WO2021016953A1 - 光电检测电路、光电检测装置以及电子装置 - Google Patents

光电检测电路、光电检测装置以及电子装置 Download PDF

Info

Publication number
WO2021016953A1
WO2021016953A1 PCT/CN2019/098725 CN2019098725W WO2021016953A1 WO 2021016953 A1 WO2021016953 A1 WO 2021016953A1 CN 2019098725 W CN2019098725 W CN 2019098725W WO 2021016953 A1 WO2021016953 A1 WO 2021016953A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
detection sub
photoelectric
detection
thin film
Prior art date
Application number
PCT/CN2019/098725
Other languages
English (en)
French (fr)
Inventor
孟晨
车春城
孙伟
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/772,560 priority Critical patent/US11371881B2/en
Priority to PCT/CN2019/098725 priority patent/WO2021016953A1/zh
Priority to CN201980001220.7A priority patent/CN112673240A/zh
Publication of WO2021016953A1 publication Critical patent/WO2021016953A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared
    • G01J2001/1647Arrangements with two photodetectors, the signals of which are compared one signal maintained constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/4473Phototransistor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light

Definitions

  • the embodiments of the present disclosure relate to a photodetection circuit, a photodetection device, and an electronic device.
  • smart terminal devices With the development of science and technology and the improvement of people's living standards, more and more smart terminal devices enter people's daily life.
  • these smart terminal devices include smart phones, tablet computers, LCD TVs, and so on.
  • smart terminal devices with display screens maintaining high brightness for a long time will increase energy consumption, while low-brightness display in a strong light environment will affect the image quality and user comfort.
  • smart terminal devices with display screens usually use ambient light sensors to perceive the surrounding light conditions and inform the processing chip to automatically adjust the backlight brightness of the display to reduce the power consumption of the product.
  • ambient light sensors can greatly extend the battery's working time.
  • the ambient light sensor helps the display provide a soft display picture. When the ambient brightness is high, the display using the ambient light sensor will automatically adjust to high brightness. When the external environment is dark, the display will be adjusted to low brightness.
  • the photodetection circuit includes a first detection sub-circuit configured to be exposed to a light environment to be detected, and the equivalent resistance of the first detection sub-circuit follows the The light intensity of the light to be detected changes; the second detection sub-circuit is configured to be in a state of a fixed light intensity, and the equivalent resistance of the second detection sub-circuit does not change due to the fixed light intensity; the signal Output lead.
  • the first detection sub-circuit is connected in series with the second detection sub-circuit via a first node, and the signal output lead is electrically connected to the first node to output a detection electrical signal.
  • the first detection sub-circuit includes a first photo-sensing element
  • the second detection sub-circuit includes a second photo-sensing element.
  • the electrical characteristics of the first photo sensor element and the second photo sensor element are the same.
  • the second detection sub-circuit is blocked to prevent light from the detected environment from being incident on the second detection sub-circuit, so that the second detection The sub-circuit is in the state of the fixed light intensity.
  • the photodetection circuit provided by at least one embodiment of the present disclosure further includes a first power terminal and a second power terminal.
  • the first end of the first photoelectric sensing element is electrically connected to the first power supply terminal
  • the second end of the second photoelectric sensing element is electrically connected to the second power supply terminal
  • the first photoelectric sensing element The second end of and the first end of the second photo sensor element are both electrically connected to the first node.
  • the output potential of the first power terminal is higher than the output potential of the second power terminal.
  • the output potential of the first power terminal and the output potential of the second power terminal have opposite polarities and equal values.
  • the photoelectric detection circuit provided by at least one embodiment of the present disclosure further includes a third power terminal and a fourth power terminal.
  • the control terminal of the first photoelectric sensing element is electrically connected to the third power terminal; and the control terminal of the second photoelectric sensing element is electrically connected to the fourth power terminal.
  • the output potential of the third power terminal and the output potential of the fourth power terminal are the same output potential.
  • the control terminal of the first photo sensor element and the control terminal of the second photo sensor element are under the control of the same output potential, so that the first photo sensor element and the second photo sensor element are kept in an off state .
  • the first photo sensor element includes a first thin film transistor
  • the second photo sensor element includes a second thin film transistor
  • the first thin film transistor includes a first active layer
  • the second thin film transistor includes a second active layer
  • the first active layer And the second active layer are formed of the same semiconductor material.
  • the semiconductor material includes one or more of amorphous silicon, polysilicon or metal oxide.
  • the first active layer and the second active layer are formed of the same semiconductor layer.
  • At least one embodiment of the present disclosure also provides a photoelectric detection device, which includes the above-mentioned photoelectric detection circuit.
  • the photoelectric detection device provided by at least one embodiment of the present disclosure further includes a processing circuit.
  • the processing circuit is configured to detect changes in the electrical signal output by the signal output lead, and perform subsequent processing on the electrical signal.
  • the photoelectric detection device provided by at least one embodiment of the present disclosure further includes a base substrate.
  • the first detection sub-circuit and the second detection sub-circuit are arranged in the same layer relative to the base substrate.
  • the photoelectric detection device provided by at least one embodiment of the present disclosure further includes a light shielding element.
  • the light-shielding element overlaps the second detection sub-circuit so that the light incident on the photodetection device is blocked without being incident on the second detection sub-circuit, and the first detection sub-circuit is exposed to allow The light incident on the photodetection device is irradiated on the first detection sub-circuit.
  • the photoelectric detection device provided by at least one embodiment of the present disclosure further includes a base substrate.
  • the first detection sub-circuit and the second detection sub-circuit are arranged in layers relative to the base substrate, and the first detection sub-circuit is arranged on the second detection sub-circuit so as to make incident on the The light of the photodetection device is blocked and does not enter the second detection sub-circuit.
  • the photoelectric detection device provided by at least one embodiment of the present disclosure further includes a light shielding element.
  • the light-shielding element is disposed between the first detection sub-circuit and the second detection sub-circuit, and overlaps the second detection sub-circuit so that the light incident on the photoelectric detection device is blocked without being blocked. Incident to the second detection sub-circuit.
  • At least one embodiment of the present disclosure also provides an electronic device including the above-mentioned photoelectric detection device.
  • At least one embodiment of the present disclosure provides an electronic device, the electronic device is a display panel, and the display panel includes a display area, wherein the photoelectric detection device is arranged outside the display area or is arranged in the display area Inside.
  • FIG. 1A is a schematic structural diagram of a photoelectric detection circuit provided by an embodiment of the disclosure.
  • FIG. 1B is a schematic structural diagram of another photoelectric detection circuit provided by an embodiment of the disclosure.
  • TFT thin film transistor
  • FIG. 3 is a schematic structural diagram of a photoelectric detection circuit provided by an exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a photoelectric detection device provided by an embodiment of the disclosure.
  • 5A is a schematic plan view of a photoelectric detection device provided by an embodiment of the disclosure.
  • 5B is a schematic cross-sectional structure diagram of the photoelectric detection device along the line AA' of FIG. 5A;
  • 5C is a schematic structural diagram of the first and second detection sub-circuits provided in the same layer according to an embodiment of the present disclosure
  • FIG. 6A is a schematic plan view of another photoelectric detection device provided by an embodiment of the disclosure.
  • 6B is a schematic cross-sectional structure diagram of the photoelectric detection device along the line B-B' in FIG. 6A;
  • FIG. 7 is a schematic plan view of an electronic device according to an embodiment of the disclosure.
  • the ambient light sensor integrated on the display usually includes a photo sensor (for example, a photodiode, such as PN junction photodiode, PIN junction photodiode, avalanche photodiode, and Schottky photodiode, etc.) and transistors (such as thin film Transistor (TFT)) and so on.
  • a photo sensor for example, a photodiode, such as PN junction photodiode, PIN junction photodiode, avalanche photodiode, and Schottky photodiode, etc.
  • transistors such as thin film Transistor (TFT)
  • TFT thin film Transistor
  • the thin film transistor is turned on, and the electrical signal converted by the photo sensor It can be transmitted to the data processing circuit through thin film transistors, and the data processing circuit can further amplify the electrical signal and perform analog/digital conversion processing.
  • preparing the photoelectric sensor and the thin film transistor separately increases the manufacturing process and manufacturing cost, and the characteristics of the photoelectric sensor and the thin film transistor will be changed by environmental changes such as temperature, thereby affecting the detection result.
  • the present invention provides a new type of ambient light sensor based on TFT technology, which uses TFT manufacturing technology to reduce the number of processes and costs, and can reduce the impact of TFT characteristics on the detection result caused by environmental changes such as temperature.
  • the photodetection circuit includes a first detection sub-circuit configured to be exposed to a light environment to be detected.
  • the equivalent resistance of the first detection sub-circuit follows the The light intensity of the detection light changes;
  • the second detection sub-circuit is configured to be in a fixed light intensity state, and the equivalent resistance of the second detection sub-circuit does not change due to the fixed light intensity; signal output lead.
  • the first detection sub-circuit is connected in series with the second detection sub-circuit via a first node, and the signal output lead is electrically connected to the first node to output a detection electrical signal.
  • At least one embodiment of the present disclosure also provides a photoelectric detection device, which includes the above-mentioned photoelectric detection circuit.
  • At least one embodiment of the present disclosure also provides an electronic device including the above-mentioned photoelectric detection device.
  • the aforementioned photoelectric detection circuit, photoelectric detection device or electronic device provided by at least one embodiment of the present disclosure effectively reduces the manufacturing process and manufacturing cost, and reduces the impact of TFT characteristics on detection due to changes in environmental factors such as temperature. The adverse effect of the result.
  • At least one embodiment of the present disclosure provides a photoelectric detection circuit, which can be applied to any electronic device with a display function, for example, a smart phone, a tablet computer, a liquid crystal television, etc.
  • the photoelectric detection circuit can integrate the ambient light sensor in a TFT liquid crystal display (LCD), organic light emitting diode (OLED) display, etc., instead of an external ambient light sensor, and can use the existing TFT process to reduce manufacturing Process and manufacturing costs.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • FIG. 1A is a schematic structural diagram of a photoelectric detection circuit 10 provided by an embodiment of the disclosure
  • FIG. 1B is a schematic structural diagram of another photoelectric detection circuit 10 provided by an embodiment of the disclosure.
  • the photoelectric detection circuit 10 includes a first detection sub-circuit 110, a second detection sub-circuit 120 and a signal output lead Vout.
  • the first detection sub-circuit 110 is configured to be exposed to the light environment to be detected, and the equivalent resistance of the first detection sub-circuit 110 changes with the change of the light intensity of the light to be detected in the surrounding environment.
  • the second detection sub-circuit 120 is configured to be in a state of a fixed light intensity, and the equivalent resistance of the second detection sub-circuit 120 does not change due to the fixed light intensity.
