WO2021128525A1 - 一种手术***、手术***控制及手术控制方法 - Google Patents

一种手术***、手术***控制及手术控制方法 Download PDF

Info

Publication number
WO2021128525A1
WO2021128525A1 PCT/CN2020/073154 CN2020073154W WO2021128525A1 WO 2021128525 A1 WO2021128525 A1 WO 2021128525A1 CN 2020073154 W CN2020073154 W CN 2020073154W WO 2021128525 A1 WO2021128525 A1 WO 2021128525A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
end effector
state
grip
joint
Prior art date
Application number
PCT/CN2020/073154
Other languages
English (en)
French (fr)
Inventor
谭普
伍小兵
Original Assignee
重庆海扶医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海扶医疗科技股份有限公司 filed Critical 重庆海扶医疗科技股份有限公司
Publication of WO2021128525A1 publication Critical patent/WO2021128525A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery

Definitions

  • the present invention relates to medical equipment, in particular to a surgical system, a surgical control system and a surgical control method.
  • Surgical instruments perform surgical actions on patients according to the instructions of the manipulator, but most of the existing manipulators are conventional mice. When operating, they can only be moved or clicked on the plane. The sense of control is not intuitive enough, and incorrect manipulation may occur. .
  • the main purpose of the present invention is to provide a surgical system, a surgical control system, and a surgical control method, so as to improve the manipulation experience, realize more intuitive manipulation, and reduce the probability of manipulation errors.
  • a surgical system including:
  • the operating end includes a grip, a base and an operation response mechanism, a first joint is provided between the operation response mechanism and the grip, and the operation response mechanism and the base A second joint is provided, the operation response mechanism is provided with a plurality of intermediate joints, and the first joint, the second joint, and each of the intermediate joints adaptively resolve actions according to the force of the grip;
  • An execution end the execution end includes an end effector and an execution mechanism, and the execution mechanism is used to drive the end effector to move;
  • control system includes a sensor and a processor, the sensor is used to collect the action data of each of the decomposition actions, the sensor is arranged on the operating end, and the processor is used to collect the action data according to the action data.
  • a control instruction is generated, and the control instruction is used to control the action of the actuator so that the path of the end effector corresponds to the path of the corresponding joint or the grip.
  • the operating end is connected to the execution end by wire; or the operating end is connected to the execution end wirelessly.
  • the operation response mechanism is a linkage mechanism.
  • joints are correspondingly provided with the sensors.
  • the linkage mechanism includes a plurality of components connected in series, and each component is connected by the intermediate joint.
  • the linkage mechanism is rotatably arranged on the base, so that the motion limit space of the grip part is located in a spherical space centered on the base, and the grip part is It can move freely in the extreme space of its movement.
  • the linkage mechanism includes a sub-planar linkage mechanism, and the sub-planar linkage mechanism includes at least two members connected in series; in the sub-planar linkage mechanism, each member is serially connected in series and on the same plane. , Making the holding part approach or away from the base when the sub-plane mechanism is bent.
  • the linkage mechanism includes a first member, a second member, a third member, a fourth member, and a fifth member serially connected in sequence, and the first joint is provided on the base and the first member In between, the second joint is provided between the fifth member and the grip portion.
  • the first member is rotatably disposed on the base, and the axis of rotation between the first member and the base is the first axis;
  • the second member is rotatably disposed On the first member, the axis of rotation between the second member and the first member is the second axis;
  • the third member is rotatably disposed on the second member, and the third member
  • the axis of rotation between the member and the second member is the third axis;
  • the fourth member is rotatably disposed on the third member, and the axis of rotation between the fourth member and the third member Is the fourth axis;
  • the fifth member is rotatably hinged on the fourth member, the axis of rotation between the fifth member and the fourth member is the fifth axis, and the holding portion is rotatable Is disposed on the fifth member, and the axis of rotation between the holding portion and the fifth member is a sixth axis;
  • At least one axis has an axial direction in the first direction
  • the axial direction of at least one axis is the second direction
  • the axial direction of at least one axis is the third direction
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • first axis and the sixth axis are parallel to each other, the second axis, the third axis, and the fourth axis are parallel to each other, and the fifth axis is respectively parallel to the first axis and the first axis.
  • the two axes are perpendicular, and the first axis and the second axis are perpendicular to each other.
  • an auxiliary support structure is provided on the linkage mechanism, the auxiliary support structure is used to support the second member and/or the third member, and the auxiliary support structure includes a first support and a second support The first support and the second support are hinged.
  • the first support is hinged on the first member
  • the second support is hinged on the second member and the second member.
  • the first member, the second member, the first support and the second support jointly form a parallelogram mechanism
  • the first support is hinged on the fourth member, and the second support is hinged between the second member and the third member At the joint of, the third member, the fourth member, the first support and the second support jointly form a parallelogram mechanism.
  • the auxiliary support structure further includes a buffer elastic member
  • the buffer elastic member is disposed between the first support member and the second member;
  • the buffer elastic member is disposed between the first support member and the third member.
  • the operating end is further provided with a limiting structure for limiting the degree of freedom of the grip in a non-surgical state.
  • the limit structure includes:
  • a limit hole which is arranged on the base
  • a limit part which is arranged on the operation response mechanism or the grip part
  • the limiting portion restricts the degree of freedom of the gripping portion by being inserted into the limiting hole.
  • the senor is an encoder.
  • an interaction zone for manipulating the end effector to perform surgical actions is provided on the grip portion.
  • the end effector includes a focused ultrasound device.
  • the execution mechanism is an equal-scale mechanism with the same structure as the operation response mechanism, or the structure of the execution mechanism is different from that of the operation response mechanism.
  • the processor is configured to directly control the execution mechanism according to the motion data so that the end effector The path is consistent with the path of the corresponding joint/the grip; or the processor is configured to calculate the total displacement and total angle from the starting position to the end position of the corresponding joint or the grip according to the motion data , And decompose the total displacement and the total angle according to the structure of the actuator, so that the total displacement and the total angle of the end effector correspond to the total displacement and the total angle of the corresponding joint/the grip portion, respectively.
  • the processor when the structure of the execution mechanism is different from the structure of the operation response mechanism, the processor is configured to:
  • the surgical system further includes a feedback system for feeding back the state of the end effector.
  • the feedback system includes a pressure sensor for detecting the pressure between the end effector and the operated person; and/or the feedback system includes a pressure sensor for detecting the end effector and the operated person A distance sensor for the distance from the skin surface.
  • the feedback system includes an imaging system, the imaging system includes one or both of an in-vivo image monitoring device and an in-vitro image monitoring device, and the in-vivo image monitoring device is used to obtain real-time images in the patient's body, so The extracorporeal imaging device is used to monitor real-time images of the end effector.
  • the present invention also provides a surgical control system, including:
  • a sensor which is used to collect the motion data of the operating terminal
  • a processor the processor is configured to produce a control instruction according to the motion data, the control instruction is used to control the action of the actuator of the execution end, so that the path of the end effector in the execution end is the same as the corresponding joint/holding in the operation end Corresponds to the path of the Ministry.
  • the processor is configured to: directly control the actuator according to the motion data, so that the path of the end effector is consistent with the path of the corresponding joint/the grip;
  • the processor is configured to: calculate the state of the corresponding joint/the grip in the space coordinate system corresponding to the operating end according to the motion data, the state includes a position state or the state includes a position State and posture state,
  • the processor is configured to control the end effector to avoid the person being operated on during the movement of the corresponding joint/the grip part in the corresponding operating end of the end effector.
  • the present invention also provides a surgical control method, including:
  • a control instruction is generated according to the motion data, and the control instruction is used to control the motion of the actuator of the execution end, so that the path of the end effector in the execution end corresponds to the path of the corresponding joint/grip in the operation end.
  • the state includes a position state or the state includes a position state and a posture state;
  • the end effector is controlled to avoid the person being operated on.
  • the end effector of the execution end corresponds to the movement path of the corresponding joint or the movement path of the grip part, so that the operation is more intuitive, the control experience is better, and the false override rate can be reduced.
