WO2023248476A1 - Atomizing unit and method for manufacturing same, and enhaler - Google Patents

Atomizing unit and method for manufacturing same, and enhaler Download PDF

Info

Publication number
WO2023248476A1
WO2023248476A1 PCT/JP2022/025369 JP2022025369W WO2023248476A1 WO 2023248476 A1 WO2023248476 A1 WO 2023248476A1 JP 2022025369 W JP2022025369 W JP 2022025369W WO 2023248476 A1 WO2023248476 A1 WO 2023248476A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
molded body
tobacco
transport member
atomization unit
Prior art date
Application number
PCT/JP2022/025369
Other languages
French (fr)
Japanese (ja)
Inventor
光史 松本
貴久 工藤
学 山田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/025369 priority Critical patent/WO2023248476A1/en
Publication of WO2023248476A1 publication Critical patent/WO2023248476A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • an atomizing unit used in a suction tool includes a liquid storage part that stores a predetermined liquid, and an electrical unit that atomizes the introduced liquid and generates an aerosol.
  • An atomizing unit which is characterized in that it has a load, stores powder of tobacco material such as tobacco leaves in the liquid of this liquid storage part, and disperses the powder of tobacco material. (For example, see Patent Document 1).
  • Patent Document 2 discloses a configuration of an atomization unit included in a suction tool having a basic configuration.
  • Patent Document 3 discloses information regarding tobacco leaf extract.
  • Non-Patent Document 1 discloses a technology related to nicotine.
  • the presence of the molded body suppresses the delivery of the liquid (aerosol generation liquid) for generating aerosol in the liquid storage part to the load, and the aerosol generation liquid in the liquid storage part after being used.
  • a new problem arose in that the residual liquid rate increased.
  • the present invention has been made in view of the above, and provides a technology that can suppress deterioration of the load on the atomization unit and reduce the residual liquid rate after use. This is one of the purposes.
  • an atomization unit includes a liquid storage section that stores an aerosol generation liquid containing a tobacco extract component, and a liquid storage section in which the aerosol generation liquid in the liquid storage section is introduced. , an electrical load that atomizes the introduced aerosol-generating liquid to generate an aerosol; and a first liquid configured to transport the aerosol-generating liquid contained in the liquid storage portion toward the load.
  • a transport member, a molded body containing a non-tobacco base material is disposed inside the liquid storage section, and the capillary force of the first liquid transport member is larger than the capillary force of the molded body.
  • a wick provided in contact with the load is provided, the first liquid transport member is provided between the molded body and the wick, and the capillary force of the first liquid transport member is It may be smaller than the capillary force of the wick and larger than the capillary force of the molded body.
  • the wick provided between the molded body and the first liquid transport member facilitates liquid delivery from the first liquid transport member to the load, and the residual liquid rate in the liquid storage section after use is can be reduced.
  • the molded body may be composed of a plurality of particles.
  • the plurality of particles may be fluidly accommodated in the liquid storage section.
  • the flow rate of the aerosol generating liquid can be adjusted by changing the inclination of the atomization unit during use.
  • the average particle diameter of the particles may be 0.71 mm or more.
  • the molded body may be a porous body.
  • the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use can be reduced by the capillary force generated by the voids in the porous body.
  • the second liquid transport member is provided in contact with the first liquid transport member and the molded body, and is smaller than the capillary force of the first liquid transport member and larger than the capillary force of the molded body.
  • the molded article may further contain a flavoring material.
  • the amount of flavor components eluted into the aerosol generation liquid can be increased, and more excellent flavor can be ensured.
  • the flavor material may contain a tobacco material, and the content of the tobacco material in the molded article may be 10% by weight or less.
  • the amount of tobacco components eluted into the aerosol generation liquid can be increased, and more excellent flavor can be ensured.
  • the container constituting the liquid storage portion has a connecting portion connected to the first liquid transporting member, and among the wall portions constituting the container, At least one opening may be provided at a location other than the connection portion.
