WO2023248989A1 - Cooling device and semiconductor device - Google Patents

Cooling device and semiconductor device Download PDF

Info

Publication number
WO2023248989A1
WO2023248989A1 PCT/JP2023/022655 JP2023022655W WO2023248989A1 WO 2023248989 A1 WO2023248989 A1 WO 2023248989A1 JP 2023022655 W JP2023022655 W JP 2023022655W WO 2023248989 A1 WO2023248989 A1 WO 2023248989A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
region
casing
cooling device
refrigerant
Prior art date
Application number
PCT/JP2023/022655
Other languages
French (fr)
Japanese (ja)
Inventor
史善 吉岡
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023248989A1 publication Critical patent/WO2023248989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to a cooling device and a semiconductor device.
  • IGBTs Insulated Gate Bipolar Transistors
  • a refrigerant-type cooling device has an internal flow path, and a refrigerant (for example, cooling water) flowing through the flow path cools the semiconductor element by transferring heat generated in the semiconductor element to the outside.
  • Japanese Publication Japanese Patent Application Publication No. 2021-52060
  • the present disclosure provides a technique that can suppress variations in cooling temperature among a plurality of objects to be cooled.
  • a cooling device that cools a heat generating element, and includes a housing, a first flow path, and a second flow path.
  • the housing has a refrigerant inlet and an outlet, and includes a first region in contact with the first heating element and a second region in contact with the second heating element.
  • the first channel is a channel that connects the inlet and the outlet, and overlaps with the first region and the second region when the casing is viewed from above.
  • the second flow path merges with the first flow path at a position downstream of the first region and upstream of the second region.
  • the second flow path has a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
  • FIG. 1 is a diagram illustrating an example of a circuit configuration of a power conversion device according to a first embodiment.
  • FIG. 2 is a schematic side view of the cooling device according to the first embodiment.
  • FIG. 3 is a schematic plan view of the base plate according to the first embodiment.
  • 4 is a schematic cross-sectional view taken along the line IV-IV shown in FIG. 2.
  • FIG. 5 is a schematic cross-sectional view taken along the line VV shown in FIG.
  • FIG. 6 is a schematic cross-sectional view taken along the line VI-VI shown in FIG. 7 is a schematic cross-sectional view taken along the line VII-VII shown in FIG. 4.
  • FIG. FIG. 8 is a schematic enlarged view of the second flow path and the third flow path according to the first embodiment.
  • FIG. 9 is a schematic cross-sectional plan view showing the internal structure of the cooling device according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view taken along the line XX shown in FIG.
  • FIG. 11 is a schematic cross-sectional view taken along the line XI-XI shown in FIG.
  • FIG. 12 is a schematic cross-sectional view taken along the line XII-XII shown in FIG.
  • FIG. 13 is a schematic cross-sectional view taken along the line XIII-XIII shown in FIG.
  • FIG. 14 is a schematic enlarged view of the second flow path and the third flow path according to the second embodiment.
  • FIG. 15 is a graph showing the relationship between the flow rate of the refrigerant and the thermal resistance of the switching element.
  • FIG. 16 is a graph showing the conditions and the results of calculating the temperature of the switching element under the conditions.
  • semiconductor devices including semiconductor elements such as insulated gate bipolar transistors (IGBTs) have been known.
  • IGBTs insulated gate bipolar transistors
  • Semiconductor elements generate a relatively large amount of heat during operation. For this reason, semiconductor devices equipped with cooling devices for cooling semiconductor elements have been proposed.
  • a plurality of switching elements constituting a U phase, a V phase, and a W phase may be mounted on a refrigerant-type cooling device.
  • a refrigerant-type cooling device for example, there is a risk that variations in cooling temperature will occur between the switching element located on the upstream side and the switching element located on the downstream side in the flow direction of the refrigerant. This is because the refrigerant warmed by the upstream switching element is used to cool the downstream switching element.
  • FIG. 1 is a diagram showing an example of a circuit configuration of a power conversion device 1 according to a first embodiment.
  • a power conversion device 1 shown in FIG. 1 converts DC power into AC power and outputs the converted AC power to a motor 2.
  • the power conversion device 1 is connected to a converter circuit (not shown) that converts AC power supplied from an AC power source (not shown) into DC power, and converts the DC power output from the converter circuit into AC power.
  • the generated AC power is output to the motor 2.
  • the power conversion device 1 may be directly connected to a DC power source (not shown) without using a converter circuit.
  • the power conversion device 1 includes two switching elements 3u, two switching elements 3v, and two switching elements 3w. Further, the power conversion device 1 includes two diodes 4u, two diodes 4v, two diodes 4w, and a gate driver 5. Note that the power conversion device 1 may be provided with filters (not shown) configured by coils and capacitors in the U phase, V phase, and W phase. Moreover, the power conversion device 1 may have a configuration that does not include the above-mentioned filter.
  • the two switching elements 3u constitute a U-phase half-bridge circuit
  • the two switching elements 3v constitute a V-phase half-bridge circuit
  • the two switching elements 3w constitute a W-phase half-bridge circuit.
  • the two switching elements 3u are connected in series.
  • the two switching elements 3v are connected in series, and the two switching elements 3w are also directly connected.
  • the switching elements 3u, 3v, and 3w are, for example, insulated gate bipolar transistors (IGBTs) or power MOSFETs (metal oxide semiconductor field effect transistors).
  • the switching elements 3u, 3v, and 3w are, for example, switching elements made of a silicon-based material or switching elements made of a wide bandgap semiconductor.
  • the wide bandgap semiconductor is, for example, silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or diamond.
  • the two diodes 4u are connected in antiparallel to the corresponding switching elements 3u.
  • the two diodes 4v are connected in antiparallel to the corresponding switching element 3v
  • the two diodes 4w are connected in antiparallel to the corresponding switching element 3w.
  • the diodes 4u, 4v, and 4w are free-wheeling diodes for protecting the switching elements 3u, 3v, and 3w.
  • switching elements 3u, 3v, and 3w when the switching elements 3u, 3v, and 3w are shown without being individually distinguished, they may be referred to as switching elements 3. Furthermore, when the diodes 4u, 4v, and 4w are shown without being individually distinguished, they may be referred to as a diode 4.
  • the gate driver 5 amplifies a gate signal output from a control section (not shown). Then, the gate driver 5 outputs the amplified gate signal to the plurality of switching elements 3.
  • FIG. 2 is a schematic side view of the cooling device 100 according to the first embodiment.
  • each drawing referred to below may show an orthogonal coordinate system in which the X-axis direction, Y-axis direction, and Z-axis direction are defined to be orthogonal to each other, and the positive Z-axis direction is the vertically upward direction. be.
  • switching elements 3 are arranged on the base plate 20 in order to make the explanation easier to understand.
  • a plurality of diodes 4 are arranged on the base plate 20.
  • Switching element 3 and diode 4 may be mounted on base plate 20 via an insulating substrate. Further, a mold resin or the like for sealing the switching element 3 and the diode 4 may be placed on the base plate 20.
  • the cooling device 100 is a refrigerant-type cooling device that cools the switching element 3, which is a heating element.
  • the switching element 3u is also an example of a first semiconductor element. Further, the switching element 3u is also an example of a first heating element.
  • the switching element 3v is an example of a second semiconductor element and also an example of a second heating element.
  • the switching element 3w is an example of a third semiconductor element and also an example of a third heating element.
  • the refrigerant is, for example, a liquid such as cooling water. Note that the refrigerant is not limited to this, and may be a gas.
  • the cooling device 100 includes a housing 10.
  • the housing 10 includes a base plate 20 and a main body portion 30.
  • the base plate 20 and the main body portion 30 are made of a metal material such as aluminum or an aluminum alloy.
  • the base plate 20 is a substantially plate-shaped member.
  • FIG. 3 is a schematic plan view of the base plate 20 according to the first embodiment. As shown in FIG. 3, base plate 20 has a first surface 201. As shown in FIG. The first surface 201 is a flat surface. A plurality of switching elements 3u, 3v, and 3w are arranged on the first surface 201.
  • the switching elements 3u, 3v, and 3w are arranged in this order along the refrigerant flow direction (here, the X-axis positive direction).
  • the two switching elements 3u are arranged in a direction (here, the Y-axis direction) orthogonal to the flow direction of the refrigerant.
  • the two switching elements 3v are arranged in a direction perpendicular to the flow direction of the refrigerant, and the two switching elements 3w are arranged in a direction perpendicular to the flow direction of the refrigerant.
  • the base plate 20 includes a first region 21, a second region 22, and a third region 23 on the first surface 201.
  • the first region 21, the second region 22, and the third region 23 are arranged at intervals from each other.
  • the first region 21 is a region in contact with the switching element 3u.
  • the second region 22 is a region in contact with the switching element 3v
  • the third region 23 is a region in contact with the switching element 3w.
  • the first region 21 may be a rectangular region that touches the outer edges of the two switching elements 3u in plan view.
  • the second region 22 may be a rectangular region in contact with the outer edge of the switching element 3v in plan view
  • the third region 23 may be a rectangular region in contact with the outer edge of the switching element 3w in plan view. There may be.
  • first region 21, second region 22, and third region 23 are not limited to the illustrated example.
  • first region 21, the second region 22, and the third region 23 may be larger than the example shown in FIG. 3 insofar as they do not overlap with each other.
  • a plurality of fins 25 are provided on a second surface 202 located opposite to the first surface 201 of the base plate 20 (see FIG. 5, etc.).
  • the plurality of fins 25 are, for example, rod-shaped. Note that the plurality of fins 25 may be plate-shaped.
  • the main body portion 30 is a substantially container-shaped member with an open top.
  • the main body portion 30 is joined to the base plate 20 by laser welding or the like.
  • a first flow path 31, a second flow path 32, and a third flow path 33 are formed inside the housing 10.
  • the main body portion 30 has grooves forming at least part of the inner wall surfaces of the first flow path 31, the second flow path 32, and the third flow path 33, and the open portion of the groove is By closing the second surface 202 of the base plate 20, a first flow path 31, a second flow path 32, and a third flow path 33 are formed.
  • the base plate 20 and the main body portion 30 may be screwed together.
  • the base plate 20 and the main body part 30 are joined by providing a plurality of screw holes around the base plate 20 and the main body part 30, and tightening the base plate 20 and the main body part 30 by inserting screws into these screw holes.
  • a ring-shaped sealing member for example, an O-ring, etc. may be interposed between the base plate 20 and the main body portion 30 in order to improve the sealing performance inside the housing 10.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV shown in FIG. 2. Note that in FIG. 4, the plurality of fins 25 are omitted.
  • the cooling device 100 includes a first flow path 31, two second flow paths 32, and two third flow paths 33 inside the housing 10.
  • the first flow path 31 is a flow path that connects an inlet 301 and an outlet 302 provided in the housing 10.
  • the inflow port 301 opens on the side surface of the housing 10 on the negative side of the X-axis
  • the outflow port 302 opens on the side surface of the housing 10 on the positive side of the X-axis.
  • the first flow path 31 extends linearly along the X-axis direction, and causes the refrigerant that has flowed in from the inlet 301 to flow along the positive direction of the X-axis and leads to the outlet 302 .
  • the first flow path 31 overlaps with the first region 21, second region 22, and third region 23 in plan view. That is, the first flow path 31 is located directly below the first region 21 , the second region 22 , and the third region 23 .
  • the two second flow paths 32 branch from the first flow path 31 at a position downstream of the inlet 301 and upstream of the first region 21. Specifically, the two second flow paths 32 are arranged so as to bypass the first region 21 in a direction (Y-axis direction) perpendicular to the flow direction (X-axis direction) of the refrigerant in the first flow path 31. It branches off from the flow path 31.
  • One of the two second flow paths 32 branches from the first flow path 31 so as to bypass the first region 21 in the Y-axis positive direction, and the other one detours around the first region 21 in the Y-axis negative direction. It branches off from the first flow path 31 as shown in FIG.
  • the two second flow paths 32 merge with the first flow path 31 at a position downstream of the first region 21 and upstream of the second region 22.
  • the two second flow paths 32 are arranged at positions that do not overlap with the first region 21, second region 22, and third region 23 in plan view.
  • the main body section 30 includes a first flow path forming section 311 and a second flow path forming section 312.
  • the first flow path forming part 311 is a partition wall that separates the first flow path 31 and the second flow path 32.
  • the first flow path forming section 311 has a gap between it and the inner wall 303 of the main body section 30 . This gap corresponds to a detour portion 321 (see FIG. 8) of the second flow path 32 that detours around the first region 21.
  • the first region 21 is arranged between the two first flow path forming parts 311.
  • the second flow path forming portion 312 is a partition wall disposed downstream of the first flow path forming portion 311.
  • the second flow path forming section 312 has a gap between it and the first flow path forming section 311 . This gap corresponds to a merging portion 322 (see FIG. 8) in the second flow path 32 to the first flow path 31.
  • the two third flow paths 33 branch from the second flow path 32 and merge with the first flow path 31 .
  • the third flow path 33 branches from the second flow path 32 at a position upstream of the second region 22, extends so as to bypass the second region 22, and extends from the second region 22. It also merges with the first flow path 31 at a position downstream and upstream of the third region 23 .
  • the two third channels 33 are arranged at positions that do not overlap with the first region 21, second region 22, and third region 23 in plan view.
  • the second flow path forming section 312 described above has a gap between it and the inner wall 303 of the main body section 30. This gap corresponds to a detour portion 331 (see FIG. 8) of the third flow path 33 that detours around the second region 22.
  • the second region 22 is arranged between the two second flow path forming parts 312.
  • the main body portion 30 includes a third flow path forming portion 313.
  • the third flow path forming section 313 is a partition wall provided downstream of the second flow path forming section 312, and has a gap between it and the second flow path forming section 312. This gap corresponds to a merging portion 332 (see FIG. 8) in the third flow path 33 to the first flow path 31.
  • FIG. 5 is a schematic cross-sectional view taken along the line VV shown in FIG. 4.
  • FIG. 6 is a schematic cross-sectional view taken along the line VI-VI shown in FIG. 7 is a schematic cross-sectional view taken along the line VII-VII shown in FIG. 4.
  • FIG. 5 is a schematic cross-sectional view taken along the line VV shown in FIG. 4.
  • the first flow path 31 is located directly below the switching elements 3u to 3w, which are heating elements.
  • the heat generated in the switching elements 3u to 3w is transferred to the outside of the cooling device 100 by the refrigerant flowing through the first flow path 31.
  • the switching elements 3u to 3w are cooled.
  • a plurality of fins 25 are located in the first flow path 31 . Thereby, the cooling efficiency of the switching elements 3u to 3w by the first flow path 31 can be increased.
  • the second flow path 32 is arranged at a position shifted laterally from directly below the switching element 3u. Therefore, the refrigerant flowing through the second flow path 32 is less affected by the heat generated in the switching element 3u than the refrigerant flowing through the first flow path 31.
  • the refrigerant that has passed directly under the first region 21 in the first flow path 31 will then pass directly under the second region 22, but before passing directly under the second region 22, the refrigerant It joins with the refrigerant that has flowed in from 32 , that is, the refrigerant that has a lower temperature than the refrigerant that has passed directly under the first region 21 .
  • the cooling device 100 can cool the switching element 3v with a refrigerant at a lower temperature than when the second flow path 32 is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching element 3u. Therefore, the cooling device 100 can suppress variations in cooling temperature between the switching element 3u and the switching element 3v arranged downstream thereof.
  • the third flow path 33 is arranged at a position shifted laterally from directly below the switching element 3v. Therefore, the refrigerant flowing through the third flow path 33 is less affected by the heat generated by the switching element 3v than the refrigerant flowing through the first flow path 31.
  • the refrigerant that has passed through the second region 22 in the first flow path 31 will then pass through the third region 23, but before passing directly under the third region 23, the refrigerant that has flowed in from the third flow path 33 will pass through the third region 23. It merges with the refrigerant, that is, the refrigerant whose temperature is lower than that of the refrigerant that passed directly under the second region 22 .
  • the cooling device 100 can cool the switching element 3w with a lower temperature refrigerant compared to the case where the third flow path 33 is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching elements 3u and 3v. Therefore, the cooling device 100 can suppress variations in cooling temperature between the switching element 3v and the switching element 3w arranged downstream thereof.
  • the cooling device 100 in addition to the first flow path 31, the second flow path 32 and the third flow path 33 are provided, so that the switching element 3u, the switching element 3v, and It is possible to suppress variations in cooling temperature between the switching elements 3w.
  • the flow rate of the refrigerant flowing through the first flow path 31 increases as it goes downstream in the flow direction of the refrigerant. Since the thermal resistance of the switching element 3 decreases as the flow rate of the refrigerant increases, it is also possible to suppress variations in cooling temperature between the switching element 3u, the switching element 3v, and the switching element 3w.
  • the cross-sectional area of the second flow path 32 at the branch part (detour part 321 described later) from the first flow path 31 is smaller than that of the first flow path 31, and
  • the cross-sectional area of the third flow path 33 is larger than the cross-sectional area of the third flow path 33 at a branch portion from the second flow path 32 (detour portion 331 to be described later).
  • the flow rate of the refrigerant in the third flow path 33 becomes faster than the flow speed of the refrigerant in the second flow path 32, so that the cooling temperatures of the switching elements 3u, 3v, and 3w can be made more uniform. can.
  • FIG. 8 is a schematic enlarged view of the second flow path 32 and the third flow path 33 according to the first embodiment.
  • the second flow path 32 has a first guide portion 51 that guides the refrigerant flowing through the second flow path 32 to the first flow path 31.
  • the second flow path 32 includes a detour portion 321 formed between the first flow path forming portion 311 and the inner wall 303 of the housing 10, and a confluence portion 322 located downstream of the detour portion 321. has.
  • the second flow path forming portion 312 is located closer to the casing 10 than the imaginary line L1, which is an imaginary extension of the first flow path forming portion 311 along the refrigerant flow direction (X-axis positive direction) in the detour portion 321. It has a portion located on the inner wall 303 side. In this way, the second flow path 32 has a portion that collides with the flow of the refrigerant in the detour portion 321 as the first guide portion 51 .
  • the second flow path 32 can efficiently cause the refrigerant flowing through the second flow path 32 to flow into the first flow path 31. That is, even if the second flow path 32 does not have the first guide portion 51, for example, there is refrigerant flowing into the first flow path 31 through the merging portion 322, but the refrigerant flowing through the first flow path 31 It is difficult to obtain a sufficient flow rate to reduce the temperature of the