  • the first detection sub-circuit 110 is connected in series with the second detection sub-circuit 120 via the first node N1, and the signal output lead Vout is electrically connected to the first node N1 to output a detection electrical signal.
  • the second detection sub-circuit 120 is configured to be in a state of fixed light intensity, including a state of no light, that is, a state of being shaded. Because the first detection sub-circuit 110 and the second detection sub-circuit 120 connected in series are adjacent to each other, it can be considered that in addition to different light intensity, other environmental factors, such as temperature and humidity, are the same as each other.
  • the first detection sub-circuit 110 When the ambient light irradiates the photoelectric detection circuit 10, since the first detection sub-circuit 110 is exposed to the light environment to be detected, its equivalent resistance changes with the change of the light intensity of the ambient light, and the second detection sub-circuit is due to It is not affected by changes in the intensity of ambient light, and its equivalent resistance does not change. Therefore, the voltage division in the circuit formed by the two in series can be detected, that is, by detecting the output lead electrically connected to the first node N1. The voltage Vout of the output electric signal changes to detect the change of the ambient light intensity.
  • one end of the first detection sub-circuit 110 is electrically connected to the first power supply terminal V1
  • one end of the second detection sub-circuit 120 is electrically connected to the second power supply terminal V2
  • the The output potential of a power supply terminal V1 is higher than the output potential of the second power supply terminal V2, so that a method of detecting the voltage division in a circuit formed by the first detection sub-circuit 110 and the second detection sub-circuit 120 in series can be realized, To detect changes in the intensity of the ambient light.
  • the symbol Vdata can not only represent the signal output lead, but also represent the voltage of the electrical signal output by the signal output lead.
  • the first node N1 does not necessarily represent an actual component, but represents a junction of related circuit connections in the circuit diagram. The following embodiments are the same and will not be repeated here.
  • the first detection sub-circuit 110 includes a first photo sensor element 111
  • the second detection sub-circuit 120 includes a second photo sensor element 121.
  • the electrical characteristics of the first photo sensor element 111 and the second photo sensor element 121 are the same.
  • the electrical characteristics are the same means that the electrical characteristics of the same type of electronic components are the same or substantially the same under the same voltage.
  • the two electronic components of the same type have substantially the same Electrical characteristics (for example, off-state current, etc.), but it is not required that the two are strictly the same, and a difference within a certain range is allowed. For example, the difference is less than 10% relative to either of them, for example, less than 5%.
  • the second photoelectric sensor element 121 and the first photoelectric sensor element 111 may have substantially the same structure and electrical characteristics. The difference is that the second photoelectric sensor element 121 is shielded to reduce or prevent light from entering On the second photo sensor element 121. Therefore, in the embodiments of the present disclosure, the related description of the structure and electrical characteristics of the first photoelectric sensing element 111 is also applicable to the second photoelectric sensing element 121 without any contradiction, and repetitions will not be repeated.
  • a light shielding element may be used to block to prevent light from the detected environment from being incident on the second detection sub-circuit.
  • the shading element is, for example, completely opaque or substantially opaque.
  • a black tape can be used as a shading element to cover the second detection sub-circuit, or a dark glue, metal layer, etc. may be used as a shading element to cover
  • the second detection sub-circuit can also use different types of filters that respond to the wavelength range as the shading element.
  • the embodiments of the present disclosure do not limit the specific implementation of the shading element that blocks light.
  • the first photo sensor element 111 may include a first thin film transistor T1
  • the second photo sensor element 121 may also include a second thin film transistor T2.
  • the thin film transistor may include an oxide thin film transistor, an amorphous silicon thin film transistor, or a polysilicon thin film transistor.
  • the basic composition of a thin film transistor includes an active layer (ie, a semiconductor layer), which is generally composed of one or more semiconductor materials such as amorphous silicon (A-Si), polysilicon or metal oxide. These semiconductor materials generally have good photosensitivity.
  • polysilicon may be high-temperature polysilicon (crystallization temperature above 600°C) or low-temperature polysilicon (crystallization temperature below 600°C).
  • the first thin film transistor T1 included in the first photo sensor element 111 and the first thin film transistor T1 included in the second photo sensor element 121 can be formed of the same semiconductor material, or the first thin film transistor T1 and the second thin film transistor T2 are arranged adjacent to each other and use different parts of the same semiconductor layer, thereby reducing the semiconductor layer in the preparation process (such as deposition, Crystallization process, etc.) due to process fluctuations.
  • the first thin film transistor T1 and the second thin film transistor T2 may be manufactured by a low-temperature polysilicon process, so that the thin film transistor has a higher migration rate and a smaller volume.
  • the first thin film transistor T1 and the second thin film transistor T2 may both be bottom-gate thin film transistors or top-gate thin film transistors.
  • the first thin film transistor T1 and the second thin film transistor T2 may be both N-type transistors, or may be both P-type transistors.
  • the control terminals of the first thin film transistor T1 and the second thin film transistor T2 are electrically connected to the third power terminal V3 and the fourth power terminal V4, respectively.
  • the voltage applied to the control terminals of the first thin film transistor T1 and the second thin film transistor T2 is the same, that is, the output potential of the third power supply terminal V3 and the fourth The output potential of the power supply terminal V4 is the same.
  • FIG. 2 shows a graph of on-state current (Ion) and off-state current (Ioff) of a low-temperature amorphous silicon thin film transistor under the same source and drain voltage (for example, 12V) and different light conditions.
  • the abscissa is the light intensity
  • the ordinate is the current value of the on-state current and off-state current respectively.
  • the on-state current (Ion) of the thin film transistor refers to the source and drain when the thin film transistor is turned on (working state)
  • the off-state current (Ioff) of the thin film transistor refers to the current between the source and the drain when the thin film transistor is turned off (off state). It can be seen from Fig.
  • the off-state current (Ioff) of the amorphous silicon thin film transistor has increased by 2-3 orders of magnitude, compared to the on-state current (Ion) changes more obviously with light intensity, and at the same time, its equivalent resistance also changes accordingly. Therefore, in order to better detect the change in the light intensity of the light to be detected in the surrounding environment, for example, the thin film transistor can be turned off during the ambient light detection process.
  • the electrical characteristics of the first photo sensor element 111 and the second photo sensor element 121 are the same, and the first thin film transistor T1 included in the first photo sensor element 111 and the second thin film transistor T2 included in the second photo sensor element 121 The electrical characteristics are the same.
  • the first thin film transistor T1 and the second thin film transistor T2 can be formed using the same material and using basically the same preparation process conditions; at the same time, the components of the two (such as active layer, gate, source and drain, etc.) also have the same size and so on. Therefore, under the same voltage, the first thin film transistor T1 and the second thin film transistor T2 have the same characteristics. It should be noted that the first thin film transistor T1 and the second thin film transistor T2 may also have certain differences.
  • the first thin film transistor T1 and the second thin film transistor T2 have the same electrical characteristics.
  • the off-state current generated by the first thin film transistor T1 and the off-state current generated by the second thin film transistor T2 are the same, that is, the equivalent resistance is the same .
  • FIG. 3 is a schematic structural diagram of a photoelectric detection circuit 30 provided by an exemplary embodiment of the present disclosure.
  • the photodetection circuit 30 includes a first detection sub-circuit 310 and a second detection sub-circuit 320.
  • the first detection sub-circuit 310 includes a first photo sensor element 311, the first photo sensor element 311 includes a first thin film transistor T1;
  • the second detection sub circuit 320 includes a second photo sensor element 321, the second photo sensor element 321 includes a second Thin film transistor T2.
  • the electrical characteristics of the first thin film transistor T1 and the second thin film transistor T2 are the same.
  • the photodetection circuit 30 further includes a first power terminal V1 and a second power terminal V2.
  • the first end of the first photo sensor element 311 is electrically connected to the first power terminal V1
  • the second end of the second photo sensor element 321 is electrically connected to the second power terminal V2
  • the second end of the first photo sensor element 311 The first end of the second photo sensor element 321 and the second photo sensor element 321 are both electrically connected to the first node N1.
  • the first photo sensor element 311 includes a first thin film transistor T1
  • the second photo sensor element 321 includes a second thin film transistor T2.
  • the source S1 of the first thin film transistor T1 is connected to the first power supply terminal V1
  • the drain D2 of the second thin film transistor T2 is electrically connected to the second power supply terminal V2
  • the drain electrode D1 of the first thin film transistor T1 and the source electrode S2 of the second thin film transistor T2 are both electrically connected to the first node N1, so that the first thin film transistor T1 and the second thin film transistor T2 provide power from the first power terminal V1 Path to the second power supply terminal V2.
  • the first thin film transistor T1 and the second thin film transistor T2 are both P-type transistors, but the embodiment of the present invention is not limited thereto. It should be noted that, according to the applied power supply voltage, the source and drain of the first thin film transistor T1 and the second thin film transistor T2 can be interchanged, which is not limited in the embodiment of the present disclosure.
  • the output potential of the first power terminal V1 is higher than the output potential of the second power terminal V2.
  • the output potential of the first power terminal V1 and the output potential of the second power terminal V2 have opposite polarities and equal values.
  • the first power terminal V1 is 12V
  • the second power terminal V2 is -12V.
  • the photodetection circuit 30 further includes a third power terminal V3 and a fourth power terminal V4. As shown in FIG.
  • control terminal of the first photoelectric sensing element 311 ie, the gate G1
  • control terminal of the second photoelectric sensing element 321 ie, the gate G2
  • Power terminal V4 Power terminal V4.
  • the output potential of the third power terminal V3 and the output potential V4 of the fourth power terminal are the same output potential.
  • the control terminal of the first photo-sensing element 311 (ie, the gate G1) and the control end of the second photo-sensing element 321 (ie, the gate G2) are under the control of the same output potential, so that the first The photo sensor element 311 and the second photo sensor element 321 are maintained in a cut-off state.
  • the first photo sensor element 311 includes a first thin film transistor T1
  • the second photo sensor element 321 includes a second thin film transistor T2.
  • the gate G1 of the first thin film transistor T1 is electrically connected to the third power terminal V3
  • the gate G2 of the second thin film transistor T2 is electrically connected to the fourth power terminal V4, as shown in FIG. 3.
  • the third power terminal V3 may be -12V, and the fourth power terminal V4 is also -12V.
  • the embodiments of the present disclosure do not limit the specific potential values of the third power terminal and the fourth power terminal, as long as it is ensured that during the entire ambient light detection process, the first photoelectric sensing element 311 (for example, the first thin film transistor T1) and the second photo sensor element 321 (for example, the second thin film transistor T2) are both kept in an off state.
  • the specific potential values of the third power supply terminal and the fourth power supply terminal may be such that the first photo sensor element 311 (for example, the first thin film transistor T1) can still be the first photoelectric sensing element 311 (for example, the first thin film transistor T1) under the strongest light intensity.
