WO2023274393A1 - 一种浸没式旋转填充床反应器及应用 - Google Patents

一种浸没式旋转填充床反应器及应用 Download PDF

Info

Publication number
WO2023274393A1
WO2023274393A1 PCT/CN2022/103252 CN2022103252W WO2023274393A1 WO 2023274393 A1 WO2023274393 A1 WO 2023274393A1 CN 2022103252 W CN2022103252 W CN 2022103252W WO 2023274393 A1 WO2023274393 A1 WO 2023274393A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
rotor
packed bed
materials
bed reactor
Prior art date
Application number
PCT/CN2022/103252
Other languages
English (en)
French (fr)
Inventor
陈建峰
初广文
张亮亮
孙宝昌
邹海魁
罗勇
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to US18/574,374 priority Critical patent/US20240238747A1/en
Publication of WO2023274393A1 publication Critical patent/WO2023274393A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00858Moving elements
    • B01J2208/00867Moving elements inside the bed, e.g. rotary mixer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Definitions

  • the invention relates to the technical field of reactors, in particular to a submerged rotating packed bed reactor and its application.
  • Heterogeneous reactions include gas-liquid reactions, gas-liquid-solid reactions, and immiscible two-liquid phase reactions, etc.
  • the diffusion of reactants to the phase interface and the area of the phase interface directly affect the mass transfer and reaction rate of different phases.
  • Process intensification has a significant effect on heterogeneous reactions.
  • the shear force can fully mix and disperse different phases.
  • the scale of the dispersion unit directly affects the size of the interface area and the reaction rate.
  • the rotating packed bed is a typical process intensification equipment, which can shear the liquid phase at high speed to form droplets, liquid films, and liquid filaments with large specific surface area and fast renewal, greatly enhancing mass transfer and reaction rate, and shortening the residence time of reactants in the bed ,
  • the contact time and reaction time of different phases are short, and the two phases can fully react by relying on external continuous circulation.
  • the removal of the heat released during the reaction is the key to keeping the temperature in the reactor within an appropriate range.
  • the heat requires constant external circulation, and the process of adding a third-phase solvent is cumbersome and has limited effect.
  • the characteristics of the rotating packed bed determine that it is suitable for rapid reactions. How to increase the contact time of the reactants in the rotating packed bed and how to design a simple and efficient heat exchange scheme for the rotating packed bed are important directions for the application of the rotating packed bed.
  • the technical problem to be solved by the present invention is to provide a submerged rotating packed bed reactor and its application, which can strengthen the heterogeneous reaction process, increase the contact time of the reactants, and at the same time remove the heat of reaction simply and efficiently.
  • a submerged rotary packed bed reactor the rotor filler is immersed in the material in the reactor, when the rotor rotates under the drive of the motor, the material moves from the inner edge of the rotor to the outer edge of the rotor under the action of centrifugal force, and the material is fully sheared when passing through the filler , dispersed into fluid microelements.
  • the materials in the reactor form a circulation, so that the materials in the reactor are evenly mixed;
  • the material enters from the inner edge of the rotor and moves toward the outer edge of the rotor. After passing through the retaining ring, it leads to the top of the reactor under the action of the deflector. The inner edge of the rotor, forming a loop.
  • the submerged rotary packed bed reactor is provided with a feed assembly so that reactants of different phases can pass to the rotor at the same time;
  • the feed assembly is a sleeve structure
  • the inner tube is connected to the reactor feed port
  • the top of the outer tube is located below the liquid level in the reactor;
  • a vortex breaking structure is provided between the feed assembly sleeves, preferably the vortex breaking structure is a baffle;
  • the baffle is located between the sleeves formed by the two feed pipes, and the lower end extends to the bottom plane of the rotor;
  • the submerged rotary packed bed reactor is equipped with heat exchange components to keep the materials in the reactor in a suitable operating temperature range;
  • the heat exchange component is a tube structure, the reactant material passes inside the tube, and the heat exchange medium passes outside the tube.
