WO2023273580A1 - 车辆控制方法、装置及车辆 - Google Patents

车辆控制方法、装置及车辆 Download PDF

Info

Publication number
WO2023273580A1
WO2023273580A1 PCT/CN2022/089684 CN2022089684W WO2023273580A1 WO 2023273580 A1 WO2023273580 A1 WO 2023273580A1 CN 2022089684 W CN2022089684 W CN 2022089684W WO 2023273580 A1 WO2023273580 A1 WO 2023273580A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
state
protection
power
battery
Prior art date
Application number
PCT/CN2022/089684
Other languages
English (en)
French (fr)
Inventor
柳少康
Original Assignee
北京车和家信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家信息技术有限公司 filed Critical 北京车和家信息技术有限公司
Priority to EP22831408.4A priority Critical patent/EP4365015A1/en
Publication of WO2023273580A1 publication Critical patent/WO2023273580A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present disclosure relates to the field of vehicle control, in particular, to a vehicle control method, device and vehicle.
  • new energy vehicles are equipped with more and more electronic control functions, resulting in more and more static energy consumption of vehicles.
  • some electronic control functions or components will still operate (for example, intelligent DCDC, sentry mode, welcome system, HMI, etc.). Therefore, after the vehicle has been stationary for a long time, since these electronic control functions or components are still running, the power battery is prone to over-discharge, and the vehicle cannot be started, causing inconvenience to the driver.
  • the purpose of the present disclosure is to provide a vehicle control method, device and vehicle, so as to realize the energy-saving control of low power supply of the vehicle.
  • a vehicle control method includes:
  • controlling the low battery protection function to enter a primary protection state, wherein in the primary protection state, some functions of the vehicle are limited;
  • determining whether the vehicle power supply is in a low battery state includes:
  • the remaining power of the power battery is in the first low power range and the state of charge of the vehicle indicates that the vehicle is not charged, it is determined that the power supply of the vehicle is in an insufficient power state.
  • the primary protection state includes a first protection state and a second protection state
  • the vehicle is restricted in more functions when it is in the first protection state than in the second protection state Function.
  • the first low battery range includes a first range and a second range, and the lower limit of the first range is higher than the upper limit of the second range;
  • controlling the low battery protection function to enter a primary protection state includes:
  • the low battery protection function is controlled to enter the second protection state.
  • the method also includes:
  • the low battery protection function When the low battery protection function is in the first protection state, if it is detected that the remaining power of the storage battery is lower than the first power threshold, the low battery protection function is controlled to enter the second protection state. protection status.
  • restricting the use of specified power consumption functions in the vehicle includes:
  • the use of power consumption functions controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter is restricted.
  • the power consumption function controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter Use is restricted, including:
  • a frequency limit command is sent to the DC-DC converter to reduce the detection frequency of the vehicle battery by the DC-DC converter.
  • the power consumption function controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter Use is restricted, including:
  • a third disabling instruction is sent to the DC-DC converter to disable the DC-DC converter from detecting the vehicle battery.
  • the method also includes:
  • First prompt information is generated and output, and the first prompt information is used to indicate the restricted power consumption function.
  • the method also includes:
  • the low battery protection function is controlled to enter the protection activation state.
  • the determining whether the vehicle meets the conditions for entering the protection activation state includes:
  • the restriction status is used to indicate whether the restriction on the designated power consumption function is successfully executed
  • restriction state indicates that the restriction on each designated power consumption function has been completed, it is determined that the vehicle satisfies the condition for entering the protection activation state.
  • the determining whether the vehicle meets the conditions for entering the protection activation state includes:
  • the counting time reaches a preset time, it is determined that the vehicle satisfies the condition for entering the protection activation state.
  • the designated function is controlled by a designated device
  • the method also includes:
  • the method also includes:
  • the low battery protection function is controlled to switch from the protection active state to the inactive state.
  • the determining whether the vehicle meets the exit protection condition includes:
  • the remaining power of the power battery is greater than the second power threshold and the state of charge of the vehicle indicates that the vehicle is being charged, it is determined that the vehicle meets the exit protection condition.
  • a vehicle control device comprising:
  • the first determining module is used to determine whether the vehicle power supply is in an insufficient battery state when the vehicle is stopped and the low battery protection function is not activated;
  • the first control module is configured to control the low battery protection function to enter a primary protection state if it is determined that the vehicle power supply is in an insufficient power state, wherein some functions of the vehicle are limited in the primary protection state;
  • the second control module is used for restricting the use of specified power consumption functions in the vehicle when the battery low power protection function is in the primary protection state.
  • a vehicle including: an assisted driving domain controller, a body domain controller, a DC-DC converter, and a power domain controller, and the power domain controller is used to implement the first aspect The method described in any one of the embodiments.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method described in any one of the embodiments of the first aspect is implemented.
  • a computer program product is provided, wherein the computer program product includes computer program code, and when the computer program code is run on a computer, any of the embodiments of the first aspect can be executed. one of the methods described.
  • a computer program wherein the computer program includes computer program code, and when the computer program code is run on a computer, the computer executes any one of the embodiments of the first aspect. method described in the item.
  • the low-battery protection function when the vehicle is stopped and the low-battery protection function is not activated, it is determined whether the vehicle power supply is in a low-battery state, and if it is determined that the vehicle power supply is in a low-battery state, the low-battery protection function is controlled to enter the primary protection state, In the case that the low battery protection function is in the primary protection state, the use of the specified power consumption function in the vehicle is restricted. Among them, some functions of the vehicle are restricted in the primary protection state.
  • the use of the power consumption function can be limited in time to avoid over-discharge of the vehicle power supply, thereby avoiding the situation that the vehicle cannot be used due to over-discharge of the power supply, and ensuring that the vehicle can operate normally. use.
  • FIG. 1 is a flowchart of a vehicle control method provided according to an embodiment of the present disclosure
  • Fig. 2 is a flowchart of a vehicle control method provided according to another embodiment of the present disclosure.
  • FIG. 3 is a block diagram of a vehicle control device provided according to an embodiment of the present disclosure.
  • Power domain controller used to control the vehicle power system and transmission system, integrating power on and off control, vehicle energy management, vehicle fault management, vehicle torque control, power battery management, charging control, drive motor control, range extender control, transmission control and other functions.
  • Assisted driving domain controller used to control the assisted driving system of the vehicle, integrating advanced functions such as adaptive cruise, lane keeping, pilot assist, automatic parking, remote parking, automatic valet parking, automatic emergency braking, and sentry mode Driving assistance features.
  • Body domain controller used to control the body system, integrating functions such as electric windows, electric rearview mirrors, air conditioning, headlights, turn signals, defrosting devices, anti-theft systems, power modes, centrally controlled door locks, and welcome systems .
  • Smart DCDC DC to DC Converter, DC-DC converter
  • the smart DCDC When the vehicle is powered off, it can detect the voltage/state of charge of the low-voltage battery. If the voltage/state of charge of the low-voltage battery is low, the smart DCDC will wake up the VCU (Vehicle Control Unit, vehicle controller), the VCU controls the high-voltage power-on of the vehicle, and then the power battery will charge the low-voltage battery through the intelligent DCDC to ensure that the vehicle can start normally.
  • VCU Vehicle Control Unit
  • Fig. 1 is a flowchart of a vehicle control method provided according to an embodiment of the present disclosure.
  • the method provided by the embodiments of the present disclosure may be applied to a power domain controller of a vehicle.
  • the method may include the following steps:
  • step 11 when the vehicle is stopped and the battery low battery protection function is not activated, it is determined whether the vehicle power supply is in an insufficient battery state;
  • step 12 if it is determined that the vehicle power supply is in an insufficient power state, control the battery low power protection function to enter the primary protection state;
  • step 13 when the low-battery protection function is in the primary protection state, use of specified power consumption functions in the vehicle is restricted.
  • the low battery protection function of the vehicle has three states, which are inactive state, primary protection state and protection active state.
  • the inactive state the low battery protection function of the vehicle will not take effect, and if the vehicle power supply is detected to be in a low battery state in the inactive state, the low battery protection function will change from the inactive state to the primary protection state.
  • the primary protection state the specified power consumption function will be restricted, and preliminary measures will be taken to prevent the power battery from over-discharging.