  • Figure 1 shows an exemplary structural diagram of the surgical system of the present invention
  • Figure 2 shows another exemplary structural diagram of the surgical system of the present invention
  • Figure 3 shows an exemplary structure diagram of the operating terminal
  • Figure 4 shows an internal cross-sectional view of Figure 3
  • Figure 5 shows the internal cross-sectional view of Figure 3 (each joint position has been marked);
  • Fig. 6 shows an exemplary structural diagram of the control system.
  • Operation end 100 execution end 200, processor 320, actuator 220, end effector 210, base 110, grip 120, operation response mechanism 130, first member 131, second member 132, third member 133, The fourth member 134, the fifth member 135, the intermediate joint 103, the first joint 101, the second joint 106, the auxiliary support structure 140, the first support 141, the second support 142, the cushioning elastic member 143, the interaction zone 150, Button 151, limit structure 160, limit portion 161, limit hole 162, sensor 310, first encoder 311, second encoder 312, third encoder 313, fourth encoder 314, fifth encoder 315 .
  • a surgical system combined with FIGS. 1 to 6, includes an operating end 100, an executing end 200, and a control system.
  • the operating end 100 includes a grip 120, a base 110, and an operation response mechanism 130
  • the executing end 200 includes an end executing
  • the actuator 210 and the actuator 220 for driving the end effector 210 to move, a first joint 101 is provided between the operation response mechanism 130 and the grip 120, and a second joint is provided between the operation response mechanism 130 and the base 110 106.
  • the operation response mechanism 130 is provided with a plurality of intermediate joints 103, and the first joint 101, the second joint 106, and each of the intermediate joints 103 adaptively decompose actions according to the force of the grip 120;
  • the control system includes a sensor 310 and the processor 320.
  • the sensor 310 is arranged at the operating terminal 100.
  • the sensor 310 is used to collect the action data of the decomposition action of the operating response mechanism 130.
  • the processor 320 generates control instructions according to the collected action data to control the action of the actuator 220.
  • the actuator 210 moves with the actuator 220 so that the path of the end effector 210 corresponds to the path of the grip 120.
  • the control instructions generated by the processor 320 according to the collected motion data can also be used to make the path of the end effector 210 correspond to the path of the corresponding joint (for example, the member between the numbers 133 and 134). correspond.
  • the path in the present invention corresponds to the end effector 210 or the corresponding joint corresponding to the displacement of the grip 120 from the start position to the end position, and it may correspond to the rotation angle from the start position to the end position, or it can be The displacement and rotation angle from the starting position to the end position correspond to each other.
  • the operation response mechanism 130 will adaptively decompose actions under the drive of the grip 120 according to its own structure.
  • the sensor 310 obtains the action data of these decomposing actions, and the processor 320 then performs actions according to the actions.
  • the data control actuator 220 operates so that the path of the end effector 210 corresponds to the path of the grip 120 or the corresponding joint.
  • the operating terminal 100 and the performing terminal 200 are wiredly connected, and the entire surgical system can be arranged in the same room, or the operating terminal 100 can be arranged in one room, and the operating terminal 100 can be arranged in another adjacent or similar room.
  • the execution end 200 is arranged.
  • the operation terminal 100 and the execution terminal 200 are wirelessly connected, and the execution terminal 200 and the operation terminal 100 can be arranged according to requirements.
  • the remote arrangement of the execution terminal 200 and the operation terminal 100 can be realized. Remote control of the execution end 200 through the operation end 100.
  • a structure including a link mechanism is adopted as the operation response mechanism 130, but in actual implementation, the structure of the operation response mechanism 130 is not limited to this, and the actual structure of the operation response mechanism 130 can be executed according to the end.
  • the degree of freedom of the device 210 is designed.
  • the following embodiments are described in conjunction with the system and the surgical process corresponding to ultrasound focused surgery. However, in the actual implementation process, the surgical system of the present invention may also correspond to other operations. Surgical system.
  • the linkage mechanism includes a plurality of components connected in series, and each structure is connected by the intermediate joint 103.
  • the linkage mechanism is rotatably arranged on the base 110, so that the motion limit space of the grip portion 120 is centered on the base 110 In a sphere space, the grip 120 can move freely in its motion limit space.
  • the operator can treat the base 110 as a lesion to be treated, which more intuitively simulates the action process of the end effector 210 when holding the end effector 210, and has a better control experience.
  • the linkage mechanism includes a sub-planar linkage mechanism
  • the sub-planar linkage mechanism includes at least two members connected in series; in the sub-planar linkage mechanism, each member is serially connected in series and on the same plane, so that The holding portion 120 is close to or away from the base 110 when the sub-plane mechanism is bent.
  • the end effector 210 can move according to the intermediate joint 103 between the third member 133 and the fourth member 134 in FIG. 5, for example, referring to FIGS. 3 to 5, the sub-plane mechanism may be the second in the figure.
  • the member 132, the third member 133 and the fourth member 134, on the basis that the link mechanism can rotate along the base 110, can be bent in conjunction with the joints of the sub-plane mechanism so that the grip 120 can reach its limit of movement space Any location.
  • the number of components of the sub-plane mechanism can be other numbers.
  • some joints are provided with sensors 310, as long as the path corresponding to the joint or the grip 120 can be calculated according to the acquired motion data.
  • a sensor can also be set on each joint.
  • the type of sensor 310 is set according to the actual structure of the execution end 200. If there is a rotary joint in the execution end 200, an angular displacement sensor can be set 310. A plurality of displacement sensors 310 may also be provided to calculate the rotation angle of the rotary joint. If a sliding joint is provided in the execution end 200, a displacement sensor 310 may be provided to obtain the sliding displacement of the sliding joint.
  • each joint is a rotating secondary joint
  • the linkage mechanism includes a first member 131, a second member 132, a third member 133, a fourth member 134, and a fifth member 131, a second member 132, a third member 133, a fourth member 134, and a fifth
  • the member 135 the first joint 101 is arranged between the base 110 and the first member 131, and the second joint 106 is arranged between the fifth member 135 and the grip 120.
  • revolute joints for some joints and mobile joints for some joints, but this method of using revolute joints for all joints is conducive to smoother and more coherent response of each joint.
  • the first member 131 is rotatably disposed on the base 110, and the first member 131 and the base
  • the axis of rotation between the seats 110 is defined as the first axis
  • the second member 132 is rotatably disposed on the first member 131, and the axis of rotation between the second member 132 and the first member 131 is defined as the second axis
  • the three members 133 are rotatably arranged on the second member 132, the axis of rotation between the third member 133 and the second member 132 is defined as the third axis
  • the fourth member 134 is rotatably arranged on the third member 133, The axis of rotation between the fourth member 134 and the third member 133 is defined as the fourth axis
  • the fifth member 135 is rotatably hinged on the fourth member 134, and the axis of rotation between the fifth member 135 and the fourth member 134
  • the axial direction of at least one axis is the first direction
  • the axial direction of at least one axis is the second direction
  • the axial direction of at least one axis is the third direction
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction
  • the third direction is the Z-axis direction, that is, at least one axis is in the X-axis direction, at least one axis is in the Y-axis direction, and at least one axis is in the Y-axis direction.
  • the axis is in the Z-axis direction.
  • the first direction, the second direction, and the third direction may not be perpendicular to each other, but it must be satisfied that the first direction, the second direction, and the third direction are in any rectangular coordinate system.
  • the first axis and the sixth axis are parallel to each other, the second axis, the third axis, and the fourth axis are parallel to each other, and the fifth axis is perpendicular to the first axis and the second axis, respectively.
  • the first axis and the second axis are perpendicular to each other.
  • an auxiliary support structure 140 is provided on the linkage mechanism.
  • the auxiliary support structure 140 is used to support the second member 132 and the third member 133, and the auxiliary support structure 140 includes a first support.
  • the member 141 and the second support member 142, and the first support member 141 and the second support member 142 are hinged.
  • the first support 141 is hinged on the first member 131, and the second support 142 is hinged on the joint between the second member 132 and the third member 133, so that The first member 131, the second member 132, the first support 141 and the second support 142 together form a parallelogram mechanism;
  • the auxiliary support structure 140 is used to support the third member 133, the first support 141 is hinged on the fourth On the member 134, the second support 142 is hinged at the joint between the second member 132 and the third member 133, so that the third member 133, the fourth member 134, the first support 141 and the second support 142 are formed together Parallelogram mechanism.
  • the auxiliary support structure 140 further includes a buffer elastic member 143.
  • the buffer elastic member 143 is provided between the first support member 141 and the second member 132; when the auxiliary support structure 140 is used to support the third member 133, the buffer elastic member 143 is provided between the first support 141 and the third member 133.