  • the second flow path 32 according to the first embodiment includes the first guide portion 51 and can actively direct the refrigerant flowing through the detour portion 321 toward the confluence portion 322. The refrigerant can flow from the flow path 32 into the first flow path 31 at a relatively high flow rate. Thereby, the second flow path 32 according to the first embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31.
  • the merging portion 322 of the second flow path 32 extends obliquely from the detour portion 321 toward the first flow path 31 .
  • the first flow path forming section 311 has a first wall surface 311a that forms a confluence section 322 with the second flow path forming section 312.
  • the second flow path forming section 312 has a second wall surface 312a that forms a confluence section 322 with the first flow path forming section 311.
  • the first wall surface 311a and the second wall surface 312a extend obliquely toward the first flow path 31.
  • the third flow path 33 has a second guide portion 52 that guides the refrigerant flowing through the third flow path 33 to the first flow path 31.
  • the third flow path 33 includes a detour portion 331 formed between the second flow path forming portion 312 and the inner wall 303 of the housing 10, and a confluence portion 332 located downstream of the detour portion 331. has.
  • the third flow path forming portion 313 is located closer to the casing 10 than the imaginary line L2, which is an imaginary extension of the second flow path forming portion 312 along the refrigerant flow direction (X-axis positive direction) in the detour portion 331. It has a portion located on the inner wall 303 side. In this way, the third flow path 33 has a portion that collides with the flow of the refrigerant in the detour portion 331 as the second guide portion 52 .
  • the third flow path 33 can efficiently cause the refrigerant flowing through the third flow path 33 to flow into the first flow path 31.
  • the third flow path 33 according to the first embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31.
  • the merging portion 332 of the third flow path 33 extends diagonally from the detour portion 331 toward the first flow path 31.
  • the second flow path forming section 312 has a third wall surface 312b that forms a confluence section 332 with the third flow path forming section 313.
  • the third flow path forming section 313 has a fourth wall surface 313a that forms a confluence section 332 with the second flow path forming section 312.
  • the third wall surface 312b and the fourth wall surface 313a extend obliquely toward the first flow path 31.
  • FIG. 9 is a schematic cross-sectional plan view showing the internal structure of a cooling device 100A according to the second embodiment.
  • the plan sectional view shown in FIG. 9 corresponds to the sectional view taken along the line IX-IX shown in FIG.
  • FIG. 10 is a schematic cross-sectional view taken along the line XX shown in FIG.
  • FIG. 11 is a schematic cross-sectional view taken along the line XI-XI shown in FIG.
  • FIG. 12 is a schematic cross-sectional view taken along the line XII-XII shown in FIG.
  • FIG. 13 is a schematic cross-sectional view taken along the line XIII-XIII shown in FIG.
  • a cooling device 100A included in a power conversion device 1A includes a first flow path 31A, a second flow path 32A, and a third flow path 33A inside a housing 10A. Equipped with.
  • the first flow path 31A is a flow path that connects the inlet 301A and the outlet 302A of the housing 10A, and overlaps with the first region 21, the second region 22, and the third region 23 in plan view.
  • a plurality of fins 25 provided on the second surface 202 of the base plate 20 are arranged in the first flow path 31A.
  • the second flow path 32A and the third flow path 33A are located directly below the first flow path 31A. That is, the second flow path 32A is arranged at a position overlapping with the first region 21 in plan view, and the third flow path 33A is arranged at a position overlapping with second region 22 in plan view.
  • the housing 10A includes a base plate 20 and a main body 30A. Further, the main body portion 30A includes a first flow path forming portion 311A, a second flow path forming portion 312A, and a third flow path forming portion 313A inside.
  • the first flow path forming section 311A, the second flow path forming section 312A, and the third flow path forming section 313A are arranged in this order along the refrigerant flow direction (X-axis direction). Further, the first flow path forming section 311A, the second flow path forming section 312A, and the third flow path forming section 313A are arranged at intervals from each other.
  • the first flow path forming portion 311A is a partition wall that separates the first flow path 31A and the second flow path 32A (see FIG. 11).
  • the second flow path forming portion 312A is a partition wall that separates the first flow path 31A and the third flow path 33A (see FIG. 12).
  • the second flow path 32A branches from the first flow path 31A at a position downstream of the inlet 301A and upstream of the first region 21. Specifically, the second flow path 32A detours around the first region 21 in a direction (Z-axis direction) perpendicular to the flow direction (X-axis direction) of the refrigerant in the first flow path 31A. Branches off from 31A. The second flow path 32A joins the first flow path 31A at a position downstream of the first region 21 and upstream of the second region 22.
  • the gap located between the inner wall 303A of the main body portion 30A and the first flow path forming portion 311A corresponds to the detour portion 321A (see FIG. 14) of the second flow path 32A. Further, the gap located between the first flow path forming part 311A and the second flow path forming part 312A corresponds to a merging part 322A (see FIG. 14) in the second flow path 32A to the first flow path 31A. .
  • the third flow path 33A branches from the second flow path 32A and merges with the first flow path 31A. Specifically, the third flow path 33A branches from the second flow path 32A at a position upstream of the second region 22, and branches off from the second flow path 32A at a position downstream of the second region 22 and upstream of the third region 23. 1 flow path 31A.
  • the gap located between the inner wall 303A of the main body portion 30A and the second flow path forming portion 312A corresponds to the detour portion 331A (see FIG. 14) of the third flow path 33A. Further, the gap located between the second flow path forming part 312A and the third flow path forming part 313A corresponds to a joining part 332A (see FIG. 14) of the third flow path 33A to the first flow path 31A. .
  • the first flow path 31A is located directly below the switching elements 3u to 3w, which are heating elements.
  • the heat generated in the switching elements 3u to 3w is transferred to the outside of the cooling device 100A by the refrigerant flowing through the first flow path 31A.
  • the switching elements 3u to 3w are cooled.
  • a plurality of fins 25 are located in the first flow path 31A, so that the switching elements 3u to 3w can be efficiently cooled.
  • the second flow path 32A is located further away from the switching element 3u than the first flow path 31A. Therefore, the refrigerant flowing through the second flow path 32A is less susceptible to temperature rise due to heat generated in the switching element 3u, compared to the refrigerant flowing through the first flow path 31A.
  • the refrigerant that has passed directly under the first region 21 in the first flow path 31A will then pass directly under the second region 22, but before passing directly under the second region 22, the refrigerant It merges with the refrigerant flowing from 32A, that is, the refrigerant whose temperature is lower than that of the refrigerant passing directly under the second region 22.
  • the cooling device 100A can cool the switching element 3v with a lower temperature refrigerant compared to the case where the second flow path 32A is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching element 3u. Therefore, the cooling device 100A can suppress variations in cooling temperature between the switching element 3u and the switching element 3v arranged downstream thereof.
  • the third flow path 33A is located further away from the switching element 3v than the first flow path 31A. Therefore, the refrigerant flowing through the third flow path 33A is less susceptible to temperature rise due to heat generated by the switching element 3v, compared to the refrigerant flowing through the first flow path 31A.
  • the refrigerant that has passed through the second region 22 in the first flow path 31A will then pass through the third region 23, but before passing through the third region 23, the refrigerant that has flowed from the third flow path 33A,
  • the temperature decreases by merging with the refrigerant whose temperature increases less due to the switching elements 3u and 3v.
  • the cooling device 100 can cool the switching element 3w with the refrigerant at a lower temperature compared to the case where the third flow path 33A is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching elements 3u and 3v. Therefore, the cooling device 100A can suppress variations in cooling temperature between the switching element 3v and the switching element 3w arranged downstream thereof.
  • the cooling temperature can be adjusted between the switching element 3u, the switching element 3v, and the switching element 3w. It is possible to suppress the occurrence of variations.
  • the cross-sectional area of the second flow path 32A at the branch portion (detour portion 321A described later) from the first flow path 31A is smaller than that of the first flow path 31A, and
  • the cross-sectional area of the third flow path 33A is larger than the flow path cross-sectional area at the branch portion (detour portion 331A described later) from the second flow path 32A.
  • the flow rate of the refrigerant in the third flow path 33A becomes faster than the flow speed of the refrigerant in the second flow path 32A, so that the cooling temperatures of the switching elements 3u, 3v, and 3w can be made more uniform. can.
  • the first flow path forming portion 311A and the second flow path forming portion 312A have, for example, a gate shape (see FIGS. 11 and 12). In this way, by forming the first flow path forming portion 311A and the second flow path forming portion 312A in a gate shape, for example, the first flow path forming portion 311A and the second flow path forming portion 312A are formed in a plate shape. Compared to the case, positioning of the second flow path 32A and the third flow path 33 becomes easier. Thereby, for example, it is possible to suppress variations in the heights of the second flow path 32A and the third flow path 33 from product to product. Furthermore, the ease of attaching the second flow path 32A and the third flow path 33 can be improved compared to, for example, the case where the first flow path forming portion 311A and the second flow path forming portion 312A are formed in a plate shape. .
  • FIG. 14 is a schematic enlarged view of a second flow path 32A and a third flow path 33A according to the second embodiment.
  • the second flow path 32A has a first guide portion 51A that guides the refrigerant flowing through the second flow path 32A to the first flow path 31A.
  • the second flow path 32A includes a detour portion 321A formed between the first flow path forming portion 311A and the inner wall 303A of the housing 10A, and a confluence portion 322A located downstream of the detour portion 321A. has.
  • the second flow path forming portion 312A is located closer to the casing 10A than the imaginary line L3, which is an imaginary extension of the first flow path forming portion 311A along the refrigerant flow direction (X-axis positive direction) in the detour portion 321A. It has a portion located on the inner wall 303A side. In this way, the second flow path 32A has a portion that collides with the flow of the refrigerant in the detour portion 321A as the first guide portion 51A.
  • the second flow path 32A can efficiently cause the refrigerant flowing through the second flow path 32A to flow into the first flow path 31A.
  • the second flow path 32A according to the second embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31A.
  • the third flow path 33A has a second guide portion 52A that guides the refrigerant flowing through the third flow path 33A to the first flow path 31A.
  • the third flow path 33A includes a detour portion 331A formed between the second flow path forming portion 312A and the inner wall 303A of the housing 10A, and a confluence portion 332A located downstream of the detour portion 331A. has.
  • the third flow path forming portion 313A is located closer to the housing 10A than the virtual line L4, which is a virtual line extending the second flow path forming portion 312A along the refrigerant flow direction (X-axis positive direction) in the detour portion 331A. It has a portion located on the inner wall 303A side. In this way, the third flow path 33A has a portion that collides with the flow of the refrigerant in the detour portion 331A as the second guide portion 52A.
  • the third flow path 33A can efficiently cause the refrigerant flowing through the third flow path 33A to flow into the first flow path 31A.
  • the third flow path 33A according to the second embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31A.
  • the inventor of this application measured the thermal resistance of the switching element 3 when the flow rate of the refrigerant was set to 6 L/min, 8 L/min, and 10 L/min, respectively.
  • the results are shown in FIG. FIG. 15 is a graph showing the relationship between the flow rate of the refrigerant and the thermal resistance of the switching element 3. As shown in FIG. 15, the results showed that the thermal resistance of the switching element 3 decreased as the flow rate of the refrigerant increased.
  • the flow rate of condition 1 indicates the flow rate of the refrigerant when cooling is performed using a cooling device that does not have the second flow path and the third flow path. Further, under condition 2, the flow rate of the first flow path was set to 6 L/min, and the flow rates of the second flow path and the third flow path were each set to 2 L/min.
  • FIG. 16 is a graph showing the results of calculating the temperatures of the switching elements 3u to 3w under conditions 1 and 2. As shown in FIG. 16, when calculation was performed under Condition 1, the temperature difference between the switching element 3u placed at the most upstream position and the switching element 3w placed at the most downstream position was 5.6°C. On the other hand, when calculation was performed under Condition 2, almost no temperature difference occurred between the switching elements 3u to 3w.
  • the cooling device having the second flow path and the third flow path in addition to the first flow path can suppress variations in cooling temperature between the switching elements 3u to 3w. .
  • the second flow path branches from the first flow path, but the second flow path does not necessarily have to branch from the first flow path. do not.
  • the third flow path does not necessarily need to be branched from the second flow path.
  • a configuration may be adopted in which a first flow path, a second flow path, and a third flow path are connected to each of a plurality of inflow ports provided in the housing.
  • the merging portion 322A of the second flow path 32A and the merging portion 332A of the third flow path 33A extend vertically upward toward the first flow path 31A, but the merging portion 322A, 332A may extend diagonally toward the first flow path 31A similarly to the first embodiment. Thereby, the temperature of the refrigerant flowing through the first flow path 31A can be efficiently lowered.
  • the power conversion device 1 according to each of the embodiments described above may be applied to, for example, a motor system mounted on a vehicle such as a hybrid vehicle or an electric vehicle.
  • the cooling device is a cooling device that cools a heating element, and includes a housing (as an example, the housing 10, 10A), It includes one flow path (for example, first flow paths 31 and 31A) and a second flow path (for example, second flow paths 32 and 32A).
  • the housing has a refrigerant inlet (for example, inlet 301, 301A) and an outlet (for example, outlet 302, 302A), and is in contact with the first heating element (for example, switching element 3u). It includes a first region (for example, the first region 21) and a second region (for example, the second region 22) in contact with the second heating element (for example, the switching element 3v).
  • the first channel is a channel that connects the inlet and the outlet, and overlaps with the first region and the second region when the casing is viewed from above.
  • the second flow path merges with the first flow path at a position downstream of the first region and upstream of the second region. Further, the second flow path includes a guide portion (for example, the first guide portions 51 and 51A) that guides the refrigerant flowing through the second flow path to the first flow path.
  • the cooling device it is possible to suppress variations in cooling temperature among a plurality of objects to be cooled.
  • a cooling device that cools a heating element, a casing that has a refrigerant inlet and an outlet and includes a first region in contact with the first heating element and a second region in contact with the second heating element; a first flow path that connects the inflow port and the outflow port and overlaps the first region and the second region when the casing is viewed from above; a second flow path that merges with the first flow path at a position downstream of the first region and upstream of the second region;
  • the second flow path is a cooling device including a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
  • the casing is a first flow path forming part that separates the first flow path and the second flow path; a second flow path forming section that is disposed downstream of the first flow path forming section and forms a confluence section with the first flow path in the second flow path; Equipped with The second flow path is a detour portion formed between the first flow path forming portion and an inner wall of the casing; and the confluence part located downstream of the detour part,
  • the second flow path forming section includes a portion located closer to the inner wall of the casing than a virtual line extending the first flow path forming section along the flow direction of the refrigerant in the detour section.
  • the cooling device according to any one of (1) to (4), which has the cooling device as a guide portion.
  • the first flow path forming section has a first wall surface forming the confluence section with the second flow path forming section;
  • the second flow path forming section has a second wall surface forming the confluence section with the first wall surface
  • the casing further includes a third region in contact with a third heating element, The first flow path overlaps with the first region, the second region, and the third region of the casing when the casing is viewed from above, The third flow path branches from the second flow path at a position upstream of the second region, and connects with the first flow path at a position downstream of the second region and upstream of the third region.
  • the cooling device according to any one of (2) to (6), which joins together.
  • a cross-sectional area of the second flow path at a branching portion from the first flow path is smaller than a cross-sectional area of the first flow path, and
  • a casing having a refrigerant inlet and an outlet; a first flow path that connects the inflow port and the outflow port and overlaps a first region and a second region of the casing when the casing is viewed from above; a first semiconductor element disposed in the first region; a second semiconductor element disposed in the second region; a second flow path that merges with the first flow path at a position downstream of the first region and upstream of the second region;
  • the second flow path includes a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
  • (10) further comprising a third flow path branching from the second flow path and merging with the first flow path;
  • the first flow path overlaps with the first region, the second region, and the third region of the casing when the casing is viewed from above, further comprising a third semiconductor element disposed in the third region,
  • the third flow path branches from the second flow path at a position upstream of the second region, and connects with the first flow path at a position downstream of the second region and upstream of the third region.
  • the casing includes: a main body portion having a groove forming an inner wall surface of at least a portion of the first flow path, the second flow path, and the third flow path; a plate-shaped base plate having a first surface and a second surface located opposite to the first surface, and closing the opening of the groove on the second surface;
  • the first semiconductor element, the second semiconductor element, and the third semiconductor element are arranged on the first surface of the base plate, and a plurality of fins are provided on the second surface of the base plate.
  • the semiconductor device described. The semiconductor device according to (10) or (11), wherein the first semiconductor element, the second semiconductor element, and the third semiconductor element are insulated gate bipolar transistors or power MOSFETs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A cooling device, according to one embodiment of the present disclosure, is for cooling heating elements, and comprises: a housing; a first flow path; and a second flow path. The housing has an inflow port and an outflow port for a refrigerant, and includes a first region which is in contact with a first heating element, and a second region which is in contact with a second heating element. The first flow path connects the inflow port and the outflow port, and overlaps with the first region and the second region in a planar view of the housing. The second flow path joins the first flow path at a position downstream of the first region and upstream of the second region. In addition, the second flow path has a guide portion for guiding the refrigerant, which flows through the second flow path, to the first flow path.