  • the two photoelectric sensing elements 321 maintain the same value in the off state.
  • a photodetection circuit 30 provided by at least one embodiment of the present disclosure includes a first thin film transistor T1 and a second thin film transistor T2 connected in series, and the electrical characteristics of the two are the same.
  • the poles S2 are electrically connected to the first node N1, and the signal output lead Vout is electrically connected to the first node N1 to output electrical signals.
  • the first thin film transistor T1 is exposed to the light environment to be detected, and the second thin film transistor T2 is blocked, and ambient light cannot be incident on the second thin film transistor T2.
  • the second thin film transistor T2 is in a dark (DARK) state. Condition.
  • the output of the photodetection circuit 30 electrically connected to the first node N1 can be obtained.
  • the corresponding relationship between the voltage Vout of the electrical signal output by the lead and the light intensity is shown in Table 1.
  • the semiconductor material of the active layer will generate a photo-generated carrier forming current under light irradiation, thereby affecting the off-state characteristics of the TFT. Therefore, the characteristic change relationship of the thin film transistor T1 or T2 under light irradiation can be simulated separately, so that under the same voltage (for example, when the source and drain voltage is 12V), the measured T1 with the same electrical characteristics as T2 is in the off state When the off-state current Ioff changes with the change of light intensity, and calculate the value of the equivalent resistance Roff of T1 under the corresponding conditions, as shown in Table 2.
  • the predicted value of the voltage Vout of the electrical signal output by the output lead of the photodetecting circuit 30 electrically connected to the first node N1 can be calculated by the following formula.
  • Vout (V1-V2)/(R(T1)+R(T2)) ⁇ R(T2)-12
  • the equivalent resistance R(T1) of the first thin film transistor T1 exposed to the light environment is 1.55E+12 ⁇ , while the second thin film transistor T2 is still in a non-light environment.
  • more specific values can be obtained, which can be understood in Table 1.
  • the magnitude of the light intensity can be inversely derived (for example, obtained by directly looking up the table or further interpolating calculation) from the actually measured Vout value. It should be noted that due to factors such as manufacturing process and actual operation, the actual measured value and calculated value of voltage Vout are allowed to have an error within a certain range, and it usually needs to be corrected. The embodiment of the present invention does not do anything about this. limit.
  • the photodetection circuit 30 in the above-mentioned embodiment of the present disclosure can detect the change of the light intensity by measuring the change of the partial pressure.
  • the photoelectric detection circuit 30 uses only two identical thin film transistors to realize the ambient light detection function, and can use the existing TFT manufacturing process to replace the traditional externally mounted ambient light sensor, because it is compatible with the preparation of LCD and OLED display devices. The processes are compatible, so the production process and production costs are reduced.
  • using two identical TFTs in series can reduce the impact of TFT characteristics on the detection results due to environmental changes such as temperature.
  • At least one embodiment of the present disclosure also provides a photoelectric detection device, which includes the above-mentioned photoelectric detection circuit.
  • 4 is a schematic structural diagram of a photoelectric detection device provided by an embodiment of the present disclosure
  • FIG. 5A is a schematic plan view of a photoelectric detection device provided by an embodiment of the present disclosure
  • FIG. 5B is a direction along the line A-A'
  • FIG. 5C is a schematic structural diagram of the first and second detection sub-circuits provided on the same layer according to an embodiment of the disclosure.
  • the photodetection device 40 includes the photodetection circuit described in any of the above embodiments, for example, the same photodetection circuit as shown in FIG. 3 is used.
  • the photodetection circuit includes a first detection sub-circuit 410 and a second detection sub-circuit 420.
  • the first detection sub-circuit 410 includes a first photo-sensing element 411
  • the second detection sub-circuit 420 includes a second photo-sensing element 421.
  • the photodetection device 40 further includes a processing circuit 401 configured to detect changes in the electrical signal output by the signal output lead Vout, and perform subsequent processing on the electrical signal, for example, the obtained
  • the data signal is provided to the central processing unit (CPU).
  • the processing circuit 401 may include an amplifying circuit for amplifying a signal, or a conversion circuit including digital-to-analog conversion, etc., which is not limited in the embodiment of the present disclosure.
  • the photoelectric detection device 50 provided by at least one embodiment of the present disclosure further includes a base substrate 501.
  • the first detection sub-circuit 510 and the second detection sub-circuit 520 are arranged on the same layer relative to the base substrate 500, as shown in FIGS. 5A-5C. Therefore, the first detection sub-circuit and the second detection sub-circuit can be formed simultaneously using the same process. Therefore, the photodetection circuit provided in this embodiment can simplify the manufacturing process and improve the yield of the photodetection device.
  • the signal output lead is not shown in FIGS. 5A-5C, the signal output lead may be connected to a certain conductive member (for example, gate or source or drain in the first detection sub-circuit 510 and the second detection sub-circuit 520). Polar) formed in the same layer.
  • the first thin film transistor included in the first detection sub-circuit 510 and the second thin film transistor included in the second detection sub-circuit 520 are arranged adjacent to each other and use the same Different parts of the semiconductor layer.
  • the active layer 512 of the first thin film transistor and the active layer 522 of the second thin film transistor are the same semiconductor layer.
  • the first thin film transistor and the second thin film transistor are both bottom-gate thin film transistors.
  • the gate 511 of the first thin film transistor and the gate 521 of the second thin film transistor are adjacently arranged and located below the active layer.
  • the bottom grid structure is widely used in current liquid crystal displays. Because the opaque metal layer of the gate electrode in the bottom gate structure can well shield the light from the backlight and prevent the light from irradiating the active layer to generate photo-generated carriers and affect the off-state current characteristics of the thin film transistor.
  • the embodiments of the present disclosure do not limit the specific types of thin film transistors.
  • the photodetection device 50 further includes a light shielding element 502.
  • the light-shielding element 502 overlaps the second detection sub-circuit 520 so that the light incident on the photodetection device 50 is blocked without being incident to the second detection sub-circuit 520, and the first detection sub-circuit 510 is exposed to allow the incident to the The light of the photodetection device 50 irradiates the first detection sub-circuit 510, as shown in FIG. 5B.
  • the material of the light shielding element 502 may be an opaque material.
  • the opaque material may be a metal material, for example, the metal material may include molybdenum (Mo), copper (Cu), aluminum (Al), zinc (Zn), or the like.
  • the opaque material may also be a non-metallic material.
  • the non-metallic material may include acrylic resin mixed with black pigments (for example, carbon).
  • the photodetection device 50 further includes a first insulating layer 503, and the first insulating layer 503 is disposed between the light shielding element 502 and the second detection sub-circuit 520, as shown in FIG. 5B.
  • the first insulating layer 503 is used to prevent a short circuit between the light shielding element 502 and the electronic components in the second detection sub-circuit 520, and can also protect the second detection sub-circuit 520.
  • FIG. 6A is a schematic plan view of another photoelectric detection device provided by an embodiment of the present disclosure
  • FIG. 6B is a schematic cross-sectional structure diagram of the photoelectric detection device along the line B-B' in FIG. 6A;
  • the first detection sub-circuit 610 and the second detection sub-circuit 620 are stacked relative to the base substrate 601, as shown in FIGS. 6A to 6B.
  • the first detection sub-circuit 610 is disposed on the second detection sub-circuit 620, so that the light incident on the photodetection device 60 is blocked and not incident to the second detection sub-circuit 620, as shown in FIG. 6A.
  • the photoelectric detection device 60 provided by at least one embodiment of the present disclosure further includes a light shielding element 602, as shown in FIG. 6B.
  • the light-shielding element 602 is arranged between the first detection sub-circuit 610 and the second detection sub-circuit 620, and overlaps the second detection sub-circuit 620 so that the light incident on the photodetection device 60 is blocked without being incident on the The second detection sub-circuit 620 is described.
  • the light-shielding element 602 may be a reflective layer, and the first photoelectric sensor element converts part of the incident light into an electrical signal. If the incident light is not completely converted into an electrical signal, part of the incident light that has not been converted into an electrical signal can be the light-shielding element 602 shields and reflects, thereby re-incident to the first photo sensor element, so that the first photo sensor element can completely convert the incident light signal, thereby improving the detection accuracy.
  • the photodetection circuit 60 may further include a second insulating layer 603 and a third insulating layer 604.
  • the second insulating layer 603 is provided between the light shielding element 602 and the second sub-circuit 620 to prevent short circuit between the light shielding element 602 and the electronic components in the second sub-circuit 620;
  • the third insulating layer 604 is provided between the light shielding element 602 and Between the first sub-circuits 610 to prevent short circuit between the light shielding element 602 and the electronic components in the first sub-circuit 610.
  • the photodetection device may also include a passivation layer (not shown in the figure).
  • the passivation layer is arranged on the photoelectric detection circuit to isolate the photoelectric detection circuit from the outside world, thereby reducing the penetration of external water and oxygen into the electronic components of the photoelectric detection circuit, and effectively improving the performance and stability of the electronic components in the photoelectric detection circuit. Extend the service life of the photoelectric detection circuit.
  • the material of the first insulating layer 503, the second insulating layer 603, and the third insulating layer 604 may be silicon nitride (SiNx), silicon oxide (SiOx), silicon oxynitride (SiNxOy) or other suitable materials.
  • the base substrates 501 and 601 may be glass substrates, quartz substrates, ceramic substrates, plastic substrates, or silica gel substrates.
  • the base substrates may also be panels formed with functional components, such as other circuits or Components etc.
  • At least one embodiment of the present disclosure further provides an electronic device 70, which includes the photoelectric detection device 700 described above.
  • FIG. 7 is a schematic plan view of an electronic device 70 according to an embodiment of the disclosure.
  • the electronic device 70 may be (or include) a display panel.
  • the display panel may be a liquid crystal panel or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display panel. (Such as flexible OLED display panels) or Quantum Dot Light Emitting Diodes (QLED) display panels, etc.
  • the display panel includes a display area 701, wherein the photoelectric detection device 700 is arranged outside the display area.
  • the photoelectric detection device 700 can be arranged around one side, two sides, three sides, or around the display area, as shown in FIG. 7.
  • the photodetection device 700 is disposed in the display area 701, for example, the first photoelectric sensor element is disposed between the display sub-pixels to receive ambient light, and the second photoelectric sensor element is disposed on the display area 701. The sub-pixels are thus shielded from light.
  • the embodiments of the present disclosure are not limited to this specific arrangement.
  • it can be specifically used to detect ambient light when the display area of the display panel is in the off-screen state. In this way, the light source of the display panel is prevented from interfering with the photoelectric detection circuit, and the accuracy and reliability of ambient light detection are improved, so that the display panel can automatically adjust the brightness of the display panel according to the intensity of the detected ambient light to achieve low energy consumption and high picture quality. Qualitative effect, while improving user comfort.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种光电检测电路、光电检测装置以及电子装置。该光电检测电路10包括第一检测子电路110,配置为暴露于待检测光环境中,第一检测子电路110的等效电阻随着周围环境中待检测光的光照强度的变化而变化;第二检测子电路120,配置为处于固定的光照强度的状态,该第二检测子电路120的等效电阻由于固定的光照强度而不变。该第一检测子电路110经由第一节点N1与第二检测子电路120串联,并且该信号输出引线Vout与第一节点N1电连接以输出检测电信号。该光电检测电路可以减少制造工艺和制造成本,并且可以减小因为TFT特性会随温度等环境变化对检测结果所带来的影响。