  • the cushioning elastic member 143 can be springs, gas springs, rubber bands, etc. As long as the cushioning elasticity can be provided, the supported member can receive a small impact force during the rotation process, which is beneficial to the entire The structure of the actuator is more stable and reliable.
  • the senor 310 is an encoder. In the implementation process, the type of the sensor 310 is set according to the actual structure of the operating terminal 100.
  • the sensor 310 is arranged at the first joint 101, the second joint 106, the joint between the first member 131 and the second member 132, the second member 132 and the second member 132.
  • each sensor 310 is an encoder, and the manipulator is provided with five encoders, namely, a first encoder 311, a second encoder 312, a third encoder 313, and a fourth encoder.
  • the fifth encoder 315 the first encoder 311 is provided at the first joint 1011
  • the second encoder 312 is provided at the joint between the first member 131 and the second member 132
  • the third encoder 313 is provided At the joint between the second member 132 and the third member 133
  • the fourth encoder 314 is provided at the joint between the fourth member 134 and the fifth member 135, and the fifth encoder 315 is provided at the second joint 106 .
  • the displacement data between the third member 133 and the fourth member 134 acquired by the first encoder 31151, the second encoder 31252, and the third encoder 313 can be used, and the fourth encoder 31454 and the fifth encoder 315 acquires the posture of the grip 120.
  • a sensor 310 can also be provided corresponding to each joint to realize omni-directional displacement and posture recognition.
  • the manipulator further includes a limiting structure 160 for limiting the degree of freedom of the grip 120 in a non-surgical state.
  • the limiting structure 160 is used to lock the manipulator to a certain extent.
  • the limiting structure 160 includes a limiting hole 162 provided on the base 110 and a limiting portion 161 provided on the operation response mechanism 130.
  • the limiting portion 161 is inserted
  • the restriction hole 162 restricts the degree of freedom of the grip 120.
  • the limiting portion 161 is disposed on the fourth member 134 in the linkage mechanism, and the degree of freedom of the gripping portion 120 is 2 at this time; in the actual implementation process, the limiting portion 161 can also be disposed on Other components in the linkage mechanism; or directly set the limiting portion 161 on the holding portion 120 to completely lock the holding portion 120 so that the corresponding degree of freedom of the holding portion 120 is 0.
  • the structure of the positioning portion 161 is not limited to the form of the limiting hole 162, but may also be a limiting groove or other structures.
  • the limiting hole 162 may not be provided on the base 110, or may be provided on a structure other than the manipulator , As long as the position of the grip 120 can be limited.
  • the grip 120 is provided with an interaction area 150 for manipulating surgical instruments to perform surgical actions.
  • the end effector 210 includes a focused ultrasound device.
  • the interaction area 150 is provided with a button 151 or an interface for triggering the action of the end effector 210 to emit ultrasonic waves.
  • the actuator 220 is an equal scale mechanism with the same structure as the operation response mechanism 130.
  • the structure of the actuator 220 is the same as that in FIG.
  • the response mechanism 130 may have the same structure.
  • the structure of the actuator 220 is different from the structure of the operation response mechanism 130.
  • a four-axis mechanism that moves along the X-axis, Y-axis, Z-axis, and Y-axis rotation can also be a three-axis mechanism that drives the end effector 210 to move along the X-axis, Y-axis, and Z-axis.
  • the processor 320 may be configured to directly control the actuator 220 according to the motion data, so that the path of the end effector 210 and the grip portion The path of 120 is consistent, that is, the motion data of the sensor 310 of a single joint is directly read, so that each joint on the actuator 220 responds in a one-to-one correspondence.
  • the actuator 220 can also be configured to calculate the total displacement and the total angle from the starting position to the end position of the corresponding joint or the grip 120 according to the motion data, and according to the structure of the actuator 220 Decompose the total displacement and the total angle so that the total displacement and the total angle of the end effector 210 correspond to the total displacement and the total angle of the grip 120 respectively, that is, first according to the motion data of all the sensors 310 Calculate the total displacement and total angle data of the grip 120, and then control the response action of the actuator 220 according to the total displacement and the total angle of the grip 120.
  • the processor 320 can only be configured as:
  • the actuator 220 is a three-axis mechanism that drives the end effector 210 to move along the X-axis, Y-axis, and Z-axis, and the structure of the operating end 100 is as shown in 2, then the target state of the end effector 210 is determined , Decompose the displacement of the end effector 100 along the X axis, Y axis, and Z axis, determine the path of the end effector, and then control the action of the actuator 220 to move the end effector 210 correspondingly.
  • the surgical system further includes a feedback system for feeding back the state of the end effector 210.
  • the feedback system includes a pressure sensor 310 for detecting the pressure between the end effector 210 and the person being operated on, and a pressure sensor 310 for detecting the distance between the end effector 210 and the person being operated on. Distance sensor 310. In the actual implementation process, only one of the pressure sensor 310 or the distance sensor 310 may also be provided. When the pressure sensor 310 is provided, the pressure on the skin of the person being operated can be detected in real time. In some operations, the end effector 210 can be attached to the skin of the person being operated.
  • the pressure value of the subject is too large, so that the operator can adjust the position of the grip 120 in time according to the pressure value fed back by the pressure sensor 310, thereby adjusting the position of the end effector 210 to achieve the purpose of pressure adjustment.
  • the distance sensor 310 is provided, taking focused ultrasound surgery as an example, the focus position can be adjusted more conveniently.
  • the feedback system includes an imaging system that includes an in-vivo image monitoring device and an in-vitro image monitoring device, the in-vivo image monitoring device is used to obtain real-time images in the patient's body, and the extra-corporeal imaging device is used for The real-time image of the end effector 210 is monitored, the in-vivo image monitoring system is set up to facilitate more intuitive acquisition of the image of the lesion location, and the in-vitro image monitoring system is set up to be more intuitive to obtain the position of the end effector 210, and is also conducive to the operation Avoidance in the process. In the actual implementation process, only the in-vivo image monitoring device or only the in-vitro image monitoring device can be set according to the needs.
  • the in-vivo image monitoring device can use magnetic resonance imaging (MRI, Magnetic Resonance Imaging) Technologies such as caiyong, B-scan ultrasonography, and computed tomography CT (Computed Tomography).
  • MRI Magnetic Resonance Imaging
  • CT computed tomography CT
  • the B-scan probe can be integrated on the end effector 210; and the extracorporeal monitoring device can include an image collector (E.g. camera) and display device (e.g. display screen).
  • image collector E.g. camera
  • display device e.g. display screen
  • the present invention also provides a surgical control system, including:
  • a sensor 310 which is used to collect motion data of the operating terminal 100.
  • the processor 320 is configured to produce control instructions according to the motion data.
  • the control instructions are used to control the actions of the execution mechanism 220 of the execution end 200 so as to enable the path and operation of the end effector 210 in the execution end 200
  • the corresponding joint in the end or the path of the grip 120 in the operating end 100 corresponds.
  • the processor 320 is configured to directly control the actuator 220 according to the motion data so that the path of the end effector 210 is consistent with the path of the corresponding joint or the grip 120 ;
  • the processor 320 is configured to:
  • the state includes a position state or the state includes a position state and a posture state
  • the processor 320 is configured to control the end effector 210 to avoid the person being operated upon during the movement of the corresponding joint of the operating end corresponding to the end effector 210 or the grip 120.
  • the processor 320 can select a Field-Programmable Gate Array (FPGA, Field-Programmable Gate Array), and connect it to the PC to configure the processor.
  • FPGA Field-Programmable Gate Array
  • the The processor can be a general-purpose processor, including central processing unit (CPU), network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processing, DSP), dedicated Integrated Circuit (Application Specific Integrated Circuit, ASIC for short), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • the present invention also provides a surgical control method, including:
  • a control instruction is generated according to the motion data, and the control instruction is used to control the action of the actuator 220 of the execution end 200, so that the path of the end effector 210 in the execution end 200 is the same as the path of the corresponding joint or the grip 120 in the operation end 100 Corresponding.
  • the actuator 220 is directly controlled according to the motion data, so that the path of the end effector 210 is consistent with the path of the corresponding joint or the grip 120;
  • the state includes a position state or the state includes a position state and a posture state
  • the end effector 210 is controlled to avoid the operated person during the movement of the corresponding joint/the grip 120 in the corresponding operating end of the end effector 210.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种手术***、手术控制***及手术控制方法,该手术***包括操作端、执行端及该手术控制***,其中,操作端包括握持部、基座及操作响应机构,操作端的各关节根据握持部的受力自适应的分解动作;执行端包括末端执行器及用于带动末端执行器动作的执行机构,执行机构用于带动所述末端执行器动作;手术控制***包括传感器及处理器,传感器用于采集各所述分解动作的动作数据,处理器用于根据动作数据控制执行机构动作,使末端执行器的路径与对应关节或握持部的路径相对应。本发明,通过改变握持部的路径,使执行端的末端执行器对应相应关节的移动路径或握持部的移动路径,操作更直观,操控体验更好,能够降低误操控率。