  • the submerged rotary packed bed reactor is provided with a deflector to guide the material at the outlet of the retaining ring to the upper part of the reactor, so that a circulation is formed in the reactor;
  • the form of the deflector includes a straight plate and a curved plate with different curvatures
  • the deflectors can be distributed in multiple layers, arranged step by step along the radial direction, and the diversion amount increases step by step.
  • the submerged rotary packed bed reactor is provided with a retaining ring to form a barrier between the rotor and the reactor main body area;
  • the side wall of the retaining ring has holes along the circumference, and the materials thrown out from the outer edge of the rotor lead to the main area of the reactor through the holes;
  • the lower half of the side wall of the retaining ring is a pillar structure, and the internal and external materials of the retaining ring can form a circulation through the gap between the pillars.
  • Any range recited in the present invention includes the endpoints and any value between the endpoints and any sub-range formed by the endpoints or any value between the endpoints.
  • each raw material in the present invention can be purchased commercially, and the equipment used in the present invention can be carried out by using conventional equipment in the field or referring to the prior art in the field.
  • the discrete phase and the dispersed phase lead to the rotor filler in a co-current manner, and are fully mixed and dispersed by the high-speed shear of the filler, compared with the single dispersed gas phase or liquid phase. Mixing with another phase reduces coalescence and results in better mixing.
  • deflectors are reasonably arranged, and under the action of deflectors, the liquid in the bed forms a circulation, and the dispersed phase is continuously dispersed into the circulating liquid, and the two-phase dispersion uniformity it is good.
  • the gas is dispersed into the liquid in the form of microbubbles, and the obtained microbubbles have small diameters, large specific surface areas, and high internal pressure, which is beneficial to gas-liquid reaction. Fully react and improve the reaction conversion rate.
  • a baffle plate is arranged between the two feed pipes to break the vortex, prevent the liquid in the feed pipe from being driven by the rotating shaft to generate a vortex, save shaft power, and simultaneously The phases are initially mixed before entering the packing.
  • Figure 1 is a schematic diagram of the overall structure of the submerged rotating packed bed reactor of the present invention.
  • Fig. 2 is a three-view view of the feed assembly of the submerged rotating packed bed reactor of the present invention.
  • a submerged rotary packed bed reactor the rotor filler is immersed in the material in the reactor, when the rotor rotates under the drive of the motor, the material moves from the inner edge of the rotor to the outer edge of the rotor under the action of centrifugal force, and the material is fully sheared when passing through the filler , dispersed into fluid microelements.
  • the materials in the reactor form a circulation, so that the materials in the reactor are evenly mixed;
  • the material enters from the inner edge of the rotor and moves toward the outer edge of the rotor. After passing through the retaining ring, it leads to the top of the reactor under the action of the deflector. The inner edge of the rotor, forming a loop.
  • the submerged rotary packed bed reactor is provided with a feed assembly so that reactants of different phases can pass to the rotor at the same time;
  • the feed assembly is a sleeve structure
  • the inner tube is connected to the reactor feed port
  • the top of the outer tube is located below the liquid level in the reactor;
  • a vortex breaking structure is provided between the feed assembly sleeves, preferably the vortex breaking structure is a baffle;
  • the baffle is located between the sleeves formed by the two feed pipes, and the lower end extends to the bottom plane of the rotor;
  • the submerged rotary packed bed reactor is equipped with heat exchange components to keep the materials in the reactor in a suitable operating temperature range;
  • the heat exchange component is a tube structure, the reactant material passes inside the tube, and the heat exchange medium passes outside the tube.
  • the submerged rotary packed bed reactor is provided with a deflector to guide the material at the outlet of the retaining ring to the upper part of the reactor, so that a circulation is formed in the reactor;
  • the form of the deflector includes a straight plate and a curved plate with different curvatures
  • the deflectors can be distributed in multiple layers, arranged step by step along the radial direction, and the diversion amount increases step by step.
