WO2023273470A1 - 显示面板、显示屏及电子设备 - Google Patents

显示面板、显示屏及电子设备 Download PDF

Info

Publication number
WO2023273470A1
WO2023273470A1 PCT/CN2022/084610 CN2022084610W WO2023273470A1 WO 2023273470 A1 WO2023273470 A1 WO 2023273470A1 CN 2022084610 W CN2022084610 W CN 2022084610W WO 2023273470 A1 WO2023273470 A1 WO 2023273470A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
light
display
area
ink layer
Prior art date
Application number
PCT/CN2022/084610
Other languages
English (en)
French (fr)
Inventor
李灵芝
韩钢峰
贾卫波
李杰威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023273470A1 publication Critical patent/WO2023273470A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present application relates to the field of electronic equipment, in particular to a display panel, a display screen and electronic equipment.
  • ambient light detection At present, electronic devices such as smart watches, smart bracelets, and mobile phones usually have the function of ambient light detection.
  • One of the main applications of the ambient light detection function is to automatically adjust the brightness of the screen by detecting the brightness of the ambient light, so that users have a good experience.
  • the ambient light detection function is also used in scenarios such as light intensity detection and touch control.
  • the ambient light detection mainly depends on placing a light sensor (such as an ambient light sensor, atmosphere light sensor, ALS) under the display panel of the electronic device.
  • a light sensor such as an ambient light sensor, atmosphere light sensor, ALS
  • the ALS is placed under the display panel, and the light in the environment can be passed through the visible area (view area, VA) of the cover plate on the display panel and the display area (active area, AA, operable area or display area) of the display panel.
  • the ALS receives it for ambient light detection.
  • the thickness of the module is relatively high.
  • Embodiments of the present application provide a display panel, a display screen and electronic equipment, which can reduce the module thickness of the display screen and simplify the structural industrial design of the product.
  • a display panel in a first aspect, includes: a display area AA and a non-display area NA located around the display area; the display panel can be circular, and of course other special-shaped display panels such as polygonal, elliptical, etc.; the non-display area NA is provided with peripheral circuits , the display area AA is provided with pixel units distributed in an array; wherein, on the non-display area NA, a photosensor is arranged between the display area AA and the peripheral circuit; a first photosensitive device.
  • the module thickness of the display screen can be reduced, thereby reducing the product thickness of the electronic equipment using the display screen.
  • the light can directly reach the light sensor on the display panel after passing through the cover plate of the display screen, instead of passing through the display panel and reaching the light sensor, which reduces the sensitivity requirement of the light sensor, and, due to the multiple light sensors
  • a photosensitive device is arranged on the display panel in a manner of extending and distributing along the boundary line between the display area AA and the peripheral circuit.
  • a cover plate to protect the display panel, and for the sake of beautiful appearance, a light-shielding ink layer is usually arranged between the display panel and the cover plate to block the non-display area of the display panel.
  • the light The sensor In order to reduce the influence of the optical sensor on the aperture ratio of the display panel, the light The sensor cannot be set in the display area. However, if the light sensor is set in the non-display area, it is usually necessary to carry out a corresponding coupling design for the shape of the light-shielding ink layer, so as to remove the light-shielding ink layer of the light sensor or design it to filter the ink of the specified light wavelength band Such a material increases the demand for alignment accuracy of the coupling between the light-shielding ink layer and the photosensor, and affects the industrial design of the appearance of the product. However, there is a gap between the light-shielding ink layer and the display area of the display panel.
  • the cover plate when the cover plate is provided, it is only necessary to leak a plurality of photosensitive devices extending and distributed along the boundary line between the display area AA and the peripheral circuit from the above-mentioned gap. That is, there is no need to specially set the shape of the light-shielding ink layer, so the structure of the product is simple, and it can be directly compatible with the appearance design of the current cover plate and the light-shielding ink layer.
  • a cover plate is provided on the display panel, wherein a light-shielding ink layer is included between the cover plate and the display panel; the projection of the light-shielding ink layer on the display panel is located in a non-display area; wherein, a plurality of first The photosensitive device is distributed between the projection area of the light-shielding ink layer on the display panel and the display area.
  • the plurality of first photosensitive devices are distributed in the visible area VA, and the visible area VA is not blocked by the light-shielding ink layer, ambient light can be irradiated to the plurality of first photosensitive devices through the cover plate, thereby realizing the detection of ambient light.
  • a cover plate is provided on the display panel, wherein a filter ink layer is included between the cover plate and the display panel; the filter ink layer covers the area between the display area and the peripheral circuit, and the light filter
  • the ink layer absorbs light in the ultraviolet band. Since the filter ink layer absorbs the light in the ultraviolet band, the light in the ultraviolet band in the ambient light will be absorbed, and the light passing through the filter ink layer can include the visible light band (such as the wavelength range of 400nm to 700nm) and other The light in the light band (for example, the infrared light band) can realize the detection of the visible light in the ambient light and the light in other light bands.
  • the light filter ink layer can be arranged for a week along the area between the display area AA and the peripheral circuit, so that the influence of the light filter ink layer on the industrial design of the product appearance can also be reduced as much as possible, and there is no need to consider the coupling with multiple first photosensitive devices Alignment reduces the difficulty of assembly.
  • a cover plate is provided on the display panel, wherein a light-shielding ink layer is included between the cover plate and the display panel; the projection of the light-shielding ink layer on the display panel is located in a non-display area;
  • a plurality of first photosensitive devices are distributed in the projection area of the light-shielding ink layer on the display panel, wherein the light-shielding ink layer transmits light in the ultraviolet band. Since the filter ink layer transmits the light in the ultraviolet band, the detection of the light in the ultraviolet band in the ambient light can be realized.
  • the plurality of first photosensitive devices are distributed on a side close to the display area in the projection area of the light-shielding ink layer on the display panel.
  • the photosensor further includes a plurality of second photosensitive devices, and a cover plate is arranged on the display panel, wherein a light-shielding ink layer is included between the cover plate and the display panel; the projection of the light-shielding ink layer on the display panel Located in the non-display area; a plurality of second photosensitive devices are distributed in the projection area of the light-shielding ink layer on the display panel.
  • the filter ink layer can transmit the light in the ultraviolet band
  • the plurality of second photosensitive devices can realize the detection of the light in the ultraviolet band in the ambient light.
  • the plurality of second photosensitive devices can detect the light intensity of the dark environment under the light-shielding ink layer, so as to provide a comparative reference for the detection results of the first photosensitive devices extending along the boundary line between the display area AA and the peripheral circuit.
  • the plurality of second photosensitive devices are extended and distributed in a strip shape along the border of the non-display area away from the display area.
  • a plurality of first photosensitive devices are connected in parallel, and the plurality of first photosensitive devices form at least one row in a direction of extension and distribution.
  • a plurality of second photosensitive devices are connected in parallel, and the plurality of second photosensitive devices form at least one row in a direction of extension and distribution.
  • a display screen including the display panel according to the first aspect, and a cover disposed on the display panel.
  • an electronic device including the display screen in the second aspect, and a PCB connected to the display screen.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a smart watch provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a display screen provided by an embodiment of the present application.
  • FIG. 4 provides a schematic diagram of the assembly structure of the display screen shown in FIG. 3 according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a display screen provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display screen provided by another embodiment of the present application.
  • Fig. 7 provides the embodiment of the present application as shown in Fig. 6
  • Fig. 8 is another embodiment of the present application providing the schematic diagram of the sectional structure of the display screen at AA' as shown in Fig. 6;
  • FIG. 9 is a schematic structural diagram of a display screen provided by another embodiment of the present application.
  • Fig. 10 provides a schematic cross-sectional structure diagram of the display screen at AA' as shown in Fig. 9 for an embodiment of the present application;
  • Fig. 11 is a schematic structural diagram of a display screen provided by another embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a display screen provided by yet another embodiment of the present application.
  • Fig. 13 provides a schematic cross-sectional structural view of the display screen at AA' as shown in Fig. 12 for an embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a display screen provided by another embodiment of the present application.
  • Fig. 15 provides a schematic cross-sectional structure diagram of the display screen at AA' as shown in Fig. 14 for an embodiment of the present application;
  • FIG. 16 is a schematic diagram of an arrangement of a photosensitive device provided by an embodiment of the present application.
  • Fig. 17 is a schematic diagram of an arrangement of a photosensitive device provided by another embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of a photosensitive device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a circuit including a photosensitive device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a circuit including a photosensitive device provided by another embodiment of the present application.
  • Fig. 21 is a schematic structural diagram of a photosensitive device provided by another embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of an LCD panel provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of an AMOLED display panel provided by an embodiment of the present application.
  • Fig. 24 is a schematic structural diagram of a photosensitive device provided by another embodiment of the present application.
  • Fig. 25 is a schematic diagram of the principle of a photosensitive device provided by an embodiment of the present application.
  • FIG. 26 is a schematic diagram of an equivalent circuit of a photosensitive device provided by an embodiment of the present application.
  • FIG. 27 is a schematic diagram of a connection relationship of a photosensitive device provided by an embodiment of the present application.
