WO2023274000A1 - 一种机器人***及其评价方法、控制方法 - Google Patents

一种机器人***及其评价方法、控制方法 Download PDF

Info

Publication number
WO2023274000A1
WO2023274000A1 PCT/CN2022/100575 CN2022100575W WO2023274000A1 WO 2023274000 A1 WO2023274000 A1 WO 2023274000A1 CN 2022100575 W CN2022100575 W CN 2022100575W WO 2023274000 A1 WO2023274000 A1 WO 2023274000A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
arm assembly
robot system
index
reachable
Prior art date
Application number
PCT/CN2022/100575
Other languages
English (en)
French (fr)
Inventor
杨坤
陈蛟
谢强
叶廷
刘欢
周圆圆
Original Assignee
武汉联影智融医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121459480.XU external-priority patent/CN215606250U/zh
Priority claimed from CN202110732646.9A external-priority patent/CN115530980A/zh
Priority claimed from CN202111101869.1A external-priority patent/CN113664837B/zh
Application filed by 武汉联影智融医疗科技有限公司 filed Critical 武汉联影智融医疗科技有限公司
Publication of WO2023274000A1 publication Critical patent/WO2023274000A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • This specification relates to the technical field of surgical robot equipment, in particular to a robot system and its evaluation method and control method.
  • Minimally invasive surgery is regarded as the preferred treatment option for more and more patients due to its advantages of small wound, less pain and quick recovery.
  • minimally invasive surgery also has problems such as operator fatigue, hand shaking, inflexibility of hand instruments, and hand-eye incoordination.
  • this specification wishes to propose a robot system with high flexibility and safety, and an evaluation method and a control method of the robot system.
  • a robot system including: a trolley mechanism, including a trolley positioning component and an orientation component, the orientation component is arranged at the end of the trolley positioning component, and moves with the trolley positioning component a first arm assembly and two second arm assemblies disposed adjacent to the first arm assembly, the first arm assembly and the second arm assembly being disposed at the end of the orientation assembly; the first The arm assembly includes a first adjustment assembly and a telecentric mechanism connected to the end of the first adjustment assembly; the second arm assembly includes a second adjustment assembly and a telecentric mechanism connected to the end of the second adjustment assembly; wherein, The joints of the first adjustment assembly and the second adjustment assembly include active joints.
  • the number of the first arm assemblies is two.
  • the first adjusting assembly includes a first rotating part and a first moving part connected in series, the sum of the numbers of the first rotating part and the first moving parts is greater than or equal to four, and the first A rotating part is alternately connected with the first moving part, and the two ends of the first adjustment component are respectively connected with the orientation component and the telecentric mechanism.
  • one of the first rotating parts is connected in series to the orientation assembly.
  • the first adjusting assembly includes two of the first rotating parts and two of the first moving parts, wherein one of the first rotating parts is connected to the orientation assembly, and one of the first rotating parts is connected to the orientation assembly.
  • a moving part is connected to the telecentric mechanism.
  • the first rotating part includes a support rod body and a rotating joint provided on the support rod body, and the first rotating part is rotatably connected to another first rotating part through the support rod body.
  • a rotating joint or connecting the first moving part; the first moving part includes a connecting rod body and a moving joint arranged on the connecting rod body, and the first moving part is movably connected to the first rotating part through the moving joint.
  • the structure of the second adjustment assembly is different from that of the first adjustment assembly, and the second adjustment assembly can rotate in a direction away from the first adjustment assembly in a horizontal plane.
  • the second adjusting assembly includes a second rotating part and a second moving part connected in series, the total number of the second rotating part and the second moving part is greater than or equal to four, and the first Both ends of the two adjustment components are respectively connected to the orientation component and the telecentric mechanism.
  • the second adjustment assembly includes at least two second rotating components, wherein two of the second rotating components are connected in series, one end of which is connected to the orientation assembly, and the other end is connected in series to the remaining The second rotating part and/or the second moving part.
  • the second adjustment assembly includes three second rotating parts and one second moving part, which are connected in series in the order of rotating parts, rotating parts, moving parts, and rotating parts; or, Connect in series sequentially in the order of rotating parts, rotating parts, rotating parts and moving parts.
  • the second adjustment assembly has the same structure as the first adjustment assembly.
  • the first adjustment assembly and the second adjustment assembly comprise redundant joints.
  • One of the embodiments of this specification provides an evaluation method of a robot system, which is applied to a robot system, and the robot system includes at least one first arm assembly as an intermediate arm assembly and at least two first arm assemblies adjacent to the intermediate arm assembly.
  • the adjacent arm assembly the method includes: obtaining the position of the apocentric point of the intermediate arm assembly; obtaining the apocentric point position of the adjacent arm assembly according to the apocentric point position of the intermediate arm assembly; determining the apocentric point of each of the intermediate arm assemblies The optimal redundant joint value of the intermediate arm assembly at the position, and determine the optimal redundant joint of the adjacent arm assembly at the remote point position of each adjacent arm assembly at the remote point position of each intermediate arm assembly value; based on the optimal redundant joint value of each of the intermediate arm components and the optimal redundant joint value of each of the adjacent arm components, the target reachable index of the intermediate arm component and the target reachable index of the adjacent arm component are obtained
  • the target reachable index is to obtain the reachable evaluation index of the robot system according to the target reachable index of the intermediate arm assembly
  • the target reachable index of the intermediate arm assembly and the optimal redundant joint value of each of the adjacent arm assemblies are obtained based on the optimal redundant joint value of each intermediate arm assembly and the optimal redundant joint value of each adjacent arm assembly.
  • the target reachable index of the adjacent arm assembly includes: taking the reachable index corresponding to the optimal redundant joint value of each intermediate arm assembly as the reachable index corresponding to the optimal redundant joint value of each intermediate arm assembly The reachable index of the intermediate point at the position of the far center point of the intermediate arm assembly; the reachable index corresponding to the optimal redundant joint value of each adjacent arm assembly is used as the optimal redundancy of each adjacent arm assembly The reachable index of the adjacent point at the position of the far center point of the adjacent arm component corresponding to the joint value; obtain the target reachable index of the intermediate arm component according to the reachable index of all intermediate points, and obtain the reachable index of the target of the intermediate arm component according to the reachable index of all adjacent points A target reachability index for the adjacent arm assembly is obtained.
  • the target reachability index of the intermediate arm assembly, the target reachability index of the adjacent arm assembly, and the reachability evaluation index of the robot system are all obtained by mathematical statistics.
  • the obtaining the apocentric point position of the adjacent arm assembly according to the apocentric point position of the intermediate arm assembly includes: according to the apocentric point position of the intermediate arm assembly, the multi-arm coordinated apocentric point position A layout model that determines the apocentric location of the adjacent arm assemblies.
  • the determining the optimal redundant joint value of the intermediate arm assembly at the position of the far center point of each intermediate arm assembly includes: discretely enumerating all redundant joint values at the position of the far center point of each intermediate arm assembly The remaining joint value is used as the redundant joint value of the intermediate arm component; calculate the accessibility of the far-center point poses of all the intermediate arm components under the redundant joint value of each intermediate arm component, and obtain the redundancy of each intermediate arm component
  • the optimal redundant joint value of the middle arm component is obtained by using the preset conditions of the reachable index.
  • the determining the optimal redundant joint value of the adjacent arm assembly at the position of the far-center point of each adjacent arm assembly includes: discretely enumerating the positions of the far-center point of each adjacent arm assembly All the redundant joint values of the adjacent arm components are used as the redundant joint values of the adjacent arm components; calculate the accessibility of the far-center point poses of all adjacent arm components under the redundant joint values of each adjacent arm component, and obtain each The reachability index of the adjacent arm assembly corresponding to the redundant joint value of the adjacent arm assembly, wherein, the poses of the far-center points of all the adjacent arm assemblies are a preset number of preset poses; according to all adjacent arm assemblies The reachable index corresponding to the redundant joint value of the arm assembly and the preset condition of the reachable index obtain the optimal redundant joint value of the adjacent arm assembly.
  • the target reachable index of the intermediate arm assembly and the optimal redundant joint value of each of the adjacent arm assemblies are obtained based on the optimal redundant joint value of each intermediate arm assembly and the optimal redundant joint value of each adjacent arm assembly.
  • the target attainable index of the adjacent arm assembly it also includes; the attainable pose of the optimal redundant joint value at the position of the remote point of each intermediate arm assembly is respectively compared with the corresponding intermediate arm assembly telecentric Collision calculation is performed on the reachable pose corresponding to the optimal redundant joint value at the far-center point position of each adjacent arm assembly at the point position, and the collision probability index of the robot system is obtained.
  • the achievable pose of the optimal redundant joint value at the position of the far center point of each intermediate arm assembly is respectively compared with each of the corresponding positions of the far center point of the intermediate arm assembly Collision calculation is performed on the reachable pose corresponding to the optimal redundant joint value at the far center point of the adjacent arm assembly, and the collision probability index of the robot system is obtained, including: calculating the optimal redundant joint value of each intermediate arm assembly
  • the reachable poses corresponding to the joint values are the reachable poses composed of the reachable poses corresponding to the optimal redundant joint values of each adjacent arm assembly at the position of the corresponding intermediate arm assembly's far-center point
  • the at least two adjacent arm assemblies include at least one other first arm assembly and at least one second arm assembly.
  • the at least two adjacent arm assemblies include at least two second arm assemblies.
  • One of the embodiments of this specification provides a method for optimizing configuration parameters of a robot system, which is used in a robot system, and the robot system includes at least one first arm assembly as an intermediate arm and a first arm assembly adjacent to the intermediate arm assembly At least two adjacent arm assemblies, the method includes: discretely enumerating configuration parameter combinations of the robot system; according to the above-mentioned robot system evaluation method, obtaining an accessible evaluation index for each configuration parameter combination; All the configuration parameter combinations and their corresponding reachable evaluation indexes are sorted by preset rules; according to the sorting of the preset rules, the configuration combination corresponding to the optimal evaluation index is selected as the optimal configuration of the robot system. type.
  • One of the embodiments of this specification provides a method for optimizing configuration parameters of a robot system, which is used in a robot system, and the robot system includes at least one first arm assembly as an intermediate arm and a first arm assembly adjacent to the intermediate arm assembly At least two adjacent arm assemblies, the method includes: determining at least one set of configuration parameter combinations of the robot; according to the above-mentioned robot system evaluation method, obtaining an achievable evaluation index of the configuration parameter combination; The type parameter combination and the corresponding reachability evaluation index are input into the genetic algorithm for iterative optimization to obtain the optimal configuration of the robot system.
  • the robot system includes a plurality of arm assemblies, and the arm assemblies include an adjustment assembly and a telecentric mechanism.
  • the joints of the adjustment assemblies include active joint; the method includes: acquiring environmental information, the environmental information including the working space and obstacle information of the robot system; determining the possible position of the robot system based on the target pose at the fixed point of the telecentric mechanism reach index and collision probability index; determine whether the reachable index and the collision probability index meet preset conditions; respond to yes, drive the telecentric mechanism to control the surgical instrument; respond to no, drive the adjustment assembly and the The telecentric mechanism is linked to control the surgical instrument.
  • FIG. 1 is a schematic diagram of a robot system applied to a surgical robot according to some embodiments of the present specification
  • Fig. 2 is a three-dimensional structure diagram of a robot system according to some embodiments of the present specification
  • Fig. 3 is a structure diagram of a robot system shown according to some embodiments of this specification.
  • Fig. 4 is an architecture diagram of another robot system shown according to some embodiments of this specification.
  • Fig. 5 is a top view of the connection and adjustment mechanism of the orientation component in the robot system according to some embodiments of the present specification
  • Fig. 6 is a schematic diagram of a telecentric mechanism in a robot system according to some embodiments of the present specification
  • Fig. 7 is a structural diagram of a robot system according to some embodiments of the present specification.
  • Fig. 8 is a block diagram of the terminal hardware structure of the robot system according to some embodiments of this specification.
  • Fig. 9 is a flowchart of a robot system evaluation method according to some embodiments of this specification.
  • Fig. 10 is a layout model diagram of multi-manipulator coordinated telecentric points according to some embodiments of this specification.
  • 11 is a flow chart of determining optimal redundant joint values of an arm assembly according to some embodiments of the present specification.
  • Fig. 12 is a flow chart of a method for optimizing configuration parameters of a robot system according to some embodiments of this specification.
  • Fig. 13 is a flow chart of another method for optimizing configuration parameters of a robot according to some embodiments of this specification.
  • Figure 14 is a flowchart of a screening method according to some embodiments of the present specification.
  • Fig. 15 is a flowchart of a method for solving optimal redundant joint values of the first arm assembly according to some embodiments of the present specification
  • Fig. 16 is a flowchart of a robot system control method according to some embodiments of the present specification.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a robotic system may include a trolley mechanism, a first arm assembly, and two second arm assemblies disposed adjacent to the first arm assembly.
  • the trolley structure may include a trolley positioning assembly and an orientation assembly, the orientation assembly is arranged at the end of the trolley positioning assembly and moves with the trolley positioning assembly, wherein the first arm assembly and the second arm assembly are arranged on the orientation assembly the end.
  • the first arm assembly may include a first adjustment assembly and a telecentric mechanism connected to the end of the first adjustment assembly
  • the second arm assembly may include a second adjustment assembly and a telecentric mechanism connected to the end of the second adjustment assembly. mechanism.
  • the joints of the first adjustment assembly and the second adjustment assembly include active joints.
  • the trolley positioning component can drive the orientation component to rotate and lift to adjust the position of the adjustment component in space, so that the instruments (for example, surgical instruments) set on the telecentric mechanism in the adjustment component Aim at the target location.
  • the first adjustment component and the second adjustment component can move relative to the orientation component respectively, so as to drive the telecentric mechanism and the surgical instrument to move, so that the surgical instrument performs surgery.
  • the joints of the first adjustment component and the second adjustment component include active joints, which can improve the movement space of the first adjustment component and the second adjustment component, and the second adjustment component can move outward relative to the first adjustment component , further increases the activity space of the second adjustment component, can make full use of bionic features, effectively improve the operating space and flexibility of each arm component of the robot system, and improve the flexibility and safety of the robot system.
  • the embodiment of this specification also describes an evaluation method of a robot system, which divides the first arm assembly and the second arm assembly of the robot system into an intermediate arm assembly and a phase adjacent to the intermediate arm assembly according to the spatial position relationship and the motion constraint relationship.
  • the evaluation method obtains the position of the far center point of the intermediate arm component, and obtains the position of the distant point of the adjacent arm component according to the position of the distant point of the intermediate arm component, and determines the intermediate arm at the position of the far center point of each intermediate arm component
  • the optimal redundant joint value and determine the optimal redundant joint value of the adjacent arm assembly at the apocentric point position of each adjacent arm assembly under the apocentric point position of each intermediate arm assembly, based on the optimal
  • the redundant joint value and the optimal redundant joint value of each adjacent arm component obtain the target reachable index of the intermediate arm component and the target reachable index of the adjacent arm component, according to the target reachable index of the intermediate arm component and the adjacent arm component
  • the target reachability index of the component obtains the reachability evaluation index of the robot system
  • This evaluation method abstracts the actual working conditions of each arm assembly (for example, the first arm assembly and the second arm assembly) of the robot system into a kinematic model, and realizes the reachability index of the first arm assembly and the second arm assembly.
  • the calculation of the reachability index of the above-mentioned robot system is constructed, and the evaluation index based on the reachable space suitable for the configuration design of the above-mentioned robot system is constructed, and the evaluation index can further guide the parameter (such as size, etc.) design of the above-mentioned robot system, so that the above-mentioned robot The system has better flexibility and obstacle avoidance.
  • Fig. 1 is a schematic diagram of a robot system applied to a surgical robot according to some embodiments of the present specification.
  • a surgical robot may include a robot system 100 , a console 300 , an operating bed 500 and a vision trolley 400 .
  • the robotic system 100 may include a trolley mechanism, a first arm assembly, and two second arm assemblies adjacent to the first arm assembly.
  • the trolley mechanism may include a trolley positioning component and an orientation component, and the orientation component is arranged at the end of the trolley positioning component and moves with the trolley positioning component.
  • the first arm assembly and the second arm assembly are arranged at the end of the orientation assembly, the first arm assembly includes a first adjustment assembly and a telecentric mechanism connected to the end of the first adjustment assembly, and the second arm assembly includes a first adjustment assembly.
  • the robot system 100 is used to support and adjust the posture of a surgical instrument (for example, the surgical instrument 200 shown in FIG. 2 ), so as to perform surgery on the lesion position of the patient 600 .
  • a surgical instrument for example, the surgical instrument 200 shown in FIG. 2
  • FIGS. 2-7 Two adjusting components and a telecentric mechanism connected to the end of the second adjusting component.
  • the operating bed 500 is used to carry the patient 600
  • the console 300 is connected to the vision trolley 400 and the robot system 100
  • the vision trolley 400 is used to obtain images between the surgical instrument 200 and the patient 600 operating area.
  • the robot system 100 can be operated on the patient 600 according to the image information presented by the vision trolley 400 and controlled by the console 300 .
  • the vision trolley 400 may include an endoscopic system.
  • the endoscopic system may include an interventional pipeline with a camera unit and a display.
  • the interventional pipeline may be used as a surgical instrument (such as surgical instrument 200) through the robotic system 100.
  • the focus area inside the human body, and the image information of the focus area is obtained through the camera unit, so that the image information of the focus area is displayed through the display.
  • the surgical robot provided by the embodiment of this specification can ensure the safety of the surgical robot when it is used, improve its flexibility and obstacle avoidance during surgery, ensure the performance of the surgical robot, and facilitate the use of the surgical robot by setting the robot system 100 .
  • the surgical robot utilizes the robot system 100 to perform minimally invasive surgery on the patient 600 on the operating bed 500 , such as cooperating with an endoscope system to transmit image information inside the patient 600 .
  • the doctor controls the adjustment mechanism (for example, the first arm assembly and the second arm assembly) of the robot system 100 through the operation console 300 to orientate support and adjust the movement of the telecentric mechanism and the surgical instrument 200 to realize the operation inside the patient 600 .
  • the layout and posture of the surgical instrument 200 are adjusted through the configuration of the first arm assembly and the second arm assembly to ensure the flexibility and obstacle avoidance of the surgical instrument 200 during the operation, thereby ensuring the safety during the operation.
  • Fig. 2 is a three-dimensional structure diagram of a robot system according to some embodiments of the present specification.
  • the robotic system 100 may include a trolley mechanism 110, a first arm assembly 120a, and two second arm assemblies 120b adjacent to the first arm assembly 120a.
  • the trolley mechanism 110 may include a trolley positioning component 111 and an orientation component 112 , the orientation component 112 is disposed at an end of the trolley positioning component 111 and moves together with the trolley positioning component 111 .
  • the first arm assembly 120a and the second arm assembly 120b are disposed at ends of the orientation assembly 112 .
  • the first arm assembly 120a may include two first adjustment assemblies 121 and a telecentric mechanism 130 connected to the ends of the first adjustment assemblies 121
  • the second arm assembly 120b may include two second adjustment assemblies 122 and The telecentric mechanism 130 connected to the end of the second adjusting component 122 . That is, the number of the first arm assembly 120a may be two, and each first arm assembly 120a includes a first adjusting assembly 121 and a telecentric mechanism 130 .
  • the number of second arm assemblies 120b may be two, and each second arm assembly 120b includes a second adjustment assembly 122 and a telecentric mechanism 130 .
  • the first adjustment assembly 121 and the second adjustment assembly 122 have different structures, and are rotatably connected to the orientation assembly 112 , the two first adjustment assemblies 121 are located between the two second adjustment assemblies 122 , and The second adjustment assembly 122 can rotate in a direction away from the first adjustment assembly 121 in the horizontal plane.
  • the four telecentric mechanisms 130 are respectively arranged at the ends of the first adjusting assembly 121 and the second adjusting assembly 122 , and the telecentric mechanisms 130 are used for installing the surgical instrument 200 .
  • the first arm assembly 120a may include a first adjustment assembly 121 and a telecentric mechanism 130 connected to the end of the first adjustment assembly 121
  • the second arm assembly 120b may include two second adjustment assemblies 122 and a connection
  • the telecentric mechanism 130 is at the end of the second adjustment component 122 , wherein the first adjustment component 121 is located between the two second adjustment components 122 .
  • the number of the first adjustment components 121 is not limited to the above-mentioned one or two, but may be three or more
  • the number of the second adjustment components 122 is not limited to the above-mentioned two, and may also be three
  • the quantity of the first adjustment component 121 and the second adjustment component 122 can be adaptively adjusted according to specific application scenarios.
  • the joints (eg, first rotating member 1211 , first moving member 1212 , second rotating member 1221 , second moving member 1222 ) of the first adjustment assembly 121 and the second adjustment assembly 122 comprise active joints.
  • Active joints can be understood as joints that move directly based on instructions.
  • the active joint may include multiple rotating joints (rotating shafts, hinges or other components that can achieve rotation), and each rotating joint needs to be controlled by corresponding instructions to rotate, and each rotating joint will not be affected by Rotation occurs due to the rotation of other joints.
  • the joints of the first adjustment assembly 121 and the second adjustment assembly 122 may include some active joints and some passive joints.
  • the joints of the first adjustment assembly 121 and the second adjustment assembly 122 may all be active joints.
  • the activity space of each arm assembly in the robot system 100 can be increased, and in addition, the flexibility and obstacle avoidance of the robot system 100 can be effectively improved.
  • the active joint can be linked with the telecentric mechanism 130 during the surgical operation of the robotic system 100, so as to realize the adjustment of the posture of the surgical instrument during the surgical operation, and further improve the performance of the surgical operation of the robotic system 100. Flexibility and obstacle avoidance.
  • the trolley mechanism 110 is the load-bearing structure of the robot system 100.
  • the robot system 100 can be carried by the trolley mechanism 110, so that the robot system 100 is at a certain height, which is convenient for later operation.
  • One end of the first adjusting assembly 121 and the second adjusting assembly 122 is installed on the end of the trolley mechanism 110 , and the other end of the first adjusting assembly 121 and the second adjusting assembly 122 is installed on the telecentric mechanism 130 .
  • the first adjustment assembly 121 and the second adjustment assembly 122 can adjust the pose relative to the trolley mechanism 110 to adjust the spatial position of the telecentric mechanism 130 , and then adjust the pose of the surgical instrument 200 on the telecentric mechanism 130 . In this way, there will be no interference between the surgical instruments 200 on the four telecentric mechanisms 130 , ensuring the flexibility and obstacle avoidance of the surgical instruments 200 during use, and further ensuring the safety of the robotic system 100 during surgery.
  • the trolley mechanism 110 may include a trolley positioning component 111 and an orientation component 112 , the orientation component 112 is disposed at an end of the trolley positioning component 111 and moves with the trolley positioning component 111 .
  • the trolley positioning component 111 plays a bearing role, and is used for carrying and positioning the orientation component 112, so that the orientation component 112 is in a suitable spatial position.
  • the trolley positioning component 111 can perform lifting movement in the vertical direction, perform rotation movement in the horizontal plane and perform telescopic movement in the horizontal plane, and the orientation component 112 is located at the end of the trolley positioning component 111 .
  • the orientation assembly 112 is rotatably mounted on the end of the trolley positioning assembly 111, and the trolley positioning assembly 111 can drive the orientation assembly 112 to lift, telescopic and rotate, so that the orientation assembly 112 is in a suitable position to rotatably connect the first arm assembly 120a and
  • the second arm assembly 120b is convenient for adjusting the positions of the first arm assembly 120a and the second arm assembly 120b, so that the first arm assembly 120a and the second arm assembly 120b are at a planned fixed point.
  • the planned fixed point refers to the fixed position of the first arm assembly 120a and the second arm assembly 120b during the operation, so as not to affect the operation of the surgical instrument 200 .
  • the orientation assembly 112 can be a suspension disk orientation assembly, and the suspension setting of the first arm assembly 120a and the second arm assembly 120b is realized through the suspension disk orientation assembly, so that the first adjustment assembly 121 and the second adjustment assembly 121 The component 122 is suspended in the space so as to drive the telecentric mechanism 130 and the surgical instrument 200 to perform surgical operations.
  • the orientation assembly 112 may also be other structures that can realize the suspension installation of the first adjustment assembly 121 and the second adjustment assembly 122 .
  • the first arm assembly 120a may include two first adjustment assemblies 121 and a telecentric mechanism 130 connected to the ends of the first adjustment assemblies 121
  • the second arm assembly 120b may include two
  • the second adjustment assembly 122 is connected to the telecentric mechanism 130 at the end of the second adjustment assembly 122 .
  • the structures of the two first adjustment assemblies 121 and the two second adjustment assemblies 122 are different.
  • One end of the first adjustment assembly 121 is rotatably connected to the end of the orientation assembly 112 , and the other end of the first adjustment assembly 121 is installed with the telecentric mechanism 130 .
  • One end of the second adjustment assembly 122 is rotatably connected to the orientation assembly 112 , and the other end of the second adjustment assembly 122 is installed with the telecentric mechanism 130 .
  • the first adjustment assembly 121 and the second adjustment assembly 122 may be sequentially arranged at intervals along the long side direction of the orientation turntable 1122 , wherein the two first adjustment assemblies 121 are located between the two second adjustment assemblies 122 . That is to say, the two second adjustment assemblies 122 are located on the outside, and the two first adjustment assemblies 121 are located on the inside.
  • the adjustment assemblies (for example, the first adjustment assembly 121 and the second adjustment assembly 122) of each arm assembly can be arranged in a linear (for example, straight, arc, curved) manner on the orientation turntable 1122 , wavy arrangement, polygon (for example, parallelogram, etc.) and other arrangements.
  • one of the two first adjustment assemblies 121 can be used as an intermediate arm assembly, and the other first adjustment assembly 121 and second adjustment assembly 122 adjacent to the first adjustment assembly 121 can be used as an adjacent arm assembly. components.
  • the two first adjustment assemblies 121 can also be used as intermediate arm assemblies, and the two second adjustment assemblies 122 adjacent to the first adjustment assembly 121 can be used as adjacent arm assemblies.
  • one end of the two first adjustment assemblies 121 and the two second adjustment assemblies 122 can be rotatably mounted on the orientation assembly 112, and the two first adjustment assemblies 121 and the two second adjustment assemblies 122 are facing away from the orientation
  • the direction of the components 112 extends, and there is a certain distance between two adjacent components to avoid interference between the distal telecentric mechanisms 130 .
  • the telecentric mechanism 130 is used to realize the installation of the surgical instrument 200 on the first adjustment assembly 121 and the second adjustment assembly 122 , and the telecentric mechanism 130 can drive the surgical instrument 200 to perform corresponding operations.
  • the structures of the first adjustment component 121 and the second adjustment component 122 are different. That is to say, there are structural differences between the first adjustment assembly 121 and the second adjustment assembly 122 . In this way, the range of motion of the second adjustment assembly 122 can be changed, and the movement space of the second adjustment assembly 122 can be increased, so that the second adjustment assembly 122 can rotate in a direction away from the first adjustment assembly 121, that is, the second adjustment assembly 122 can face outward.
  • the trolley positioning component 111 can drive the orientation component 112 to rotate and lift, so as to adjust the approximate position of the adjustment component in space, so that the first adjustment component 121 and the second adjustment component 122 are aligned with the patient 600 lesion location. Subsequently, the first adjustment assembly 121 and the second adjustment assembly 122 can respectively move relative to the orientation assembly 112 to drive the telecentric mechanism 130 and the surgical instrument 200 thereon to move, so that the surgical instrument 200 performs surgery.
  • the second adjustment assembly 122 can move outward relative to the first adjustment assembly 121, increasing the activity space of the second adjustment assembly 122, making full use of bionic features, and effectively improving the first adjustment assembly 121 and the second adjustment assembly. The operating space and flexibility of the component 122 are adjusted to improve the flexibility and obstacle avoidance of the robot system 100 .
  • the first adjustment assembly 121 may include a first rotating part 1211 and a first moving part 1212 connected in series, and the sum of the numbers of the first rotating part 1211 and the first moving part 1212 is greater than Or equal to four, the first rotating component 1211 is connected alternately with the first moving component 1212 , and the two ends of the first adjustment component 121 connected in series are respectively connected to the orientation component 112 and the telecentric mechanism 130 .
  • the first adjustment assembly 121 connected in series is used to control the pose of the surgical instrument 200 at the end of the telecentric mechanism 130 relative to the orientation assembly 112 .
  • the number of the first rotating part 1211 and the first moving part 1212 in the first adjusting assembly 121 is at least four. It can be understood that the first rotating part 1211 can output rotational motion, and the first moving part 1212 can output moving motion, and its specific structure will be described in detail later. As an example only, the total number of the first rotating parts 1211 and the first moving parts 1212 in the first adjusting assembly 121 may be four, five or more. For example, when the number of the first rotating parts 1211 and the first moving parts 1212 is four, the number of the first rotating parts 1211 is two, and the number of the first moving parts 1212 is two.
  • the number of the first rotating parts 1211 and the first moving parts 1212 is five, the number of the first rotating parts 1211 is three, and the number of the first moving parts 1212 is two.
  • the number of the first rotating parts 1211 and the first moving parts 1212 is six, the number of the first rotating parts 1211 is three, and the number of the first moving parts 1212 is three.
  • the first rotating part 1211 and the first moving part 1212 are connected in series, and the first rotating part 1211 and the first The moving parts 1212 are arranged alternately. That is to say, there is a first moving part 1212 between every two adjacent first rotating parts 1211, and there is a first rotating part 1211 between every two adjacent first moving parts 1212, so as to form the first An adjustment component 121 .
  • one end of the first adjusting assembly 121 connected in series is rotatably connected to the orientation assembly 112 , and the other end is installed with the telecentric mechanism 130 .
  • the first rotating part 1211 in the first adjustment assembly 121 can perform rotational movement, and the first moving part 1212 can perform moving movement, and then drive the telecentric mechanism 130 and the surgical instrument 200 to make corresponding movements, so as to adjust the space of the surgical instrument 200 pose to meet the needs of surgery.
  • one first rotating part 1211 is connected in series to the orientation assembly 112 .
  • the rest of the first rotating parts 1211 are alternately connected with the first moving parts 1212 . That is to say, the first adjustment assembly 121 is rotatably connected to the orientation assembly 112 through the first rotating member 1211 .