  • an aerosol generation liquid containing tobacco extract components is used instead of a powdered tobacco material that can become deposits as disclosed in Patent Document 1. Therefore, it is possible to suppress the supply source of tobacco components such as nicotine from adhering to the load of the atomization unit, and thereby suppress deterioration of the load. Furthermore, by using the first liquid transport member that is configured to transport the aerosol-generating liquid toward the load and has a larger capillary force than the molded body, the percentage of liquid remaining in the liquid storage section after use is reduced. be able to.
  • the atomization unit 12 extends in the direction of the central axis CL of the atomization unit 12, for example.
  • the atomization unit 12 is configured, for example, in a "major axis direction (direction of the center axis CL)", a "width direction” perpendicular to the major axis direction, and a “width direction” perpendicular to the major axis direction and the width direction. It exhibits an external shape having a thickness direction.
  • the dimensions of the atomization unit 12 in the long axis direction, width direction, and thickness direction become smaller in this order.
  • the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction
  • the X-axis direction (X direction or -X direction) corresponds to the width direction
  • the Y-axis direction (Y direction or ⁇ Y direction) corresponds to the thickness direction.
  • the atomization unit 12 includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and a plurality of walls (walls 70a to 70g) extending in the width direction. 71a to wall portion 71c). Further, the atomization unit 12 includes an air passage 20, an electrical load 40, a liquid storage section 50, a molded body 60, and a first liquid transport member 61. In this specification, among the members that transport the aerosol generating liquid contained in the liquid storage section 50 toward the load 40, the member that directly contacts the molded body 60 is referred to as a "first liquid transport member.” That is, as shown in FIG.
  • the air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol).
  • the air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23.
  • the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a ("first upstream passage section") and an upstream passage section 21b. (“second upstream passage section").
  • the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction).
  • the downstream ends of the upstream passages 21a and 21b communicate with the load passage 22.
  • the load passage section 22 is a passage section in which a load 40 is disposed.
  • the downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
  • a hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage section 21a through the hole 72a, and flows into the upstream passage section 21b through the hole 72b. Further, the wall portion 71b is provided with a hole 72c and a hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the hole 72d.
  • the direction of air flow in the upstream passage sections 21a and 21b is opposite to the direction of air flow in the downstream passage section 23.
  • the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction
  • the direction of air flow in the downstream passage section 23 is the Z direction.
  • the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
  • the upstream passage section 21a has one side with the liquid storage section 50 in between, in a cross-sectional view taken along a section normal to the central axis CL. side (-X direction side).
  • the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10
  • the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10. placed on the other side.
  • the first liquid transport member 61 is configured to transport an aerosol-generating liquid containing nicotine (hereinafter also simply referred to as "aerosol-generating liquid") stored in the liquid storage part 50 toward the load, and This is a member whose force is larger than the capillary force of the molded body.
  • the specific structure of the first liquid transport member 61 is not particularly limited as long as it has such a function, but for example, cotton, nonwoven fabric, porous ceramic, etc. can be used. More specifically, in an embodiment in which the first liquid transport member 61 is provided between the molded body 60 and the wick 30, cotton or the like cut into a plate shape can be used as the first liquid transport member.
  • the material for the nonwoven fabric examples include cellulose, polyethylene, polypropylene, polyethylene terephthalate, ceramic, and glass fiber.
  • the aerosol generating liquid in the molded body having a small capillary force is transported to the first liquid transport member 61 having a large capillary force by capillarity.
  • the capillary force of the first liquid transport member 61 can be adjusted by changing the porosity and the size of the voids in the member; for example, the smaller the void size, the greater the capillary force. Note that, as described above, when the wick 30 and the molded body 60, which will be described later, come into direct contact, the wick 30 becomes the first liquid transport member 61.
  • the other member becomes the first liquid transport member 61, but in this case, the liquid storage part after use
  • the capillary force of the first liquid transport member 61 is preferably smaller than the capillary force of the wick from the viewpoint of being able to reduce the residual liquid rate of the aerosol generating liquid inside.
  • the wick 30 is a member for introducing the aerosol-generating liquid (hereinafter also simply referred to as "aerosol-generating liquid") containing tobacco extract components in the liquid storage part 50 into the load 40 of the load passage part 22.
  • aerosol-generating liquid hereinafter also simply referred to as "aerosol-generating liquid"
  • the specific configuration of the wick 30 is not particularly limited as long as it has such a function.