  • first”, second, etc. are used for convenience of description only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature.
  • at least one means one or more
  • multiple means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • connection should be understood in a broad sense, for example, “connection” can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • electrical connection may be a direct electrical connection or an indirect electrical connection through an intermediary.
  • the display panel and display screen provided by the embodiments of the present application can be applied to mobile phones, tablet computers, notebook computers, ultra-mobile personal computers (ultra-mobile personal computer, UMPC), handheld computers, netbooks, personal digital assistants (personal digital assistants) , PDA), wearable electronic devices, virtual reality devices and other electronic devices, the embodiment of the present application does not impose any limitation on this.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, camera 190 and display screen 191, etc.
  • a processor 110 an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, camera 190 and display screen 191, etc.
  • USB universal serial bus
  • the structure shown in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 can receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive a wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 is charging the battery 142 , it can also provide power for electronic devices through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the display screen 191 , the camera 190 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be disposed in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be set in the same device.
  • the wireless communication function of the electronic device 100 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include one or more filters, switches, power amplifiers, low noise amplifiers (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs a sound signal through an audio device (not limited to a speaker 170A, a receiver 170B, etc.), or displays an image or video through a display screen 191 .
  • the modem processor may be a stand-alone device. In some other embodiments, the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area network (wireless local area networks, WLAN) (such as wireless fidelity (wireless fidelity, Wi-Fi) network), bluetooth (Bluetooth, BT), global navigation satellite System (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating one or more communication processing modules.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 realizes the display function through the GPU, the display screen 191, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 191 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 191 is used to display images, videos and the like.
  • the display screen 191 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device 100 may include 1 or N display screens 191 , where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 190 , the video codec, the GPU, the display screen 191 and the application processor.
  • the ISP is used for processing data fed back by the camera 190 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 190 .
  • Camera 190 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 100 may include 1 or N cameras 190, where N is a positive integer greater than 1.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store one or more computer programs including instructions.
  • the processor 110 can implement various functional applications and data processing by executing the above-mentioned instructions stored in the internal memory 121 .
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system; the stored program area can also store one or more application programs (such as a gallery, contacts, etc.) and the like.
  • the storage data area can store data (such as photos, contacts, etc.) created during the use of the electronic device 101 .
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage devices, flash memory devices, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 110 enables the electronic device 100 to execute various functional applications and data processing by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device 100 can implement audio functions through the audio module 170 , the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals.
  • Electronic device 100 can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 170B can be placed close to the human ear to receive the voice.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a phone call or sending a voice message, the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with one or more microphones 170C. In some other embodiments, the electronic device 100 may be provided with two microphones 170C, except for collecting sound signals. Noise reduction is also available. In some other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions, etc.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the sensor module 180 may include a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor (that is, the light sensors), bone conduction sensors, etc.
  • Touch sensor also known as "touch device”.
  • the touch sensor can be arranged on the display screen 191, and the touch sensor and the display screen 191 form a touch screen, also called “touch screen”.
  • the touch sensor is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation may be provided through the display screen.
  • a touch panel with a touch sensor array formed by a plurality of touch sensors may also be installed on the surface of the display panel in a hanging form.
  • the location of the touch sensor and the display screen 191 may also be different.
  • the form of the touch sensor is not limited, for example, it may be a capacitor or a piezoresistor.
  • the above-mentioned electronic device may further include one or more components such as a key, a motor, an indicator, and a subscriber identification module (subscriber identification module, SIM) card interface, which is not limited in this embodiment of the present application.
  • a subscriber identification module subscriber identification module, SIM
  • the display screen 191 is arranged between the outer frame 21 of the watch and the bottom cover (not shown in FIG. 2 ).
  • the display screen includes a display panel 31, and the display panel 31 includes an active area (AA) and a non-display area NA (also referred to as a border) located around the display area AA.
  • AA active area
  • NA non-display area
  • a cover plate is also provided in the light emitting direction of the display panel 31, wherein a light-shielding ink layer is included between the cover plate and the display panel 31, wherein the projection of the light-shielding ink layer on the display panel 31 is located in the non-display area NA;
  • the shading ink layer blocks the non-display area, and the cover plate contains the visible area (view area, VA) and the ink area (that is, the area corresponding to the shading ink layer on the cover plate) where the display area AA can be seen, because the cover plate
  • the visible area VA is usually larger than the display area AA, that is, there is a gap between the ink area and the display area AA, as shown in Figure 3.
  • the display area AA is provided with a pixel array composed of a plurality of pixel units distributed in an array.
  • the display area AA includes driving lines arranged in a vertical and horizontal direction, and the driving lines include scanning lines SCAN and data lines DATA, wherein the pixel units are arranged at the crossing positions of the scanning lines SCAN and data lines DATA, and one pixel unit is connected to one data line DATA and at least one scan line SCAN.
  • the display screen also includes a chip-on-film (chin on film, COF, that is, a flexible circuit film with a chip, referred to as a chip-on-film, also known as a chip-on-chip film) 32 and a flexible printed circuit (FPC, or flexible circuit board) 33.
  • a chip-on-film chin on film, COF, that is, a flexible circuit film with a chip, referred to as a chip-on-film, also known as a chip-on-chip film
  • FPC flexible printed circuit
  • one drive line of any pixel unit in the pixel array is connected to one fan-out line of the display panel 31;
  • the display panel 31 is provided with a connection terminal 311, and the connection terminal 311 includes terminals of multiple fan-out lines of the display panel 31 ( pin, or pins), wherein COF32 and FPC33 are arranged on the back of display panel 31, and the connection end 311 of display panel 31 is bent to the back of display panel 31 and correspondingly connected to the connection end 321 of COF32.
  • the terminals of the connection end 311 and the terminals of the connection end 321 can be bonded one by one by using a FOF (film on film, film-to-film) process, and each terminal in the connection end 311 and the connection end 321 is in a one-to-one manner. Bonding together, so as to realize the bonding connection of the connection end 311 of the display panel 31 and the connection end 321 of the COF 32 .
  • FOF film on film, film-to-film
  • a display driver circuit 322 is provided on the COF 32, and the display driver circuit 322 may be a display driver integrated circuit (DDIC).
  • the terminals in the connecting end 321 of the COF 32 are electrically connected to the pins of the DDIC through the lines on the COF 32 .
  • connection end 323 of the COF32 is connected to the connection end 331 of the FPC33 by bonding, the terminal of the connection end 323 of the COF32 is electrically connected to the pin of the DDIC, and another group of connection ends 332 of the FPC33 are connected to the PCB printed circuit board (printed circuit board, PCB) connection, the terminals of the connection end 331 of the FPC33 are connected with the terminals of another group of connection ends 332 through the lines on the FPC33.
  • An application processor application processor, AP
  • AP application processor
  • AP application processor
  • PCB printed circuit board
  • the printed circuit board, COF32 and FPC32 are all arranged between the outer frame 21 of the watch on the back of the display panel and the bottom cover.
  • the display driving circuit 322 can also be integrated into the frame (NA area) of the display panel, of course, this will not be conducive to reducing the frame width of the display panel.
  • the AP provides display data for the DDIC and the display panel 31 to display actual image information;
  • the power IC provides the working voltage for the DDIC and the display panel 31.
  • FPC33 provides signal transmission connection path between PCB and DDIC.
  • the DDIC is responsible for receiving the signal transmitted by the PCB and sending the signal to the display panel 31 according to specific timing control. For example, after the display data output by the AP passes through the DDIC, it is converted into a scanning signal and a data voltage Vdata and transmitted to the pixel unit coupled to each driving line to drive the pixel unit to emit light.
  • the electronic devices such as the above-mentioned smart watches, smart bracelets, and mobile phones usually have the function of ambient light detection.
  • One of the main applications of the ambient light detection function is to automatically adjust the brightness of the screen by detecting the brightness of the ambient light. very good experience.
  • the ambient light detection function is also used in scenarios such as light intensity detection and touch control.
  • the ambient light detection mainly depends on placing an ambient light sensor (atmosphere light sensor, ALS) under the display panel of the electronic device.
  • the display screen includes a display panel and a cover plate. There is an ink area under the display panel, and the projection position of the ink area on the display panel just covers the driving circuit on the display panel.
  • the ALS is placed under the display panel, and the light in the environment can reach through the visible area (view area, VA) of the cover plate on the display panel and the display area (active area, AA, operable area or display area) of the display panel
  • the photosensitive area of the ALS is received by the ALS to detect ambient light, but in this structure, since the ALS needs to be placed under the display panel, the thickness of the module is relatively high; in addition, due to the shading of the display panel, it will be greatly reduced. light transmittance, thus requiring a more sensitive light sensor.
  • a display screen is provided, wherein the display screen includes a display panel 41 integrated with a light sensor in the screen,
  • the display panel 41 includes a display area AA and a non-display area NA (or frame).
  • the non-display area NA is located around the display area AA (a circular display panel is taken as an example in FIG. 6 , of course, other irregular-shaped display panels such as polygonal and elliptical are also possible).