Description

冷却装置および半導体装置Cooling equipment and semiconductor equipment
 本開示は、冷却装置および半導体装置に関する。 The present disclosure relates to a cooling device and a semiconductor device.
 従来、IGBT(Insulated Gate Bipolar Transistor)等の半導体素子を備えた半導体装置が知られている。 Conventionally, semiconductor devices including semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) have been known.
 IGBT等の半導体素子は、動作時の発熱量が大きい。そこで、冷媒式の冷却装置を用いて半導体素子を冷却する技術が提案されている(例えば、特許文献1参照)。冷媒式の冷却装置は、内部に流路を有しており、かかる流路を流れる冷媒(たとえば、冷却水)が半導体素子で発生した熱を外部に移動させることにより半導体素子を冷却する。 Semiconductor elements such as IGBTs generate a large amount of heat during operation. Therefore, a technique has been proposed in which a semiconductor element is cooled using a refrigerant type cooling device (see, for example, Patent Document 1). A refrigerant-type cooling device has an internal flow path, and a refrigerant (for example, cooling water) flowing through the flow path cools the semiconductor element by transferring heat generated in the semiconductor element to the outside.
日本国公開公報:特開2021-52060号公報Japanese Publication: Japanese Patent Application Publication No. 2021-52060
 しかしながら、上述した冷媒式の冷却装置を用いて複数の半導体素子を冷却する場合、上流側に設置された半導体素子と下流側に設置された半導体素子との間で、冷却温度にバラツキが生じるおそれがある。 However, when cooling multiple semiconductor devices using the above-mentioned refrigerant type cooling device, there is a risk that variations in cooling temperature may occur between the semiconductor devices installed on the upstream side and the semiconductor devices installed on the downstream side. There is.
 本開示は、複数の冷却対象物間における冷却温度のバラツキを抑制することができる技術を提供する。 The present disclosure provides a technique that can suppress variations in cooling temperature among a plurality of objects to be cooled.
 本開示の一態様による冷却装置は、発熱体を冷却する冷却装置であって、筐体と、第1流路と、第2流路とを備える。筐体は、冷媒の流入口および流出口を有し、第1の発熱体に接する第1領域と第2の発熱体に接する第2領域とを含む。第1流路は、流入口と流出口とを繋ぐ流路であって、筐体を平面視した場合に、第1領域および第2領域と重複する。第2流路は、第1領域よりも下流かつ第2領域よりも上流の位置で第1流路と合流する。また、第2流路は、第2流路を流れる冷媒を第1流路へ案内する案内部を有する。 A cooling device according to one aspect of the present disclosure is a cooling device that cools a heat generating element, and includes a housing, a first flow path, and a second flow path. The housing has a refrigerant inlet and an outlet, and includes a first region in contact with the first heating element and a second region in contact with the second heating element. The first channel is a channel that connects the inlet and the outlet, and overlaps with the first region and the second region when the casing is viewed from above. The second flow path merges with the first flow path at a position downstream of the first region and upstream of the second region. Moreover, the second flow path has a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
 本開示によれば、複数の冷却対象物間における冷却温度のバラツキを抑制することができる。 According to the present disclosure, it is possible to suppress variations in cooling temperature among a plurality of objects to be cooled.
図1は、第1実施形態に係る電力変換装置の回路構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a circuit configuration of a power conversion device according to a first embodiment. 図2は、第1実施形態に係る冷却装置の模式的な側面図である。FIG. 2 is a schematic side view of the cooling device according to the first embodiment. 図3は、第1実施形態に係るベースプレートの模式的な平面図である。FIG. 3 is a schematic plan view of the base plate according to the first embodiment. 図4は、図2に示すIV-IV線矢視における模式的な断面図である。4 is a schematic cross-sectional view taken along the line IV-IV shown in FIG. 2. FIG. 図5は、図4に示すV-V線矢視における模式的な断面図である。FIG. 5 is a schematic cross-sectional view taken along the line VV shown in FIG. 図6は、図4に示すVI-VI線矢視における模式的な断面図である。FIG. 6 is a schematic cross-sectional view taken along the line VI-VI shown in FIG. 図7は、図4に示すVII-VII線矢視における模式的な断面図である。7 is a schematic cross-sectional view taken along the line VII-VII shown in FIG. 4. FIG. 図8は、第1実施形態に係る第2流路および第3流路の模式的な拡大図である。FIG. 8 is a schematic enlarged view of the second flow path and the third flow path according to the first embodiment. 図9は、第2実施形態に係る冷却装置の内部構造を示す模式的な平断面図である。FIG. 9 is a schematic cross-sectional plan view showing the internal structure of the cooling device according to the second embodiment. 図10は、図9に示すX-X線矢視における模式的な断面図である。FIG. 10 is a schematic cross-sectional view taken along the line XX shown in FIG. 図11は、図9に示すXI-XI線矢視における模式的な断面図である。FIG. 11 is a schematic cross-sectional view taken along the line XI-XI shown in FIG. 図12は、図9に示すXII-XII線矢視における模式的な断面図である。FIG. 12 is a schematic cross-sectional view taken along the line XII-XII shown in FIG. 図13は、図9に示すXIII-XIII線矢視における模式的な断面図である。FIG. 13 is a schematic cross-sectional view taken along the line XIII-XIII shown in FIG. 図14は、第2実施形態に係る第2流路および第3流路の模式的な拡大図である。FIG. 14 is a schematic enlarged view of the second flow path and the third flow path according to the second embodiment. 図15は、冷媒の流量とスイッチング素子の熱抵抗との関係を示すグラフである。FIG. 15 is a graph showing the relationship between the flow rate of the refrigerant and the thermal resistance of the switching element. 図16は、条件および条件にてスイッチング素子の温度を算出した結果を示すグラフである。FIG. 16 is a graph showing the conditions and the results of calculating the temperature of the switching element under the conditions.
 以下に、本開示による冷却装置および半導体装置を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。以下に示す実施形態では、本開示による冷却装置を備えた半導体装置を電力変換装置に適用した場合の例について説明するが、この実施形態により本開示が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 Hereinafter, embodiments for implementing a cooling device and a semiconductor device according to the present disclosure (hereinafter referred to as "embodiments") will be described in detail with reference to the drawings. In the embodiment shown below, an example will be described in which a semiconductor device including a cooling device according to the present disclosure is applied to a power conversion device, but the present disclosure is not limited to this embodiment. Moreover, each embodiment can be combined as appropriate within the range that does not conflict with the processing contents. Further, in each of the embodiments below, the same parts are given the same reference numerals, and redundant explanations will be omitted.
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、たとえば製造精度、設置精度などのずれを許容するものとする。 In addition, in the embodiments described below, expressions such as "constant", "orthogonal", "perpendicular", or "parallel" may be used, but these expressions strictly do not mean "constant", "orthogonal", "parallel", etc. They do not need to be "perpendicular" or "parallel". That is, each of the above expressions allows deviations in manufacturing accuracy, installation accuracy, etc., for example.
 従来、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)等の半導体素子を備える半導体装置が知られている。半導体素子は、動作時の発熱量が比較的に大きい。このため、半導体素子を冷却するための冷却装置を備えた半導体装置が提案されている。 Conventionally, semiconductor devices including semiconductor elements such as insulated gate bipolar transistors (IGBTs) have been known. Semiconductor elements generate a relatively large amount of heat during operation. For this reason, semiconductor devices equipped with cooling devices for cooling semiconductor elements have been proposed.
 ここで、たとえば半導体装置の一種である電力変換装置では、冷媒式の冷却装置上に、U相、V相およびW相を構成する複数のスイッチング素子(半導体素子の一例)が搭載される場合がある。しかしながら、かかる構成とした場合、冷媒の流れ方向の上流側に位置するスイッチング素子と下流側に位置するスイッチング素子との間で冷却温度にバラツキが生じるおそれがある。これは、上流側のスイッチング素子によって温められた冷媒が下流側のスイッチング素子の冷却に用いられることになるためである。このように、複数のスイッチング素子間で冷却温度にバラツキが生じると、たとえば冷却が不十分な下流側のスイッチング素子が上流側のスイッチング素子よりも故障しやすくなる等のおそれがある。また、冷媒の温度上昇を考慮して、冷却装置に供給する冷媒の温度を予め低く設定しておくことも考えられるが、ランニングコストの増大につながるおそれがある。 Here, for example, in a power conversion device which is a type of semiconductor device, a plurality of switching elements (an example of a semiconductor element) constituting a U phase, a V phase, and a W phase may be mounted on a refrigerant-type cooling device. be. However, with such a configuration, there is a risk that variations in cooling temperature will occur between the switching element located on the upstream side and the switching element located on the downstream side in the flow direction of the refrigerant. This is because the refrigerant warmed by the upstream switching element is used to cool the downstream switching element. In this way, if there are variations in the cooling temperature among a plurality of switching elements, there is a possibility that, for example, a switching element on the downstream side that is insufficiently cooled may be more likely to fail than a switching element on the upstream side. Furthermore, considering the rise in the temperature of the refrigerant, it may be possible to set the temperature of the refrigerant supplied to the cooling device low in advance, but this may lead to an increase in running costs.
 そこで、複数の冷却対象物間における冷却温度のバラツキを抑制することができる技術が望まれている。 Therefore, there is a need for a technology that can suppress variations in cooling temperature among a plurality of objects to be cooled.
<1.電力変換装置1>
 図1は、第1実施形態に係る電力変換装置1の回路構成の一例を示す図である。図1に示す電力変換装置1は、直流電力を交流電力に変換し、変換した交流電力をモータ2に出力する。たとえば、電力変換装置1は、不図示の交流電源から供給される交流電力を直流電力へ変換する不図示のコンバータ回路に接続され、コンバータ回路から出力される直流電力を交流電力に変換し、変換した交流電力をモータ2に出力する。また、電力変換装置1は、コンバータ回路を介さず、不図示の直流電源に直接接続されてもよい。
<1. Power converter 1>
FIG. 1 is a diagram showing an example of a circuit configuration of a power conversion device 1 according to a first embodiment. A power conversion device 1 shown in FIG. 1 converts DC power into AC power and outputs the converted AC power to a motor 2. For example, the power conversion device 1 is connected to a converter circuit (not shown) that converts AC power supplied from an AC power source (not shown) into DC power, and converts the DC power output from the converter circuit into AC power. The generated AC power is output to the motor 2. Moreover, the power conversion device 1 may be directly connected to a DC power source (not shown) without using a converter circuit.
 図1に示すように、電力変換装置1は、2つのスイッチング素子3uと、2つのスイッチング素子3vと、2つのスイッチング素子3wとを備える。また、電力変換装置1は、2つのダイオード4uと、2つのダイオード4vと、2つのダイオード4wと、ゲートドライバ5とを備える。なお、電力変換装置1は、コイルおよびコンデンサによって構成される不図示のフィルタがU相、V相、およびW相に設けられていてもよい。また、電力変換装置1は、上記フィルタを有しない構成であってもよい。 As shown in FIG. 1, the power conversion device 1 includes two switching elements 3u, two switching elements 3v, and two switching elements 3w. Further, the power conversion device 1 includes two diodes 4u, two diodes 4v, two diodes 4w, and a gate driver 5. Note that the power conversion device 1 may be provided with filters (not shown) configured by coils and capacitors in the U phase, V phase, and W phase. Moreover, the power conversion device 1 may have a configuration that does not include the above-mentioned filter.
 2つのスイッチング素子3uは、U相のハーフブリッジ回路を構成し、2つのスイッチング素子3vは、V相のハーフブリッジ回路を構成し、2つのスイッチング素子3wは、W相のハーフブリッジ回路を構成する。2つスイッチング素子3uは、直列に接続される。同様に、2つのスイッチング素子3vは直列に接続され、2つのスイッチング素子3wも直接に接続される。 The two switching elements 3u constitute a U-phase half-bridge circuit, the two switching elements 3v constitute a V-phase half-bridge circuit, and the two switching elements 3w constitute a W-phase half-bridge circuit. . The two switching elements 3u are connected in series. Similarly, the two switching elements 3v are connected in series, and the two switching elements 3w are also directly connected.
 スイッチング素子3u,3v,3wは、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)またはパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。スイッチング素子3u,3v,3wは、例えば、シリコン系材料により形成されるスイッチング素子またはワイドバンドギャップ(Wide Bandgap)半導体により形成されるスイッチング素子などである。ワイドバンドギャップ半導体は、例えば、炭化珪素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、またはダイヤモンドなどである。 The switching elements 3u, 3v, and 3w are, for example, insulated gate bipolar transistors (IGBTs) or power MOSFETs (metal oxide semiconductor field effect transistors). The switching elements 3u, 3v, and 3w are, for example, switching elements made of a silicon-based material or switching elements made of a wide bandgap semiconductor. The wide bandgap semiconductor is, for example, silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or diamond.
 2つのダイオード4uは、対応するスイッチング素子3uに対して逆並列接続される。同様に、2つのダイオード4vは、対応するスイッチング素子3vに対して逆並列接続され、2つのダイオード4wは、対応するスイッチング素子3wに対して逆並列接続される。ダイオード4u,4v,4wは、スイッチング素子3u,3v,3wを保護するための還流ダイオードである。 The two diodes 4u are connected in antiparallel to the corresponding switching elements 3u. Similarly, the two diodes 4v are connected in antiparallel to the corresponding switching element 3v, and the two diodes 4w are connected in antiparallel to the corresponding switching element 3w. The diodes 4u, 4v, and 4w are free-wheeling diodes for protecting the switching elements 3u, 3v, and 3w.
 以下において、スイッチング素子3u,3v,3wを個別に区別せずに示す場合、スイッチング素子3と記載する場合がある。また、ダイオード4u,4v,4wを個別に区別せずに示す場合、ダイオード4と記載する場合がある。 In the following, when the switching elements 3u, 3v, and 3w are shown without being individually distinguished, they may be referred to as switching elements 3. Furthermore, when the diodes 4u, 4v, and 4w are shown without being individually distinguished, they may be referred to as a diode 4.
 ゲートドライバ5は、不図示の制御部から出力されるゲート信号を増幅する。そして、ゲートドライバ5は、増幅したゲート信号を複数のスイッチング素子3に出力する。 The gate driver 5 amplifies a gate signal output from a control section (not shown). Then, the gate driver 5 outputs the amplified gate signal to the plurality of switching elements 3.
<2.冷却装置100>
 次に、電力変換装置1が備える冷却装置100の構成の一例について説明する。図2は、第1実施形態に係る冷却装置100の模式的な側面図である。
<2. Cooling device 100>
Next, an example of the configuration of the cooling device 100 included in the power conversion device 1 will be described. FIG. 2 is a schematic side view of the cooling device 100 according to the first embodiment.
 以下参照する各図面では、説明を分かりやすくするために、互いに直交するX軸方向、Y軸方向およびZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする直交座標系を示す場合がある。 In order to make the explanation easier to understand, each drawing referred to below may show an orthogonal coordinate system in which the X-axis direction, Y-axis direction, and Z-axis direction are defined to be orthogonal to each other, and the positive Z-axis direction is the vertically upward direction. be.
 また、以下参照する図面では、説明を分かりやすくするために、ベースプレート20上に複数のスイッチング素子3のみが配置された図を示している。なお、実際には、ベースプレート20上には、複数のスイッチング素子3以外に、たとえば複数のダイオード4が配置される。スイッチング素子3およびダイオード4は、絶縁基板を介してベースプレート20に搭載されてもよい。また、ベースプレート20上には、スイッチング素子3およびダイオード4を封止するモールド樹脂等が配置されてもよい。 Further, in the drawings referred to below, only a plurality of switching elements 3 are arranged on the base plate 20 in order to make the explanation easier to understand. Note that, in reality, in addition to the plurality of switching elements 3, for example, a plurality of diodes 4 are arranged on the base plate 20. Switching element 3 and diode 4 may be mounted on base plate 20 via an insulating substrate. Further, a mold resin or the like for sealing the switching element 3 and the diode 4 may be placed on the base plate 20.
 冷却装置100は、発熱体であるスイッチング素子3を冷却する冷媒式の冷却装置である。スイッチング素子3uは、第1半導体素子の一例でもある。また、スイッチング素子3uは、第1の発熱体の一例でもある。スイッチング素子3vは、第2半導体素子の一例であり、第2の発熱体の一例でもある。スイッチング素子3wは、第3半導体素子の一例であり、第3の発熱体の一例でもある。 The cooling device 100 is a refrigerant-type cooling device that cools the switching element 3, which is a heating element. The switching element 3u is also an example of a first semiconductor element. Further, the switching element 3u is also an example of a first heating element. The switching element 3v is an example of a second semiconductor element and also an example of a second heating element. The switching element 3w is an example of a third semiconductor element and also an example of a third heating element.
 冷媒は、たとえば冷却水等の液体である。なお、これに限らず、冷媒は気体であってもよい。 The refrigerant is, for example, a liquid such as cooling water. Note that the refrigerant is not limited to this, and may be a gas.
 図2に示すように、第1実施形態に係る冷却装置100は、筐体10を備える。筐体10は、ベースプレート20と、本体部30とを備える。ベースプレート20および本体部30は、たとえば、アルミニウムまたはアルミニウム合金等の金属材料で構成される。 As shown in FIG. 2, the cooling device 100 according to the first embodiment includes a housing 10. The housing 10 includes a base plate 20 and a main body portion 30. The base plate 20 and the main body portion 30 are made of a metal material such as aluminum or an aluminum alloy.
 ベースプレート20は、略板状の部材である。図3は、第1実施形態に係るベースプレート20の模式的な平面図である。図3に示すように、ベースプレート20は、第1面201を有する。第1面201は、平坦面である。第1面201には、複数のスイッチング素子3u,3v,3wが配置される。 The base plate 20 is a substantially plate-shaped member. FIG. 3 is a schematic plan view of the base plate 20 according to the first embodiment. As shown in FIG. 3, base plate 20 has a first surface 201. As shown in FIG. The first surface 201 is a flat surface. A plurality of switching elements 3u, 3v, and 3w are arranged on the first surface 201.
 スイッチング素子3u,3v,3wは、冷媒の流れ方向(ここでは、X軸正方向)に沿ってこの順番で並べられる。2つのスイッチング素子3uは、冷媒の流れ方向と直交する方向(ここでは、Y軸方向)に並べられる。2つのスイッチング素子3vは、冷媒の流れ方向と直交する方向に並べられ、2つのスイッチング素子3wは、冷媒の流れ方向と直交する方向に並べられる。 The switching elements 3u, 3v, and 3w are arranged in this order along the refrigerant flow direction (here, the X-axis positive direction). The two switching elements 3u are arranged in a direction (here, the Y-axis direction) orthogonal to the flow direction of the refrigerant. The two switching elements 3v are arranged in a direction perpendicular to the flow direction of the refrigerant, and the two switching elements 3w are arranged in a direction perpendicular to the flow direction of the refrigerant.
 ベースプレート20は、第1面201に、第1領域21、第2領域22および第3領域23を含む。第1領域21、第2領域22および第3領域23は、互いに間隔をあけて配置される。 The base plate 20 includes a first region 21, a second region 22, and a third region 23 on the first surface 201. The first region 21, the second region 22, and the third region 23 are arranged at intervals from each other.
 第1領域21は、スイッチング素子3uに接する領域である。同様に、第2領域22は、スイッチング素子3vに接する領域であり、第3領域23は、スイッチング素子3wに接する領域である。 The first region 21 is a region in contact with the switching element 3u. Similarly, the second region 22 is a region in contact with the switching element 3v, and the third region 23 is a region in contact with the switching element 3w.