  • the atomization unit 12 further includes a second liquid transport member 62 extending in a second direction toward the molded body from the first liquid transport member 61 inside the liquid storage section 50.
  • the liquid transport member 62 is provided in contact with the first liquid transport member 61 and the molded body 60, and the capillary force of the second liquid transport member 62 is smaller than the capillary force of the first liquid transport member 61, and Preferably, it is greater than the capillary force of body 60.
  • the second liquid transport member is provided in contact with the first liquid transport member and the molded body, and is smaller than the capillary force of the first liquid transport member and larger than the capillary force of the molded body.
  • FIG. 5 is a diagram schematically showing a cross section taken along the line A3-A3 in FIG. 4 (that is, a cross section cut along a plane normal to the central axis CL).
  • the mode of the second liquid transport member 62 is not particularly limited as long as it has the above configuration.
  • a porous body or the like can be used. More specifically, a rod-shaped porous body or a plate A porous body or the like can be used.
  • the material of the second liquid transport member 62 is not particularly limited, for example, a material that can be used for the molded body 60 described later can be used.
  • the capillary force of the second liquid transport member 63 can be adjusted by changing the porosity and the size of the voids in the member; for example, the smaller the void size, the greater the capillary force.
  • the number of second liquid transport members 62 is not particularly limited, and may be one, two or more, and if there are a plurality of them, they may be integrated with each other or may not be integrated. It is not necessary. A mode in which the plurality of second liquid transport members 62 are integrated with each other is treated as one member.
  • the load 40 is an electrical load for introducing the aerosol generation liquid in the liquid storage section 50 and atomizing the introduced aerosol generation liquid to generate an aerosol.
  • the specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used.
  • a heater is used as an example of the load 40.
  • a heating resistor that is, a heating wire
  • a ceramic heater a ceramic heater, a dielectric heater, or the like
  • a heating resistor is used as an example of this heater.
  • the heater serving as the load 40 may have a coil shape. That is, the load 40 according to this embodiment may be a so-called coil heater. This coil heater may be wound around the wick 30.
  • the load 40 is arranged in the wick 30 inside the load passage section 22, for example.
  • the load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device.
  • the load 40 heats and atomizes the aerosol-generating liquid in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
  • the liquid storage section 50 is a part for storing the aerosol generation liquid (Le).
  • the liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Further, in this embodiment, the aforementioned downstream passage section 23 is provided so as to penetrate the liquid storage section 50 in the direction of the central axis CL.
  • the liquid may be provided to the user with the liquid contained in the liquid storage part 50, or the liquid may be provided to the user with no liquid contained in the liquid storage part 50, and the user may introduce the liquid. It is also possible to use a configuration.
  • the aerosol generation liquid Le stored in the liquid storage section 50 is not particularly limited as long as it contains tobacco extract components.
  • the method for obtaining the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and it can be obtained by dissolving tobacco materials such as tobacco leaves in a solvent and extracting it.
  • Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance.
  • the aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains a tobacco extract component" may also be referred to as "contains natural nicotine.”
  • the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%).
  • the nicotine in the oral composition is synthetic nicotine.
  • the target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc.
  • the embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
  • the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
  • the method of incorporating the tobacco extract component into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco material in an aerosol base material, or a method of dissolving this tobacco extract component in a solvent.
  • Examples include a method of later mixing with the aerosol generation liquid Le.
  • the tobacco extract can be used as it is as the aerosol generation liquid Le.
  • examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • the liquid aerosol generation liquid Le containing the tobacco extract component as a supply source of the tobacco extract component, powdered tobacco material that can form deposits as disclosed in Patent Document 1 is removed. It is possible to suppress deterioration of the load 40 of the atomization unit 12 that occurs when using the nicotine supply source as a nicotine supply source.
  • the tobacco extract component contains natural nicotine
  • natural nicotine extracted and purified from tobacco leaves can be used.
  • a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
  • the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials.
  • natural nicotine with increased purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
  • the content of nicotine (particularly natural nicotine) in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it is, for example, 0.1% by weight or more and 10% by weight or less. It may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • the content of the tobacco extract component in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.1% by weight or more and 10% by weight or less. It may be 5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • Tobacco extract can be used as a nicotine supply source.