  • the submerged rotary packed bed reactor is provided with a retaining ring to form a barrier between the rotor and the reactor main body area;
  • the side wall of the retaining ring has holes along the circumference, and the materials thrown out from the outer edge of the rotor lead to the main area of the reactor through the holes;
  • the lower half of the side wall of the retaining ring is a pillar structure, and the internal and external materials of the retaining ring can form a circulation through the gap between the pillars.
  • the shape of the filler includes an annular hollow cylinder and a multi-segment distributed annular cylinder; the type of filler includes a porous medium filler and a wire mesh filler.
  • no heat exchange components are provided, and the extension length of the corresponding deflector is increased. Since the heat exchange tubes are not passed through, the cross-sectional area of the circulation channel is higher than that through the heat exchange tubes. When the time is large, the circulation flow formed by the rotation of the rotor is large.
  • the deflector adopts multi-layer distribution, and is arranged step by step in the radial direction, and the diversion volume increases step by step, which is proportional to the corresponding annular cross-sectional area, and is overflow type from the center to the outside. , so that the overall circulation material is diverted to the upper part of the reactor.
  • the opening of the retaining ring is changed, and the opening is connected to the diversion pipe, and the diversion pipe extends to the upper part of the reactor. Compared with only opening the hole, after connecting the diversion pipe, the The material flowing out of the circle is more concentrated, and more directly leads to the tubes of the heat exchange component for timely heat exchange, and the heat exchange efficiency is higher.
  • the feeding assembly is improved.
  • the inner pipe of the feeding assembly is passed through the gas, and the inner pipe of the feeding assembly is extended and the dispersion pipe is arranged along the circumference, so that the gas It can lead to the inner edge of the packing uniformly and closer along the circumference, preventing the gas from overflowing from the outer tube of the feed assembly before reaching the inner edge of the packing.
  • the submerged rotary packed bed reactor of the present invention is used to degrade p-nitrophenol in water by ozone.
  • the concentration of gaseous ozone is 20 mg ⁇ L -1 .
  • the concentration of p-nitrophenol in the solution in the vessel is 100 mg ⁇ L -1 , and the rotational speed of the rotating packed bed is 500r/min-6000r/min.
  • the removal rate of p-nitrophenol can reach about 95%, and the mass transfer of ozone is obtained. Enhanced, the amount of dissolved ozone increases.
  • the submerged rotary packed bed reactor of the present invention is used to carry out the reaction of acid red B in ozonated water, and the catalyst iron-cobalt double metal oxide is attached to the surface of the porous filler by chemical means.
  • the solution into the reactor, turn on the cooling medium pump and the motor switch, and then inject ozone after the cycle is stable, and the rotation speed is 500r/min ⁇ 6000r/min.
  • the results showed that with the increase of the rotational speed, the removal rate of acid red B increased, and the removal rate increased significantly in the early stage of the increase of the rotational speed, but not in the later period. Under the optimal operating conditions, the removal rate of acid red B can reach about 98%, and the utilization rate of ozone is about 96%.
  • the liquid-liquid heterogeneous phase reaction of fatty acid methyl ester epoxidation is carried out by adopting the submerged rotating packed bed reactor of the present invention, using hydrogen peroxide as the oxygen source and formic acid as the oxygen carrier, the mass fraction of hydrogen peroxide used is 50%, and the mass fraction of formic acid The fraction is 86%, the molar ratio of double bond concentration to hydrogen peroxide concentration is 1:1.5, the molar ratio of double bond concentration to formic acid concentration is 1:0.23, the reaction temperature is 70°C, the volume fraction of the aqueous phase is about 0.3, and the rotating packed bed The rotating speed is 500r/min ⁇ 6000r/min, and the epoxy value and iodine value of the obtained epoxy fatty acid methyl ester are 6 and 1.9 respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种浸没式旋转填充床反应器及应用,转子填料浸没在反应器内物料中,在转子旋转带动下,反应器内物料形成循环,经过填料时物料被充分剪切,分散成流体微元,传质和反应速率得到增强。进料组件使得不同相物料同时通向转子内缘,挡圈(6)和挡板(16)起到破涡作用,换热组件可维持体系处于适宜温度范围。反应器适用于气-液及液-液等非均相体系,相比传统旋转填充床,物料接触时间长,使反应更充分。