 一例として、第1領域21は、平面視において2つのスイッチング素子3uの外縁に接する矩形状の領域であってもよい。同様に、第2領域22は、平面視においてスイッチング素子3vの外縁に接する矩形状の領域であってもよく、第3領域23は、平面視においてスイッチング素子3wの外縁に接する矩形状の領域であってもよい。 As an example, the first region 21 may be a rectangular region that touches the outer edges of the two switching elements 3u in plan view. Similarly, the second region 22 may be a rectangular region in contact with the outer edge of the switching element 3v in plan view, and the third region 23 may be a rectangular region in contact with the outer edge of the switching element 3w in plan view. There may be.
 なお、第1領域21、第2領域22および第3領域23の大きさは図示の例に限定されない。たとえば、第1領域21、第2領域22および第3領域23は、互いに重ならない範囲において図3に示す例より大きくてもよい。 Note that the sizes of the first region 21, second region 22, and third region 23 are not limited to the illustrated example. For example, the first region 21, the second region 22, and the third region 23 may be larger than the example shown in FIG. 3 insofar as they do not overlap with each other.
 ベースプレート20の第1面201の反対に位置する第2面202には、複数のフィン25が設けられる(図5等参照)。複数のフィン25は、たとえば棒状である。なお、複数のフィン25は、板状であってもよい。 A plurality of fins 25 are provided on a second surface 202 located opposite to the first surface 201 of the base plate 20 (see FIG. 5, etc.). The plurality of fins 25 are, for example, rod-shaped. Note that the plurality of fins 25 may be plate-shaped.
 本体部30は、上方が開放された略容器状の部材である。本体部30は、ベースプレート20とレーザ溶接等によって接合される。ベースプレート20と本体部30とが接合されることにより、筐体10の内部には、後述する第1流路31、第2流路32および第3流路33が形成される。 The main body portion 30 is a substantially container-shaped member with an open top. The main body portion 30 is joined to the base plate 20 by laser welding or the like. By joining the base plate 20 and the main body part 30, a first flow path 31, a second flow path 32, and a third flow path 33, which will be described later, are formed inside the housing 10.
 具体的には、本体部30は、第1流路31、第2流路32および第3流路33の少なくとも一部の内壁面を構成する溝を有しており、上記溝の開放部をベースプレート20の第2面202が塞ぐことで、第1流路31、第2流路32および第3流路33が形成される。 Specifically, the main body portion 30 has grooves forming at least part of the inner wall surfaces of the first flow path 31, the second flow path 32, and the third flow path 33, and the open portion of the groove is By closing the second surface 202 of the base plate 20, a first flow path 31, a second flow path 32, and a third flow path 33 are formed.
 なお、ベースプレート20と本体部30との接合方法としては、レーザ溶接の他、たとえば、超音波接合、摩擦撹拌接合などの手法を用いることができる。また、ベースプレート20と本体部30とは、ねじ止めされてもよい。たとえば、ベースプレート20および本体部30の周囲に複数のねじ穴を設け、これらのねじ穴にねじを挿通させてベースプレート20と本体部30とを締め付けることによってベースプレート20と本体部30とを接合してもよい。また、この際、筐体10内部の密閉性を高めるために、ベースプレート20と本体部30との間にリング状のシール部材(たとえば、Oリング等)を介在させてもよい。 Note that as a method for joining the base plate 20 and the main body portion 30, in addition to laser welding, methods such as ultrasonic welding, friction stir welding, etc. can be used. Further, the base plate 20 and the main body portion 30 may be screwed together. For example, the base plate 20 and the main body part 30 are joined by providing a plurality of screw holes around the base plate 20 and the main body part 30, and tightening the base plate 20 and the main body part 30 by inserting screws into these screw holes. Good too. Further, at this time, a ring-shaped sealing member (for example, an O-ring, etc.) may be interposed between the base plate 20 and the main body portion 30 in order to improve the sealing performance inside the housing 10.
 図4は、図2に示すIV-IV線矢視における模式的な断面図である。なお、図4では、複数のフィン25を省略して示している。 FIG. 4 is a schematic cross-sectional view taken along the line IV-IV shown in FIG. 2. Note that in FIG. 4, the plurality of fins 25 are omitted.
 図4に示すように、冷却装置100は、筐体10の内部に、第1流路31と、2つの第2流路32と、2つの第3流路33とを備える。 As shown in FIG. 4, the cooling device 100 includes a first flow path 31, two second flow paths 32, and two third flow paths 33 inside the housing 10.
 第1流路31は、筐体10に設けられた流入口301および流出口302を繋ぐ流路である。流入口301は、筐体10におけるX軸負方向側の側面に開口し、流出口302は、筐体10におけるX軸正方向側の側面に開口する。第1流路31は、X軸方向に沿って直線的に延びており、流入口301から流入した冷媒をX軸正方向に沿って流通させて流出口302まで導く。 The first flow path 31 is a flow path that connects an inlet 301 and an outlet 302 provided in the housing 10. The inflow port 301 opens on the side surface of the housing 10 on the negative side of the X-axis, and the outflow port 302 opens on the side surface of the housing 10 on the positive side of the X-axis. The first flow path 31 extends linearly along the X-axis direction, and causes the refrigerant that has flowed in from the inlet 301 to flow along the positive direction of the X-axis and leads to the outlet 302 .
 第1流路31は、平面視において第1領域21、第2領域22および第3領域23と重複する。すなわち、第1流路31は、第1領域21、第2領域22および第3領域23の直下に位置する。 The first flow path 31 overlaps with the first region 21, second region 22, and third region 23 in plan view. That is, the first flow path 31 is located directly below the first region 21 , the second region 22 , and the third region 23 .
 2つの第2流路32は、流入口301よりも下流かつ第1領域21よりも上流の位置で第1流路31から分岐する。具体的には、2つの第2流路32は、第1流路31における冷媒の流れ方向(X軸方向)と直交する方向(Y軸方向)に第1領域21を迂回するように第1流路31から分岐する。2つの第2流路32のうち一方は、Y軸正方向に第1領域21を迂回するように第1流路31から分岐し、他方は、Y軸負方向に第1領域21を迂回するように第1流路31から分岐する。そして、2つの第2流路32は、第1領域21よりも下流かつ第2領域22よりも上流の位置で第1流路31と合流する。 The two second flow paths 32 branch from the first flow path 31 at a position downstream of the inlet 301 and upstream of the first region 21. Specifically, the two second flow paths 32 are arranged so as to bypass the first region 21 in a direction (Y-axis direction) perpendicular to the flow direction (X-axis direction) of the refrigerant in the first flow path 31. It branches off from the flow path 31. One of the two second flow paths 32 branches from the first flow path 31 so as to bypass the first region 21 in the Y-axis positive direction, and the other one detours around the first region 21 in the Y-axis negative direction. It branches off from the first flow path 31 as shown in FIG. The two second flow paths 32 merge with the first flow path 31 at a position downstream of the first region 21 and upstream of the second region 22.
 このように、2つの第2流路32は、平面視において第1領域21、第2領域22および第3領域23と重複しない位置に配置される。 In this way, the two second flow paths 32 are arranged at positions that do not overlap with the first region 21, second region 22, and third region 23 in plan view.
 本体部30は、第1流路形成部311と、第2流路形成部312とを備える。第1流路形成部311は、第1流路31と第2流路32とを隔てる隔壁である。第1流路形成部311は、本体部30の内壁303との間に隙間を有している。この隙間は、第1領域21を迂回する第2流路32の迂回部321(図8参照)に相当する。第1領域21は、2つの第1流路形成部311の間に配置される。第2流路形成部312は、第1流路形成部311よりも下流に配置された隔壁である。第2流路形成部312は、第1流路形成部311との間に隙間を有している。この隙間は、第2流路32における第1流路31への合流部322(図8参照)に相当する。 The main body section 30 includes a first flow path forming section 311 and a second flow path forming section 312. The first flow path forming part 311 is a partition wall that separates the first flow path 31 and the second flow path 32. The first flow path forming section 311 has a gap between it and the inner wall 303 of the main body section 30 . This gap corresponds to a detour portion 321 (see FIG. 8) of the second flow path 32 that detours around the first region 21. The first region 21 is arranged between the two first flow path forming parts 311. The second flow path forming portion 312 is a partition wall disposed downstream of the first flow path forming portion 311. The second flow path forming section 312 has a gap between it and the first flow path forming section 311 . This gap corresponds to a merging portion 322 (see FIG. 8) in the second flow path 32 to the first flow path 31.
 2つの第3流路33は、第2流路32から分岐して第1流路31と合流する。具体的には、第3流路33は、第2領域22よりも上流の位置で第2流路32から分岐し、第2領域22を迂回するように延在して、第2領域22よりも下流かつ第3領域23よりも上流の位置で第1流路31と合流する。このように、2つの第3流路33は、平面視において第1領域21、第2領域22および第3領域23と重複しない位置に配置される。 The two third flow paths 33 branch from the second flow path 32 and merge with the first flow path 31 . Specifically, the third flow path 33 branches from the second flow path 32 at a position upstream of the second region 22, extends so as to bypass the second region 22, and extends from the second region 22. It also merges with the first flow path 31 at a position downstream and upstream of the third region 23 . In this way, the two third channels 33 are arranged at positions that do not overlap with the first region 21, second region 22, and third region 23 in plan view.
 上述した第2流路形成部312は、本体部30の内壁303との間に隙間を有している。この隙間は、第2領域22を迂回する第3流路33の迂回部331(図8参照)に相当する。第2領域22は、2つの第2流路形成部312の間に配置される。また、本体部30は、第3流路形成部313を備える。第3流路形成部313は、第2流路形成部312よりも下流に設けられた隔壁であって、第2流路形成部312との間に隙間を有している。この隙間は、第3流路33における第1流路31への合流部332(図8参照)に相当する。 The second flow path forming section 312 described above has a gap between it and the inner wall 303 of the main body section 30. This gap corresponds to a detour portion 331 (see FIG. 8) of the third flow path 33 that detours around the second region 22. The second region 22 is arranged between the two second flow path forming parts 312. Further, the main body portion 30 includes a third flow path forming portion 313. The third flow path forming section 313 is a partition wall provided downstream of the second flow path forming section 312, and has a gap between it and the second flow path forming section 312. This gap corresponds to a merging portion 332 (see FIG. 8) in the third flow path 33 to the first flow path 31.
 図5は、図4に示すV-V線矢視における模式的な断面図である。図6は、図4に示すVI-VI線矢視における模式的な断面図である。図7は、図4に示すVII-VII線矢視における模式的な断面図である。 FIG. 5 is a schematic cross-sectional view taken along the line VV shown in FIG. 4. FIG. 6 is a schematic cross-sectional view taken along the line VI-VI shown in FIG. 7 is a schematic cross-sectional view taken along the line VII-VII shown in FIG. 4. FIG.
 図5~図7に示すように、発熱体であるスイッチング素子3u~3wの直下には第1流路31が位置している。スイッチング素子3u~3wで発生した熱は、第1流路31を流れる冷媒によって冷却装置100の外部に移動する。これにより、スイッチング素子3u~3wは冷却される。第1流路31には複数のフィン25が位置している。これにより、第1流路31によるスイッチング素子3u~3wの冷却効率を高めることができる。 As shown in FIGS. 5 to 7, the first flow path 31 is located directly below the switching elements 3u to 3w, which are heating elements. The heat generated in the switching elements 3u to 3w is transferred to the outside of the cooling device 100 by the refrigerant flowing through the first flow path 31. As a result, the switching elements 3u to 3w are cooled. A plurality of fins 25 are located in the first flow path 31 . Thereby, the cooling efficiency of the switching elements 3u to 3w by the first flow path 31 can be increased.
 一方、図5に示すように、第2流路32は、スイッチング素子3uの直下から側方にずれた位置に配置されている。このため、第2流路32を流れる冷媒は、第1流路31を流れる冷媒と比較して、スイッチング素子3uで発生した熱の影響を受けにくい。 On the other hand, as shown in FIG. 5, the second flow path 32 is arranged at a position shifted laterally from directly below the switching element 3u. Therefore, the refrigerant flowing through the second flow path 32 is less affected by the heat generated in the switching element 3u than the refrigerant flowing through the first flow path 31.
 第1流路31において第1領域21の直下を通過した冷媒は、その後、第2領域22の直下を通過することになるが、第2領域22の直下を通過する前に、第2流路32から流入した冷媒すなわち第1領域21の直下を通過した冷媒よりも温度が低い冷媒と合流する。 The refrigerant that has passed directly under the first region 21 in the first flow path 31 will then pass directly under the second region 22, but before passing directly under the second region 22, the refrigerant It joins with the refrigerant that has flowed in from 32 , that is, the refrigerant that has a lower temperature than the refrigerant that has passed directly under the first region 21 .
 これにより、冷却装置100は、第2流路32を備えない場合と比較して、より低い温度の冷媒でスイッチング素子3vを冷却することができる。言い換えれば、スイッチング素子3uによる冷媒の温度上昇を抑えることができる。したがって、冷却装置100は、スイッチング素子3uと、その下流に配置されたスイッチング素子3vとの間で、冷却温度にバラツキが生じることを抑制することができる。 Thereby, the cooling device 100 can cool the switching element 3v with a refrigerant at a lower temperature than when the second flow path 32 is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching element 3u. Therefore, the cooling device 100 can suppress variations in cooling temperature between the switching element 3u and the switching element 3v arranged downstream thereof.
 図6に示すように、第3流路33は、スイッチング素子3vの直下から側方にずれた位置に配置されている。このため、第3流路33を流れる冷媒は、第1流路31を流れる冷媒と比較して、スイッチング素子3vで発生した熱の影響を受けにくい。 As shown in FIG. 6, the third flow path 33 is arranged at a position shifted laterally from directly below the switching element 3v. Therefore, the refrigerant flowing through the third flow path 33 is less affected by the heat generated by the switching element 3v than the refrigerant flowing through the first flow path 31.
 第1流路31において第2領域22を通過した冷媒は、その後、第3領域23を通過することになるが、第3領域23の直下を通過する前に、第3流路33から流入した冷媒すなわち第2領域22の直下を通過した冷媒よりも温度が低い冷媒と合流する。 The refrigerant that has passed through the second region 22 in the first flow path 31 will then pass through the third region 23, but before passing directly under the third region 23, the refrigerant that has flowed in from the third flow path 33 will pass through the third region 23. It merges with the refrigerant, that is, the refrigerant whose temperature is lower than that of the refrigerant that passed directly under the second region 22 .
 これにより、冷却装置100は、第3流路33を備えない場合と比較して、より低い温度の冷媒でスイッチング素子3wを冷却することができる。言い換えれば、スイッチング素子3u,3vによる冷媒の温度上昇を抑えることができる。したがって、冷却装置100は、スイッチング素子3vと、その下流に配置されたスイッチング素子3wとの間で、冷却温度にバラツキが生じることを抑制することができる。 Thereby, the cooling device 100 can cool the switching element 3w with a lower temperature refrigerant compared to the case where the third flow path 33 is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching elements 3u and 3v. Therefore, the cooling device 100 can suppress variations in cooling temperature between the switching element 3v and the switching element 3w arranged downstream thereof.
 このように、第1実施形態に係る冷却装置100によれば、第1流路31に加えて、第2流路32および第3流路33を備えることで、スイッチング素子3u、スイッチング素子3vおよびスイッチング素子3w間で、冷却温度にバラツキが生じることを抑制することができる。 Thus, according to the cooling device 100 according to the first embodiment, in addition to the first flow path 31, the second flow path 32 and the third flow path 33 are provided, so that the switching element 3u, the switching element 3v, and It is possible to suppress variations in cooling temperature between the switching elements 3w.
 また、第2流路32から流れ込む冷媒および第3流路33から流れ込む冷媒によって、第1流路31を流れる冷媒の流量は、冷媒の流れ方向の下流に向かうほど多くなる。冷媒の流量が多くなるほどスイッチング素子3の熱抵抗は低下するため、これによっても、スイッチング素子3u、スイッチング素子3vおよびスイッチング素子3w間で、冷却温度にバラツキが生じることを抑制することができる。 Furthermore, due to the refrigerant flowing from the second flow path 32 and the refrigerant flowing from the third flow path 33, the flow rate of the refrigerant flowing through the first flow path 31 increases as it goes downstream in the flow direction of the refrigerant. Since the thermal resistance of the switching element 3 decreases as the flow rate of the refrigerant increases, it is also possible to suppress variations in cooling temperature between the switching element 3u, the switching element 3v, and the switching element 3w.
 図5および図6に示すように、第2流路32の第1流路31からの分岐部(後述する迂回部321)における流路断面積は、第1流路31よりも小さく、かつ、第3流路33の第2流路32からの分岐部(後述する迂回部331)における流路断面積よりも大きい。これにより、第3流路33における冷媒の流速が第2流路32における冷媒の流速よりも速くなることから、スイッチング素子3u、スイッチング素子3vおよびスイッチング素子3wの冷却温度をさらに均一化させることができる。 As shown in FIGS. 5 and 6, the cross-sectional area of the second flow path 32 at the branch part (detour part 321 described later) from the first flow path 31 is smaller than that of the first flow path 31, and The cross-sectional area of the third flow path 33 is larger than the cross-sectional area of the third flow path 33 at a branch portion from the second flow path 32 (detour portion 331 to be described later). As a result, the flow rate of the refrigerant in the third flow path 33 becomes faster than the flow speed of the refrigerant in the second flow path 32, so that the cooling temperatures of the switching elements 3u, 3v, and 3w can be made more uniform. can.
 次に、上述した第2流路32および第3流路33の具体的な構成例について図8を参照して説明する。図8は、第1実施形態に係る第2流路32および第3流路33の模式的な拡大図である。 Next, a specific configuration example of the second flow path 32 and the third flow path 33 described above will be described with reference to FIG. 8. FIG. 8 is a schematic enlarged view of the second flow path 32 and the third flow path 33 according to the first embodiment.
 図8に示すように、第2流路32は、第2流路32を流れる冷媒を第1流路31へ案内する第1案内部51を有する。 As shown in FIG. 8, the second flow path 32 has a first guide portion 51 that guides the refrigerant flowing through the second flow path 32 to the first flow path 31.
 具体的には、第2流路32は、第1流路形成部311と筐体10の内壁303との間に形成される迂回部321と、迂回部321の下流に位置する合流部322とを有する。そして、第2流路形成部312は、迂回部321における冷媒の流れ方向(X軸正方向)に沿って第1流路形成部311を仮想的に延ばした仮想線L1よりも筐体10の内壁303側に位置する部位を有する。このように、第2流路32は、迂回部321における冷媒の流れとぶつかる部位を第1案内部51として有する。 Specifically, the second flow path 32 includes a detour portion 321 formed between the first flow path forming portion 311 and the inner wall 303 of the housing 10, and a confluence portion 322 located downstream of the detour portion 321. has. The second flow path forming portion 312 is located closer to the casing 10 than the imaginary line L1, which is an imaginary extension of the first flow path forming portion 311 along the refrigerant flow direction (X-axis positive direction) in the detour portion 321. It has a portion located on the inner wall 303 side. In this way, the second flow path 32 has a portion that collides with the flow of the refrigerant in the detour portion 321 as the first guide portion 51 .
 第2流路32は、第1案内部51を有することで、第2流路32を流れる冷媒を効率よく第1流路31に流入させることができる。すなわち、たとえば第2流路32が第1案内部51を有しない場合であっても、合流部322を通って第1流路31に流れ込む冷媒は存在するが、第1流路31を流れる冷媒の温度を低下させるのに十分な流量を得ることは難しい。これに対し、第1実施形態に係る第2流路32は、第1案内部51を有することで、迂回部321を流れる冷媒を積極的に合流部322へ向かわせることができるため、第2流路32から第1流路31に対して比較的速い流速で冷媒を流入させることができる。これにより、第1実施形態に係る第2流路32は、第1流路31を流れる冷媒の温度を効率よく低下させることができる。 By having the first guide portion 51, the second flow path 32 can efficiently cause the refrigerant flowing through the second flow path 32 to flow into the first flow path 31. That is, even if the second flow path 32 does not have the first guide portion 51, for example, there is refrigerant flowing into the first flow path 31 through the merging portion 322, but the refrigerant flowing through the first flow path 31 It is difficult to obtain a sufficient flow rate to reduce the temperature of the On the other hand, the second flow path 32 according to the first embodiment includes the first guide portion 51 and can actively direct the refrigerant flowing through the detour portion 321 toward the confluence portion 322. The refrigerant can flow from the flow path 32 into the first flow path 31 at a relatively high flow rate. Thereby, the second flow path 32 according to the first embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31.
