
具体地,第一扭矩为离合器半结合点扭矩。充油控制以离合器半结合点对应的离合器压力为充油目标压力,以离合器当前压力为实际压力,根据不同变速箱的油温以及离合器充油目标压力与实际压力差进行标定优化。
其中,第二扭矩为打滑扭矩,第一制动器扭矩减到打滑扭矩点可以理解为第一制动器与***扭矩达成平衡的扭矩。
预设策略为外特性策略。
其中,发动机的外特性和部分特性统称发动机的速度特性,发动机外特性曲线是当发动机节气门开度为100%时测得的发动机输出功率(扭矩)随转速变化的曲线。
步骤S1之前包括:在油门开度大于一个设定的油门开度阈值且当前挡位下不会触发动力降档时,判定触发动力升档控制,否则继续判断是否触发动力性升档控制。
步骤S2包括:发电机扭矩为零,所述发动机保持所述预设扭矩。
步骤S3还包括:第二制动器保持所述第一扭矩,所述发动机保持所述预设扭矩。
下面结合图1至图4详细对本发明进行说明:
请参阅图2、图3和图4,本发明的混动变速器动力升档,分为四个阶段,分别为预充阶段,扭矩阶段,转速阶段,闭合阶段。
在预充阶段,第二制动器(ongoing制动器,Brake-2)进行预充油动作使离合器抵达半结合点(kiss point),第一制动器(offgoing制动器,Brake-1)减扭矩到打滑扭矩边界。此时,发动机开始进行减扭矩控制,离合器C0(Clutch-0)会根据发动机扭矩需求调整压力。其中,换档开始降低发动机到合适扭矩,而非0扭矩。该扭矩可从经济性角度考虑,同时防止早燃出现前提下完成降低扭矩。
在扭矩阶段,输入轴保持不变,offgoing制动器开始减扭矩到打滑(slip)扭矩点,第二制动器(ongoing制动器,Brake-2)开始增扭矩到其半结合(kiss point)扭矩点。驱动电机扭矩沿着外特性工作,发电机保持0扭矩,发动机继续保持低的需求扭矩,离合器C0根据发动机需求扭矩调整压力。
在转速阶段,输入轴转速要降低到目标档位转速,offgoing制动器保持半结合点(kiss point),第二制动器(ongoing制动器,Brake-2)在其制动器热容量及扭矩允许的情况下主动增加扭矩,辅助转速阶段完成,缓解输入扭矩降低幅度,驱动电机此时随着转速降低,扭矩开始增大,发电机反向出扭矩,用于输入轴转速降低的反向加速度,发动机继续保持低扭矩输出,此过程如果***探测到双质量飞轮即将有超现值扭矩出现,随即触发离合器C0打滑机制,促使驱动电机和发动机产生一定的滑摩,此时,靠C0来实现该过程的滑摩控制。其中,发动机,驱动电机,发电机并联模式下共轴,本方案描述的是并联模式换档。因此,共转速。通过利用Brake2在允许使用容量条件下调整其扭矩辅助换档,这样既可以保证换档平顺性同时也可以减少P1花键轴的载荷量。然后通过合理的使用离合器C0的打滑能力可以保护双质量飞轮以及花键轴。
离合器C0调整压力对外输出,当Tclu <TEng(离合器接合扭矩小于发动机扭矩会出现打滑,该部分闭环控制C0扭矩来控制相应的转速差,Tclu = TEng + Jα,其中,α在降档时反方向加速度(-),使得离合器打滑时输出扭矩小于发动机扭矩)。
闭合阶段,发动机与驱动电机输入轴转速同步,offgoing制动器扭矩降低为0,第二制动器(ongoing制动器,Brake-2)扭矩附加安全扭矩 安全扭矩简单的讲:就是安全合理扭矩(标准扭矩),驱动电机保持持续出力,发电机扭矩到0,发动机扭矩根据当前转速出外特性扭矩,离合器C0根据发动机扭矩进行锁止。
上述实施方式中,第二制动器(ongoing制动器,Brake-2)扭矩、驱动电机扭矩、发电机扭矩、发动机扭矩、离合器C0扭矩可根据实际情况适当进行扭矩变化以组合出较优的控制。第二制动器(ongoing制动器,Brake-2)扭矩、驱动电机扭矩、发电机扭矩、发动机扭矩、离合器C0扭矩执行时序可灵活控制起始与结束。扭矩控制梯度可根据实际情况优化。
请参阅图4,图4所示为换档过程中的一个步骤,可作为参考使用。该图用于说明换挡过程如何去保护相关硬件的耦合关系式;可用于分析换档过程扭矩相互关系。附图中的公式可用于硬件边界选型相关使用;还可用于换档时间以及换挡扭矩大小的设计制定。
可选地,本发明所述的升档控制策略还可以变形为动力降档换挡过程的控制策略。
本发明提供的升档控制方法,换档开始时降低发动机到合适扭矩,在防止早燃出现前提下完成降低扭矩。对于换档过程的转速阶段,利用Brake2在允许使用容量条件下调整其扭矩辅助换档,既可以保证换档平顺性同时也可以减少P1花键轴的载荷量。通过使用离合器C0的打滑能力有效的保护了双质量飞轮以及P1模块花键轴,防止双质量飞轮并圈和花键轴断裂。多个扭矩控制单元的引入用以控制换档,可操作性,灵活性更高。
应该理解的是,在附图中,虽然各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本发明实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或网络设备等)执行本发明实施例各个实施场景所述的方法。
以上结合附图详细描述了本发明的优选实施方式,但是本发明并不限于上述实施方式中的具体细节,上述实施例及附图是示例性的,附图中的模块或流程并不一定是实施本发明实施例所必须的,不能理解为对本发明的限制,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型和组合,这些简单变型和组合均属于本发明的保护范围。