Description

一种浸没式旋转填充床反应器及应用 技术领域
本发明涉及反应器技术领域,更具体的,涉及一种浸没式旋转填充床反应器及应用。
背景技术
非均相反应包括气-液反应,气-液-固反应,互不相溶两液相反应等,反应物向相界面的扩散和相界面面积直接影响不同相的传质及反应速率。过程强化对非均相反应效果显著,剪切力可将不同相充分混合和分散,分散单元的尺度直接影响界面面积大小及反应速率。
旋转填充床是典型的过程强化设备,可将液相高速剪切形成比表面积大、更新快的液滴、液膜、液丝,传质及反应速率大大增强,反应物在床内停留时间短,不同相接触时间、反应时间短,可依靠外部不断循环使得两相充分反应。
反应过程所释放的热量的移除是保持反应器内温度处于适宜范围的关键,旋转填充床内部换热现有两种方案,外循环液体换热及添加第三相溶剂换热,外循环换热需要不断外循环,添加第三相溶剂过程繁琐且效果有限。
旋转填充床的特性决定了其适用于快速反应,如何增加旋转填充床内反应物的接触时间,以及如何针对旋转填充床设计简洁高效的换热方案,是旋转填充床应用拓展的重要方向。
发明内容
本发明要解决的技术问题是提供一种浸没式旋转填充床反应器及应用,强化非均相反应过程,增加反应物的接触时间,同时还可以简洁高效地移走反应热量。
为解决上述技术问题,本发明采用如下的技术方案:
一种浸没式旋转填充床反应器,转子填料浸没在反应器内物料中,转子在电机带动下旋转时,受离心力作用物料由转子内缘向转子外缘运动,经过填料时物料被充分剪切,分散成流体微元。在转子旋转带动下,反应器内物料形成循环,使得反应器内物料混合均匀;
优选地,物料由转子内缘通入,向转子外缘运动,经过挡圈后在导流板作用下通向反应器上方,到达进料组件上端时受压差作用,经过进料组件通向转子内缘,形成循环。
所述浸没式旋转填充床反应器,设置进料组件,使得不同相的反应物可同时通向转子;
优选地,进料组件为套管结构,内管与反应器进料口相连,外管顶端位于反应器内液面以下;
优选地,进料组件套管间设置破涡结构,优选破涡结构为挡板;
优选地,所述挡板位于两进料管形成的套管间,下端延伸至转子底部平面;
所述浸没式旋转填充床反应器,设置换热组件,保持反应器内物料处于适宜操作温度范围;
优选地,换热组件为列管结构,反应物料从管内通过,管外通换热介质。
所述浸没式旋转填充床反应器,设置导流板,将挡圈出口的物料导流至反应器上部,使反应器内形成循环;
优选地,导流板形式包括直板、不同曲度弯曲板;
优选地,导流板可为多层分布式,沿径向逐级设置,逐级导流量增多。
所述浸没式旋转填充床反应器,设置挡圈,在转子与反应器主体区域间形成阻挡;
优选地,挡圈侧壁沿圆周开孔,转子外缘甩出的物料经过孔道通向反应器主体区域;
优选地,挡圈侧壁下半部分为立柱结构,挡圈内部与外部物料可通过立柱间隙形成循环。
本发明所记载的任何范围包括端值以及端值之间的任何数值以及端值或者端值之间的任意数值所构成的任意子范围。
如无特殊说明,本发明中的各原料均可通过市售购买获得,本发明中所用的设备可采用所属领域中的常规设备或参照所属领域的现有技术进行。
本发明的有益效果:
(1)本发明的浸没式旋转填充床反应器,离散相和分散相以并流方式通向转子填料,受到填料的高速剪切被充分混合和分散,相比单独分散气相或液相后再与另一相混合,可减少聚并,混合效果更好。
(2)本发明的浸没式旋转填充床反应器,合理设置导流板,在导流板的作用下,床内液体形成循环,分散相不断被分散到循环的液体中,两相分散均匀性好。
(3)本发明的浸没式旋转填充床反应器,气液反应时,气体以微气泡形式被分散到液体中,所得到的微气泡直径小、比表面积大、内部气压高,有利于气液充分反应,提高 反应转化率。
(4)本发明的浸没式旋转填充床反应器,两进料管间设有挡板,起到破涡的作用,防止进料管内液体被转轴带动生成旋涡,节省轴功率,同时可对两相在进入填料前进行初步混合。
附图说明
图1为本发明浸没式旋转填充床反应器整体结构示意图。
图2为本发明浸没式旋转填充床反应器的进料组件三视图。
其中:1-壳体,2-进料组件外管,3-进料口,4-换热介质入口,5-导流板,6-挡圈,7-出料口,8-电机,9-出料口,10-进料组件内管,11-换热介质出口,12-折流板,13-管板,14-换热列管,15-密封件,16-挡板,17-填料,18-开孔。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