  • the content of tobacco extract in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, for example, It may be 0.1% by weight or more and 10% by weight or less, 0.5% by weight or more and 7.5% by weight or less, and 1% by weight or more and 5% by weight or less.
  • the type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • One or more substances, or liquids containing the substances, can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the tobacco extract can be used as is as the aerosol generator Le, but the tobacco extract may contain components that can cause burns when heated (e.g., lipids, metals, etc.).
  • the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
  • the aerosol generation liquid Le contains a tobacco extract component as a component for imparting nicotine, but may further contain synthetic nicotine obtained by synthesis or the like in order to increase the nicotine content.
  • the synthetic nicotine may exist as nicotine or as a nicotine-containing compound such as a nicotine salt.
  • nicotine obtained by synthesis is also referred to as "synthetic nicotine,” which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances.
  • the method for producing synthetic nicotine is not particularly limited, and can be carried out by chemical synthesis using chemical substances, and known production methods can be used. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the type of nicotine-containing compound is not particularly limited, and examples thereof include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinic acid salt, nicotine benzoic acid salt, or nicotine tartrate. Can be mentioned.
  • the production method is not particularly limited, and any known production method can be used.
  • the flavor material is contained in the molded body 60, it is possible to avoid adhesion to the load 40 of the atomization unit 12, which occurs due to the use of powdery solids that can become deposits as disclosed in Patent Document 1. Since no problem occurs, deterioration of the load 40 can be suppressed. Further, when capillary action is generated by the molded body 60 in the atomization unit 12, the aerosol-generating liquid Le is retained by this capillary action, so that the effect of preventing liquid leakage can be obtained.
  • the capillary force of the molded body 60 can be adjusted by changing the porosity and the size of the voids in the molded body 60. For example, the smaller the void size, the greater the capillary force.
  • FIG. 6 shows an example of an embodiment in which the molded body is composed of a plurality of particles.
  • FIG. 7 is a diagram schematically showing a cross section taken along the line A4-A4 in FIG. 6 (that is, a cross section cut along a plane normal to the central axis CL).
  • the aerosol generation liquid Le can be held by capillary force generated by the spaces between the plurality of particles.
  • the aerosol generation liquid Le can be held by capillary force generated by voids in the porous body.
  • the molded body 60 When the molded body 60 is composed of a plurality of particles, the plurality of particles may be accommodated in the liquid storage section 50 in a non-flowing state. With this configuration, even if the atomization unit 12 is used in a state where the liquid storage section 50 is tilted, particles will not move due to the tilt. The influence of the tilt of the atomization unit 12 can be reduced. Furthermore, when the molded body 60 is composed of a plurality of particles, it may be fluidly accommodated in the liquid storage section 50 . By adopting such an aspect, even if the atomizing unit 12 is used in a state where the liquid storage section 50 is tilted, a plurality of particles will move according to the tilt, so that the atomizing unit 12 will not be tilted during use. By changing the slope, the flow rate of the aerosol generation liquid Le can be adjusted.
  • a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used as the longest length in the transverse cross section of the molded body 60.
  • a value selected from a range of, for example, 5 mm or more and 50 mm or less can be used as the length of the molded body 60 in the longitudinal direction.
  • these values are only examples, and suitable values may be set according to the size of the atomization unit 12.
  • these parameters are the average value of the numerical values calculated for each molded body 60.
  • the type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be.
  • tobacco materials specifically, tobacco plants
  • ceramics include alumina, zirconia, aluminum nitride, and silicon carbide.
  • synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH.
  • plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves.
  • the non-tobacco base material may be the main material of the molded body 60, particularly the main material that ensures the molding of the molded body 60.
  • the molded body 60 is preferably covered with a coating material in order to suppress expansion due to liquid absorption, and because the liquid in the liquid storage section 50 can be used without wasting the liquid by suppressing the expansion.
  • a coating material such as resin, or a nicotine-containing coating material.