Claims (7)

  1. 一种升档控制方法,其特征在于,所述升档控制方法包括以下步骤:
    S1:预充阶段,当第一制动器与第二制动器满足预设条件时,发动机减扭矩至预设扭矩,且离合器C0根据所述发动机扭矩需求调整压力;
    S2:扭矩阶段,所述第一制动器减小至第一扭矩,所述第二制动器增大至第二扭矩,驱动电机扭矩按预设策略进行工作;
    S3:转速阶段,输入轴转速降低至目标档位转速,所述第二制动器扭矩增大,所述驱动电机扭矩增大,发电机输出反向扭矩;
    S4:闭合阶段,所述发动机与所述驱动电机输入轴转速同步,所述第一制动器扭矩降低为零,所述第二制动器扭矩附加安全扭矩,所述发电机扭矩调整为零,所述发动机扭矩根据当前转速进行外特性扭矩控制,所述离合器C0根据所述发动机扭矩进行锁止。
  2. 如权利要求1所述的升档控制方法,其特征在于,步骤S3包括:在检测到双质量飞轮即将有超现值扭矩出现时,触发所述离合器C0打滑机制,通过所述离合器C0进行滑摩控制。
  3. 如权利要求1所述的升档控制方法,其特征在于,所述预设条件包括:所述第二制动器进行预充油动作调整扭矩至所述第一扭矩,所述第一制动器减扭矩至所述第二扭矩。
  4. 如权利要求1所述的升档控制方法,其特征在于,所述预设策略为外特性策略。
  5. 如权利要求1所述的升档控制方法,其特征在于,步骤S1之前包括:在油门开度大于一个设定的油门开度阈值且当前挡位下不会触发动力降档时,判定触发动力升档控制,否则继续判断是否触发动力升档控制。
  6. 如权利要求1所述的升档控制方法,其特征在于,步骤S2包括:发电机扭矩为零,所述发动机保持所述预设扭矩。
  7. 如权利要求1所述的升档控制方法,其特征在于,步骤S3还包括:第一制动器保持所述第一扭矩,所述发动机保持所述预设扭矩。
PCT/CN2021/134187 2021-07-08 2021-11-29 升档控制方法 WO2023279634A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110776296.6 2021-07-08
CN202110776296.6A CN113653797B (zh) 2021-07-08 2021-07-08 升档控制方法

Publications (1)

Publication Number Publication Date
WO2023279634A1 true WO2023279634A1 (zh) 2023-01-12

Family

ID=78489274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134187 WO2023279634A1 (zh) 2021-07-08 2021-11-29 升档控制方法

Country Status (2)