Description

一种手术***、手术***控制及手术控制方法 技术领域
本发明涉及医疗器械,尤其涉及一种手术***、手术控制***及手术控制方法。
背景技术
在现有的手术器械中,大部分手术器械的末端执行器只能通过医生直接操控;也有一些手术***中,为手术器械配置了操作终端,手术过程中,医生操作该操作终端中的操作器,手术器械根据操作器的指令对患者进行手术动作,但现有操作器多为常规的鼠标,操作时,只能进行平面移动或点选操作,操控感不够直观,可能会出现错误操控的情况。
发明内容
本发明的主要目的在于提供一种手术***、手术控制***及手术控制方法,以提高操控体验,实现更直观的操控,从而降低操控错误的几率。
为实现上述目的及其他相关目的,本发明技术方案如下:
一种手术***,包括:
操作端,所述操作端包括握持部、基座及操作响应机构,所述操作响应机构与所述握持部之间设置有第一关节,所述操作响应机构与所述基座之间设置有第二关节,所述操作响应机构上设置有多个中间关节,所述第一关节、第二关节及各所述中间关节根据所述握持部的受力自适应的分解动作;
执行端,所述执行端包括末端执行器及执行机构,所述执行机构用于带动所述末端执行器动作;
及控制***,所述控制***包括传感器及处理器,所述传感器用于采集各所述分解动作的动作数据,所述传感器设置在所述操作端上,所述处理器用于根据所述动作数据产生控制指令,所述控制指令用于控制所述执行机构动作,使所述末端执行器的路径与对应关节或所述握持部的路径相对应。
可选的,所述操作端与所述执行端有线连接;或所述操作端与所述执行端无线连接。
可选的,所述操作响应机构为连杆机构。
可选的,部分关节或全部关节对应设置有所述传感器。
可选的,所述连杆机构包括多个依次串联的构件,各构件之间通过所述中间关节连接。
可选的,所述连杆机构可回转的设置在所述基座上,使所述握持部的运动极限空间位于 以所述基座为中心的一球体空间内,所述握持部在其运动极限空间内自由动作。
可选的,所述连杆机构包括子平面连杆机构,所述子平面连杆机构包括至少两个依次串连的构件;所述子平面连杆机构中,各构件依次串联且处于同一平面,使所述握持部在所述子平面机构弯折时靠近或远离所述基座。
可选的,所述连杆机构包括依次串联的第一构件、第二构件、第三构件、第四构件和第五构件,所述第一关节设置在所述基座和所述第一构件之间,所述第二关节设置在所述第五构件和所述握持部之间。
可选的,所述第一构件可转动的设置在所述基座上,所述第一构件与所述基座的之间的转轴线为第一轴线;所述第二构件可转动的设置在所述第一构件上,所述第二构件和所述第一构件之间的转轴线为第二轴线;所述第三构件可转动的设置在所述第二构件上,所述第三构件和所述第二构件之间的转轴线为第三轴线;所述第四构件可转动的设置在所述第三构件上,所述第四构件和所述第三构件之间的转轴线为第四轴线;所述第五构件可转动的铰接在所述第四构件上,所述第五构件和所述第四构件之间的转轴线为第五轴线,所述握持部可转动的设置在所述第五构件上,所述握持部与所述第五构件之间的转轴线为第六轴线;
在所述第一轴线、所述第二轴线、所述第三轴线、所述第四轴线、所述第五轴线及所述第六轴线中,至少有一根轴线的轴向为第一方向,至少有一根轴线的轴向为第二方向,至少有一根轴线的轴向为第三方向,所述第一方向、所述第二方向和所述第三方向之间相互垂直。
可选的,所述第一轴线和所述第六轴线相互平行,所述第二轴线、第三轴线、第四轴线相互平行,所述第五轴线分别与所述第一轴线和所述第二轴线垂直,所述第一轴线和所述第二轴线之间相互垂直。
可选的,所述连杆机构上设置有辅助支撑结构,所述辅助支撑结构用于支撑所述第二构件和/或第三构件,所述辅助支撑结构包括第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件铰接。
可选的,当所述辅助支撑结构用于支撑所述第二构件时,所述第一支撑件铰接在所述第一构件上,所述第二支撑件铰接在所述第二构件与所述第三构件之间的关节处,使所述第一构件、所述第二构件、所述第一支撑件和所述第二支撑件共同形成平行四边形机构;
当所述辅助支撑结构用于支撑所述第三构件时,所述第一支撑件铰接在所述第四构件上,所述第二支撑件铰接在所述第二构件和第三构件之间的关节处,使所述第三构件、所述第四构件、所述第一支撑件和所述第二支撑件共同形成平行四边形机构。
可选的,所述辅助支撑结构还包括缓冲弹性件;
当所述辅助支撑结构用于支撑所述第二构件时,所述缓冲弹性件设置在所述第一支撑件 和所述第二构件之间;
当所述辅助支撑结构用于支撑所述第三构件时,所述缓冲弹性件设置在所述第一支撑件和所述第三构件之间。
可选的,所述操作端还设置有用于非手术状态下限定所述握持部的自由度的限位结构。
可选的,所述限位结构包括:
限位孔,其设置在所述基座上;
限位部,其设置在所述操作响应机构或所述握持部上;
其中,所述限位部通过***所述限位孔内限制所述握持部的自由度。
可选的,所述传感器为编码器。
可选的,所述握持部上设置有用于操控所述末端执行器执行手术动作的交互区。
可选的,所述末端执行器包括聚焦超声装置。
可选的,所述执行机构为与所述操作响应机构结构相同的等比例缩放机构,或所述执行机构的结构与所述操作响应机构的结构不同。
可选的,当所述执行机构为与所述操作响应机构结构相同的等比例缩放机构时,所述处理器被配置为:直接根据所述动作数据控制所述执行机构,使末端执行器的路径与相应关节/所述握持部的路径一致;或所述处理器被配置为:根据所述动作数据计算相应关节或所述握持部的起始位置至终点位置的总位移和总角度,并根据所述执行机构的结构分解所述总位移和所述总角度,使所述末端执行器的总位移和总角度与相应关节/所述握持部的总位移和总角度分别对应。
可选的,所述执行机构的结构与所述操作响应机构的结构不同时,所述处理器被配置为:
根据所述动作数据计算相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态;
根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
可选的,所述手术***还包括用于反馈所述末端执行器状态的反馈***。
可选的,所述反馈***包括用于检测所述末端执行器的与被手术者之间的压力的压力传 感器;和/或所述反馈***包括用于检测所述末端执行器与被手术者皮肤表层距离的距离传感器。
可选的,所述反馈***包括影像***,所述影像***包括体内影像监视装置、体外影像监视装置中的一种或两种,所述体内影像监视装置用于获取患者体内的实时影像,所述体外影像装置用于监视末端执行器的实时影像。
本发明还提供一种手术控制***,包括:
传感器,所述传感器用于采集操作端的动作数据;及
处理器,所述处理器被配置为根据所述动作数据生产控制指令,所述控制指令用于控制执行端的执行机构动作,使执行端中末端执行器的路径与操作端中相应关节/握持部的路径相对应。
可选的,所述处理器被配置为:直接根据所述动作数据控制所述执行机构,使所述末端执行器的路径与相应关节/所述握持部的路径一致;
或所述处理器被配置为:根据所述动作数据计算相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态,
根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
可选的,所述处理器被配置为:在所述末端执行器对应操作端中相应关节/所述握持部移动过程中,控制所述末端执行器避让被手术者。
本发明还提供一种手术控制方法,包括:
采集所述操作端的动作数据;
根据所述动作数据产生控制指令,所述控制指令用于控制执行端的执行机构动作,使执行端中末端执行器的路径与操作端中相应关节/握持部的路径相对应。
可选的,直接根据所述动作数据控制所述执行机构,使所述末端执行器的路径与操作端中相应关节/所述握持部的路径一致;或
根据所述动作数据计算相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态所述状态包括位置状态或所述状态包括位置状态和姿势状态;
根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器 在所述执行端对应的空间坐标系中的目标状态,
根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
可选的,在所述末端执行器对应操作端中对应的关节/所述握持部移动过程中,控制所述末端执行器避让被手术者。
本发明,通过改变握持部的路径,使执行端的末端执行器对应相应关节的移动路径或握持部的的移动路径,操作更直观,操控体验更好,能够降低误超控率。
附图说明
图1显示为本发明的手术***的一示例性的结构简图;
图2显示为本发明的手术***的另一示例性的结构简图;
图3显示为操作端的一示例性的结构示意图;
图4显示为图3的内部剖视图;
图5显示为图3的内部剖视图(已标记各关节位置);
图6显示为控制***的一示例性的结构示意图。
实施例中附图标记说明包括:
操作端100、执行端200、处理器320、执行机构220、末端执行器210、基座110、握持部120、操作响应机构130、第一构件131、第二构件132、第三构件133、第四构件134、第五构件135、中间关节103、第一关节101、第二关节106、辅助支撑结构140、第一支撑件141、第二支撑件142、缓冲弹性件143、交互区150、按钮151、限位结构160、限位部161、限位孔162、传感器310、第一编码器311、第二编码器312、第三编码器313、第四编码器314、第五编码器315。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施 例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。在附图中,自始至终相同附图标记表示相同的组件。
一种手术***,结合图1至图6,包括操作端100、执行端200及控制***,其中,操作端100包括握持部120、基座110及操作响应机构130,执行端200包括末端执行器210及用于带动末端执行器210动作的执行机构220,操作响应机构130与握持部120之间设置有第一关节101,该操作响应机构130与基座110之间设置有第二关节106,该操作响应机构130上设置有多个中间关节103,该第一关节101、第二关节106及各中间关节103根据握持部120的受力自适应的分解动作;该控制***包括传感器310及处理器320,传感器310设置在操作端100,传感器310用于采集操作响应机构130的分解动作的动作数据,处理器320根据采集的动作数据产生控制指令,以控制执行机构220动作,末端执行器210随执行机构220动作,使末端执行器210的路径与握持部120的路径相对应。在实际实施过程中,处理器320根据采集的动作数据所产生的控制指令,也可以用于使末端执行器210的路径与对应关节(例如,标号133和标号134之间的构件)的路径相对应。
本发明中的路径相对应,可以是末端执行器210或相应关节与握持部120从起始位置到终点位置的位移相对应,可以是起始位置到终点位置的转动角度相对应,也可以是起始位置到终点位置的位移和转动角度均对应。
手术时,只需握住握持部120,操作响应机构130会根据其自身结构自适应的在握持部120的带动下分解动作,传感器310获取这些分解动作的动作数据,处理器320再根据动作数据控制执行机构220动作,使末端执行器210的路径与握持部120或相应关节的路径相对应。
在一些实施例中,参见图1,操作端100与执行端200有线连接,则可以在同一个房间布置整个手术***,也可以其中一个房间布置操作端100,在相邻或相近的另一个房间布置执行端200。在另一些实施例中,参见图2,操作端100与执行端200之间无线连接,可以根据需求布置执行端200和操作端100,例如,可以实现执行端200和操作端100的远程布置,通过操作端100对执行端200的远程控制。
在下述的各实施例中,均采用包含连杆机构的结构作为操作响应机构130,但在实际实施过程中,操作响应机构130的结构非限于此,操作响应机构130的实际结构可以根据末端执行器210的自由度进行设计,为便于理解本发明,下述各实施例中均结合超声聚焦手术对应的***和手术过程进行说明,但实际实施过程,本发明的手术***也可以是其他手术对应的手术***。
在一些实施例中,结合参见图3、图4、图5该连杆机构包括多个串联的构件,各构建之 间通过该中间关节103连接。
在一些实施例中,结合参见图3至图5,该连杆机构可回转的设置在所述基座110上,使所述握持部120的运动极限空间位于以所述基座110为中心的一球体空间内,所述握持部120在其运动极限空间内自由动作。这种设置方式,操作者可以将基座110当作待处理的病灶,更直观的模拟了手持末端执行器210时的动作过程,操控体验更佳。
在一些实施例中,该连杆机构包括子平面连杆机构,子平面连杆机构包括至少两个依次串连的构件;该子平面连杆机构中,各构件依次串联且处于同一平面,使握持部120在子平面机构弯折时靠近或远离所述基座110。此时,末端执行器210可以根据图5中,第三构件133和第四构件134之间的中间关节103移动,例如,参见图3至图5,该子平面机构可以为图中的第二构件132、第三构件133和第四构件134,在连杆机构可沿基座110回转的基础上,可以结合该子平面机构的各关节弯折使握持部120可以到达其运动极限空间内任一位置。在实际实施过程中,该子平面机构的构件数量可以为其他数量。
为获取动操作响应机构的动作数据,在一些实施例中,参见图3至图5,部分关节上设置传感器310,只要能够根据获取的动作数据计算出对应关节或握持部120的路径即可,在实际实施过程中,也可以在每个关节上设置传感器,另外,传感器310的类型是根据执行端200的实际结构设定的,若执行端200中有旋转关节,则可以设置角位移传感器310,也可以设置多个位移传感器310后计算旋转关节的转动角度,若执行端200中设置有滑动关节,则可以设置位移传感器310以获取滑动关节的滑动位移。
在一些实施例中,参见图3至图5,各关节均为转动副关节,连杆机构包括依次串联的第一构件131、第二构件132、第三构件133、第四构件134和第五构件135,第一关节101设置在基座110和所述第一构件131之间,第二关节106设置在第五构件135和握持部120之间。在实际实施过程中,也可以部分关节采用转动副、部分关节采用移动副,但这种全部采用转动副关节的方式有利于各关节响应更顺畅、连贯。
在一些实施例中,为使握持部120能够在其极限运动空间内自由移动,结合参见图3至图5,第一构件131可转动的设置在基座110上,第一构件131与基座110的之间的转轴线定义为第一轴线;第二构件132可转动的设置在第一构件131上,第二构件132和第一构件131之间的转轴线定义为第二轴线;第三构件133可转动的设置在第二构件132上,第三构件133和第二构件132之间的转轴线定义为第三轴线;第四构件134可转动的设置在第三构件133上,第四构件134和第三构件133之间的转轴线定义为第四轴线;第五构件135可转动的铰接在第四构件134上,第五构件135和第四构件134之间的转轴线定义为第五轴线,握持部120可转动的设置在第五构件135上,握持部120与第五构件135之间的转轴线定义 为第六轴线。在第一轴线、第二轴线、第三轴线、第四轴线、第五轴线及第六轴线中,至少有一根轴线的轴向为第一方向,至少有一根轴线的轴向为第二方向,至少有一根轴线的轴向为第三方向,第一方向、第二方向和第三方向之间相互垂直。如果第一方向为X轴方向、第二方向为Y轴方向、第三方向为Z轴方向,也就是至少有一条轴线在X轴方向上,至少由一条轴线在Y轴方向上,至少由一条轴线在Z轴方向上。在实际实施过程中,第一方向、第二方向、第三方向也可以互不垂直,但需满足在任一个空间直角坐标系中,第一方向、第二方向、第三方向在该坐标系中按X轴、Y轴、Z轴分解后,X轴、Y轴和Z轴上的分解值均不为零。
在一些实施例中,结合参见图3至图5,第一轴线和第六轴线相互平行,第二轴线、第三轴线、第四轴线相互平行,第五轴线分别第一轴线和第二轴线垂直,第一轴线和第二轴线之间相互垂直。
在一些实施例中,结合参见图3至图3,连杆机构上设置有辅助支撑结构140,辅助支撑结构140用于支撑第二构件132和第三构件133,辅助支撑结构140包括第一支撑件141和第二支撑件142,第一支撑件141和第二支撑件142铰接。
当辅助支撑结构140用于支撑第二构件132时,第一支撑件141铰接在第一构件131上,第二支撑件142铰接在第二构件132与第三构件133之间的关节处,使第一构件131、第二构件132、第一支撑件141和第二支撑件142共同形成平行四边形机构;当辅助支撑结构140用于支撑第三构件133时,第一支撑件141铰接在第四构件134上,第二支撑件142铰接在第二构件132和第三构件133之间的关节处,使第三构件133、第四构件134、第一支撑件141和第二支撑件142共同形成平行四边形机构。
在一些实施例中,结合参见图3至图5,辅助支撑结构140还包括缓冲弹性件143。当辅助支撑结构140用于支撑第二构件132时,缓冲弹性件143设置在第一支撑件141和第二构件132之间;当辅助支撑结构140用于支撑第三构件133时,缓冲弹性件143设置在第一支撑件141和第三构件133之间。在实际实施过程中,该缓冲弹性件143可以采用弹簧、气弹簧、皮筋等,只要能够提供缓冲弹力,就能使被支撑的构件在转动过程中受到跟小的冲击力,有利于与使整个执行器的结构更稳定可靠。
在一些实施例中,该传感器310为编码器。在实施实施过程中,该传感器310的类型是根据操作端100的实际结构设定。