  • Examples of the coating material (coating) when coating with resin include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
  • the coating material such as resin suppresses swelling of the molded body 60. It is preferable for the coating to cover 50% or more of the surface of the molded body 60 in order to enhance the effect of preventing swelling of materials such as non-tobacco base materials included in the molded body 60, and more preferably 90% or more.
  • the shape of the coating is not particularly limited as long as it can cover at least a portion of the molded body 60.
  • the nicotine-containing coating material is not particularly limited as long as it contains nicotine, and may be, for example, the above-mentioned resin material containing nicotine.
  • a coating step of covering the molded body 60 with the coating material may be provided after the molding step of molding the molded body 60. can.
  • the coating step the surface of the molded body 60 is coated with a coating agent containing sodium silicate such as water glass or a resin to form a coating.
  • the flavor component imparting material when the molded object 60 contains a flavor component imparting material, the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material.
  • the flavor material when the molded body 60 contains a tobacco material, the flavor material is not a flavor component contained in the tobacco material, but the tobacco material.
  • the flavoring material may include tobacco material, but the form of the tobacco material is not particularly limited, and may include, for example, tobacco plant leaves, stems, flowers, roots, reproductive organs, or tissues themselves such as embryos; , processed products using the tissues of these tobacco plants (for example, tobacco powder, shredded tobacco, or tobacco sheets used in known tobacco products) may be included, but it is necessary to ensure a sufficient amount of use and processing.
  • Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g.
  • menthone, ionone, ethyl maltol, etc. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca
  • the flavor component in the flavor material (the flavor component itself may be a flavor material) is eluted into the aerosol generation liquid Le stored in the liquid storage section 50, and finally the aerosol generated by using the atomization unit 12. delivered to the user as
  • the method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
  • the molded body 60 has the flavor material on its surface, sufficient contact between the aerosol generation liquid Le in the liquid storage section 50 and the flavor material can be ensured, so that the flavor component is sufficiently eluted into the liquid. , can ensure excellent flavor.
  • the binder component itself does not become a scorching factor and can maintain the shape of the molded product, one type selected from the group consisting of starch, hydroxyalkyl cellulose, and vinyl acetate resin.
  • the above substances are preferable.
  • the vinyl acetate resin include polyvinyl acetate and vinyl acetate.
  • the content of the binder in the molded body 60 may be 1% by weight or more and 20% by weight or less, and 3% by weight or more and 15% by weight or less, from the viewpoint of the balance between adhesiveness and suppression of elution of burnt components. It may be more than 5% by weight and less than 10% by weight.
  • the molded body 60 may contain components other than the above-mentioned various components, such as a gelling agent such as calcium lactate, or a humectant such as glycerin or propylene glycol.
  • a gelling agent such as calcium lactate
  • a humectant such as glycerin or propylene glycol.
  • the density (mass per unit volume) of the molded body 60 is not particularly limited, but it is preferably larger than the density of the aerosol generation liquid Le. If the density of the molded body 60 is greater than the density of the aerosol generation liquid Le, the molded body 60 will settle into the aerosol generation liquid Le, thereby stabilizing the residual liquid rate of the aerosol generation liquid Le in the liquid storage section 50 after use. can be reduced.
  • the density of the molded body 60 may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg/cm 3 or less.
  • the density of the molded body 60 is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of molded bodies 60 are present, this density is determined as the total mass relative to the total volume of the molded bodies 60.
  • the filling rate of the molded body 60 in the liquid storage part 50 is not particularly limited, but from the viewpoint of being able to efficiently reduce the residual liquid rate of the aerosol generation liquid in the liquid storage part 50 after use, it is 40% by volume or more, It is preferably 75 volume% or less, preferably 45 volume% or more and 75 volume% or less, and more preferably 50 volume% or more and 60 volume% or less.
  • This filling rate is the entire volume of the molded body 60 with respect to the volume of the liquid storage portion 50, and is calculated by finding the total volume from the density and total weight of the molded body 60 and dividing it by the internal volume of the liquid storage portion 50. can be measured.
  • the container described above has a bottom including a connecting portion and a side that stands upright from the bottom, and the side may be provided with at least one opening.