在附图中示出了根据本发明公开实施例的各种截面图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及他们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
一种浸没式旋转填充床反应器,转子填料浸没在反应器内物料中,转子在电机带动下旋转时,受离心力作用物料由转子内缘向转子外缘运动,经过填料时物料被充分剪切,分散成流体微元。在转子旋转带动下,反应器内物料形成循环,使得反应器内物料混合均匀;
优选地,物料由转子内缘通入,向转子外缘运动,经过挡圈后在导流板作用下通向反应器上方,到达进料组件上端时受压差作用,经过进料组件通向转子内缘,形成循环。
所述浸没式旋转填充床反应器,设置进料组件,使得不同相的反应物可同时通向转子;
优选地,进料组件为套管结构,内管与反应器进料口相连,外管顶端位于反应器内液面以下;
优选地,进料组件套管间设置破涡结构,优选破涡结构为挡板;
优选地,所述挡板位于两进料管形成的套管间,下端延伸至转子底部平面;
所述浸没式旋转填充床反应器,设置换热组件,保持反应器内物料处于适宜操作温度范围;
优选地,换热组件为列管结构,反应物料从管内通过,管外通换热介质。
所述浸没式旋转填充床反应器,设置导流板,将挡圈出口的物料导流至反应器上部,使反应器内形成循环;
优选地,导流板形式包括直板、不同曲度弯曲板;
优选地,导流板可为多层分布式,沿径向逐级设置,逐级导流量增多。
所述浸没式旋转填充床反应器,设置挡圈,在转子与反应器主体区域间形成阻挡;
优选地,挡圈侧壁沿圆周开孔,转子外缘甩出的物料经过孔道通向反应器主体区域;
优选地,挡圈侧壁下半部分为立柱结构,挡圈内部与外部物料可通过立柱间隙形成循环。
在本发明的某些实施方式中,所述填料形状包括环状空心圆柱体、多段分布环状圆柱体;填料类型包括多孔介质填料、金属丝网填料。
在本发明的某些实施方式中,针对热效应不明显的体系,不设置换热组件,相应导流板延伸长度增加,由于不通过换热列管,循环通道横截面积比通过换热列管时大,转子旋转所形成的循环流量大。
在本发明的某些实施方式中,导流板采用多层分布式,沿径向逐级设置,逐级导流量增多,与相应环状横截面积成比例,由中心向外为溢流式,使得总体循环物料导流至反应器上部。
在本发明的某些实施方式中,对挡圈开孔进行变动,将开孔处连接导流管道,导流管道向反应器上部延伸,相比仅开孔,连接导流管道后,从挡圈流出的物料更集中,更直接通向换热组件列管中及时进行换热,换热效率更高。
在本发明的某些实施方式中,对进料组件进行改进,针对气液非均相反应体系,进料组件内管通气体,进料组件内管进行延伸并沿圆周设置分散管道,使得气体可沿圆周均匀地、更近距离地通向填料内缘,避免气体未到达填料内缘前从进料组件外管溢出。
实施例1
采用本发明浸没式旋转填充床反应器,进行臭氧降解水中对硝基苯酚的反应,气态臭氧浓度为20mg·L -1,从进料口通入,经过进料组件内管通向填料,反应器内溶液中对硝基苯酚浓度为100mg·L -1,旋转填充床转速为500r/min~6000r/min,经过充分反应,对硝基苯酚的去除率可达到95%左右,臭氧传质得到增强,溶解臭氧量增加。
实施例2
采用本发明浸没式旋转填充床反应器,进行臭氧氧化水中酸性红B的反应,采用化学手段将催化剂铁钴双金属氧化物附着在多孔填料表面。将溶液加入反应器中,打开冷却介质泵、电机开关,循环稳定后通入臭氧,转速为500r/min~6000r/min。结果表明,随着转速升高,酸性红B脱除率升高,前期转速升高脱除率升高幅度明显,后期升高幅度不明显。最优操作条件下,酸性红B脱除率可达到98%左右,臭氧利用率为96%左右。
实施例3
采用本发明浸没式旋转填充床反应器,进行脂肪酸甲酯环氧化的液-液非均相反应,以双氧水为氧源,甲酸为载氧体,所使用双氧水质量分数为50%,甲酸质量分数为86%,双键浓度与双氧水浓度的摩尔比为1:1.5,双键浓度与甲酸浓度的摩尔比为1:0.23,反应温度70℃,水相的体积分数约为0.3,旋转填充床转速为500r/min~6000r/min,所得环氧脂肪酸甲酯的环氧值和碘值分别为6和1.9。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (6)