在一些实施例中,参见图3至图5,传感器310布置在第一关节101处、第二关节106处、第一构件131与第二构件132之间的关节处、第二构件132与第三构件133之间的关节处、第四构件134与第五构件135之间的关节处。在图1至图3中,各传感器310均为编码 器,该操作器上供设置有五个编码器,即第一编码器311、第二编码器312、第三编码器313、第四编码器314、第五编码器315,第一编码器311设置在第一关节1011处、第二编码器312设置在第一构件131与第二构件132之间的关节处,第三编码器313设置在第二构件132和第三构件133之间的关节处,第四编码器314设置在第四构件134和第五构件135之间的关节处,第五编码器315设置在第二关节106处。此时,可利用第一编码器31151、第二编码器31252、第三编码器313获取的第三构件133和第四构件134之间的位移数据,利用第四编码器31454、第五编码器315获取握持部120的姿态。当然,在实际实施过程中,也可以在每个关节均对应设置传感器310,实现全方位的位移和姿态识别。
在一些实施例中,参见图3至图5,该操作器还包括用于非手术状态下限定握持部120的自由度的限位结构160。当手术完成后或中断手术时,利用该限位结构160在一定程度上锁紧该操作器。
在一些实施例中,参见图3至图5,该限位结构160包括设置在基座110上的限位孔162和设置在操作响应机构130上的限位部161,限位部161通过***限位孔162内限制握持部120的自由度。在图中,该限位部161设置在连杆机构中的第四构件134上,此时握持部120的自由度为2;在实际实施过程中,也可以将该限位部161设置在连杆机构中的其他构件上;或直接将该限位部161设置在握持部120上,完全锁死该握持部120,使握持部120对应的自由度为0,另外,限制该限位部161的结构并不仅限于限位孔162的形式,也可以是限位槽或其他结构,并且,限位孔162可以不设置在基座110上,也可以设置操作器之外的结构上,只要能够实现对握持部120的限位即可。
在一些实施例中,参见图3至图5,握持部120上设置有用于操控手术器械执行手术动作的交互区150。
在一些实施例中,末端执行器210包括聚焦超声装置。
在一些实施例中,参见图3至图5,交互区150上设置有用于触发末端执行器210动作的发射超声波的按钮151或界面。
在一些实施例中,执行机构220为与操作响应机构130结构相同的等比例缩放机构,例如:当操作端采用图1中的操作端结构时,执行机构220的结构与图1中对应的操作响应机构130可以结构一致。在另一些实施例中,执行机构220的结构与操作响应机构130的结构不同,例如:当操作端100的结构为图2中对应的操作端时,对应的执行机构220可以是一个带动末端执行器沿X轴移动、Y轴移动、Z轴移动、Y轴转动的四轴机构,当然,也可以是一个带动末端执行器210沿X轴、Y轴及Z轴移动的三轴机构。
参见图1,当该执行机构220与操作响应机构130的结构相同时,处理器320可以被配 置为:直接根据该动作数据控制所述执行机构220,使末端执行器210的路径与握持部120的路径一致,也就是直接读取单个关节的传感器310的动作数据,使执行机构220上的各关节一一对应的响应动作。当然,该执行机构220也可以被配置为:根据所述动作数据计算相应关节或所述握持部120的起始位置至终点位置的总位移和总角度,并根据所述执行机构220的结构分解所述总位移和所述总角度,使所述末端执行器210的总位移和总角度与所述握持部120的总位移和总角度分别对应,也就是先根据所有传感器310的动作数据计算握持部120的总位移和总角度数据,再根据握持部120的总位移和总角度控制执行机构220响应动作。
参见图2,当该执行机构220与操作响应机构130的结构不同时,该处理器320就只能被配置为:
根据所述动作数据计算相应关节/所述握持部120在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态;
根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
例如:当执行机构220是一个带动末端执行器210沿X轴、Y轴及Z轴移动的三轴机构,操作端100的结构如,2所示时,则在确定末端执行器210的目标状态,分解末端执行器100沿X轴、Y轴、Z轴的位移,确定末端执行器的路径,再控制执行机构220动作使末端执行器210对应移动即可。
在一些实施例中,该手术***还包括用于反馈所述末端执行器210状态的反馈***。
在一些实施例中,该反馈***包括用于检测所述末端执行器210的与被手术者之间的压力的压力传感器310和用于检测所述末端执行器210与被手术者皮肤表层距离的距离传感器310。在实际实施过程中,也可以仅设置压力传感器310或距离传感器310中的一种。当设置有该压力传感器310时,能够实时检测到被手术者皮肤上的受压,在一些手术中,末端执行器210是可以贴在被手术者皮肤上的,设置该压力传感器310有利于及时发现被手术者承受压力值是否过大,使操作者可以根据压力传感器310反馈的压力值及时调整握持部120的位置,从而调整末端执行器210的位置,达到压力调节的目的,同样,当设置有该距离传感器310时,以在聚焦超声手术为例,能够更便于调节焦点位置。
在一些实施例中,该反馈***包括影像***,该影像***包括体体内影像监视装置和体 外影像监视装置,所述体内影像监视装置用于获取患者体内的实时影像,所述体外影像装置用于监视末端执行器210的实时影像,设置该体内影像监视***便于更直观的获取病灶位置的图像,而设置该体外影像监视***有利于更直观的获取末端执行器210的位置,还有利于在手术过程中实现避让。在实际实施过程中,也可以根据需求只设置体内影像监视装置,或只设置体外影像监视装置,另外,在实际实施过程中,该体内影像监视装置可以采用磁共振成像(MRI,Magnetic Resonance Imaging)caiyong、B超(B-scan ultrasonography)、电子计算机断层扫描CT(Computed Tomography)等技术,当采用B超时,B超探头可以集成在末端执行器210上;而该体外监视装置可以包括图像采集器(如:摄像头)和显示装置(如显示屏)。
本发明还提供一种手术控制***,包括:
传感器310,所述传感器310用于采集操作端100的动作数据;及
处理器320,所述处理器320被配置为根据所述动作数据生产控制指令,所述控制指令用于控制执行端200的执行机构220动作,使执行端200中末端执行器210的路径与操作端中相应关节或操作端100中握持部120的路径相对应。
在一些实施例中,所述处理器320被配置为:直接根据所述动作数据控制所述执行机构220,使所述末端执行器210的路径与相应关节或所述握持部120的路径一致;
在一些实施例中,所述处理器320被配置为:
根据所述动作数据计算相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态,
根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
在一些实施例中,所述处理器320被配置为:在所述末端执行器210对应操作端的相应关节或所述握持部120移动过程中,控制所述末端执行器210避让被手术者。
在一些实施例中,参见图6,该处理器320可以选用现场可编程门阵列(FPGA,Field-Programmable Gate Array),将其与PC端连接后,配置处理器,在实际实施过程中,该处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、或者其他可编程逻 辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
对应的,本发明还提供一种手术控制方法,包括:
采集所述操作端100的动作数据;
根据所述动作数据产生控制指令,所述控制指令用于控制执行端200的执行机构220动作,使执行端200中末端执行器210的路径与操作端100中相应关节或握持部120的路径相对应。
在一些实施例中,在该手术控制方法中,直接根据所述动作数据控制所述执行机构220,使所述末端执行器210的路径与相应关节或所述握持部120的路径一致;
在一些实施例中,在该手术控制方法中:
根据所述动作数据计算相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态,
根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
在一些实施例中,在所述末端执行器210对应操作端中对应的关节/所述握持部120移动过程中,控制所述末端执行器210避让被手术者。
在本发明描述中,除非另有明确的规定和限定,第一特征在第二特征之“上”=可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。
本发明的描述中,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、组件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、组件、部件和/或组的存在或添加。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (30)