 第2流路32の合流部322は、迂回部321から第1流路31に向かって斜めに延在している。具体的には、第1流路形成部311は、第2流路形成部312との間で合流部322を形成する第1壁面311aを有する。また、第2流路形成部312は、第1流路形成部311との間で合流部322を形成する第2壁面312aを有する。そして、これら第1壁面311aおよび第2壁面312aは、第1流路31に向かって斜めに延在している。かかる構成とすることにより、第2流路32から第1流路31に対してより速い流速で冷媒を流入させることができる。したがって、第1実施形態に係る第2流路32によれば、第1流路31を流れる冷媒の温度を効率よく低下させることができる。 The merging portion 322 of the second flow path 32 extends obliquely from the detour portion 321 toward the first flow path 31 . Specifically, the first flow path forming section 311 has a first wall surface 311a that forms a confluence section 322 with the second flow path forming section 312. Further, the second flow path forming section 312 has a second wall surface 312a that forms a confluence section 322 with the first flow path forming section 311. The first wall surface 311a and the second wall surface 312a extend obliquely toward the first flow path 31. With this configuration, the refrigerant can flow from the second flow path 32 into the first flow path 31 at a higher flow rate. Therefore, according to the second flow path 32 according to the first embodiment, the temperature of the refrigerant flowing through the first flow path 31 can be efficiently lowered.
 第3流路33は、第3流路33を流れる冷媒を第1流路31へ案内する第2案内部52を有する。 The third flow path 33 has a second guide portion 52 that guides the refrigerant flowing through the third flow path 33 to the first flow path 31.
 具体的には、第3流路33は、第2流路形成部312と筐体10の内壁303との間に形成される迂回部331と、迂回部331の下流に位置する合流部332とを有する。そして、第3流路形成部313は、迂回部331における冷媒の流れ方向(X軸正方向)に沿って第2流路形成部312を仮想的に延ばした仮想線L2よりも筐体10の内壁303側に位置する部位を有する。このように、第3流路33は、迂回部331における冷媒の流れとぶつかる部位を第2案内部52として有する。 Specifically, the third flow path 33 includes a detour portion 331 formed between the second flow path forming portion 312 and the inner wall 303 of the housing 10, and a confluence portion 332 located downstream of the detour portion 331. has. The third flow path forming portion 313 is located closer to the casing 10 than the imaginary line L2, which is an imaginary extension of the second flow path forming portion 312 along the refrigerant flow direction (X-axis positive direction) in the detour portion 331. It has a portion located on the inner wall 303 side. In this way, the third flow path 33 has a portion that collides with the flow of the refrigerant in the detour portion 331 as the second guide portion 52 .
 第3流路33は、第2案内部52を有することで、第3流路33を流れる冷媒を効率よく第1流路31に流入させることができる。これにより、第1実施形態に係る第3流路33は、第1流路31を流れる冷媒の温度を効率よく低下させることができる。 By having the second guide portion 52, the third flow path 33 can efficiently cause the refrigerant flowing through the third flow path 33 to flow into the first flow path 31. Thereby, the third flow path 33 according to the first embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31.
 また、第3流路33の合流部332は、迂回部331から第1流路31に向かって斜めに延在している。具体的には、第2流路形成部312は、第3流路形成部313との間で合流部332を形成する第3壁面312bを有する。また、第3流路形成部313は、第2流路形成部312との間で合流部332を形成する第4壁面313aを有する。そして、これら第3壁面312bおよび第4壁面313aは、第1流路31に向かって斜めに延在している。かかる構成とすることにより、第3流路33から第1流路31に対してより速い流速で冷媒を流入させることができる。これにより、第1実施形態に係る第2流路32は、第1流路31を流れる冷媒の温度を効率よく低下させることができる。 Further, the merging portion 332 of the third flow path 33 extends diagonally from the detour portion 331 toward the first flow path 31. Specifically, the second flow path forming section 312 has a third wall surface 312b that forms a confluence section 332 with the third flow path forming section 313. Further, the third flow path forming section 313 has a fourth wall surface 313a that forms a confluence section 332 with the second flow path forming section 312. The third wall surface 312b and the fourth wall surface 313a extend obliquely toward the first flow path 31. With this configuration, the refrigerant can flow from the third flow path 33 into the first flow path 31 at a higher flow rate. Thereby, the second flow path 32 according to the first embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31.
(第2実施形態)
 次に、第2実施形態に係る冷却装置100Aの構成について説明する。図9は、第2実施形態に係る冷却装置100Aの内部構造を示す模式的な平断面図である。図9に示す平断面図は、図10に示すIX-IX線矢視における断面図に相当する。図10は、図9に示すX-X線矢視における模式的な断面図である。図11は、図9に示すXI-XI線矢視における模式的な断面図である。図12は、図9に示すXII-XII線矢視における模式的な断面図である。図13は、図9に示すXIII-XIII線矢視における模式的な断面図である。
(Second embodiment)
Next, the configuration of the cooling device 100A according to the second embodiment will be described. FIG. 9 is a schematic cross-sectional plan view showing the internal structure of a cooling device 100A according to the second embodiment. The plan sectional view shown in FIG. 9 corresponds to the sectional view taken along the line IX-IX shown in FIG. FIG. 10 is a schematic cross-sectional view taken along the line XX shown in FIG. FIG. 11 is a schematic cross-sectional view taken along the line XI-XI shown in FIG. FIG. 12 is a schematic cross-sectional view taken along the line XII-XII shown in FIG. FIG. 13 is a schematic cross-sectional view taken along the line XIII-XIII shown in FIG.
 図9および図10に示すように、第2実施形態に係る電力変換装置1Aが備える冷却装置100Aは、筐体10Aの内部に第1流路31A、第2流路32Aおよび第3流路33Aを備える。第1流路31Aは、筐体10Aの流入口301Aと流出口302Aとを繋ぐ流路であり、平面視において第1領域21、第2領域22および第3領域23と重複する。第1流路31Aには、ベースプレート20の第2面202に設けられた複数のフィン25が配置される。 As shown in FIGS. 9 and 10, a cooling device 100A included in a power conversion device 1A according to the second embodiment includes a first flow path 31A, a second flow path 32A, and a third flow path 33A inside a housing 10A. Equipped with. The first flow path 31A is a flow path that connects the inlet 301A and the outlet 302A of the housing 10A, and overlaps with the first region 21, the second region 22, and the third region 23 in plan view. A plurality of fins 25 provided on the second surface 202 of the base plate 20 are arranged in the first flow path 31A.
 第2実施形態において、第2流路32Aおよび第3流路33Aは、第1流路31Aの直下に位置している。すなわち、第2流路32Aは、平面視において第1領域21と重複する位置に配置され、第3流路33Aは、平面視において第2領域22と重複する位置に配置される。 In the second embodiment, the second flow path 32A and the third flow path 33A are located directly below the first flow path 31A. That is, the second flow path 32A is arranged at a position overlapping with the first region 21 in plan view, and the third flow path 33A is arranged at a position overlapping with second region 22 in plan view.
 筐体10Aは、ベースプレート20と本体部30Aとを備える。また、本体部30Aは、内部に、第1流路形成部311A、第2流路形成部312Aおよび第3流路形成部313Aを備える。第1流路形成部311A、第2流路形成部312Aおよび第3流路形成部313Aは、冷媒の流れ方向(X軸方向)に沿ってこの順番で並べられる。また、第1流路形成部311A、第2流路形成部312Aおよび第3流路形成部313Aは、互いに間隔をあけて配置される。 The housing 10A includes a base plate 20 and a main body 30A. Further, the main body portion 30A includes a first flow path forming portion 311A, a second flow path forming portion 312A, and a third flow path forming portion 313A inside. The first flow path forming section 311A, the second flow path forming section 312A, and the third flow path forming section 313A are arranged in this order along the refrigerant flow direction (X-axis direction). Further, the first flow path forming section 311A, the second flow path forming section 312A, and the third flow path forming section 313A are arranged at intervals from each other.
 第1流路形成部311Aは、第1流路31Aと第2流路32Aとを隔てる隔壁である(図11参照)。第2流路形成部312Aは、第1流路31Aと第3流路33Aとを隔てる隔壁である(図12参照)。 The first flow path forming portion 311A is a partition wall that separates the first flow path 31A and the second flow path 32A (see FIG. 11). The second flow path forming portion 312A is a partition wall that separates the first flow path 31A and the third flow path 33A (see FIG. 12).
 第2流路32Aは、流入口301Aよりも下流かつ第1領域21よりも上流の位置で第1流路31Aから分岐する。具体的には、第2流路32Aは、第1流路31Aにおける冷媒の流れ方向(X軸方向)と直交する方向(Z軸方向)に第1領域21を迂回するように第1流路31Aから分岐する。そして、第2流路32Aは、第1領域21よりも下流かつ第2領域22よりも上流の位置で第1流路31Aと合流する。 The second flow path 32A branches from the first flow path 31A at a position downstream of the inlet 301A and upstream of the first region 21. Specifically, the second flow path 32A detours around the first region 21 in a direction (Z-axis direction) perpendicular to the flow direction (X-axis direction) of the refrigerant in the first flow path 31A. Branches off from 31A. The second flow path 32A joins the first flow path 31A at a position downstream of the first region 21 and upstream of the second region 22.
 本体部30Aの内壁303Aと第1流路形成部311Aとの間に位置する隙間は、第2流路32Aの迂回部321A(図14参照)に相当する。また、第1流路形成部311Aと第2流路形成部312Aとの間に位置する隙間は、第2流路32Aにおける第1流路31Aへの合流部322A(図14参照)に相当する。 The gap located between the inner wall 303A of the main body portion 30A and the first flow path forming portion 311A corresponds to the detour portion 321A (see FIG. 14) of the second flow path 32A. Further, the gap located between the first flow path forming part 311A and the second flow path forming part 312A corresponds to a merging part 322A (see FIG. 14) in the second flow path 32A to the first flow path 31A. .
 第3流路33Aは、第2流路32Aから分岐して第1流路31Aと合流する。具体的には、第3流路33Aは、第2領域22よりも上流の位置で第2流路32Aから分岐し、第2領域22よりも下流かつ第3領域23よりも上流の位置で第1流路31Aと合流する。 The third flow path 33A branches from the second flow path 32A and merges with the first flow path 31A. Specifically, the third flow path 33A branches from the second flow path 32A at a position upstream of the second region 22, and branches off from the second flow path 32A at a position downstream of the second region 22 and upstream of the third region 23. 1 flow path 31A.
 本体部30Aの内壁303Aと第2流路形成部312Aとの間に位置する隙間は、第3流路33Aの迂回部331A(図14参照)に相当する。また、第2流路形成部312Aと第3流路形成部313Aとの間に位置する隙間は、第3流路33Aにおける第1流路31Aへの合流部332A(図14参照)に相当する。 The gap located between the inner wall 303A of the main body portion 30A and the second flow path forming portion 312A corresponds to the detour portion 331A (see FIG. 14) of the third flow path 33A. Further, the gap located between the second flow path forming part 312A and the third flow path forming part 313A corresponds to a joining part 332A (see FIG. 14) of the third flow path 33A to the first flow path 31A. .
 図11~図13に示すように、発熱体であるスイッチング素子3u~3wの直下には第1流路31Aが位置している。スイッチング素子3u~3wで発生した熱は、第1流路31Aを流れる冷媒によって冷却装置100Aの外部に移動する。これにより、スイッチング素子3u~3wは冷却される。第1流路31Aには複数のフィン25が位置しており、これにより、スイッチング素子3u~3wを効率よく冷却することができる。 As shown in FIGS. 11 to 13, the first flow path 31A is located directly below the switching elements 3u to 3w, which are heating elements. The heat generated in the switching elements 3u to 3w is transferred to the outside of the cooling device 100A by the refrigerant flowing through the first flow path 31A. As a result, the switching elements 3u to 3w are cooled. A plurality of fins 25 are located in the first flow path 31A, so that the switching elements 3u to 3w can be efficiently cooled.
 一方、図11に示すように、第2流路32Aは、第1流路31Aよりもスイッチング素子3uから離れた位置に配置されている。このため、第2流路32Aを流れる冷媒は、第1流路31Aを流れる冷媒と比較して、スイッチング素子3uで発生した熱による温度上昇の影響を受けにくい。 On the other hand, as shown in FIG. 11, the second flow path 32A is located further away from the switching element 3u than the first flow path 31A. Therefore, the refrigerant flowing through the second flow path 32A is less susceptible to temperature rise due to heat generated in the switching element 3u, compared to the refrigerant flowing through the first flow path 31A.
 第1流路31Aにおいて第1領域21の直下を通過した冷媒は、その後、第2領域22の直下を通過することになるが、第2領域22の直下を通過する前に、第2流路32Aから流入した冷媒すなわち第2領域22の直下を通過する冷媒よりも温度が低い冷媒と合流する。 The refrigerant that has passed directly under the first region 21 in the first flow path 31A will then pass directly under the second region 22, but before passing directly under the second region 22, the refrigerant It merges with the refrigerant flowing from 32A, that is, the refrigerant whose temperature is lower than that of the refrigerant passing directly under the second region 22.
 これにより、冷却装置100Aは、第2流路32Aを備えない場合と比較して、より低い温度の冷媒でスイッチング素子3vを冷却することができる。言い換えれば、スイッチング素子3uによる冷媒の温度上昇を抑えることができる。したがって、冷却装置100Aは、スイッチング素子3uと、その下流に配置されたスイッチング素子3vとの間で、冷却温度にバラツキが生じることを抑制することができる。 Thereby, the cooling device 100A can cool the switching element 3v with a lower temperature refrigerant compared to the case where the second flow path 32A is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching element 3u. Therefore, the cooling device 100A can suppress variations in cooling temperature between the switching element 3u and the switching element 3v arranged downstream thereof.
 図12に示すように、第3流路33Aは、第1流路31Aよりもスイッチング素子3vから離れた位置に配置されている。このため、第3流路33Aを流れる冷媒は、第1流路31Aを流れる冷媒と比較して、スイッチング素子3vで発生した熱による温度上昇の影響を受けにくい。 As shown in FIG. 12, the third flow path 33A is located further away from the switching element 3v than the first flow path 31A. Therefore, the refrigerant flowing through the third flow path 33A is less susceptible to temperature rise due to heat generated by the switching element 3v, compared to the refrigerant flowing through the first flow path 31A.
 第1流路31Aにおいて第2領域22を通過した冷媒は、その後、第3領域23を通過することになるが、第3領域23を通過する前に、第3流路33Aから流入した冷媒すなわちスイッチング素子3uおよびスイッチング素子3vによる温度上昇が少ない冷媒と合流することで、温度が低下する。 The refrigerant that has passed through the second region 22 in the first flow path 31A will then pass through the third region 23, but before passing through the third region 23, the refrigerant that has flowed from the third flow path 33A, The temperature decreases by merging with the refrigerant whose temperature increases less due to the switching elements 3u and 3v.
 これにより、冷却装置100は、第3流路33Aを備えない場合と比較して、より低い温度の冷媒でスイッチング素子3wを冷却することができる。言い換えれば、スイッチング素子3u,3vによる冷媒の温度上昇を抑えることができる。したがって、冷却装置100Aは、スイッチング素子3vと、その下流に配置されたスイッチング素子3wとの間で、冷却温度にバラツキが生じることを抑制することができる。 Thereby, the cooling device 100 can cool the switching element 3w with the refrigerant at a lower temperature compared to the case where the third flow path 33A is not provided. In other words, it is possible to suppress the temperature rise of the refrigerant caused by the switching elements 3u and 3v. Therefore, the cooling device 100A can suppress variations in cooling temperature between the switching element 3v and the switching element 3w arranged downstream thereof.
 このように、第2実施形態に係る冷却装置100Aによれば、第2流路32Aおよび第3流路33Aを備えることで、スイッチング素子3u、スイッチング素子3vおよびスイッチング素子3w間で、冷却温度にバラツキが生じることを抑制することができる。 As described above, according to the cooling device 100A according to the second embodiment, by providing the second flow path 32A and the third flow path 33A, the cooling temperature can be adjusted between the switching element 3u, the switching element 3v, and the switching element 3w. It is possible to suppress the occurrence of variations.
 図11および図12に示すように、第2流路32Aの第1流路31Aからの分岐部(後述する迂回部321A)における流路断面積は、第1流路31Aよりも小さく、かつ、第3流路33Aの第2流路32Aからの分岐部(後述する迂回部331A)における流路断面積よりも大きい。これにより、第3流路33Aにおける冷媒の流速が第2流路32Aにおける冷媒の流速よりも速くなることから、スイッチング素子3u、スイッチング素子3vおよびスイッチング素子3wの冷却温度をさらに均一化させることができる。 As shown in FIGS. 11 and 12, the cross-sectional area of the second flow path 32A at the branch portion (detour portion 321A described later) from the first flow path 31A is smaller than that of the first flow path 31A, and The cross-sectional area of the third flow path 33A is larger than the flow path cross-sectional area at the branch portion (detour portion 331A described later) from the second flow path 32A. As a result, the flow rate of the refrigerant in the third flow path 33A becomes faster than the flow speed of the refrigerant in the second flow path 32A, so that the cooling temperatures of the switching elements 3u, 3v, and 3w can be made more uniform. can.
 第1流路形成部311Aおよび第2流路形成部312Aは、たとえば門型形状を有する(図11および図12参照)。このように、第1流路形成部311Aおよび第2流路形成部312Aを門型に形成することで、たとえば第1流路形成部311Aおよび第2流路形成部312Aを板状に形成した場合と比較して、第2流路32Aおよび第3流路33の位置決めが容易となる。これにより、たとえば第2流路32Aおよび第3流路33の高さが製品毎にばらつくことを抑制することができる。また、たとえば第1流路形成部311Aおよび第2流路形成部312Aを板状に形成した場合と比較して、第2流路32Aおよび第3流路33の取り付け容易性を高めることができる。 The first flow path forming portion 311A and the second flow path forming portion 312A have, for example, a gate shape (see FIGS. 11 and 12). In this way, by forming the first flow path forming portion 311A and the second flow path forming portion 312A in a gate shape, for example, the first flow path forming portion 311A and the second flow path forming portion 312A are formed in a plate shape. Compared to the case, positioning of the second flow path 32A and the third flow path 33 becomes easier. Thereby, for example, it is possible to suppress variations in the heights of the second flow path 32A and the third flow path 33 from product to product. Furthermore, the ease of attaching the second flow path 32A and the third flow path 33 can be improved compared to, for example, the case where the first flow path forming portion 311A and the second flow path forming portion 312A are formed in a plate shape. .
 次に、上述した第2流路32Aおよび第3流路33Aの具体的な構成例について図14を参照して説明する。図14は、第2実施形態に係る第2流路32Aおよび第3流路33Aの模式的な拡大図である。 Next, a specific configuration example of the second flow path 32A and the third flow path 33A described above will be described with reference to FIG. 14. FIG. 14 is a schematic enlarged view of a second flow path 32A and a third flow path 33A according to the second embodiment.
 図14に示すように、第2流路32Aは、第2流路32Aを流れる冷媒を第1流路31Aへ案内する第1案内部51Aを有する。 As shown in FIG. 14, the second flow path 32A has a first guide portion 51A that guides the refrigerant flowing through the second flow path 32A to the first flow path 31A.