  • a peripheral circuit 411 is provided in the non-display area NA (wherein the peripheral circuit may include the above-mentioned fan-out circuit and a display driving circuit, of course, in some narrow bezel products, the display driving circuit may also be placed on the COF), in the display Array-distributed pixel units are arranged in the area AA.
  • a light sensor 412 is arranged between the display area AA and the peripheral circuit; .
  • the photosensitive device 412-n is connected to the PCB through the fan-out line of the non-display area NA (the specific fan-out line may be connected through the flexible substrate between the display panel 41 and the PCB), wherein, the PCB is provided with There are chips or circuits that process the signal from the photosensitive device or provide a signal to the photosensitive device.
  • the light sensor 412 is integrated on the display panel 41, when the display panel 41 is assembled as a display screen, the thickness of the module of the display screen can be reduced, thereby reducing the number of electronic devices using the display screen. The product thickness of the device.
  • the light can directly reach the light sensor 412 on the display panel 41 after passing through the cover plate, instead of passing through the display panel 41 and then reaching the light sensor 412, which reduces the requirement for the sensitivity of the light sensor 412, and, because the light sensor
  • the multiple photosensitive devices 412-n of 412 are arranged on the display panel 41 in a manner of extending and distributing along the boundary line between the display area AA and the peripheral circuit 411, which has no effect on the industrial design of the cover plate 42 and the light-shielding ink layer 43 protecting the display panel 41.
  • the display panel 41 is usually provided with a cover plate 42 to protect the display panel, and for the sake of beautiful appearance, a light-shielding device that blocks the non-display area NA of the display panel 41 is usually provided between the display panel 41 and the cover plate 42 Ink layer 43, in order to reduce the influence of photosensor 412 on the aperture ratio of display panel 41, usually photosensor 412 cannot be arranged in display area AA.
  • the corresponding coupling design of the shape is to remove the light-shielding ink layer 43 of the light sensor 412 or design it as an ink material for filtering a specified light wavelength band, so that the requirement for the alignment accuracy of the coupling between the light-shielding ink layer 43 and the light sensor 412 is improved.
  • a cover plate 42 is also provided on the display panel 41, and a light-shielding ink layer 43 is included between the cover plate 42 and the display panel 41, as shown in FIG. 6 and FIG. 7, wherein the display panel 41 includes a display The area AA and the non-display area NA.
  • the non-display area NA is provided with a peripheral circuit 411 and a photosensor 412 (including a plurality of photosensitive devices 412-n).
  • the projection of the light-shielding ink layer 43 on the display panel 41 is located in the non-display area NA.
  • the area of the light-shielding ink layer 43 outside the projected area of the cover plate 42 is the visible area VA.
  • a plurality of photosensitive devices 412 - n are distributed between the projection area of the light-shielding ink layer 43 on the display panel 41 and the display area AA.
  • the plurality of photosensitive devices 412-n are distributed in the visible area VA, and the visible area VA is not blocked by the light-shielding ink layer 43, the ambient light can be irradiated to the plurality of photosensitive devices 412-n through the cover plate 42, thereby achieving environmental protection. light detection.
  • a cover plate 42 is provided on the display panel 41, wherein a filter ink layer 44 is also included between the cover plate 42 and the display panel 41, and the filter ink layer 44 absorbs light in the ultraviolet band, filters
  • the photo-ink layer 44 covers the area between the display area AA and the peripheral circuit 411, that is, the area where the plurality of photosensitive devices 412-n are located.
  • the filter ink layer 44 absorbs the light of the ultraviolet band, the light of the ultraviolet band in the ambient light will be absorbed, and the light passing through the filter ink layer 44 may include the visible light band (such as the wavelength range of 400nm to 700nm) and light in other light bands (such as infrared light bands), so that the detection of visible light in ambient light and light in other light bands can be realized.
  • the filter ink layer 44 can be set up for a week along the area between the display area AA and the peripheral circuit 411, so that the influence of the filter ink layer 44 on the industrial design of the product appearance can be reduced as far as possible, and there is no need to consider the connection with multiple photosensitive devices 412.
  • the coupling alignment of -n reduces the difficulty of assembly.
  • Figure 10 is a cross-sectional view at AA' in Figure 9.
  • the display panel 41 is provided with a cover plate 42, wherein a light-shielding ink layer 43 is included between the cover plate 42 and the display panel 41, wherein the projection of the light-shielding ink layer 43 on the display panel 41 is located in the non-display area NA; wherein, the light sensor 412 A plurality of photosensitive devices 412 - n are distributed in the projection area of the light-shielding ink layer 43 on the display panel 41 , wherein the light-shielding ink layer 43 transmits light in the ultraviolet band.
  • the filter ink layer transmits the light in the ultraviolet band, the detection of the light in the ultraviolet band in the ambient light can be realized.
  • the plurality of photosensitive devices 412-n may be distributed on the side close to the display area AA in the projection area of the light-shielding ink layer 43 on the display panel 41 .
  • a photosensitive device 412-n for detecting visible light in ambient light and light of other light bands and a photosensitive device for detecting light of ultraviolet light can be distributed on the display panel 41 at the same time. 412-n.
  • Figure 12 wherein Figure 13 is a cross-sectional view at AA' in Figure 12.
  • the plurality of photosensitive devices 412 - n photosensitive devices may also be distributed on the side away from the display area AA in the projection area of the light-shielding ink layer 43 on the display panel 41 .
  • the light sensor 412 also includes a plurality of photosensitive devices 412-i
  • the display panel 41 is provided with a cover plate 42, wherein a light-shielding ink layer 43 is included between the cover plate 42 and the display panel 41, wherein The projection of the light-shielding ink layer 43 on the display panel 41 is located in the non-display area NA; a plurality of photosensitive devices 412 - i are distributed in the projection area of the light-shielding ink layer 43 on the display panel 41 .
  • the plurality of photosensitive devices 412-i shown in FIG. 14 and FIG. 15 extend in a strip shape in the non-display area NA and away from the boundary of the display area AA.
  • the plurality of photosensitive devices 412-i are not limited to the structure shown in the figure, there can be more or less, and they can also be close to the display area AA. Any arrangement of the plurality of photosensitive devices 412-i in any position of the non-display area NA belongs to this The scope of protection applied for. Since the plurality of photosensitive devices 412-i are blocked by the light-shielding ink layer 43, they cannot be observed from the cover plate 42, and thus do not affect the industrial design of the product. A plurality of photosensitive devices 412-i are distributed in strips extending along the boundary of the non-display area NA away from the display area AA.
  • Figure 16 and Figure 17 provide the arrangement of multiple photosensitive devices in the embodiment of the present application, the multiple photosensitive devices of the present application are connected in parallel, and the multiple photosensitive devices form at least one row in the direction of extension and distribution.
  • Figure 16 shows that a plurality of photosensitive devices in the embodiment of the present application can be arranged in a row in the direction of extending distribution
  • Figure 17 shows that a plurality of photosensitive devices in the embodiment of the present application can be arranged in the direction of extending distribution Arranged in two rows.
  • the parallel connection method can make the photocurrent detected by each photosensitive device directly superimpose, thereby improving the accuracy of light intensity detection.
  • the number of photosensitive devices can be designed according to the detection accuracy required by the actual setting, which is not limited here.
  • 16 and 17 take the photosensitive device as a two-port device as an example, wherein the input end of the photosensitive device is connected to the fan-out line 1 , and the output end of the photosensitive device is connected to the fan-out line 2 .
  • the photosensitive device mentioned above may be any one of photosensitive devices such as photoresistors and photodiodes.
  • the photosensitive device can be a photosensitive resistor, as shown in Figure 18.
  • the photosensitive resistor includes a photoconductor and two electrodes arranged at both ends of the photoconductor. These two electrodes have no polarity difference, that is, the left and right sides of the photosensitive resistor Both positive and reverse connections of the electrodes can work normally, so that the fan-out line 1 and the fan-out line 2 are respectively connected to the two electrodes of the photoresistor.
  • the photoresistor also known as the light guide, is a purely resistive element. Its working principle is based on the photoconductive effect. When there is no light, the resistance passing through the photoconductor is very large, and the reverse current is very small, which is called dark current.
  • E i in the two figures is the initial voltage
  • R a is the photoresistor
  • R b is the common resistance
  • U 0 represents the voltage value of the electrical signal detected
  • the circuit connection method in which the light intensity is proportional to the voltage value U 0 provided in Figure 19 that is, the stronger the light, the smaller the resistance R a of the photoresistor, the larger the current I in the circuit, and the larger the value of the voltage U 0
  • Figure 20 provides a circuit connection method in which the light intensity is inversely proportional to the voltage value U 0 , That is, the stronger the light, the smaller the resistance value R a of the photoresistor, the larger the current I in the circuit, and the smaller the value of the voltage U 0 .
  • the photosensitive device may be a photosensitive diode, which is also called a photodiode, as shown in FIG. 21 .
  • the core component of the photodiode is a PN junction. When there is no light irradiation, the photodiode has a large reverse resistance and a small reverse current, and the photodiode is in a cut-off state. Reverse current is also called dark current.