  • one end of one of the first rotating parts 1211 is rotatably connected to the orientation assembly 112, the other end of the first rotating part 1211 is connected to one end of one of the first moving parts 1212, and the other end of one of the moving parts is further One end of another first rotating member 1211 is connected, the other end of another first rotating member 1211 is connected to one end of another first moving member 1212 , . That is to say, after one first rotating part 1211 is connected to the orientation assembly 112, the remaining first rotating parts 1211 and the first moving parts 1212 are alternately connected in series to form a first adjustment assembly 121 of series manipulator type. The end of the rotating part 1211 or the first moving part 1212 is connected to the telecentric mechanism 130 .
  • the total number of the first rotating parts 1211 and the first moving parts 1212 in the first adjusting assembly 121 is at least four, and in the embodiment of this specification, only the number of the first rotating parts 1211 and the first moving parts 1212 A total of four is used as an example for illustration, the number of the first rotating part 1211 and the first moving part 1212 is more than the structure and principle and the number of the first rotating part 1211 and the first moving part 1212 is four The structures and principles are substantially the same, and will not be repeated here.
  • the first adjustment assembly 121 includes two first rotating parts 1211 and two first moving parts 1212, one of the first rotating parts 1211 is connected to the orientation assembly 112 in series, and one of the first rotating parts 1211 A moving part 1212 is connected to the telecentric mechanism 130 .
  • one of the first rotating parts 1211 is connected to the orientation assembly 112 and one of the first moving parts 1212 in series
  • one of the first moving parts 1212 is connected in series to the other first rotating part 1211
  • the first rotating part 1211 is connected in series to the other first The moving part 1212
  • the first moving part 1212 is connected to the telecentric mechanism 130 .
  • first rotating parts 1211 there are two first rotating parts 1211 and two first moving parts 1212 .
  • One of the first rotating parts 1211 is connected to the orientation assembly 112 , the first rotating parts 1211 and the first moving parts 1212 are arranged alternately, and the last first moving part 1212 is connected to the telecentric mechanism 130 . That is, the first adjustment assembly 121 is connected in the order of rotation-horizontal movement-rotation-vertical movement.
  • one end of one of the first rotating parts 1211 is rotatably connected to the orientation assembly 112, the other end of the first rotating part 1211 is connected in series with one end of one of the first moving parts 1212, and the other end of the first moving part 1212
  • One end of another first rotating part 1211 is connected in series
  • the other end of the first rotating part 1211 is connected in series with one end of another first moving part 1212
  • the other end of the first moving part 1212 is connected to the telecentric mechanism 130 .
  • the first moving part 1212 connecting the two first rotating parts 1211 can move in the horizontal plane, that is, the first first moving part 1212 can output horizontal movement.
  • the first moving part 1212 at the end can move in the vertical direction, that is, the second first moving part 1212 can output vertical movement.
  • the first rotating part 1211 may include a support rod body and a rotating joint provided on the supporting rod body, and the first rotating part 1211 is rotatably connected to the rotating joint or the first movement of another first rotating part 1211 through the supporting rod body.
  • the supporting rod body plays a supporting role and is used to support the rotating joint thereon.
  • the rotating joint is a rotating shaft, a hinge or other components capable of realizing rotation.
  • the rotation joint is a rotation angle around a certain axis, such as a horizontal axis, a vertical axis, and the like.
  • the swivel joint can also rotate by 360°.
  • the first rotating component 1211 connected with the orientation component 112 in the above embodiment the rotation joint of the first rotation component 1211 is connected to the orientation component 112, so that the first adjustment component 121 can rotate relative to the orientation component 112, and
  • the first rotating part 1211 connected to the orientation assembly 112 is rotatably connected to the rotating joint of the next first rotating part 1211 through a support rod.
  • the last first rotating part 1211 is connected to the first moving part 1212 through a support rod.
  • the ends of the support rods in the first rotating component 1211 are connected to the rotating joints in the adjacent first rotating component 1211 .
  • the first moving part 1212 may include a connecting rod body and a moving joint provided on the connecting rod body.
  • the first moving part 1212 is movably connected to the supporting rod body of the first rotating part 1211 through the moving joint, and the connecting rod body is connected to the first rotating part. Part 1211 of the pivot joint or telecentric mechanism 130 .
  • the connecting rod body acts as a bearing, and the end of the connecting rod body is equipped with a moving joint. After the connecting rod cooperates with the moving joint, it can output moving motion.
  • the mobile joint has an installation space, and the connecting rod body is installed in the installation space of the mobile joint, and the connecting rod body can extend or retract relative to the mobile joint to output mobile motion.
  • the first moving part 1212 is a structure capable of outputting linear motion similar to an electric cylinder.
  • the first moving part 1212 may also be other structures capable of moving.
  • the power source for the rotation of the first rotating member 1211 is a motor.
  • the power source for the rotation of the first moving part 12121211 is a motor.
  • the second adjustment assembly 122 includes at least four second rotating parts 1221 and second moving parts 1222 connected in series, and the two ends of the second adjustment assembly 122 connected in series are respectively connected
  • the orientation component 112 and the telecentric mechanism 130 are used to control the pose of the surgical instrument 200 at the end of the telecentric mechanism 130 relative to the orientation component 112 .
  • the second rotating part 1221 can output rotational motion
  • the second moving part 1222 can output moving motion, and its specific structure will be described in detail later.
  • the number of the second rotating parts 1221 and the second moving parts 1222 is four
  • the number of the second rotating parts 1221 is two
  • the number of the second moving parts 1222 is two.
  • the number of the second rotating part 1221 and the second moving part 1222 is four
  • the number of the second rotating part 1221 is three
  • the number of the second moving part 1222 is one.
  • the number of the second rotating parts 1221 and the second moving parts 1222 is five, the number of the second rotating parts 1221 is three, and the number of the second moving parts 1222 is two.
  • the number of the second rotating parts 1221 and the second moving parts 1222 is six, the number of the second rotating parts 1221 is three, and the number of the second moving parts 1222 is three.
  • the second rotating part 1221 and the second moving part 1222 are connected in series, that is, the second rotating part 1221
  • the end is connected to the end of another second rotating component 1221 or the second moving component 1222 to form the second adjustment assembly 122 .
  • one end of the second adjustment assembly 122 connected in series is rotatably connected to the orientation assembly 112 , and the other end is installed with the adjustment telecentric mechanism 130 .
  • the second rotating part 1221 in the second adjustment assembly 122 can perform rotational movement, and the second moving part 1222 can perform moving movement, thereby driving the telecentric mechanism 130 and the surgical instrument 200 to perform corresponding movements, so as to adjust the space of the surgical instrument 200 pose to meet the needs of surgery.
  • the second adjustment assembly 122 may include a second rotating part 1221 , the sum of the number of the second rotating parts 1221 and the second moving parts 1222 is greater than or equal to four, and the second adjustment assembly 122 Both ends are connected to the orientation assembly 112 and the telecentric mechanism.
  • the second adjusting assembly 122 may include at least two second rotating parts 1221, wherein the two second rotating parts 1221 are connected in series, one end of which is connected to the orientation assembly 112, and the other end is connected in series to the remaining second rotating parts 1221.
  • the rotating part 1221 and/or the second moving part 1222 that is to say, when the total number of the second rotating part 1221 and the second moving part 1222 is at least four, the number of the second rotating part 1221 may be at least two.
  • the first two components connected between the second adjusting component 122 and the orientation component 112 are the second rotating component 1221 .
  • the second adjustment assembly 122 can rotate relative to the orientation assembly 112 through the first second rotating part 1221 connected to the orientation assembly 112, and the second second rotating part 1221 makes the telecentric mechanism 130 move toward the outside, increasing The movement space between the first adjusting component 121 and the second adjusting component 122 avoids the interference between the adjacent first adjusting component 121 and the second adjusting component 122 .
  • the remaining parts of the second adjustment assembly 122 can be the second moving part 1222, or a combination of the second moving part 1222 and the second rotating part 1221 , or both may be the second rotating component 1221 .
  • the total number of the second rotating parts 1221 and the second moving parts 1222 in the second adjustment assembly 122 is at least four. Taking four as an example, the number of the second rotating part 1221 and the second moving part 1222 is more than the structure and principle of the structure and the number of the first rotating part 1211 and the second rotating part 1221 are four and The principles are essentially the same, and will not be repeated here.
  • the second adjustment assembly 122 may include three second rotating parts 1221 and one second moving part 1222, which are connected in series in the order of rotating parts, rotating parts, moving parts, and rotating parts; or, according to the rotation The parts, the rotating parts, the rotating parts, and the moving parts are connected in series in sequence.
  • the rotating part is the second rotating part 1221
  • the moving part is the second moving part 1222 . details as follows:
  • the second adjusting component 122 may include three second rotating components 1221 and one second moving component 1222 , wherein the two second rotating components 1221 are connected in series to the orientation component 112 .
  • One end of the two second rotating parts 1221 away from the orientation assembly 112 is connected in series to another second rotating part 1221, and then the second moving part 1222 is connected in series, and the second moving part 1222 is connected to the telecentric mechanism 130;
  • One end of the two rotating parts 1221 away from the orientation assembly 112 is connected in series to the second moving part 1222 , and another second rotating part 1221 is connected in series, and the other second rotating part 1221 is connected to the telecentric mechanism 130 .
  • the number of the second rotating part 1221 is three, and the number of the second moving part 1222 is one.
  • the two second rotating parts 1221 are connected in series, one end of the two second rotating parts 1221 connected in series is connected to the orientation assembly 112 , and the other end is connected to the third second rotating part 1221 and the second moving part 1222 .
  • the second rotating part 1221 is connected in series first, and then the second moving part 1222 is connected in series. That is, the second adjustment assembly 122 is connected in the order of rotation-rotation-rotation-vertical movement.
  • one end of one of the second rotating parts 1221 is rotatably connected to the orientation assembly 112, the other end of the second rotating part 1221 is connected in series with the other end of another second rotating part 1221, and the other end of the second rotating part 1221
  • One end is connected to one end of the third second rotating part 1221
  • the other end of the second rotating part 1221 is connected to one end of the second moving part 1222
  • the other end of the second moving part 1222 is connected to the telecentric mechanism 130 .
  • the second moving part 1222 at the end can move in the vertical direction, that is, the second moving part 1222 can output vertical moving motion.
  • the second moving component 1222 is connected in series first, and then the second rotating component 1221 is connected in series. That is, the second adjustment assembly 122 is connected in the order of rotation-rotation-vertical movement-rotation.
  • one end of one of the second rotating parts 1221 is rotatably connected to the orientation assembly 112, the other end of the second rotating part 1221 is connected in series with the other end of another second rotating part 1221, and the other end of the second rotating part 1221
  • One end is connected to one end of the second moving part 1222
  • the other end of the second moving part 1222 is connected to one end of the third second rotating part 1221
  • the other end of the second rotating part 1221 is connected to the telecentric mechanism 130 .
  • the second moving part 1222 connecting the two second rotating parts 1221 can move in the vertical direction, that is, the second moving part 1222 can output vertical moving motion.
  • the second rotating part 1221 may include a supporting rod body and a rotating joint disposed on the supporting rod body, and the second rotating part 1221 is rotatably connected to the supporting rod body of another second rotating part 1221 through the rotating joint.
  • the supporting rod body plays a supporting role and is used to support the rotating joint thereon.
  • the rotating joint may be a rotating shaft, a hinge, or any other component that can realize rotation.
  • the rotation joint is a rotation angle around a certain axis, such as a horizontal axis, a vertical axis, and the like.
  • the swivel joint can also rotate 360°. It should be noted that the horizontal axis and the vertical axis here are described with the horizontal plane as a reference plane.
  • the second rotating component 1221 connected with the orientation component 112 in the above embodiment the rotation joint of the second rotation component 1221 is connected to the orientation component 112, so that the second adjustment component 122 can rotate relative to the orientation component 112, the The end of the supporting rod in the second rotating part 1221 is connected to the rotating joint of another second rotating part 1221 .
  • the ends of the support rods in the second rotating part 1221 are connected to the moving joints in the adjacent second moving parts 1222 .
  • the power source for the rotation of the second rotating member 1221 may be a motor.
  • the second moving part 1222 may include a connecting rod body and a moving joint provided on the connecting rod body, the second moving part 1222 is movably connected to the supporting rod body of the second rotating part 1221 through the moving joint, and the connecting rod body is connected to the second rotating part 1221 Part 1221 or telecentric mechanism 130.
  • the connecting rod body acts as a bearing, and the end of the connecting rod body is equipped with a moving joint. After the connecting rod cooperates with the moving joint, it can output moving motion.
  • the mobile joint has an installation space, and the connecting rod body is installed in the installation space of the mobile joint, and the connecting rod body can extend or retract relative to the mobile joint to output mobile motion.
  • the second moving part 1222 is a structure capable of outputting linear motion similar to an electric cylinder. Certainly, in other implementation manners of this specification, the second moving part 1222 may also be other structures capable of realizing movement.
  • the power source for the rotation of the second moving part 1222 may be a motor.
  • the second moving part 1222 When the second moving part 1222 is arranged between the two second rotating joints, one end of the moving joint in the second moving part 1222 is connected to the supporting rod of the second rotating part 1221, and the other end of the moving joint is telescopically installed and connected.
  • the rod is connected to the other end of the rod to install the rotating joint of the second rotating component 1221 .
  • the second moving part 1222 When the second moving part 1222 is arranged at the end of the second adjustment assembly 122, one end of the moving joint in the second moving part 1222 is connected to the supporting rod of the second rotating part 1221, and the other end of the moving joint can be telescopically installed with a connecting rod
  • a telecentric mechanism 130 is installed on the other end of the connecting rod.
  • the trolley positioning assembly 111 includes a trolley base 1111, a trolley lifting component 1112, a trolley rotating component 1113, and a trolley horizontal moving component 1114, and the trolley lifting component 1112 can be lifted Set on the trolley base 1111, the trolley rotating part 1113 is rotatably installed on the trolley lifting part 1112, the trolley horizontal moving part 1114 is movably installed on the trolley rotating part 1113, and the end of the trolley horizontal moving part 1114 is installed with an orientation assembly 112.
  • the trolley base 1111 is used to support various components of the trolley positioning assembly 111 , and can also support various components of the robot system 100 .
  • the trolley base 1111 can function as a stable support to support the robot system 100 stably. It can be understood that the specific structure of the trolley base 1111 is not limited in principle, as long as reliable support can be achieved.
  • the lifting part 1112 of the trolley can be vertically arranged on the base 1111 of the trolley.
  • the top of the lifting part 1112 of the trolley is installed with a rotating part 1113 of the trolley.
  • the rotating part 1113 of the trolley is far away from the end of the lifting part 1112 of the trolley.
  • Horizontal moving part 1114, the end of the trolley horizontal moving part 1114 away from the trolley rotating part 1113 is installed with the orientation assembly 112.
  • the trolley lifting part 1112 can drive the trolley rotating part 1113, the trolley horizontal moving part 1114 and the orientation assembly 112 to move up and down synchronously in the vertical direction, so as to adjust the height of the orientation assembly 112, and then adjust the first adjustment assembly 121 and the second adjustment assembly.
  • the height of the component 122 is to meet the use requirements of the surgical instrument 200 at different heights.
  • the trolley rotating part 1113 can drive the trolley horizontal moving part 1114 and the orientation assembly 112 to rotate on the horizontal plane, and adjust the angle of the orientation assembly 112, so that the first adjustment assembly 121 and the second adjustment assembly 122 can drive the telecentric mechanism 130 and surgical instruments 200 is in the direction where the lesion is located.
  • the trolley horizontal moving part 1114 can drive the orientation assembly 112 to expand and contract in the horizontal direction, so that the orientation assembly 112 drives the first adjustment assembly 121 and the second adjustment assembly 122, the telecentric mechanism 130 and the surgical instrument 200 to move toward the lesion.
  • the trolley lifting part 1112, the trolley rotating part 1113 and the trolley horizontal moving part 1114 drive the orienting assembly 112 to lift in the vertical direction, rotate in the horizontal plane, and expand and contract in the horizontal direction, thereby adjusting the position of the orienting assembly 112 to achieve adjustment.
  • the purpose of adjusting the position of the components is to make the telecentric mechanism 130 and the surgical instrument 200 on the first adjustment component 121 and the second adjustment component 122 align with the lesion position of the patient 600 to ensure the safety of the later operation.
  • the structure of the trolley rotating part 1113 may be the same as that of the first rotating part 1211 , which will not be repeated here.
  • the trolley rotating component 1113 may also be other components capable of rotating in the horizontal direction.
  • the trolley lifting part 1112 may have the same structure as the trolley horizontal moving part 1114 and the structure of the first moving part 1212 , which will not be repeated here.
  • the trolley lifting part 1112 and the trolley horizontal moving part 1114 may also be telescopic rods or other telescopic parts.
  • the orientation assembly 112 may include an orientation rotation component 1121 and an orientation turntable 1122, the orientation rotation component 1121 is rotatably arranged on the trolley horizontal movement component 1114, and the orientation turntable 1122 is respectively connected to two second One adjustment component 121 and two second adjustment components 122 .
  • the orientation turntable 1122 is installed on the end of the trolley horizontal moving part 1114 away from the trolley rotation part 1113, and the orientation turntable 1122 is rotatably installed on the trolley horizontal movement part 1114 by the orientation rotation part 1121, so that the orientation turntable 1122 can be relative to the platform.
  • the vehicle horizontal moving part 1114 rotates in the horizontal plane, so as to further adjust the space angle where the first adjustment assembly 121 and the second adjustment assembly 122 are located.
  • Orientation turntable 1122 acts as a bearing and is used to connect first adjustment assembly 121 and second adjustment assembly 122.
  • a section of first adjustment assembly 121 and second adjustment assembly 122 extends into orientation turntable 1122 respectively, and the other end is connected to telecentric mechanism 130.
  • the directional rotation component 1121 is a rotating shaft, a hinge or other components capable of realizing rotatable connection.
  • the orientation turntable 1122 may include a support base and a mounting portion disposed on the support base, and the mounting portion is used for connecting the first adjustment assembly 121 and the second adjustment assembly 122 .
  • the number of installation parts is four, and the four installation parts are arranged on the peripheral side of the support seat, and the four installation parts are arranged at intervals to avoid the gap between the adjacent first adjustment assembly 121 and the second adjustment assembly 122. Interference occurs.
  • the mounting portion may be a protrusion. Of course, in other embodiments of this specification, the installation part can also be a groove.
  • the telecentric mechanism 130 may include a rotating part 131 , a rotating part 132 , a rotating link 133 , a first auxiliary link 134 , a second auxiliary link 135 and a third auxiliary link.
  • the rod 136, the rotating part 131 is rotatably arranged at the end of the first adjustment assembly 121 or the second adjustment assembly 122, and is connected to the rotating part 132, the rotating link 133 is rotatably connected to the rotating part 132, and the first auxiliary link 134 is rotatable Connected to the rotating link 133, the second auxiliary link 135 is rotatably connected to the first auxiliary link 134, and makes the second auxiliary link 135 parallel to the axis of the rotating part 131, and the third auxiliary link 136 is rotatably connected to The second auxiliary link 135 and the third auxiliary link 136 are used for installing the surgical instrument 200 .
  • the structure of the first adjustment assembly and the second adjustment assembly may also be the same, that is to say, the structures of the arm assemblies in the robot system are the same.
  • this specification also provides a robot system 100, including a trolley mechanism 110, four first adjustment assemblies 121 (that is, two first adjustment assemblies and two second adjustment assemblies identical to the first adjustment assemblies). adjustment assembly) and four telecentric mechanisms 130 connected with the first adjustment assembly 121.
  • the trolley mechanism 110 may include a trolley positioning component 111 and an orientation component 112 , the orientation component 112 is arranged on the trolley positioning component 111 and moves with the trolley positioning component 111 .
  • the first adjustment assembly 121 is disposed at the orientation assembly 112 , and the four first adjustment assemblies 121 are respectively rotatably connected to the orientation assembly 112 .
  • Four telecentric mechanisms 130 are respectively arranged at the ends of the first adjusting assembly 121 , and the telecentric mechanisms 130 are used for installing the surgical instrument 200 .
  • the first adjustment assembly 121 includes a first rotating part 1211 and a first moving part 1212 connected in series, the total number of the first rotating part 1211 and the first moving part 1212 is greater than or equal to four, the first rotating part 1211 and the first The moving parts 1212 are connected alternately, and in the first adjustment assembly 121 after series connection, one end thereof is connected to the orientation assembly 112 through a first rotating part 1211, and the other end is connected to the telecentric mechanism 130 for controlling the surgical instrument at the end of the telecentric mechanism 130 200 relative to the pose of the orientation component 112 .
  • the arm assembly (for example, the first arm assembly 120a and the second arm assembly 120b) shown in FIG. 2 or FIG. 3 includes two first adjustment assemblies 121 and two second adjustment assemblies 122 with different structures, and the present embodiment
  • the arm assembly shown in FIG. 7 includes four first adjustment assemblies 121 with the same structure.
  • first adjustment assemblies 121 are used in the robot system to connect the orientation assembly 112 and the telecentric mechanism 130 .
  • One ends of the four first adjusting assemblies 121 are rotatably connected to the orientation assembly 112 , and the other ends of the four first adjusting assemblies are installed with the telecentric mechanism 130 .
  • the four first adjustment assemblies 121 are arranged at intervals, and there is a certain distance between two adjacent first adjustment assemblies 121 to avoid interference between the telecentric mechanisms 130 at the ends.
  • the total number of the first rotating parts 1211 and the first moving parts 1212 in the first adjusting assembly 121 is at least four. It can be understood that the first rotating part 1211 can output rotational motion, and the first moving part 1212 can output moving motion, and its specific structure will be described in detail later. Exemplarily, when the number of the first rotating parts 1211 and the first moving parts 1212 is four, the number of the first rotating parts 1211 is two, and the number of the first moving parts 1212 is two. Exemplarily, when the number of the first rotating parts 1211 and the first moving parts 1212 is five, the number of the first rotating parts 1211 is three, and the number of the first moving parts 1212 is two. Exemplarily, when the number of the first rotating parts 1211 and the first moving parts 1212 is six, the number of the first rotating parts 1211 is three, and the number of the first moving parts 1212 is three.
  • the total number of the first rotating part 1211 and the first moving part 1212 is at least four, the first rotating part 1211 and the first moving part 1212 are connected in series, and the first rotating part 1211 and the first moving part 1212 alternate settings. That is to say, there is a first moving part 1212 between the two first rotating parts 1211 , and there is a first rotating part 1211 between the two first moving parts 1212 , so as to form the first adjusting assembly 121 . In this way, one end of the first adjustment assembly 121 connected in series is rotatably connected to the orientation assembly 112 , and the other end is installed with the adjustment telecentric mechanism 130 .
  • the first rotating part 1211 in the first adjustment assembly 121 can perform rotational movement, and the first moving part 1212 can perform moving movement, and then drive the telecentric mechanism 130 and the surgical instrument 200 to make corresponding movements, so as to adjust the space of the surgical instrument 200 pose to meet the needs of surgery.
  • one first rotating part 1211 is connected to the orientation assembly 112 in series, and the other first rotating parts 1211 are alternately connected to the first moving parts 1212 . That is to say, the first adjustment assembly 121 is rotatably connected to the orientation assembly 112 through the first rotating member 1211 .
  • one end of one of the first rotating parts 1211 is rotatably connected to the orientation assembly 112, the other end of the first rotating part 1211 is connected to one end of one of the first moving parts 1212, and the other end of one of the moving parts is connected to another One end of the first rotating part 1211 , the other end of another first rotating part 1211 is connected to one end of another first moving part 1212 , . That is to say, after one first rotating part 1211 is connected to the orientation assembly 112, the remaining first rotating parts 1211 and the first moving parts 1212 are alternately connected in series to form a first adjustment assembly 121 of series manipulator type. The end of the rotating part 1211 or the first moving part 1212 is connected to the telecentric mechanism 130 .
  • the total number of the first rotating part 1211 and the first moving part 1212 in the first adjustment assembly 121 is at least four, and in this specification only the total number of the first rotating part 1211 and the first moving part 1212 is Taking four as an example, the number of the first rotating part 1211 and the first moving part 1212 is more than the structure and principle, and the number of the first rotating part 1211 and the first moving part 1212 is four. The principles are essentially the same, and will not be repeated here.
  • the first adjusting component 121 may include two first rotating components 1211 and two first moving components 1212, wherein one first rotating component 1211 is connected in series with the orientation component 112 and one of the first moving components 1212, One of the first moving parts 1212 is connected in series with another first rotating part 1211 , and another first moving part 1212 is connected in series, and the other first moving part 1212 is connected to the telecentric mechanism 130 .
  • first rotating parts 1211 and two first moving parts 1212 there are two first rotating parts 1211 and two first moving parts 1212 .
  • One of the rotating parts is connected to the orientation assembly 112 , the first rotating parts 1211 and the first moving parts 1212 are arranged alternately, and the last first moving part 1212 is connected to the telecentric mechanism 130 . That is, the first adjustment component 121 is connected in the order of rotation-movement-rotation-movement.
  • one end of one of the first rotating parts 1211 is rotatably connected to the orientation assembly 112, the other end of the first rotating part 1211 is connected in series with one end of one of the first moving parts 1212, and the other end of the first moving part 1212
  • One end of another first rotating part 1211 is connected in series, the other end of the first rotating part 1211 is connected in series with one end of another first moving part 1212 , and the other end of the first moving part 1212 is connected to the telecentric mechanism 130 .
  • first rotating part 1211 and the first moving part 1212 in this embodiment are substantially the same as the structures of the first rotating part 1211 and the first moving part 1212 in FIG. 2 or FIG. Do repeat.
  • the first arm assembly 120a or the second arm assembly 120b may be a redundant robotic arm. Redundant manipulators understand that the degree of freedom of the arm assembly is greater than the maximum degree of freedom of the operating space. As an example, if there are 6 degrees of freedom in the operating space during surgery and 7 degrees of freedom for the arm assembly, then the arm assembly can be regarded as a redundant robotic arm. That is, the first adjustment assembly 121 and the second adjustment assembly 122 may include redundant joints. Among the degree-of-freedom joints in the first adjustment assembly 121 and the second adjustment assembly 122 , there are more degree-of-freedom joints than those in the operating space. In some embodiments, the redundant joint may be any one of the first rotating part 1211 and the first moving part 1212 , or any one of the second rotating part 1221 and the second moving part 1222 .
  • FIG. 8 is a block diagram of a terminal hardware structure provided according to some embodiments of the present application.
  • the terminal may include one or more (only one is shown in FIG. 1 ) processors 802 and a memory 804 for storing data, where the processors 802 may include but not limited to microprocessors MCUs or Processing devices for programming logic devices such as FPGAs.
  • the aforementioned terminal may further include a transmission device 806 and an input and output device 808 for communication functions.
  • the structure shown in FIG. 8 is only for illustration, and it does not limit the structure of the above-mentioned terminal.
  • the terminal may also include more or fewer components than those shown in FIG. 8 , or have a different configuration than that shown in FIG. 1 .
  • the memory 804 can be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the control method or evaluation method in this embodiment, the processor 802 runs the computer programs stored in the memory 804, thereby Executing various functional applications and data processing is to realize the above-mentioned method.
  • memory 804 may include RAM or non-volatile memory (eg, one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory).
  • the memory 804 may further include a memory that is remotely located relative to the processor 802, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 806 is used to receive or transmit data via a network.
  • the aforementioned network includes a wireless network provided by a communication provider of the terminal.
  • the transmission device 806 may include a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 806 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • the robot system 100 provided by the embodiment of this specification can be applied to the surgical scene.
  • the robot system 100 has multiple arm assemblies (for example, the first arm assembly 120a and the second arm assembly 120b), wherein the two first The telecentric mechanism 130 corresponding to at least one of the arm assemblies 120a can be used to clamp a surgical instrument (for example, an endoscope) that provides a surgical field of view, and the two second arm assemblies 120b adjacent to the first arm assembly 120a For performing surgical procedures.
  • a surgical instrument for example, an endoscope
  • the adjustment mechanism of each arm assembly for example, the first adjustment assembly 121 and the second adjustment assembly 122 shown in FIG.
  • the second adjustment assembly 122 and the second adjustment assembly 122 usually do not move, but control the surgical instrument 200 to perform surgical operations by controlling the telecentric mechanism 130 . Due to the narrow operating space during the operation, it is easy to cause collisions between the arm components and their corresponding structures (for example, adjustment components, telecentric mechanisms). In order to prevent collisions between the various arm components and to make the telecentric mechanism It can have a better operating space during the operation.
  • An evaluation method of the robot system is also provided in the embodiment of this specification. The evaluation method can be applied to the robot system to determine the arm components and their corresponding structures in the robot system. position to improve the spatial performance of each arm assembly of the robotic system during surgery.
  • the robotic system may include at least one first arm assembly being an intermediate arm assembly and at least two adjacent arm assemblies disposed adjacent to the intermediate arm assembly.
  • the robotic system may include a first arm assembly and two second arm assemblies adjacent to the first arm assembly, wherein the structures of the first arm assembly and the second arm assembly may be the same or different, Here the first arm assembly is considered as an intermediate arm assembly, and the two second arm assemblies can be considered as adjacent arm assemblies.
  • the robot system may include two first arm assemblies and two second arm assemblies disposed adjacent to the first arm assemblies. For the specific structure of the robot system, refer to the above-mentioned robot system 100 .
  • one of the two first arm assemblies 120a serves as an intermediate arm assembly, and the two second arm assemblies 120b may serve as adjacent arm assemblies.
  • one of the two first arm assemblies 120a serves as an intermediate arm assembly, and the other first arm assembly 120a and one second arm assembly 120b adjacent to the intermediate arm may serve as adjacent arm assemblies.
  • the number of arm assemblies of the robot system can also be five, six or more, and the selection of the middle arm and adjacent arms of the robot system can be based on the number of arm assemblies of the robot system and the actual application scenario Make adaptive adjustments.
  • the first arm assembly mentioned in Figs. 10-16 in the embodiment of this specification is an intermediate arm, which will not be described in the following.
  • Fig. 9 is a flowchart of a method for evaluating a machine system according to some embodiments of the present application. As shown in FIG. 9, the process 1000 may include the following steps:
  • Step 1010 obtain the position of the apocentric point of the intermediate arm assembly.
  • the evaluation method provided in the embodiment of this specification is applicable to a multi-manipulator robot system (for example, the robot system shown in FIGS. 2-7 ).
  • a multi-manipulator robot system one first arm assembly in the robot system can be selected as an intermediate arm assembly, and two arm assemblies adjacent to the first arm assembly can be selected as adjacent arm assemblies.
  • TCP Tool Central Point
  • point P shown in Figure 6
  • the apocentric point P may be the intersection point of the rotation axis of the rotating component 131 (dotted line M shown in FIG. 6 ) and the central axis of the surgical instrument 200 (dashed line L shown in FIG. 6 ).