 具体的には、第2流路32Aは、第1流路形成部311Aと筐体10Aの内壁303Aとの間に形成される迂回部321Aと、迂回部321Aの下流に位置する合流部322Aとを有する。そして、第2流路形成部312Aは、迂回部321Aにおける冷媒の流れ方向(X軸正方向)に沿って第1流路形成部311Aを仮想的に延ばした仮想線L3よりも筐体10Aの内壁303A側に位置する部位を有する。このように、第2流路32Aは、迂回部321Aにおける冷媒の流れとぶつかる部位を第1案内部51Aとして有する。 Specifically, the second flow path 32A includes a detour portion 321A formed between the first flow path forming portion 311A and the inner wall 303A of the housing 10A, and a confluence portion 322A located downstream of the detour portion 321A. has. The second flow path forming portion 312A is located closer to the casing 10A than the imaginary line L3, which is an imaginary extension of the first flow path forming portion 311A along the refrigerant flow direction (X-axis positive direction) in the detour portion 321A. It has a portion located on the inner wall 303A side. In this way, the second flow path 32A has a portion that collides with the flow of the refrigerant in the detour portion 321A as the first guide portion 51A.
 第2流路32Aは、第1案内部51Aを有することで、第2流路32Aを流れる冷媒を効率よく第1流路31Aに流入させることができる。これにより、第2実施形態に係る第2流路32Aは、第1流路31Aを流れる冷媒の温度を効率よく低下させることができる。 By having the first guide portion 51A, the second flow path 32A can efficiently cause the refrigerant flowing through the second flow path 32A to flow into the first flow path 31A. Thereby, the second flow path 32A according to the second embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31A.
 第3流路33Aは、第3流路33Aを流れる冷媒を第1流路31Aへ案内する第2案内部52Aを有する。 The third flow path 33A has a second guide portion 52A that guides the refrigerant flowing through the third flow path 33A to the first flow path 31A.
 具体的には、第3流路33Aは、第2流路形成部312Aと筐体10Aの内壁303Aとの間に形成される迂回部331Aと、迂回部331Aの下流に位置する合流部332Aとを有する。そして、第3流路形成部313Aは、迂回部331Aにおける冷媒の流れ方向(X軸正方向)に沿って第2流路形成部312Aを仮想的に延ばした仮想線L4よりも筐体10Aの内壁303A側に位置する部位を有する。このように、第3流路33Aは、迂回部331Aにおける冷媒の流れとぶつかる部位を第2案内部52Aとして有する。 Specifically, the third flow path 33A includes a detour portion 331A formed between the second flow path forming portion 312A and the inner wall 303A of the housing 10A, and a confluence portion 332A located downstream of the detour portion 331A. has. The third flow path forming portion 313A is located closer to the housing 10A than the virtual line L4, which is a virtual line extending the second flow path forming portion 312A along the refrigerant flow direction (X-axis positive direction) in the detour portion 331A. It has a portion located on the inner wall 303A side. In this way, the third flow path 33A has a portion that collides with the flow of the refrigerant in the detour portion 331A as the second guide portion 52A.
 第3流路33Aは、第2案内部52Aを有することで、第3流路33Aを流れる冷媒を効率よく第1流路31Aに流入させることができる。これにより、第2実施形態に係る第3流路33Aは、第1流路31Aを流れる冷媒の温度を効率よく低下させることができる。 By having the second guide portion 52A, the third flow path 33A can efficiently cause the refrigerant flowing through the third flow path 33A to flow into the first flow path 31A. Thereby, the third flow path 33A according to the second embodiment can efficiently lower the temperature of the refrigerant flowing through the first flow path 31A.
 本願発明者は、冷媒の流量をそれぞれ6L/min、8L/min、10L/minに設定した場合におけるスイッチング素子3の熱抵抗を測定した。その結果を図15に示す。図15は、冷媒の流量とスイッチング素子3の熱抵抗との関係を示すグラフである。図15に示すように、冷媒の流量が多くなるほどスイッチング素子3の熱抵抗が低下する結果が示された。 The inventor of this application measured the thermal resistance of the switching element 3 when the flow rate of the refrigerant was set to 6 L/min, 8 L/min, and 10 L/min, respectively. The results are shown in FIG. FIG. 15 is a graph showing the relationship between the flow rate of the refrigerant and the thermal resistance of the switching element 3. As shown in FIG. 15, the results showed that the thermal resistance of the switching element 3 decreased as the flow rate of the refrigerant increased.
 また、本願発明者は、上記実験結果を基に、下記の条件にてスイッチング素子3u~3wの各温度をシミュレーションにより算出した。
<シミュレーションの条件>
 スイッチング素子3u~3wの発熱量・・・650W
 冷媒の流量(条件1)・・・8L/min(スイッチング素子3u~3wで流量一定)
 冷媒の流量(条件2)・・・スイッチング素子3u:6L/min、スイッチング素子3v:8L/min、スイッチング素子3v:10L/min
In addition, the inventor of the present application calculated each temperature of the switching elements 3u to 3w by simulation based on the above experimental results under the following conditions.
<Simulation conditions>
Heat generation amount of switching elements 3u to 3w...650W
Refrigerant flow rate (condition 1)...8L/min (constant flow rate with switching elements 3u to 3w)
Refrigerant flow rate (condition 2)...Switching element 3u: 6L/min, Switching element 3v: 8L/min, Switching element 3v: 10L/min
 条件1の流量は、第2流路および第3流路を有しない冷却装置を用いて冷却を行った場合の冷媒の流量を示している。また、条件2では、第1流路の流量を6L/minに設定し、第2流路および第3流路の流量をそれぞれ2L/minに設定した。 The flow rate of condition 1 indicates the flow rate of the refrigerant when cooling is performed using a cooling device that does not have the second flow path and the third flow path. Further, under condition 2, the flow rate of the first flow path was set to 6 L/min, and the flow rates of the second flow path and the third flow path were each set to 2 L/min.
 図16は、条件1および条件2にてスイッチング素子3u~3wの温度を算出した結果を示すグラフである。図16に示すように、条件1にて計算を行った場合、最上流に配置されるスイッチング素子3uと最下流に配置されるスイッチング素子3wとの温度差は、5.6℃であった。これに対し、条件2にて計算を行った場合、スイッチング素子3u~3w間で温度差はほとんど生じなかった。 FIG. 16 is a graph showing the results of calculating the temperatures of the switching elements 3u to 3w under conditions 1 and 2. As shown in FIG. 16, when calculation was performed under Condition 1, the temperature difference between the switching element 3u placed at the most upstream position and the switching element 3w placed at the most downstream position was 5.6°C. On the other hand, when calculation was performed under Condition 2, almost no temperature difference occurred between the switching elements 3u to 3w.
 これらの結果から明らかなように、第1流路に加えて第2流路および第3流路を有する冷却装置は、スイッチング素子3u~3w間における冷却温度のバラツキを抑制することが可能である。 As is clear from these results, the cooling device having the second flow path and the third flow path in addition to the first flow path can suppress variations in cooling temperature between the switching elements 3u to 3w. .
(その他の変形例)
 第1実施形態および第2実施形態では、第2流路が第1流路から分岐する場合の例を示したが、第2流路は、必ずしも第1流路から分岐していることを要しない。同様に、第3流路は、必ずしも第2流路から分岐していることを要しない。たとえば、筐体に設けられた複数の流入口の各々に第1流路、第2流路および第3流路がつながっている構成であってもよい。
(Other variations)
In the first and second embodiments, an example was shown in which the second flow path branches from the first flow path, but the second flow path does not necessarily have to branch from the first flow path. do not. Similarly, the third flow path does not necessarily need to be branched from the second flow path. For example, a configuration may be adopted in which a first flow path, a second flow path, and a third flow path are connected to each of a plurality of inflow ports provided in the housing.
 第2実施形態では、第2流路32Aの合流部322Aおよび第3流路33Aの合流部332Aが第1流路31Aに向かって鉛直上方に延在する例を示したが、合流部322A,332Aは、第1実施形態と同様に第1流路31Aに向かって斜めに延在していてもよい。これにより、第1流路31Aを流れる冷媒の温度を効率よく低下させることができる。 In the second embodiment, an example was shown in which the merging portion 322A of the second flow path 32A and the merging portion 332A of the third flow path 33A extend vertically upward toward the first flow path 31A, but the merging portion 322A, 332A may extend diagonally toward the first flow path 31A similarly to the first embodiment. Thereby, the temperature of the refrigerant flowing through the first flow path 31A can be efficiently lowered.
(応用例)
 上述した各実施形態に係る電力変換装置1は、例えば、ハイブリッド自動車や電気自動車等の車両に搭載されるモータシステムに適用されても良い。
(Application example)
The power conversion device 1 according to each of the embodiments described above may be applied to, for example, a motor system mounted on a vehicle such as a hybrid vehicle or an electric vehicle.
 上述してきたように、実施形態に係る冷却装置(一例として、冷却装置100,100A)は、発熱体を冷却する冷却装置であって、筐体(一例として、筐体10,10A)と、第1流路(一例として、第1流路31,31A)と、第2流路(一例として、第2流路32,32A)とを備える。筐体は、冷媒の流入口(一例として、流入口301,301A)および流出口(一例として、流出口302,302A)を有し、第1の発熱体(一例として、スイッチング素子3u)に接する第1領域(一例として、第1領域21)と第2の発熱体(一例として、スイッチング素子3v)に接する第2領域(一例として、第2領域22)とを含む。第1流路は、流入口と流出口とを繋ぐ流路であって、筐体を平面視した場合に、第1領域および第2領域と重複する。第2流路は、第1領域よりも下流かつ第2領域よりも上流の位置で第1流路と合流する。また、第2流路は、第2流路を流れる冷媒を第1流路へ案内する案内部(一例として、第1案内部51,51A)を有する。 As described above, the cooling device according to the embodiment (as an example, the cooling device 100, 100A) is a cooling device that cools a heating element, and includes a housing (as an example, the housing 10, 10A), It includes one flow path (for example, first flow paths 31 and 31A) and a second flow path (for example, second flow paths 32 and 32A). The housing has a refrigerant inlet (for example, inlet 301, 301A) and an outlet (for example, outlet 302, 302A), and is in contact with the first heating element (for example, switching element 3u). It includes a first region (for example, the first region 21) and a second region (for example, the second region 22) in contact with the second heating element (for example, the switching element 3v). The first channel is a channel that connects the inlet and the outlet, and overlaps with the first region and the second region when the casing is viewed from above. The second flow path merges with the first flow path at a position downstream of the first region and upstream of the second region. Further, the second flow path includes a guide portion (for example, the first guide portions 51 and 51A) that guides the refrigerant flowing through the second flow path to the first flow path.
 したがって、実施形態に係る冷却装置によれば、複数の冷却対象物間における冷却温度のバラツキを抑制することができる。 Therefore, according to the cooling device according to the embodiment, it is possible to suppress variations in cooling temperature among a plurality of objects to be cooled.
 なお、本技術は以下のような構成をとることが可能である。
(1)発熱体を冷却する冷却装置であって、
 冷媒の流入口および流出口を有し、第1の発熱体に接する第1領域と第2の発熱体に接する第2領域とを含む筐体と、
 前記流入口と前記流出口とを繋ぐ流路であって、前記筐体を平面視した場合に、前記第1領域および前記第2領域と重複する第1流路と、
 前記第1領域よりも下流かつ前記第2領域よりも上流の位置で前記第1流路と合流する第2流路と
 を備え、
 前記第2流路は、前記第2流路を流れる前記冷媒を前記第1流路へ案内する案内部を有する、冷却装置。
(2)前記第2流路は、前記流入口よりも下流かつ前記第1領域よりも上流の位置で前記第1流路から分岐する、(1)に記載の冷却装置。
(3)前記第2流路は、前記筐体を平面視した場合に、前記第1領域および前記第2領域と重複しない位置に配置される、(1)または(2)に記載の冷却装置。
(4)前記第1流路および前記第2流路は、前記筐体を平面視した場合に、前記第1流路と重複する位置に配置される、(1)または(2)に記載の冷却装置。
(5)前記筐体は、
 前記第1流路と前記第2流路とを隔てる第1流路形成部と、
 前記第1流路形成部よりも下流に配置され、前記第1流路形成部との間で前記第2流路における前記第1流路への合流部を形成する第2流路形成部と
 を備え、
 前記第2流路は、
 前記第1流路形成部と前記筐体の内壁との間に形成される迂回部と、
 前記迂回部の下流に位置する前記合流部と
 を有し、
 前記第2流路形成部は、前記迂回部における前記冷媒の流れ方向に沿って前記第1流路形成部を仮想的に延ばした仮想線よりも前記筐体の内壁側に位置する部位を前記案内部として有する、(1)~(4)のいずれか一つに記載の冷却装置。
(6)前記第1流路形成部は、前記第2流路形成部との間で前記合流部を形成する第1壁面を有し、
 前記第2流路形成部は、前記第1壁面との間で前記合流部を形成する第2壁面を有し、
 前記第1壁面および前記第2壁面は、前記第1流路に向かって斜めに延在する、(5)に記載の冷却装置。
(7)前記第2流路から分岐して前記第1流路と合流する第3流路をさらに備え、
 前記筐体は、第3の発熱体に接する第3領域をさらに含み、
 前記第1流路は、前記筐体を平面視した場合に、前記筐体の前記第1領域、前記第2領域および前記第3領域と重複し、
 前記第3流路は、前記第2領域よりも上流の位置で前記第2流路から分岐し、前記第2領域よりも下流かつ前記第3領域よりも上流の位置で前記第1流路と合流する、(2)~(6)のいずれか一つに記載の冷却装置。
(8)前記第2流路の前記第1流路からの分岐部における流路断面積は、前記第1流路の流路断面積よりも小さく、且つ、前記第3流路の前記第2流路からの分岐部における流路断面積よりも大きい、(7)に記載の冷却装置。
(9)冷媒の流入口および流出口を有する筐体と、
 前記流入口と前記流出口とを繋ぐ流路であって、前記筐体を平面視した場合に、前記筐体の第1領域および第2領域と重複する第1流路と、
 前記第1領域に配置される第1半導体素子と、
 前記第2領域に配置される第2半導体素子と、
 前記第1領域よりも下流かつ前記第2領域よりも上流の位置で前記第1流路と合流する第2流路と
 を備え、
 前記第2流路は、前記第2流路を流れる前記冷媒を前記第1流路へ案内する案内部を有する、半導体装置。
(10)前記第2流路から分岐して前記第1流路と合流する第3流路をさらに備え、
 前記第1流路は、前記筐体を平面視した場合に、前記筐体の前記第1領域、前記第2領域および第3領域と重複し、
 前記第3領域に配置される第3半導体素子をさらに備え、
 前記第3流路は、前記第2領域よりも上流の位置で前記第2流路から分岐し、前記第2領域よりも下流かつ前記第3領域よりも上流の位置で前記第1流路と合流する、(9)に記載の半導体装置。
(11)前記筐体は、
 前記第1流路、前記第2流路および前記第3流路の少なくとも一部の内壁面を構成する溝を有する本体部と、
 第1面および前記第1面の反対に位置する第2面を有し、前記第2面において前記溝の開放部を塞ぐ板状のベースプレートと
 を備え、
 前記第1半導体素子、前記第2半導体素子および前記第3半導体素子は、前記ベースプレートの前記第1面に配置され、前記ベースプレートの前記第2面に複数のフィンが設けられた、(10)に記載の半導体装置。
(12)前記第1半導体素子、前記第2半導体素子および前記第3半導体素子は、絶縁ゲート型バイポーラトランジスタまたはパワーMOSFETである、(10)または(11)に記載の半導体装置。
Note that the present technology can have the following configuration.
(1) A cooling device that cools a heating element,
a casing that has a refrigerant inlet and an outlet and includes a first region in contact with the first heating element and a second region in contact with the second heating element;
a first flow path that connects the inflow port and the outflow port and overlaps the first region and the second region when the casing is viewed from above;
a second flow path that merges with the first flow path at a position downstream of the first region and upstream of the second region;
The second flow path is a cooling device including a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
(2) The cooling device according to (1), wherein the second flow path branches from the first flow path at a position downstream of the inlet and upstream of the first region.
(3) The cooling device according to (1) or (2), wherein the second flow path is arranged at a position that does not overlap with the first region and the second region when the casing is viewed from above. .
(4) The first flow path and the second flow path according to (1) or (2) are arranged at positions overlapping with the first flow path when the casing is viewed from above. Cooling system.
(5) The casing is
a first flow path forming part that separates the first flow path and the second flow path;
a second flow path forming section that is disposed downstream of the first flow path forming section and forms a confluence section with the first flow path in the second flow path; Equipped with
The second flow path is
a detour portion formed between the first flow path forming portion and an inner wall of the casing;
and the confluence part located downstream of the detour part,
The second flow path forming section includes a portion located closer to the inner wall of the casing than a virtual line extending the first flow path forming section along the flow direction of the refrigerant in the detour section. The cooling device according to any one of (1) to (4), which has the cooling device as a guide portion.
(6) the first flow path forming section has a first wall surface forming the confluence section with the second flow path forming section;
The second flow path forming section has a second wall surface forming the confluence section with the first wall surface,
The cooling device according to (5), wherein the first wall surface and the second wall surface extend obliquely toward the first flow path.
(7) further comprising a third flow path branching from the second flow path and merging with the first flow path;
The casing further includes a third region in contact with a third heating element,
The first flow path overlaps with the first region, the second region, and the third region of the casing when the casing is viewed from above,
The third flow path branches from the second flow path at a position upstream of the second region, and connects with the first flow path at a position downstream of the second region and upstream of the third region. The cooling device according to any one of (2) to (6), which joins together.
(8) A cross-sectional area of the second flow path at a branching portion from the first flow path is smaller than a cross-sectional area of the first flow path, and The cooling device according to (7), which is larger than the cross-sectional area of the flow path at the branch portion from the flow path.
(9) a casing having a refrigerant inlet and an outlet;
a first flow path that connects the inflow port and the outflow port and overlaps a first region and a second region of the casing when the casing is viewed from above;
a first semiconductor element disposed in the first region;
a second semiconductor element disposed in the second region;
a second flow path that merges with the first flow path at a position downstream of the first region and upstream of the second region;
In the semiconductor device, the second flow path includes a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
(10) further comprising a third flow path branching from the second flow path and merging with the first flow path;
The first flow path overlaps with the first region, the second region, and the third region of the casing when the casing is viewed from above,
further comprising a third semiconductor element disposed in the third region,
The third flow path branches from the second flow path at a position upstream of the second region, and connects with the first flow path at a position downstream of the second region and upstream of the third region. The semiconductor device according to (9), which merges.
(11) The casing includes:
a main body portion having a groove forming an inner wall surface of at least a portion of the first flow path, the second flow path, and the third flow path;
a plate-shaped base plate having a first surface and a second surface located opposite to the first surface, and closing the opening of the groove on the second surface;
In (10), the first semiconductor element, the second semiconductor element, and the third semiconductor element are arranged on the first surface of the base plate, and a plurality of fins are provided on the second surface of the base plate. The semiconductor device described.
(12) The semiconductor device according to (10) or (11), wherein the first semiconductor element, the second semiconductor element, and the third semiconductor element are insulated gate bipolar transistors or power MOSFETs.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されても良い。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Indeed, the embodiments described above may be implemented in various forms. Moreover, the above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
 1 電力変換装置
 2 モータ
 3 スイッチング素子
 4 ダイオード
 5 ゲートドライバ
 10 筐体
 20 ベースプレート
 21 第1領域
 22 第2領域
 23 第3領域
 25 フィン
 30 本体部
 31 第1流路
 32 第2流路
 33 第3流路
 51 第1案内部
 52 第2案内部
 100 冷却装置
 301 流入口
 302 流出口
 303 内壁
 311 第1流路形成部
 312 第2流路形成部
 313 第3流路形成部
 321 迂回部
 322 合流部
 331 迂回部
 332 合流部
1 Power converter 2 Motor 3 Switching element 4 Diode 5 Gate driver 10 Housing 20 Base plate 21 First region 22 Second region 23 Third region 25 Fin 30 Main body 31 First channel 32 Second channel 33 Third flow Channel 51 First guide section 52 Second guide section 100 Cooling device 301 Inlet 302 Outlet 303 Inner wall 311 First channel forming section 312 Second channel forming section 313 Third channel forming section 321 Detour section 322 Merging section 331 Detour section 332 Confluence section