  1. 一种手术***,其特征在于,包括:
    操作端,所述操作端包括握持部、基座及操作响应机构,所述操作响应机构与所述握持部之间设置有第一关节,所述操作响应机构与所述基座之间设置有第二关节,所述操作响应机构上设置有多个中间关节,所述第一关节、第二关节及各所述中间关节根据所述握持部的受力自适应的分解动作;
    执行端,所述执行端包括末端执行器及执行机构,所述执行机构用于带动所述末端执行器动作;
    及控制***,所述控制***包括传感器及处理器,所述传感器用于采集各所述分解动作的动作数据,所述传感器设置在所述操作端上,所述处理器用于根据所述动作数据产生控制指令,所述控制指令用于控制所述执行机构动作,使所述末端执行器的路径与对应关节或所述握持部的路径相对应。
  2. 根据权利要求1所述的手术***,其特征在于:
    所述操作端与所述执行端有线连接;
    或所述操作端与所述执行端无线连接。
  3. 根据权利要求1所述的手术***,其特在于:所述操作响应机构为连杆机构。
  4. 根据权利要求3所述的手术***,其特征在于:部分关节或全部关节对应设置有所述传感器。
  5. 根据权利要求3所述的手术***,其特征在于:所述连杆机构包括多个依次串联的构件,各构件之间通过所述中间关节连接。
  6. 根据权利要求5所述的手术***,其特征在于:所述连杆机构可回转的设置在所述基座上,使所述握持部的运动极限空间位于以所述基座为中心的一球体空间内,所述握持部在其运动极限空间内自由动作。
  7. 根据权利要求6所述的手术***,其特征在于:所述连杆机构包括子平面连杆机构,所述子平面连杆机构包括至少两个依次串连的构件;
    所述子平面连杆机构中,各构件依次串联且处于同一平面,使所述握持部在所述子平面 机构弯折时靠近或远离所述基座。
  8. 根据权利要求4所述的手术***,其特征在于:所述连杆机构包括依次串联的第一构件、第二构件、第三构件、第四构件和第五构件,所述第一关节设置在所述基座和所述第一构件之间,所述第二关节设置在所述第五构件和所述握持部之间。
  9. 根据权利要求8所述的手术***,其特征在于:
    所述第一构件可转动的设置在所述基座上,所述第一构件与所述基座的之间的转轴线为第一轴线;
    所述第二构件可转动的设置在所述第一构件上,所述第二构件和所述第一构件之间的转轴线为第二轴线;
    所述第三构件可转动的设置在所述第二构件上,所述第三构件和所述第二构件之间的转轴线为第三轴线;
    所述第四构件可转动的设置在所述第三构件上,所述第四构件和所述第三构件之间的转轴线为第四轴线;
    所述第五构件可转动的铰接在所述第四构件上,所述第五构件和所述第四构件之间的转轴线为第五轴线,
    所述握持部可转动的设置在所述第五构件上,所述握持部与所述第五构件之间的转轴线为第六轴线;
    在所述第一轴线、所述第二轴线、所述第三轴线、所述第四轴线、所述第五轴线及所述第六轴线中,至少有一根轴线的轴向为第一方向,至少有一根轴线的轴向为第二方向,至少有一根轴线的轴向为第三方向,所述第一方向、所述第二方向和所述第三方向之间相互垂直。
  10. 根据权利要求9所述的手术***,其特征在于:所述第一轴线和所述第六轴线相互平行,所述第二轴线、第三轴线、第四轴线相互平行,所述第五轴线分别与所述第一轴线和所述第二轴线垂直,所述第一轴线和所述第二轴线之间相互垂直。
  11. 根据权利要求10所述的手术***,其特征在于:
    所述连杆机构上设置有辅助支撑结构,所述辅助支撑结构用于支撑所述第二构件和/或第三构件,所述辅助支撑结构包括第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件铰接。
  12. 根据权利要求11所述的手术***,其特征在于:
    当所述辅助支撑结构用于支撑所述第二构件时,所述第一支撑件铰接在所述第一构件上,所述第二支撑件铰接在所述第二构件与所述第三构件之间的关节处,使所述第一构件、所述第二构件、所述第一支撑件和所述第二支撑件共同形成平行四边形机构;
    当所述辅助支撑结构用于支撑所述第三构件时,所述第一支撑件铰接在所述第四构件上,所述第二支撑件铰接在所述第二构件和第三构件之间的关节处,使所述第三构件、所述第四构件、所述第一支撑件和所述第二支撑件共同形成平行四边形机构。
  13. 根据权利要求12所述的手术***,其特征在于:所述辅助支撑结构还包括缓冲弹性件;
    当所述辅助支撑结构用于支撑所述第二构件时,所述缓冲弹性件设置在所述第一支撑件和所述第二构件之间;
    当所述辅助支撑结构用于支撑所述第三构件时,所述缓冲弹性件设置在所述第一支撑件和所述第三构件之间。
  14. 根据权利要求1所述的手术***,其特征在于:所述操作端还设置有用于非手术状态下限定所述握持部的自由度的限位结构。
  15. 根据权利要求14所述的手术***,其特征在于:所述限位结构包括:
    限位孔,其设置在所述基座上;
    限位部,其设置在所述操作响应机构或所述握持部上;
    其中,所述限位部通过***所述限位孔内限制所述握持部的自由度。
  16. 根据权利要求1所述的手术***,其特征在于:所述传感器为编码器。
  17. 根据权利要求1所述的手术***,其特征在于:所述握持部上设置有用于操控所述末端执行器执行手术动作的交互区。
  18. 根据权利要求1所述的手术***,其特征在于:所述末端执行器包括聚焦超声装置。
  19. 根据权利要求1所述的手术***,其特征在于:
    所述执行机构为与所述操作响应机构结构相同的等比例缩放机构,
    所述执行机构的结构与所述操作响应机构的结构不同。
  20. 根据权利要求19所述的手术***,其特征在于:当所述执行机构为与所述操作响应机构结构相同的等比例缩放机构时,
    所述处理器被配置为:直接根据所述动作数据控制所述执行机构,使末端执行器的路径与相应关节/所述握持部的路径一致;或
    所述处理器被配置为:根据所述动作数据计算相应关节或所述握持部的起始位置至终点位置的总位移和总角度,并根据所述执行机构的结构分解所述总位移和所述总角度,使所述末端执行器的总位移和总角度与相应关节/所述握持部的总位移和总角度分别对应。
  21. 根据权利要求19所述的手术***,其特征在于:所述执行机构的结构与所述操作响应机构的结构不同时,所述处理器被配置为:
    根据所述动作数据确定相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态,
    根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
    根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
    控制所述执行机构根据所述响应路径动作,使所述末端执行器在所述执行端对应空间坐标系中的动作至目标状态。
  22. 根据权利要求1所述的手术***,其特征在于:还包括用于反馈所述末端执行器状态的反馈***。
  23. 根据权利要求22所述的手术***,其特征在于:
    所述反馈***包括用于检测所述末端执行器的与被手术者之间的压力的压力传感器;
    和/或
    所述反馈***包括用于检测所述末端执行器与被手术者皮肤表层距离的距离传感器。
  24. 根据权利要求22所述的手术***,其特征在于:所述反馈***包括影像***,所述影像***包括体内影像监视装置、体外影像监视装置中的一种或两种,所述体内影像监视装置用于获取患者体内的实时影像,所述体外影像装置用于监视末端执行器的实时影像。
  25. 一种手术控制***,其特征在于,包括:
    传感器,所述传感器用于采集操作端的动作数据;及
    处理器,所述处理器被配置为根据所述动作数据生产控制指令,所述控制指令用于控制执行端的执行机构动作,使执行端中末端执行器的路径与操作端中相应关节/握持部的路径相对应。
  26. 根据权利要求25所述的手术控制***,其特征在于,
    所述处理器被配置为:直接根据所述动作数据控制所述执行机构,使所述末端执行器的路径与相应关节/所述握持部的路径一致;
    所述处理器被配置为:根据所述动作数据计算相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态,
    根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
    根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
    控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
  27. 根据权利要求25所述的控制***,其特征在于,所述处理器被配置为:在所述末端执行器对应操作端中相应关节/所述握持部移动过程中,控制所述末端执行器避让被手术者。
  28. 一种手术控制方法,其特征在于,包括:
    采集所述操作端的动作数据;
    根据所述动作数据产生控制指令,所述控制指令用于控制执行端的执行机构动作,使执行端中末端执行器的路径与操作端中相应关节/握持部的路径相对应。
  29. 根据权利要求28所述的手术控制方法,其特征在于:
    直接根据所述动作数据控制所述执行机构,使所述末端执行器的路径与操作端中相应关节/所述握持部的路径一致;
    根据所述动作数据计算相应关节/所述握持部在所述操作端所对应的空间坐标系中的状态,所述状态包括位置状态或所述状态包括位置状态和姿势状态;
    根据相应关节/所述握持部在操作端所对应的空间坐标系中的状态确定所述末端执行器在所述执行端对应的空间坐标系中的目标状态,
    根据所述末端执行器在所述执行端对应的空间坐标系中的当前状态和目标状态,并结合执行机构的结构,计算所述末端执行器的响应路径,
    控制所述执行机构根据所述响应路径动作,使所述末端执行器移动至对应空间坐标系中的目标状态。
  30. 根据权利要求28所述的手术控制方法,其特征在于:在所述末端执行器对应操作端中对应的关节/所述握持部移动过程中,控制所述末端执行器避让被手术者。
PCT/CN2020/073154 2019-12-27 2020-01-20 一种手术***、手术***控制及手术控制方法 WO2021128525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911379335.8A CN113040911B (zh) 2019-12-27 2019-12-27 一种手术***、手术***控制及手术***的控制方法
CN201911379335.8 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021128525A1 true WO2021128525A1 (zh) 2021-07-01