Description

光电检测电路、光电检测装置以及电子装置 技术领域
本公开的实施例涉及一种光电检测电路、光电检测装置以及电子装置。
背景技术
随着科技的发展和人们生活水平的提高,越来越多的智能终端设备进入人们的日常生活,例如,这些智能终端设备包括智能手机、平板电脑、液晶电视等。对于具有显示屏的智能终端设备而言,长时间保持高亮度会增大能耗,而在光照较强的环境中以低亮度显示又会影响画质和用户的舒适度。
因此,具有显示屏的智能终端设备通常使用环境光传感器来感知周围光线情况,并告知处理芯片自动调节显示器的背光亮度,降低产品的功耗。例如,在智能手机、平板电脑、全球定位***(GPS)设备等移动手持设备应用中,显示器消耗的电量高达电池总电量的30%,采用环境光传感器可以较大限度地延长电池的工作时间。另一方面,环境光传感器有助于显示器提供柔和的显示画面。当环境亮度较高时,使用环境光传感器的显示器会自动调成高亮度。当外界环境较暗时,显示器就会调成低亮度。
发明内容
本公开至少一个实施例提供一种光电检测电路,该光电检测电路包括:第一检测子电路,配置为暴露于待检测光环境中,所述第一检测子电路的等效电阻随着所述待检测光的光照强度的变化而变化;第二检测子电路,配置为处于固定的光照强度的状态,所述第二检测子电路的等效电阻由于所述固定的光照强度而不变;信号输出引线。所述第一检测子电路经由第一节点与所述第二检测子电路串联,并且所述信号输出引线与所述第一节点电连接以输出检测电信号。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第一检测子电路包括第一光电感应元件,所述第二检测子电路包括第二光电感应元件。所述第一光电感应元件和所述第二光电感应元件的电学特性相同。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第二检测 子电路被遮挡以阻止被检测环境的光入射到所述第二检测子电路上,由此所述第二检测子电路处于所述固定的光照强度的状态。
例如,本公开至少一个实施例提供的光电检测电路,还包括第一电源端和第二电源端。所述第一光电感应元件的第一端电连接到所述第一电源端,所述第二光电感应元件的第二端电连接到所述第二电源端,以及所述第一光电感应元件的第二端和所述第二光电感应元件的第一端均电连接到所述第一节点。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第一电源端的输出电位高于所述第二电源端的输出电位。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第一电源端的输出电位与所述第二电源端的输出电位极性相反、数值相等。
例如,本公开至少一个实施例提供的光电检测电路,还包括第三电源端和第四电源端。所述第一光电感应元件的控制端电连接到所述第三电源端;以及所述第二光电感应元件的控制端电连接到所述第四电源端。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第三电源端的输出电位与所述第四电源端的输出电位为同一输出电位。所述第一光电感应元件的控制端和所述第二光电感应元件的控制端在所述同一输出电位的控制下,使得所述第一光电感应元件和所述第二光电感应元件保持截止状态。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第一光电感应元件包括第一薄膜晶体管,所述第二光电感应元件包括第二薄膜晶体管。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第一薄膜晶体管包括第一有源层,所述第二薄膜晶体管包括第二有源层,且所述第一有源层和所述第二有源层由相同半导体材料形成。
例如,在本公开至少一个实施例提供的光电检测电路中,所述半导体材料包括非晶硅、多晶硅或金属氧化物中的一种或多种。
例如,在本公开至少一个实施例提供的光电检测电路中,所述第一有源层和所述第二有源层由同一半导体层形成。
本公开至少一个实施例还提供一种光电检测装置,该光电检测装置包括上述光电检测电路。
例如,本公开至少一个实施例提供的光电检测装置,还包括处理电路。所述处理电路配置为检测由所述信号输出引线输出的电信号的变化,并对所 述电信号进行后续处理。
例如,本公开至少一个实施例提供的光电检测装置,还包括衬底基板。所述第一检测子电路和所述第二检测子电路相对于所述衬底基板同层设置。
例如,本公开至少一个实施例提供的光电检测装置,还包括遮光元件。所述遮光元件与所述第二检测子电路重叠以使入射到所述光电检测装置的光被遮挡而不会入射到所述第二检测子电路,且暴露所述第一检测子电路以允许入射到所述光电检测装置的光照射到所述第一检测子电路上。
例如,本公开至少一个实施例提供的光电检测装置,还包括衬底基板。所述第一检测子电路和所述第二检测子电路相对于所述衬底基板层叠设置,并且所述第一检测子电路设置在所述第二检测子电路之上,使入射到所述光电检测装置的光被遮挡而不会入射到所述第二检测子电路。
例如,本公开至少一个实施例提供的光电检测装置,还包括遮光元件。所述遮光元件设置在所述检测第一子电路和所述第二检测子电路之间,且与所述第二检测子电路重叠以使入射到所述光电检测装置的光被遮挡而不会入射到所述第二检测子电路。
本公开至少一个实施例还提供一种电子装置,该电子装置包括上述光电检测装置。
例如,本公开至少一个实施例提供的电子装置,所述电子装置为显示面板,所述显示面板包括显示区域,其中,所述光电检测装置设置在所述显示区域外或设置在所述显示区域内。
需要理解的是本公开的上述概括说明和下面的详细说明都是示例性和解释性的,用于进一步说明所要求保护的发明。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开一实施例提供的一种光电检测电路的结构示意图;
图1B为本公开一实施例提供的另一种光电检测电路的结构示意图;
图2为本公开一实施例提供的一种薄膜晶体管(TFT)在不同光照条件下的特性曲线图;
图3为本公开一示例性实施例提供的一种光电检测电路的结构示意图;
图4为本公开一实施例提供的一种光电检测装置的结构示意图;
图5A为本公开一实施例提供的一种光电检测装置的平面示意图;
图5B为沿图5A中线A-A'方向该光电检测装置的截面结构示意图;
图5C为本公开一实施例提供的第一和第二检测子电路同层设置的结构示意图;
图6A为本公开一实施例提供的另一种光电检测装置的平面示意图;
图6B为沿图6A中线B-B'方向该光电检测装置的截面结构示意图;
图7为本公开一实施例提供的一种电子装置的平面示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
出于对功耗和观看舒适度等方面的考虑,许多智能终端设备配备了环境光传感器,通过探测环境光的光照强度,根据环境光的强弱调节智能终端设备的亮度,以提高用户舒适度并减小功耗。集成在显示器上的环境光传感器,通常包括光电传感器(例如,光电二极管,诸如PN结型光电二极管、PIN 结型光电二极管、雪崩型光电二极管以及肖特基型光电二极管等)和晶体管(例如薄膜晶体管(TFT))等。例如,该光电二极管的一端电极耦合连接至薄膜晶体管的漏极或源极,由光电传感器将可见光转化为电信号,然后在驱动电路的作用下,薄膜晶体管被开启,光电传感器所转换的电信号可以通过薄膜晶体管被传输到数据处理电路,数据处理电路可以对该电信号作进一步的放大、模/数转换等处理。然而,分别制备光电传感器和薄膜晶体管增加了制造工艺和制造成本,而且光电传感器和薄膜晶体管的特性会受温度等环境变化而发生变化,从而影响检测结果。
因此,本发明提供了一种基于TFT技术的新型环境光传感器,利用TFT制造工艺,减少工艺数量和成本,并且可以减小因为TFT特性会随温度等环境变化对检测结果所带来的影响。
本公开至少一个实施例提供一种光电检测电路,该光电检测电路包括第一检测子电路,配置为暴露于待检测光环境中,所述第一检测子电路的等效电阻随着所述待检测光的光照强度的变化而变化;第二检测子电路,配置为处于固定的光照强度的状态,所述第二检测子电路的等效电阻由于所述固定的光照强度而不变;信号输出引线。所述第一检测子电路经由第一节点与所述第二检测子电路串联,并且所述信号输出引线与所述第一节点电连接以输出检测电信号。
本公开至少一个实施例还提供一种光电检测装置,该光电检测装置包括上述光电检测电路。
本公开至少一个实施例还提供一种电子装置,该电子装置包括上述光电检测装置。
本公开至少一个实施例提供的上述光电检测电路、光电检测装置或电子装置相比于传统环境光传感器有效减少了制造工艺和制造成本,并且减小因为TFT特性会随温度等环境因素变化对检测结果所带来的不利影响。
下面结合附图对本公开的实施例及其示例进行非限制的说明。
本公开至少一个实施例提供一种光电检测电路,该光电检测电路例如可以适用于任何具有显示功能的电子装置中,例如,智能手机、平板电脑、液晶电视等。例如,该光电检测电路可以实现将环境光传感器集成在TFT液晶显示器(LCD)、有机发光二极管(OLED)显示器等中,来代替外挂式环境光传感器,可以利用现有的TFT工艺,从而减少制造工艺和制造成本。