  • the vicinity of the PN junction is bombarded by photons, absorbing its energy to generate electron-hole pairs, so that the minority carrier concentration in the P and N regions is greatly increased, so under the effect of external reverse bias and internal electric field
  • the minority carriers in the P region enter the N region through the barrier layer
  • the minority carriers in the N region enter the P region through the barrier layer, so that the reverse current through the PN junction is greatly increased, which forms a photon junction.
  • the fan-out line 1 and the fan-out line 2 are respectively connected to the P region and the N region of the PN junction.
  • the above-mentioned photosensitive device can be formed by reusing the traditional TFT production process in the display panel.
  • the display panel mainly includes a display substrate and an opposite substrate.
  • the display function film layer is composed of multiple film layers. Different types of display panels with different functions have different display function film layers.
  • the display panel is a liquid crystal display (liquid crystal display,
  • An LCD) panel or an active matrix organic light emitting diode (AMOLED) display panel is taken as an example for description.
  • FIG. 22 is a schematic structural diagram of an LCD panel provided by an embodiment of the present application.
  • an LCD panel it mainly includes a base substrate 61, a circuit film layer 62, a pixel electrode layer 63, a lower alignment film layer 64, a liquid crystal layer 65, an upper alignment film layer 66, a common electrode layer 67, a color filter layer 68 and an opposite to the substrate 69 etc.
  • the base substrate 61 and the opposite substrate 62 may be made of transparent materials, such as glass.
  • the circuit film layer 62, the pixel electrode layer 63, the lower alignment film layer 64, the liquid crystal layer 65, the upper alignment film layer 66, the common electrode layer 67 and the color filter layer 68 can be collectively referred to as the display function film layer.
  • FIG. 22 is just an example of one of the LCD panels.
  • the circuit film layer 62 is mainly provided with a thin film field effect transistor (thin film transistor, TFT) and various wires.
  • TFT thin film field effect transistor
  • the circuit film layer 62 may include a semiconductor layer 621, a first insulating layer 622, a gate electrode 623, a second insulating layer 624, a source electrode 625, and a drain electrode 626; wherein the material of the semiconductor layer 621 It can be semiconductor materials such as amorphous silicon/polysilicon/oxide.
  • the electrode contact region and the channel region of the TFT can be formed by doping the semiconductor layer 621 with different materials and concentrations.
  • the electrode contact region is generally a P-type heavily doped region (P+), and the channel region is generally a P-type lightly doped region. Doped region (P-).
  • the source electrode 625 and the drain electrode 626 of the TFT are electrically connected to the electrode contact regions, respectively.
  • FIG. 23 is a schematic structural diagram of an AMOLED display panel provided by an embodiment of the present application.
  • an AMOLED display panel it mainly includes a base substrate 71 , a circuit film layer 72 , an anode layer 73 , a pixel definition layer 74 , a light emitting layer 75 , a cathode layer 76 , and an opposite substrate 77 .
  • the base substrate 71 and the opposite substrate 72 can be formed of transparent materials, such as rigid substrates such as glass, or flexible substrates such as polyimide (PI), polycarbonate (PC), etc., which are not described here. limited.
  • the circuit film layer 72 , the anode layer 73 , the pixel defining layer 74 , the light emitting layer 75 and the cathode layer 76 can be collectively referred to as a display function film layer.
  • a display function film layer the structure of the display functional film layer in different types of AMOLED display panels may also be different.
  • Figure 23 is just an example of one of the AMOLED display panels where OLED spontaneously emits colored light. For example, in some AMOLED display In the panel, if the light emitted by the light-emitting layer is white light, a color filter layer is generally provided above the light-emitting layer, which will not be described here.
  • the circuit film layer 72 is also mainly provided with TFTs and various wires.
  • the circuit film layer 72 may include a semiconductor layer 721, a first insulating layer 722, a gate electrode 723, a second insulating layer 724, a source electrode 725, and a drain electrode 726; wherein the material of the semiconductor layer 721 It can be semiconductor materials such as amorphous silicon/polysilicon/oxide.
  • the electrode contact region and the channel region of the TFT can be formed by doping the semiconductor layer 721 with different materials and concentrations.
  • the electrode contact region is generally a P-type heavily doped region (P+), and the channel region is generally a P-type lightly doped region. Doped region (P-).
  • the source electrode 725 and the drain electrode 726 of the TFT are electrically connected to the electrode contact regions, respectively.
  • Both the above-mentioned LCD panel and the AMOLED display panel are provided with circuit film layers with TFTs. It is precisely because the above-mentioned display panels are provided with semiconductor layers and different doped regions in the semiconductor layers.
  • the present application can be used in the display panel.
  • the existing mask (mask) process of the display panel is used as far as possible to form, thereby reducing the number of increased mask processes.
  • the input electrode and the output electrode of the photosensitive device can be fabricated by a mask process using the first metal layer of the same layer as the source electrode 625 and the drain electrode 626 (source electrode 725 and drain electrode 726).
  • the gate can be made through a mask process with the second metal layer of the same layer as the gate electrode 623 (or gate electrode 723); the channel of the photosensitive device can be made with the semiconductor layer 621 (or the semiconductor layer Layer 721) is made of the same layer of material, and when the input electrode and the electrode contact area are included under the output electrode, the electrode contact area of the source electrode 625 and the drain electrode 626 (source electrode 725 and drain electrode 726) can also be used.
  • the semiconductor layer under the input electrode and the output electrode is doped and formed. Specifically, as shown in FIG.
  • a photosensitive device including a channel, input electrodes and output electrodes disposed at both ends of the channel; wherein, the input electrodes can be connected to Vcc through fan-out lines, and the output electrodes can be connected to Vcc through fan-out lines.
  • the outgoing line is connected to Vout.
  • the working principle of the photosensitive device also called photodiode
  • the reverse current in the channel region is very small (generally less than 0.1 microampere), which is called dark current.
  • one or more gates can be set on the channel, usually an insulating layer is set between the gate and the channel, and the gate can be connected to Vg through a fan-out line to provide supply voltage.
  • the photosensitive device when the photosensitive device is working, electron-hole pairs are mainly formed in the region (depletion region) of the channel region that is not blocked by the gate, and the concentration of electron-hole pairs formed is also different when the intensity of light absorbed is different.
  • the equivalent circuit diagram is shown in Figure 26.
  • the photosensitive device provided by the embodiments of the present application has high sensitivity due to its high resistance (equivalent resistance) in the depletion region, especially low dark current (leakage current) when no light is irradiated.
  • the magnitude of the dark current can be further adjusted by adjusting the voltage of the gate and the magnitude of the cross-voltage across the input electrode and the output electrode.
  • the parallel connection method is that the input electrodes of multiple photosensitive devices (1-n) are connected to the Vcc, output electrodes of multiple photosensitive devices (1-n) are connected to Vout through the same fan-out line, and gates of multiple photosensitive devices (1-n) are connected to Vg through the same fan-out line.