Claims (12)

  1.  発熱体を冷却する冷却装置であって、
     冷媒の流入口および流出口を有し、第1の発熱体に接する第1領域と第2の発熱体に接する第2領域とを含む筐体と、
     前記流入口と前記流出口とを繋ぐ流路であって、前記筐体を平面視した場合に、前記第1領域および前記第2領域と重複する第1流路と、
     前記第1領域よりも下流かつ前記第2領域よりも上流の位置で前記第1流路と合流する第2流路と
     を備え、
     前記第2流路は、前記第2流路を流れる前記冷媒を前記第1流路へ案内する案内部を有する、冷却装置。
    A cooling device that cools a heating element,
    a casing having a refrigerant inlet and an outlet and including a first region in contact with the first heating element and a second region in contact with the second heating element;
    a first flow path that connects the inflow port and the outflow port and overlaps the first region and the second region when the casing is viewed from above;
    a second flow path that merges with the first flow path at a position downstream of the first region and upstream of the second region;
    The second flow path is a cooling device including a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
  2.  前記第2流路は、前記流入口よりも下流かつ前記第1領域よりも上流の位置で前記第1流路から分岐する、請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the second flow path branches from the first flow path at a position downstream of the inlet and upstream of the first region.
  3.  前記第2流路は、前記筐体を平面視した場合に、前記第1領域および前記第2領域と重複しない位置に配置される、請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the second flow path is arranged at a position that does not overlap with the first region and the second region when the casing is viewed from above.
  4.  前記第1流路および前記第2流路は、前記筐体を平面視した場合に、前記第1流路と重複する位置に配置される、請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the first flow path and the second flow path are arranged at positions overlapping with the first flow path when the casing is viewed from above.
  5.  前記筐体は、
     前記第1流路と前記第2流路とを隔てる第1流路形成部と、
     前記第1流路形成部よりも下流に配置され、前記第1流路形成部との間で前記第2流路における前記第1流路への合流部を形成する第2流路形成部と
     を備え、
     前記第2流路は、
     前記第1流路形成部と前記筐体の内壁との間に形成される迂回部と、
     前記迂回部の下流に位置する前記合流部と
     を有し、
     前記第2流路形成部は、前記迂回部における前記冷媒の流れ方向に沿って前記第1流路形成部を仮想的に延ばした仮想線よりも前記筐体の内壁側に位置する部位を前記案内部として有する、請求項1に記載の冷却装置。
    The casing is
    a first flow path forming part that separates the first flow path and the second flow path;
    a second flow path forming section that is disposed downstream of the first flow path forming section and forms a confluence section with the first flow path in the second flow path; Equipped with
    The second flow path is
    a detour portion formed between the first flow path forming portion and an inner wall of the casing;
    and the confluence part located downstream of the detour part,
    The second flow path forming section includes a portion located closer to the inner wall of the casing than a virtual line extending the first flow path forming section along the flow direction of the refrigerant in the detour section. The cooling device according to claim 1, having the cooling device as a guide portion.
  6.  前記第1流路形成部は、前記第2流路形成部との間で前記合流部を形成する第1壁面を有し、
     前記第2流路形成部は、前記第1壁面との間で前記合流部を形成する第2壁面を有し、
     前記第1壁面および前記第2壁面は、前記第1流路に向かって斜めに延在する、請求項5に記載の冷却装置。
    The first flow path forming section has a first wall surface forming the confluence section with the second flow path forming section,
    The second flow path forming section has a second wall surface forming the confluence section with the first wall surface,
    The cooling device according to claim 5, wherein the first wall surface and the second wall surface extend obliquely toward the first flow path.
  7.  前記第2流路から分岐して前記第1流路と合流する第3流路をさらに備え、
     前記筐体は、第3の発熱体に接する第3領域をさらに含み、
     前記第1流路は、前記筐体を平面視した場合に、前記筐体の前記第1領域、前記第2領域および前記第3領域と重複し、
     前記第3流路は、前記第2領域よりも上流の位置で前記第2流路から分岐し、前記第2領域よりも下流かつ前記第3領域よりも上流の位置で前記第1流路と合流する、請求項2に記載の冷却装置。
    further comprising a third flow path that branches from the second flow path and merges with the first flow path,
    The casing further includes a third region in contact with a third heating element,
    The first flow path overlaps with the first region, the second region, and the third region of the casing when the casing is viewed from above,
    The third flow path branches from the second flow path at a position upstream of the second region, and connects with the first flow path at a position downstream of the second region and upstream of the third region. 3. The cooling device according to claim 2, wherein the cooling device is merging.
  8.  前記第2流路の前記第1流路からの分岐部における流路断面積は、前記第1流路の流路断面積よりも小さく、且つ、前記第3流路の前記第2流路からの分岐部における流路断面積よりも大きい、請求項7に記載の冷却装置。 The cross-sectional area of the second flow path at the branching portion from the first flow path is smaller than the cross-sectional area of the first flow path, and The cooling device according to claim 7, wherein the cross-sectional area of the flow path is larger than the cross-sectional area of the flow path at the branch portion.
  9.  冷媒の流入口および流出口を有する筐体と、
     前記流入口と前記流出口とを繋ぐ流路であって、前記筐体を平面視した場合に、前記筐体の第1領域および第2領域と重複する第1流路と、
     前記第1領域に配置される第1半導体素子と、
     前記第2領域に配置される第2半導体素子と、
     前記第1領域よりも下流かつ前記第2領域よりも上流の位置で前記第1流路と合流する第2流路と
     を備え、
     前記第2流路は、前記第2流路を流れる前記冷媒を前記第1流路へ案内する案内部を有する、半導体装置。
    a casing having a refrigerant inlet and an outlet;
    a first flow path that connects the inflow port and the outflow port and overlaps a first region and a second region of the casing when the casing is viewed from above;
    a first semiconductor element disposed in the first region;
    a second semiconductor element disposed in the second region;
    a second flow path that merges with the first flow path at a position downstream of the first region and upstream of the second region;
    In the semiconductor device, the second flow path includes a guide portion that guides the refrigerant flowing through the second flow path to the first flow path.
  10.  前記第2流路から分岐して前記第1流路と合流する第3流路をさらに備え、
     前記第1流路は、前記筐体を平面視した場合に、前記筐体の前記第1領域、前記第2領域および第3領域と重複し、
     前記第3領域に配置される第3半導体素子をさらに備え、
     前記第3流路は、前記第2領域よりも上流の位置で前記第2流路から分岐し、前記第2領域よりも下流かつ前記第3領域よりも上流の位置で前記第1流路と合流する、請求項9に記載の半導体装置。
    further comprising a third flow path that branches from the second flow path and merges with the first flow path,
    The first flow path overlaps with the first region, the second region, and the third region of the casing when the casing is viewed from above,
    further comprising a third semiconductor element disposed in the third region,
    The third flow path branches from the second flow path at a position upstream of the second region, and connects with the first flow path at a position downstream of the second region and upstream of the third region. The semiconductor device according to claim 9, wherein the semiconductor device merges.
  11.  前記筐体は、
     前記第1流路、前記第2流路および前記第3流路の少なくとも一部の内壁面を構成する溝を有する本体部と、
     第1面および前記第1面の反対に位置する第2面を有し、前記第2面において前記溝の開放部を塞ぐ板状のベースプレートと
     を備え、
     前記第1半導体素子、前記第2半導体素子および前記第3半導体素子は、前記ベースプレートの前記第1面に配置され、前記ベースプレートの前記第2面に複数のフィンが設けられた、請求項10に記載の半導体装置。
    The casing is
    a main body portion having a groove forming an inner wall surface of at least a portion of the first flow path, the second flow path, and the third flow path;
    a plate-shaped base plate having a first surface and a second surface located opposite to the first surface, and closing the opening of the groove on the second surface;
    11. The first semiconductor element, the second semiconductor element, and the third semiconductor element are arranged on the first surface of the base plate, and a plurality of fins are provided on the second surface of the base plate. The semiconductor device described.
  12.  前記第1半導体素子、前記第2半導体素子および前記第3半導体素子は、絶縁ゲート型バイポーラトランジスタまたはパワーMOSFETである、請求項10または11に記載の半導体装置。 The semiconductor device according to claim 10 or 11, wherein the first semiconductor element, the second semiconductor element, and the third semiconductor element are insulated gate bipolar transistors or power MOSFETs.
PCT/JP2023/022655 2022-06-20 2023-06-19 Cooling device and semiconductor device WO2023248989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022098642 2022-06-20
JP2022-098642 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023248989A1 true WO2023248989A1 (en) 2023-12-28

Family

ID=89380018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022655 WO2023248989A1 (en) 2022-06-20 2023-06-19 Cooling device and semiconductor device

Country Status (1)

Country Link
WO (1) WO2023248989A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079337A (en) * 2003-08-29 2005-03-24 Toshiba Corp Liquid cooled apparatus and system thereof
JP2010153785A (en) * 2008-11-28 2010-07-08 Fuji Electric Systems Co Ltd Semiconductor cooling device
WO2012147544A1 (en) * 2011-04-26 2012-11-01 富士電機株式会社 Cooler for semiconductor module, and semiconductor module
JP2013055056A (en) * 2011-09-01 2013-03-21 Sb Limotive Co Ltd Battery pack
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
WO2022255159A1 (en) * 2021-05-31 2022-12-08 株式会社ヴァレオジャパン Battery cooling unit and battery cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079337A (en) * 2003-08-29 2005-03-24 Toshiba Corp Liquid cooled apparatus and system thereof
JP2010153785A (en) * 2008-11-28 2010-07-08 Fuji Electric Systems Co Ltd Semiconductor cooling device
WO2012147544A1 (en) * 2011-04-26 2012-11-01 富士電機株式会社 Cooler for semiconductor module, and semiconductor module
JP2013055056A (en) * 2011-09-01 2013-03-21 Sb Limotive Co Ltd Battery pack
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
WO2022255159A1 (en) * 2021-05-31 2022-12-08 株式会社ヴァレオジャパン Battery cooling unit and battery cooling system

Similar Documents

Publication Publication Date Title
JP6665655B2 (en) Power converter
JP2023059971A (en) Intelligent power module, and electric vehicle or hybrid car
US7983044B2 (en) Electrical apparatus, cooling system therefor, and electric vehicle
US9881852B2 (en) Semiconductor module
US11538736B2 (en) Cooling apparatus, semiconductor module, and vehicle
CN104143925B (en) Power conversion apparatus
WO2013054887A1 (en) Cooler for semiconductor module, and semiconductor module
JP7400896B2 (en) semiconductor module
US11631641B2 (en) Semiconductor device, semiconductor module, and vehicle
US11984383B2 (en) Semiconductor device
WO2023248989A1 (en) Cooling device and semiconductor device
JP2016100442A (en) Semiconductor module and semiconductor device
JP2010245158A (en) Cooler
US11355420B2 (en) Cooling apparatus, semiconductor module, and vehicle
Seo et al. Development of parallel and direct cooling system for ev/fcev inverter
US10548246B2 (en) Electrical power converter
JP6318668B2 (en) Semiconductor device
WO2022246813A1 (en) Power module having heat dissipation system, and inverter
JP7238635B2 (en) Power converter and cooling system
US20240107718A1 (en) Systems and methods for an interlocking feature on a power module
US20230253292A1 (en) Cooler and semiconductor device
WO2023248999A1 (en) Semiconductor module
US20230178455A1 (en) Semiconductor device and power conversion device
KR102552717B1 (en) Powermodule
Mirdoddi et al. A High Power Density SiC MOSFET Inverter Design and Thermal Validation for EV Traction Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827172

Country of ref document: EP

Kind code of ref document: A1