  1. 一种浸没式旋转填充床反应器,其特征在于,转子填料浸没在反应器内物料中,转子在电机带动下旋转时,受离心力作用物料由转子内缘向转子外缘运动,经过填料时物料被充分剪切,分散成流体微元。
  2. 一种浸没式旋转填充床反应器,其特征在于,在转子旋转带动下,反应器内物料形成循环,使得反应器内物料混合均匀;
    物料由转子内缘通入,向转子外缘运动,经过挡圈后在导流板作用下通向反应器上方,到达进料组件上端时受压差作用,经过进料组件通向转子内缘,形成循环。
  3. 一种浸没式旋转填充床反应器,其特征在于,物料通过进料组件通向转子内缘,进料组件使得不同相的反应物可同时通向填料。
    进料组件为套管结构,内管与反应器进料口相连,外管顶端位于反应器内液面以下;
    进料组件套管间设置破涡结构,优选破涡结构为挡板;
    所述挡板位于两进料管形成的套管间,下端延伸至转子底部平面;
  4. 一种浸没式旋转填充床反应器,其特征在于,设置换热组件,保持反应器内物料处于适宜操作温度范围;
    换热组件为列管结构,反应物料从管内通过,管外通换热介质。
  5. 一种浸没式旋转填充床反应器,其特征在于,设置导流板,将挡圈出口的物料导流至反应器上部,有利于反应器内形成循环;
    导流板形式包括直板、不同曲度弯曲板;
    导流板可为多层分布式,沿径向逐级设置,逐级导流量增多。
  6. 一种浸没式旋转填充床反应器,其特征在于,设置挡圈,在转子与反应器主体区域间形成阻挡;
    挡圈侧壁沿圆周开孔,转子外缘甩出的物料经过孔道通向反应器主体区域;
    挡圈侧壁下半部分为立柱结构,挡圈内部与外部物料可通过立柱间隙形成循环。
PCT/CN2022/103252 2021-07-02 2022-07-01 一种浸没式旋转填充床反应器及应用 WO2023274393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/574,374 US20240238747A1 (en) 2021-07-02 2022-07-01 Immersion type rotating packed bed reactor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110752496.8A CN113477188B (zh) 2021-07-02 2021-07-02 一种浸没式旋转填充床反应器及应用
CN202110752496.8 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023274393A1 true WO2023274393A1 (zh) 2023-01-05