图1A为本公开一实施例提供的一种光电检测电路10的结构示意图,图1B为本公开一实施例提供的另一种光电检测电路10的结构示意图。例如,如图1所示,该光电检测电路10包括第一检测子电路110、第二检测子电路120和信号输出引线Vout。第一检测子电路110配置为暴露于待检测光环境中,第一检测子电路110的等效电阻随着周围环境中待检测光的光照强度的变化而变化。第二检测子电路120配置为处于固定的光照强度的状态,该第二检测子电路120的等效电阻由于固定的光照强度而不变。该第一检测子电路110经由第一节点N1与第二检测子电路120串联,并且该信号输出引线Vout与第一节点N1电连接以输出检测电信号。
需要说明的是,第二检测子电路120配置为处于固定的光照强度的状态,包括没有光照的状态,即处于被遮光的状态。因为彼此串联的第一检测子电路110和第二检测子电路120位置相邻,所以可以看作除了光照强度不同外,其他环境因素,例如温度、湿度等彼此相同。
当环境光照射到上述光电检测电路10时,由于第一检测子电路110暴露于待检测光环境中,其等效电阻随着环境光的光照强度的变化而变化,而第二检测子电路由于不受环境光的光照强度变化的影响,其等效电阻不发生变化,因此可以通过检测二者串联构成的电路中的分压的方式,即通过检测电连接到第一节点N1的输出引线所输出的电信号的电压Vout变化,来检测环境光的光照强度的变化。
例如,在一些实施例中,如图1A所示,第一检测子电路110的一端电连接到第一电源端V1,第二检测子电路120的一端电连接到第二电源端V2,并且第一电源端V1的输出电位高于第二电源端V2的输出电位,从而可以实现通过检测该第一检测子电路110和第二检测子电路120两者串联构成的电路中的分压的方式,来检测环境光的光照强度的变化。
需要说明的是,在本公开的实施例中,符号Vdata既可以表示信号输出引线,又可以表示信号输出引线所输出的电信号的电压。另外,需要注意的是,在本公开的实施例的说明中,第一节点N1并非必须表示实际存在的部件,而是表示电路图中相关电路连接的汇合点。以下各实施例与此相同,不再赘述。
例如,如图1B所示,该第一检测子电路110包括第一光电感应元件111,该第二检测子电路120包括第二光电感应元件121。该第一光电感应元件111 和该第二光电感应元件121的电学特性相同。
需要说明的是,在本公开的以下描述中,“电学特性相同”表示在施加相同的电压下,相同类型的电子元件的电学特性相同或实质相同。例如,当两个相同类型的电子元件的材料、大小、尺寸、制备工艺条件等均相同时,在施加相同的电源电压、控制信号的情况下,该两个相同类型的电子元件具有基本相同的电学特性(例如,关态电流等),但也并非要求二者严格相同,允许存在一定范围内的差异,例如该差异相对于二者任一小于10%,又例如,小于5%。
需要说明的是,例如,第二光电感应元件121与第一光电感应元件111可以具有基本相同的结构和电学特性,不同之处在于:第二光电感应元件121被遮挡以减少或阻止光入射到第二光电感应元件121上。由此,本公开的实施例中,对第一光电感应元件111的结构、电学特性等的相关描述在不矛盾的情况下也适用于第二光电感应元件121,重复之处不做赘述。
这样,两个电学特性相同的光电感应元件彼此串联,在通过测量分压的方式检测光强变化时,可以减小环境因素(例如,温度等)对检测结果的影响。这是因为这两个电学特性相同的光电感应元件除了所处光照强度不同以外,其他的环境因素都是基本一致的。
例如,为了使得第二检测子电路120处于固定的光照强度的状态,在本公开的一实施例中,可以使用遮光元件来遮挡以阻止被检测环境的光入射到第二检测子电路上,该遮光元件例如为完全不透光的,或者基本不透光的。
需要说明的是,为了使得第二检测子电路120处于固定的光照强度的状态,例如,可以使用黑色胶布作为遮光元件覆盖第二检测子电路,或者以深色胶、金属层等作为遮光元件覆盖第二检测子电路,也可以使用响应波长范围的不同类型的滤光片等作为遮光元件,本公开的实施例对遮挡光的遮光元件的具体实施方式不作限制。
例如,如图1B所示,第一光电感应元件111可以包括第一薄膜晶体管T1,第二光电感应元件121也可以包括第二薄膜晶体管T2。该薄膜晶体管,例如,可以包括氧化物薄膜晶体管、非晶硅薄膜晶体管或多晶硅薄膜晶体管等。例如,薄膜晶体管的基本组成包括有源层(即半导体层),一般是由诸如非晶硅(A-Si)、多晶硅或金属氧化物中的一种或多种半导体材料组成。这些半导体材料一般具有良好的光敏性。例如,多晶硅可以为高温多晶硅(结晶 温度在600℃以上)或低温多晶硅(结晶温度在600℃以下)。
例如,为了更好地使得第一光电感应元件111和第二光电感应元件121的电学特性相同,包括在第一光电感应元件111的第一薄膜晶体管T1和包括在第二光电感应元件121的第二薄膜晶体管T2可以由相同的半导体材料形成,或者第一薄膜晶体管T1和第二薄膜晶体管T2相邻设置且分别使用同一半导体层的不同部分,由此减小半导体层在制备过程(例如沉积、结晶化工艺等)由于工艺波动导致的差异。
例如,在本公开的一实施例中,第一薄膜晶体管T1和第二薄膜晶体管T2可以采用低温多晶硅工艺制备,以使得薄膜晶体管的迁移速率较高、体积较小。
例如,在本公开的一实施例中,第一薄膜晶体管T1和第二薄膜晶体管T2可以都为底栅型薄膜晶体管,或者顶栅型薄膜晶体管。
例如,在本公开的一实施例中,第一薄膜晶体管T1和第二薄膜晶体管T2可以同为N型晶体管,或者可以同为P型晶体管。
例如,在本公开的一实施例中,第一薄膜晶体管T1和第二薄膜晶体管T2的控制端分别电连接到第三电源端V3和第四电源端V4。并且为了使第一薄膜晶体管T1和第二薄膜晶体管T2的电学特性相同,施加到第一薄膜晶体管T1和第二薄膜晶体管T2的控制端的电压相同,即第三电源端V3的输出电位和第四电源端V4的输出电位相同。
例如,图2示出了一种低温非晶硅薄膜晶体管在相同的源漏电压(例如12V)、不同光照条件下,其开态电流(Ion)和关态电流(Ioff)的曲线图。在图2中,横坐标为光照强度,纵坐标分别为开态电流和关态电流的电流值,其中,薄膜晶体管的开态电流(Ion)是指薄膜晶体管开启时(工作状态)的源漏极之间的电流,薄膜晶体管的关态电流(Ioff)是指薄膜晶体管关闭时(截止状态)的源漏极之间的电流。从图2中可知,在光照强度由0增加至10000尼特(nit)的情况下,该非晶硅薄膜晶体管的关态电流(Ioff)上升了2-3个数量级,相比于开态电流(Ion)随光照强度的变化更为明显,同时,其等效电阻也相应地变化。因此,为了更好的检测到周围环境的待检测光的光照强度的变化,例如,可以在环境光检测的过程中,使得薄膜晶体管处于截止状态。
例如,第一光电感应元件111和第二光电感应元件121的电学特性相同, 包括在第一光电感应元件111的第一薄膜晶体管T1和包括在第二光电感应元件121的第二薄膜晶体管T2的电学特性相同。例如,第一薄膜晶体管T1和第二薄膜晶体管T2可以采用相同的材料,并利用基本相同的制备工艺条件形成;同时,二者的组成部分(例如有源层、栅极、源漏极等)还具有相同的尺寸等。从而在相同的电压下,第一薄膜晶体管T1和第二薄膜晶体管T2具有相同的特性。需要说明的是,第一薄膜晶体管T1和第二薄膜晶体管T2也可以存在一定的差异。只要保证在相同的电压下,第一薄膜晶体管T1和第二薄膜晶体管T2具有相同的电学特性即可。例如,在相同的栅极电压下,在相同的光照强度等环境条件下,第一薄膜晶体管T1产生的关态电流和第二薄膜晶体管T2产生的关态电流相同,也就是说等效电阻相同。
图3为本公开一示例性实施例提供的一种光电检测电路30的结构示意图。如图3所示,光电检测电路30包括第一检测子电路310和第二检测子电路320。第一检测子电路310包括第一光电感应元件311,第一光电感应元件311包括第一薄膜晶体管T1;第二检测子电路320包括第二光电感应元件321,第二光电感应元件321包括第二薄膜晶体管T2。并且,第一薄膜晶体管T1和第二薄膜晶体管T2的电学特性相同。
例如,如图3所示,在一些实施例中,光电检测电路30还包括第一电源端V1和第二电源端V2。该第一光电感应元件311的第一端电连接到第一电源端V1,第二光电感应元件321的第二端电连接到第二电源端V2,以及第一光电感应元件311的第二端和第二光电感应元件321的第一端均电连接到第一节点N1。
例如,在一些实施例中,第一光电感应元件311包括第一薄膜晶体管T1,第二光电感应元件321包括第二薄膜晶体管T2。在这样的实施例中,如图3所示,第一薄膜薄膜晶体管T1的源极S1连接到第一电源端V1,第二薄膜晶体管T2的漏极D2电连接到第二电源端V2,以及第一薄膜晶体管T1的漏极D1和第二薄膜晶体管T2的源极S2均电连接到第一节点N1,由此第一薄膜薄膜晶体管T1和第二薄膜晶体管T2提供了从第一电源端V1到第二电源端V2的路径。
应当理解在图3所示的实施例中,第一薄膜晶体管T1和第二薄膜晶体管T2均为P型晶体管,但是本发明的实施例不限于此。需要说明的是,根据所施加的电源电压,第一薄膜薄膜晶体管T1和第二薄膜晶体管T2的源极 和漏极可以相互交换,本公开的实施例对此不作限制。
例如,在一些实施例中,第一电源端V1的输出电位高于第二电源端V2的输出电位。又例如,在本公开至少一个实施例提供的光电检测电路中,第一电源端V1的输出电位与第二电源端V2的输出电位极性相反、数值相等。例如,在一些实施例中,第一电源端V1为12V,第二电源端V2为-12V。此外,在本公开的一些实施例中,光电检测电路30还包括第三电源端V3和第四电源端V4。如图3所示,第一光电感应元件311的控制端(即栅极G1)电连接到第三电源端V3;第二光电感应元件321的控制端电(即栅极G2)连接到第四电源端V4。
