WO2023184785A1 - 一种交联型聚羧酸减水剂及其制备方法 - Google Patents

一种交联型聚羧酸减水剂及其制备方法 Download PDF

Info

Publication number
WO2023184785A1
WO2023184785A1 PCT/CN2022/105554 CN2022105554W WO2023184785A1 WO 2023184785 A1 WO2023184785 A1 WO 2023184785A1 CN 2022105554 W CN2022105554 W CN 2022105554W WO 2023184785 A1 WO2023184785 A1 WO 2023184785A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
acid
reaction
ether
trimethylolpropane
Prior art date
Application number
PCT/CN2022/105554
Other languages
English (en)
French (fr)
Inventor
何新耀
李亚杰
房福贤
李玉博
Original Assignee
佳化化学科技发展(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳化化学科技发展(上海)有限公司 filed Critical 佳化化学科技发展(上海)有限公司
Publication of WO2023184785A1 publication Critical patent/WO2023184785A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2605Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • This application belongs to the technical field of concrete admixture preparation, and specifically relates to a cross-linked polycarboxylate water-reducing agent and its preparation method.
  • Water reducing agent also known as superplasticizer, Superplasticizer
  • Superplasticizer is the most commonly used concrete admixture. Its main function is to hinder or destroy cement through surface activity, complexation, electrostatic repulsion or three-dimensional repulsion.
  • the flocculation structure of the particles can greatly improve the workability and fluidity of concrete, thereby saving cement consumption, reducing concrete mixing water consumption, and improving concrete strength.
  • Polycarboxylate water-reducing agent as the third generation of water-reducing agent, has quickly occupied most of the market due to its advantages of low dosage, high water-reducing rate, great freedom in molecular structure design, and environmental friendliness. It is widely used in high-speed railways and highways. , bridges, tunnels and high-rise buildings and other projects.
  • Polycarboxylic acid-based water reducing agent is a comb-structured polymer, which is produced by free radical copolymerization of unsaturated polyether macromonomers and unsaturated small monomers.
  • the application of polyether macromonomers has gone through the following stages: MPEGMA (methoxypolyoxyethylene ether methacrylate), APEG (allyl polyoxyethylene ether), SPEG (methallyl alcohol polyoxyethylene) ether) and TPEG (prenyl alcohol polyoxyethylene ether).
  • MPEGMA methoxypolyoxyethylene ether methacrylate
  • APEG allyl polyoxyethylene ether
  • SPEG methallyl alcohol polyoxyethylene
  • TPEG prenyl alcohol polyoxyethylene ether
  • this new type of monomer has high activity, short polymerization time, and generates severe heat during the polymerization reaction.
  • the concentration of the reaction system increases, the dispersion uniformity of the active comonomer becomes worse, and local easily Side reactions such as self-polymerization and local explosion polymerization occur, which seriously degrades the performance of the synthesized polycarboxylate water-reducing agent.
  • the Plank team reported that this type of monomer has poor stability.
  • the terminal vinyl ether activity is very high.
  • This type of monomer is easy to decompose after the reaction temperature is greater than 35°C. Formaldehyde is released from the decomposition products, which has a great impact on human health and the environment.
  • the currently disclosed synthesis processes for preparing this type of water reducing agent require complex and harsh process conditions.
  • the entire reaction process requires ultra-low temperature and the reaction system has strict pH requirements.
  • the entire polymerization process needs to control the temperature at 15-30°C. Synthesizing a water-reducing agent with excellent performance requires very high equipment, and the energy consumption and process control of the synthesis process are extremely complicated. And because the equipment of most current water-reducing agent manufacturers cannot meet the conditions for producing this type of water-reducing agent mother liquor, their promotion and application are greatly limited.
  • Cross-linked or star-shaped polymers can have both excellent fluidity and collapse retention, and have great potential to replace traditional comb-shaped polycarboxylate superplasticizers, and have become one of the research topics of more and more scholars.
  • cross-linked or star-shaped polymers usually have more functionality and high activity. During the synthesis process, the molecular weight increases rapidly, the system viscosity is large, and the heat release is high. It is difficult to control the polymerization speed and the product stability is poor. , affecting its application in concrete. Therefore, the development and research of a new type of cross-linked or star-shaped polycarboxylic acid polymer is of great significance to the field of concrete.
  • the technical problem to be solved by this application is to overcome the problem that the hydroxyalkyl-terminated vinyl polyoxyethylene ether polycarboxylate water-reducing agent with excellent performance in the prior art needs to be prepared under low temperature conditions, which requires high equipment and high energy consumption. , cannot have both high water reducing rate and slump loss; and, in the existing technology, the polymerization speed is difficult to control during the process of preparing cross-linked polycarboxylate water reducing agent, and the product stability is poor, etc.
  • a cross-linked polycarboxylic acid water-reducing agent and a preparation method thereof are provided.
  • This application provides a method for preparing a cross-linked polycarboxylate water-reducing agent, which includes the following steps:
  • R 1 is hydrogen or methyl
  • R 2 is C 1 -C 4 alkylene
  • R 3 is hydrogen, methyl or ethyl
  • m is 0-6, n is 10-150;
  • the trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate has the following structural formula,
  • b 1 , b 2 , and b 3 are all 0-4, 0 ⁇ b 1 + b 2 + b 3 ⁇ 6; a 1 , a 2 , a 3 are 6-20, 6 ⁇ a 1 + a 2 + a 3 ⁇ 30.
  • the cross-linked polycarboxylate water-reducing agent is prepared by free radical polymerization of hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether and trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate.
  • step (2) the specific steps for preparing trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate include:
  • Trimethylolpropane is sequentially subjected to an alkoxylation reaction with ethylene oxide and propylene oxide to obtain trimethylolpropane polyoxyethylene polyoxypropylene ether;
  • trimethylolpropane polyoxyethylene polyoxypropylene ether has the following structural formula,
  • b 1 , b 2 , and b 3 are all 0-4, 0 ⁇ b 1 + b 2 + b 3 ⁇ 6; a 1 , a 2 , a 3 are 6-20, 6 ⁇ a 1 + a 2 + a 3 ⁇ 30.
  • step (2) before the esterification reaction, the step of adding a polymerization inhibitor and a catalyst is also included;
  • the polymerization inhibitor is at least one of p-hydroxyanisole, hydroquinone, phenothiazine, cuprous chloride and copper formate;
  • the catalyst is sulfamic acid, methylsulfonic acid, p-toluenesulfonic acid, clay-loaded sulfuric acid, diatomite-loaded sulfuric acid, clay-loaded phosphotungstic acid, diatomite-loaded phosphotungstic acid, phosphomolybdic acid, At least one of heteropoly acid and sulfonic acid resin; the catalyst can also be a solid super acid.
  • the temperature of the esterification reaction is 70-100°C, and the time is 8-10 hours.
  • step (2) after the esterification reaction, when the acid value is qualified, the reaction is stopped and the solvent is removed to obtain trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate; wherein, qualified acid value means The acid value is less than 56mgkOH/g, or the reduction is less than 2mgkOH/g per hour.
  • the molar ratio of trimethylolpropane to propylene oxide and ethylene oxide is 1:(0-6):(6-30); when preparing trimethylolpropane polyethylene
  • the amount of propylene oxide can be 0.
  • the molar ratio of the trimethylolpropane polyoxyethylene polyoxypropylene ether and acrylic monomer is 1:3-3.6;
  • the dosage of the polymerization inhibitor is 0.1%-0.2% of the total monomer mass
  • the dosage of the catalyst is 1%-2% of the total mass of monomers; wherein the total mass of monomers refers to the total mass of trimethylolpropane polyoxyethylene polyoxypropylene ether and acrylic monomers.
  • the starting temperature of the free radical polymerization reaction is 20-30°C; the reaction time is 1-3h;
  • the mass ratio of the hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether, unsaturated carboxylic acid, trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate, initiator and chain transfer agent is 1: ( 0.06-0.18): (0.0004-0.01): (0.002-0.009): (0.0015-0.006).
  • the initiator is a Fenton initiating system
  • the Fenton initiating system is a cuprous salt-hydrogen peroxide-reducing agent system
  • the reducing agent is at least one of VC, sodium bisulfite, E51, sodium bisulfite and sodium hypophosphite;
  • the mass ratio of hydrogen peroxide solution, cuprous salt and reducing agent in the Fenton initiating system is 1: (0.01-0.2): (0.1-1).
  • the unsaturated carboxylic acid is at least one of acrylic acid, methacrylic acid, itaconic acid and maleic acid;
  • the chain transfer agent is at least one of thioglycolic acid, mercaptopropionic acid, mercaptoethanol, and sodium hypophosphite.
  • the specific steps for preparing hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether include:
  • the unsaturated alcohol is at least one of 4-hydroxybutyl vinyl ether, ethylene glycol monovinyl ether or diethylene glycol monovinyl ether.
  • step (3) before obtaining the cross-linked polycarboxylate water-reducing agent, a step of adjusting the pH to 6-7 is also included;
  • the pH regulator is an organic amine
  • the organic amine is trihydroxypropylhydroxyethylethylenediamine and/or tetrahydroxypropylethylenediamine.
  • the present application provides a cross-linked polycarboxylic acid water-reducing agent prepared by the above preparation method.
  • the preparation method of the cross-linked polycarboxylate water-reducing agent includes (1) preparing hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether; (2) preparing trimethylolpropane polyoxyethylene Oxyethylene polyoxypropylene ether triacrylate; (three) cross-linking produced by free radical polymerization of hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether and trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate Type polycarboxylate water reducing agent.
  • the reaction rate of this polymerization process is controllable, and the exotherm is gentle and stable. It avoids phenomena such as local explosion caused by high temperature during the polymerization reaction.
  • Trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate is used as a cross-linking agent to polymerize with hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether.
  • trimethylolpropane polyoxyethylene polyoxyethylene triacrylate Oxypropylene ether triacrylate cross-linking agent is trifunctional, has large steric hindrance and can ensure dimensional stretch. It has suitable spatial chemical structure and polymerization with hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether.
  • the two cooperate with each other can participate in the polymerization reaction as an effective reaction medium, reduce the temperature of the polymerization reaction, increase the reaction polymerization rate, effectively control the reaction efficiency, and ensure that the viscosity of the system will not increase sharply during the synthesis process.
  • the obtained cross-linked polycarboxylate water-reducing agent has a polyether cross-linked structure with matching lengths and forms a good extended conformation.
  • the water-reducing agent can exert a good steric hindrance effect after being adsorbed to the cement particles and continue to Provide dispersion ability to significantly improve the collapse-preserving effect of the water-reducing agent, and synthesize a polycarboxylate water-reducing agent with both high water-reducing performance and high collapse-preserving performance.
  • carboxylate groups can be introduced into the main chain of the polycarboxylate superplasticizer.
  • the carboxylate groups can slowly hydrolyze and release carboxyl groups in the alkaline environment of cement.
  • the group can be adsorbed to the cement, thus ensuring that the water-reducing agent is more firmly adsorbed on the cement particles and not easily adsorbed by the soil, and achieves a good collapse-preserving effect through slow release.
  • This application provides a method for preparing a water-reducing agent.
  • a method of first alkoxylation and then esterification can be used to improve the conversion rate of the product.
  • the problem of self-polymerization is not easy to occur during the chemical synthesis process. There is no waste water and residue generated during the entire synthesis process, and there is no need for alkali washing, water washing and other post-processing processes. It can be used directly after the esterification reaction; it overcomes the problem of preparing trimethylol in the existing technology.
  • Hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether can introduce methyl-terminated hydrophobic groups into the long chain of the water-reducing agent polyether, effectively reducing the HLB value of the polycarboxylate water-reducing agent and making the HLB value smaller. It will then reduce the ability of polyether long chains to associate water, thereby releasing more free water and effectively reducing the viscosity of concrete.
  • reaction product can be directly used in the next polymerization reaction, saving energy and consumption, being green and environmentally friendly, and omitting the steps of water washing and alkali washing after the esterification reaction in the prior art.
  • the molecular weight of the cross-linked polycarboxylic acid water-reducing agent that can be obtained in this application is 10,000-50,000; when the solid content of the cross-linked polycarboxylic acid water-reducing agent is 35-45%, the viscosity is 500-1000 mPa ⁇ s.
  • the preparation method of the cross-linked polycarboxylate water-reducing agent provided by this application which uses hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether, hydroxymethylpropane polyoxyethylene polyoxypropylene ether triacrylate and unsaturated carboxylic acid, under the action of initiators and chain transfer agents, can form an alkane main chain and a hydrophilic polyether side chain molecular structure with carboxylic acid groups, further ensuring that the water-reducing agent can be firmly adsorbed on the cement particles. , not easily adsorbed by soil, and achieved better collapse protection effect.
  • High conversion rate on the other hand, it can control the molecular weight and molecular weight distribution of the polymer, adjust the spatial configuration of the cross-linked structure, avoid intertwining between chains, ensure the formation of a good extended conformation, and make the space of the dendritic polycarboxylate water-reducing agent
  • the steric hindrance effect synergizes with the electrostatic repulsion of the carboxylic acid groups on the polycarboxylate superplasticizer chain to hinder and destroy the flocculation structure of the cement particles, thereby saving the amount of cement while ensuring the workability and strength of the concrete and improving the Improve the application performance of water reducing agent.
  • the preparation method of the cross-linked polycarboxylate water-reducing agent provided in this application The Fenton initiator system used in this application has appropriate activation energy and can match the melting temperature of the polyether composition to initiate polymerization under normal temperature conditions. Reaction, and the reaction rate is appropriate, can avoid side reactions caused by excessive heat release due to too fast reaction rate, ensuring the performance of polycarboxylate water-reducing agent.
  • This application can choose a cuprous Fenton initiating system. Changes in ambient temperature have basically no impact on product stability. Using a cuprous Fenton initiating system as the initiator in this application can improve the stability of the water-reducing agent product. Different batches can obtain The product performance gap is small.
  • This application can choose the cuprous chloride Fenton initiating system. Changes in ambient temperature have basically no impact on product stability. Using the cuprous chloride Fenton initiating system as the initiator in this application can improve the batch stability of the water-reducing agent product. The performance difference between products obtained from different batches is small.
  • Specific embodiments provide a preparation method of cross-linked polycarboxylate water-reducing agent, including the following steps:
  • the initial temperature of the polymerization reaction is 20-30°C; solution A includes unsaturated carboxylic acid, chain transfer agent and water, and may also include part of the reducing agent in the Fenton initiating system; solution B includes part or all of the reducing agents in the Fenton initiating system .
  • This embodiment provides a cross-linked polycarboxylate water-reducing agent and a preparation method thereof.
  • the preparation method includes the following steps:
  • step (2) Add 350g of the hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether obtained in step (1), 0.5g TMPEPTA and 350g water into the flask, then slowly add 40% sodium hydroxide aqueous solution to neutralize to pH 5 -5.5, add 0.15g cuprous chloride and 1.2g 30% hydrogen peroxide in sequence, stir to dissolve, then at room temperature (25°C ⁇ 2°C), add solution A and solution B dropwise, solution A at the same time while stirring The dropping time of solution B is 60min, and the dropping time of solution B is 70min. After the dripping is completed, add tetrahydroxyethylethylenediamine to adjust the pH to 6, add water to dilute to obtain a cross-linked polycarboxylic acid water-reducing solid content of 40%. agent.
  • This embodiment provides a cross-linked polycarboxylate water-reducing agent and a preparation method thereof.
  • the preparation method includes the following steps:
  • the pH of the product is adjusted to 6-7 to produce hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether with an average molecular weight of 2000; among which, ethylene oxide and propylene oxide are added to the reaction kettle under anaerobic conditions. middle.
  • step (2) Add 350g of the hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether obtained in step (1), 0.5g TMPEPTA and 350g water into the flask, then slowly add 40% sodium hydroxide aqueous solution to neutralize to pH 5 -5.5, add 0.15g cuprous chloride and 1.2g 30% hydrogen peroxide in sequence, stir to dissolve, then at room temperature (25°C ⁇ 2°C), add solution A and solution B dropwise, solution A at the same time while stirring The dropping time of solution B is 60min, and the dropping time of solution B is 70min. After the dripping is completed, add tetrahydroxyethylethylenediamine to adjust the pH to 6, add water to dilute to obtain a cross-linked polycarboxylic acid water-reducing solid content of 40%. agent.
  • This embodiment provides a cross-linked polycarboxylate water-reducing agent and a preparation method thereof.
  • the preparation method includes the following steps:
  • the pH of the product is adjusted to 6-7 to produce hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether with an average molecular weight of 3000; among which, ethylene oxide and propylene oxide are added to the reactor under anaerobic conditions. middle.
  • step (2) Add 450g of the hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether obtained in step (1), 0.5g TMPEPTA and 350g water into the flask, then slowly add 40% sodium hydroxide aqueous solution to neutralize to pH 5 -5.5, add 0.15g cuprous chloride and 1.2g 30% hydrogen peroxide in sequence, stir to dissolve, then at room temperature (25°C ⁇ 2°C), add solution A and solution B dropwise, solution A at the same time while stirring The dropping time of solution B is 60min, and the dropping time of solution B is 70min. After the dripping is completed, add tetrahydroxyethylethylenediamine to adjust the pH to 6, add water to dilute to obtain a cross-linked polycarboxylic acid water-reducing solid content of 40%. agent.
  • This embodiment provides a cross-linked polycarboxylate water-reducing agent and a preparation method thereof.
  • the preparation method includes the following steps:
  • step (2) Add 550g of 4-hydroxybutyl vinyl polyoxyethylene polyoxypropylene ether obtained in step (1), 0.9g TMPEPTA and 550g water into the flask, then slowly add 6g of 40% sodium hydroxide aqueous solution to neutralize to pH is 5-5.5, add 0.3g cuprous sulfate and 2.2g 30% hydrogen peroxide in sequence, stir to dissolve, then at room temperature (25°C ⁇ 2°C), add solution A and solution B dropwise while stirring. The dripping time of solution A is 60 minutes, and the dripping time of solution B is 65 minutes. After the dripping is completed, add tetrahydroxyethylethylenediamine to adjust the pH to 6 to obtain a cross-linked polycarboxylate water-reducing agent.
  • This embodiment provides a cross-linked polycarboxylate water-reducing agent and a preparation method thereof.
  • the difference from Example 3 is that the same molar amount of ferrous sulfate is used instead of cuprous chloride, and the others are the same.
  • This comparative example provides a polycarboxylate water-reducing agent.
  • step (2) is eliminated and trimethylolpropane polyoxyethylene polyoxypropylene ether triacrylate is not added in step (3).
  • Others are the same as Embodiment 1; including the following steps:
  • step (2) Add 350g of the hydroxyalkyl-terminated vinyl polyoxypropylene polyoxyethylene ether obtained in step (1) and 350g of water into the flask, then slowly add 40% sodium hydroxide aqueous solution to neutralize until the pH is 5-5.5, and then Add 0.15g cuprous chloride and 1.2g 30% hydrogen peroxide, stir to dissolve, then at room temperature (25°C ⁇ 2°C), add solution A and solution B dropwise at the same time while stirring, the dripping time of solution A is 60 minutes, and the dripping time of solution B is 70 minutes. After the dripping is completed, add tetrahydroxyethylethylenediamine to adjust the pH to 6, add water to dilute it to obtain a polycarboxylate water-reducing agent with a solid content of 40%.
  • This comparative example provides a polycarboxylate water-reducing agent.
  • the difference between the water-reducing agent and Example 1 is that trimethylolpropane trimethacrylate-CAS:3290-92-4 is used instead of the water-reducing agent in Example 1.
  • TMPEPTA, other conditions are the same as in Example 1.
  • This test example provides the performance test and test results of the polycarboxylate water-reducing agent prepared in each embodiment and comparative example.
  • the performance test method is as follows:
  • the slurry test refers to the standard GB/T 8077-2000 "Test Methods for Homogeneity of Concrete Admixtures", and the concrete test refers to GB/T 50080-2002 "Standards for Test Methods for Performance of Ordinary Concrete Mixtures”.
  • the commercially available water-reducing agents are the water-reducing and collapse-preserving polycarboxylate water-reducing agent PC-1 (brand name: BASF RHEOPLUS 410) with a solid content of 40% and the water-reducing and collapse-preserving polycarboxylic acid water-reducing agent PC- 2 (the brand name is SILKROAD SRE110);
  • the cement uses conch cement P.O 42.5 grade; the amount of water-reducing agent added to the cement slurry is 0.2% of the cement weight, and the water-cement ratio is 0.29; the amount of water-reducing agent added to the concrete is relative to 0.4% by weight of cement in concrete.
  • the water reduction rate, slump and slump time loss of each water reducing agent are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyethers (AREA)

Abstract

本申请属于混凝土外加剂制备技术领域,具体涉及一种交联型聚羧酸减水剂及其制备方法。该方法包括(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚;(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯;(三)羟烷基端乙烯基聚氧丙烯聚氧乙烯醚与三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯自由基聚合反应制得交联型聚羧酸减水剂。该聚合过程反应速率可控,放热温和平稳,避免了聚合反应过程中由于高温导致的局部爆聚等现象,能平稳的控制反应速度,在常温条件下得到具有高减水率、高保塌、包裹性好和和易性优异的聚羧酸减水剂,将该减水剂用于混凝土中,不会对混凝土性能产生不利影响,且该减水剂的制备方法适合大多数生产线。

Description

一种交联型聚羧酸减水剂及其制备方法
交叉引用
本申请要求在2022年3月30日提交中国国家知识产权局、申请号为202210329159.2、发明名称为“一种交联型聚羧酸减水剂及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于混凝土外加剂制备技术领域,具体涉及一种交联型聚羧酸减水剂及其制备方法。
背景技术
减水剂(又称超塑化剂,Superplasticizer)是混凝土外加剂中用量最多的一种,其主要作用是通过表面活性作用、络合作用、静电排斥力或立体排斥力等来阻碍或破坏水泥颗粒的絮凝结构,从而大幅度改善混凝土的和易性以及流动性,达到节约水泥用量、减少混凝土的拌合用水量、提高混凝土强度的效果。聚羧酸减水剂作为减水剂第三代产品,由于具有掺量低、减水率高、分子结构设计自由度大以及环境友好等优势迅速占据了大部分市场,广泛应用于高铁、公路、桥梁、隧道和高层建筑等工程中。
聚羧酸系减水剂是一种梳型结构的高分子聚合物,由不饱和聚醚大单体和不饱和小单体采取自由基共聚制得。聚醚大单体的应用经历了下面几个阶段:MPEGMA(甲氧基聚氧乙烯醚甲基丙烯酸酯)、APEG(烯丙基聚氧乙烯醚)、SPEG(甲基烯丙醇聚氧乙烯醚)和TPEG(异戊烯醇聚氧乙烯醚)。目前,SPEG和TPEG占据了中国聚羧酸市场90%以上的市场份额。
近年来,一种新型的羟基烷基端乙烯基聚氧乙烯醚被各个研究机构广泛关 注,如EPEG(羟乙基乙烯基聚氧乙烯醚、VOPEG(羟丁基乙烯基聚氧乙烯醚),这是因为该聚合物分子链中端基双键的碳原子与氧原子相连,具有非常高的双键共聚活性,合成聚羧酸减水剂时与小单体的活性匹配度更佳。同时,由于端基双键位置没有异构,合成的聚羧酸减水剂分子侧链梳状结构更舒展,自由度更好。所以,通过配方设计,使用这类大单体合成的聚羧酸减水剂可以具有更好的混凝土应用效果,尤其在高温、高含泥量等苛刻环境下。
但是,这类新型单体活性很高,聚合时间短,在聚合反应过程中放热剧烈,随着反应温度的升高,反应体系浓度增加,活性共聚单体的分散均匀性变差,局部易产生自聚和局部暴聚等副反应,使合成的聚羧酸减水剂性能严重下降。另外,Plank团队报道,这类单体稳定性差,聚合过程中,由于碳碳双键连接给电子基团,端乙烯基醚活性非常高,反应温度大于35℃后这类单体很容易分解,分解产物中释放出甲醛,对人体健康和环境造成极大的影响。
目前已公开的制备这类减水剂的合成工艺均需要复杂、苛刻的工艺条件,如整个反应过程需要超低温且反应体系对pH值要求严苛,整个聚合过程需要控制温度在15-30℃才能合成出性能优异的减水剂,对设备要求很高,合成过程能耗和工艺控制及其复杂。又由于目前多数减水剂生产厂家设备无法达到生产这类减水剂母液的条件,从而大大限制了它们的推广和应用。
在天然砂石资源枯竭、政府禁采的情况下,机制砂等劣质高含泥量混凝土材料成为无奈的选择。然而目前的TPEG和SPEG并不能有效的适应,导致混凝土出现坍损快、粘度大等问题。针对目前的市场情况,有必要开发一种新型聚羧酸系减水剂及其制备方法。
交联型或星型聚合物能够兼具优异流动性和保塌性,有很大潜能替代传统的梳状聚羧酸减水剂,成为越来越多学者研究内容之一。但是交联型或星型聚合物通常具有较多的官能度,活性高,在合成过程中分子量增长很快,体系粘 度较大,放热高,很难控制其聚合速度,产品稳定性较差,影响了其在混凝土中的应用。因此,开发研究一种新型交联型或星型聚羧酸聚合物对混凝土领域具有重大意义。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中性能优异的羟基烷基端乙烯基聚氧乙烯醚聚羧酸减水剂需要在低温条件下制得,对设备要求高,能耗高,不能兼具高减水率和塌落度损失等问题;以及,现有技术中,制备交联型聚羧酸减水剂的工艺过程中聚合速度难以控制,产品稳定性较差等问题,从而提供了一种交联型聚羧酸减水剂及其制备方法。
为此,本申请提供了以下技术方案。
本申请提供了一种交联型聚羧酸减水剂的制备方法,包括以下步骤,
(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚;所述羟烷基端乙烯基聚氧丙烯聚氧乙烯醚具有如下结构式,
Figure PCTCN2022105554-appb-000001
其中,R 1为氢或甲基,R 2为C 1-C 4的亚烷基,R 3为氢、甲基或乙基,m为0-6,n为10-150;
(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯,具体步骤包括,三羟甲基丙烷依次经烷氧基化、酯化反应后得到三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯;
所述三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯具有如下结构式,
Figure PCTCN2022105554-appb-000002
其中,b 1、b 2、b 3均为0-4,0≤b 1+b 2+b 3≤6;a 1、a 2、a 3为6-20,6≤a 1+a 2+a 3≤30。
(三)制备交联型聚羧酸减水剂
羟烷基端乙烯基聚氧丙烯聚氧乙烯醚与三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯自由基聚合反应制得交联型聚羧酸减水剂。
所述步骤(二)中,制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯的具体步骤包括,
(1)三羟甲基丙烷依次与环氧乙烷、环氧丙烷进行烷氧基化反应,得到三羟甲基丙烷聚氧乙烯聚氧丙烯醚;
(2)三羟甲基丙烷聚氧乙烯聚氧丙烯醚与丙烯酸类单体酯化反应后,得到三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯;
其中,三羟甲基丙烷聚氧乙烯聚氧丙烯醚具有如下结构式,
Figure PCTCN2022105554-appb-000003
其中,b 1、b 2、b 3均为0-4,0≤b 1+b 2+b 3≤6;a 1、a 2、a 3为6-20,6≤a 1+a 2+a 3≤30。
所述步骤(2)中,酯化反应前还包括加入阻聚剂和催化剂的步骤;
所述阻聚剂为对羟基苯甲醚、对苯二酚、吩噻嗪、氯化亚铜和甲酸铜中的至少一种;
所述催化剂为氨基磺酸、甲基磺酸、对甲苯磺酸、白土负载的硫酸、硅藻土负载的硫酸、白土负载的磷钨酸、硅藻土负载的磷钨酸、磷钼酸、杂多酸和磺酸树脂中的至少一种;所述催化剂还可以是固体超强酸。
所述酯化反应的温度为70-100℃,时间为8-10h。
所述步骤(2)中,酯化反应后,当酸值合格后,停止反应,脱除溶剂,得到三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯;其中,酸值合格是指酸值<56mgkOH/g,或降低量每小时低于2mgkOH/g。
所述步骤(二)中,所述三羟甲基丙烷与环氧丙烷、环氧乙烷的摩尔比为1:(0-6):(6-30);在制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯时,三羟甲基丙烷依次与环氧乙烷、环氧丙烷反应时,环氧丙烷的用量可以为0。
所述三羟甲基丙烷聚氧乙烯聚氧丙烯醚和丙烯酸类单体的摩尔比为1:3-3.6;
所述阻聚剂的用量为单体总质量的0.1%-0.2%;
所述催化剂的用量为单体总质量的1%-2%;其中,单体总质量是指三羟甲基丙烷聚氧乙烯聚氧丙烯醚与丙烯酸类单体的总质量。
所述步骤(三)中,
羟烷基端乙烯基聚氧丙烯聚氧乙烯醚与三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯混合后,加入引发剂、不饱和羧酸、链转移剂,通过水溶液自由基聚合反应,得到交联型聚羧酸减水剂;
其中,所述自由基聚合反应的起始温度为20-30℃;反应的时间为1-3h;
所述羟烷基端乙烯基聚氧丙烯聚氧乙烯醚、不饱和羧酸、三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯、引发剂和链转移剂的质量比为1:(0.06-0.18):(0.0004-0.01):(0.002-0.009):(0.0015-0.006)。
所述引发剂为芬顿引发体系;
可选地,所述芬顿引发体系为亚铜盐-过氧化氢-还原剂体系;
所述还原剂为VC、吊白块、E51、亚硫酸氢钠和次亚磷酸钠中的至少一种;
芬顿引发体系中的过氧化氢溶液、亚铜盐和还原剂的质量比为1:(0.01-0.2):(0.1-1)。
所述不饱和羧酸为丙烯酸、甲基丙烯酸、衣康酸和马来酸中的至少一种;
所述链转移剂为巯基乙酸、巯基丙酸、巯基乙醇、次磷酸钠中的至少一种。
所述步骤(一)中,制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚的具体步骤包括,
以不饱和醇作为起始剂与碱催化剂混合,在无氧环境下依次加入环氧丙烷和环氧乙烷,控制反应温度为100-130℃,聚合反应后得到羟烷基端乙烯基聚氧丙烯聚氧乙烯醚;其中,所述环氧丙烷和环氧乙烷的摩尔比为(0-6):(10-150);不饱和醇的用量根据羟烷基端乙烯基聚氧丙烯聚氧乙烯醚的设计分子量以及环氧乙烷、环氧丙烷的摩尔数确定的,碱催化剂用量为羟烷基端乙烯基聚氧丙烯聚氧乙烯醚质量的0.1-0.5%。
所述不饱和醇为4-羟丁基乙烯基醚、乙二醇单乙烯基醚或二乙二醇单乙烯基醚中的至少一种。
所述步骤(三)中,得到所述交联型聚羧酸减水剂前还包括调pH至6-7的步骤;
pH调节剂为有机胺;
所述有机胺为三羟丙基羟乙基乙二胺和/或四羟丙基乙二胺。
本申请提供了一种上述制备方法制得的交联型聚羧酸减水剂。
本申请技术方案,具有如下优点:
1.本申请提供的交联型聚羧酸减水剂的制备方法,该方法包括(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚;(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯;(三)羟烷基端乙烯基聚氧丙烯聚氧乙烯醚与三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯自由基聚合反应制得交联型聚羧酸减水剂。该聚合过程反应速率可控,放热温和平稳,避免了聚合反应过程中由于高温导致的局部爆聚等现象,能平稳的控制反应速度,在常温条件下生产得到一种具有高减水率,同时具备高保塌、包裹性好和和易性优异的聚羧酸减水剂,将该减水剂用于混凝土中,不会对混凝土性能产生不利影响;该减水剂的制备方法适合大多数生产线,对设备要求不苛刻,易实现工业化生产,还克服了现有技术中在基于端乙烯基聚氧乙烯醚为单体制备减水剂时,先将温度降至15℃后再升温至25-30℃,以及由于反应快、放热难控制,对生产设备的降温和换热效率要求高,生产稳定性难以保障,对pH、设备等要求严格的相关缺陷。
三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯作为交联剂,与羟烷基端乙烯基聚氧丙烯聚氧乙烯醚发生聚合反应,一方面,三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯交联剂为三官能度,有较大空间位阻的同时可以保证空间舒展度,与羟烷基端乙烯基聚氧丙烯聚氧乙烯醚具有适宜的空间化学结构和聚合反应活化能,两者互相配合,能够作为有效的反应媒介参与聚合反应,降低了聚合反应的温度、提高了反应聚合率、有效控制了反应效率,保证了合成过程中体系粘度不会急剧增长,得到的交联型聚羧酸减水剂具有长短互相搭配的聚醚交联结构,形成了良好的伸展构象,减水剂在吸附到水泥颗粒上后能够发挥 较好的空间位阻效应,持续提供分散能力,使减水剂的保塌效果显著提升,合成同时具有高减水性能和高保塌性能的聚羧酸减水剂。
另一方面,可以在聚羧酸减水剂的主链上引入更多的羧酸酯类基团,羧酸酯类基团在水泥的碱性环境中能够缓慢水解释放出羧基基团,羧基基团能吸附到水泥上,从而保证了减水剂更牢固地吸附在水泥颗粒上而不容易被泥土吸附,并通过缓慢释放获得良好的保塌效果。
本申请提供减水剂制备方法,在制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯时,采用先烷氧基化,后酯化的方法,可以提高产品的转化率,在酯化合成过程中不易出现自聚的问题,整个合成过程无废水废渣产生,且无需碱洗、水洗等后处理过程,酯化反应后即可直接使用;克服了现有技术在制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯时要采用特定催化剂的问题。
羟烷基端乙烯基聚氧丙烯聚氧乙烯醚可以在减水剂聚醚长链中引入端甲基的憎水基团,有效降低了聚羧酸减水剂的HLB值,HLB值变小后会降低聚醚长链缔合水的能力,从而释放出更多的自由水,有效降低混凝土的黏度。
本申请提供的减水剂的制备过程中没有废水废渣,反应产物可直接用于下一步聚合反应,节能节耗,绿色环保,省略了现有技术酯化反应后需要水洗、碱洗的步骤。
本申请能得到的交联型聚羧酸减水剂的分子量为10000-50000;当交联型聚羧酸减水剂固含量为35-45%时,粘度为500-1000mPa·s。
2.本申请提供的交联型聚羧酸减水剂的制备方法,该方法通过羟烷基端乙烯基聚氧丙烯聚氧乙烯醚、羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯和不饱和羧酸在引发剂、链转移剂的作用下,可以形成具有羧酸基团的烷烃类主链和亲水聚醚侧链分子结构,进一步保证了减水剂能牢固吸附在水泥颗粒,而不容易被泥土吸附,获得了较好的保塌效果。
通过对羟烷基端乙烯基聚氧丙烯聚氧乙烯醚、羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯、引发剂、链转移剂的质量比进行限定,一方面保证了聚合反应的高转化率;另一方面能够控制聚合物分子量和分子量分布,调整交联结构的空间构型,避免链之间相互缠绕,保证形成良好的伸展构象,使树状聚羧酸减水剂的空间位阻效应与聚羧酸减水剂链上的羧酸基团的静电斥力协同作用,阻碍并破坏水泥颗粒的絮凝结构,从而节约水泥用量的同时,保证了混凝土的活易性和强度,提高了减水剂的应用性能。
3.本申请提供的交联型聚羧酸减水剂的制备方法,本申请采用的芬顿引发剂体系具有适宜的活化能,能够配合聚醚组合物的融化温度,在常温条件下引发聚合反应,且反应速率适宜,能够避免过快的反应速率剧烈放热导致的副反应,保证了聚羧酸减水剂的性能。本申请可选亚铜芬顿引发体系,环境温度变化对产品稳定性基本无影响,以亚铜芬顿引发体系作为本申请的引发剂,可以提高减水剂产品的稳定性,不同批次得到的产品性能差距小。
本申请可选氯化亚铜芬顿引发体系,环境温度变化对产品稳定性基本无影响,以氯化亚铜芬顿引发体系作为本申请的引发剂,可以提高减水剂产品的批次稳定性,不同批次得到的产品性能差距小。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
具体实施方式提供了一种交联型聚羧酸减水剂的制备方法,包括如下步骤,
(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚
以不饱和醇作为起始剂,将其放入高压反应釜中,加入碱催化剂混合,通入氮气置换,在无氧环境下中加入环氧丙烷控制反应温度为100-130℃,反应完全后加入环氧乙烷,待环氧乙烷反应完全后将反应釜降温,加酸中和反应,调pH至6-7,得到羟烷基端乙烯基聚氧丙烯聚氧乙烯醚。
(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯
(1)在反应釜中加入三羟基丙烷和碱催化剂,用氮气置换反应釜内的空气,控制釜内温度为100-130℃,加入环氧乙烷熟化反应反应,然后加入环氧丙烷熟化反应,然后调pH至5-6,得到三羟甲基聚氧乙烯聚氧丙烯醚;
(2)将三羟甲基聚氧乙烯聚氧丙烯醚投加到酯化反应瓶内,搅拌均匀,升温,然后加入阻聚剂、溶剂、催化剂和丙烯酸类单体,升温至70-100℃酯化反应,待酸值合格后停止反应,酸值合格是指酸值<56mgkOH/g,或降低量每小时低于2mgkOH/g,脱除溶剂环己烷,得到交联剂三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯。
(三)制备交联型聚羧酸减水剂
羟烷基端乙烯基聚氧丙烯聚氧乙烯醚与三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯混合,调pH为5-6后,依次加入芬顿引发体系中的亚铜盐和过氧化氢,然后同时滴加溶液A和溶液B,进行自由基聚合反应,滴加结束后,调pH和固含量后,得到交联型聚羧酸减水剂,聚合反应的初始温度为20-30℃;其中,溶液A包括不饱和羧酸、链转移剂和水,还可以包括芬顿引发体系中的部分还原剂;溶液B包括芬顿引发体系中的部分还原剂或全部还原剂。
实施例1
本实施例提供了一种交联型聚羧酸减水剂及其制备方法,制备方法包括以下步骤,
(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚
将100g乙二醇单乙烯基醚和0.25g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜升温至110℃,在无氧环境下向反应釜通入160g环氧丙烷,熟化反应1h,反应完全后在反应釜中加入2000g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜降温至90℃,加入乙酸,进行中和反应,调pH至6-7,得到羟烷基端乙烯基聚氧丙烯聚氧乙烯醚,平均分子量为2000;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯
(1)在反应釜中加入125g三羟甲基丙烷和0.125g KOH碱催化剂,用氮气置换反应釜内的空气,控制釜内温度为100℃,加入460g环氧乙烷,此时控制反应釜内温度为130℃,压力为0.35MPa,然后加入153g环氧丙烷,熟化反应1h,然后加入乙酸,调pH至5-6,反应釜内脱气,得到平均分子量为750的三羟甲基聚氧乙烯聚氧丙烯醚(TMPEP);
(2)取120g TMPEP投加到酯化反应瓶内,搅拌均匀,缓慢升温至65±5℃,在酯化反应瓶内依次投加0.18g对羟基苯甲醚、85g环己烷、1.9g甲基磺酸和36g丙烯酸,升温至78±3℃后开始回流,在8h后开始取样,反应8h-10h间,每隔1h取样一次,反应10h后每隔0.5h取样一次,检测样品酸值,如果酸值<56mgkOH/g,或降低量每小时低于2mgkOH/g,将反应釜降温至70℃,停止反应,脱除溶剂环己烷,得到交联剂三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯(TMPEPTA),平均分子量为960。
(三)制备交联型聚羧酸减水剂
(1)取28g丙烯酸、0.75g巯基丙酸和56g水配制得到混合溶液A;取1.2g E51和60g水配制得到混合溶液B,备用;
(2)在烧瓶中加入350g步骤(一)得到的羟烷基端乙烯基聚氧丙烯聚氧乙烯醚、0.5g TMPEPTA和350g水,然后缓慢加入40%氢氧化钠水溶液中和至pH为5-5.5,依次加入0.15g氯化亚铜和1.2g 30%过氧化氢,搅拌溶解,然后在室温条件下(25℃±2℃),边搅拌边同时滴加溶液A和溶液B,溶液A的滴加时间为60min,溶液B的滴加时间为70min,滴加结束后,加入四羟乙基乙二胺调pH至6,加水稀释得到固含量为40%交联型聚羧酸减水剂。
实施例2
本实施例提供了一种交联型聚羧酸减水剂及其制备方法,制备方法包括以下步骤,
(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚
取100g乙二醇单乙烯基醚和0.25g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜内温度升温至110℃,开始向反应釜内通入160g环氧丙烷,熟化反应1h,反应完全后在反应釜中加入2000g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜内温度降至90℃,加入乙酸,进行中和反应,产品调pH至6-7,制得羟乙基端乙烯基聚氧丙烯聚氧乙烯醚,平均分子量为2000;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯
(1)在反应釜中加入125g三羟甲基丙烷和0.125g KOH碱催化剂,用氮气置换反应釜内的空气,控制釜内温度为100℃,加入950g环氧乙烷,此时控制反应釜内温度130℃,压力为0.35MPa,然后加入153g环氧丙烷,熟化反应1h,然后加入乙酸,调pH至5-6,反应釜内脱气,得到分子量为1200的三羟 甲基聚氧乙烯聚氧丙烯醚(TMPEP);
(2)取120g TMPEP投加到酯化反应瓶内,搅拌均匀,缓慢升温至65±5℃,在酯化反应瓶内依次投加0.18g对羟基苯甲醚、85g环己烷、1.8g甲基磺酸和23g丙烯酸,升温至78±3℃后开始回流,在8h后开始取样,反应8h-10h间,每隔1h取样一次,反应10h后每隔0.5h取样一次,检测样品酸值,如果酸值<56mgkOH/g,或降低量每小时低于2mgkOH/g,将反应釜降温至70℃,停止反应,脱除溶剂环己烷,得到交联剂三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯(TMPEPTA),平均分子量为1416。
(三)制备交联型聚羧酸减水剂
(1)取38g丙烯酸、0.8g巯基丙酸和56g水配制得到混合溶液A;取0.9g E51和60g水配制得到混合溶液B,备用;
(2)在烧瓶中加入350g步骤(一)得到的羟烷基端乙烯基聚氧丙烯聚氧乙烯醚、0.5g TMPEPTA和350g水,然后缓慢加入40%氢氧化钠水溶液中和至pH为5-5.5,依次加入0.15g氯化亚铜和1.2g 30%过氧化氢,搅拌溶解,然后在室温条件下(25℃±2℃),边搅拌边同时滴加溶液A和溶液B,溶液A的滴加时间为60min,溶液B的滴加时间为70min,滴加结束后,加入四羟乙基乙二胺调pH至6,加水稀释得到固含量为40%交联型聚羧酸减水剂。
实施例3
本实施例提供了一种交联型聚羧酸减水剂及其制备方法,制备方法包括以下步骤,
(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚
取88g乙二醇单乙烯基醚和0.18g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜内温度升温至110℃,开始向反应釜内通入120g 环氧丙烷,熟化反应1h,反应完全后在反应釜中加入2600g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜内温度降至90℃,加入乙酸,进行中和反应,产品调pH至6-7,制得羟乙基端乙烯基聚氧丙烯聚氧乙烯醚,平均分子量为3000;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯
同实施例2。
(三)制备交联型聚羧酸减水剂
(1)取50g丙烯酸、1.45g巯基丙酸和56g水配制得到混合溶液A;取0.9g E51和60g水配制得到混合溶液B,备用;
(2)在烧瓶中加入450g步骤(一)得到的羟烷基端乙烯基聚氧丙烯聚氧乙烯醚、0.5g TMPEPTA和350g水,然后缓慢加入40%氢氧化钠水溶液中和至pH为5-5.5,依次加入0.15g氯化亚铜和1.2g 30%过氧化氢,搅拌溶解,然后在室温条件下(25℃±2℃),边搅拌边同时滴加溶液A和溶液B,溶液A的滴加时间为60min,溶液B的滴加时间为70min,滴加结束后,加入四羟乙基乙二胺调pH至6,加水稀释得到固含量为40%交联型聚羧酸减水剂。
实施例4
本实施例提供了一种交联型聚羧酸减水剂及其制备方法,制备方法包括以下步骤,
(一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚
将150g 4-羟丁基乙烯基醚和0.5g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜升温至110℃,在无氧环境下向反应釜通入210g环氧丙烷,反应1h至反应完全,再在无氧环境下加入3500g环氧乙烷,反应 1h至反应完全,反应釜降温至90℃后加入乙酸,进行中和反应,得到pH为6-7的4-羟丁基乙烯基聚氧乙烯聚氧丙烯醚,平均分子量为3000。
(二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯
同实施例2。
(三)制备交联型聚羧酸减水剂
(1)取45g丙烯酸、0.45gVC、1.6g巯基丙酸和50g水,混合,得到溶液A;取1.9g E51和90g水,混合,得到溶液B;
(2)在烧瓶中加入550g步骤(一)得到的4-羟丁基乙烯基聚氧乙烯聚氧丙烯醚、0.9g TMPEPTA和550g水,然后缓慢加入6g 40%氢氧化钠水溶液中和至pH为5-5.5,依次加入0.3g硫酸亚铜和2.2g 30%过氧化氢,搅拌溶解,然后在室温条件(25℃±2℃)下,边搅拌边同时滴加溶液A和溶液B,溶液A的滴加时间为60min,溶液B的滴加时间为65min,滴加结束后,加入四羟乙基乙二胺调pH至6,得到交联型聚羧酸减水剂。
实施例5
本实施例提供了交联型聚羧酸减水剂及其制备方法,与实施例3的区别在于用相同摩尔量的硫酸亚铁代替氯化亚铜,其它相同。
对比例1
本对比例提供一种聚羧酸减水剂,与实施例1的区别在于,去掉步骤(二),步骤(三)中不加三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯,其它同实施例1;包括如下步骤:
制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚
将100g乙二醇单乙烯基醚和0.25g氢氧化钠加入到高压反应釜中,用氮气 置换三次后,开启搅拌,反应釜升温至110℃,在无氧环境下向反应釜通入160g环氧丙烷,熟化反应1h,反应完全后在反应釜中加入2000g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜降温至90℃,加入乙酸,进行中和反应,调pH至6-7,得到羟烷基端乙烯基聚氧丙烯聚氧乙烯醚,平均分子量为2000;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
制备普通型聚羧酸减水剂
(1)取28g丙烯酸、0.75g巯基丙酸和56g水配制得到混合溶液A;取1.2g E51和60g水配制得到混合溶液B,备用;
(2)在烧瓶中加入350g步骤(一)得到的羟烷基端乙烯基聚氧丙烯聚氧乙烯醚和350g水,然后缓慢加入40%氢氧化钠水溶液中和至pH为5-5.5,依次加入0.15g氯化亚铜和1.2g 30%过氧化氢,搅拌溶解,然后在室温条件下(25℃±2℃),边搅拌边同时滴加溶液A和溶液B,溶液A的滴加时间为60min,溶液B的滴加时间为70min,滴加结束后,加入四羟乙基乙二胺调pH至6,加水稀释得到固含量为40%聚羧酸减水剂。
对比例2
本对比例提供一种聚羧酸减水剂,该减水剂与实施例1的区别在于,用三羟甲基丙烷三甲基丙烯酸酯-CAS:3290-92-4代替实施例1中的TMPEPTA,其它同实施例1。
试验例
本试验例提供了各实施例和对比例制备得到的聚羧酸减水剂的性能测试及测试结果,性能测试方法如下:
净浆试验参照GB/T 8077-2000《混凝土外加剂匀质性试验方法》标准,混凝土试验参照GB/T50080-2002《普通混凝土拌合物性能试验方法标准》。
作为对比的市售减水剂为40%固含量的减水保塌型聚羧酸减水剂PC-1(牌号为:BASF RHEOPLUS 410)和减水保塌型聚羧酸减水剂PC-2(牌号为SILKROAD SRE110);水泥使用海螺水泥P.O 42.5级;在水泥净浆中减水剂添加量为水泥重量的0.2%,水灰比为0.29;在混凝土中减水剂的添加量相对于混凝土中水泥重量的0.4%。各减水剂的减水率、塌落度和塌落经时损失,检测结果如表1所示。
表1各实施例、对比例和市售减水剂的检测结果
Figure PCTCN2022105554-appb-000004
注:表中的“-”代表流动度很小,超出测量范围。
通过表1的实验结果可以看出,本申请制得的聚羧酸减水剂具有高保塌效果,与现有技术中的减水剂相比,保塌效果优异。与对比例1-2相比,说明本申请特定方法制得的减水剂的保塌效果好。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的 限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (10)

  1. 一种交联型聚羧酸减水剂的制备方法,其特征在于,包括以下步骤,
    (一)制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚
    所述羟烷基端乙烯基聚氧丙烯聚氧乙烯醚具有如下结构式,
    Figure PCTCN2022105554-appb-100001
    其中,R 1为氢或甲基,R 2为C 1-C 4的亚烷基,R 3为氢、甲基或乙基,m为0-6,n为10-150;
    (二)制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯
    三羟甲基丙烷依次经烷氧基化、酯化反应后得到三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯;
    所述三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯具有如下结构式,
    Figure PCTCN2022105554-appb-100002
    其中,b 1、b 2、b 3均为0-4,0≤b 1+b 2+b 3≤6;a 1、a 2、a 3为6-20,6≤a 1+a 2+a 3≤30;
    (三)制备交联型聚羧酸减水剂
    羟烷基端乙烯基聚氧丙烯聚氧乙烯醚与三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯自由基聚合反应制得交联型聚羧酸减水剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述步骤(二)中,制备三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯的具体步骤包括,
    (1)三羟甲基丙烷依次与环氧乙烷、环氧丙烷进行烷氧基化反应,得到三羟甲基丙烷聚氧乙烯聚氧丙烯醚;
    (2)三羟甲基丙烷聚氧乙烯聚氧丙烯醚与丙烯酸类单体酯化反应,得到三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯;
    其中,三羟甲基丙烷聚氧乙烯聚氧丙烯醚具有如下结构式,
    Figure PCTCN2022105554-appb-100003
    其中,b 1、b 2、b 3均为0-4,0≤b 1+b 2+b 3≤6;a 1、a 2、a 3为6-20,6≤a 1+a 2+a 3≤30。
  3. 根据权利要求2所述的制备方法,其特征在于,所述步骤(2)中,酯化反应前还包括加入阻聚剂和催化剂的步骤;
    可选地,所述阻聚剂为对羟基苯甲醚,对苯二酚,吩噻嗪,氯化亚铜和甲酸铜中的至少一种;
    可选地,所述催化剂为氨基磺酸,甲基磺酸,对甲苯磺酸,白土负载的硫酸,硅藻土负载的硫酸,白土负载的磷钨酸,硅藻土负载的磷钨酸,磷钼酸, 杂多酸和磺酸树脂中的至少一种;
    可选地,所述酯化反应的温度为70-100℃,时间为8-10h。
  4. 根据权利要求3所述的制备方法,其特征在于,所述步骤(二)中,所述三羟甲基丙烷,环氧丙烷和环氧乙烷的摩尔比为1:(0-6):(6-30);
    可选地,所述三羟甲基丙烷聚氧乙烯聚氧丙烯醚和丙烯酸类单体的摩尔比为1:(3-3.6);
    可选地,所述阻聚剂的用量为单体总质量的0.1%-0.2%;
    可选地,所述催化剂的用量为单体总质量的1%-2%。
  5. 根据权利要求1-4任一项所述的制备方法,其特征在于,所述步骤(三)中,
    羟烷基端乙烯基聚氧丙烯聚氧乙烯醚与三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯混合后,加入引发剂、不饱和羧酸、链转移剂,通过水溶液自由基聚合反应,得到交联型聚羧酸减水剂;
    可选地,所述自由基聚合反应的起始温度为20-30℃;反应的时间为1-3h;
    可选地,所述羟烷基端乙烯基聚氧丙烯聚氧乙烯醚、不饱和羧酸、三羟甲基丙烷聚氧乙烯聚氧丙烯醚三丙烯酸酯、引发剂和链转移剂的质量比为1:(0.06-0.18):(0.0004-0.01):(0.002-0.009):(0.0015-0.006)。
  6. 根据权利要求5所述的制备方法,其特征在于,所述引发剂为芬顿引发体系;
    可选地,所述芬顿引发体系为亚铜盐-过氧化氢-还原剂体系;
    可选地,所述还原剂为VC、吊白块、E51、亚硫酸氢钠和次亚磷酸钠中的至少一种。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述不饱和羧酸为 丙烯酸、甲基丙烯酸、衣康酸和马来酸中的至少一种;
    可选地,所述链转移剂为巯基乙酸、巯基丙酸、巯基乙醇、次磷酸钠中的至少一种。
  8. 根据权利要求1-7任一项所述的制备方法,其特征在于,所述步骤(一)中,制备羟烷基端乙烯基聚氧丙烯聚氧乙烯醚的具体步骤包括,
    以不饱和醇作为起始剂与碱催化剂混合,在无氧环境下依次加入环氧丙烷和环氧乙烷,控制反应温度为100-130℃,聚合反应后得到羟烷基端乙烯基聚氧丙烯聚氧乙烯醚;
    可选地,所述环氧丙烷和环氧乙烷的摩尔比为(0-6):(10-150)。
  9. 根据权利要求1-8任一项所述的制备方法,其特征在于,所述步骤(三)中,得到所述交联型聚羧酸减水剂前还包括调pH至6-7的步骤;
    可选地,pH调节剂为有机胺;
    可选地,所述有机胺为三羟丙基羟乙基乙二胺和/或四羟丙基乙二胺。
  10. 一种权利要求1-9任一项所述制备方法制得的交联型聚羧酸减水剂。
PCT/CN2022/105554 2022-03-30 2022-07-13 一种交联型聚羧酸减水剂及其制备方法 WO2023184785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210329159.2 2022-03-30
CN202210329159.2A CN114736341A (zh) 2022-03-30 2022-03-30 一种交联型聚羧酸减水剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2023184785A1 true WO2023184785A1 (zh) 2023-10-05

Family

ID=82279195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105554 WO2023184785A1 (zh) 2022-03-30 2022-07-13 一种交联型聚羧酸减水剂及其制备方法

Country Status (2)

Country Link
CN (1) CN114736341A (zh)
WO (1) WO2023184785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117534827A (zh) * 2023-12-08 2024-02-09 四川嘉兆丰新材料科技有限公司 一种减水剂用磺酸基封端乙烯基聚醚单体及其合成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736341A (zh) * 2022-03-30 2022-07-12 佳化化学科技发展(上海)有限公司 一种交联型聚羧酸减水剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018456A (ja) * 2008-07-08 2010-01-28 Nippon Shokubai Co Ltd セメント混和剤
CN104583149A (zh) * 2012-09-03 2015-04-29 Lg化学株式会社 包含交联聚羧酸共聚物的水泥组合物添加剂以及包含该添加剂的水泥组合物
CN104710606A (zh) * 2013-12-12 2015-06-17 辽宁奥克化学股份有限公司 一种端烯基聚醚酯及其制备方法、用该聚醚酯制得的减水剂及其制备方法
CN105037650A (zh) * 2015-08-31 2015-11-11 四川大学 三羟甲基丙烷三丙烯酸酯在制备聚羧酸减水剂中的应用
CN105236803A (zh) * 2015-08-31 2016-01-13 四川大学 一种新型聚羧酸减水剂及其制备方法与用途
CN108586672A (zh) * 2018-04-27 2018-09-28 中科广化(重庆)新材料研究院有限公司 一种交联型聚羧酸超塑化剂及其制备方法和应用
CN114736341A (zh) * 2022-03-30 2022-07-12 佳化化学科技发展(上海)有限公司 一种交联型聚羧酸减水剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0311489A (pt) * 2002-06-11 2005-03-15 Basf Ag éster, processos para a preparação do mesmo e de um hidrogel reticulado, hidrogel reticulado, usos de um polìmero, de uma mistura de reação e de um éster, e, composição de matéria
CN113683738B (zh) * 2021-08-25 2022-06-28 佳化化学科技发展(上海)有限公司 一种聚羧酸减水剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018456A (ja) * 2008-07-08 2010-01-28 Nippon Shokubai Co Ltd セメント混和剤
CN104583149A (zh) * 2012-09-03 2015-04-29 Lg化学株式会社 包含交联聚羧酸共聚物的水泥组合物添加剂以及包含该添加剂的水泥组合物
CN104710606A (zh) * 2013-12-12 2015-06-17 辽宁奥克化学股份有限公司 一种端烯基聚醚酯及其制备方法、用该聚醚酯制得的减水剂及其制备方法
CN105037650A (zh) * 2015-08-31 2015-11-11 四川大学 三羟甲基丙烷三丙烯酸酯在制备聚羧酸减水剂中的应用
CN105236803A (zh) * 2015-08-31 2016-01-13 四川大学 一种新型聚羧酸减水剂及其制备方法与用途
CN108586672A (zh) * 2018-04-27 2018-09-28 中科广化(重庆)新材料研究院有限公司 一种交联型聚羧酸超塑化剂及其制备方法和应用
CN114736341A (zh) * 2022-03-30 2022-07-12 佳化化学科技发展(上海)有限公司 一种交联型聚羧酸减水剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117534827A (zh) * 2023-12-08 2024-02-09 四川嘉兆丰新材料科技有限公司 一种减水剂用磺酸基封端乙烯基聚醚单体及其合成方法
CN117534827B (zh) * 2023-12-08 2024-06-07 四川嘉兆丰新材料科技有限公司 一种减水剂用磺酸基封端乙烯基聚醚单体及其合成方法

Also Published As

Publication number Publication date
CN114736341A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN110938176B (zh) 超长保坍水泥基聚羧酸减水剂母液及其应用
WO2023184785A1 (zh) 一种交联型聚羧酸减水剂及其制备方法
WO2014085996A1 (zh) 一种保坍型聚羧酸超塑化剂
CN102030494A (zh) 一种聚羧酸盐高性能减水剂及其低温一步法制备方法
WO2023024730A1 (zh) 一种聚羧酸减水剂及其制备方法
CN107652405B (zh) 一种酰胺/酰亚胺结构的聚羧酸减水剂及其制备方法
CN112708042A (zh) 一种减缩型聚羧酸减水剂及其制备方法
CN104140503A (zh) 一种高减水高保坍型高性能聚羧酸减水剂的常温合成方法
WO2019233215A1 (zh) 一种高减水低敏感聚羧酸减水剂及其制备方法
CN113372549B (zh) 一种乙烯基封端的超支化聚合物、一种具有超支化结构的降粘型聚羧酸减水剂及其制备方法
CN101817657A (zh) 聚羧酸煲坍剂
CN111349199B (zh) 一种具有核壳结构的稳态聚羧酸超塑化剂及其制备方法
CN112608420B (zh) 一种引气型酯类聚羧酸减水剂的制备方法
CN102731730A (zh) 一种双氧水辅助引发羧酸类减水剂及其制备方法
WO2018120385A1 (zh) 一种膦酸基嵌段聚合物、其制备方法及应用
CN112708041B (zh) 一种用于制备减水剂的酯化产物及其制备方法和减缩型醚类聚羧酸减水剂及其制备方法
CN112608421B (zh) 一种引气型醚类聚羧酸减水剂的制备方法
CN115926066A (zh) 一种聚羧酸减水剂及其制备方法
CN107722194B (zh) 一种高减水聚羧酸水泥分散剂及其制备方法
WO2024130876A1 (zh) 双臂侧链结构单体及其制备方法和减水剂及其制备方法
CN108084358B (zh) 一种保塌型聚羧酸减水剂的制备方法
CN104479085A (zh) 一种对氨基苯磺酸钠改性的聚羧酸减水剂及其制备方法
KR100587429B1 (ko) 그래프트 중합체 및 이의 제조 방법
CN110922538B (zh) 一种早强型聚羧酸减水剂及其制备方法与应用
CN116265500A (zh) 一种降粘型聚羧酸减水剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934607

Country of ref document: EP

Kind code of ref document: A1