  • the apocentric point of a first arm assembly e.g., one of the first arm assemblies 120a shown in FIG.
  • the attitude space of the apocentric point determines the intermediate The pose combination of the far-center point of the arm assembly and the far-center point of the adjacent arm assembly, and calculate the collision probability of the pose combination, so as to realize the reduction of the distance between the middle arm assembly and the adjacent arm assembly under the premise of maximizing the reachable work space. Risk of collision between components.
  • the position of the apocentric point of the intermediate arm assembly is a predetermined area.
  • the position of the apocentric point of the intermediate arm assembly may be any position in the predetermined area, that is, the position of the apocentric point of the intermediate arm assembly may be any coordinate in the pre-determined area.
  • a rectangle is pre-determined, and several points are obtained by dividing the rectangle into a grid, and the several points obtained in the rectangle can be used as the positions of the telecentric points of a group of intermediate arm components of the robot system.
  • the robot system contains an intermediate arm assembly and at least two adjacent arm assemblies, and the adjacent arm assemblies operate around the intermediate arm assembly, in order to determine the pose of the apocentric point of the intermediate arm assembly and the adjacent arm assembly
  • the position of the apocentric point of the intermediate arm component can be obtained first, and the subsequent pose accessibility analysis can be performed based on the position of the apocentric point of the intermediate arm component, and further on the basis of pose reachability to calculate the collision probability.
  • Step 1020 obtain the apocentric point position of the adjacent arm assembly according to the apocentric point position of the intermediate arm assembly.
  • Fig. 10 is a multi-arm cooperative telecentric position layout model provided by some embodiments of the present application when the robot system performs cooperative work.
  • point P2 is the position of the apocentric point of the intermediate arm assembly
  • P1i and P3i may be the apocentric positions of two adjacent arm assemblies of the apocentric point of the intermediate arm.
  • P1i and P3i corresponding to different position information of P2, P1i and P3i have different values.
  • P1i may be the value of the upper half of the circular area in FIG. 10
  • P3i may be the value of the lower half of the circular area in FIG. 11 .
  • P1i and P3i may be different values located in the upper half or the lower half of the circular area in FIG. 10 .
  • multiple sets of P1i and P3i may also be corresponding to the position of the apocentric point of an intermediate arm assembly. Based on the multi-arm cooperative apocentric location layout model in FIG. 10 , the apocentric location of the adjacent arm assembly corresponding to the apocentric location of the intermediate arm assembly can be obtained.
  • Step 1030 determine the optimal redundant joint value of the intermediate arm assembly at the position of the far center point of each intermediate arm assembly, and determine the phase at the position of the far center point of each adjacent arm assembly at the position of the far center point of each intermediate arm assembly Optimal redundant joint values for adjacent arm components.
  • screening can be performed based on the reachability indicators corresponding to all redundant joint values of the intermediate arm assembly, to obtain Optimal redundant joint values at the apocenter locations of each intermediate arm assembly. For example, weighted statistics can be performed on all accessibility analysis results. Among them, the reachability analysis results of all redundant joint values at the far-center position of each intermediate arm assembly can be counted to obtain the reachable index of each redundant joint value. In some embodiments, the ratio of all reachable poses to the total poses can be used as the reachable index corresponding to the redundant joint value.
  • the redundant joint value x1 corresponds to 100 groups of postures, and the accessibility analysis is performed on the apocentric point position A of the intermediate arm assembly and the determined poses of each posture, and it is determined that there are If 50 groups of poses are reachable, then the reachable index of the redundant joint value x1 is 50%. According to the actual working conditions and user needs, determine the best reachable index, so as to determine the optimal redundant joint value at the position of the far center point of each intermediate arm assembly.
  • reachability analysis can be performed on all redundant joint values of adjacent arm components at the far-center position of each adjacent arm component, and based on the reachability index of each redundant joint value, each The optimal redundant joint value of the adjacent arm assembly at the position of the apocentric point of the adjacent arm assembly.
  • redundant joint values may be further screened based on the collision probability index.
  • the collision probability index can be obtained by calculating the average value of the collision probability between the remote points of all intermediate arm components and the remote points of adjacent arm components corresponding to the redundant joint value. By sorting the reachability index and the collision probability index, the optimal redundant joint value at the position of the far-center point of each intermediate arm assembly and the optimal redundant joint value at the position of the far-center point of each adjacent arm assembly are determined.
  • step 1030 For more description about step 1030, refer to the related description of FIG. 12 in this specification.
  • Step 1040 based on the optimal redundant joint value of each intermediate arm component and the optimal redundant joint value of each adjacent arm component, obtain the target reachable index of the intermediate arm component and the target reachable index of the adjacent arm component, according to the intermediate
  • the goal reachability index of the arm assembly and the goal reachability index of the adjacent arm assembly obtain the reachability evaluation index of the robot system.
  • the optimal redundant joint value is determined according to the reachable index, there is a relationship between the optimal redundant joint value and the reachable index a mapping relationship. According to the mapping relationship between the optimal redundant joint value of the intermediate arm component and the reachable index, the reachable index corresponding to the optimal redundant joint value of the intermediate arm component can be obtained. According to the mapping relationship between the optimal redundant joint value of the adjacent arm component and the reachable index, the reachable index corresponding to the optimal redundant joint value of the adjacent arm component can be obtained.
  • the target reachable indexes of the far-center point of the intermediate arm assembly can be obtained.
  • the target reachable indexes of the far-center points of adjacent arm assemblies can be obtained.
  • the target reachable index of the intermediate arm component and the target reachable index of the adjacent arm component of the robot system are counted, and the statistics The result is used as the reachable evaluation index of the robot system.
  • the target reachability index of the middle arm assembly and the target reachability index of the adjacent arm assembly can be weighted and averaged to obtain the reachability evaluation index of the robot system.
  • the position of the remote point of the intermediate arm assembly is obtained, the position of the distant point of the adjacent arm assembly is obtained according to the position of the distant point of the intermediate arm assembly, and the maximum position of the intermediate arm assembly at the position of the distant point of each intermediate arm assembly is determined.
  • each adjacent arm component obtains the target reachable index of the intermediate arm component and the target reachable index of the adjacent arm component, according to the target reachable index of the intermediate arm component and the adjacent arm component Obtain the reachability evaluation index of the robot system. It abstracts the actual working conditions into a kinematics model, realizes the calculation of the reachable index of the middle arm component and the reachable index of the adjacent arm component, and then constructs a robot system configuration design based on reachable space. evaluation index.
  • the target reachable index of the intermediate arm assembly and the adjacent arm assembly can include: taking the reachability index corresponding to the optimal redundant joint value of each intermediate arm assembly as the middle point reachability index; the reachability index corresponding to the optimal redundant joint value of each adjacent arm component is used as the relative point at the far center point position of the adjacent arm component corresponding to the optimal redundant joint value Neighbor reachability index.
  • the reachable index of the intermediate point corresponds to the optimal redundant joint value at the position of the far-center point of each intermediate arm assembly.
  • the position of the far-center point of each intermediate arm assembly may correspond to an reachable index of the intermediate point.
  • the neighbor reachability index corresponds to the optimal redundant joint value at the remote point position of each neighboring arm assembly.
  • the position of the far-center point of each adjacent arm assembly may correspond to an reachable index of an adjacent point.
  • the target reachability index of the middle arm assembly and the target reachability index of the adjacent arm assembly are obtained based on the optimal redundant joint value of each intermediate arm assembly and the optimal redundant joint value of each adjacent arm assembly It may also include: obtaining the target reachability index of the intermediate arm component according to all the reachability indexes of the intermediate points, and obtaining the target reachability index of the adjacent arm component according to all the reachability indexes of the adjacent points.
  • mathematical statistics are performed on the reachable indexes of intermediate points corresponding to the positions of the far-center points of all intermediate arm assemblies, and the target reachable indexes of the intermediate arm assemblies are determined.
  • Mathematical statistics are carried out on the reachable indexes of adjacent points corresponding to the far-center positions of all adjacent arm components, and the target reachable indexes of adjacent arm components are obtained.
  • the specific process of the mathematical statistics can be determined according to the actual application scenario. For example, the target reachable index of the intermediate arm component can be obtained by averaging the reachable index statistics of all intermediate points, and the reachable index of all adjacent points can be obtained. The reachability index is averaged to obtain the target reachability index of adjacent arm components.
  • the target reachability index of the intermediate arm assembly, the target reachability index of the adjacent arm assembly and the reachability evaluation index of the robot system are all obtained by mathematical statistics.
  • the target reachability index of the middle arm assembly and the target reachability index of the adjacent arm assembly are obtained based on the optimal redundant joint value of each intermediate arm assembly and the optimal redundant joint value of each adjacent arm assembly Afterwards, the following steps are also included:
  • Step 1050 the attainable pose of the optimal redundant joint value at the position of the remote point of each intermediate arm assembly is respectively compared with the optimal position of the remote point of each adjacent arm assembly at the position of the corresponding intermediate arm assembly
  • the reachable pose corresponding to the redundant joint value is used for collision calculation, and the collision probability index of the robot system is obtained.
  • the reachable pose corresponding to the optimal redundant joint value of the middle arm assembly far center point, and the reachable pose corresponding to the optimal redundant joint value of the adjacent arm assembly Calculation of the collision probability based on the pose.
  • the collision distance between the intermediate arm assembly and the adjacent arm assembly can be calculated through forward kinematics, and the achievable pose corresponding to the optimal redundant joint value of the intermediate arm assembly can be determined according to the collision distance.
  • the collision probability index of the robot system can be obtained by making statistics on the collision probabilities corresponding to the pose combinations of the above-mentioned attainable poses.
  • the optimization of the configuration parameters of the manipulator is often carried out around the indicators such as the flexibility of the manipulator and the size of the collaborative space. the accuracy of the evaluation.
  • the collision probability is used as an evaluation index of the dexterity of the robot system, and the collision risk between the mechanical arms of the robot system under actual working conditions can be reduced according to the evaluation index.
  • the achievable pose of the optimal redundant joint value at the position of the far-center point of each intermediate arm assembly is respectively compared with the position of each adjacent arm at the position of the corresponding middle arm assembly Collision calculation is performed on the reachable pose corresponding to the optimal redundant joint value at the position of the far center of the component, and the collision probability index of the robot system can be obtained by: calculating the reachable pose corresponding to the optimal redundant joint value of each intermediate arm component pose, respectively collide with the reachable pose combinations composed of the reachable pose combinations corresponding to the optimal redundant joint values of each adjacent arm assembly at the far-center position of the corresponding intermediate arm assembly, and obtain each reachable pose Combined collision calculation results.
  • the achievable pose of the optimal redundant joint value at the apocentric point position of each intermediate arm assembly is respectively compared with the apocentric point position of each adjacent arm assembly at the apocentric point position of the corresponding intermediate arm assembly
  • Performing collision calculation on the reachable pose corresponding to the optimal redundant joint value, and obtaining the collision probability index of the robot system may also include: processing all collision calculation results by mathematical statistics to obtain the collision probability index of the robot system.
  • step 1050 may be omitted.
  • Fig. 11 is a flow chart of determining the optimal redundant joint value of the intermediate arm assembly at the position of the far-center point of each intermediate arm assembly according to some embodiments of the present application. As shown in FIG. 11 , in some embodiments, based on the above step 1030, determining the optimal redundant joint value of the intermediate arm assembly at the position of the far center point of each intermediate arm assembly specifically includes the following steps:
  • Step 1031 discretely enumerate all the redundant joint values at the positions of the distant points of each intermediate arm assembly as the redundant joint values of the intermediate arm assembly.
  • all redundant joint values at the position of the apocentric point of the intermediate arm assembly can be obtained through discrete enumeration, and all redundant joint values are used as a value of the apocentric point of the intermediate arm assembly. Redundant joint value for group middle arm assembly.
  • Step 1032 calculate the accessibility of the remote point poses of all intermediate arm components under the redundant joint value of each intermediate arm component, and obtain the reachability index of the intermediate arm component corresponding to the redundant joint value of each intermediate arm component, in which all The poses of the telecentric point of the intermediate arm assembly are a preset number of preset poses.
  • the poses of all intermediate arm assemblies' apocentric points under the redundant joint value of each intermediate arm assembly are a predetermined set of poses with a fixed number.
  • Step 1033 Obtain the optimal redundant joint value of the intermediate arm assembly according to the reachable indexes corresponding to the redundant joint values of all intermediate arm assemblies and the preset conditions of the reachable indexes.
  • the reachability indicators corresponding to the redundant joint values of different intermediate arm assemblies are statistically sorted, and based on the sorting results and according to the actual application scenario
  • the determined reachable index preset conditions determine the optimal redundant joint value of the intermediate arm assembly.
  • the reachable index preset condition is an optimal reachable index screening condition determined according to an actual application scenario or a user requirement.
  • the values of all redundant joints under the position B of the distal point of the intermediate arm assembly are redundant joint value y1, redundant joint value y2, and redundant joint value y3, wherein the redundant joint value y1 is calculated based on the above step S232
  • the reachable index of y2 is 50%
  • the reachable index calculated by redundant joint value y2 is 60%
  • the reachable index calculated by redundant joint value y3 is 70%. If the preset condition of the reachable index is that the reachable index corresponding to the redundant joint value is the highest, the redundant joint value y3 can be used as the optimal redundant joint value at the position B of the remote point of the intermediate arm assembly.
  • determining the optimal redundant joint value of the adjacent arm assembly at the position of the far center point of each adjacent arm assembly specifically includes the following steps:
  • Step 1034 discretely enumerate all the redundant joint values at the positions of the distant points of each adjacent arm assembly as the redundant joint values of the adjacent arm assembly.
  • Step 1035 calculate the reachability of the remote point poses of all adjacent arm components under the redundant joint value of each adjacent arm component, and obtain the reachability of the adjacent arm component corresponding to the redundant joint value of each adjacent arm component Index, wherein, the poses of all adjacent arm components at the far center point are a preset number of preset poses.
  • the redundant joint value of each adjacent arm component can be determined by statistically analyzing the reachability of the far-center point poses of all adjacent arm components under the redundant joint value of each adjacent arm component Corresponding reachability index of adjacent arm components.
  • Step 1036 Obtain the optimal redundant joint value of the adjacent arm assembly according to the reachable index corresponding to the redundant joint value of all adjacent arm assemblies and the preset condition of the reachable index.
  • step 1033 based on the reachability index preset conditions and the statistical analysis results of the reachability indexes corresponding to the redundant joint values of all adjacent arm assemblies, determine the optimal Redundant joint values, so as to obtain the optimal redundant joint values of adjacent arm components.
  • the target reachable index of the intermediate arm component is obtained according to the reachable index of the intermediate point, and the relative reachable index is obtained according to the reachable index of the adjacent point.
  • the target reachable index of the adjacent arm component so as to realize the statistical analysis of the reachable index of the robot system, and reduce the amount of data for subsequent processing; the reachable pose corresponding to the optimal redundant joint value of each intermediate arm component is respectively Collision calculation is performed on the reachable pose corresponding to the optimal redundant joint value of the corresponding adjacent arm component, and the collision probability index of the robot system is obtained, thereby realizing the calculation of the collision probability under the premise of reachable pose.
  • the above steps abstract the actual working conditions into a kinematic model, realize the calculation of the reachable index of the intermediate arm assembly and the reachable index of the adjacent arm assembly, and then construct the reachable space suitable for the configuration design of the robot system based on evaluation indicators.
  • Fig. 12 is a flowchart of a method for optimizing robot configuration parameters according to some embodiments of the present application. As shown in FIG. 12 , the method 1300 for optimizing configuration parameters of the robot may include the following steps:
  • Step 1310 discretely enumerate configuration parameter combinations of the robot system.
  • Step 1320 according to the evaluation index calculation method of the above-mentioned embodiment, obtain the reachable evaluation index of each combination of configuration parameters.
  • the reachable evaluation index corresponding to the robot system under each configuration parameter combination can be determined according to the evaluation index calculation method in the above-mentioned embodiment. Further, the collision probability index corresponding to the robot system under each combination of configuration parameters can also be calculated according to the method provided in the above-mentioned embodiments.
  • Step 1330 sorting all configuration parameter combinations and their corresponding reachability evaluation indicators according to preset rules.
  • the attainable evaluation indexes of the robot system under each combination of configuration parameters are sorted.
  • the preset rule can be set according to actual application scenarios or user requirements. For example, it may be to sort the reachable evaluation indexes corresponding to all configuration parameter combinations in order of the values of the reachable evaluation indexes. Furthermore, based on preset rules, the reachability evaluation indexes and collision probability indexes corresponding to all configuration parameter combinations can be sorted.
  • Step 1340 according to the ordering of preset rules, select the configuration combination corresponding to the optimal evaluation index as the optimal configuration of the robot system.
  • the optimal evaluation index is an optimal reachable evaluation index in an actual application scenario obtained according to the result of the above sorting. Further, the optimal evaluation index may also be the optimal reachable evaluation index and collision probability index in actual application scenarios.
  • FIG. 13 is a flowchart of a method for optimizing configuration parameters of a robot in this embodiment. As shown in FIG. 13 , the process 1400 may include the following steps:
  • Step 1410 determining at least one set of robot configuration parameter combinations.
  • Step 1420 according to the evaluation index calculation method provided in the above-mentioned embodiment, obtain the reachability evaluation index of the configuration parameter combination.
  • Step 1430 input the combination of configuration parameters and the corresponding reachability evaluation index into the genetic algorithm for iterative optimization to obtain the optimal configuration of the robot system.
  • the reachable evaluation index corresponding to the configuration parameter combination is the reachable evaluation index of the robot system obtained based on the evaluation index calculation method provided in the above-mentioned embodiment under the configuration parameter combination.
  • the optimal configuration of the robot system can be obtained according to the configuration parameter combination to be selected and the corresponding reachable index, combined with the genetic algorithm.
  • the optimization algorithm may also be any other algorithm suitable for classical numerical optimization, such as particle swarm optimization and ant colony algorithm. It is not limited in this embodiment.
  • the optimal configuration of the robot system can also be optimized based on the reachable evaluation index and the collision probability index corresponding to the configuration parameter combination.
  • At least one set of robot configuration parameter combinations is determined.
  • the evaluation index calculation method provided in the above embodiment, the reachable evaluation index of the configuration parameter combination is obtained, and the configuration parameter combination and the corresponding reachable evaluation The index is input into the genetic algorithm for iterative optimization, and the optimal configuration of the multi-manipulator robot system is obtained. It utilizes the evaluation criteria of the robot system based on the reachable space structure, and realizes the optimization of the configuration parameters in line with the actual working conditions.
  • Fig. 14 is a flowchart of a method for obtaining an optimal redundant joint value of an intermediate arm assembly according to some embodiments of the present application.
  • a method 1500 for solving the optimal redundant joint value of an intermediate arm assembly may include the following steps:
  • Step 1510 selecting the position of the apocentric point of the intermediate arm assembly
  • Step 1520 traversing the redundant joint value of the intermediate arm assembly based on the position of the apocentric point of the intermediate arm assembly, if the redundant joint value corresponds to a plurality of apocentric point postures of the intermediate arm assembly, then perform step 1530, otherwise perform step 1570;
  • Step 1530 traverse the pose space of the acentric point of the intermediate arm assembly according to the redundant joint value of the intermediate arm assembly to determine the pose of the acentric point of the intermediate arm assembly, if the pose of the acentric point of the intermediate arm assembly is obtained, execute step 1540, otherwise execute Step 1560;
  • Step 1540 perform an inverse solution verification on the apocentric point pose of the intermediate arm assembly, and determine the achievable pose of the apocentric point of the intermediate arm assembly;
  • Step 1550 determine the reachable index and collision index of the apocentric point of the adjacent arm assembly according to the achievable pose of the apocentric point of the intermediate arm assembly;
  • Step 1560 carry out weighted statistics on the reachability index and collision index of adjacent arm components
  • Step 1570 determine the optimal value of the redundant joint value of the intermediate arm assembly according to the weighted statistical results of the reachable index and the collision index.
  • Fig. 15 is a flowchart of a method for optimizing configuration parameters of a robot system according to some embodiments of the present application. As shown in Figure 15, in some embodiments, the configuration parameter optimization method 1600 may include the following steps:
  • Step 1610 using the sinusoidal discrete enumerated link parameter combination or the reverse genetic algorithm to determine a set of configuration parameters
  • Step 1620 determine the position of the apocentric point of the intermediate arm assembly
  • Step 1630 determine the redundant joint value at the position of the far center point of the intermediate arm assembly
  • Step 1640 determine the posture of the apocentric point of the intermediate arm assembly according to the redundant joint value of the apocentric point of the intermediate arm assembly, and obtain the apocentric point posture of the intermediate arm assembly;
  • Step 1650 verify whether the telecentric point pose of the intermediate arm assembly is reachable, if so, execute step 1660, otherwise execute step 1710;
  • Step 1660 determine the position of the apocentric point of the adjacent arm assembly according to the apocentric point pose of the intermediate arm assembly
  • Step 1670 determine the redundant joint value of the adjacent arm assembly according to the position of the remote point of the adjacent arm assembly
  • Step 1680 determine the apocentric point pose of the adjacent arm assembly according to the redundant joint value of the adjacent arm assembly, and obtain the apocentric point pose of the adjacent arm assembly;
  • Step 1690 verify whether the pose of the adjacent arm assembly is reachable, if so, execute step 1700, otherwise execute step 1710;
  • Step 1700 based on the reachable poses of the apocentric point of the intermediate arm assembly and the apocentric point of the adjacent arm assembly, combined with the collision model to calculate the collision probability;
  • Step 1710 making statistics on the reachability index and the collision probability index.
  • the robot system undergoes the above-mentioned evaluation method before the operation to determine the position of each arm assembly and its corresponding structure.
  • the position of the traditional adjustment components has been determined before the operation, and it cannot be adjusted during the operation, and the distance between the telecentric mechanisms is small, and the movement space of the telecentric mechanisms is limited, which may cause telecentricity. Collisions between agencies.
  • the embodiment of this specification also provides a control method of the robot system, which is applied to the above-mentioned robot system (for example, the robot system 100 shown in FIGS. 1-7 ), so that the robot system can
  • the adjustment assembly and/or the telecentric mechanism can be adjusted according to the target pose at the fixed point of the telecentric mechanism.
  • the robotic system may include a plurality of arm assemblies, each arm assembly may include an adjustment assembly and a telecentric mechanism, the adjustment assembly includes an active joint, the telecentric mechanism is located at one end of the adjustment assembly, so that the robotic system can During the process, the position of each arm assembly is adjusted through the adjustment assembly with active joints, for example, parameters such as the distance and angle between two adjacent arm assemblies are adjusted.
  • the plurality of arm assemblies may include at least one first arm assembly (eg, first arm assembly 120a shown in FIG. 2 ) and at least two second arm assemblies disposed adjacent to the first arm assembly ( For example, for the second arm assembly 120b) shown in FIG. 2, please refer to FIGS. 1-7 and related descriptions for the specific structure of the robot system.
  • Fig. 16 is a flow chart of a control method of a machine system provided according to some embodiments of the present application. As shown in Figure 16, the process 900 may include the following steps:
  • Step 910 acquire environment information.
  • step 910 may be performed by an acquisition module.
  • the acquisition module can be an electronic device with a shooting function, and is used to capture image information of the surrounding environment of the robot system.
  • the image information acquired by the acquisition module can be sent to the processor 802 (shown in FIG. 8 ), and the processor 802 can send the image information to into environmental information.
  • the environment information may include workspace and obstacle information of the robotic system.
  • the workspace of the robot system may refer to the space area where the robot system is located.
  • Obstacle information refers to the object coordinate information that affects the movement of each arm component in the workspace. Take the robot system shown in FIG.
  • first arm assembly 120a as an intermediate arm
  • second arm assembly 120b on both sides of the first arm assembly 120a as an adjacent arm
  • the second arm assembly 120b may hinder the movement process of the first arm assembly 120a
  • the coordinate information of the second arm assembly 120b can be regarded as obstacle information.
  • Obstacle information when the first arm assembly 120a has moved to the first target position, in the process of controlling one second arm assembly 120b to move to the second target position, the first arm assembly 120a and the other second arm assembly 120b can be regarded as Obstacle information.
  • Obstacle information In the working space of the robot system, if there is an object other than the arm assembly, the coordinate information of the object is also regarded as obstacle information.
  • Step 920 determine the reachable index and the collision probability index of the robot system based on the target pose at the fixed point of the telecentric mechanism.
  • this step 920 may be performed by the processor 802 .
  • the reachable index of the robot system refers to the comprehensive value of the target reachable index corresponding to each arm component in the robot system.
  • the attainable index of the robot system can be used to judge whether the required pose (the target pose at the fixed point) of the surgical instrument corresponding to each arm assembly can be achieved in the actual surgical operation.
  • the required pose the target pose at the fixed point
  • FIG. 9 For the specific content of obtaining the reachable index of the robot system, reference may be made to the content elsewhere in this specification, for example, FIG. 9 and its related descriptions.
  • the collision probability index refers to the collision probability when the surgical instrument corresponding to each arm component in the robot system reaches the required pose in the actual operation. It can be understood that the telecentric mechanism and its surgical instruments corresponding to one arm assembly (for example, the first arm assembly 120a shown in FIG. The collision probability of the telecentric mechanism of the assembly 120b) and its surgical instrument. For the specific content of obtaining the collision probability index of the robot system, reference may be made to the content elsewhere in this specification, for example, FIG. 10 and its related descriptions.
  • Step 930 judging whether the reachable index and the collision probability index meet the preset conditions.
  • this step 920 may be performed by the processor 802 .
  • the preset condition may include a preset reachability index threshold and a preset collision probability index threshold.
  • judging whether the reachable index and the collision probability index meet the preset condition may include: judging whether the reachable index is greater than or equal to a preset reachable index threshold and whether the collision probability index is greater than or equal to a preset collision probability index threshold .
  • the reachable index threshold and the preset collision probability index threshold may be preset values stored in the memory 804 .
  • the reachable index threshold and the preset collision probability index threshold may also be manually set values according to the needs of actual surgical operations.
  • step 940 is executed.
  • Step 940 drive the telecentric mechanism to control the surgical instrument.
  • This step 940 is performed by the processor 802 .
  • the processor 802 controls the telecentric mechanism corresponding to each arm assembly of the robot system to adjust the posture of the surgical instrument in response to the reachable index being greater than or equal to the preset reachable index threshold and the collision probability index being greater than or equal to the preset collision probability index threshold .
  • the processor 802 can control the rotation angle of the rotating part 132 shown in FIG. to adjust the pose of the surgical instrument set on the third auxiliary link 136, so as to perform the surgical operation.
  • step 950 is executed.
  • Step 950 drive the adjustment assembly and the telecentric mechanism to control the surgical instrument in linkage.
  • This step 950 is performed by the processor 802 .
  • the processor 802 controls each component of the adjustment component (for example, moving joint, rotating joint) corresponding to each arm component of the robot system to Adjust the pose of each adjustment component.
  • the collision probability index of the adjusted surgical instrument can be determined based on the robot system evaluation method of the above-mentioned process 1000, based on the adjusted surgical instrument. The collision probability index of the instrument judges whether the preset condition is met, and if the preset condition is met, the assembly is fixed and adjusted, and the telecentric mechanism and the surgical instrument held by it are controlled to perform surgery.
  • the processor 802 controls the rotation angle of the rotating part 132 shown in FIG. to adjust the pose of the surgical instrument set on the third auxiliary link 136. In some embodiments, the processor 802 can also simultaneously control the adjustment assembly and the telecentric mechanism to control the position of the surgical instrument.
  • the processor 802 can regulate the poses at the fixed points of each arm assembly and its corresponding telecentric mechanism. Specifically, when it is necessary to control the pose of the surgical instrument corresponding to each arm assembly in the robot system, each arm assembly will be controlled based on the above-mentioned process 900, so as to realize the control of each arm assembly and its corresponding structure (for example, the adjustment assembly , telecentric mechanism) adjustment, so that the robot system can achieve a better operating space. When the reachability index and collision probability index of some arm assemblies of the robot system do not meet the preset conditions, the arm assemblies in the robot system need to be adjusted. Taking the robot system 100 shown in FIG.
  • one of the first arm assemblies 120a in the robot system 100 serves as an intermediate arm
  • the surgical instrument 200 clamped by the telecentric mechanism 130 corresponding to the intermediate arm can be An endoscope for providing a surgical field of view
  • the two second arm assemblies 120b adjacent to the first arm assembly 120a serve as adjacent arms for performing surgical operations.
  • the above-mentioned process 900 is used to control the first arm assembly 120a and the two second arm assemblies 120b.
  • the processor 802 continues to adjust the position of each arm assembly of the robot system 100 .
  • one of the first arm assemblies 120a in the robotic system 100 is also possible to use one of the first arm assemblies 120a in the robotic system 100 as an intermediate arm (for example, for operating an endoscope), and the other first arm assembly 120a adjacent to the first arm assembly 120a
  • the arm assembly 120a and the second arm assembly 120b serve as adjacent arms.
  • the selection of the middle arm and the adjacent arm can be adaptively adjusted according to the number of arm components in the robot system 100 and actual application scenarios.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)