  • the width of multiple photosensitive devices arranged in a single row is about 30um, which basically meets the error requirements of the gap design between the visible area VA and the display area AA, and does not affect the industrial design of the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(31)、显示屏(191)及电子设备(100),显示面板(31)包括:显示区域(AA)以及位于显示区域(AA)周围的非显示区域(NA),非显示区域(NA)设置有***电路(411),显示区域(AA)设置有阵列分布的像素单元;其中,在非显示区域上(NA),显示区域(AA)与***电路(411)之间设置有光传感器(412);光传感器(412)包括沿显示区域(AA)与***电路的(411)分界线延伸分布的多个第一感光器件(412-n)。

Description

显示面板、显示屏及电子设备
本申请要求于2021年06月30日提交国家知识产权局、申请号为202121481222.1、申请名称为“显示面板、显示屏及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备领域,尤其涉及一种显示面板、显示屏及电子设备。
背景技术
目前,诸如智能手表、智能手环、手机等电子设备通常具有环境光检测功能,其中环境光检测功能的一个主要应用是通过检测环境光亮度,实现对屏幕亮度的自动调节,让用户有很好的体验。环境光检测功能还用于光强检测、触摸控制等场景下。
而环境光检测主要依赖于在电子设备的显示面板下方放置光传感器(例如环境光传感器,atmosphere light sensor,ALS)。通常ALS放置在显示面板下方,环境中的光线可以通过显示面板上的盖板的可视区域(view area,VA)以及显示面板的显示区域(active area,AA,可操作区域或显示区域)被ALS接收,从而进行环境光检测。
然而,由于ALS需要设置在显示面板的下方,因此造成模组的厚度较高。
实用新型内容
本申请实施例提供一种显示面板、显示屏及电子设备,可以降低显示屏的模组厚度,简化产品的结构工业设计。
第一方面,提供一种显示面板。该显示面板包括:显示区域AA以及位于显示区域周围的非显示区域NA;显示面板可以为圆形,当然也可是其他例如多边形、椭圆形等其他异形的显示面板;非显示区域NA设置有***电路,显示区域AA设置有阵列分布的像素单元;其中,在非显示区域NA上,显示区域AA与***电路之间设置有光传感器;光传感器包括沿显示区域与***电路的分界线延伸分布的多个第一感光器件。在该方案中,由于将光传感器集成在了显示面板上,因此当该显示面板被装配为显示屏时,可以降低显示屏的模组厚度,进而降低使用该显示屏的电子设备的产品厚度。此外,光线可以穿过显示屏的盖板后直接到达显示面板上的光传感器,而不用穿过显示面板后到达光传感器,降低了对光传感器的灵敏性的要求,并且,由于光传感器的多个感光器件采用沿显示区域AA与***电路的分界线延伸分布的方式设置在显示面板上,对于保护显示面板的盖板及遮光油墨层的工业设计无特殊要求,例如,在显示面板上通常设置有保护显示面板的盖板,并且为了外观美观,通常在显示面板与盖板之间设置有遮挡显示面板的非显示区域的遮光油墨层,为了降低光传感器对显示面板开口率的影响,通常光传感器不能设置在显示区域,然而如果将光传感器设置在非显示区域,通常需要对遮光油墨层的形状进行对应的耦合设计,以将光传感器的遮光油墨层去除或者设计为过滤指定光线波段的油墨材料,这样一者提高了遮光油墨层与光传感器的耦合对位精度的需求,并且影响了产品的外观工业设计。然而,遮光油墨层与显示面板的显示区域之间存在间隙,这样,在设置盖板时,只需要将采用沿显示区域AA与***电路的分界线延伸分布的多个感光器件从上述的间隙漏出即可,无需特殊的 设置遮光油墨层的形状,这样产品的结构简单,并且能够直接兼容目前盖板以及遮光油墨层的外观设计。
在一种可能的实现方式中,显示面板上设置有盖板,其中盖板与显示面板之间包括遮光油墨层;遮光油墨层在显示面板上的投影位于非显示区域;其中,多个第一感光器件分布于遮光油墨层在所述显示面板上的投影区域与显示区域之间。这样,由于多个第一感光器件分布于可视区域VA,可视区域VA未被遮光油墨层遮挡,因此环境光线可以通过盖板照射到多个第一感光器件,从而实现环境光的检测。
在一种可能的实现方式中,显示面板上设置有盖板,其中盖板与显示面板之间包括滤光油墨层;滤光油墨层覆盖显示区域与所述***电路之间的区域,滤光油墨层吸收紫外光波段的光线。由于滤光油墨层吸收紫外光波段的光线,因此环境光中的紫外光波段的光线将被吸收,透过该滤光油墨层的光线可以包含可见光波段(例如400nm至700nm的波长范围)以及其他光波段(例如红外光波段)的光线,从而可以实现对环境光中的可见光以及其他光波段的光线的检测。其中,滤光油墨层可以沿显示区域AA与***电路之间的区域设置一周,这样也可以尽量降低滤光油墨层对产品外观工业设计的影响,并且无需考虑与多个第一感光器件的耦合对位,降低装配难度。
在一种可能的实现方式中,所述显示面板上设置有盖板,其中所述盖板与所述显示面板之间包括遮光油墨层;遮光油墨层在显示面板上的投影位于非显示区域;其中,多个第一感光器件分布于遮光油墨层在显示面板上的投影区域,其中,遮光油墨层透射紫外光波段的光线。由于滤光油墨层透射紫外光波段的光线,从而可以实现对环境光中的紫外光波段的光线的检测。
在一种可能的实现方式中,多个第一感光器件分布于遮光油墨层在所述显示面板上的投影区域内靠近显示区域的一侧。
在一种可能的实现方式中,光传感器还包括多个第二感光器件,显示面板上设置有盖板,其中盖板与显示面板之间包括遮光油墨层;遮光油墨层在显示面板上的投影位于非显示区域;多个第二感光器件分布于遮光油墨层在显示面板上的投影区域。其中,滤光油墨层可以透射紫外光波段的光线时,多个第二感光器件可以实现对环境光中的紫外光波段的光线的检测。此外,该多个第二感光器件可以对遮光油墨层下的暗环境的光强进行检测,以对沿显示区域AA与***电路的分界线延伸分布第一感光器件的检测结果提供对比参照。
在一种可能的实现方式中,多个第二感光器件沿非显示区域远离显示区域的边界呈带状延伸分布。
在一种可能的实现方式中,多个第一感光器件并联连接,并且多个第一感光器件在延伸分布的方向上形成至少一排。
在一种可能的实现方式中,多个第二感光器件并联连接,并且多个第二感光器件在延伸分布的方向上形成至少一排。
第二方面,提供一种显示屏,包括如第一方面的显示面板,以及设置在显示面板上的盖板。
第三方面,提供一种电子设备,包括如第二方面的显示屏,以及与显示屏连接的PCB。
其中,第二方面以及第三方面中任一种可能实现方式中所带来的技术效果可参见上述第一方面的不同的实现方式所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请的实施例提供的一种电子设备的结构示意图;
图2为本申请的实施例提供的一种智能手表的结构示意图;
图3为本申请的实施例提供的一种显示屏的结构示意图;
图4为本申请的实施例提供如图3所示的显示屏的装配结构示意图;
图5为本申请的实施例提供的一种显示屏的结构示意图;
图6为本申请的另一实施例提供的一种显示屏的结构示意图;
图7为本申请的实施例提供如图6所示的显示屏在AA’处的剖面结构示意图;
图8为本申请的另一实施例提供如图6所示的显示屏在AA’处的剖面结构示意图;
图9为本申请的另一实施例提供的一种显示屏的结构示意图;
图10为本申请的实施例提供如图9所示的显示屏在AA’处的剖面结构示意图;
图11为本申请的又一实施例提供的一种显示屏的结构示意图;
图12为本申请的再一实施例提供的一种显示屏的结构示意图;
图13为本申请的实施例提供如图12所示的显示屏在AA’处的剖面结构示意图;
图14为本申请的另一实施例提供的一种显示屏的结构示意图;
图15为本申请的实施例提供如图14所示的显示屏在AA’处的剖面结构示意图;
图16为本申请的实施例提供的一种感光器件的排列方式示意图;
图17为本申请的另一实施例提供的一种感光器件的排列方式示意图;
图18为本申请的实施例提供的一种感光器件结构示意图;
图19为本申请的实施例提供的一种包含感光器件的电路的结构示意图;
图20为本申请的另一实施例提供的一种包含感光器件的电路的结构示意图;
图21为本申请的另一实施例提供的一种感光器件的结构示意图;
图22为本申请的实施例提供的一种LCD面板的结构示意图;
图23为本申请的实施例提供的一种AMOLED显示面板的结构示意图;
图24为本申请的又一实施例提供的一种感光器件的结构示意图;
图25为本申请的实施例提供的一种感光器件的原理示意图;
图26为本申请的实施例提供的一种感光器件的等效电路示意图;
图27为本申请的实施例提供的一种感光器件的连接关系示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“至少一个”是指一个或者多个,“多个”的含义是两个或两个以上。“和 /或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
此外,本申请实施例中,“上”、“下”、“左”以及“右”不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“电连接”可以是直接的电性连接,也可以通过中间媒介间接的电性连接。
下面将结合附图对本实施例的实施方式进行详细描述。
本申请实施例提供的一种显示面板及显示屏可应用于手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、可穿戴电子设备、虚拟现实设备等电子设备中,本申请实施例对此不做任何限制。
示例性的,图1示出了电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,摄像头190以及显示屏191等。
可以理解的是,本实用新型实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路 (inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏191,摄像头190,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括一个或多个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏191显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless  local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(Bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成一个或多个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏191,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏191和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏191用于显示图像,视频等。显示屏191包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏191,N为大于1的正整数。