例如,在本公开至少一个实施例提供的光电检测电路中,第三电源端V3的输出电位与第四电源端的输出电位V4为同一输出电位。例如,在工作过程中,第一光电感应元件311的控制端(即栅极G1)和第二光电感应元件321的控制端(即栅极G2)在该同一输出电位的控制下,使得第一光电感应元件311和第二光电感应元件321保持在截止状态。
例如,在一些实施例中,第一光电感应元件311包括第一薄膜晶体管T1,第二光电感应元件321包括第二薄膜晶体管T2。在这样的实施例中,第一薄膜薄膜晶体管T1的栅极G1电连接到第三电源端V3,第二薄膜晶体管T2的栅极G2电连接到第四电源端V4,如图3所示。
例如,在一些实施例中,第三电源端V3可以为-12V,第四电源端V4也是-12V。
需要说明的是,本公开的实施例对第三电源端和第四电源端的具体电位的数值不作限制,只要保证在整个环境光检测过程中,第一光电感应元件311(例如,第一薄膜晶体管T1)和第二光电感应元件321(例如,第二薄膜晶体管T2)均保持截止状态。例如,第三电源端和第四电源端的具体电位的数值可以是使得第一光电感应元件311(例如,第一薄膜晶体管T1)在最强的光照强度下,仍然能和无光照条件下的第二光电感应元件321(例如,第二薄膜晶体管T2)一样保持截止状态的数值。
例如,如图3所示,本公开至少一实施例提供的一种光电检测电路30包括串联的第一薄膜晶体管T1和第二薄膜晶体管T2,并且两者的电学特性相同。该第一薄膜晶体管T1的栅极G1电连接到第三电源端V3=-12V,第一薄膜晶体管T1的源极S1连接到第一电源端V1=12V,第二薄膜晶体管T2 的漏极D2电连接到第二电源端V2=-12V,第二薄膜晶体管T2的栅极G2电连接到第四电源端V4=-12V,第一薄膜晶体管T1的漏极D1和第二薄膜晶体管T2的源极S2均电连接到第一节点N1,信号输出引线Vout与第一节点电N1连接以输出电信号。并且,第一薄膜晶体管T1暴露于待检测光环境中,而第二薄膜晶体管T2被遮挡,环境光无法入射到该第二薄膜晶体管T2上,例如第二薄膜晶体管T2处于无光照(DARK)的条件下。
例如,在这样的实施例中,假定T1和T2的等效电阻分别为R(T1)和R(T2),由于T1和T2的电学特性相同,则在相同的电压下、相同的光照强度下,T1和T2的关态电流Ioff也相同,因此可以认为截止状态的T1和T2的等效电阻R(T1)=R(T2)=Roff。
下面,假定如图3所示的光电检测电路30中薄膜晶体管T1和T2均具有相同电学特性(具体电学特性在下文详细描述),可以得到光电检测电路30中电连接到第一节点N1的输出引线所输出的电信号的电压Vout与光照强度的对应关系,如表一所示。
表一
  Dark 1000nit 2000nit 3000nit 4000nit 5000nit 6000nit 7000nit 8000nit 9000nit 10000nit
Vout(V) 0.00 3.27 5.49 6.95 7.68 8.27 8.71 9.04 9.35 9.57 9.75
因为,对于上述薄膜晶体管T1和T2而言,其有源层的半导体材料,在光照射条件下会产生光生载流子形成电流,从而影响TFT的关态特性。因此,可以单独模拟薄膜晶体管T1或者T2在有光照射下的特性变化关系,从而得到在相同电压下(例如,源漏极电压为12V时),测得与T2电学特性相同的T1在截止状态时的关态电流Ioff随着光照强度变化而发生的变化,并计算得到T1在相应条件下的等效电阻Roff的值,如表二所示。
表二
Figure PCTCN2019098725-appb-000001
下面,根据表二中的数据,通过如下公式可以计算得到光电检测电路30 中电连接到第一节点N1的输出引线所输出的电信号的电压Vout的预计值。
Vout=(V1-V2)/(R(T1)+R(T2))×R(T2)-12
例如,在第一薄膜晶体管T1和第二薄膜晶体管T2都处于无光照(DARK)的情况下,第一薄膜晶体管T1和第二薄膜晶体管T2的等效电阻相同,即R(T1)=R(T2)=1.50E+13Ω,此时,通过上述公式可以计算得到电压Vout=0V。
又例如,在光照强度为5000nit的情况下,暴露于光照环境中的第一薄膜晶体管T1的等效电阻随着光照强度的变化而变化,由表二可知,R(T1)=2.76E+12Ω,而第二薄膜晶体管T2仍然处于无光照环境中,其等效电阻不发生变化,即R(T2)=1.50E+13Ω,此时,通过上述公式可以得到电压Vout=8.27V。
再例如,在光照强度为10000nit的情况下,暴露于光照环境中的第一薄膜晶体管T1的等效电阻R(T1)=1.55E+12Ω,而第二薄膜晶体管T2仍然处于无光照环境中,其等效电阻不发生变化,即R(T2)=1.50E+13Ω,此时,通过上述公式可以得到电压Vout=9.75V。类似地,可以得到更多具体数值,对此可参见表一理解。
因此,参考上述表一,可以通过实际测量的Vout的值反向推导(例如直接查表或者进一步插值计算得到)光照强度的大小。需要说明的是,由于制作工艺、实际操作等因素,允许电压Vout的实际测量数值与计算数值有一定范围内的误差,通常还需要对其进行校正等处理,本发明的实施例对此不作任何限制。
由此可知,本公开的上述实施例中的光电检测电路30可以通过测量分压变化来检测出光照强度变化。该光电检测电路30仅仅采用两个相同的薄膜晶体管来实现环境光检测功能,可以利用现有TFT制备工艺,取代了传统的外挂式环境光传感器,由于与例如用于LCD、OLED显示装置的制备工艺相兼容,因此减少了制作工艺和制作成本。此外,使用两个相同的TFT串联可以减小因为TFT特性会随温度等环境变化对检测结果所带来的影响。
本公开的至少一实施例还提供一种光电检测装置,该光电检测装置包括上述光电检测电路。图4为本公开一实施例提供的一种光电检测装置的结构示意图;图5A为本公开一实施例提供的一种光电检测装置的平面示意图;图5B为沿图5A中线A-A'方向该光电检测装置的截面结构示意图;图5C为 本公开一实施例提供的第一和第二检测子电路同层设置的结构示意图。
例如,如图4所示,在一些实施例中,光电检测装置40包括上述任一实施例中所述的光电检测电路,例如采用与图3所示相同的光电检测电路。该光电探测电路包括第一检测子电路410和第二检测子电路420,第一检测子电路410包括第一光电感应元件411,第二检测子电路420包括第二光电感应元件421。
例如,在一些实施例中,光电检测装置40还包括处理电路401,该处理电路配置为检测由信号输出引线Vout输出的电信号的变化,并对该电信号进行后续处理,例如将所获得的数据信号提供给中央处理器(CPU)。例如,处理电路401可以包括用于放大信号的放大电路,也可以是包括数模转换的转换电路等,本公开的实施例对此不作限制。
例如,本公开至少一实施例提供的光电检测装置50还包括衬底基板501。例如,在一些实施例中,第一检测子电路510和第二检测子电路520相对于该衬底基板500同层设置,如图5A-5C所示。从而第一检测子电路和第二检测子电路可以采用同样的工艺且同步形成。由此,本实施例提供的光电探测电路可以简化制作工艺、提高光电检测装置的良率。此外,虽然图5A-5C中没有示出信号输出引线,但是信号输出引线可以与第一检测子电路510和第二检测子电路520中的某一导电构件(例如,栅极或源极或漏极)同层形成。
例如,如图5C所示,在一些实施例中,包括在第一检测子电路510中的第一薄膜晶体管和包括在第二检测子电路520中的第二薄膜晶体管相邻设置且分别使用同一半导体层的不同部分。例如,如图5C所示,第一薄膜晶体管的有源层512和第二薄膜晶体管的有源层522为同一半导体层。这样,不仅可以采用同样的工艺同时形成两个TFT,还可以有助于使得两个TFT的电学特性相同。例如,在图5C的示例中,第一薄膜晶体管和第二薄膜晶体管都是底栅型薄膜晶体管。第一薄膜晶体管的栅极511和第二薄膜晶体管的栅极521相邻设置,且位于有源层的下方。
目前的液晶显示器广泛采用的是底栅结构。因为在底栅结构中不透光的栅电极金属层能很好地把来自背光源的光遮住,避免光线照射到有源层上产生光生载流子而影响薄膜晶体管的关态电流特性。但是本公开的实施例对薄膜晶体管的具体类型不作限制。
例如,在一些实施例中,光电检测装置50还包括遮光元件502。该遮光 元件502与第二检测子电路520重叠以使入射到光电检测装置50的光被遮挡而不会入射到第二检测子电路520,且暴露第一检测子电路510以允许入射到所述光电检测装置50的光照射到第一检测子电路510上,如图5B所示。
例如,遮光元件502的材料可以为不透光材料。不透光材料可以为金属材料,例如,金属材料可以包括钼(Mo)、铜(Cu)、铝(Al)或锌(Zn)等。不透光材料还可以为非金属材料,例如,非金属材料可以包括掺入黑色颜料(例如,碳)的丙烯树脂等。
例如,光电检测装置50还包括第一绝缘层503,第一绝缘层503设置在遮光元件502和第二检测子电路520之间,如图5B所示。第一绝缘层503用于防止遮光元件502和第二检测子电路520中的电子元件之间发生短路,而且还可以保护第二检测子电路520。
图6A为本公开一实施例提供的另一种光电检测装置的平面示意图;图6B为沿图6A中线B-B'方向该光电检测装置的截面结构示意图;
例如,在一些实施例中,第一检测子电路610和第二检测子电路620相对于衬底基板601层叠设置,如图6A至6B所示。并且第一检测子电路610设置在第二检测子电路620之上,使入射到光电检测装置60的光被遮挡而不会入射到第二检测子电路620,如图6A所示。
例如,本公开至少一个实施例提供的光电检测装置60,还包括遮光元件602,如图6B所示。所述遮光元件602设置在检测第一子电路610和第二检测子电路620之间,且与第二检测子电路620重叠以使入射到光电检测装置60的光被遮挡而不会入射到所述第二检测子电路620。
例如,遮光元件602可以为反射层,第一光电感应元件将部分入射光转换为电信号,若该入射光没有完全被转换为电信号,则未转换为电信号的部分入射光可以被遮光元件602遮挡并反射,从而重新入射到第一光电感应元件,以使得第一光电感应元件能够将完全转化入射光信号,从而提高探测精度。
例如,光电探测电路60还可以包括第二绝缘层603和第三绝缘层604。第二绝缘层603设置在遮光元件602和第二子电路620之间,以防止遮光元件602和第二子电路620中的电子元件之间发生短路;第三绝缘层604设置在遮光元件602和第一子电路610之间,以防止遮光元件602和第一子电路610中的电子元件之间发生短路。
例如,光电检测装置还可以包括钝化层(图中未示出)。钝化层设置在光电检测电路上,以将光电检测电路与外界隔绝,从而减少外界水氧等渗透到光电检测电路的电子元件上,有效提高光电检测电路中的电子元件的性能和稳定性,延长光电检测电路的使用寿命。
例如,第一绝缘层503、第二绝缘层603和第三绝缘层604的材料可以为氮化硅(SiNx)、氧化硅(SiOx)、氮氧化硅(SiNxOy)或其他合适的材料。
例如,衬底基板501和601可以为玻璃基板、石英基板、陶瓷基板、塑料基板或硅胶基板等,又例如,该衬底基板还可以为形成有功能部件的面板,例如其上形成其他电路或元件等。
本公开至少一个实施例还提供一种电子装置70,该电子装置包括上述光电检测装置700。图7为本公开一实施例提供的一种电子装置70的平面示意图。
例如,在一些实施例中,如图7所示,该电子装置70可以为(或包括)显示面板,例如,显示面板可以是液晶面板、有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板(例如柔性OLED显示面板)或者量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示面板等。该显示面板包括显示区域701,其中,光电检测装置700设置在显示区域外。例如,该光电检测装置700可以围绕显示区域的一侧、两侧、三侧或四周设置,如图7所示。或者,在另一些实施例中,光电检测装置700设置在显示区域701内,例如,将第一光电感应元件设置在显示子像素之间以接收环境光,而将第二光电感应元件设置在显示子像素下从而被遮光,当然本公开的实施例不限于该具体设置方式,例如,可具体用于在显示面板的显示区域处于息屏状态下检测环境光。这样,防止显示面板的光源对光电检测电路产生干扰,提高了环境光检测的精度和可靠性,使得显示面板根据所检测到的环境光的强度自动调节显示面板的亮度以达到低能耗、高画质的效果,同时提升了用户的舒适度。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组 合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光电检测电路,包括:
    第一检测子电路,配置为暴露于待检测光环境中,所述第一检测子电路的等效电阻随着所述待检测光的光照强度的变化而变化;
    第二检测子电路,配置为处于固定的光照强度的状态,所述第二检测子电路的等效电阻由于所述固定的光照强度而不变;
    信号输出引线,
    其中,所述第一检测子电路经由第一节点与所述第二检测子电路串联,且所述信号输出引线与所述第一节点电连接以输出检测电信号。
  2. 根据权利要求1所述的光电检测电路,其中,所述第一检测子电路包括第一光电感应元件,
    所述第二检测子电路包括第二光电感应元件,并且
    所述第一光电感应元件和所述第二光电感应元件的电学特性相同。
  3. 根据权利要求1或2所述的光电检测电路,其中,所述第二检测子电路被遮挡以阻止被检测环境的光入射到所述第二检测子电路上,由此所述第二检测子电路处于所述固定的光照强度的状态。
  4. 根据权利要求2或3所述的光电检测电路,还包括:第一电源端和第二电源端,
    其中,所述第一光电感应元件的第一端电连接到所述第一电源端,
    所述第二光电感应元件的第二端电连接到所述第二电源端,以及
    所述第一光电感应元件的第二端和所述第二光电感应元件的第一端均电连接到所述第一节点。
  5. 根据权利要求4所述的光电检测电路,其中,所述第一电源端的输出电位高于所述第二电源端的输出电位。
  6. 根据权利要求5所述的光电检测电路,其中,所述第一电源端的输出电位与所述第二电源端的输出电位极性相反、数值相等。
  7. 根据权利要求4-6任一所述的光电检测电路,还包括:第三电源端和第四电源端,
    其中,所述第一光电感应元件的控制端电连接到所述第三电源端;以及
    所述第二光电感应元件的控制端电连接到所述第四电源端。
  8. 根据权利要求7所述的光电检测电路,其中,所述第三电源端的输出电位与所述第四电源端的输出电位为同一输出电位,并且
    所述第一光电感应元件的控制端和所述第二光电感应元件的控制端在所述同一输出电位的控制下,使得所述第一光电感应元件和所述第二光电感应元件保持截止状态。
  9. 根据权利要求2-8任一所述的光电检测电路,其中,所述第一光电感应元件包括第一薄膜晶体管,所述第二光电感应元件包括第二薄膜晶体管。
  10. 根据权利要求9所述的光电检测电路,其中,所述第一薄膜晶体管包括第一有源层,所述第二薄膜晶体管包括第二有源层,且所述第一有源层和所述第二有源层由相同半导体材料形成。
  11. 根据权利要求9或10所述的光电检测电路,其中,所述半导体材料包括非晶硅、多晶硅或金属氧化物中的一种或多种。
  12. 根据权利要求10或11所述的光电检测电路,其中,所述第一有源层和所述第二有源层由同一半导体层形成。
  13. 一种光电检测装置,包括权利要求1-12中任一项所述的光电检测电路。
  14. 根据权利要求13所述的光电检测装置,还包括处理电路,其中,所述处理电路配置为检测由所述信号输出引线输出的电信号的变化,并对所述电信号进行后续处理。
  15. 根据权利要求13或14所述的光电检测装置,还包括衬底基板,其中,所述第一检测子电路和所述第二检测子电路相对于所述衬底基板同层设置。
  16. 根据权利要求15所述的光电检测装置,还包括遮光元件,
    其中,所述遮光元件与所述第二检测子电路重叠以使入射到所述光电检测装置的光被遮挡而不会入射到所述第二检测子电路,且暴露所述第一检测子电路以允许入射到所述光电检测装置的光照射到所述第一检测子电路上。
  17. 根据权利要求13或14所述的光电检测装置,还包括衬底基板,其中,所述第一检测子电路和所述第二检测子电路相对于所述衬底基板层叠设置,且所述第一检测子电路设置在所述第二检测子电路之上,使入射到所述光电检测装置的光被遮挡而不会入射到所述第二检测子电路。
  18. 根据权利要求17所述的光电检测装置,还包括遮光元件,
    其中,所述遮光元件设置在所述检测第一子电路和所述第二检测子电路之间,且与所述第二检测子电路重叠以使入射到所述光电检测装置的光被遮挡而不会入射到所述第二检测子电路。
  19. 一种电子装置,包括权利要求13-18中任一项所述的光电检测装置。
  20. 根据权利要求19所述的电子装置,所述电子装置为显示面板,所述显示面板包括显示区域,其中,所述光电检测装置设置在所述显示区域外或所述显示区域内。
PCT/CN2019/098725 2019-07-31 2019-07-31 光电检测电路、光电检测装置以及电子装置 WO2021016953A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/772,560 US11371881B2 (en) 2019-07-31 2019-07-31 Photoelectric detection circuit, photoelectric detection device and electronic device
PCT/CN2019/098725 WO2021016953A1 (zh) 2019-07-31 2019-07-31 光电检测电路、光电检测装置以及电子装置
CN201980001220.7A CN112673240A (zh) 2019-07-31 2019-07-31 光电检测电路、光电检测装置以及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098725 WO2021016953A1 (zh) 2019-07-31 2019-07-31 光电检测电路、光电检测装置以及电子装置

Publications (1)

Publication Number Publication Date
WO2021016953A1 true WO2021016953A1 (zh) 2021-02-04

Family

ID=74228524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098725 WO2021016953A1 (zh) 2019-07-31 2019-07-31 光电检测电路、光电检测装置以及电子装置

Country Status (3)

Country Link
US (1) US11371881B2 (zh)
CN (1) CN112673240A (zh)
WO (1) WO2021016953A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230275107A1 (en) * 2022-02-25 2023-08-31 Hannstouch Solution Incorporated Light Sensing Panel and Light Sensing Display Panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268206A1 (en) * 2006-05-18 2007-11-22 Hitachi Diplays, Ltd. Image display device
CN101180565A (zh) * 2005-04-28 2008-05-14 夏普株式会社 液晶显示装置
CN101634765A (zh) * 2008-07-24 2010-01-27 索尼株式会社 显示装置和电子设备
CN108981910A (zh) * 2017-06-05 2018-12-11 京东方科技集团股份有限公司 光电探测电路以及光电探测器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820786B2 (ja) * 1998-10-20 2006-09-13 カシオ計算機株式会社 光センサ及びそれを用いた表示装置
JP4599985B2 (ja) * 2004-10-21 2010-12-15 セイコーエプソン株式会社 光検出回路、電気光学装置、および電子機器
KR101189268B1 (ko) * 2005-03-08 2012-10-09 삼성디스플레이 주식회사 액정 표시 장치용 박막 표시판 및 구동 장치와 이를 포함하는 액정 표시 장치
CN107389188B (zh) 2017-08-22 2018-12-04 京东方科技集团股份有限公司 光检测结构、光检测方法、触摸屏及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180565A (zh) * 2005-04-28 2008-05-14 夏普株式会社 液晶显示装置
US20070268206A1 (en) * 2006-05-18 2007-11-22 Hitachi Diplays, Ltd. Image display device
CN100585475C (zh) * 2006-05-18 2010-01-27 株式会社日立显示器 图像显示装置
CN101634765A (zh) * 2008-07-24 2010-01-27 索尼株式会社 显示装置和电子设备
CN108981910A (zh) * 2017-06-05 2018-12-11 京东方科技集团股份有限公司 光电探测电路以及光电探测器

Also Published As

Publication number Publication date
US11371881B2 (en) 2022-06-28
US20220099485A1 (en) 2022-03-31
CN112673240A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US11417716B2 (en) Organic light emitting display substrate and panel with photodetector for light compensation of subpixel
CN108987455B (zh) 用于显示面板的阵列基板、显示面板
US11232750B2 (en) Display substrate, display panel, and manufacturing method and driving method of display substrate
US11302760B2 (en) Array substrate and fabrication method thereof, and display device
US9196648B2 (en) Semiconductor device
US11417273B2 (en) Semiconductor device, display device, electronic device, and operation method
KR102023128B1 (ko) 아날로그 회로 및 반도체 장치
US9575381B2 (en) Semiconductor device and method for driving the same
CN109742113B (zh) 一种阵列基板、其制备方法及相关装置
US9111810B2 (en) Circuit board and display device including first and second channel layers made of different semiconductor materials
CN103207490B (zh) 一种阵列基板及其制造方法和显示装置
US8183769B2 (en) Organic electroluminescent display unit and method for fabricating the same
US11088175B2 (en) Display panel, method for driving the same, and display device
US20130092927A1 (en) Circuit board, display device, and method for manufacturing circuit board
US9502479B2 (en) Transparent display device and manufacturing method thereof
US10853587B2 (en) Information terminal
US7948047B2 (en) Input display
WO2021016953A1 (zh) 光电检测电路、光电检测装置以及电子装置
CN114122017A (zh) 一种显示面板及其制作方法
WO2022236868A1 (zh) 阵列基板
US20240008320A1 (en) Display apparatus
KR20220146212A (ko) 이미징 센서 및 이를 포함하는 표시 장치
TWI440935B (zh) 一種應用於顯示器之長時間照光電流衰退現象的校正方法
CN115917412A (zh) 显示基板、显示装置及其补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939706

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19939706

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19939706

Country of ref document: EP

Kind code of ref document: A1