Abstract

一种机器人***(100)及其评价方法、控制方法,其中机器人***(100)包括:台车机构(110),第一臂组件(120a)以及与第一臂组件(120a)相邻的两个第二臂组件(120b)。台车机构(110)包括台车定位组件(111)以及定向组件(112),定向组件(112)设置于台车定位组件(111)末端,并随台车定位组件(111)运动;第一臂组件(120a)和第二臂组件(120b)设置于定向组件(112)的末端;第一臂组件(120a)包括第一调整组件(121)和连接于第一调整组件(121)末端的远心机构(130);第二臂组件(120b)包括第二调整组件(122)和连接于第二调整组件(122)末端的远心机构(130);其中,第一调整组件(121)和第二调整组件(122)的关节(1211,1212,1221,1222)包括主动关节。

Description

一种机器人***及其评价方法、控制方法
优先权信息
本申请要求2021年6月29日提交的中国申请号202110732646.9的优先权,2021年6月29日提交的中国申请号202121459480.X的优先权,以及2021年9月18日提交的中国申请号202111101869.1的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及手术机器人设备技术领域,特别涉及一种机器人***及其评价方法、控制方法。
背景技术
微创手术由于具有创口小,痛苦少与恢复快等优点,被越来多的患者作为首选的治疗方案。然而,微创手术也存在医生操作疲劳、手部抖动、手部器械不灵活与手眼不协调等问题。
为解决上述问题,本说明书希望提出一种具有高灵活性和安全性的机器人***以及该机器人***的评价方法和控制方法。
发明内容
本说明书实施例之一提供一种机器人***,包括:台车机构,包括台车定位组件以及定向组件,所述定向组件设置于所述台车定位组件末端,并随所述台车定位组件运动;第一臂组件以及与所述第一臂组件相邻设置的两个第二臂组件,所述第一臂组件和所述第二臂组件设置于所述定向组件的末端;所述第一臂组件包括第一调整组件和连接于所述第一调整组件末端的远心机构;所述第二臂组件包括第二调整组件和连接于所述第二调整组件末端的远心机构;其中,所述第一调整组件和所述第二调整组件的关节包括主动关节。
在一些实施例中,所述第一臂组件的数量为两个。
在一些实施例中,所述第一调整组件包括串联连接的第一旋转部件和第一移动部件,所述第一旋转部件和所述第一移动部件的数量总和大于或等于四,所述第一旋转部件与所述第一移动部件交替连接,所述第一调整组件的两端分别连接所述定向组件与所述远心机构。
在一些实施例中,所述串联连接的所述第一旋转部件与所述第一移动部件中,通过一个所述第一旋转部件串联连接至所述定向组件。
在一些实施例中,所述第一调整组件包括两个所述第一旋转部件和两个所述第一移动部件,其中一个所述第一旋转部件连接至所述定向组件,一个所述第一移动部件连接至所述远心机构。
在一些实施例中,所述第一旋转部件包括支撑杆体以及设置于所述支撑杆体上的转动关节,所述第一旋转部件通过所述支撑杆体可转动连接另一所述第一旋转部件的转动关节或者连接所述第一移动部件;所述第一移动部件包括连接杆体以及设置于所述连接杆体的移动关节,所述第一移动部件通过所述移动关节可移动连接所述第一旋转部件的支撑杆体,所述连接杆体连接所述第一旋转部件的转动关节或所述远心机构。
在一些实施例中,所述第二调整组件与所述第一调整组件的结构相异,所述第二调整组件在水平面内能够朝向远离所述第一调整组件的方向转动。
在一些实施例中,所述第二调整组件包括串联连接的第二旋转部件和第二移动部件,所述第二旋转部件和所述第二移动部件的数量总和大于或等于四,所述第二调整组件的两端分别连接所述定向组件与所述远心机构。
在一些实施例中,所述第二调整组件包括至少两个所述第二旋转部件,其中两个所述第二旋转部件串联连接,其一端连接至所述定向组件,另一端串联连接剩余的所述第二旋转部件和/或所述第二移动部件。
在一些实施例中,所述第二调整组件包括三个所述第二旋转部件和一个所述第二移动部件,并按照旋转部件、旋转部件、移动部件、旋转部件的顺序依次串联;或者,按照旋转部件、旋转部件、旋转部件、移动部件的顺序依次串联。
在一些实施例中,所述第二调整组件与所述第一调整组件的结构相同。
在一些实施例中,所述第一调整组件和所述第二调整组件包括冗余关节。
本说明书实施例之一提供一种机器人***的评价方法,应用于机器人***,所述机器人***包括作为中间臂组件的至少一个第一臂组件以及与所述中间臂组件相邻设置的至少两个相邻臂组件,所述方法包括:获取中间臂组件远心点位置;根据所述中间臂组件远心点位置获取相邻臂组件远心点位置;确定每个所述中间臂组件远心点位置下的中间臂组件最优冗余关节值,以及确定每个所述中间臂组件远心点位置下每个所述相邻臂组件远心点位置处的相邻臂组件最优冗余关节值;基于每个所述中间臂组件最优冗余关节值和每个所述相邻臂组件最优冗余关节值获得所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标,根据所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标获得所述机器人***的可达评价指标。
在一些实施例中,所述基于每个所述中间臂组件最优冗余关节值和每个所述相邻臂组件最优冗余关节值获得所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标,包括:将每个所述中间臂组件最优冗余关节值对应的可达指标,作为每个所述中间臂组件最优冗余关节值对应的所述中间臂组件远心点位置处的中间点可达指标;将每个所述相邻臂组件最优冗余关节值对应的可达指标,作为每个所述相邻臂组件最优冗余关节值对应的所述相邻臂组件远心点位置处的相邻点可达指标;根据所有中间点可达指标获得所述中间臂组件的目标可达指标,根据所有相邻点可达指标获得所述相邻臂组件的目标可达指标。
在一些实施例中,所述中间臂组件的目标可达指标、所述相邻臂组件的目标可达指标以及所述机器人***的可达评价指标均采用数理统计的方法获得。
在一些实施例中,所述根据所述中间臂组件远心点位置获取所述相邻臂组件远心点位置,包括:根据所述中间臂组件远心点位置、多臂协同远心点位置布局模型,确定所述相邻臂组件远心点位置。
在一些实施例中,所述确定每个所述中间臂组件远心点位置下的中间臂组件最优冗余关节值,包括:离散枚举每个中间臂组件远心点位置处的所有冗余关节值,作为中间臂组件冗余关节值;计算每个所述中间臂组件冗余关节值下所有中间臂组件远心点位姿的可达性,获得每个所述中间臂组件冗余关节值对应的所述中间臂组件的可达指标,其中所述所有中间臂组件远心点位姿为预设数量的预设位姿;根据所有中间臂组件冗余关节值对应的可达指标和可达指标预设条件获得中间臂组件最优冗余关节值。
在一些实施例中,所述确定每个所述相邻臂组件远心点位置处的相邻臂组件最优冗余关节值,包括:离散枚举每个相邻臂组件远心点位置处的所有冗余关节值,作为相邻臂组件冗余关节值;计算每个所述相邻臂组件冗余关节值下所有相邻臂组件远心点位姿的可达性,获得每个所述相邻臂组件冗余关节值对应的所述相邻臂组件的可达指标,其中,所述所有相邻臂组件远心点位姿为预设数量的预设位姿;根据所有相邻臂组件冗余关节值对应的可达指标和可达指标预设条件获得相邻臂组件最优冗余关节值。
在一些实施例中,所述基于每个所述中间臂组件最优冗余关节值和每个所述相邻臂组件最优冗余关节值获得所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标之后,还包括;将每个所述中间臂组件远心点位置处最优冗余关节值的可达位姿分别与对应的所述中间臂组件远心点位置下每个所述相邻臂组件远心点位置处最优冗余关节值对应的可达位姿进行碰撞计算,获得所述机器人***的碰撞概率指标。
在一些实施例中,所述将每个所述中间臂组件远心点位置处最优冗余关节值的可达位姿分别与对应的所述中间臂组件远心点位置下每个所述相邻臂组件远心点位置处最优冗余关节值对应的可达位姿进行碰撞计算,获得所述机器人***的碰撞概率指标,包括:对由每个所述中间臂组件最优冗余关节值对应的可达位姿,分别与对应的所述中间臂组件远心点位置下,每个所述相邻臂组件最优冗余关节值对应的可达位姿组成的可达位姿组合进行碰撞计算,得到每个可达位姿组合的碰撞计算的结果;对所有碰撞计算的结果采用数理统计的方法进行处理,获得所述机器人***的碰撞概率指标。
在一些实施例中,所述至少两个相邻臂组件包括至少另一个第一臂组件和至少一个第二臂组件。
在一些实施例中,所述至少两个相邻臂组件包括至少两个第二臂组件。
本说明书实施例之一提供一种机器人***构型参数的寻优方法,用于机器人***,所述机器人***包括作为中间臂的至少一个第一臂组件和与所述中间臂组件相邻设置的至少两个相邻 臂组件,所述方法包括:离散枚举所述机器人***的构型参数组合;根据上述的机器人***评价方法,得到每个所述构型参数组合的可达评价指标;对所有所述构型参数组合及其对应的可达评价指标进行预设规则的排序;根据所述预设规则的排序选择最优评价指标所对应的构型组合作为所述机器人***的最优构型。
本说明书实施例之一提供一种机器人***构型参数的寻优方法,用于机器人***,所述机器人***包括作为中间臂的至少一个第一臂组件和与所述中间臂组件相邻设置的至少两个相邻臂组件,所述方法包括:确定至少一组所述机器人构型参数组合;根据上述的机器人***评价方法,得到所述构型参数组合的可达评价指标;将所述构型参数组合及对应的所述可达评价指标输入遗传算法进行迭代寻优,获得所述机器人***的最优构型。
本说明书实施例之一提供一种机器人***的控制方法,应用于机器人***,所述机器人***包括多个臂组件,所述臂组件包括调整组件和远心机构,所述调整组件的关节包括主动关节;所述方法包括:获取环境信息,所述环境信息包括所述机器人***的工作空间和障碍物信息;基于所述远心机构的不动点处的目标位姿确定所述机器人***的可达指标和碰撞概率指标;判断所述可达指标和所述碰撞概率指标是否满足预设条件;响应于是,驱动所述远心机构控制手术器械;响应于否,驱动所述调整组件和所述远心机构联动控制所述手术器械。
附图说明
图1是根据本说明书一些实施例所示的机器人***应用于手术机器人的示意图;
图2是根据本说明书一些实施例所示的机器人***的立体结构图;
图3是根据本说明书一些实施例所示的一种机器人***的架构图;
图4是根据本说明书一些实施例所示的另一种机器人***的架构图;
图5是根据本说明书一些实施例所示的机器人***中定向组件连接调整机构的俯视图;
图6是根据本说明书一些实施例所示的机器人***中远心机构的示意图;
图7是根据本说明书一些实施例所示的机器人***的构架图;
图8是根据本说明书一些实施例所示的机器人***的终端硬件结构框图;
图9是根据本说明书一些实施例所示的机器人***评价方法的流程图;
图10是根据本说明书一些实施例所示的多机械臂协同远心点位置布局模型图;
图11是根据本说明书一些实施例所示的确定臂组件最优冗余关节值的流程图;
图12是根据本说明书一些实施例所示的一种机器人***构型参数的寻优方法的流程图;
图13是根据本说明书一些实施例所示的另一种机器人构型参数的寻优方法的流程图;
图14是根据本说明书一些实施例所示筛选方法的流程图;
图15是根据本说明书一些实施例所示的第一臂组件最优冗余关节值求解方法的流程图;
图16是根据本说明书一些实施例所示的机器人***控制方法的流程图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固 定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本说明书实施例描述了一种机器人***。在一些实施例中,机器人***可以包括台车机构、第一臂组件以及与第一臂组件相邻设置的两个第二臂组件。台车结构可以包括台车定位组件以及定向组件,定向组件设置于台车定位组件末端,并随台车定位组件运动,其中,第一臂组件和所述第二臂组件设置于所述定向组件的末端。在一些实施例中,第一臂组件可以包括第一调整组件和连接于第一调整组件末端的远心机构,第二臂组件可以包括第二调整组件和连接于第二调整组件末端的远心机构。其中,第一调整组件和第二调整组件的关节包括主动关节。在本说明书实施例提供的机器人***中,台车定位组件能够带动定向组件转动与升降运动,以调节调整组件在空间中的位置,使得调整组件中远心机构上设置的器械(例如,手术器械)对准目标位置。以机器人***应用于手术的场景作为示例,第一调整组件与第二调整组件能够分别相对于定向组件运动,以带动远心机构和手术器械运动,使得手术器械进行手术。除此之外,第一调整组件和第二调整组件的关节包括主动关节,可以提高第一调整组件和第二调整组件的活动空间,此外第二调整组件能够相对于第一调整组件向外侧运动,进一步增加了第二调整组件的活动空间,能够充分利用仿生特点,有效提高机器人***各臂组件的操作空间与灵活性,提升机器人***的灵活性与安全性。
本说明书实施例还描述了一种机器人***的评价方法,将机器人***的第一臂组件和第二臂组件按照空间位置关系、运动约束关系区分为中间臂组件和与中间臂组件相邻的相邻臂组件,该评价方法通过获取中间臂组件远心点位置,并根据中间臂组件远心点位置获取相邻臂组件远心点位置,确定每个中间臂组件远心点位置下的中间臂最优冗余关节值,以及确定每个中间臂组件远心点位置下每个相邻臂组件远心点位置处的相邻臂组件最优冗余关节值,基于每个中间臂组件最优冗余关节值和每个相邻臂组件最优冗余关节值获得中间臂组件的目标可达指标和相邻臂组件的目标可达指标,根据中间臂组件的目标可达指标和相邻臂组件的目标可达指标获得机器人***的可达评价指标。该评价方法通过将机器人***的各臂组件(例如,第一臂组件和第二臂组件)的实际工况抽象为运动学模型,实现了对第一臂组件的可达指标与第二臂组件的可达指标的计算,进而构造了适用于上述机器人***构型设计的基于可达空间的评价指标,并且通过该评价指标可以进一步指导上述机器人***的参数(如尺寸等)设计,使上述机器人***具有更优的灵活性和避障性。
图1是根据本说明书一些实施例所示的机器人***应用于手术机器人的示意图。
如图1所示,在一些实施例中,手术机器人可以包括机器人***100、控制台300、手术床500以及视觉台车400。在一些实施例中,机器人***100可以包括台车机构、第一臂组件以及与第一臂组件相邻的两个第二臂组件。在一些实施例中,台车机构可以包括台车定位组件和定向组件,定向组件设置于台车定位组件末端,并随台车定位组件运动。在一些实施例中,第一臂组件和第二臂组件设置于定向组件的末端,第一臂组件包括第一调整组件和连接于第一调整组件末端的远心机构,第二臂组件包括第二调整组件和连接于第二调整组件末端的远心机构。机器人***100用于实现手术器械(例如,图2中示出的手术器械200)的支撑与位姿调整,进而实现对患者600的病灶位置进行手术。关于机器人***100的具体内容可以参考本说明其他地方的内容,例如,图2-图7及其相关描述。
手术机器人在工作时中,手术床500用于承载患者600,控制台300连接视觉台车400与 机器人***100,视觉台车400用于获取手术器械200与患者600手术区域之间的图像,医生可以根据视觉台车400呈现的图像信息,并通过控制台300控制机器人***100对患者600进行手术。在一些实施例中,视觉台车400可以为包括内窥镜***,内窥镜***可以包括具有摄像单元的介入管道和显示器,介入管道可以作为手术器械(例如手术器械200)通过机器人***100介入人体内部的病灶区域,并通过摄像单元获取病灶区域的图像信息,从而通过显示器对病灶区域的图像信息进行显现。本说明书实施例提供的手术机器人通过设置机器人***100,能够保证手术机器人使用时的安全性,提高其手术时的灵活性与避障性,保证手术机器人的使用性能,便于医护人员使用。
本说明书提供的手术机器人利用机器人***100对手术床500上的患者600执行微创手术,如配合内窥镜***等传递患者600体内的图像信息。医生通过操作控制台300控制机器人***100的调整机构(例如,第一臂组件和第二臂组件)定向支撑及调整远心机构与手术器械200的运动,实现患者600体内的手术。同时,通过第一臂组件和第二臂组件的构型调整手术器械200的布局与位姿,保证手术器械200在手术时的灵活性与避障性,进而保证手术时的安全性。
图2是根据本说明书一些实施例所示的机器人***的立体结构图。参见图1和图2,在一些实施例中,机器人***100可以包括台车机构110、第一臂组件120a以及与第一臂组件120a相邻的两个第二臂组件120b。在一些实施例中,台车机构110可以包括台车定位组件111以及定向组件112,定向组件112设置于台车定位组件111的端部,并随台车定位组件111一并运动。在一些实施例中,第一臂组件120a和第二臂组件120b设置于定向组件112的末端。在一些实施例中,第一臂组件120a可以包括两个第一调整组件121和连接于第一调整组件121末端的远心机构130,第二臂组件120b可以包括两个第二调整组件122和连接于第二调整组件122末端的远心机构130。即,第一臂组件120a的数量可以是两个,每个第一臂组件120a包括一个第一调整组件121和一个远心机构130。第二臂组件120b的数量可以是两个,每个第二臂组件120b包括一个第二调整组件122和一个远心机构130。在一些实施例中,第一调整组件121与第二调整组件122的结构相异,并可转动连接于定向组件112,两个第一调整组件121位于两个第二调整组件122之间,且第二调整组件122在水平面内能够朝向远离第一调整组件121的方向转动。四个远心机构130分别设置于第一调整组件121与第二调整组件122的端部,远心机构130用于安装手术器械200。在其它实施例中,第一臂组件120a可以包括一个第一调整组件121和连接于第一调整组件121末端的远心机构130,第二臂组件120b可以包括两个第二调整组件122和连接于第二调整组件122末端的远心机构130,其中,第一调整组件121位于两个第二调整组件122之间。需要说明的是,关于第一调整组件121的数量不限于上述的一个或两个,还可以为三个及其以上,第二调整组件122的数量不限于上述的两个,还可以为三个及其以上,关于第一调整组件121和第二调整组件122的数量可以根据具体应用场景进行适应性调整。
在一些实施例中,第一调整组件121和第二调整组件122的关节(例如,第一旋转部件1211、第一移动部件1212、第二旋转部件1221、第二移动部件1222)包括主动关节。主动关节可以理解为基于指令直接进行运动的关节。仅作为示例性说明,主动关节可以包括多个转动关节(转轴、铰链或者其他能够实现旋转的部件),每个转动关节需要通过相对应的指令进行控制而发生旋转,每个转动关节不会因其它关节的转动而发生转动。在一些实施例中,第一调整组件121和第二调整组件122的关节可以包括部分主动关节和部分被动关节。在一些实施例中,第一调整组件121和第二调整组件122的关节可以全部为主动关节。通过将第一调整组件121和第二调整组件122的关节设置为包括主动关节,可以增大机器人***100中各臂组件的活动空间,此外,还可以有效提高机器人***100的灵活性与避障性。在一些实施例中,主动关节可以在机器人***100执行手术操作的过程中与远心机构130联动,从而实现手术操作过程中对手术器械的位姿调整,进而进一步提升机器人***100执行手术操作的灵活性与避障性。
台车机构110为机器人***100的承载结构,通过台车机构110可以实现机器人***100的承载,使得机器人***100处于一定的高度,便于后期进行手术操作。第一调整组件121和第二调整组件122的一端安装于台车机构110的末端,第一调整组件121和第二调整组件122的另一端安装远心机构130。第一调整组件121和第二调整组件122能够相对于台车机构110调整位姿,以调节远心机构130的空间位置,进而调节远心机构130上手术器械200的位姿。这样,四个远心机构130上的手术器械200之间不会发生干涉,保证手术器械200使用时的灵活性与避障性,进而保证机器人***100手术时的安全性。
在一些实施例中,台车机构110可以包括台车定位组件111和定向组件112,定向组件112 设置于台车定位组件111的端部,并随台车定位组件111运动。台车定位组件111起承载作用,用于承载并定位定向组件112,使得定向组件112处于合适的空间位置。台车定位组件111能够沿竖直方向做升降运动,在水平面内做旋转运动以及在水平面内做伸缩运动,定向组件112位于台车定位组件111的末端。
定向组件112可转动安装于台车定位组件111的末端,并且台车定位组件111能够带动定向组件112升降、伸缩以及旋转,使得定向组件112处于合适的位置,以转动连接第一臂组件120a和第二臂组件120b,便于调节第一臂组件120a和第二臂组件120b的位置,使得第一臂组件120a和第二臂组件120b处于规划不动点。可以理解的,规划不动点是指手术时第一臂组件120a和第二臂组件120b的固定位置,以免影响手术器械200进行手术操作。
在一些实施例中,定向组件112可以为悬吊盘定向组件,通过悬吊盘定向组件实现第一臂组件120a和第二臂组件120b的悬吊设置,使得第一调整组件121和第二调整组件122悬设于空间中,以便于带动远心机构130及手术器械200进行手术操作。当然,在本说明书的其他实施方式中,定向组件112还可以为其他能够实现第一调整组件121和第二调整组件122悬吊安装的结构。
如图2所示,在一些实施例中,第一臂组件120a可以包括两个第一调整组件121和连接于第一调整组件121末端的远心机构130,第二臂组件120b可以包括两个第二调整组件122连接于第二调整组件122末端的远心机构130。两个第一调整组件121与两个第二调整组件122的结构不同。第一调整组件121的一端可转动连接到定向组件112的端部,第一调整组件121的另一端安装远心机构130。第二调整组件122的一端可转动连接到定向组件112,第二调整组件122的另一端安装远心机构130。在一些实施例中,第一调整组件121和第二调整组件122可以沿定向转盘1122的长边方向依次间隔设置,其中两个第一调整组件121位于两个第二调整组件122之间。也就是说,两个第二调整组件122位于外侧,两个第一调整组件121位于内侧。在一些实施例中,各臂组件的调整组件(例如,第一调整组件121和第二调整组件122)可以在定向转盘1122上呈线形(例如,直线形、弧线形、曲线型)方式排列、波浪型方式排列、多边形(例如,平行四边形等)等其它排列方式。在一些实施例中,可以将两个第一调整组件121中的一个作为中间臂组件,与该第一调整组件121相邻的另一个第一调整组件121和第二调整组件122作为相邻臂组件。在一些实施例中,也可以将两个第一调整组件121作为中间臂组件,与该第一调整组件121相邻的两个第二调整组件122作为相邻臂组件。
如图2所示,两个第一调整组件121与两个第二调整组件122的一端均可转动安装到定向组件112,两个第一调整组件121与两个第二调整组件122朝向远离定向组件112的方向延伸,并且,相邻的两个组件之间存在一定的间距,避免末端的远心机构130之间发生干涉。远心机构130用于实现手术器械200在第一调整组件121和第二调整组件122的安装,并且,远心机构130能够带动手术器械200运动,以使手术器械200执行相应的操作。
在一些实施例中,第一调整组件121与第二调整组件122的结构相异。也就是说,第一调整组件121与第二调整组件122在结构上存在差异。这样,可以改变第二调整组件122的运动范围,增加第二调整组件122的运动空间,使得第二调整组件122能够朝向远离第一调整组件121的方向转动,即第二调整组件122能够朝向外侧运动,使得第二调整组件122远离第一调整组件121,增加第二调整组件122与第一调整组件121之间的空间,进而增加了第一调整组件121与第二调整组件122的活动空间,以增加机器人***100的灵活性与避障性,保证机器人***100的使用性能。
上述实施例中的机器人***100,台车定位组件111能够带动定向组件112转动与升降运动,以调节调整组件在空间中的大致位置,使得第一调整组件121和第二调整组件122对准患者600的病灶位置。随后,第一调整组件121与第二调整组件122能够分别相对于定向组件112运动,以带动远心机构130及其上的手术器械200运动,使得手术器械200进行手术。在一些实施例中,第二调整组件122能够相对于第一调整组件121向外侧运动,增加了第二调整组件122的活动空间,能够充分利用仿生特点,有效提高第一调整组件121和第二调整组件122的操作空间与灵活性,提升机器人***100的灵活性与避障性。
参见图2至图4,在一些实施例中,第一调整组件121可以包括串联连接的第一旋转部件1211和第一移动部件1212,第一旋转部件1211与第一移动部件1212的数量总和大于或等于四,第一旋转部件1211与第一移动部件1212交替连接,且串联后的第一调整组件121的两端分别连接定向组件112与远心机构130。串联后的第一调整组件121用于控制远心机构130末端的手术器械200相对于定向组件112的位姿。
也就是说,第一调整组件121中第一旋转部件1211与第一移动部件1212的数量共为至少 四个。可以理解的,第一旋转部件1211能够输出旋转运动,第一移动部件1212能够输出移动运动,其具体结构在后文详述。仅作为示例性说明,第一调整组件121中第一旋转部件1211与第一移动部件1212的总数量可以为四个、五个或更多。例如,当第一旋转部件1211与第一移动部件1212的数量为四个时,第一旋转部件1211的数量为两个,第一移动部件1212的数量为两个。又例如,当第一旋转部件1211与第一移动部件1212的数量为五个时,第一旋转部件1211的数量为三个,第一移动部件1212的数量为两个。再例如,当第一旋转部件1211与第一移动部件1212的数量为六个时,第一旋转部件1211的数量为三个,第一移动部件1212的数量为三个。
在一些实施例中,第一旋转部件1211与第一移动部件1212的总数量为至少四个时,第一旋转部件1211与第一移动部件1212串联连接,并且,第一旋转部件1211与第一移动部件1212交替设置。也就是说,每两个相邻的第一旋转部件1211之间存在一个第一移动部件1212,每两个相邻的第一移动部件1212之间存在一个第一旋转部件1211,以此形成第一调整组件121。这样,串联后的第一调整组件121的一端可转动连接到定向组件112,另一端安装远心机构130。第一调整组件121中的第一旋转部件1211能够做旋转运动,第一移动部件1212能够做移动运动,进而带动远心机构130及手术器械200做相应的运动,以调整手术器械200在空间的位姿,满足手术需求。
参见图2至图4,在一些实施例中,串联连接的第一旋转部件1211与第一移动部件1212中,通过一个第一旋转部件1211串联连接至定向组件112。而其余第一旋转部件1211与第一移动部件1212交替连接。也就是说,第一调整组件121通过第一旋转部件1211可转动连接到定向组件112中。
在一些实施例中,其中一个第一旋转部件1211的一端可转动连接到定向组件112,第一旋转部件1211的另一端连接其中一个第一移动部件1212的一端,其中一个移动部件的另一端再连接另一第一旋转部件1211的一端,另一第一旋转部件1211的另一端连接到再一第一移动部件1212的一端,……,如此往复交替连接形成第一调整组件121。也就是说,一个第一旋转部件1211连接到定向组件112后,剩余的第一旋转部件1211与第一移动部件1212交替串联,形成串联机械臂式的第一调整组件121,其末端的第一旋转部件1211或第一移动部件1212的端部连接远心机构130。