电子设备100可以通过ISP,摄像头190,视频编解码器,GPU,显示屏191以及应用处理器等实现拍摄功能。
ISP用于处理摄像头190反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头190中。
摄像头190用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元 件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头190,N为大于1的正整数。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储一个或多个计算机程序,该一个或多个计算机程序包括指令。处理器110可以通过运行存储在内部存储器121的上述指令,以实施各种功能应用和数据处理等。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***;该存储程序区还可以存储一个或多个应用程序(比如图库、联系人等)等。存储数据区可存储电子设备101使用过程中所创建的数据(比如照片,联系人等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如一个或多个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。在另一些实施例中,处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,来使得电子设备100执行各种功能应用和数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置一个或多个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号。还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
传感器模块180可以包括压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器(即本申请的实施例提供的光传感器),骨传导传感器等。
触摸传感器,也称“触控器件”。触摸传感器可以设置于显示屏191,由触摸传感器与显示屏191组成触摸屏,也称“触控屏”。触摸传感器用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏提供与触摸操作相关的视觉输出。在另一些实施例中,也可以设置有多个触摸传感器形成的触控传感器阵列的触控面板以外挂形式设置于显示面板的表面。在另一些实施例中,触摸传感器也可以与显示屏191所处的位置不同。本申请的实施例中对触控传感器的形式不做限定,例如可以是电容、或压敏电阻等器件。
另外,上述电子设备中还可以包括按键、马达、指示器以及用户标识模块(subscriber identification module,SIM)卡接口等一种或多种部件,本申请实施例对此不做任何限制。
参照图2所示,以圆形的智能手表的显示屏为例,通常显示屏191设置于手表的外框21与底盖(图2中未示出)之间。如图3、图4所示,显示屏包括显示面板31,显示面板31包括显示区域(active area,AA)和位于该显示区域AA周边的非显示区域NA(也称作边框)。通常,显示面板31的出光方向还设置有盖板,其中盖板与显示面板31之间包括遮光油墨层,其中遮光油墨层在显示面板31上的投影位于非显示区域NA;这样从盖板外侧观看,遮光油墨层将非显示区域遮挡,盖板包含可以看到显示区域AA的可视区域(view area,VA)和油墨区域(即遮光油墨层在盖板上对应的区域),由于盖板和显示面板存在对位精度并且可视区域VA需要将显示区域AA全部暴露,因此可视区域VA通常大于显示区域AA,即油墨区域与显示区域AA之间存在间隙,如图3所示的可视区域VA和显示区域AA。该显示区域AA设置有阵列分布的多个像素单元组成的像素阵列。此外,显示区域AA包括纵横交叉设置的驱动线路,该驱动线路包括扫描线SCAN及数据线DATA,其中,像素单元设置在扫描线SCAN和数据线DATA交叉的位置,并且一个像素单元连接一个数据线DATA以及至少一条扫描线SCAN。显示屏还包括附晶薄膜(chin on film,COF,即带有芯片的柔性电路薄膜,简称附晶薄膜,也称覆晶薄膜)32及柔性基板(flexible printed circuit,FPC,或柔性电路板)33。
其中,像素阵列中的任一像素单元的一条驱动线路连接显示面板31的一条扇出线路;显示面板31上设置有连接端311,连接端311包括显示面板31的多条扇出线路的端子(pin,或引脚),其中,COF32及FPC33设置于显示面板31的背面,并且显示面板31的连接端311弯折至显示面板31的背面并对应与COF32的连接端321连接。其中,可以采用FOF(film on film,膜对膜)工艺将连接端311的端子与连接端321的端子一一键合,连接端311与连接端321中的各个端子以一对一的形式依次键合在一起,从而实现显示面板31的连接端311与COF32的连接端321的异向导电膜绑定(bonding)连接。
此外,COF32上设置有显示驱动电路322,显示驱动电路322可以为显示驱动芯片(display driver integrated circuit,DDIC)。在此情况下,COF32的连接端321 中的端子通过COF32上的线路与DDIC的管脚电性连接。COF32的连接端323与FPC33的连接端331bonding连接,COF32的连接端323的端子与DDIC的管脚电性连接,FPC33的另一组连接端332通过连接器与电子设备的PCB印刷电路板(printed circuit board,PCB)连接,FPC33的连接端331的端子通过FPC33上的线路与另一组连接端332的端子连接。印刷电路板(printed circuit board,PCB)(或者驱动电路板、驱动***板)上安装有应用处理器(application processor,AP)(例如CPU)、电源管理芯片(power IC)等。印刷电路板、与COF32以及FPC32均设置于显示面板背面手表的外框21与底盖之间。在一些示例中,显示驱动电路322也可以集成到显示面板的边框(NA区域)上,当然,这将不利于降低显示面板的边框宽度。
这样一来,AP为DDIC和显示面板31提供显示数据,用以展示实际的图像信息;power IC为DDIC和显示面板31提供工作电压。FPC33为PCB和DDIC之间提供信号传输连接路径。DDIC负责接收PCB传输的信号并将信号按照特定的时序控制输送给显示面板31。例如AP输出的显示数据通过DDIC后,转换成扫描信号和数据电压Vdata传输至各条驱动线路所耦接的像素单元中,以驱动像素单元发光。
目前,诸如上述的智能手表、智能手环、手机等电子设备通常具有环境光检测功能,其中环境光检测功能的一个主要应用是通过检测环境光亮度,实现对屏幕亮度的自动调节,让用户有很好的体验。环境光检测功能还用于光强检测、触摸控制等场景下。而环境光检测主要依赖于在电子设备的显示面板下方放置环境光传感器(atmosphere light sensor,ALS)。如图5所示,显示屏包含显示面板和盖板,显示面板下方有油墨区,油墨区在显示面板上的投影位置恰好覆盖显示面板上的驱动电路。通常ALS放置在显示面板下方,环境中的光线可以通过显示面板上的盖板的可视区域(view area,VA)以及显示面板的显示区域(active area,AA,可操作区域或显示区域)到达ALS的感光区被ALS接收,从而进行环境光检测,但是在该结构中,由于ALS需要设置在显示面板的下方,因此造成模组的厚度较高;此外,由于显示面板的遮挡会极大降低光透过率,因此需要更灵敏的光传感器。
为解决上述问题,参照图6和图7(图6中AA’处的截面图)所示,提供一种显示屏,其中该显示屏中包含一种屏内集成有光传感器的显示面板41,该显示面板41包括显示区域AA和非显示区域NA(或者边框)。其中,非显示区域NA位于显示区域AA的周围(图6中是以圆形的显示面板为例,当然也可是其他例如多边形、椭圆形等其他异形的显示面板)。在非显示区域NA中设置有***电路411(其中该***电路可以包括上述的扇出线路以及显示驱动电路,当然在一些窄边框产品中,也可以将显示驱动电路放置在COF上),在显示区域AA内设置有阵列分布的像素单元。其中,在该非显示区域NA上,显示区域AA与***电路之间设置有光传感器412;该光传感器412包括沿显示区域AA与***电路411的分界线延伸分布的多个感光器件412-n。其中需要说明的是,感光器件412-n通过非显示区域NA的扇出线路与PCB连接(具体的扇出线路可以是通过显示面板41与PCB之间的柔性基板连接),其中,PCB上设置有用于处理感光器件的信号或者向感光器件提供信号的芯片或电路。其中,在该方案中,由于将光传感器412集成在了显示面板41上,因此当该显示面板41被装配为显示屏时,可以降低显示屏的模组厚度,进而降低使用该显示屏的电子设备的产品厚度。此外, 光线可以穿过盖板后直接到达显示面板41上的光传感器412,而不用穿过显示面板41后到达光传感器412,降低了对光传感器412的灵敏性的要求,并且,由于光传感器412的多个感光器件412-n采用沿显示区域AA与***电路411的分界线延伸分布的方式设置在显示面板41上,对于保护显示面板41的盖板42及遮光油墨层43的工业设计无特殊要求,例如,在显示面板41上通常设置有保护显示面板的盖板42,并且为了外观美观,通常在显示面板41与盖板42之间设置有遮挡显示面板41的非显示区域NA的遮光油墨层43,为了降低光传感器412对显示面板41开口率的影响,通常光传感器412不能设置在显示区域AA,然而如果将光传感器412设置在非显示区域NA,通常需要对遮光油墨层43的形状进行对应的耦合设计,以将光传感器412的遮光油墨层43去除或者设计为过滤指定光线波段的油墨材料,这样一者提高了遮光油墨层43与光传感器412的耦合对位精度的需求,并且影响了产品的外观工业设计。然而如上所述,遮光油墨层43与显示面板41的显示区域AA之间存在间隙。这样,在设置盖板42时,只需要将采用沿显示区域AA与***电路411的分界线延伸分布的多个感光器件412-n从上述的间隙漏出即可,无需特殊的设置遮光油墨层43的形状,这样产品的结构工业设计简单,并且能够直接兼容目前盖板42以及遮光油墨层43的外观设计。