Family

ID=77939710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103252 WO2023274393A1 (zh) 2021-07-02 2022-07-01 一种浸没式旋转填充床反应器及应用

Country Status (3)

Country Link
US (1) US20240238747A1 (zh)
CN (1) CN113477188B (zh)
WO (1) WO2023274393A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477188B (zh) * 2021-07-02 2023-08-29 北京化工大学 一种浸没式旋转填充床反应器及应用
CN115177963B (zh) * 2022-07-17 2024-03-26 中国石油化工股份有限公司 一种双分散气液传质装置
CN118045536B (zh) * 2024-04-16 2024-06-11 天津凯莱英医药科技发展有限公司 锌还原连续反应***及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101570500A (zh) * 2009-05-11 2009-11-04 中北大学 一种芳香类有机物气相磺化制备芳香类磺酸的方法及设备
CN101745245A (zh) * 2010-02-05 2010-06-23 北京化工大学 一种多级逆流式旋转床反应精馏装置及其应用
CN102626600A (zh) * 2012-03-26 2012-08-08 北京化工大学 一种调变费托合成产物分布的反应器及应用
WO2013106974A1 (zh) * 2012-01-18 2013-07-25 中国石油天然气股份有限公司 一种解析合成氨变换气脱碳吸收剂富液的方法
CN106732210A (zh) * 2017-02-13 2017-05-31 西安强华环保科技有限公司 一种高剪切折流反应器
CN110339796A (zh) * 2019-06-28 2019-10-18 中北大学 一种用于硫酸烷基化法制备烷基化汽油的反应装置和方法
CN211329352U (zh) * 2019-10-29 2020-08-25 圣戈莱(北京)科技有限公司 一种化学共沉淀卧式超重力反应***
CN113477188A (zh) * 2021-07-02 2021-10-08 北京化工大学 一种浸没式旋转填充床反应器及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247663C (zh) * 2002-04-30 2006-03-29 财团法人工业技术研究院 利用旋转填充床从高粘度液体中移除其中所含的挥发成分的方法
CN201543418U (zh) * 2009-10-22 2010-08-11 中国石油天然气股份有限公司 一种内循环超重力反应装置
CN103801242B (zh) * 2012-11-03 2015-12-02 中国石油化工股份有限公司 反应器和利用这种反应器的烷基化反应方法
CN111167399A (zh) * 2020-01-16 2020-05-19 中北大学 一种热管式超重力反应器及其应用
CN111203171B (zh) * 2020-03-02 2021-12-28 北京理工大学 一种用于气液相反应的新型自压强制循环式反应器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101570500A (zh) * 2009-05-11 2009-11-04 中北大学 一种芳香类有机物气相磺化制备芳香类磺酸的方法及设备
CN101745245A (zh) * 2010-02-05 2010-06-23 北京化工大学 一种多级逆流式旋转床反应精馏装置及其应用
WO2013106974A1 (zh) * 2012-01-18 2013-07-25 中国石油天然气股份有限公司 一种解析合成氨变换气脱碳吸收剂富液的方法
CN102626600A (zh) * 2012-03-26 2012-08-08 北京化工大学 一种调变费托合成产物分布的反应器及应用
CN106732210A (zh) * 2017-02-13 2017-05-31 西安强华环保科技有限公司 一种高剪切折流反应器
CN110339796A (zh) * 2019-06-28 2019-10-18 中北大学 一种用于硫酸烷基化法制备烷基化汽油的反应装置和方法
CN211329352U (zh) * 2019-10-29 2020-08-25 圣戈莱(北京)科技有限公司 一种化学共沉淀卧式超重力反应***
CN113477188A (zh) * 2021-07-02 2021-10-08 北京化工大学 一种浸没式旋转填充床反应器及应用

Also Published As

Publication number Publication date
CN113477188A (zh) 2021-10-08
US20240238747A1 (en) 2024-07-18
CN113477188B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2023274393A1 (zh) 一种浸没式旋转填充床反应器及应用
CN109647315B (zh) 能量充分利用的超重力装置、氧化方法及***
CN101274249B (zh) 新型液液多相反应器
CN106076211A (zh) 一种气液两相射流反应器以及气液两相射流反应***
CN111841475A (zh) 一种高速旋转式新型反应器
CN106393339B (zh) 用于木材改性的综合型反应釜
CN213739016U (zh) 一种污水催化搅拌处理装置
CN109603720A (zh) 超重力氧化反应器装置及应用
CN111151201A (zh) 一种反应装置及甲醇羰基合成醋酸的***和方法
CN217699118U (zh) 己内酰胺生产工艺过程苯加氢工艺生成环己烯用的反应器
CN112429834A (zh) 一种催化氧化装置
CN110255698B (zh) 一种强化臭氧传质和氧化过程的水处理装置和方法
CN108640330B (zh) 超重力强化萃取-催化O3/Ti4+处理高浓度硝基苯废水的方法及装置
CN100582070C (zh) 四溴双酚a的制备方法
CN213032508U (zh) 一种螺旋管式反应器
CN114247412A (zh) 一种化工生产用高效型反应釜
CN104387258B (zh) 一种氯乙酸生产方法及氯化反应器
CN210787321U (zh) 一种搅拌反应釜
CN108970488B (zh) 一种混酸方法及其混酸装置
CN211385027U (zh) 一种乙苯氧化反应器
CN108675486A (zh) 超重力强化萃取-催化O3/Mn2+处理高浓度硝基苯废水的方法及装置
CN218281322U (zh) 一种反应釜原液预混合装置
CN219580517U (zh) 一种环合反应原料前期混合的微反应器
CN219662900U (zh) 用于硝酸钠生产的闪蒸罐进料冷却装置
CN104474979B (zh) 脉冲撞击超重场环流反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18574374

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832205

Country of ref document: EP

Kind code of ref document: A1