  • the primary protection state can be considered as a transitional state entering the protection activation state, and the switching method between the two will be given later, and will not be elaborated here.
  • the low-battery protection function when the vehicle is stopped and the low-battery protection function is not activated, it is determined whether the vehicle power supply is in a low-battery state, and if it is determined that the vehicle power supply is in a low-battery state, the low-battery protection function is controlled to enter the primary protection state, In the case that the low battery protection function is in the primary protection state, the use of the specified power consumption function in the vehicle is restricted. Among them, some functions of the vehicle are restricted in the primary protection state.
  • the use of the power consumption function can be limited in time to avoid over-discharge of the vehicle power supply, thereby avoiding the situation that the vehicle cannot be used due to over-discharge of the power supply, and ensuring that the vehicle can operate normally. use.
  • step 11 when the vehicle is stopped and the battery low battery protection function is not activated, it is determined whether the vehicle power supply is in an insufficient battery state.
  • whether the vehicle stops can be determined by the power supply mode of the vehicle, that is, when the power supply mode of the vehicle is in OFF gear, the vehicle is considered to be stopped.
  • step 11 may include the following steps:
  • the remaining power of the traction battery is in the first low power range and the charging state of the vehicle indicates that the vehicle is not charged, it is determined that the power supply of the vehicle is in an insufficient power state.
  • the first low battery range is set by itself according to actual needs, for example, it may be set to be less than 10%.
  • the low battery protection function when the low battery protection function is not activated, if the vehicle is stopped, the remaining power of the vehicle power battery is low, and the vehicle is not charging, it can be determined that the vehicle power supply is in a state of insufficient power.
  • the low battery protection function can be controlled to enter the primary protection state.
  • the primary protection state can also be divided into two different states. That is, the primary protection state may include a first protection state and a second protection state, and the vehicle has more restricted functions when it is in the first protection state than when it is in the second protection state.
  • the first low power range may include a first range and a second range, and the lower limit of the power in the first range is higher than the upper limit of the power in the second range.
  • step 12 may include the following steps:
  • the battery low power protection function is controlled to enter the second protection state.
  • the first range and the second range can be freely set according to actual needs.
  • the first range may be [5%, 10%], and the second range may be less than 5%.
  • the first power threshold can be set according to actual needs. In some embodiments, the first power threshold may be 40%.
  • the low battery protection function can be controlled to enter the first protection state.
  • the remaining power of the traction battery is in the second range, and the remaining power of the storage battery does not reach (that is, be less than) the first power threshold, it means that the remaining power of the vehicle power battery and storage battery is extremely low, so the low battery protection function can be controlled Enter the second protection state.
  • the degree of functional limitation of the vehicle when it is in the second protection state will be higher than that when the vehicle is in the first protection state.
  • the functions of the vehicle are more restricted, that is to say, the functions of the vehicle are restricted in the first protection state than in the second protection state.
  • the low-battery protection function when the low-battery protection function is in the first protection state, if it is detected that the remaining power of the battery is lower than the first power threshold, the low-battery protection function is controlled to enter the second protection state.
  • step 13 After entering the primary protection state, according to step 13, the use of designated power-consuming functions in the vehicle can be restricted.
  • step 13 may include the following steps:
  • the use of power consumption functions controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter is restricted.
  • restricting the use of the power-consuming function may include reducing the frequency of use of the function or prohibiting the use of the function.
  • the power consumption functions controlled by the assisted driving domain controller may include but not limited to: sentry mode, remote driving, remote parking, and automatic valet parking.
  • the power-consuming functions controlled by the vehicle body domain controller may include but not limited to: centrally controlled door locks and a welcome system.
  • the power consumption functions controlled by the DC-DC converter may include the detection of the remaining charge of the vehicle battery.
  • the assisted driving domain controller, body domain controller, DC-DC conversion Limiting the use of power-consuming functions controlled by at least one of the controllers may include the following steps:
  • a frequency limit command is sent to the DC-DC converter to reduce the detection frequency of the DC-DC converter to the vehicle battery.
  • the power consumption functions controlled by the assisted driving domain controller and the body domain controller can be disabled, so as to reduce the power consumption of the vehicle.
  • the current vehicle power supply still has some power remaining, for the DC-DC converter, because it is used to detect the relevant power consumption parameter information of the battery, it can not be disabled temporarily, but only its detection frequency is limited.
  • the assisted driving domain controller, body domain controller, DC-DC conversion Limiting the use of power-consuming functions controlled by at least one of the controllers may include the following steps:
  • a third disabling command is sent to the DC-DC converter to disable the DC-DC converter from detecting the vehicle battery.
  • the power consumption functions controlled by the assisted driving domain controller and the body domain controller can be disabled, so as to reduce the power consumption of the vehicle.
  • the detection of the battery of the DC-DC converter is unnecessary, so the detection of the DC-DC converter can be directly prohibited.
  • the method provided by the embodiments of the present disclosure may also include the following steps:
  • the first prompt information is used to indicate a restricted power consumption function.
  • the first prompt information may be output through an HMI (Human Machine Interface, Human Machine Interface) of the vehicle.
  • HMI Human Machine Interface, Human Machine Interface
  • FIG. 2 is a flowchart of a vehicle control method provided according to another embodiment of the present disclosure. Based on the steps shown in FIG. 1 , the method provided by the embodiment of the present disclosure may further include the following steps.
  • step 21 when the low battery protection function is in the primary protection state, determine whether the vehicle meets the conditions for entering the protection activation state;
  • step 22 if it is determined that the condition for entering the protection activation state is met, the low battery protection function is controlled to enter the protection activation state.
  • the power consumed by the vehicle in the protection activated state is lower than the power consumed by the vehicle in the primary protection state. That is to say, when the vehicle is in the protection activated state, compared with the vehicle in the primary protection state, more effective measures will be taken to reduce the power consumption of the vehicle power supply.
  • determining whether the vehicle meets the conditions for entering the protection activation state may include the following steps:
  • the limitation state indicates that the limitation of each designated power consumption function has been completed, it is determined that the vehicle satisfies the condition for entering the protection activation state.
  • the restriction state is used to indicate whether the restriction on the designated power consumption function is successfully executed, that is, whether the designated power consumption function has stopped power consumption.
  • determining whether the vehicle meets the conditions for entering the protection activation state may include the following steps:
  • the timed duration reaches the preset duration, it is determined that the vehicle satisfies the condition for entering the protection activation state.
  • the method provided by the embodiments of the present disclosure may also include the following steps:
  • the specified function is controlled by the specified device.
  • the designated device may include, but not limited to, at least one of an assisted driving domain controller, a vehicle body domain controller, and a DC-DC converter. This step is actually to control the assisted driving domain controller, body domain controller, and DC-DC converter to sleep. At the same time, it can also control the HMI function to sleep.
  • the method provided by the embodiments of the present disclosure may further include the following steps:
  • the low battery protection function is controlled to switch from the protection active state to the inactive state.
  • the conditions for exiting the protection activation state will be judged according to the vehicle's power-on status, power consumption, and charging status, and the protection activation state will be exited in a timely manner, so as to be more flexible. Realize the control of the battery low power protection function.
  • FIG. 3 is a block diagram of a vehicle control device provided according to an embodiment of the present disclosure. As shown in Figure 3, the device 30 may include:
  • the first determination module 31 is used to determine whether the vehicle power supply is in an insufficient power state when the vehicle is stopped and the battery low power protection function is not activated;
  • the first control module 32 is configured to control the low battery protection function to enter a primary protection state if it is determined that the vehicle power supply is in an insufficient power state, wherein some functions of the vehicle are limited in the primary protection state;
  • the second control module 33 is configured to limit the use of the specified power consumption function in the vehicle when the low battery protection function is in the primary protection state.
  • the first determination module 31 includes:
  • the first acquisition sub-module is used to acquire the remaining power of the vehicle power battery and the charging state of the vehicle when the vehicle is stopped and the low battery protection function is not activated;
  • the first determination sub-module is configured to determine that the power supply of the vehicle is in an insufficient power state if the remaining power of the power battery is in a first low power range and the charging state of the vehicle indicates that the vehicle is not charged.