值得说明的是,第一调整组件121中第一旋转部件1211与第一移动部件1212的数量共为至少四个,本说明书实施例中仅以第一旋转部件1211与第一移动部件1212的数量共为四个为例进行说明,第一旋转部件1211与第一移动部件1212的数量共为更多个的结构以及原理与第一旋转部件1211与第一移动部件1212的数量共为四个的结构以及原理实质相同,在此不做赘述。
参见图2至图4,在一些实施例中,第一调整组件121包括两个第一旋转部件1211和两个第一移动部件1212,其中一个第一旋转部件1211串联连接定向组件112,一个第一移动部件1212连接至远心机构130。具体的,其中一个第一旋转部件1211串联连接定向组件112及其中一个第一移动部件1212,其中一个第一移动部件1212串联另一第一旋转部件1211,第一旋转部件1211串联另一第一移动部件1212,第一移动部件1212连接至远心机构130。
也就是说,第一旋转部件1211与第一移动部件1212的数量均为两个。其中一个第一旋转部件1211连接到定向组件112,第一旋转部件1211与第一移动部件1212交错设置,最末端的第一移动部件1212连接远心机构130。即第一调整组件121按照旋转-水平移动-旋转-竖直移动的顺序连接。具体的,其中一个第一旋转部件1211的一端可转动连接至定向组件112,该第一旋转部件1211的另一端串联连接其中一个第一移动部件1212的一端,该第一移动部件1212的另一端串联连接另一第一旋转部件1211的一端,该第一旋转部件1211的另一端串联连接另一第一移动部件1212的一端,该第一移动部件1212的另一端连接远心机构130。在一些实施例中,连接两个第一旋转部件1211的第一移动部件1212能够在水平面内移动,即第一个第一移动部件1212能够输出水平移动运动。末端的第一移动部件1212能够在竖直方向移动,即第二个第一移动部件1212能够输出竖直移动运动。
在一些实施例中,第一旋转部件1211可以包括支撑杆体以及设置于支撑杆体上的转动关节,第一旋转部件1211通过支撑杆体可转动连接另一第一旋转部件1211的转动关节或第一移动部件1212。支撑杆体起支撑作用,用于支撑其上的转动关节。在一些实施例中,转动关节为转轴、铰链或者其他能够实现旋转的部件。可选地,转动关节为绕某一轴线方向的转动角度,如水平轴线、竖直轴线等等。当然,在本说明书实施例的其他实施方式中,转动关节也可转动360°转动。
支撑杆体的一端连接转动关节,支撑杆体的另一端为自由端。在上述实施例中与定向组件112连接的第一旋转部件1211中,该第一旋转部件1211的转动关节连接到定向组件112上,以 使第一调整组件121相对于定向组件112可转动,与定向组件112连接的第一旋转部件1211通过支撑杆体可转动连接到下一第一旋转部件1211的转动关节。最后一个第一旋转部件1211通过支撑杆体连接到第一移动部件1212。当然,在本说明书的其他实方式中,该第一旋转部件1211中的支撑杆件的端部连接相邻的第一旋转部件1211中的转动关节。
在一些实施例中,第一移动部件1212可以包括连接杆体以及设置于连接杆体的移动关节,第一移动部件1212通过移动关节可移动连接第一旋转部件1211的支撑杆体,连接杆体连接第一旋转部件1211的转动关节或远心机构130。连接杆体起承载作用,连接杆体的端部安装移动关节。连接杆体与移动关节配合后能够输出移动运动。可选地,移动关节具有安装空间,连接杆体安装于移动关节的安装空间中,连接杆体可相对于移动关节伸出或缩回,以输出移动运动。即第一移动部件1212为类似于电动缸等能够输出直线运动的结构。当然,在本说明书的其他实施方式中,第一移动部件1212还可为其他能够实现移动运动的结构。在一些实施例中,第一旋转部件1211的转动的动力源为电机。
当第一移动部件1212设置在两个第一旋转关节之间时,第一移动部件1212中的移动关节的一端与第一旋转部件1211的支撑杆件连接,移动关节的另一端可伸缩安装连接杆件,连接杆件的另一端安装第一旋转部件1211的转动关节。当第一移动部件1212设置于第一调整组件121的末端时,第一移动部件1212中的移动关节的一端与第一旋转部件的支撑杆件连接,移动关节的另一端可伸缩安装连接杆件,连接杆件的另一端安装远心机构130。在一些实施例中,第一移动部件12121211的转动的动力源为电机。
参见图2至图4,在一些实施例中,第二调整组件122包括至少四个串联连接的第二旋转部件1221和第二移动部件1222,串联后的第二调整组件122的两端分别连接定向组件112与远心机构130,用于控制远心机构130末端的手术器械200相对于定向组件112的位姿。
也就是说,第二调整组件122中第二旋转部件1221与第二移动部件1222的数量为至少四个。可以理解的,第二旋转部件1221能够输出旋转运动,第二移动部件1222能够输出移动运动,其具体结构在后文详述。可选地,当第二旋转部件1221与第二移动部件1222的数量为四个时,第二旋转部件1221的数量为两个,第二移动部件1222的数量为两个。可选地,当第二旋转部件1221与第二移动部件1222的数量为四个时,第二旋转部件1221的数量为三个,第二移动部件1222的数量为一个。可选地,当第二旋转部件1221与第二移动部件1222的数量为五个时,第二旋转部件1221的数量为三个,第二移动部件1222的数量为两个。可选地,当第二旋转部件1221与第二移动部件1222的数量为六个时,第二旋转部件1221的数量为三个,第二移动部件1222的数量为三个。
在一些实施例中,第二旋转部件1221与第二移动部件1222的总数量为至少四个时,第二旋转部件1221与第二移动部件1222串联连接,也就是说,第二旋转部件1221的末端连接另一第二旋转部件1221或第二移动部件1222的末端,以此形成第二调整组件122。这样,串联后的第二调整组件122的一端可转动连接到定向组件112,另一端安装调整远心机构130。第二调整组件122中的第二旋转部件1221能够做旋转运动,第二移动部件1222能够做移动运动,进而带动远心机构130及手术器械200做相应的运动,以调整手术器械200在空间的位姿,满足手术需求。
参见图2至图4,在一些实施例中,第二调整组件122可以包括第二旋转部件1221,第二旋转部件1221与第二移动部件1222的数量总和大于等于四,第二调整组件122的两端连接至定向组件112与远心机构。在一些实施例中,第二调整组件122可以包括至少两个第二旋转部件1221,其中两个第二旋转部件1221串联连接,其一端连接至定向组件112,其另一端串联连接剩余的第二旋转部件1221和/或第二移动部件1222。也就是说,第二旋转部件1221与第二移动部件1222数量共为至少四个时,其中的第二旋转部件1221的数量可以为至少两个。
在一些实施例中,第二调整组件122与定向组件112连接的前两个部件中均为第二旋转部件1221。这样,第二调整组件122能够通过与定向组件112连接的第一个的第二旋转部件1221相对于定向组件112转动,通过第二个第二旋转部件1221使得远心机构130朝向外侧运动,增加第一调整组件121与第二调整组件122的活动空间,避免相邻的第一调整组件121与第二调整组件122之间发生干涉。
在一些实施例中,除了前两个第二旋转部件1221外,第二调整组件122剩余的部件中可以均为第二移动部件1222,或者为第二移动部件1222与第二旋转部件1221的组合,又或者可以均为第二旋转部件1221。
值得说明的是,第二调整组件122中第二旋转部件1221与第二移动部件1222的数量共为至少四个,本说明书中仅以第一旋转部件1211与第二旋转部件1221的数量共为四个为例进行说明, 第二旋转部件1221与第二移动部件1222的数量共为更多个的结构以及原理与第一旋转部件1211与第二旋转部件1221的数量共为四个的结构以及原理实质相同,在此不做赘述。
在一些实施例中,第二调整组件122可以包括三个第二旋转部件1221和一个第二移动部件1222,并按照旋转部件、旋转部件、移动部件、旋转部件的顺序依次串联;或者,按照旋转部件、旋转部件、旋转部件、移动部件的顺序依次串联,这里的旋转部件为第二旋转部件1221,移动部件为第二移动部件1222。具体如下:
参见图2至图4,在一些实施例中,第二调整组件122可以包括三个第二旋转部件1221和一个第二移动部件1222,其中两个第二旋转部件1221串联并连接定向组件112。其中两个第二旋转部件1221远离定向组件112的一端串联连接另一第二旋转部件1221,再串联第二移动部件1222,且第二移动部件1222连接远心机构130;或者,其中两个第二旋转部件1221远离定向组件112的一端串联连接第二移动部件1222,再串联另一第二旋转部件1221,且另一第二旋转部件1221连接远心机构130。
也就是说,第二旋转部件1221的数量为三个,第二移动部件1222的数量为一个。其中两个第二旋转部件1221串联连接,串联后的两个第二旋转部件1221,其一端连接到定向组件112上,其另一端连接第三个第二旋转部件1221与第二移动部件1222。
参见图3,可选地,串联后的两个第二旋转部件1221,先串联第二旋转部件1221再串联第二移动部件1222。即第二调整组件122按照旋转-旋转-旋转-竖直移动的顺序连接。具体的,其中一个第二旋转部件1221的一端可转动连接至定向组件112,该第二旋转部件1221的另一端串联连接另一个第二旋转部件1221的另一端,该第二旋转部件1221的另一端连接第三个第二旋转部件1221的一端,该第二旋转部件1221的另一端与第二移动部件1222的一端连接,该第二移动部件1222的另一端连接远心机构130。末端的第二移动部件1222能够在竖直方向移动,即第二移动部件1222能够输出竖直移动运动。
参见图4,在一些实施例中,串联后的两个第二旋转部件1221,先串联第二移动部件1222再串联第二旋转部件1221。即第二调整组件122按照旋转-旋转-竖直移动-旋转的顺序连接。具体的,其中一个第二旋转部件1221的一端可转动连接至定向组件112,该第二旋转部件1221的另一端串联连接另一个第二旋转部件1221的另一端,该第二旋转部件1221的另一端连接第二移动部件1222的一端,该第二移动部件1222的另一端与第三个第二旋转部件1221的一端连接,该第二旋转部件1221的另一端连接远心机构130。连接两个第二旋转部件1221的第二移动部件1222能够在竖直方向移动,即第二移动部件1222能够输出竖直移动运动。
在一些实施例中,第二旋转部件1221可以包括支撑杆体以及设置于支撑杆体上的转动关节,第二旋转部件1221通过转动关节可转动连接另一第二旋转部件1221的支撑杆体。支撑杆体起支撑作用,用于支撑其上的转动关节。在一些实施例中,转动关节为可以为转轴、铰链或者其他能够实现旋转的任意部件。在一些实施例中,转动关节为绕某一轴线方向的转动角度,如水平轴线、竖直轴线等等。当然,在本说明书的其他实施方式中,转动关节也可转动360°转动。需要注意的是,这里的水平轴线和竖直轴线是以水平面为参考面进行描述的。
支撑杆体的一端连接转动关节,支撑杆体的另一端为自由端。在上述实施例中与定向组件112连接的第二旋转部件1221中,该第二旋转部件1221的转动关节连接到定向组件112上,以使第二调整组件122相对于定向组件112可转动,该第二旋转部件1221中的支撑杆体的端部连接另一第二旋转部件1221的转动关节。当然,在本说明书的其他实施方式中,该第二旋转部件1221中的支撑杆件的端部连接相邻的第二移动部件1222中的移动关节。在一些实施例中,第二旋转部件1221的转动的动力源可以为电机。
在一些实施例中,第二移动部件1222可以包括连接杆体以及设置于连接杆体的移动关节,第二移动部件1222通过移动关节可移动连接第二旋转部件1221的支撑杆体,连接杆体连接第二旋转部件1221或远心机构130。连接杆体起承载作用,连接杆体的端部安装移动关节。连接杆体与移动关节配合后能够输出移动运动。在一些实施例中,移动关节具有安装空间,连接杆体安装于移动关节的安装空间中,连接杆体可相对于移动关节伸出或缩回,以输出移动运动。即第二移动部件1222为类似于电动缸等能够输出直线运动的结构。当然,在本说明书的其他实施方式中,第二移动部件1222还可为其他能够实现移动运动的结构。在一些实施例中,第二移动部件1222的转动的动力源可以为电机。
当第二移动部件1222设置在两个第二旋转关节之间时,第二移动部件1222中的移动关节的一端与第二旋转部件1221的支撑杆件连接,移动关节的另一端可伸缩安装连接杆件,连接杆件 的另一端安装第二旋转部件1221的转动关节。当第二移动部件1222设置于第二调整组件122的末端时,第二移动部件1222中的移动关节的一端与第二旋转部件1221的支撑杆件连接,移动关节的另一端可伸缩安装连接杆件,连接杆件的另一端安装远心机构130。
参见图2至图4,在一些实施例中,台车定位组件111包括台车底座1111、台车升降部件1112、台车旋转部件1113以及台车水平移动部件1114,台车升降部件1112可升降设置于台车底座1111,台车旋转部件1113可转动安装于台车升降部件1112,台车水平移动部件1114可移动设置于台车旋转部件1113,台车水平移动部件1114的端部安装定向组件112。
台车底座1111用于支撑台车定位组件111的各零部件,同时还能够支撑机器人***100的各零部件。台车底座1111能够起到平稳支撑的作用,以平稳支撑机器人***100。可以理解的,台车底座1111的具体结构原则上不受限制,只要能够实现可靠支撑即可。台车升降部件1112沿竖直方式可升降设置在台车底座1111上,台车升降部件1112的顶端安装台车旋转部件1113,台车旋转部件1113远离台车升降部件1112的端部安装台车水平移动部件1114,台车水平移动部件1114远离台车旋转部件1113的一端安装定向组件112。
台车升降部件1112能够带动台车旋转部件1113、台车水平移动部件1114以及定向组件112沿竖直方向同步升降运动,以调节定向组件112的高度,进而调节第一调整组件121和第二调整组件122所处的高度,以满足手术器械200处于不同高度的使用需求。台车旋转部件1113能够带动台车水平移动部件1114以及定向组件112在水平面上旋转,调节定向组件112的角度,使得第一调整组件121和第二调整组件122能够带动远心机构130及手术器械200处于病灶位置所在的方向。台车水平移动部件1114能够带动定向组件112在水平方向伸缩,使得定向组件112带动第一调整组件121和第二调整组件122、远心机构130以及手术器械200朝向病灶位置运动。
通过台车升降部件1112、台车旋转部件1113以及台车水平移动部件1114带动定向组件112沿竖直方向升降、在水平面内旋转、在水平方向伸缩,以此调节定向组件112的位置,达到调节调整组件位置的目的,使得第一调整组件121和第二调整组件122上的远心机构130及手术器械200能够对准患者600的病灶位置,保证后期手术的安全性。
在一些实施例中,台车旋转部件1113的结构可以与第一旋转部件1211的结构相同,在此不做赘述。当然,在本说明书的其他实施方式中,台车旋转部件1113也可为其他能够实现水平方向转动的部件。在一些实施例中,台车升降部件1112可以与台车水平移动部件1114的结构和第一移动部件1212的结构相同,在此不做赘述。当然,在本说明书的其他实施方式中,台车升降部件1112与台车水平移动部件1114也可为伸缩杆或者其他能够实现伸缩的部件。
参见图2至图5,在一些实施例中,定向组件112可以包括定向旋转部件1121以及定向转盘1122,定向旋转部件1121可转动设置于台车水平移动部件1114,定向转盘1122分别连接两个第一调整组件121与两个第二调整组件122。定向转盘1122安装在台车水平移动部件1114远离台车旋转部件1113的端部,定向转盘1122通过定向旋转部件1121可转动安装在台车水平移动部件1114上,以使定向转盘1122可相对于台车水平移动部件1114在水平面中转动,以进一步调节第一调整组件121和第二调整组件122所处的空间角度。
定向转盘1122起承载作用,用于连接第一调整组件121与第二调整组件122,第一调整组件121与第二调整组件122的一段分别伸入到定向转盘1122中,另一端连接远心机构130。示例性地,定向旋转部件1121为转轴、铰接或其他能够实现可转动连接的部件。
在一些实施例中,定向转盘1122可以包括支撑座以及设置于支撑座的安装部,安装部与用于连接第一调整组件121与第二调整组件122。在一些实施例中,安装部的数量为四个,四个安装部设置于支撑座的周侧,且四个安装部间隔设置,避免相邻的第一调整组件121与第二调整组件122之间发生干涉。在一些实施例中,安装部可以为凸起。当然,在本说明书的其他实施方式中,安装部也可为凹槽。
参见图2至图6,在一些实施例中,远心机构130可以包括回转部件131、转动部件132、旋转连杆133、第一辅助连杆134、第二辅助连杆135以及第三辅助连杆136,回转部件131可转动设置于第一调整组件121或第二调整组件122的端部,并连接转动部件132,旋转连杆133可转动连接转动部件132,第一辅助连杆134可转动连接到旋转连杆133,第二辅助连杆135可转动连接到第一辅助连杆134,并使第二辅助连杆135与回转部件131的轴线平行,第三辅助连杆136可转动连接到第二辅助连杆135,第三辅助连杆136用于安装手术器械200。
在一些实施例中,第一调整组件与第二调整组件的结构还可以相同,也就是说,机器人***中的各臂组件的结构相同。参见图1和图7,本说明书还提供一种机器人***100,包括台车 机构110、四个第一调整组件121(即两个第一调整组件和两个与第一调整组件相同的第二调整组件)以及与第一调整组件121连接的四个远心机构130。台车机构110可以包括台车定位组件111以及定向组件112,定向组件112设置于台车定位组件111,并随台车定位组件111运动。第一调整组件121设置于定向组件112处,四个第一调整组件121分别可转动连接至定向组件112。四个远心机构130分别设置于第一调整组件121的端部,远心机构130用于安装手术器械200。其中,第一调整组件121包括串联连接的第一旋转部件1211和第一移动部件1212,第一旋转部件1211和第一移动部件1212的数量总和大于或等于四,第一旋转部件1211与第一移动部件1212交替连接,串联后的第一调整组件121中,其一端通过一个第一旋转部件1211连接定向组件112,其另一端连接远心机构130,用于控制远心机构130末端的手术器械200相对于定向组件112的位姿。
值得说明的是,图7所示的机器人***的结构以及工作原理与图2和图4所示的机器人***的结构以及工作原理实质相同,在此不做赘述,二者的区域之处在于,图2或图3所示的臂组件(例如,第一臂组件120a和第二臂组件120b)包括结构相异的两个第一调整组件121与两个第二调整组件122,而本实施例中图7所示的臂组件包括结构相同的四个第一调整组件121。
如图7所示,在一些实施例中,机器人***中通过采用四个第一调整组件121连接定向组件112与远心机构130。四个第一调整组件121的一端可转动连接到定向组件112,四个第一调整组件的另一端安装远心机构130。并且,四个第一调整组件121间隔设置,相邻的两个第一调整组件121之间存在一定的间距,避免末端的远心机构130之间发生干涉。
在一些实施例中,第一调整组件121中第一旋转部件1211与第一移动部件1212的总数量为至少四个。可以理解的,第一旋转部件1211能够输出旋转运动,第一移动部件1212能够输出移动运动,其具体结构在后文详述。示例性地,当第一旋转部件1211与第一移动部件1212的数量为四个时,第一旋转部件1211的数量为两个,第一移动部件1212的数量为两个。示例性地,当第一旋转部件1211与第一移动部件1212的数量为五个时,第一旋转部件1211的数量为三个,第一移动部件1212的数量为两个。示例性地,当第一旋转部件1211与第一移动部件1212的数量为六个时,第一旋转部件1211的数量为三个,第一移动部件1212的数量为三个。
在一些实施例中第一旋转部件1211与第一移动部件1212的总数量为至少四个,第一旋转部件1211与第一移动部件1212串联连接,并且,第一旋转部件1211与第一移动部件1212交替设置。也就是说,两个第一旋转部件1211之间存在一个第一移动部件1212,两个第一移动部件1212之间存在一个第一旋转部件1211,以此形成第一调整组件121。这样,串联后的第一调整组件121的一端可转动连接到定向组件112,另一端安装调整远心机构130。第一调整组件121中的第一旋转部件1211能够做旋转运动,第一移动部件1212能够做移动运动,进而带动远心机构130及手术器械200做相应的运动,以调整手术器械200在空间的位姿,满足手术需求。
在一些实施例中,串联连接的第一旋转部件1211与第一移动部件1212中,通过一个第一旋转部件1211串联连接至定向组件112,其余第一旋转部件1211与第一移动部件1212交替连接。也就是说,第一调整组件121通过第一旋转部件1211可转动连接到定向组件112中。
具体的,其中一个第一旋转部件1211的一端可转动连接到定向组件112,第一旋转部件1211的另一端连接其中一个第一移动部件1212的一端,其中一个移动部件的另一端再连接另一第一旋转部件1211的一端,另一第一旋转部件1211的另一端连接到再一第一移动部件1212的一端,……,如此往复交替连接形成第一调整组件121。也就是说,一个第一旋转部件1211连接到定向组件112后,剩余的第一旋转部件1211与第一移动部件1212交替串联,形成串联机械臂式的第一调整组件121,其末端的第一旋转部件1211或第一移动部件1212的端部连接远心机构130。
值得说明的是,第一调整组件121中第一旋转部件1211与第一移动部件1212的数量共为至少四个,本说明书中仅以第一旋转部件1211与第一移动部件1212的数量共为四个为例进行说明,第一旋转部件1211与第一移动部件1212的数量共为更多个的结构以及原理与第一旋转部件1211与第一移动部件1212的数量共为四个的结构以及原理实质相同,在此不做赘述。
在一些实施例中,第一调整组件121可以包括两个第一旋转部件1211和两个第一移动部件1212,其中一个第一旋转部件1211串联连接定向组件112及其中一个第一移动部件1212,其中一个第一移动部件1212串联另一第一旋转部件1211,再串联另一第一移动部件1212,另一第一移动部件1212连接至远心机构130。
也就是说,第一旋转部件1211与第一移动部件1212的数量均为两个。其中一个旋转部件连接到定向组件112,第一旋转部件1211与第一移动部件1212交错设置,最末端的第一移动部件1212连接远心机构130。即第一调整组件121按照旋转-移动-旋转-移动的顺序连接。具体的,其中 一个第一旋转部件1211的一端可转动连接至定向组件112,该第一旋转部件1211的另一端串联连接其中一个第一移动部件1212的一端,该第一移动部件1212的另一端串联连接另一第一旋转部件1211的一端,该第一旋转部件1211的另一端串联连接另一第一移动部件1212的一端,该第一移动部件1212的另一端连接远心机构130。
值得说明的是,本实施例中的第一旋转部件1211和第一移动部件1212的结构与图2或图3中的第一旋转部件1211和第一移动部件1212的结构实质相同,在此不做赘述。
为了提高臂组件的操作灵活性、避障性等性能,在一些实施例中,第一臂组件120a或第二臂组件120b可以为冗余机械臂。冗余机械臂可以理解臂组件的自由度大于操作空间的最大自由度。作为示例性说明,手术过程中的操作空间中的自由度是6,臂组件的自由度为7,则臂组件可以视为冗余机械臂。也就是说,第一调整组件121和第二调整组件122可以包括冗余关节。第一调整组件121和第二调整组件122中的自由度关节中相对于操作空间自由度多出来的自由度关节。在一些实施例中,冗余关节可以为第一旋转部1211和第一移动部1212中的任意一个,或第二旋转部1221和第二移动部1222中的任意一个。
在本实施例中提供的方法实施例可以在终端、计算机或者类似的运算装置中执行。比如在终端上运行,图8是根据本申请一些实施例提供的终端硬件结构框图。如图8所示,终端可以包括一个或多个(图1中仅示出一个)处理器802和用于存储数据的存储器804,其中,处理器802可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置。上述终端还可以包括用于通信功能的传输设备806以及输入输出设备808。可以理解的是,图8所示的结构仅为示意,其并不对上述终端的结构造成限制。例如,终端还可包括比图8中所示更多或者更少的组件,或者具有与图1所示出的不同配置。
存储器804可用于存储计算机程序,例如,应用软件的软件程序以及模块,如在本实施例中的控制方法或评价方法对应的计算机程序,处理器802通过运行存储在存储器804内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。在一些实施例中,存储器804可以包括高速随机存储器或非易失性存储器(例如,一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器)。在一些实例中,存储器804可进一步包括相对于处理器802远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备806用于经由一个网络接收或者发送数据。上述的网络包括终端的通信供应商提供的无线网络。在一个实例中,传输设备806可以包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一些实例中,传输设备806可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
本说明书实施例提供的机器人***100可以应用于手术场景,在手术过程中,机器人***100具有多个臂组件(例如,第一臂组件120a和第二臂组件120b),其中,两个第一臂组件120a中的至少一个臂组件对应的远心机构130可以用于夹持提供手术视野的手术器械(例如,内窥镜),与第一臂组件120a相邻的两个第二臂组件120b用于执行手术操作。在手术过程中,各臂组件的调整机构(例如,图1中示出的第一调整组件121和第二调整组件122)通常处于固定位置,也就是说,在手术过程中第一调整组件121和第二调整组件122通常不发生移动,而是通过控制远心机构130以控制手术器械200进行手术操作。由于手术过程中,手术空间较为狭小,容易造成各臂组件及其对应的结构(例如,调整组件、远心机构)之间发生碰撞,为了防止各个臂组件之间发生碰撞以及为了使得远心机构在手术过程中可以具有较好的操作空间,本说明书实施例中还提供了一种机器人***的评价方法,该评价方法可以应用于机器人***,以确定机器人***中各臂组件及其对应的结构的位置,以提高机器人***各臂组件在手术过程中的空间性能。在一些实施例中,机器人***可以包括作为中间臂组件的至少一个第一臂组件和与中间臂组件相邻设置的至少两个相邻臂组件。在一些实施例中,机器人***可以包括一个第一臂组件以及与第一臂组件相邻设置的两个第二臂组件,其中,第一臂组件与第二臂组件的结构可以相同或不同,这里的第一臂组件视为中间臂组件,两个第二臂组件可以视为相邻臂组件。在一些实施例中,机器人***可以包括两个第一臂组件以及与第一臂组件相邻设置的两个第二臂组件,机器人***的具体结构参考上述的机器人***100。以机器人***100作为示例,在一些实施例中,两个第一臂组件120a中的一个作为中间臂组件,两个第二臂组件120b可以作为相邻臂组件。在一些实施例中,两个第一臂组件120a中的一个作为中间臂组件,与该中间臂相邻的另一个第一臂组件120a和一个第二臂组件120b 可以作为相邻臂组件。在一些实施例中,机器人***的臂组件的数量还可以为五个、六个或者更多,关于机器人***的中间臂和相邻臂的选取可以根据机器人***的臂组件的数量及实际应用场景进行适应性调整。另外,本说明书实施例中图10-16中提及的第一臂组件为中间臂,在后文中不再进行说明。关于机器人***的具体结构请参考图1-图7及其相关描述。图9是根据本申请一些实施例提供的机器***的评价方法的流程图。如图9所示,该流程1000可以包括如下步骤:
步骤1010,获取中间臂组件远心点位置。
本说明书实施例提供的评价方法适用于多机械臂机器人***(例如,图2-图7中示出的机器人***)。在多机械臂机器人***中,可以选取机器人***中的一条第一臂组件作为中间臂组件,并从与该第一臂组件相邻的臂组件中选取两条作为相邻臂组件。在控制机器人***去接近空间的某一点时,其本质是令机器人***中臂组件末端(例如,臂组件的远心机构夹持的手术器械)的工具中心点去接近该点,该臂组件末端的工具中心点TCP(Tool Central Point)也被称为远心机构的不动点或远心点(图6中所示的P点)。请参考图6,远心点P可以为回转部件131的旋转轴线(图6所示的虚线M)与手术器械200中轴线(图6所示的虚线L)的交点。在一些实施例中,可以通过遍历作为中间臂组件的第一臂组件(例如,图2中示出的第一臂组件120a中的一个)的远心点与相邻臂组件(例如,图2中示出的两个第二臂组件120b,或者与作为中间臂的第一臂组件120a相邻的另一个第一臂组件120a和第二臂组件120b)的远心点的姿态空间,确定中间臂组件远心点与相邻臂组件远心点的位姿组合,并对该位姿组合进行碰撞概率计算,以实现在最大化可达工作空间的前提下,降低中间臂组件与相邻臂组件之间的碰撞风险。
具体地,该中间臂组件远心点位置为预先确定的区域。中间臂组件远心点位置可以是预先确定的区域中任意一处位置,也就是说,中间臂组件远心点位置可以是预先确定的区域中任意一个坐标。例如,在实际应用场景中预先确定一个矩形,通过在对该矩形进行划分网格得到若干点,该矩形内得到的若干点均可以作为该机器人***的一组中间臂组件远心点位置。由于机器人***中包含一个中间臂组件和至少两个相邻臂组件,且相邻臂组件是围绕中间臂组件进行操作的,为了后续能够确定中间臂组件远心点的位姿以及相邻臂组件远心点的位姿,可以先获取该中间臂组件远心点位置,以该中间臂组件远心点位置为基础进行后续的位姿可达性分析,并且可以进一步在位姿可达的基础上,进行碰撞概率的计算。
步骤1020,根据中间臂组件远心点位置获取相邻臂组件远心点位置。
图10是根据本申请一些实施例提供的机器人***进行协同工作时多臂协同远心点位置布局模型。如图10所示,P2点为中间臂组件远心点位置,P1i和P3i可以为该中间臂远心点的两条相邻臂组件远心点位置。在一些实施例中,对应P2不同的位置信息,P1i与P3i为不同值。例如,P1i可以是图10中环形区域的上半部分的值,P3i为11中环形区域的下半部分的值。又例如,P1i和P3i可以是同时位于图10环形区域中上半部分或下半部分的不同值。在一些实施例中,对于在一个中间臂组件远心点位置下,也可以对应多组P1i和P3i。可以基于图10的多臂协同远心点位置布局模型,获取与中间臂组件远心点位置对应相邻臂组件远心点位置。
步骤1030,确定每个中间臂组件远心点位置下的中间臂组件最优冗余关节值,以及确定每个中间臂组件远心点位置下每个相邻臂组件远心点位置处的相邻臂组件最优冗余关节值。
在一些实施例中,可以在获得每个中间臂组件远心点位置下中间臂组件的所有冗余关节值后,基于该中间臂组件的所有冗余关节值对应的可达指标进行筛选,得到每个中间臂组件远心点位置下的最优冗余关节值。例如,可以对所有的可达性分析结果进行加权统计。其中,可以对每个中间臂组件远心点位置下所有冗余关节值的可达性分析结果进行统计,得到每个冗余关节值的可达指标。在一些实施例中,所有可达位姿数与总的位姿数的比值可以作为冗余关节值所对应的可达指标。例如,在中间臂组件远心点位置A下,冗余关节值x1对应100组姿态,对该中间臂组件远心点位置A和每一个姿态确定的位姿进行可达性分析,确定其中有50组位姿可达,则该冗余关节值x1的可达指标为50%。根据实际工况和用户需求,确定最佳可达指标,从而确定每个中间臂组件远心点位置下的最优冗余关节值。同样地,可以对每个相邻臂组件远心点位置处相邻臂组件的所有冗余关节值,进行可达性分析,并基于每个冗余关节值的可达指标,筛选出每个相邻臂组件远心点位置下相邻臂组件的最优冗余关节值。
在一些实施例中,还可以进一步基于碰撞概率指标对冗余关节值进行筛选。对于碰撞概率指标的计算,可以是通过求解该冗余关节值对应的所有中间臂组件远心点与相邻臂组件远心点的碰撞概率平均值,得到该碰撞概率指标。通过对可达指标与碰撞概率指标进行排序,确定每个中间臂组件远心点位置下的最优冗余关节值和每个相邻臂组件远心点位置下的最优冗余关节值。
关于步骤1030的更多说明可以参见本说明书图12的相关描述。
步骤1040,基于每个中间臂组件最优冗余关节值和每个相邻臂组件最优冗余关节值获得中间臂组件的目标可达指标和相邻臂组件的目标可达指标,根据中间臂组件的目标可达指标和相邻臂组件的目标可达指标获得机器人***的可达评价指标。
在确定每个中间臂组件远心点位置下的最优冗余关节值后,由于最优冗余关节值是根据可达指标确定的,因此该最优冗余关节值与可达指标存在一种映射关系。根据中间臂组件最优冗余关节值与可达指标之间的映射关系,即能获取该中间臂组件最优冗余关节值对应的可达指标。根据相邻臂组件的最优冗余关节值与可达指标之间的映射关系,即能获取该相邻臂组件最优冗余关节值对应的可达指标。通过数理统计的方式对所有中间臂组件远心点位置下的最优冗余关节值对应的可达指标进行处理后,可以得到中间臂组件远心点的目标可达指标。通过数理统计的方式对所有相邻臂组件远心点位置下的最优冗余关节值对应的可达指标进行处理后,可以得到相邻臂组件远心点的目标可达指标。
在获得中间臂组件的目标可达指标和相邻臂组件的目标可达指标后,对该机器人***的中间臂组件的目标可达指标和相邻臂组件的目标可达指标进行统计,将统计结果作为该机器人***的可达评价指标。具体地,可以对中间臂组件的目标可达指标和相邻臂组件的目标可达指标进行加权平均,得到该机器人***的可达评价指标。
通过上述步骤1010至1040,获取中间臂组件远心点位置,根据中间臂组件远心点位置获取相邻臂组件远心点位置,确定每个中间臂组件远心点位置下的中间臂组件最优冗余关节值,以及确定每个中间臂组件远心点位置下每个相邻臂组件远心点位置处的相邻臂组件最优冗余关节值,基于每个中间臂组件最优冗余关节值和每个相邻臂组件最优冗余关节值获得中间臂组件的目标可达指标和相邻臂组件的目标可达指标,根据中间臂组件的目标可达指标和相邻臂组件的目标可达指标获得机器人***的可达评价指标。其将实际工况抽象为运动学模型,实现了对中间臂组件的可达指标与相邻臂组件的可达指标的计算,进而构造了适用于机器人***的构型设计的基于可达空间的评价指标。在一些实施例中,基于上述步骤1040,基于每个中间臂组件最优冗余关节值和每个相邻臂组件最优冗余关节值获得中间臂组件的目标可达指标和相邻臂组件的目标可达指标可以包括:将每个中间臂组件最优冗余关节值对应的可达指标,作为每个中间臂组件最优冗余关节值对应的中间臂组件远心点位置处的中间点可达指标;将每个相邻臂组件最优冗余关节值对应的可达指标,作为每个相邻臂组件最优冗余关节值对应的相邻臂组件远心点位置处的相邻点可达指标。
其中,中间点可达指标与每个中间臂组件远心点位置处的最优冗余关节值对应。每个中间臂组件远心点位置下可以对应一个中间点可达指标。同样地,相邻点可达指标与每个相邻臂组件远心点位置处的最优冗余关节值对应。每个相邻臂组件远心点位置下可以对应一个相邻点可达指标。
在一些实施例中,基于每个中间臂组件最优冗余关节值和每个相邻臂组件最优冗余关节值获得中间臂组件的目标可达指标和相邻臂组件的目标可达指标还可以包括:根据所有中间点可达指标获得中间臂组件的目标可达指标,根据所有相邻点可达指标获得相邻臂组件的目标可达指标。
具体地,对所有中间臂组件远心点位置处对应的中间点可达指标进行数理统计,确定中间臂组件的目标可达指标。对所有相邻臂组件远心点位置处对应的相邻点可达指标进行数理统计,得到相邻臂组件的目标可达指标。进一步地,该数理统计的具体过程可以根据实际应用场景进行确定,示例性地,可以通过对所有中间点可达指标统计求平均,得到中间臂组件的目标可达指标,对所有相邻点可达指标求平均,得到相邻臂组件的目标可达指标。
在一些实施例中,中间臂组件的目标可达指标、相邻臂组件的目标可达指标以及机器人***的可达评价指标均采用数理统计的方法获得。
在一些实施例中,基于每个中间臂组件最优冗余关节值和每个相邻臂组件最优冗余关节值获得中间臂组件的目标可达指标和相邻臂组件的目标可达指标之后,还包括以下步骤:
步骤1050,将每个中间臂组件远心点位置处最优冗余关节值的可达位姿分别与对应的中间臂组件远心点位置下每个相邻臂组件远心点位置处最优冗余关节值对应的可达位姿进行碰撞计算,获得机器人***的碰撞概率指标。
具体地,在位姿可达的基础上,可以基于碰撞模型对中间臂组件远心点最优冗余关节值对应的可达位姿,和相邻臂组件最优冗余关节值对应的可达位姿进行碰撞概率计算。例如,可以 通过正运动学计算中间臂组件与相邻臂组件之间的碰撞距离,依据该碰撞距离来确定该中间臂组件最优冗余关节值对应的可达位姿与相邻臂组件最优冗余关节值对应的可达位姿的位姿组合所对应的碰撞概率。接下来,通过对多组上述可达位姿的位姿组合对应的碰撞概率进行统计,可以得到机器人***的碰撞概率指标。
目前对于机械臂构型参数的优化往往围绕机械臂的灵活性、协作空间大小等指标进行,将该指标应用于机器人***的实际工作场景的难度较大,从而难以确定该类指标对于机器人***的评价的准确度。本申请实施例将碰撞概率作为机器人***灵巧性的评价指标,依据该评价指标能够降低机器人***在实际工况下的各机械臂之间的碰撞风险。
基于上述步骤1050,在一些实施例中,将每个中间臂组件远心点位置处最优冗余关节值的可达位姿分别与对应的中间臂组件远心点位置下每个相邻臂组件远心点位置处最优冗余关节值对应的可达位姿进行碰撞计算,获得机器人***的碰撞概率指标可以包括:对由每个中间臂组件最优冗余关节值对应的可达位姿,分别与对应的中间臂组件远心点位置下每个相邻臂组件最优冗余关节值对应的可达位姿组成的可达位姿组合进行碰撞计算,得到每个可达位姿组合的碰撞计算结果。
在一些实施例中,将每个中间臂组件远心点位置处最优冗余关节值的可达位姿分别与对应的中间臂组件远心点位置下每个相邻臂组件远心点位置处最优冗余关节值对应的可达位姿进行碰撞计算,获得机器人***的碰撞概率指标还可以包括:对所有碰撞计算的结果采用数理统计的方法进行处理,获得机器人***的碰撞概率指标。
应当注意的是,上述有关流程1000的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程1000进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,可以将步骤1050省略。
图11是根据本申请一些实施例提供的确定每个中间臂组件远心点位置下的中间臂组件最优冗余关节值的流程图。如图11所示,在一些实施例中,基于上述步骤1030,确定每个中间臂组件远心点位置下的中间臂组件最优冗余关节值,具体包括以下步骤:
步骤1031,离散枚举每个中间臂组件远心点位置处的所有冗余关节值,作为中间臂组件冗余关节值。
在一些实施例中,可以通过离散枚举的方式得到中间臂组件远心点位置下的所有冗余关节值,并将该所有的冗余关节值作为该中间臂组件远心点位置下的一组中间臂组件冗余关节值。
步骤1032,计算每个中间臂组件冗余关节值下所有中间臂组件远心点位姿的可达性,获得每个中间臂组件冗余关节值对应的中间臂组件的可达指标,其中所有中间臂组件远心点位姿为预设数量的预设位姿。
其中,每个中间臂组件冗余关节值下的所有中间臂组件远心点位姿为预先确定的一组数量固定的位姿。通过对每个中间臂组件冗余关节值下所有中间臂组件远心点位姿的可达性进行统计分析,可以确定每个中间臂组件冗余关节值对应的中间臂组件的可达指标。
步骤1033,根据所有中间臂组件冗余关节值对应的可达指标和可达指标预设条件获得中间臂组件最优冗余关节值。
由于每个中间臂组件远心点位置下对应多个中间臂组件冗余关节值,通过对不同中间臂组件冗余关节值所对应的可达指标统计排序,并基于排序结果和根据实际应用场景确定的可达指标预设条件,确定中间臂组件最优冗余关节值。其中,该可达指标预设条件为根据实际应用场景或者用户需求确定的最优可达指标筛选条件。例如,中间臂组件远心点位置B下的所有冗余关节值为冗余关节值y1、冗余关节值y2、以及冗余关节值y3,其中基于上述步骤S232,计算得到冗余关节值y1的可达指标为50%,冗余关节值y2计算得到的可达指标为60%,冗余关节值y3计算得到的可达指标为70%。若可达指标预设条件为冗余关节值对应的可达指标最高,则可以将冗余关节值y3作为中间臂组件远心点位置B下的最优冗余关节值。
在一些实施例中,基于上述步骤1030,确定每个相邻臂组件远心点位置处的相邻臂组件最优冗余关节值,具体包括以下步骤:
步骤1034,离散枚举每个相邻臂组件远心点位置处的所有冗余关节值,作为相邻臂组件冗余关节值。
步骤1035,计算每个相邻臂组件冗余关节值下所有相邻臂组件远心点位姿的可达性,获得每个相邻臂组件冗余关节值对应的相邻臂组件的可达指标,其中,所有相邻臂组件远心点位姿为预设数量的预设位姿。
与上述步骤1032类似地,通过对每个相邻臂组件冗余关节值下所有相邻臂组件远心点位姿的可达性进行统计分析,可以确定每个相邻臂组件冗余关节值对应的相邻臂组件的可达指标。
步骤1036,根据所有相邻臂组件冗余关节值对应的可达指标和可达指标预设条件获得相邻臂组件最优冗余关节值。
与上述步骤1033类似地,基于可达指标预设条件和所有相邻臂组件冗余关节值所对应的可达指标的统计分析结果,确定每个相邻臂组件远心点位置处的最优冗余关节值,从而得到相邻臂组件最优冗余关节值。
需要说明的是,上述步骤1010至步骤1050及其对应的子步骤中,基于数理统计的方式,根据中间点可达指标获得中间臂组件的目标可达指标,根据相邻点可达指标获得相邻臂组件的目标可达指标,从而实现了对机器人***的可达指标的统计分析,降低了后续处理的数据量;对每个中间臂组件最优冗余关节值对应的可达位姿分别与对应的相邻臂组件最优冗余关节值对应的可达位姿进行碰撞计算,得到机器人***的碰撞概率指标,从而实现了在位姿可达前提下的碰撞概率的计算。上述步骤将实际工况抽象为运动学模型,实现了对中间臂组件的可达指标与相邻臂组件的可达指标的计算,进而构造了适用于机器人***的构型设计的基于可达空间的评价指标。
图12是根据本申请一些实施例提供的一种机器人构型参数的寻优方法的流程图。如图12所示,该机器人构型参数的寻优方法流程1300可以包括以下步骤:
步骤1310,离散枚举机器人***的构型参数组合。
步骤1320,根据上述实施例的评价指标计算方法,得到每个构型参数组合的可达评价指标。
其中,可以根据上述实施例中的评价指标计算方法,确定在每个构型参数组合下,该机器人***对应的可达评价指标。进一步地,还可以根据上述实施例中所提供的方法,计算每个构型参数组合下,该机器人***对应的碰撞概率指标。
步骤1330,对所有构型参数组合及其对应的可达评价指标进行预设规则的排序。
具体地,基于预设规则,对每个构型参数组合下机器人***的可达评价指标进行排序。该预设规则可以根据实际应用场景或用户需求进行设定。例如,可以是对所有构型参数组合所对应的可达评价指标进行可达评价指标的值的大小排序。进一步地,还可以基于预设规则,对所有构型参数组合对应的可达评价指标和碰撞概率指标进行排序。
步骤1340,根据预设规则的排序选择最优评价指标所对应的构型组合作为机器人***的最优构型。
其中,该最优评价指标为根据上述排序的结果,得到的在实际应用场景下的最优的可达评价指标。进一步地,该最优评价指标还可以为实际应用场景下的最优的可达评价指标和碰撞概率指标。
上述步骤1310至步骤1340,离散枚举机器人***的构型参数组合,根据上述实施例提供的评价指标计算方法,得到每个构型参数组合的可达评价指标,对所有构型参数组合及其对应的可达评价指标进行预设规则的排序,根据预设规则的排序选择最优评价指标所对应的构型组合作为机器人***的最优构型。其利用基于可达空间构造的机器人***的评价标准,实现了符合实际工况的构型参数寻优。
图13为本实施例的一种机器人构型参数的寻优方法的流程图,如图13所示,该流程1400可以包括以下步骤:
步骤1410,确定至少一组机器人构型参数组合。
步骤1420,根据上述实施例提供的评价指标计算方法,得到构型参数组合的可达评价指标。
步骤1430,将构型参数组合及对应的可达评价指标输入遗传算法进行迭代寻优,获得机器人***的最优构型。
其中,构型参数组合对应的可达评价指标为在该构型参数组合下,基于上述实施例提供的评价指标计算方法得到的机器人***的可达评价指标。可以根据该待选构型参数组合和对应的可达指标,结合遗传算法进行寻优,得到该机器人***的最优构型。具体地,该寻优算法除上述遗传算法之外,还可以为其他任意一种适用于经典数值寻优的算法,例如粒子群优化和蚁群算法等。在本实施例中不作限定。另外地,也可以基于构型参数组合对应的可达评价指标和碰撞概率指标,对该机器人***的最优构型进行寻优。
上述步骤1410至步骤1430,确定至少一组机器人构型参数组合,根据上述实施例提供的 评价指标计算方法,得到构型参数组合的可达评价指标,将构型参数组合及对应的可达评价指标输入遗传算法进行迭代寻优,获得多机械臂机器人***的最优构型。其利用基于可达空间构造的机器人***的评价标准,实现了符合实际工况的构型参数寻优。
图14是根据本申请一些实施例提供的获取中间臂组件最优冗余关节值的方法流程图。如图14所示,在一些实施例中,提供了一种中间臂组件最优冗余关节值求解的方法1500可以包括以下步骤:
步骤1510,选取中间臂组件远心点位置;
步骤1520,基于中间臂组件远心点位置遍历中间臂组件冗余关节值,如果该冗余关节值下对应多个中间臂组件远心点姿态,则执行步骤1530,否则执行步骤1570;
步骤1530,根据中间臂组件冗余关节值遍历中间臂组件远心点姿态空间,以确定中间臂组件远心点位姿,若得到中间臂组件远心点位姿,则执行步骤1540,否则执行步骤1560;
步骤1540,对该中间臂组件远心点位姿进行逆解验证,确定中间臂组件远心点的可达位姿;
步骤1550,根据中间臂组件远心点的可达位姿确定相邻臂组件远心点的可达指标和碰撞指标;
步骤1560,对相邻臂组件的可达指标和碰撞指标进行加权统计;
步骤1570,根据可达指标和碰撞指标的加权统计结果确定中间臂组件冗余关节值的最优值。
图15是根据本申请一些实施例提供的机器人***的构形参数寻优方法流程图。如图15所示,在一些实施例中,构型参数寻优方法1600可以包括以下步骤:
步骤1610,利用正弦离散枚举连杆参数组合或者逆向遗传算法确定一组构型参数;
步骤1620,确定中间臂组件远心点位置;
步骤1630,确定中间臂组件远心点位置下的冗余关节值;
步骤1640,根据中间臂组件远心点的冗余关节值确定中间臂组件远心点姿态,得到中间臂组件远心点位姿;
步骤1650,验证该中间臂组件远心点位姿是否可达,若是则执行步骤1660,否则执行步骤1710;
步骤1660,根据该中间臂组件远心点位姿,确定相邻臂组件远心点位置;
步骤1670,根据相邻臂组件远心点位置确定相邻臂组件冗余关节值;
步骤1680,根据相邻臂组件冗余关节值确定相邻臂组件远心点姿态,得到相邻臂组件远心点位姿;
步骤1690,验证该相邻臂组件位姿是否可达,若是则执行步骤1700,否则执行步骤1710;
步骤1700,基于中间臂组件远心点与相邻臂组件远心点的可达位姿,结合碰撞模型进行碰撞概率计算;
步骤1710,进行可达指标与碰撞概率指标统计。
机器人***在手术之前经过上述的评价方法,以确定各臂组件及其对应的结构的位置,然而在手术过程中,可能需要对远心机构的不动点(即远心点)处的目标位姿进行调整,但是传统的调整组件的位置在手术前已经确定,在手术过程中无法进行调整,而各远心机构之间的间距较小,远心机构的运动空间有限,可能会导致远心机构之间发生碰撞。
基于上述问题,本说明书实施例中还提供一种机器人***的控制方法,应用于上述的机器人***(例如,图1-图7所示的机器人***100),以使机器人***在手术过程中,可以根据远心机构的不动点处的目标位姿对调整组件和/或远心机构进行调整。在一些实施例中,机器人***可以包括多个臂组件,每个臂组件可以包括调整组件和远心机构,调整组件包括主动关节,远心机构位于调整组件的一端,以使得机器人***可以在手术过程中通过具有主动关节的调整组件对各臂组件的位置进行调整,例如,调整相邻的两个臂组件之间的间距、夹角等参数。在一些实施例中,多个臂组件可以包括至少一个第一臂组件(例如,图2所示的第一臂组件120a)以及与第一臂组件相邻设置的至少两个第二臂组件(例如,图2所示的第二臂组件120b),关于机器人***的具体结构请参考图1-图7及其相关描述。图16是根据本申请一些实施例提供的机器***的控制方法的流程图。如图16所示,该流程900可以包括如下步骤:
步骤910,获取环境信息。
在一些实施例中,步骤910可以由获取模块执行。获取模块可以为具有拍摄功能的电子设 备,用于拍摄机器人***周围环境的影像信息,获取模块获取的影像信息可以传送至处理器802(在图8中示出),处理器802可以将影像信息转化为环境信息。在一些实施例中,环境信息可以包括机器人***的工作空间和障碍物信息。机器人***的工作空间可以是指机器人***所在的空间区域。障碍物信息是指工作空间中影响各个臂组件运动的物体坐标信息。以图2中所示的机器人***作为示例进行说明,以一个第一臂组件120a为中间臂,位于第一臂组件120a两侧的第二臂组件120b为相邻臂,当控制第一臂组件120a移动至目标位置的过程中,第二臂组件120b可能对第一臂组件120a的运动过程造成阻碍,此时第二臂组件120b的坐标信息可以视为障碍物信息。又例如,当第一臂组件120a已移动至第一目标位置,控制一个第二臂组件120b移动至第二目标位置的过程中,第一臂组件120a和另一个第二臂组件120b可以视为障碍物信息。在机器人***的工作空间中,如果有除却臂组件之外的物体,该物体的坐标信息也被视为障碍物信息。
步骤920,基于远心机构的不动点处的目标位姿确定机器人***的可达指标和碰撞概率指标。
在一些实施例中,该步骤920可以由处理器802执行。
机器人***的可达指标是指机器人***中各臂组件对应的目标可达指标的综合值。在一些实施例中,机器人***的可达指标可以用于判断各臂组件对应的手术器械在实际手术操作中所需求的位姿(不动点处的目标位姿)是否可以达成。关于求取机器人***的可达指标的具体内容可以参考本说明书其他地方的内容,例如,图9及其相关描述。
碰撞概率指标是指机器人***中各臂组件对应的手术器械在实际手术操作中达到所需位姿时的碰撞概率。可以理解为,机器人***中一个臂组件(例如,图2中所示的第一臂组件120a)对应的远心机构及其手术器械与其他臂组件(例如,图2中所示的第二臂组件120b)的远心机构及其手术器械的碰撞概率。关于求取机器人***的碰撞概率指标的具体内容可以参考本说明书其他地方的内容,例如,图10及其相关描述。
步骤930,判断可达指标和碰撞概率指标是否满足预设条件。
在一些实施例中,该步骤920可以由处理器802执行。
在一些实施例中,预设条件可以包括预设可达指标阈值和预设碰撞概率指标阈值。在一些实施例中,判断可达指标和碰撞概率指标是否满足预设条件可以包括:判断可达指标是否大于或等于预设可达指标阈值和碰撞概率指标是否大于或等于预设碰撞概率指标阈值。在一些实施例中,可达指标阈值和预设碰撞概率指标阈值可以是预先设置并存储至存储器804的数值。在一些实施例中,可达指标阈值和预设碰撞概率指标阈值也可以是根据实际手术操作需要而人工设置的数值。
若可达指标和碰撞概率指标满足预设条件,也就是说,可达指标大于或等于预设可达指标阈值和碰撞概率指标大于或等于预设碰撞概率指标阈值,则执行步骤940。
步骤940,驱动远心机构控制手术器械。
该步骤940由处理器802执行。处理器802响应于可达指标大于或等于预设可达指标阈值和碰撞概率指标大于或等于预设碰撞概率指标阈值,控制机器人***的各臂组件对应的远心机构以调整手术器械的位姿。具体地,处理器802可以通过控制图6所示的转动部件132的旋转角度、旋转连杆133与第一辅助连杆134的角度、第一辅助连杆134与第二辅助连杆135之间的角度等以调整第三辅助连杆136上设置的手术器械的位姿,从而执行手术操作。
若可达指标和碰撞概率指标不满足预设条件,也就是说,可达指标小于预设可达指标阈值和碰撞概率指标小于预设碰撞概率指标阈值,则执行步骤950。
步骤950,驱动调整组件和远心机构联动控制手术器械。
该步骤950由处理器802执行。处理器802响应于可达指标小于预设可达指标阈值和碰撞概率指标小于预设碰撞概率指标阈值,控制机器人***的各臂组件对应的调整组件(例如,移动关节、旋转关节)各部件以调整各调整组件的位姿。在一些实施例中,在手术过程中,对各臂组件的调整组件完成调整之后,可以基于上述流程1000的机器人***的评价方法来确定调整后的手术器械的碰撞概率指标,基于调整后的手术器械的碰撞概率指标判断是否满足预设条件,若满足预设条件,则固定调整组件并控制远心机构及其夹持的手术器械进行手术。若调整后的手术器械的碰撞概率指标不满足预设条件,则继续对调整组件和远心机构进行调整,使得手术器械的碰撞概率指标满足预设条件。进一步地,处理器802再通过控制图6所示的转动部件132的旋转角度、旋转连杆133与第一辅助连杆134的角度、第一辅助连杆134与第二辅助连杆135之间的角度等以调整第三辅助连杆136上设置的手术器械的位姿。在一些实施例中,处理器802还可以同时控制调 整组件和远心机构控制手术器械的位置。
在一些实施例中,处理器802可以对各臂组件及其对应的远心机构的不动点处位姿进行调控。具体地,当需要对机器人***中各臂组件对应的手术器械的位姿进行控制时,各臂组件都会基于上述流程900进行控制,以实现对各臂组件及其对应的结构(例如,调整组件、远心机构)的调整,使机器人***达到较好的操作空间。当机器人***的部分臂组件的可达指标和碰撞概率指标不满足预设条件时,则需要对机器人***中的臂组件进行调整。以图2中所示的机器人***100作为示例进行说明,机器人***100中的第一臂组件120a中的一个作为中间臂,该中间臂对应的远心机构130所夹持的手术器械200可以为用于提供手术视野的内窥镜,与第一臂组件120a相邻的两个第二臂组件120b作为相邻臂,该相邻臂用于执行手术操作。在对机器人***100进行控制时,采用上述流程900对第一臂组件120a、两个第二臂组件120b进行控制,若中间臂或相邻臂的可达指标和碰撞概率指标不满足预设条件时,例如,第一臂组件120a无法提供较好的手术视野时,或第二臂组件120b不满足操作空间需求时,处理器802对机器人***100的各臂组件的位置继续进行调整。在一些实施例中,还可以是以机器人***100中的第一臂组件120a中的一个作为中间臂(例如,用于操作内窥镜),与第一臂组件120a相邻的另一个第一臂组件120a和第二臂组件120b作为相邻臂。关于中间臂以及相邻臂的选取可以根据机器人***100中臂组件的数量以及实际应用场景进行适应性调整。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的***组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的***。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (25)