在一种实施例中,在该显示面板41上还设置有盖板42,盖板42与显示面板41之间包括遮光油墨层43,结合图6以及图7所示,其中显示面板41包括显示区域AA和非显示区域NA,非显示区域NA设置有***电路411和光传感器412(包括多个感光器件412-n)。其中,遮光油墨层43在显示面板41上的投影位于非显示区域NA。在盖板42上,遮光油墨层43在盖板42的投影区域以外的区域为可视区域VA。其中,多个感光器件412-n分布于遮光油墨层43在显示面板41上的投影区域与显示区域AA之间。这样,由于多个感光器件412-n分布于可视区域VA,可视区域VA未被遮光油墨层43遮挡,因此环境光线可以通过盖板42照射到多个感光器件412-n,从而实现环境光的检测。
进一步的,如图8所示,显示面板41上设置有盖板42,其中盖板42与显示面板41之间还包括滤光油墨层44,滤光油墨层44吸收紫外光波段的光线,滤光油墨层44覆盖显示区域AA与***电路411之间的区域,即多个感光器件412-n所在的区域。由于滤光油墨层44吸收紫外光波段的光线,因此环境光中的紫外光波段的光线将被吸收,透过该滤光油墨层44的光线可以包含可见光波段(例如400nm至700nm的波长范围)以及其他光波段(例如红外光波段)的光线,从而可以实现对环境光中的可见光以及其他光波段的光线的检测。其中,滤光油墨层44可以沿显示区域AA与***电路411之间的区域设置一周,这样也可以尽量降低滤光油墨层44对产品外观工业设计的影响,并且无需考虑与多个感光器件412-n的耦合对位,降低装配难度。
在另一种示例中,如图9和图10所示,其中图10为图9中AA’处的截面图。显示面板41上设置有盖板42,其中盖板42与显示面板41之间包括遮光油墨层43,其中遮光油墨层43在显示面板41上的投影位于非显示区域NA;其中,光传感器412的多个感光器件412-n分布于遮光油墨层43在显示面板41上的投影区域,其中,遮光油墨层43透射紫外光波段的光线。由于滤光油墨层透射紫外光波段的光线,从而可以实现对环境光中的紫外光波段的光线的检测。当然,如图9和图10所示,该多个感光 器件412-n可以分布于遮光油墨层43在显示面板41上的投影区域内靠近显示区域AA的一侧。其中,参照图11所示,显示面板41上可以同时分布有用于对环境光中的可见光以及其他光波段的光线的检测的感光器件412-n以及用于紫外光波段的光线的检测的感光器件412-n。
此外,如图12和图13所示,其中图13为图12中AA’处的截面图。该多个感光器件412-n感光器件也可以分布于遮光油墨层43在显示面板41上的投影区域内远离显示区域AA的一侧。
为了对遮光油墨层43下的暗环境的光强进行检测,以对沿显示区域AA与***电路411的分界线延伸分布感光器件412-n的检测结果提供对比参照。参照图14和图15所示,其中光传感器412还包括多个感光器件412-i,显示面板41上设置有盖板42,其中盖板42与显示面板41之间包括遮光油墨层43,其中遮光油墨层43在显示面板41上的投影位于非显示区域NA;多个感光器件412-i分布于遮光油墨层43在显示面板41上的投影区域。并且,图14和图15所示的上述多个感光器件412-i在非显示区域NA中远离显示区域AA的边界呈带状延伸分布。当然多个感光器件412-i不局限于图示的结构,可以更多或更少,也可以靠近显示区域AA,多个感光器件412-i在非显示区域NA的任何位置任何排列均属于本申请的保护范围。由于多个感光器件412-i被遮光油墨层43遮挡,因此从盖板42并不能观察到,因此并不影响产品的工业设计。多个感光器件412-i沿非显示区域NA远离显示区域AA的边界呈带状延伸分布。
图16和图17提供了本申请的实施例的多个感光器件的排列方式,本申请的多个感光器件并联连接,并且多个感光器件在延伸分布的方向上形成至少一排。图16展示了本申请的实施例中的多个感光器件可以在延伸分布的方向上排列为一排排列,图17了本申请的实施例中的多个感光器件可以在延伸分布的方向上排列为两排排列。其中并联的方式可以使得各个感光器件检测的光电流直接叠加,从而提高光线强度检测的精度,当然,可以根据实际设置需求的检测精度设计感光器件的数量,这里不做限定。其中图16以及图17是以感光器件为两端口器件为例,其中感光器件的输入端连接扇出线路1、感光器件的输出端连接扇出线路2。
上述的感光器件可以是光敏电阻、光敏二极管等感光器件中的任意一个。
其中,感光器件可以为光敏电阻,如图18所示的光敏电阻结构示意图,光敏电阻包括光电导体以及设置在光电导体两端的两个电极,这两个电极没有极性差别,即光敏电阻左右两边电极正接反接均可以正常工作,这样扇出线路1和扇出线路2分别连接光敏电阻的两个电极。光敏电阻的又称光导管,为纯电阻元件,其工作原理是基于光电导效应,当没有光照时,通过光电导体的电阻很大,反向电流很小,称为暗电流。当有光照时,携带能量的光子进入光电导体后,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。光照愈强,光生电子—空穴对就越多,阻值就愈低。当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。入射光消失,电子—空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小。如图19和图20提供了两种检测光敏电阻在光照后输出电压U 0的变化。两图中的E i为初始电压,R a是光敏电阻,R b普通电阻,U 0代表检测到的电信 号电压值,其中图19提供的光照强度与电压值U 0成正比的电路连接方式,即光照越强,光敏电阻的阻值R a越小,则电路中的电流I越大,电压U 0值越大;图20提供的光照强度与电压值U 0成反比的电路连接方式,即光照越强,光敏电阻的阻值R a越小,则电路中的电流I越大,电压U 0值越小。
该感光器件可以为光敏二极管,光敏二极管也叫光电二极管,如图21所示的光敏二极管结构示意图。光敏二极管的核心部件就是一个PN结,在没有光照射时,光敏二极管反向电阻很大反向电流很小,光敏二极管处于截止状态。反向电流也叫做暗电流。受光照射时,PN结附近受光子轰击,吸收其能量而产生电子-空穴对,从而使P区和N区的少数载流子浓度大大增加,因此在外加反向偏压和内电场的作用下,P区的少数载流子渡越阻挡层进入N区,N区的少数载流子渡越阻挡层进入P区,从而使通过PN结的反向电流大为增加,这就形成了光电流在本申请的实施例中,扇出线路1和扇出线路2分别连接PN结的P区和N区。
为了减少制作工艺,可以复用传统的显示面板中TFT的制作工艺形成上述的感光器件,其中,显示面板主要包括显示基板和对向基板,其中显示基板主要包括衬底基板和设置在衬底基板上的显示功能膜层。其中显示功能膜层是由多个膜层组成的。不同类型、不同功能的显示面板,其内显示功能膜层不相同。下面以显示面板为液晶显示(liquid crystal display,
LCD)面板或有源矩阵有机发光二极管(active matrix organic light emitting diode,AMOLED)显示面板为例进行说明。
图22为本申请一种实施例提供的LCD面板的结构示意图。在LCD面板中,主要包括衬底基板61、电路膜层62、像素电极层63、下配向膜层64、液晶层65、上配向膜层66、公共电极层67、彩色滤光层68和对向基板69等。衬底基板61和对向基板62可以采用透明材质形成,例如玻璃等。其中,电路膜层62、像素电极层63、下配向膜层64、液晶层65、上配向膜层66、公共电极层67和彩色滤光层68可以统称为显示功能膜层。这里需要说明的一点是不同类型的LCD面板中显示功能膜层的结构也是有可能不相同的,图22只是其中一种LCD面板的示例。
在LCD面板中,电路膜层62中主要设置有薄膜场效应晶体管(thin film transistor,TFT)和各种走线。示例性的,如图22所示,电路膜层62可以包括半导体层621、第一绝缘层622、栅电极623、第二绝缘层624、源电极625和漏电极626;其中半导体层621的材质可以是非晶硅/多晶硅/氧化物等半导体材料。通过对半导体层621进行不同材料、不同浓度的掺杂可以形成TFT的电极接触区和沟道区,其中电极接触区一般为P型重掺杂区(P+),沟道区一般为P型轻掺杂区(P-)。TFT的源电极625和漏电极626分别与电极接触区电连接。
参见图23,图23为本申请一种实施例提供的AMOLED显示面板的结构示意图。在AMOLED显示面板中,主要包括衬底基板71、电路膜层72、阳极层73、像素限定层74、发光层75、阴极层76和对向基板77等。衬底基板71和对向基板72可以采用透明材质形成,可以是例如玻璃等的刚性基板,也可以是诸如聚酰亚胺(PI)、聚碳酸酯(PC)等的柔性基板,在此不作限定。其中,电路膜层72、阳极层73、像素限定层74、发光层75和阴极层76可以统称为显示功能膜层。这里同样需要说明的一点是不同类型 的AMOLED显示面板中显示功能膜层的结构也是有可能不相同的,图23只是其中一种OLED自发彩色光的AMOLED显示面板的示例,例如,在有些AMOLED显示面板中,如果发光层发的光是白光,一般在发光层上方还设置有彩色滤光层,在此不作赘述。
在AMOLED显示面板中,电路膜层72中同样主要设置有TFT和各种走线。示例性的,如图23所示,电路膜层72可以包括半导体层721、第一绝缘层722、栅电极723、第二绝缘层724、源电极725和漏电极726;其中半导体层721的材质可以是非晶硅/多晶硅/氧化物等半导体材料。通过对半导体层721进行不同材料、不同浓度的掺杂可以形成TFT的电极接触区和沟道区,其中电极接触区一般为P型重掺杂区(P+),沟道区一般为P型轻掺杂区(P-)。TFT的源电极725和漏电极726分别与电极接触区电连接。
在上述LCD面板和AMOLED显示面板中都设置有具有TFT的电路膜层,正是基于上述显示面板中均设置有半导体层以及位于半导体层中的不同的掺杂区,本申请可以在显示面板中集成光传感器时尽可能的采用现有显示面板的掩膜(mask)工艺来形成,从而减少增加的mask工艺数量。