  • the primary protection state includes a first protection state and a second protection state
  • the vehicle is restricted in more functions when it is in the first protection state than in the second protection state Function.
  • the first low battery range includes a first range and a second range, and the lower limit of the first range is higher than the upper limit of the second range;
  • the first control module 32 includes:
  • the second acquisition sub-module is used to acquire the remaining power of the vehicle battery
  • the first control submodule is configured to control the low battery protection function to enter the first protection if the remaining power of the power battery is in the first range and the remaining power of the storage battery reaches a first power threshold state;
  • the second control submodule is used to control the battery low power protection function to enter the Second protection status.
  • the device 30 also includes:
  • a third control module configured to control the low battery power if it detects that the remaining power of the storage battery is lower than the first power threshold when the low battery power protection function is in the first protection state A protection function enters said second protection state.
  • the second control module 33 includes:
  • the third control submodule is used to control the power consumption function controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter if the battery low power protection function is in the primary protection state use is restricted.
  • the third control submodule includes:
  • the first sending submodule is configured to send a first disabling instruction to the assisted driving domain controller to disable the power consumption function controlled by the assisted driving domain controller if the primary protection state is the first protection state;
  • the second sending submodule is configured to send a second disabling instruction to the body domain controller to disable the electric energy consumption controlled by the body domain controller;
  • the third sending sub-module is used to send a frequency limit command to the DC-DC converter, so as to reduce the detection frequency of the DC-DC converter on the vehicle battery.
  • the third control submodule includes:
  • the first sending submodule is configured to send a first disabling instruction to the assisted driving domain controller to disable the power consumption function controlled by the assisted driving domain controller if the primary protection state is the second protection state;
  • the second sending submodule is configured to send a second disabling instruction to the body domain controller to disable the electric energy consumption controlled by the body domain controller;
  • the fourth sending sub-module is configured to send a third disabling instruction to the DC-DC converter, so as to prohibit the DC-DC converter from detecting the vehicle battery.
  • the device 30 also includes:
  • An output module configured to generate and output first prompt information, where the first prompt information is used to indicate the restricted power consumption function.
  • the device 30 also includes:
  • the second determination module is used to determine whether the vehicle meets the conditions for entering the protection activation state when the low battery protection function is in the primary protection state, wherein the power consumed by the vehicle in the protection activation state is lower than The amount of electricity consumed by the vehicle in the primary protection state;
  • the fourth control module is configured to control the low battery protection function to enter the protection activation state if it is determined that the conditions for entering the protection activation state are satisfied.
  • the second determination module includes:
  • the detection sub-module is used to detect the restriction state of the specified power consumption function, and the restriction state is used to indicate whether the restriction on the specified power consumption function is successfully executed;
  • the second determining submodule is configured to determine that the vehicle meets the conditions for entering the protection activation state if the restriction state indicates that the restriction on each designated power consumption function has been completed.
  • the second determination module includes:
  • the timing sub-module is used to start timing when the low battery protection function enters the primary protection state, and obtain the timing duration
  • the third determination sub-module is configured to determine that the vehicle meets the conditions for entering the protection activation state if the timing time reaches a preset time.
  • the designated function is controlled by a designated device
  • the device 30 also includes:
  • the fifth control module is configured to control the specified device to sleep when the low battery protection function is in the protection active state.
  • the device 30 also includes:
  • the third determination module is used to determine whether the vehicle meets the exit protection condition when the low battery protection function is in the protection activation state
  • a sixth control module configured to control the low battery protection function to switch from the protection activated state to the inactive state if it is determined that the vehicle meets the exit protection condition.
  • the third determination module includes:
  • a fourth determining submodule configured to determine that the vehicle satisfies the exit protection condition if the vehicle is powered on; or,
  • the fifth determining submodule is configured to determine that the vehicle satisfies the exit protection condition if the remaining power of the power battery is greater than a second power threshold and the charging state of the vehicle indicates that the vehicle is being charged.
  • An embodiment of the present disclosure also provides a vehicle, including: an assisted driving domain controller, a body domain controller, a DC-DC converter, and a power domain controller, and the power domain controller is used to perform any one of the functions provided in the embodiments of the present disclosure. vehicle control method.
  • the power domain controller is used to:
  • controlling the low battery protection function to enter a primary protection state, wherein in the primary protection state, some functions of the vehicle are limited;
  • the power domain controller is used to:
  • the remaining power of the power battery is in the first low power range and the state of charge of the vehicle indicates that the vehicle is not charged, it is determined that the power supply of the vehicle is in an insufficient power state.
  • the primary protection state includes a first protection state and a second protection state
  • the vehicle has more restricted functions when it is in the first protection state than when it is in the second protection state Limited functionality.
  • the first low battery range includes a first range and a second range, and the lower limit of the first range is higher than the upper limit of the second range;
  • Dynamic domain controllers are used to:
  • the low battery protection function is controlled to enter the second protection state.
  • the power domain controller is used to:
  • the low battery protection function When the low battery protection function is in the first protection state, if it is detected that the remaining power of the storage battery is lower than the first power threshold, the low battery protection function is controlled to enter the second protection state. protection status.
  • the power domain controller is used to:
  • the use of power consumption functions controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter is restricted.
  • the primary protection state is the first protection state
  • the power consumption controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter restrictions on the use of electrical features including:
  • a frequency limit command is sent to the DC-DC converter to reduce the detection frequency of the vehicle battery by the DC-DC converter.
  • the primary protection state is the second protection state
  • the power consumption controlled by at least one of the assisted driving domain controller, the body domain controller, and the DC-DC converter restrictions on the use of electrical features including:
  • a third disabling instruction is sent to the DC-DC converter to disable the DC-DC converter from detecting the vehicle battery.
  • the power domain controller is used to:
  • First prompt information is generated and output, and the first prompt information is used to indicate the restricted power consumption function.
  • the power domain controller is used to:
  • the low battery protection function is controlled to enter the protection activation state.
  • the power domain controller is used to:
  • the restriction status is used to indicate whether the restriction on the designated power consumption function is successfully executed
  • restriction state indicates that the restriction on each designated power consumption function has been completed, it is determined that the vehicle satisfies the condition for entering the protection activation state.
  • the power domain controller is used to:
  • the counting time reaches a preset time, it is determined that the vehicle satisfies the condition for entering the protection activation state.
  • the specified function is controlled by a specified device
  • Dynamic domain controllers are used to:
  • the power domain controller is used to:
  • the low battery protection function is controlled to switch from the protection active state to the inactive state.
  • the power domain controller is used to:
  • the remaining power of the power battery is greater than the second power threshold and the state of charge of the vehicle indicates that the vehicle is being charged, it is determined that the vehicle meets the exit protection condition.
  • An embodiment of the present disclosure also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the vehicle control method described in any one of the above embodiments is implemented.
  • An embodiment of the present disclosure also provides a computer program product, wherein the computer program product includes computer program code, and when the computer program code is run on a computer, it can execute the vehicle control described in any one of the above embodiments. method.
  • An embodiment of the present disclosure also provides a computer program, wherein the computer program includes computer program code, and when the computer program code is run on a computer, the computer executes the vehicle control method described in any one of the above embodiments .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种车辆控制方法,包括:在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态(11);若确定车辆电源处于电量不足状态,控制电池低电量保护功能进入初级保护状态(12),其中,在初级保护状态下车辆的部分功能受限;在电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用(13)。该方法在车辆停驻、且电源电量过低时,能够及时地限制耗电功能的使用,避免车辆电源过放电,进而能够避免由电源过放电引起的车辆无法使用的情况,保证车辆能够正常使用。还公开了一种车辆控制装置、车辆、计算机可读存储介质、计算机程序产品和计算机程序。

Description

车辆控制方法、装置及车辆
相关申请的交叉引用
本申请基于申请号为No.202110722104.3、申请日为2021年6月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及车辆控制领域,具体地,涉及一种车辆控制方法、装置及车辆。
背景技术
目前,新能源车辆电控功能配置越来越多,导致车辆的静态能耗越来越大。车辆静止时,部分电控功能或零部件仍会运行(例如,智能DCDC、哨兵模式、迎宾***、HMI等)。因此,在车辆长时间静止后,由于这些电控功能或零部件仍运行,易导致动力电池易发生过放电,出现车辆无法启动的情况,为驾驶员造成不便。
发明内容
本公开的目的是提供一种车辆控制方法、装置及车辆,以实现车辆电源低电量的节能控制。
为了实现上述目的,根据本公开实施例的第一方面,提供一种车辆控制方法,所述方法包括:
在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态;
若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,其中,在所述初级保护状态下所述车辆的部分功能受限;
在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。
在一些实施例中,确定车辆电源是否处于电量不足状态,包括:
在车辆停止、所述电池低电量保护功能处于未激活状态时,获取车辆动力电池的剩余电量和车辆的充电状态;
若所述动力电池的剩余电量处于第一低电量范围、且所述车辆的充电状态指示车辆未充电,确定车辆电源处于电量不足状态。
在一些实施例中,所述初级保护状态包括第一保护状态和第二保护状态,且车辆在处于所述第一保护状态时受限的功能多于处于所述第二保护状态时受限的功能。
在一些实施例中,所述第一低电量范围包括第一范围和第二范围,且所述第一范围的 电量下限高于所述第二范围的电量上限;
所述若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,包括:
获取车辆蓄电池的剩余电量;
若所述动力电池的剩余电量处于所述第一范围、且所述蓄电池的剩余电量达到第一电量阈值,控制所述电池低电量保护功能进入所述第一保护状态;
若所述动力电池的剩余电量处于所述第二范围、且所述蓄电池的剩余电量未达到所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
在一些实施例中,所述方法还包括:
在所述电池低电量保护功能处于所述第一保护状态的情况下,若检测到所述蓄电池的剩余电量低于所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
在一些实施例中,所述在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用,包括:
若所述电池低电量保护功能处于初级保护状态,对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制。
在一些实施例中,若所述初级保护状态为第一保护状态,所述对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,包括:
向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
向直流-直流转换器发送频率限制指令,以降低所述直流-直流转换器对车辆蓄电池的检测频率。
在一些实施例中,若所述初级保护状态为第二保护状态,所述对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,包括:
向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
向直流-直流转换器发送第三禁用指令,以禁止所述直流-直流转换器对车辆蓄电池进行检测。
在一些实施例中,所述方法还包括:
生成并输出第一提示信息,所述第一提示信息用于指示已被限制的耗电功能。
在一些实施例中,所述方法还包括:
在所述电池低电量保护功能处于初级保护状态的情况下,确定车辆是否满足进入保护激活状态的条件,其中,车辆在所述保护激活状态下所耗费的电量低于车辆在处于所述初级保护状态下所耗费的电量;
若确定满足进入所述保护激活状态的条件,控制所述电池低电量保护功能进入所述保护激活状态。
在一些实施例中,所述确定车辆是否满足进入保护激活状态的条件,包括:
检测指定耗电功能的限制状态,所述限制状态用于指示对于指定耗电功能的限制是否成功执行;
若所述限制状态指示对各个指定耗电功能的限制均已完成,确定车辆满足进入所述保护激活状态的条件。
在一些实施例中,所述确定车辆是否满足进入保护激活状态的条件,包括:
自所述电池低电量保护功能进入所述初级保护状态时开始计时,获得计时时长;
若所述计时时长达到预设时长,确定车辆满足进入所述保护激活状态的条件。
在一些实施例中,所述指定功能由指定设备进行控制;
所述方法还包括:
在所述电池低电量保护功能处于保护激活状态的情况下,控制指定设备休眠。
在一些实施例中,所述方法还包括:
在所述电池低电量保护功能处于保护激活状态的情况下,确定车辆是否满足退出保护条件;
若确定所述车辆满足所述退出保护条件,控制所述电池低电量保护功能由所述保护激活状态切换至所述未激活状态。
在一些实施例中,所述确定车辆是否满足退出保护条件,包括:
若所述车辆通电,确定所述车辆满足所述退出保护条件;或者,
若所述动力电池的剩余电量大于第二电量阈值、且所述车辆的充电状态指示所述车辆正在充电,确定所述车辆满足所述退出保护条件。
根据本公开实施例的第二方面,提供一种车辆控制装置,所述装置包括:
第一确定模块,用于在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态;
第一控制模块,用于若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,其中,在所述初级保护状态下所述车辆的部分功能受限;
第二控制模块,用于在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。
根据本公开实施例的第三方面,提供一种车辆,包括:辅助驾驶域控制器、车身域控制器、直流-直流转换器和动力域控制器,所述动力域控制器用于执行第一方面的实施例任一项所述的方法。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面的实施例任一项所述的方法。
根据本公开实施例的第五方面,提供一种计算机程序产品,其中所述计算机程序产品 中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行第一方面的实施例任一项所述的方法。
根据本公开实施例的第六方面,提供一种计算机程序,其中所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行第一方面的实施例任一项所述的方法。
通过上述技术方案,在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态,若确定车辆电源处于电量不足状态,控制电池低电量保护功能进入初级保护状态,在电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。其中,在初级保护状态下车辆的部分功能受限。由此,在车辆停驻、且电源电量过低时,能够及时地限制耗电功能的使用,避免车辆电源过放电,进而能够避免由电源过放电引起的车辆无法使用的情况,保证车辆能够正常使用。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开的一种实施方式提供的车辆控制方法的流程图;
图2是根据本公开的另一种实施方式提供的车辆控制方法的流程图;
图3是根据本公开的一种实施方式提供的车辆控制装置的框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在介绍本公开的方案之前,首先对本公开所涉及到的相关概念及硬件进行简单说明。
动力域控制器:用于控制车辆动力***和传动***,集成了上下电控制、整车能量管理、整车故障管理、整车扭矩控制、动力电池管理、充电控制、驱动电机控制、增程器控制、变速器控制等功能。
辅助驾驶域控制器:用于控制车辆的辅助驾驶***,集成了自适应巡航、车道保持、领航辅助、自动泊车、遥控泊车、自动代客泊车、自动紧急制动、哨兵模式等高级驾驶辅助功能。
车身域控制器:用于控制车身***,集成了电动车窗、电动后视镜、空调、大灯、转向灯、除霜装置、防盗***、电源模式、中央控制门锁、迎宾***等功能。
智能DCDC(DC to DC Converter,直流-直流转换器):可在车辆下电时,检测低压蓄电池电压/荷电状态,若低压蓄电池电压/荷电状态偏低,智能DCDC会唤醒VCU(Vehicle Control Unit,整车控制器),VCU控制车辆高压上电,而后动力电池会通过智能DCDC向 低压蓄电池充电,以保证车辆可正常启动。
图1是根据本公开的一种实施方式提供的车辆控制方法的流程图。在一些实施例中,本公开实施例提供的方法可以应用于车辆的动力域控制器。
如图1所示,该方法可以包括以下步骤:
在步骤11中,在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态;
在步骤12中,若确定车辆电源处于电量不足状态,控制电池低电量保护功能进入初级保护状态;
在步骤13中,在电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。
其中,在初级保护状态下车辆的部分功能受限。