  1. 一种机器人***(100),包括:
    台车机构(110),包括台车定位组件(111)以及定向组件(112),所述定向组件(112)设置于所述台车定位组件(111)末端,并随所述台车定位组件(111)运动;
    第一臂组件(120a)以及与所述第一臂组件(120a)相邻设置的两个第二臂组件(120b),所述第一臂组件(120a)和所述第二臂组件(120b)设置于所述定向组件(112)的末端;所述第一臂组件(120a)包括第一调整组件(121)和连接于所述第一调整组件(121)末端的远心机构(130);所述第二臂组件(120b)包括第二调整组件(122)和连接于所述第二调整组件(122)末端的远心机构(130);
    其中,所述第一调整组件(121)和所述第二调整组件(122)的关节包括主动关节。
  2. 根据权利要求1所述的机器人***,所述第一臂组件(120a)的数量为两个。
  3. 根据权利要求1或2所述的机器人***,所述第一调整组件(121)包括串联连接的第一旋转部件(1211)和第一移动部件(1212),所述第一旋转部件(1211)和所述第一移动部件(1212)的数量总和大于或等于四,所述第一旋转部件(1211)与所述第一移动部件(1212)交替连接,所述第一调整组件(121)的两端分别连接所述定向组件(111)与所述远心机构(130)。
  4. 根据权利要求3所述的机器人***,其中,所述串联连接的所述第一旋转部件(1211)与所述第一移动部件(1212)中,通过一个所述第一旋转部件(1211)串联连接至所述定向组件(111)。
  5. 根据权利要求4所述的机器人***,其中,所述第一调整组件(121)包括两个所述第一旋转部件(1211)和两个所述第一移动部件(1212),其中一个所述第一旋转部件(1211)连接至所述定向组件(111),一个所述第一移动部件(1212)连接至所述远心机构(130)。
  6. 根据权利要求3至5中任一项所述的机器人***,所述第一旋转部件(1211)包括支撑杆体以及设置于所述支撑杆体上的转动关节,所述第一旋转部件(1211)通过所述支撑杆体可转动连接另一所述第一旋转部件(1211)的转动关节或者连接所述第一移动部件(1212);
    所述第一移动部件(1212)包括连接杆体以及设置于所述连接杆体的移动关节,所述第一移动部件(1212)通过所述移动关节可移动连接所述第一旋转部件(1211)的支撑杆体,所述连接杆体连接所述第一旋转部件(1211)的转动关节或所述远心机构(130)。
  7. 根据权利要求1-6任一项所述的机器人***,其中,所述第二调整组件(122)与所述第一调整组件(121)的结构相异,所述第二调整组件(122)在水平面内能够朝向远离所述第一调整组件(121)的方向转动。
  8. 根据权利要求7所述的机器人***,其中,所述第二调整组件(122)包括串联连接的第二旋转部件(1221)和第二移动部件(1222),所述第二旋转部件(1221)和所述第二移动部件(1222) 的数量总和大于或等于四,所述第二调整组件(122)的两端分别连接所述定向组件(111)与所述远心机构(130)。
  9. 根据权利要求8所述的机器人***,其中,所述第二调整组件(122)包括至少两个所述第二旋转部件(1221),其中两个所述第二旋转部件(1221)串联连接,其一端连接至所述定向组件(111),另一端串联连接剩余的所述第二旋转部件(1221)和/或所述第二移动部件(1222)。
  10. 根据权利要求8所述的机器人***,其中,所述第二调整组件(122)包括三个所述第二旋转部件(1221)和一个所述第二移动部件(1222),并按照旋转部件、旋转部件、移动部件、旋转部件的顺序依次串联;或者,
    按照旋转部件、旋转部件、旋转部件、移动部件的顺序依次串联。
  11. 根据权利要求1-5任一项所述的机器人***,其中,所述第二调整组件(122)与所述第一调整组件(121)的结构相同。
  12. 根据权利要求1所述的机器人***,其中,所述第一调整组件(121)和所述第二调整组件(122)包括冗余关节。
  13. 一种机器人***的评价方法,应用于机器人***(100),所述机器人***(100)包括作为中间臂组件的至少一个第一臂组件(120a)以及与所述中间臂组件相邻设置的至少两个相邻臂组件,所述方法包括:
    获取中间臂组件远心点位置;
    根据所述中间臂组件远心点位置获取相邻臂组件远心点位置;
    确定每个所述中间臂组件远心点位置下的中间臂组件最优冗余关节值,以及确定每个所述中间臂组件远心点位置下每个所述相邻臂组件远心点位置处的相邻臂组件最优冗余关节值;
    基于每个所述中间臂组件最优冗余关节值和每个所述相邻臂组件最优冗余关节值获得所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标,根据所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标获得所述机器人***的可达评价指标。
  14. 根据权利要求13所述的机器人***评价方法,其中,所述基于每个所述中间臂组件最优冗余关节值和每个所述相邻臂组件最优冗余关节值获得所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标,包括:
    将每个所述中间臂组件最优冗余关节值对应的可达指标,作为每个所述中间臂组件最优冗余关节值对应的所述中间臂组件远心点位置处的中间点可达指标;将每个所述相邻臂组件最优冗余关节值对应的可达指标,作为每个所述相邻臂组件最优冗余关节值对应的所述相邻臂组件远心点位置处的相邻点可达指标;
    根据所有中间点可达指标获得所述中间臂组件的目标可达指标,根据所有相邻点可达指标获 得所述相邻臂组件的目标可达指标。
  15. 根据权利要求13所述的机器人***评价方法,其中,所述中间臂组件的目标可达指标、所述相邻臂组件的目标可达指标以及所述机器人***的可达评价指标均采用数理统计的方法获得。
  16. 根据权利要求13所述的机器人***评价方法,其中,所述根据所述中间臂组件远心点位置获取所述相邻臂组件远心点位置,包括:
    根据所述中间臂组件远心点位置、多臂协同远心点位置布局模型,确定所述相邻臂组件远心点位置。
  17. 根据权利要求13所述的机器人***评价方法,其中,所述确定每个所述中间臂组件远心点位置下的中间臂组件最优冗余关节值,包括:
    离散枚举每个中间臂组件远心点位置处的所有冗余关节值,作为中间臂组件冗余关节值;
    计算每个所述中间臂组件冗余关节值下所有中间臂组件远心点位姿的可达性,获得每个所述中间臂组件冗余关节值对应的所述中间臂组件的可达指标,其中所述所有中间臂组件远心点位姿为预设数量的预设位姿;
    根据所有中间臂组件冗余关节值对应的可达指标和可达指标预设条件获得中间臂组件最优冗余关节值。
  18. 根据权利要求13所述的机器人***评价方法,其中,所述确定每个所述相邻臂组件远心点位置处的相邻臂组件最优冗余关节值,包括:
    离散枚举每个相邻臂组件远心点位置处的所有冗余关节值,作为相邻臂组件冗余关节值;
    计算每个所述相邻臂组件冗余关节值下所有相邻臂组件远心点位姿的可达性,获得每个所述相邻臂组件冗余关节值对应的所述相邻臂组件的可达指标,其中,所述所有相邻臂组件远心点位姿为预设数量的预设位姿;
    根据所有相邻臂组件冗余关节值对应的可达指标和可达指标预设条件获得相邻臂组件最优冗余关节值。
  19. 根据权利要求13所述的机器人***评价方法,其中,所述基于每个所述中间臂组件最优冗余关节值和每个所述相邻臂组件最优冗余关节值获得所述中间臂组件的目标可达指标和所述相邻臂组件的目标可达指标之后,还包括;
    将每个所述中间臂组件远心点位置处最优冗余关节值的可达位姿分别与对应的所述中间臂组件远心点位置下每个所述相邻臂组件远心点位置处最优冗余关节值对应的可达位姿进行碰撞计算,获得所述机器人***的碰撞概率指标。
  20. 根据权利要求19所述的机器人***评价方法,其中,所述将每个所述中间臂组件远心点位置处最优冗余关节值的可达位姿分别与对应的所述中间臂组件远心点位置下每个所述相邻臂组件远 心点位置处最优冗余关节值对应的可达位姿进行碰撞计算,获得所述机器人***的碰撞概率指标,包括:
    对由每个所述中间臂组件最优冗余关节值对应的可达位姿,分别与对应的所述中间臂组件远心点位置下,每个所述相邻臂组件最优冗余关节值对应的可达位姿组成的可达位姿组合进行碰撞计算,得到每个可达位姿组合的碰撞计算的结果;
    对所有碰撞计算的结果采用数理统计的方法进行处理,获得所述机器人***的碰撞概率指标。
  21. 根据权利要求13所述的机器人***评价方法,其中,所述至少两个相邻臂组件包括至少另一个第一臂组件和至少一个第二臂组件。
  22. 根据权利要求13所述的机器人***评价方法,其中,所述至少两个相邻臂组件包括至少两个第二臂组件。
  23. 一种机器人***构型参数的寻优方法,用于机器人***,所述机器人***包括作为中间臂的至少一个第一臂组件和与所述中间臂组件相邻设置的至少两个相邻臂组件,所述方法包括:
    离散枚举所述机器人***的构型参数组合;
    根据权利要求13至22中任一项所述的机器人***评价方法,得到每个所述构型参数组合的可达评价指标;
    对所有所述构型参数组合及其对应的可达评价指标进行预设规则的排序;
    根据所述预设规则的排序选择最优评价指标所对应的构型组合作为所述机器人***的最优构型。
  24. 一种机器人***构型参数的寻优方法,用于机器人***,所述机器人***包括作为中间臂的至少一个第一臂组件和与所述中间臂组件相邻设置的至少两个相邻臂组件,所述方法包括:
    确定至少一组所述机器人构型参数组合;
    根据权利要求13至22中任一项所述的机器人***评价方法,得到所述构型参数组合的可达评价指标;
    将所述构型参数组合及对应的所述可达评价指标输入遗传算法进行迭代寻优,获得所述机器人***的最优构型。
  25. 一种机器人***的控制方法(900),应用于机器人***(100),所述机器人***(100)包括多个臂组件(120a、120b),所述臂组件(120a、120b)包括调整组件(121、122)和远心机构(130),所述调整组件(121、122)的关节包括主动关节;所述方法包括:
    获取环境信息,所述环境信息包括所述机器人***(100)的工作空间和障碍物信息;
    基于所述远心机构(130)的不动点处的目标位姿确定所述机器人***(100)的可达指标和碰撞概率指标;
    判断所述可达指标和所述碰撞概率指标是否满足预设条件;
    响应于是,驱动所述远心机构(130)控制手术器械(200);
    响应于否,驱动所述调整组件(121、122)和所述远心机构(130)联动控制所述手术器械(200)。
PCT/CN2022/100575 2021-06-29 2022-06-22 一种机器人***及其评价方法、控制方法 WO2023274000A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202121459480.X 2021-06-29
CN202110732646.9 2021-06-29
CN202121459480.XU CN215606250U (zh) 2021-06-29 2021-06-29 手术机器人及多自由度手术***
CN202110732646.9A CN115530980A (zh) 2021-06-29 2021-06-29 手术机器人及多自由度手术***
CN202111101869.1 2021-09-18
CN202111101869.1A CN113664837B (zh) 2021-09-18 2021-09-18 机器人评价指标计算方法和机器人构型参数的寻优方法