Country Link
CN (1) CN113653797B (zh)
WO (1) WO2023279634A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653797B (zh) * 2021-07-08 2022-11-29 义乌吉利自动变速器有限公司 升档控制方法
CN115217960B (zh) * 2022-01-05 2024-03-26 广州汽车集团股份有限公司 动力降档的控制方法、双离合变速器
CN115355313B (zh) * 2022-08-31 2023-07-07 东风商用车有限公司 倒挡车速调整方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985301A (zh) * 2017-11-22 2018-05-04 吉利汽车研究院(宁波)有限公司 基于混合动力***的换挡***及升档换挡方法
CN111267833A (zh) * 2020-02-19 2020-06-12 义乌吉利动力总成有限公司 一种混合动力***的并联模式换档方法、***及汽车
CN111845706A (zh) * 2020-08-03 2020-10-30 苏州亚太金属有限公司 一种功率分流式混合动力汽车驱动***及其控制方法
DE102019208556A1 (de) * 2019-06-12 2020-12-17 Robert Bosch Gmbh Getriebe für eine Hybridantriebsanordnung
CN113653797A (zh) * 2021-07-08 2021-11-16 义乌吉利自动变速器有限公司 升档控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023957A1 (de) * 2007-05-23 2008-11-27 Zf Friedrichshafen Ag Verfahren zur Steuerung eines automatisierten Lastschaltgetriebes
KR102563430B1 (ko) * 2018-08-22 2023-08-03 현대자동차 주식회사 차량용 변속장치
CN109849889B (zh) * 2019-03-25 2020-08-28 科力远混合动力技术有限公司 功率分流式混合动力车辆混合动力驱动模式切换控制方法
CN110848381B (zh) * 2019-10-12 2021-04-27 中国第一汽车股份有限公司 一种升挡控制方法、双离合器自动变速器及车辆
CN111071235B (zh) * 2019-12-29 2021-08-03 吉泰车辆技术(苏州)有限公司 混动***的无缝升挡控制方法
CN112682505A (zh) * 2020-12-29 2021-04-20 安徽建筑大学 双离合自动变速器动力性升档方法、装置、变速器及汽车
CN112758079B (zh) * 2021-04-07 2021-06-18 北京航空航天大学 一种混合动力汽车有动力升挡过程控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985301A (zh) * 2017-11-22 2018-05-04 吉利汽车研究院(宁波)有限公司 基于混合动力***的换挡***及升档换挡方法
DE102019208556A1 (de) * 2019-06-12 2020-12-17 Robert Bosch Gmbh Getriebe für eine Hybridantriebsanordnung
CN111267833A (zh) * 2020-02-19 2020-06-12 义乌吉利动力总成有限公司 一种混合动力***的并联模式换档方法、***及汽车
CN111845706A (zh) * 2020-08-03 2020-10-30 苏州亚太金属有限公司 一种功率分流式混合动力汽车驱动***及其控制方法
CN113653797A (zh) * 2021-07-08 2021-11-16 义乌吉利自动变速器有限公司 升档控制方法

Also Published As

Publication number Publication date
CN113653797B (zh) 2022-11-29
CN113653797A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023279634A1 (zh) 升档控制方法
EP1916452B1 (en) Automatic transmission control apparatus
US8062173B2 (en) Method for controlling a hybrid drivetrain
JP3952005B2 (ja) ハイブリッド車両の駆動装置
JP5506484B2 (ja) 車両の動力伝達制御装置
EP2638311B1 (en) Double transition shift control in an automatic powershifting transmission
CN112460252B (zh) 一种基于双离合器的智能换挡方法及装置
US8909447B2 (en) Method for controlling shifts in a vehicle transmission
JP3994906B2 (ja) 多段式自動変速機の変速制御装置
US9278683B2 (en) Method for operating a drive train and control device
KR20150036390A (ko) 차량의 변속 제어 장치
US20190039602A1 (en) Control device
JP2011094643A (ja) 自動変速機及びその保護方法
JP2017094785A (ja) 自動変速機の変速制御装置
WO2021012968A1 (zh) 一种避免动力换挡变速器升挡功率循环的控制方法
CN114763838A (zh) 汽车换挡控制方法
JP2011020570A (ja) ハイブリッド車両の制御装置
CN108437973B (zh) 混合动力商用车行车起机控制方法
JP2015218895A (ja) 車両の変速制御装置
JP4590348B2 (ja) 自動変速機の変速制御装置及び方法
JP5465157B2 (ja) 車両の駆動力制御装置
WO2015071954A1 (ja) 車両用変速機の制御装置
JP4152937B2 (ja) ハイブリッド車両の制御装置
JP2006153161A (ja) ハイブリッド車両の制御装置
JP2008223991A (ja) トルクコンバータ及び自動変速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949119

Country of ref document: EP

Kind code of ref document: A1