在本公开的方案中,车辆的电池低电量保护功能存在三种状态,分别是未激活状态、初级保护状态和保护激活状态。在未激活状态下,车辆的电池低电量保护功能不会生效,并且,若在未激活状态下检测到车辆电源处于电量不足状态,电池低电量保护功能会从未激活状态变化至初级保护状态。在初级保护状态下,会对指定耗电功能进行限制,对防止动力电池过放电采取初步措施。初级保护状态可以认为是进入保护激活状态的过渡状态,二者之间的切换方式将在后文中给出,此处暂不详细阐述。
通过上述技术方案,在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态,若确定车辆电源处于电量不足状态,控制电池低电量保护功能进入初级保护状态,在电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。其中,在初级保护状态下车辆的部分功能受限。由此,在车辆停驻、且电源电量过低时,能够及时地限制耗电功能的使用,避免车辆电源过放电,进而能够避免由电源过放电引起的车辆无法使用的情况,保证车辆能够正常使用。
下面对本公开的各个步骤进行详细说明。
在步骤11中,在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态。
其中,车辆停止与否可以通过车辆的电源模式确定,即,在车辆的电源模式处于OFF挡时,认为车辆停止。
在本公开的实施方式中,步骤11可以包括以下步骤:
在车辆停止、电池低电量保护功能处于未激活状态时,获取车辆动力电池的剩余电量和车辆的充电状态;
若动力电池的剩余电量处于第一低电量范围、且车辆的充电状态指示车辆未充电,确定车辆电源处于电量不足状态。
其中,第一低电量范围根据实际的需求自行设置,例如,可以设置为小于10%。
也就是说,在电池低电量保护功能处于未激活状态时,若车辆停止、车辆动力电池的 剩余电量较低、且车辆并未充电,可以判定车辆电源处于电量不足状态。
在确定车辆处于电量不足状态的情况下,根据步骤12,可以控制电池低电量保护功能进入初级保护状态。
在本公开的实施例中,还可以对初级保护状态进行划分,分为两种不同的状态。即,初级保护状态可以包括第一保护状态和第二保护状态,且车辆在处于第一保护状态时受限的功能多于处于第二保护状态时受限的功能。
在这一实施例中,第一低电量范围可以包括第一范围和第二范围,且第一范围的电量下限高于第二范围的电量上限。相应地,步骤12可以包括以下步骤:
获取车辆蓄电池的剩余电量;
若动力电池的剩余电量处于第一范围、且蓄电池的剩余电量达到第一电量阈值,控制电池低电量保护功能进入第一保护状态;
若动力电池的剩余电量处于第二范围、且蓄电池的剩余电量未达到第一电量阈值,控制电池低电量保护功能进入第二保护状态。
第一范围和第二范围可以根据实际需求自由设置。在一些实施例中,第一范围可以为[5%,10%],第二范围可以为小于5%。
第一电量阈值可以根据实际需求进行设置。在一些实施例中,第一电量阈值可以为40%。
若动力电池的剩余电量处于第一范围、且蓄电池的剩余电量达到(即,大于或者等于)第一电量阈值,说明车辆动力电池和蓄电池(低压蓄电池)的剩余电量较低,但还未到极低的状态,因此,可以控制电池低电量保护功能进入第一保护状态。
若动力电池的剩余电量处于第二范围、且蓄电池的剩余电量未达到(即,小于)第一电量阈值,说明车辆动力电池和蓄电池的剩余电量已经极低,因此,可以控制电池低电量保护功能进入第二保护状态。
其中,由于车辆进入第一保护状态时电源总体的电量会高于进入第二保护状态时的总体电量,因此,车辆在处于第二保护状态时的功能限制程度会比车辆处于第一保护状态时的功能限制程度更高一些,也就是说,车辆在处于第一保护状态时受限的功能多于处于第二保护状态时受限的功能。
另外,在电池低电量保护功能处于第一保护状态的情况下,若检测到蓄电池的剩余电量低于第一电量阈值,控制电池低电量保护功能进入第二保护状态。
在进入初级保护状态后,根据步骤13,可以限制车辆中指定耗电功能的使用。
在本公开的实施方式中,步骤13可以包括以下步骤:
若电池低电量保护功能处于初级保护状态,对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制。
在一些实施例中,对耗电功能的使用进行限制可以包括降低功能使用频率或者禁止使用功能。
辅助驾驶域控制器所控制的耗电功能可以包括但不限于:哨兵模式、遥控驾驶、遥控泊车、自动代客泊车。
车身域控制器所控制的耗电功能可以包括但不限于:中央控制门锁、迎宾***。
直流-直流转换器所控制的耗电功能可以包括对车辆蓄电池剩余电量的检测。
在本公开的实施例中,若初级保护状态为第一保护状态(即,车辆电池低电量保护功能处于第一保护状态),对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,可以包括以下步骤:
向辅助驾驶域控制器发送第一禁用指令,以禁用由辅助驾驶域控制器控制的耗电功能;
向车身域控制器发送第二禁用指令,以禁用由车身域控制器控制的耗电动能;
向直流-直流转换器发送频率限制指令,以降低直流-直流转换器对车辆蓄电池的检测频率。
若电池低电量保护功能处于第一保护状态,可以禁用辅助驾驶域控制器和车身域控制器所控制的耗电功能,以降低车辆电源耗电量。同时,由于当前车辆电源还存在一些电量剩余,因此,对于直流-直流转换器,由于其用于检测蓄电池相关用电参数信息,可以暂不对其禁用,而仅仅限制其检测频率。
在本公开的实施例中,若初级保护状态为第二保护状态(即,车辆电池低电量保护功能处于第二保护状态),对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,可以包括以下步骤:
向辅助驾驶域控制器发送第一禁用指令,以禁用由辅助驾驶域控制器控制的耗电功能;
向车身域控制器发送第二禁用指令,以禁用由车身域控制器控制的耗电动能;
向直流-直流转换器发送第三禁用指令,以禁止直流-直流转换器对车辆蓄电池进行检测。
若电池低电量保护功能处于第二保护状态,可以禁用辅助驾驶域控制器和车身域控制器所控制的耗电功能,以降低车辆电源耗电量。同时,由于当前车辆电源电量剩余已经很低,直流-直流转换器蓄电池的检测已无必要,因此,可以直接禁止直流-直流转换器的检测。
在一些实施例中,本公开实施例提供的方法还可以包括以下步骤:
生成并输出第一提示信息。
其中,第一提示信息用于指示已被限制的耗电功能。在一些实施例中,可以通过车辆的HMI(Human Machine Interface,人机交互界面)输出第一提示信息。
图2是根据本公开的另一种实施方式提供的车辆控制方法的流程图。在图1所示各步骤的基础上,本公开实施例提供的方法还可以包括以下步骤。
在步骤21中,在电池低电量保护功能处于初级保护状态的情况下,确定车辆是否满足进入保护激活状态的条件;
在步骤22中,若确定满足进入保护激活状态的条件,控制电池低电量保护功能进入保护激活状态。
其中,车辆在保护激活状态下所耗费的电量低于车辆在处于初级保护状态下所耗费的电量。也就是说,车辆在处于保护激活状态时,相比于车辆处于初级保护状态来说,将采取更加有效的措施,以降低车辆电源的耗电量。
在一些实施例中,确定车辆是否满足进入保护激活状态的条件,可以包括以下步骤:
检测指定耗电功能的限制状态;
若限制状态指示对各个指定耗电功能的限制均已完成,确定车辆满足进入保护激活状态的条件。
其中,限制状态用于指示对于指定耗电功能的限制是否成功执行,也就是指定耗电功能是否已经停止耗电。
再例如,确定车辆是否满足进入保护激活状态的条件,可以包括以下步骤:
自电池低电量保护功能进入初级保护状态时开始计时,获得计时时长;
若计时时长达到预设时长,确定车辆满足进入保护激活状态的条件。
在一些实施例中,本公开实施例提供的方法还可以包括以下步骤:
在电池低电量保护功能处于保护激活状态的情况下,控制指定设备休眠。
其中,指定功能由指定设备进行控制。在一些实施例中,指定设备可以包括但不限于辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者。这一步骤实际上就是控制辅助驾驶域控制器、车身域控制器、直流-直流转换器休眠。同时,还可以控制HMI功能休眠。
在一些实施例中,在图2所示各步骤的基础上,本公开实施例提供的方法还可以包括以下步骤:
在电池低电量保护功能处于保护激活状态的情况下,确定车辆是否满足退出保护条件;
若确定车辆满足退出保护条件,控制电池低电量保护功能由保护激活状态切换至未激活状态。
在一些实施例中,可以通过如下方式确定车辆是否满足退出保护条件:
若车辆通电,确定车辆满足退出保护条件。
再例如,可以通过如下方式确定车辆是否满足退出保护条件:
若动力电池的剩余电量大于第二电量阈值、且车辆的充电状态指示车辆正在充电,确定车辆满足退出保护条件。
通过上述方式,在对动力电池进行低电量保护的情况下,还会根据车辆的通电情况、电量及充电情况等,判断退出保护激活状态的条件,并及时地退出保护激活状态,以更加灵活地实现对电池低电量保护功能的控制。
图3是根据本公开的一种实施方式提供的车辆控制装置的框图。如图3所述,所述装置30可以包括:
第一确定模块31,用于在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态;
第一控制模块32,用于若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,其中,在所述初级保护状态下所述车辆的部分功能受限;
第二控制模块33,用于在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。
在一些实施例中,所述第一确定模块31包括:
第一获取子模块,用于在车辆停止、所述电池低电量保护功能处于未激活状态时,获取车辆动力电池的剩余电量和车辆的充电状态;
第一确定子模块,用于若所述动力电池的剩余电量处于第一低电量范围、且所述车辆的充电状态指示车辆未充电,确定车辆电源处于电量不足状态。