Publications (1)

Publication Number Publication Date
WO2023274000A1 true WO2023274000A1 (zh) 2023-01-05

Family

ID=84690723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100575 WO2023274000A1 (zh) 2021-06-29 2022-06-22 一种机器人***及其评价方法、控制方法

Country Status (1)

Country Link
WO (1) WO2023274000A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116889471A (zh) * 2023-07-13 2023-10-17 北京长木谷医疗科技股份有限公司 导航手术机械臂最佳关节角度选解方法、装置及设备
CN117549312A (zh) * 2023-12-29 2024-02-13 哈尔滨工业大学 一种面向在轨组装的空间机械臂灵巧性评估方法
CN117549312B (zh) * 2023-12-29 2024-07-16 哈尔滨工业大学 一种面向在轨组装的空间机械臂灵巧性评估方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009149805A1 (de) * 2008-06-09 2009-12-17 Kuka Roboter Gmbh Vorrichtung und verfahren zur rechnergestützten generierung einer manipulatorbahn
CN103648733A (zh) * 2011-07-01 2014-03-19 库卡实验仪器有限公司 用于控制机器人的方法和控制装置
CN105686883A (zh) * 2016-03-14 2016-06-22 昆山邦泰汽车零部件制造有限公司 一种冗余自由度持镜机械臂
CN106335062A (zh) * 2016-11-11 2017-01-18 清研华宇智能机器人(天津)有限责任公司 一种通用七轴冗余工业机器人作业规划方法
CN107184275A (zh) * 2017-07-25 2017-09-22 吉林大学 一种用于辅助胸腹腔微创手术的机器人
CN108056823A (zh) * 2017-12-27 2018-05-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN108186120A (zh) * 2017-12-27 2018-06-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN108481324A (zh) * 2018-04-25 2018-09-04 中国科学院合肥物质科学研究院 一种八轴多功能机械臂的逆解工程及其碰撞检测算法
JP2019084665A (ja) * 2017-11-02 2019-06-06 国立大学法人電気通信大学 ロボット制御装置、ロボット、ロボットシステム、及びプログラム
CN112372631A (zh) * 2020-10-05 2021-02-19 华中科技大学 一种大型复杂构件机器人加工的快速碰撞检测方法及设备
CN112706158A (zh) * 2019-10-25 2021-04-27 中国科学院沈阳自动化研究所 基于视觉和惯导定位的工业人机交互***及方法
CN113664837A (zh) * 2021-09-18 2021-11-19 武汉联影智融医疗科技有限公司 机器人评价指标计算方法和机器人构型参数的寻优方法
CN215606250U (zh) * 2021-06-29 2022-01-25 武汉联影智融医疗科技有限公司 手术机器人及多自由度手术***

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009149805A1 (de) * 2008-06-09 2009-12-17 Kuka Roboter Gmbh Vorrichtung und verfahren zur rechnergestützten generierung einer manipulatorbahn
CN103648733A (zh) * 2011-07-01 2014-03-19 库卡实验仪器有限公司 用于控制机器人的方法和控制装置
CN105686883A (zh) * 2016-03-14 2016-06-22 昆山邦泰汽车零部件制造有限公司 一种冗余自由度持镜机械臂
CN106335062A (zh) * 2016-11-11 2017-01-18 清研华宇智能机器人(天津)有限责任公司 一种通用七轴冗余工业机器人作业规划方法
CN107184275A (zh) * 2017-07-25 2017-09-22 吉林大学 一种用于辅助胸腹腔微创手术的机器人
JP2019084665A (ja) * 2017-11-02 2019-06-06 国立大学法人電気通信大学 ロボット制御装置、ロボット、ロボットシステム、及びプログラム
CN108186120A (zh) * 2017-12-27 2018-06-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN108056823A (zh) * 2017-12-27 2018-05-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN108481324A (zh) * 2018-04-25 2018-09-04 中国科学院合肥物质科学研究院 一种八轴多功能机械臂的逆解工程及其碰撞检测算法
CN112706158A (zh) * 2019-10-25 2021-04-27 中国科学院沈阳自动化研究所 基于视觉和惯导定位的工业人机交互***及方法
CN112372631A (zh) * 2020-10-05 2021-02-19 华中科技大学 一种大型复杂构件机器人加工的快速碰撞检测方法及设备
CN215606250U (zh) * 2021-06-29 2022-01-25 武汉联影智融医疗科技有限公司 手术机器人及多自由度手术***
CN113664837A (zh) * 2021-09-18 2021-11-19 武汉联影智融医疗科技有限公司 机器人评价指标计算方法和机器人构型参数的寻优方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116889471A (zh) * 2023-07-13 2023-10-17 北京长木谷医疗科技股份有限公司 导航手术机械臂最佳关节角度选解方法、装置及设备
CN116889471B (zh) * 2023-07-13 2024-04-02 北京长木谷医疗科技股份有限公司 导航手术机械臂最佳关节角度选解方法、装置及设备
CN117549312A (zh) * 2023-12-29 2024-02-13 哈尔滨工业大学 一种面向在轨组装的空间机械臂灵巧性评估方法
CN117549312B (zh) * 2023-12-29 2024-07-16 哈尔滨工业大学 一种面向在轨组装的空间机械臂灵巧性评估方法

Similar Documents

Publication Publication Date Title
WO2021147265A1 (zh) 手术机械臂的控制方法、计算机设备及一种手术机械臂
JP6919007B2 (ja) 手術台に対して位置合わせをするシステム及び方法
CN111050686B (zh) 手术机器人***的摄像机控制
CN104334110B (zh) 使用零空间回避操纵器臂与患者碰撞
US8126114B2 (en) Seven or more degrees of freedom robotic manipulator having at least one redundant joint
JP5571432B2 (ja) 医療用ロボットシステム
WO2023274000A1 (zh) 一种机器人***及其评价方法、控制方法
WO2023082990A1 (zh) 一种确定机械臂工作位姿的方法和装置
US8660694B2 (en) Method for computer-aided movement planning of a robot
EP3610795B1 (en) Mobile x-ray imaging system
CN114952806B (zh) 约束运动控制方法、装置、***和电子设备
CN105615912A (zh) 一种ct扫描方法和***
CN113271883B (zh) 用于机器人手术***的手眼协调***
CN210056222U (zh) 一种双控制协同操作的腹腔镜手术机器人及***
WO2020092312A1 (en) Binding and non-binding articulation limits for robotic surgical systems
CN113768627A (zh) 视觉导航仪感受野获取方法、设备、手术机器人
EP3973540A1 (en) Systems and methods for generating workspace volumes and identifying reachable workspaces of surgical instruments
CN215606250U (zh) 手术机器人及多自由度手术***
CN112917479B (zh) 五轴机器人的近似位姿计算方法、装置和存储介质
EP3903717B1 (en) Surgical robotic system with adjustable angle of approach
CN114077243B (zh) 一种医疗辅助设备的运动控制方法和***
CN113876433A (zh) 机器人***以及控制方法
WO2021128525A1 (zh) 一种手术***、手术***控制及手术控制方法
JP7200458B2 (ja) 作業支援ロボット
CN115192196A (zh) 计算机可读存储介质及手术机器人***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831816

Country of ref document: EP

Kind code of ref document: A1