Family

ID=76506867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073154 WO2021128525A1 (zh) 2019-12-27 2020-01-20 一种手术***、手术***控制及手术控制方法

Country Status (2)

Country Link
CN (1) CN113040911B (zh)
WO (1) WO2021128525A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309928A (ja) * 2000-04-25 2001-11-06 Moeller-Wedel Gmbh 外科用顕微鏡
CN103536367A (zh) * 2013-10-23 2014-01-29 沈阳工业大学 一种主从微创手术机器人***及控制方法
CN104622585A (zh) * 2015-03-13 2015-05-20 中国科学院重庆绿色智能技术研究院 一种腹腔镜微创手术机器人主从同构式遥操作主手
CN107206586A (zh) * 2015-02-26 2017-09-26 奥林巴斯株式会社 操作输入装置和医疗用机械手***
CN107483781A (zh) * 2017-08-17 2017-12-15 上海大学 一种无人艇云台摄像机自调平的稳定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424885B1 (en) * 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US8004229B2 (en) * 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US9629689B2 (en) * 2008-04-11 2017-04-25 Flexdex, Inc. Attachment apparatus for remote access tools
CN102014760B (zh) * 2008-06-09 2013-11-06 韩商未来股份有限公司 手术机器人的主动接口和驱动方法
CN102152314B (zh) * 2010-12-13 2012-08-29 天津工业大学 触感装置中的夹持力反馈***
KR102237597B1 (ko) * 2014-02-18 2021-04-07 삼성전자주식회사 수술 로봇용 마스터 장치 및 그 제어 방법
US10729503B2 (en) * 2015-05-01 2020-08-04 Titan Medical Inc. Instrument collision detection and feedback
CN105415350A (zh) * 2016-01-06 2016-03-23 武汉穆特科技有限公司 并联三自由度力反馈手柄
GB2560384B (en) * 2017-03-10 2022-07-20 Cmr Surgical Ltd Controlling a surgical instrument
CN107307910B (zh) * 2017-07-31 2023-09-05 成都博恩思医学机器人有限公司 用于操纵执行机构的控制手柄
CN107242906B (zh) * 2017-07-31 2021-03-30 成都博恩思医学机器人有限公司 一种手术机器人远端执行机构
US10772703B2 (en) * 2017-08-25 2020-09-15 Titan Medical Inc. Methods and apparatuses for positioning a camera of a surgical robotic system to capture images inside a body cavity of a patient during a medical procedure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309928A (ja) * 2000-04-25 2001-11-06 Moeller-Wedel Gmbh 外科用顕微鏡
CN103536367A (zh) * 2013-10-23 2014-01-29 沈阳工业大学 一种主从微创手术机器人***及控制方法
CN107206586A (zh) * 2015-02-26 2017-09-26 奥林巴斯株式会社 操作输入装置和医疗用机械手***
CN104622585A (zh) * 2015-03-13 2015-05-20 中国科学院重庆绿色智能技术研究院 一种腹腔镜微创手术机器人主从同构式遥操作主手
CN107483781A (zh) * 2017-08-17 2017-12-15 上海大学 一种无人艇云台摄像机自调平的稳定装置

Also Published As

Publication number Publication date
CN113040911A (zh) 2021-06-29
CN113040911B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
US11007023B2 (en) System and method of registration between devices with movable arms
JP6615931B2 (ja) 手術器具の近位制御のためのシステム及び方法
US11622819B2 (en) Locally positioned EM tracker
US11980435B2 (en) User interface device having grip linkages
US9566709B2 (en) Robots comprising multi-tool modules having redundancy and methods of controlling the same
CN111084661A (zh) 手术辅助装置及其控制方法、以及记录介质
US10561384B2 (en) X-ray imaging system
JP2020532383A (ja) 手術ロボットシステムのためのカメラ制御
KR20150097238A (ko) 수술 로봇용 마스터 장치 및 그 제어 방법
Begin et al. A robotic camera for laparoscopic surgery: conception and experimental results
JP2012005557A (ja) 医療用ロボットシステム
US11832911B2 (en) Surgical platform supported by multiple arms
US11880513B2 (en) System and method for motion mode management
EP4018957A1 (en) Systems and methods for surgical port positioning
WO2021128525A1 (zh) 一种手术***、手术***控制及手术控制方法
JP7427815B2 (ja) グリップリンクを有するユーザインターフェース装置
CN213851026U (zh) 一种手术机器人
US20230172678A1 (en) Surgical robotic system with adjustable angle of approach
CN211633561U (zh) 用于控制手术器械末端执行器的操作器
WO2022100479A1 (zh) 手术机器人及手术机器人***
Song et al. Positioning accuracy of a medical robotic system for spine surgery
CN113040905A (zh) 用于控制手术器械末端执行器的操作器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907831

Country of ref document: EP

Kind code of ref document: A1