在一些实施例中,所述初级保护状态包括第一保护状态和第二保护状态,且车辆在处于所述第一保护状态时受限的功能多于处于所述第二保护状态时受限的功能。
在一些实施例中,所述第一低电量范围包括第一范围和第二范围,且所述第一范围的电量下限高于所述第二范围的电量上限;
所述第一控制模块32包括:
第二获取子模块,用于获取车辆蓄电池的剩余电量;
第一控制子模块,用于若所述动力电池的剩余电量处于所述第一范围、且所述蓄电池的剩余电量达到第一电量阈值,控制所述电池低电量保护功能进入所述第一保护状态;
第二控制子模块,用于若所述动力电池的剩余电量处于所述第二范围、且所述蓄电池的剩余电量未达到所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
在一些实施例中,所述装置30还包括:
第三控制模块,用于在所述电池低电量保护功能处于所述第一保护状态的情况下,若检测到所述蓄电池的剩余电量低于所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
在一些实施例中,所述第二控制模块33包括:
第三控制子模块,用于若所述电池低电量保护功能处于初级保护状态,对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制。
在一些实施例中,所述第三控制子模块包括:
第一发送子模块,用于若所述初级保护状态为第一保护状态,向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
第二发送子模块,用于向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
第三发送子模块,用于向直流-直流转换器发送频率限制指令,以降低所述直流-直流转换器对车辆蓄电池的检测频率。
在一些实施例中,所述第三控制子模块包括:
第一发送子模块,用于若所述初级保护状态为第二保护状态,向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
第二发送子模块,用于向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
第四发送子模块,用于向直流-直流转换器发送第三禁用指令,以禁止所述直流-直流转换器对车辆蓄电池进行检测。
在一些实施例中,所述装置30还包括:
输出模块,用于生成并输出第一提示信息,所述第一提示信息用于指示已被限制的耗电功能。
在一些实施例中,所述装置30还包括:
第二确定模块,用于在所述电池低电量保护功能处于初级保护状态的情况下,确定车辆是否满足进入保护激活状态的条件,其中,车辆在所述保护激活状态下所耗费的电量低于车辆在处于所述初级保护状态下所耗费的电量;
第四控制模块,用于若确定满足进入所述保护激活状态的条件,控制所述电池低电量保护功能进入所述保护激活状态。
在一些实施例中,所述第二确定模块包括:
检测子模块,用于检测指定耗电功能的限制状态,所述限制状态用于指示对于指定耗电功能的限制是否成功执行;
第二确定子模块,用于若所述限制状态指示对各个指定耗电功能的限制均已完成,确定车辆满足进入所述保护激活状态的条件。
在一些实施例中,所述第二确定模块包括:
计时子模块,用于自所述电池低电量保护功能进入所述初级保护状态时开始计时,获得计时时长;
第三确定子模块,用于若所述计时时长达到预设时长,确定车辆满足进入所述保护激活状态的条件。
在一些实施例中,所述指定功能由指定设备进行控制;
所述装置30还包括:
第五控制模块,用于在所述电池低电量保护功能处于保护激活状态的情况下,控制指定设备休眠。
在一些实施例中,所述装置30还包括:
第三确定模块,用于在所述电池低电量保护功能处于保护激活状态的情况下,确定车辆是否满足退出保护条件;
第六控制模块,用于若确定所述车辆满足所述退出保护条件,控制所述电池低电量保护功能由所述保护激活状态切换至所述未激活状态。
在一些实施例中,所述第三确定模块包括:
第四确定子模块,用于若所述车辆通电,确定所述车辆满足所述退出保护条件;或者,
第五确定子模块,用于若所述动力电池的剩余电量大于第二电量阈值、且所述车辆的充电状态指示所述车辆正在充电,确定所述车辆满足所述退出保护条件。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例还提供一种车辆,包括:辅助驾驶域控制器、车身域控制器、直流-直流转换器和动力域控制器,所述动力域控制器用于执行本公开实施例任一项提供的车辆控制方法。
在本公开的一些实施例中,动力域控制器用于:
在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态;
若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,其中,在所述初级保护状态下所述车辆的部分功能受限;
在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。
在本公开的一些实施例中,动力域控制器用于:
在车辆停止、所述电池低电量保护功能处于未激活状态时,获取车辆动力电池的剩余电量和车辆的充电状态;
若所述动力电池的剩余电量处于第一低电量范围、且所述车辆的充电状态指示车辆未充电,确定车辆电源处于电量不足状态。
在本公开的一些实施例中,所述初级保护状态包括第一保护状态和第二保护状态,且车辆在处于所述第一保护状态时受限的功能多于处于所述第二保护状态时受限的功能。
在本公开的一些实施例中,所述第一低电量范围包括第一范围和第二范围,且所述第一范围的电量下限高于所述第二范围的电量上限;
动力域控制器用于:
获取车辆蓄电池的剩余电量;
若所述动力电池的剩余电量处于所述第一范围、且所述蓄电池的剩余电量达到第一电量阈值,控制所述电池低电量保护功能进入所述第一保护状态;
若所述动力电池的剩余电量处于所述第二范围、且所述蓄电池的剩余电量未达到所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
在本公开的一些实施例中,动力域控制器用于:
在所述电池低电量保护功能处于所述第一保护状态的情况下,若检测到所述蓄电池的剩余电量低于所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
在本公开的一些实施例中,动力域控制器用于:
若所述电池低电量保护功能处于初级保护状态,对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制。
在本公开的一些实施例中,若所述初级保护状态为第一保护状态,所述对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,包括:
向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
向直流-直流转换器发送频率限制指令,以降低所述直流-直流转换器对车辆蓄电池的检测频率。
在本公开的一些实施例中,若所述初级保护状态为第二保护状态,所述对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,包括:
向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
向直流-直流转换器发送第三禁用指令,以禁止所述直流-直流转换器对车辆蓄电池进行检测。
在本公开的一些实施例中,动力域控制器用于:
生成并输出第一提示信息,所述第一提示信息用于指示已被限制的耗电功能。
在本公开的一些实施例中,动力域控制器用于:
在所述电池低电量保护功能处于初级保护状态的情况下,确定车辆是否满足进入保护激活状态的条件,其中,车辆在所述保护激活状态下所耗费的电量低于车辆在处于所述初级保护状态下所耗费的电量;
若确定满足进入所述保护激活状态的条件,控制所述电池低电量保护功能进入所述保护激活状态。
在本公开的一些实施例中,动力域控制器用于:
检测指定耗电功能的限制状态,所述限制状态用于指示对于指定耗电功能的限制是否成功执行;
若所述限制状态指示对各个指定耗电功能的限制均已完成,确定车辆满足进入所述保护激活状态的条件。
在本公开的一些实施例中,动力域控制器用于:
自所述电池低电量保护功能进入所述初级保护状态时开始计时,获得计时时长;
若所述计时时长达到预设时长,确定车辆满足进入所述保护激活状态的条件。
在本公开的一些实施例中,所述指定功能由指定设备进行控制;
动力域控制器用于:
在所述电池低电量保护功能处于保护激活状态的情况下,控制指定设备休眠。
在本公开的一些实施例中,动力域控制器用于:
在所述电池低电量保护功能处于保护激活状态的情况下,确定车辆是否满足退出保护条件;
若确定所述车辆满足所述退出保护条件,控制所述电池低电量保护功能由所述保护激活状态切换至所述未激活状态。
在本公开的一些实施例中,动力域控制器用于:
若所述车辆通电,确定所述车辆满足所述退出保护条件;或者,
若所述动力电池的剩余电量大于第二电量阈值、且所述车辆的充电状态指示所述车辆正在充电,确定所述车辆满足所述退出保护条件。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上实施例中任一项所述的车辆控制方法。
本公开实施例还提供一种计算机程序产品,其中所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行如上实施例中任一项所述的车辆控制方法。
本公开实施例还提供一种计算机程序,其中所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行如上实施例中任一项所述的车辆控制方法。
以上结合附图详细描述了本公开的实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本公开要求的保护范围。

Claims (20)

  1. 一种车辆控制方法,其特征在于,所述方法包括:
    在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态;
    若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,其中,在所述初级保护状态下所述车辆的部分功能受限;
    在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。
  2. 根据权利要求1所述的方法,其特征在于,确定车辆电源是否处于电量不足状态,包括:
    在车辆停止、所述电池低电量保护功能处于未激活状态时,获取车辆动力电池的剩余电量和车辆的充电状态;
    若所述动力电池的剩余电量处于第一低电量范围、且所述车辆的充电状态指示车辆未充电,确定车辆电源处于电量不足状态。
  3. 根据权利要求1或2所述的方法,其特征在于,所述初级保护状态包括第一保护状态和第二保护状态,且车辆在处于所述第一保护状态时受限的功能多于处于所述第二保护状态时受限的功能。
  4. 根据权利要求3所述的方法,其特征在于,所述第一低电量范围包括第一范围和第二范围,且所述第一范围的电量下限高于所述第二范围的电量上限;
    所述若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,包括:
    获取车辆蓄电池的剩余电量;
    若所述动力电池的剩余电量处于所述第一范围、且所述蓄电池的剩余电量达到第一电量阈值,控制所述电池低电量保护功能进入所述第一保护状态;
    若所述动力电池的剩余电量处于所述第二范围、且所述蓄电池的剩余电量未达到所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在所述电池低电量保护功能处于所述第一保护状态的情况下,若检测到所述蓄电池的剩余电量低于所述第一电量阈值,控制所述电池低电量保护功能进入所述第二保护状态。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用,包括:
    若所述电池低电量保护功能处于初级保护状态,对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制。
  7. 根据权利要求6所述的方法,其特征在于,若所述初级保护状态为第一保护状态, 所述对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,包括:
    向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
    向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
    向直流-直流转换器发送频率限制指令,以降低所述直流-直流转换器对车辆蓄电池的检测频率。
  8. 根据权利要求6所述的方法,其特征在于,若所述初级保护状态为第二保护状态,所述对由辅助驾驶域控制器、车身域控制器、直流-直流转换器中的至少一者所控制的耗电功能的使用进行限制,包括:
    向辅助驾驶域控制器发送第一禁用指令,以禁用由所述辅助驾驶域控制器控制的耗电功能;
    向车身域控制器发送第二禁用指令,以禁用由所述车身域控制器控制的耗电动能;
    向直流-直流转换器发送第三禁用指令,以禁止所述直流-直流转换器对车辆蓄电池进行检测。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    生成并输出第一提示信息,所述第一提示信息用于指示已被限制的耗电功能。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    在所述电池低电量保护功能处于初级保护状态的情况下,确定车辆是否满足进入保护激活状态的条件,其中,车辆在所述保护激活状态下所耗费的电量低于车辆在处于所述初级保护状态下所耗费的电量;
    若确定满足进入所述保护激活状态的条件,控制所述电池低电量保护功能进入所述保护激活状态。
  11. 根据权利要求10所述的方法,其特征在于,所述确定车辆是否满足进入保护激活状态的条件,包括:
    检测指定耗电功能的限制状态,所述限制状态用于指示对于指定耗电功能的限制是否成功执行;
    若所述限制状态指示对各个指定耗电功能的限制均已完成,确定车辆满足进入所述保护激活状态的条件。
  12. 根据权利要求10所述的方法,其特征在于,所述确定车辆是否满足进入保护激活状态的条件,包括:
    自所述电池低电量保护功能进入所述初级保护状态时开始计时,获得计时时长;
    若所述计时时长达到预设时长,确定车辆满足进入所述保护激活状态的条件。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述指定功能由指定设备进行控制;
    所述方法还包括:
    在所述电池低电量保护功能处于保护激活状态的情况下,控制指定设备休眠。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述方法还包括:
    在所述电池低电量保护功能处于保护激活状态的情况下,确定车辆是否满足退出保护条件;
    若确定所述车辆满足所述退出保护条件,控制所述电池低电量保护功能由所述保护激活状态切换至所述未激活状态。
  15. 根据权利要求14所述的方法,其特征在于,所述确定车辆是否满足退出保护条件,包括:
    若所述车辆通电,确定所述车辆满足所述退出保护条件;或者,
    若所述动力电池的剩余电量大于第二电量阈值、且所述车辆的充电状态指示所述车辆正在充电,确定所述车辆满足所述退出保护条件。
  16. 一种车辆控制装置,其特征在于,所述装置包括:
    第一确定模块,用于在车辆停止、且电池低电量保护功能处于未激活状态时,确定车辆电源是否处于电量不足状态;
    第一控制模块,用于若确定车辆电源处于电量不足状态,控制所述电池低电量保护功能进入初级保护状态,其中,在所述初级保护状态下所述车辆的部分功能受限;
    第二控制模块,用于在所述电池低电量保护功能处于初级保护状态的情况下,限制车辆中指定耗电功能的使用。
  17. 一种车辆,其特征在于,包括:辅助驾驶域控制器、车身域控制器、直流-直流转换器和动力域控制器,所述动力域控制器用于执行权利要求1-15中任一项所述的车辆控制方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-15中任一项所述的车辆控制方法。
  19. 一种计算机程序产品,其中所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行如权利要求1-15中任一项所述的车辆控制方法。
  20. 一种计算机程序,其中所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行如权利要求1-15中任一项所述的车辆控制方法。
PCT/CN2022/089684 2021-06-28 2022-04-27 车辆控制方法、装置及车辆 WO2023273580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831408.4A EP4365015A1 (en) 2021-06-28 2022-04-27 Vehicle control method and apparatus, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110722104.3 2021-06-28
CN202110722104.3A CN113442858A (zh) 2021-06-28 2021-06-28 车辆控制方法、装置及车辆

Publications (1)

Publication Number Publication Date
WO2023273580A1 true WO2023273580A1 (zh) 2023-01-05

Family

ID=77813530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089684 WO2023273580A1 (zh) 2021-06-28 2022-04-27 车辆控制方法、装置及车辆

Country Status (3)

Country Link
EP (1) EP4365015A1 (zh)
CN (1) CN113442858A (zh)
WO (1) WO2023273580A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442858A (zh) * 2021-06-28 2021-09-28 北京车和家信息技术有限公司 车辆控制方法、装置及车辆
TWI834432B (zh) * 2022-12-14 2024-03-01 英屬開曼群島商鴻騰精密科技股份有限公司 車輛控制方法及相關設備

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029707A1 (fr) * 2014-12-04 2016-06-10 Peugeot Citroen Automobiles Sa Procede et dispositif de controle personnalise de la consommation d’energie electrique d’une batterie par des equipements d’un vehicule places dans un etat de veille
CN106114426A (zh) * 2016-06-28 2016-11-16 广州汽车集团股份有限公司 一种车辆电源管理***及其控制方法
CN112918324A (zh) * 2021-03-18 2021-06-08 阿尔特汽车技术股份有限公司 一种新能源汽车低压蓄电池的控制方法及***
CN113103916A (zh) * 2021-05-14 2021-07-13 赵泊然 一种新能源汽车电池保护模式控制方法
CN113442858A (zh) * 2021-06-28 2021-09-28 北京车和家信息技术有限公司 车辆控制方法、装置及车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106095057B (zh) * 2016-06-03 2019-02-01 上海新案数字科技有限公司 一种车载设备的多级待机方法与车载设备
FR3074758B1 (fr) * 2017-12-08 2022-03-18 Psa Automobiles Sa Procede de controle du demarrage d’un moteur thermique pour un vehicule hybride en conduite assistee

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029707A1 (fr) * 2014-12-04 2016-06-10 Peugeot Citroen Automobiles Sa Procede et dispositif de controle personnalise de la consommation d’energie electrique d’une batterie par des equipements d’un vehicule places dans un etat de veille
CN106114426A (zh) * 2016-06-28 2016-11-16 广州汽车集团股份有限公司 一种车辆电源管理***及其控制方法
CN112918324A (zh) * 2021-03-18 2021-06-08 阿尔特汽车技术股份有限公司 一种新能源汽车低压蓄电池的控制方法及***
CN113103916A (zh) * 2021-05-14 2021-07-13 赵泊然 一种新能源汽车电池保护模式控制方法
CN113442858A (zh) * 2021-06-28 2021-09-28 北京车和家信息技术有限公司 车辆控制方法、装置及车辆

Also Published As

Publication number Publication date
EP4365015A1 (en) 2024-05-08
CN113442858A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2023273580A1 (zh) 车辆控制方法、装置及车辆
CN109532494B (zh) 一种纯电动汽车高压上电控制方法及高压下电控制方法
CN110254237B (zh) 一种电动汽车上下电车辆模式控制方法
CN110626336B (zh) 一种l3级车辆自动驾驶的控制***
US20090206660A1 (en) Dual power supply system for a vehicle and power supply method
CN108146254B (zh) 增程器的控制方法和装置
EP3581431A1 (en) Charging control device for charging electric vehicle
CN110341624B (zh) 车辆上电控制方法、装置、车辆及存储介质
CN108216086B (zh) 一种48v微混***的dcdc转换器及其控制方法
CN107962955A (zh) 上下电控制方法、装置及车辆
CN107187440B (zh) 一种插电式混合动力车的上下电时序控制方法
CN112428871A (zh) 控制低压蓄电池充电的方法和***及车辆、存储介质
JPWO2019116586A1 (ja) ハイブリッド車両の制御方法、及び、制御装置
CN112078423B (zh) 一种车辆高压上电的控制方法、整车控制器、***及车辆
US20140229753A1 (en) Communication system and communication node
CN113415166A (zh) 一种增程式混合动力汽车上电、下电控制方法及***
WO2024041242A1 (zh) 车辆远程起动的控制***
WO2024001635A1 (zh) 电源管理***、车辆及电源管理方法
KR101909275B1 (ko) 배터리 충전 장치 및 방법
JP2010081661A (ja) 制御装置
CN113103916A (zh) 一种新能源汽车电池保护模式控制方法
CN112537205A (zh) 一种省电模式控制方法、装置及电动汽车
CN112373305B (zh) 一种加氢控制方法及装置
CN114498846A (zh) 电动车辆及其充电方法、装置
CN114670642A (zh) 电动汽车模式控制方法、***、计算机及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831408

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022831408

Country of ref document: EP

Effective date: 20240129