其中,结合图22和图23所示,感光器件的输入电极以及输出电极可以采用与源电极625和漏电极626(源电极725和漏电极726)同层的第一金属层通过一次mask工艺制作;当感光器件包含栅极时,该栅极可以与栅电极623(或栅电极723)同层的第二金属层通过一次mask工艺制作;感光器件的沟道可以采用与半导体层621(或半导体层721)同层的材料层制作,并且当输入电极以及输出电极下方包含电极接触区时,也可以采用源电极625和漏电极626(源电极725和漏电极726)的电极接触区的制作工艺对输入电极以及输出电极下方的半导体层掺杂形成。具体的,参照图24所示,提供的一种感光器件,包括沟道、设置于沟道两端的输入电极和输出电极;其中,输入电极可以通过扇出线路连接至Vcc,输出电极可以通过扇出线路连接至Vout。参见图25所示,本申请提供的感光器件(也称光敏二极管)的工作原理为:当没有光照时,沟道区的反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,携带能量的光子进入沟道区后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子-空穴对,称为光生载流子。它们在反向电压作用下进行漂移运动,从而使反向电流明显变大,光的强度越大,反向电流也越大。此外,为了进一步调整暗电流的大小,可以在沟道上设置一个或多个栅极,通常栅极与沟道之间设置有绝缘层,栅极可以通过扇出线路连接至Vg,以向栅极提供电压。这样,当感光器件工作时,主要是沟道区未被栅极遮挡的区域(耗尽区)处形成电子-空穴对,吸收的光强不同,形成的电子-空穴对的浓度也不同,等效电路图如图26所示,当光照射时,光照越强,电子-空穴对的浓度越高,耗尽区等效电阻越小,输出的电流信号越大,通过对输出的电流信号进行处理即可获得光照强度。本申请的实施例提供的感光器件由于耗尽区电阻(等效电阻)较大,尤其在不照射光时暗电流(漏电流)小,因此具有高灵敏度特点。并且,通过调节栅极的电压以及输入电极和输出电极两端的跨压大小可以进一步调整暗电流的大小。此外,结合图27所示,感光器件为包含输入电极、输出电极以及栅极的三端口器件时,其并联方式为,多个感光器件(1-n)的输入电极通过同一扇出线路连接至Vcc,多个感光器件(1-n)的输出电极通过同一扇出线路连接至Vout, 多个感光器件(1-n)的栅极通过同一扇出线路连接至Vg。此外,如图24所示,单排排列的多个感光器件的宽度约为30um,基本满足可视区域VA与显示区域AA的边界的间隙设计的误差需求,并不影响产品的工业外观设计。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种显示面板,其特征在于,包括:显示区域以及位于所述显示区域周围的非显示区域,所述非显示区域设置有***电路,所述显示区域设置有阵列分布的像素单元;
    其中,在所述非显示区域上,所述显示区域与所述***电路之间设置有光传感器;所述光传感器包括沿所述显示区域与所述***电路的分界线延伸分布的多个第一感光器件。
  2. 根据权利要求1所述的显示面板,其特征在于,所述显示面板上设置有盖板,其中所述盖板与所述显示面板之间包括遮光油墨层;所述遮光油墨层在所述显示面板上的投影位于所述非显示区域;其中,所述多个第一感光器件分布于所述遮光油墨层在所述显示面板上的投影区域与所述显示区域之间。
  3. 根据权利要求1所述的显示面板,其特征在于,所述显示面板上设置有盖板,其中所述盖板与所述显示面板之间包括滤光油墨层;所述滤光油墨层覆盖所述显示区域与所述***电路之间的区域,所述滤光油墨层吸收紫外光波段的光线。
  4. 根据权利要求1所述的显示面板,其特征在于,所述显示面板上设置有盖板,其中所述盖板与所述显示面板之间包括遮光油墨层;所述遮光油墨层在所述显示面板上的投影位于所述非显示区域;其中,所述多个第一感光器件分布于所述遮光油墨层在所述显示面板上的投影区域,其中,所述遮光油墨层透射紫外光波段的光线。
  5. 根据权利要求4所述的显示面板,其特征在于,所述多个第一感光器件分布于所述遮光油墨层在所述显示面板上的投影区域内靠近所述显示区域的一侧。
  6. 根据权利要求1所述的显示面板,其特征在于,所述光传感器还包括多个第二感光器件,所述显示面板上设置有盖板,其中所述盖板与所述显示面板之间包括遮光油墨层;所述遮光油墨层在所述显示面板上的投影位于所述非显示区域;所述多个第二感光器件分布于所述遮光油墨层在所述显示面板上的投影区域。
  7. 根据权利要求6所述的显示面板,其特征在于,所述多个第二感光器件沿所述非显示区域远离所述显示区域的边界呈带状延伸分布。
  8. 根据权利要求1所述的显示面板,其特征在于,所述多个第一感光器件并联连接,并且所述多个第一感光器件在延伸分布的方向上形成至少一排。
  9. 根据权利要求6所述的显示面板,其特征在于,所述多个第二感光器件并联连接,并且所述多个第二感光器件在延伸分布的方向上形成至少一排。
  10. 一种显示屏,其特征在于,包括如权利要求1-9任一项所述的显示面板,以及设置在所述显示面板上的盖板。
  11. 一种电子设备,其特征在于,包括如权利要求10所述的显示屏,以及与所述显示屏连接的印刷电路板PCB。
PCT/CN2022/084610 2021-06-30 2022-03-31 显示面板、显示屏及电子设备 WO2023273470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121481222.1U CN215911169U (zh) 2021-06-30 2021-06-30 显示面板、显示屏及电子设备
CN202121481222.1 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273470A1 true WO2023273470A1 (zh) 2023-01-05

Family

ID=80288685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084610 WO2023273470A1 (zh) 2021-06-30 2022-03-31 显示面板、显示屏及电子设备

Country Status (2)

Country Link
CN (1) CN215911169U (zh)
WO (1) WO2023273470A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215911169U (zh) * 2021-06-30 2022-02-25 华为技术有限公司 显示面板、显示屏及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066897A1 (en) * 2005-04-28 2009-03-12 Hiromi Katoh Liquid crystal display
US20090128529A1 (en) * 2005-03-29 2009-05-21 Yoshihiro Izumi Display Device and Electronic Device
CN105044960A (zh) * 2015-09-15 2015-11-11 京东方科技集团股份有限公司 显示用基板及可穿戴设备
CN208488619U (zh) * 2018-07-31 2019-02-12 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN209964108U (zh) * 2019-06-24 2020-01-17 Oppo广东移动通信有限公司 电子装置
CN210467147U (zh) * 2019-10-31 2020-05-05 上海和辉光电有限公司 一种显示装置
CN111624799A (zh) * 2020-06-29 2020-09-04 京东方科技集团股份有限公司 显示基板及显示装置
CN112905135A (zh) * 2021-03-08 2021-06-04 北京小米移动软件有限公司 屏幕亮度处理方法、电子设备及存储介质
CN215911169U (zh) * 2021-06-30 2022-02-25 华为技术有限公司 显示面板、显示屏及电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090128529A1 (en) * 2005-03-29 2009-05-21 Yoshihiro Izumi Display Device and Electronic Device
US20090066897A1 (en) * 2005-04-28 2009-03-12 Hiromi Katoh Liquid crystal display
CN105044960A (zh) * 2015-09-15 2015-11-11 京东方科技集团股份有限公司 显示用基板及可穿戴设备
CN208488619U (zh) * 2018-07-31 2019-02-12 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN209964108U (zh) * 2019-06-24 2020-01-17 Oppo广东移动通信有限公司 电子装置
CN210467147U (zh) * 2019-10-31 2020-05-05 上海和辉光电有限公司 一种显示装置
CN111624799A (zh) * 2020-06-29 2020-09-04 京东方科技集团股份有限公司 显示基板及显示装置
CN112905135A (zh) * 2021-03-08 2021-06-04 北京小米移动软件有限公司 屏幕亮度处理方法、电子设备及存储介质
CN215911169U (zh) * 2021-06-30 2022-02-25 华为技术有限公司 显示面板、显示屏及电子设备

Also Published As

Publication number Publication date
CN215911169U (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2020233243A1 (zh) 一种显示组件、显示屏和电子设备
CN1674038B (zh) 图像读取装置、具有图像读取装置的图像读取***
CN109426774B (zh) 显示装置、显示面板及其制造方法、驱动方法
US11437358B2 (en) Organic light emitting diode display device and method of manufacturing thereof
CN113574585B (zh) 一种显示屏,电子设备及显示屏制造方法
CN110718580A (zh) 显示模组及电子设备
CN110783364B (zh) 显示装置及电子设备
WO2023273470A1 (zh) 显示面板、显示屏及电子设备
US20220286548A1 (en) Electronic Device
CN108735769A (zh) 显示屏组件及电子装置
US20220191350A1 (en) Terminal, photographing method and storage medium
WO2021204093A1 (zh) 一种显示屏和电子设备
CN113675255A (zh) 显示屏及电子设备
KR102484520B1 (ko) 이동 단말기 및 미들 프레임
WO2022206607A1 (zh) 显示模组、电子设备及其控制方法和控制装置
CN111885229A (zh) 电子设备和显示屏组件
CN209461461U (zh) 显示屏组件及电子装置
WO2022143075A1 (zh) 柔性基板、附晶薄膜cof及显示屏
WO2023178526A1 (zh) 显示面板及其制作方法、环境光强度检测方法及装置
CN113050324B (zh) 显示模组及电子设备
WO2020042755A1 (zh) 显示屏组件及电子装置
US20220028934A1 (en) Display device
WO2021016953A1 (zh) 光电检测电路、光电检测装置以及电子装置
KR20230045656A (ko) 표시 장치
KR20220014351A (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE