WO2023272771A1 - 一种控泡单体、聚羧酸减水剂及其制备方法 - Google Patents

一种控泡单体、聚羧酸减水剂及其制备方法 Download PDF

Info

Publication number
WO2023272771A1
WO2023272771A1 PCT/CN2021/105181 CN2021105181W WO2023272771A1 WO 2023272771 A1 WO2023272771 A1 WO 2023272771A1 CN 2021105181 W CN2021105181 W CN 2021105181W WO 2023272771 A1 WO2023272771 A1 WO 2023272771A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
acid
concrete
foam
unsaturated
Prior art date
Application number
PCT/CN2021/105181
Other languages
English (en)
French (fr)
Inventor
倪涛
黄玉美
汪咏梅
宋欣
封轲
刘昭洋
格鲁博米尔科
王进春
Original Assignee
石家庄市长安育才建材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄市长安育才建材有限公司 filed Critical 石家庄市长安育才建材有限公司
Publication of WO2023272771A1 publication Critical patent/WO2023272771A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2605Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers

Definitions

  • the invention relates to the technical field of chemical additives for building materials, in particular to a foam control monomer, a polycarboxylate water reducer and a preparation method thereof.
  • Concrete is a composite material composed of cementitious materials and coarse and fine aggregates.
  • water reducers, air-entraining agents, and more than cement must be added during the mixing process.
  • the hydration mixing water will retain a certain volume of air bubbles after the concrete hardens.
  • defoamers include tributyl phosphate, polyether, polyether-modified silicone, polyetheramine, polyalkylamine, and acetylenic glycol and other defoamers.
  • the present invention provides a foam control monomer, a polycarboxylate water reducer and a preparation method thereof.
  • the foam control monomer is used in a polycarboxylate water reducer to obtain a polycarboxylate water reducer
  • the agent has a good foam control effect, can effectively control the size and distribution of air bubbles in the concrete structure, and ensure the compressive strength and durability of the concrete; in fresh concrete, it can ensure the workability and constructability of the concrete.
  • a foam control monomer the preparation raw materials include unsaturated acid, amphiphilic monomer, catalyst, water carrying agent and polymerization inhibitor; the foam control monomer is used to prepare polycarboxylate water reducer.
  • the present invention introduces the foam-controlling monomer into the polycarboxylic acid structure, so that the polycarboxylic acid molecules also have amphiphilicity. Because the molecular structure is relatively large compared with the air-entraining agent molecule, the speed of forming bubbles is slow, but after the formation of bubbles, the bubbles The wall is relatively thick, the stability of air bubbles in fresh concrete is enhanced, the workability of concrete can be adjusted without air-entraining agent, and the workability of concrete can be maintained within a certain period of time.
  • the amphiphilic monomer is hydrolyzed and separated from the water reducer molecules, and the air bubbles are regulated in the slurry.
  • the amphiphilic molecules are close to the size of the large air bubbles. The probability is higher, and then the hydrophobic end is used to tear the bubble liquid film wall to release the internal air. Due to the effect of buoyancy, part of the internal air is discharged upward, and part of it is sealed inside the concrete to form small pores.
  • the foam-controlling polycarboxylate superplasticizer designed by the present invention can Control the air bubbles in the concrete, so that the air bubbles in the hardened concrete are smaller and the distribution is more reasonable.
  • the material ratio of the unsaturated acid to the amphiphilic monomer is: 1.2:1-1.6:1; the amount of the catalyst is 17%-28% of the mass of the unsaturated acid; the amount of the water-carrying agent is the mass of the unsaturated acid 4%-7% of the mass of the unsaturated acid; the mass of the inhibitor is 0.8%-2.0% of the mass of the unsaturated acid.
  • the unsaturated acid includes one of maleic anhydride, fumaric acid, acrylic acid and methacrylic acid;
  • the amphiphilic monomer includes alkylphenol polyoxyethylene ether OP-15, alkylphenol polyoxyethylene ether OP- 10.
  • the catalyst includes one of concentrated sulfuric acid, toluenesulfonic acid, phosphoric acid, and boric acid;
  • the water-carrying agent includes one of toluene, xylene, and cyclohexane;
  • the polymerization agent includes one of thiaphenazine, hydroquinone, and tert-butylcatechol.
  • a method for preparing a foam-controlling monomer which is used to prepare the above-mentioned foam-controlling monomer, and is obtained by reacting an unsaturated acid, an amphiphilic monomer, a catalyst, a water-carrying agent and a polymerization inhibitor.
  • reaction temperature is 90°C-110°C
  • reaction time is 10h-16h.
  • the synthesis steps are as follows: add amphiphilic monomers into the reaction vessel, raise the temperature to 60°C-65°C, turn on mechanical stirring, add polymerization inhibitor, catalyst and water-carrying agent respectively, and stir evenly ; add the unsaturated acid, raise the temperature to 90°C-110°C, react for 10h-16h, and finally purify the product to obtain the foam control monomer.
  • the purification process is as follows: after the reaction, the solvent is distilled off under reduced pressure, the product is purified with CHCl 3 , NaOH with a concentration of 3%-5%, and saturated sodium chloride, and dried in vacuum to obtain the foam control monomer.
  • a polycarboxylate water reducer the preparation raw materials include: a polyether monomer, an unsaturated adsorption monomer, a foam control monomer and a catalyst; the foam control monomer adopts the above foam control monomer, or adopts the above The foam control monomer is prepared by the foam control monomer preparation method.
  • the raw materials for preparation include: 320-350 parts of polyether monomer; 39-45 parts of unsaturated adsorption monomer; 1.2-2.6 parts of foam control monomer; 2.6-6.5 parts of catalyst.
  • the average molecular weight of the polyether monomer is 1200g/mol-2400g/mol
  • the head group of the polyether monomer includes one of allyl, methallyl and isopentenyl
  • the unsaturated monomer Including one or both of acrylic acid, vinylsulfonic acid, p-vinylbenzenesulfonic acid
  • catalysts include ammonium persulfate, sodium hypophosphite, hydrogen peroxide, potassium persulfate, sodium bisulfite, vitamin C, formaldehyde-sodium sulfite A combination of two or more of compound, mercaptoethanol, thioglycolic acid, and ferrous sulfate.
  • a method for preparing a polycarboxylate water-reducer which is used to prepare the above-mentioned polycarboxylate water-reducer, is prepared by reacting a polyether monomer, an unsaturated adsorption monomer, a foam control monomer, and a catalyst.
  • the reaction vessel More preferably, it includes the following steps: first dissolve the polyether monomer in the reaction vessel; then add the catalyst; finally add liquid A and liquid B for reaction; the reaction temperature is 25°C to 30°C; after the reaction is completed, add water to dilute to the set solid content, the obtained liquid is used as a polycarboxylate superplasticizer; the A liquid is a mixed solution of an unsaturated adsorption monomer and a foam control monomer, and the B liquid is a mixed solution of various catalysts.
  • the invention provides a foam control monomer, a polycarboxylate water reducer and a preparation method thereof.
  • the foam control monomer is used in a polycarboxylate water reducer, and the obtained polycarboxylate water reducer has good control
  • the bubble effect can effectively control the size and distribution of bubbles in the concrete structure, and ensure the compressive strength and durability of the concrete; in the fresh concrete, it can ensure the workability and constructability of the concrete.
  • the present invention introduces the foam-controlling monomer into the polycarboxylic acid structure, so that the polycarboxylic acid molecules also have amphiphilicity. Because the molecular structure is relatively large compared with the air-entraining agent molecule, the speed of forming bubbles is slow, but after the formation of bubbles, the bubbles The wall is relatively thick, the stability of air bubbles in fresh concrete is enhanced, the workability of concrete can be adjusted without air-entraining agent, and the workability of concrete can be maintained within a certain period of time.
  • the amphiphilic monomer is hydrolyzed and separated from the water reducer molecules, and the air bubbles are regulated in the slurry.
  • the amphiphilic molecules are close to the size of the large air bubbles. The probability is higher, and then the hydrophobic end is used to tear the bubble liquid film wall to release the internal air. Due to the effect of buoyancy, part of the internal air is discharged upward, and part of it is sealed inside the concrete to form small pores.
  • the foam-controlling polycarboxylate superplasticizer designed by the present invention can Control the air bubbles in the concrete, make the air bubbles in the hardened concrete smaller, and the distribution is more reasonable, the number of air bubbles on the surface is less, and the appearance quality of the concrete surface is improved.
  • This embodiment provides a polycarboxylate water reducer, the preparation method is as follows:
  • This embodiment provides a polycarboxylate water reducer, the preparation method is as follows:
  • This embodiment provides a polycarboxylate water reducer, the preparation method is as follows:
  • This embodiment provides a polycarboxylate water reducer, the preparation method is as follows:
  • the polycarboxylate superplasticizer prepared in the above examples 1-4 was used in the C30 concrete test, and Esheng P.O 42.5 cement was selected as the cementitious material, Bolei 1st grade fly ash; the artificial machine-made sand was fine aggregate, the fineness The modulus is 2.6; the gravel particle size is 5mm-10mm and 10mm-20mm.
  • Esheng P.O 42.5 cement was selected as the cementitious material, Bolei 1st grade fly ash
  • the artificial machine-made sand was fine aggregate, the fineness The modulus is 2.6
  • the gravel particle size is 5mm-10mm and 10mm-20mm.
  • Example 4 Concrete as a water-reducing agent, this is caused by the introduction of bad air bubbles by the water-reducing agent in Example 1, which can be obtained from the air bubble data of hardened concrete.
  • the water reducing agents of the four examples are used in C30 concrete.
  • the air content of the concrete after hardening is 3.3%-3.8%. 1
  • the specific surface area of the bubbles in the concrete used as a water reducing agent is 26.2mm 2 /mm 3 , while the specific surface area of the bubbles in the concrete using other examples as a water reducing agent is more than 1.62 times that of the former.
  • the air bubbles in the concrete are larger than those of other superplasticizers.
  • the large air bubbles in the concrete become the weak points of the concrete, especially when the load is applied to the concrete, the large air bubbles are more likely to collapse the surrounding structures, resulting in low concrete strength.
  • the concrete using Example 1 as a water reducing agent has the smallest bubble spacing coefficient of 286um, and the concrete using Examples 2-4 as a water reducing agent has a bubble spacing coefficient within 200 , so the uniformity of the bubbles in Example 1 is worse, resulting in lower impermeability grades and frost resistance grades of the hardened concrete.
  • the area percentage of air bubbles on the surface of hardened concrete is 0.12%, while the area percentages of air bubbles on the surface of hardened concrete in Examples 2-4 are all less than 0.1%, and the smaller the area percentage of air bubbles on the surface of concrete , the better the appearance quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种控泡单体、聚羧酸减水剂及其制备方法,通过不饱和酸、两亲性单体、催化剂、携水剂和阻聚剂反应制备获得控泡单体;再通过聚醚单体、不饱和吸附单体、控泡单体和催化剂聚合反应制备聚羧酸减水剂。将该控泡单体用于聚羧酸减水剂中,获得的聚羧酸减水剂具有良好的控泡效果,能够有效控制混凝土结构中的气泡大小和分布,保障混凝土的抗压强度和耐久性;在新拌混凝土,保证混凝土和易性、施工性;能够减少混凝土表面的气泡,改善硬化混凝土表面的外观质量。

Description

一种控泡单体、聚羧酸减水剂及其制备方法 技术领域
本发明涉及建筑材料化学添加剂技术领域,具体涉及一种控泡单体、聚羧酸减水剂及其制备方法。
背景技术
混凝土是由胶凝材料和粗、细骨料组成的复合材料,为了获得新拌混凝土所需的和易性和施工性,须在拌合过程中将减水剂、引气剂以及多于水泥水化的拌合水,混凝土硬化后,会滞留一定体积的气泡。
硬化混凝土中的含气量处于3%-4%时,对各龄期的抗压强度影响甚微,而对混凝土的耐久性特别是抗冻性能提升较大。当混凝土处于负温时,其内部孔隙中的水分将发生从液相到固相的转变,体积膨胀。那些连通的毛细孔就成为导致混凝土免遭受冻结破坏的主要因素,混凝土内部气孔对于混凝土的耐久性起着至关重要的作用,在混凝土成形之后,小尺寸气孔的存在,对混凝土的内部结构性能有着复杂且重要的影响。它可以缓解由于混凝土内残存的水分结冰之后产生的膨胀,从而预防严寒冰冻环境对混凝土微结构乃至整个工程带来的严重危害,目前每年因为冻融破坏的混凝土不计其数,造成很大的安全隐患以及高昂的修补成本。当硬化混凝土中的含气量高于4%时,对各龄期的抗压强度则受到较大影响,可降低1个等级以上。
另一方面,现代建筑对混凝土试件的外观又提出了新的要求。近年来飞速发展的高速铁路项目大量应用混凝土预制构件,对混凝土的快速成型、增强以及表面光洁度,提出了更高的质量要求。既要使混凝土中具有小气孔,又要使混凝土表面少气泡,如何解决这两方面的问题,成为了目前急需解决这一国内外技术难题。
目前本领域中,主要通过向混凝土中添加消泡剂实现对混凝土中的气泡进行控制。常用的消泡剂三丁基磷酸酯、聚醚、聚醚改性有机硅、聚醚胺、聚烷基胺和炔二醇等消泡剂。在这些消泡剂的应用中发现,消泡剂的疏水性增加,消泡能力增加,在聚羧酸溶液中的稳定性降低,混凝土中的气泡较少,抗冻性、耐久性差;反之,消泡剂亲水性增加,控泡能力降低,在羧酸溶液中的稳定性提高,混凝土中的气泡大而多。综上分析,采用消泡剂调节混凝土结构中的气泡使之得到良好状态,难度较大。
发明内容
基于上述技术背景,本发明提供了一种控泡单体、聚羧酸减水剂及其制备方法,将该控泡单体用于聚羧酸减水剂中,获得的聚羧酸减水剂具有良好的控泡效果,能够有效控制混凝 土结构中的气泡大小和分布,保障混凝土的抗压强度和耐久性;在新拌混凝土,保证混凝土和易性、施工性。
一种控泡单体,制备原料包括不饱和酸、两亲性单体、催化剂、携水剂和阻聚剂;所述控泡单体用于制备聚羧酸减水剂。
本发明通过在聚羧酸结构中引入控泡型单体,使聚羧酸分子也具有两亲性,由于分子结构相对引气剂分子比较庞大,形成气泡的速度慢,但是形成气泡后,气泡壁比较厚,气泡在新拌混凝土中的稳定性增强,能够不掺引气剂的条件下调整混凝土和易性,并且能够在一定的时间内保持混凝土的和易性。混凝土入模后,在初凝时间以前,由于混凝土的高碱性,两亲性单体水解脱离减水剂分子,在浆体中对气泡进行调控,根据热力学原理,两亲分子接近大气泡的几率更大一些,然后采用疏水端对气泡液膜壁进行撕裂,放出内部的空气,内部空气由于浮力的作用,一部分向上排出,一部分封闭在混凝土内部,形成小的气孔。混凝土中的内部小气泡由于液膜厚度大,两亲性单体疏水端撕裂液膜壁难度大,因此大部分小气泡得以保留,因此本发明设计的控泡型聚羧酸减水剂能够控制混凝土的气泡,使硬化混凝土中的气泡更小,且分布更合理。
进一步优选,不饱和酸与两亲性单体的物质的量比为:1.2:1-1.6:1;催化剂用量为不饱和酸质量的17%-28%;携水剂用量为不饱和酸质量的4%-7%;阻聚剂质量为不饱和酸质量的0.8%-2.0%。
进一步优选,不饱和酸包括马来酸酐、富马酸、丙烯酸和甲基丙烯酸的一种;两亲性单体包括烷基酚聚氧乙烯醚OP-15、烷基酚聚氧乙烯醚OP-10、曲拉通TXA-10中的一种;催化剂包括浓硫酸、甲基苯磺酸、磷酸、硼酸中的一种;携水剂包括甲苯、二甲苯、环己烷中的一种;阻聚剂包括噻吩嗪、对苯二酚、叔丁基邻苯二酚中的一种。
一种控泡单体的制备方法,用于制备上述的一种控泡单体,通过不饱和酸、两亲性单体、催化剂、携水剂和阻聚剂反应制备获得。
进一步优选,反应温度为90℃-110℃,反应时间为10h-16h。
对于控泡单体的合成,合成步骤具体如:在反应容器中加入两亲性单体,升温至60℃-65℃,开启机械搅拌,分别加入阻聚剂、催化剂和携水剂,搅拌均匀;加入的不饱和酸,升温至90℃-110℃,反应10h-16h,最后提纯产物获得控泡单体。提纯过程如:反应结束后,减压蒸馏除去溶剂,分别用CHCl 3、浓度为3%-5%的NaOH、饱和氯化钠提纯产物,真空干燥,得到控泡单体。
一种聚羧酸减水剂,制备原料包括:聚醚单体、不饱和吸附单体、控泡单体和催化剂;所述控泡单体采用上述的一种控泡单体,或采用上述控泡单体制备方法制备的控泡单体。
进一步优选,按照重量份计算,制备原料包括:聚醚单体320份-350份;不饱和吸附单体39份-45份;控泡单体1.2份-2.6份;催化剂2.6份-6.5份。
进一步优选,聚醚单体的平均分子量为1200g/mol-2400g/mol,聚醚单体的头基包括烯丙基、甲基烯丙基和异戊烯基中的一种;不饱和单体包括丙烯酸、乙烯基磺酸、对乙烯基苯磺酸中的一种或两种;催化剂包括过硫酸胺、次亚磷酸钠、双氧水、过硫酸钾、亚硫酸氢钠、维生素C、甲醛-亚硫酸钠复合物、巯基乙醇、巯基乙酸、硫酸亚铁中的两种或两种以上组合。
一种聚羧酸减水剂的制备方法,用于制备上述的一种聚羧酸减水剂,通过聚醚单体、不饱和吸附单体、控泡单体和催化剂反应制备获得。
进一步优选,包括以下步骤:先在反应容器溶解聚醚单体;再加入催化剂;最后加入A液和B液进行反应;反应温度为25℃~30℃;待反应结束后加水稀释至设定固体含量,获得的液体作为聚羧酸减水剂;所述A液为不饱和吸附单体和控泡单体的混合溶液,所述B液为多种催化剂的混合溶液。
对于聚羧酸减水剂的合成,步骤具体如:
在容器中加入聚醚单体和去离子水,升温至25℃~30℃,开启搅拌,待聚醚单体完全溶解后,加入部分催化剂,搅拌5min后,开始滴加A液、B液。A液由不饱和单体、控泡单体和水搅拌均匀后得到,B液由另一部分催化剂和水搅拌均匀得到。滴加完成后,继续反应,待反应结束后加入稀释水,使控泡减水剂的浓度达到设定浓度(优选如20%-60%的固含量,更优选为35%、40%、45%的固含量),作为聚羧酸减水剂。
本发明具有如下的优点和有益效果:
本发明提供了一种控泡单体、聚羧酸减水剂及其制备方法,将该控泡单体用于聚羧酸减水剂中,获得的聚羧酸减水剂具有良好的控泡效果,能够有效控制混凝土结构中的气泡大小和分布,保障混凝土的抗压强度和耐久性;在新拌混凝土,保证混凝土和易性、施工性。
本发明通过在聚羧酸结构中引入控泡型单体,使聚羧酸分子也具有两亲性,由于分子结构相对引气剂分子比较庞大,形成气泡的速度慢,但是形成气泡后,气泡壁比较厚,气泡在新拌混凝土中的稳定性增强,能够不掺引气剂的条件下调整混凝土和易性,并且能够在一定的时间内保持混凝土的和易性。混凝土入模后,在初凝时间以前,由于混凝土的高碱性,两亲性单体水解脱离减水剂分子,在浆体中对气泡进行调控,根据热力学原理,两亲分子接近大气泡的几率更大一些,然后采用疏水端对气泡液膜壁进行撕裂,放出内部的空气,内部空气由于浮力的作用,一部分向上排出,一部分封闭在混凝土内部,形成小的气孔。混凝土中的内部小气泡由于液膜厚度大,两亲性单体疏水端撕裂液膜壁难度大,因此大部分小气泡得以保留,因此本发明设计的控泡型聚羧酸减水剂能够控制混凝土的气泡,使硬化混凝土中的 气泡更小,且分布更合理,表面的气泡数量更少,提升混凝土表面的外观质量。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
本实施例提供了一种聚羧酸减水剂,制备方法如下所示:
在反应瓶中加入340份异戊烯聚醚单体、去离子水300份,升温至30℃,开启搅拌;待异戊烯聚醚单体完全溶解后,加入0.82份过硫酸胺,搅拌5min后,开始滴加A液、B液。A液由38份丙烯酸和28.2份水搅拌均匀后得到,B液由0.38维生素C、1.8份巯基乙酸和65份水搅拌均匀得到;A液和B液依次分别滴加完成后,继续反应90min,加入稀释水,使减水剂的浓度为40%。
实施例2
本实施例提供了一种聚羧酸减水剂,制备方法如下所示:
(1)控泡单体的合成:在装有温度计、油水分离器、冷凝管的三口瓶中加入0.9mol的两亲性单体OP-10,升温至62℃,开启机械搅拌,分别加入1.51份噻吩嗪、23份甲基苯磺酸、5份甲苯,搅拌均匀,加入1.2mol的丙烯酸,升温至95℃,反应12h。减压蒸馏除去溶剂,分别用CHCl 3、浓度为3%的NaOH、饱和氯化钠提纯产物,真空干燥,得到控泡单体。
(2)聚羧酸减水剂的合成:在反应瓶中加入336份异戊烯聚醚单体、去离子水300份,升温至30℃,开启搅拌,待异戊烯聚醚单体完全溶解后,加入0.8份过硫酸胺,搅拌5min后,开始滴加A液、B液。A液由38份丙烯酸和2份乙烯基苯磺酸、2.5份控泡单体和28.2份水搅拌均匀后得到,B液由0.38维生素C、1.8份巯基乙酸和63份水搅拌均匀得到。A液和B液依次分别滴加完成后,继续反应90min,加入稀释水,使控泡减水剂的浓度为40%。
实施例3
本实施例提供了一种聚羧酸减水剂,制备方法如下所示:
(1)控泡单体的合成:在装有温度计、油水分离器、冷凝管的三口瓶中加入1.0mol的两亲性单体OP-15,升温至65℃,开启机械搅拌,分别加入1.5份对苯二酚、25.6份甲基苯磺酸、6.2份环己烷,搅拌均匀,加入1.5mol的马来酸酐,升温至92℃,反应14h。减压蒸馏除去溶剂,分别用CHCl 3、质量浓度为4%的NaOH、饱和氯化钠提纯产物,真空干燥,得到控泡单体。
(2)聚羧酸减水剂的合成:在反应瓶中加入326份甲基丙烯聚醚单体、去离子水290份, 升温至25℃,开启搅拌,待甲基丙烯聚醚单体完全溶解后,加入2.32份H 2O 2和0.5份1%质量分数的FeSO 4,搅拌5min后,开始滴加A液、B液。A液由39.8份丙烯酸、1.6份控泡单体和30份水搅拌均匀后得到,B液由0.33份维生素C、1.51份巯基乙酸和60份水搅拌均匀得到。滴加完成后,继续反应120min,加入稀释水,使控泡减水剂的浓度为40%。
实施例4
本实施例提供了一种聚羧酸减水剂,制备方法如下所示:
(1)控泡单体的合成:在装有温度计、油水分离器、冷凝管的三口瓶中加入1.2mol的两亲性单体TXA-10,升温至65℃,开启机械搅拌,分别加入2.48份叔丁基邻苯二酚、37.3份甲基苯磺酸、8.3份二甲苯,搅拌均匀,加入1.92mol的丙烯酸,升温至110℃,反应16h。减压蒸馏除去溶剂,分别用CHCl 3、浓度为5%的NaOH、饱和氯化钠提纯产物,真空干燥,得到控泡单体;
(2)聚羧酸减水剂的合成:在反应瓶中加入350份异戊烯基聚醚单体、去离子水300份,升温至28℃,开启搅拌,待聚醚单体完全溶解后,加入2.2份H 2O 2,3.0份次亚磷酸钠,搅拌5min后,开始滴加A、B液。A液由43份丙烯酸、2.5份控泡单体和26份水搅拌均匀后得到,B液由0.40份维生素C、0.8份1%质量分数的FeSO 4和65份水搅拌均匀得到。A液和B液依次分别滴加完成后,继续反应100min,加入稀释水,使控泡减水剂的浓度为40%。
混凝土硬化性能测试
将上述实施例1-4制备的聚羧酸减水剂用于C30混凝土测试,选用峨胜P.O 42.5水泥为胶凝材料,博磊1级粉煤灰;人工机制砂为细骨料,细度模数2.6;碎石粒径为5mm-10mm及10mm-20mm。按照GB/T50080-2002《普通混凝土力学性能试验方法标准》进行混凝土性能测试;依据SL 352-2006《水工混凝土试验规程》中的《硬化混凝土气泡参数试验(直线导线法)》,用显微镜观测硬化混凝土的气孔结构。ASTM C457《Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete》(硬化混凝土气泡参数显微镜测定方法标准),测试硬化混凝土气泡结构参数。
表1混凝土配合比
原料名称 水泥 煤灰 小石 大石 减水剂掺量/%
单方用量/Kg 310 60 842 165 335 781 0.42
表2混凝土性能测试结果
Figure PCTCN2021105181-appb-000001
Figure PCTCN2021105181-appb-000002
通过表2可知,用实施例2-4作为减水剂的混凝土28天抗压强度比用实施例1作为减水剂的28天抗压强度高出5.84%以上,28天强度最高的是用实施例4作为减水剂的混凝土,这是由于实施例1的减水剂引入了不良气泡造成的,这可以硬化混凝土的气泡数据中得到。
四个实施例的减水剂用于C30的混凝土中,混凝土硬化后的含气量在3.3%-3.8%,混凝土的含气量差距不大,但是内部的气泡结构则有较大差异,用实施例1作为减水剂的混凝土中气泡比表面积为26.2mm 2/mm 3,而用其他实施例作为减水剂的混凝土中气泡比表面积是前者的1.62倍以上,说明用实施例1减水剂中的混凝土中的气泡比其余减水剂的混凝土大。混凝土中的大气泡为成为混凝土的薄弱点,特别是在对混凝土施加负载时,大气泡更容易时周边结构发生塌陷,造成混凝土强度偏低。另外,从硬化混凝土气泡的间距系数来看,采用实施例1作为减水剂的混凝土的气泡间距系数最小,为286um,用实施例2-4作为减水剂的混凝土的气泡间距系数为200以内,因此实施例1的气泡均匀性更差,造成其硬化混凝土的抗渗等级和抗冻等级更低。而从硬化混凝土表面气泡面积百分率来看,实施例1中硬化混凝土表面气泡面积百分率为0.12%,而实施例2-4硬化混凝土表面气泡的面积百分率均小于0.1%,混凝土表面气泡面积百分率越小,外观质量越好。
从四个实施例的混凝土试验结果说明控泡型减水剂能够有效控制混凝土结构中的气泡大小和分布。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种控泡单体,其特征在于,制备原料包括不饱和酸、两亲性单体、催化剂、携水剂和阻聚剂;所述控泡单体用于制备聚羧酸减水剂。
  2. 根据权利要求1所述的一种控泡单体,其特征在于,
    不饱和酸与两亲性单体的物质的量比为:1.2:1-1.6:1;
    催化剂用量为不饱和酸质量的17%-28%;
    携水剂用量为不饱和酸质量的4%-7%;
    阻聚剂质量为不饱和酸质量的0.8%-2.0%。
  3. 根据权利要求1所述的一种控泡单体,其特征在于,
    不饱和酸包括马来酸酐、富马酸、丙烯酸和甲基丙烯酸的一种;
    两亲性单体包括烷基酚聚氧乙烯醚OP-15、烷基酚聚氧乙烯醚OP-10、曲拉通TXA-10中的一种;
    催化剂包括浓硫酸、甲基苯磺酸、磷酸、硼酸中的一种;
    携水剂包括甲苯、二甲苯、环己烷中的一种;
    阻聚剂包括噻吩嗪、对苯二酚、叔丁基邻苯二酚中的一种。
  4. 一种控泡单体的制备方法,用于制备权利要求1至3任一项所述的一种控泡单体,其特征在于,通过不饱和酸、两亲性单体、催化剂、携水剂和阻聚剂反应制备获得。
  5. 根据权利要求4所述的一种控泡单体的制备方法,其特征在于,反应温度为90℃-110℃,反应时间为10h-16h。
  6. 一种聚羧酸减水剂,其特征在于,制备原料包括:聚醚单体、不饱和吸附单体、控泡单体和催化剂;所述控泡单体采用权利要求1至3任一项所述的一种控泡单体,或采用权利要求4或5制备方法制备的控泡单体。
  7. 根据权利要求6所述的一种聚羧酸减水剂,其特征在于,按照重量份计算,制备原料包括:
    聚醚单体320份-350份;
    不饱和吸附单体39份-45份;
    控泡单体1.2份-2.6份;
    催化剂2.6份-6.5份。
  8. 根据权利要求6所述的一种聚羧酸减水剂,其特征在于,
    聚醚单体的平均分子量为1200g/mol-2400g/mol,聚醚单体的头基包括烯丙基、甲基烯丙基和异戊烯基中的一种;
    不饱和单体包括丙烯酸、乙烯基磺酸、对乙烯基苯磺酸中的一种或两种;
    催化剂包括过硫酸胺、次亚磷酸钠、双氧水、过硫酸钾、亚硫酸氢钠、维生素C、甲醛-亚硫酸钠复合物、巯基乙醇、巯基乙酸、硫酸亚铁中的两种或两种以上组合。
  9. 一种聚羧酸减水剂的制备方法,用于制备权利要求6至8任一项所述的一种聚羧酸减水剂,其特征在于,通过聚醚单体、不饱和吸附单体、控泡单体和催化剂反应制备获得。
  10. 根据权利要求9所述的一种聚羧酸减水剂的制备方法,其特征在于,包括以下步骤:
    先在反应容器溶解聚醚单体;再加入催化剂;最后加入A液和B液进行反应;反应温度为25℃~30℃;待反应结束后加水稀释至设定浓度,获得的液体作为聚羧酸减水剂;
    所述A液为不饱和吸附单体和控泡单体的混合溶液,所述B液为多种催化剂的混合溶液。
PCT/CN2021/105181 2021-07-01 2021-07-08 一种控泡单体、聚羧酸减水剂及其制备方法 WO2023272771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110746662.3A CN113461872A (zh) 2021-07-01 2021-07-01 一种控泡单体、聚羧酸减水剂及其制备方法
CN202110746662.3 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023272771A1 true WO2023272771A1 (zh) 2023-01-05

Family

ID=77877222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105181 WO2023272771A1 (zh) 2021-07-01 2021-07-08 一种控泡单体、聚羧酸减水剂及其制备方法

Country Status (2)

Country Link
CN (1) CN113461872A (zh)
WO (1) WO2023272771A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116874225A (zh) * 2023-09-04 2023-10-13 湖南凝英新材料科技有限公司 一种减胶型混凝土减水剂及其制备方法与应用
CN117342820A (zh) * 2023-09-28 2024-01-05 深圳市名轩建材科技有限公司 一种复合型聚羧酸减水剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140114030A1 (en) * 2012-10-22 2014-04-24 Beijing University Of Technology Preparation method of high-performance star-shaped polycarboxylate superplasticizer
CN104193622A (zh) * 2013-09-29 2014-12-10 安庆飞凯高分子材料有限公司 一种壬基酚聚氧乙烯醚丙烯酸酯的制备方法
CN104761173A (zh) * 2014-12-23 2015-07-08 水利部交通运输部国家能源局南京水利科学研究院 一种减缩性能好的聚羧酸系减水剂及其制备方法
CN110240697A (zh) * 2019-06-19 2019-09-17 北京金隅水泥节能科技有限公司 功能单体及其制备方法、聚羧酸减水剂及其制备方法和应用
CN110272458A (zh) * 2019-06-25 2019-09-24 北京金隅水泥节能科技有限公司 功能单体及其制备方法、减水剂及其制备方法和用途以及混凝土

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082764B (zh) * 2016-05-30 2018-04-24 西藏五色石建材有限公司 一种水溶性高效混凝土松香树脂引气剂及其制备方法
CN106749963B (zh) * 2016-11-29 2019-11-26 中建商品混凝土(福建)有限公司 一种用于纯机制砂混凝土的引气可控型聚羧酸系减水剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140114030A1 (en) * 2012-10-22 2014-04-24 Beijing University Of Technology Preparation method of high-performance star-shaped polycarboxylate superplasticizer
CN104193622A (zh) * 2013-09-29 2014-12-10 安庆飞凯高分子材料有限公司 一种壬基酚聚氧乙烯醚丙烯酸酯的制备方法
CN104761173A (zh) * 2014-12-23 2015-07-08 水利部交通运输部国家能源局南京水利科学研究院 一种减缩性能好的聚羧酸系减水剂及其制备方法
CN110240697A (zh) * 2019-06-19 2019-09-17 北京金隅水泥节能科技有限公司 功能单体及其制备方法、聚羧酸减水剂及其制备方法和应用
CN110272458A (zh) * 2019-06-25 2019-09-24 北京金隅水泥节能科技有限公司 功能单体及其制备方法、减水剂及其制备方法和用途以及混凝土

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116874225A (zh) * 2023-09-04 2023-10-13 湖南凝英新材料科技有限公司 一种减胶型混凝土减水剂及其制备方法与应用
CN116874225B (zh) * 2023-09-04 2023-11-24 湖南凝英新材料科技有限公司 一种减胶型混凝土减水剂及其制备方法与应用
CN117342820A (zh) * 2023-09-28 2024-01-05 深圳市名轩建材科技有限公司 一种复合型聚羧酸减水剂及其制备方法
CN117342820B (zh) * 2023-09-28 2024-06-11 深圳市名轩建材科技有限公司 一种复合型聚羧酸减水剂及其制备方法

Also Published As

Publication number Publication date
CN113461872A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
Yang et al. Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete–A review
EP1893547B1 (en) Providing freezing and thawing resistance to cementitious compositions
US9365453B2 (en) Admixture and method for freeze-thaw damage resistance and scaling damage resistance of cementitious compositions
CN109651566B (zh) 一种降粘型聚羧酸减水剂及其制备方法
WO2023272771A1 (zh) 一种控泡单体、聚羧酸减水剂及其制备方法
NZ551564A (en) Providing freezing and thawing resistance to cementitious compositions
CN110606717B (zh) 一种混凝土增强外加剂及其在超高强混凝土中的应用
CN111533495A (zh) 一种高强度自密实混凝土工业化生产工艺
CN114057425B (zh) 一种制备聚羧酸纳米晶核型早强减水复合剂的方法
Dahal et al. Cementless ultra-high performance concrete (UHPC) using CaO-activated GGBFS and calcium formate as an accelerator
WO2023184785A1 (zh) 一种交联型聚羧酸减水剂及其制备方法
Shang et al. Investigating mechanical properties and microstructure of reactive powder concrete blended with sulfoaluminate cement
Zhu et al. Ultra high early strength self-compacting mortar based on sulfoaluminate cement and silica fume
US10865142B2 (en) Method of making cementitious compositions
CN113501691A (zh) 一种高强度纳米二氧化硅再生混凝土及其制备方法
WO2024082735A1 (zh) 一种有机-无机复合增韧材料及其在混凝土中的应用
CN113735534B (zh) 可喷射uhtcc及其制备方法及应用
CN117819918B (zh) 一种不影响纳米材料分散性的纳米强化水泥基复合材料及其制备方法
CN114634326B (zh) 一种管桩增效剂及其制备方法和应用
CN113968692B (zh) 一种高强混凝土降粘型聚羧酸减水剂及其制备方法
CN112707691B (zh) 一种自密实混凝土及其制备方法
CN114349384B (zh) 降粘型减水剂
CN116789910A (zh) 一种自密实超高性能混凝土用外加剂及其制备方法
CN108239238A (zh) 一种聚羧酸系减水剂及其制备方法、应用
CN117164272A (zh) 一种混凝土增亮剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947715

Country of ref document: EP

Kind code of ref document: A1