  • an opening be provided in the upstream portion. More specifically, when the length of the container in the direction from the downstream side to the upstream side is taken as 100%, the opening is preferably provided in an area of 50% or less from the upstream end of the container, It is more preferably provided in an area of 30% or less, even more preferably in an area of 25% or less, particularly preferably provided in an area of 20% or less, and the lower limit does not require a special setting, It may be provided at the upstream end (0%) of the container, it may be provided in an area of 5% or more from the upstream end of the container, or it may be provided in an area of 10% or more from the upstream end of the container.
  • the diameter of the above-mentioned openings is not particularly limited, but from the viewpoint of efficiently reducing the residual liquid rate of the aerosol-generating liquid in the liquid storage part after use, it is 0.3 mm or more and 3.0 mm. It is preferably the following, more preferably 0.3 mm or more and 2.0 mm or less, and even more preferably 0.5 mm or more and 1.0 mm or less. If the shape of the aperture is not circular, this diameter is the diameter of a circle with a similar area.
  • the number of openings is not particularly limited, and may be one or two or more, but the number of openings may be one, or two or more, but the remaining liquid rate of the aerosol-generating liquid in the liquid storage section after use can be efficiently reduced. It is preferable that the number is two or more from the viewpoint of being able to do this.
  • the atomization unit 12 is arranged inside the liquid storage section 50 so as to be in contact with both the wick 30 that holds the load 40 and the aerosol generation liquid Le is supplied from inside the liquid storage section 50, and the molded body 60 and the wick 30. It is preferable that the capillary force of at least the liquid retaining member is larger than the capillary force of the molded body 60. According to this aspect, the aerosol generation liquid Le in the liquid storage section 50 can be used without wasting it.
  • the aerosol generated by the load 40 contains nicotine contained in the molded body 60 in addition to the nicotine contained in the aerosol generation liquid Le in the liquid storage part 50. Flavor components derived from the flavor materials obtained can be added. This allows you to fully enjoy the flavor.
  • the molded body 60 is disposed inside the aerosol generation liquid Le in the liquid storage section 50, and the molded body 60 and the electrical load 40 are physically connected. Since the tobacco material is separated into two parts, it is possible to prevent the tobacco material from adhering to the load 40 of the atomization unit 12. Thereby, deterioration of the load 40 of the atomization unit 12 can be suppressed.
  • the amount (mg) of carbonized components contained in the aerosol generation liquid Le1g with the molded body 60 disposed inside the liquid storage section 50 is preferably 6 mg or less, and preferably 3 mg or less. More preferred.
  • the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
  • the term "carbonized component” refers to a component that becomes carbide when heated to 250°C. Specifically, the “carbonized component” refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
  • this "amount (mg) of carbonized components contained in the aerosol generation liquid Le1g with the molded body 60 disposed inside the liquid storage section 50" can be measured, for example, by the following method. .
  • a predetermined amount (g) of the aerosol generation liquid Le with the molded body 60 disposed inside the liquid storage section 50 is prepared.
  • this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”.
  • the residue is carbonized by heating it to 250° C. to obtain a carbide.
  • the amount (mg) of this carbide is measured.
  • the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid Le is determined. That is, the amount (mg) of carbonized components can be calculated.
  • FIG. 9 shows the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as the aerosol generation liquid Le.
  • extract tobacco extract
  • FIG. The horizontal axis of FIG. 9 shows the amount of carbonized components contained in 1 g of extract, and the vertical axis shows the TPM reduction rate ( RTPM ) (%).
  • the TPM reduction rate (R TPM :%) in FIG. 9 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
  • Step 1 To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
  • Example 1 A step of preparing an aerosol-generating liquid, a molding step of molding a molded object containing a non-tobacco base material, and arranging the molded object containing the aerosol-generating liquid and a non-tobacco base material in a liquid storage section, arranging a first liquid transport member (a plate-like cotton) configured to transport the aerosol-generating liquid contained in the aerosol-generating liquid toward an electrical load in fluid communication with the molded body;
  • An atomization unit having the shape shown in FIG. 3 was manufactured through an aerosol generation liquid accommodation step in which the aerosol generation liquid was accommodated in a liquid storage section. The conditions of the atomization unit are shown below.
  • Example 2 Experiment 1 was performed except that the particle size of the plurality of glass beads used as the molded body, the filling rate of the molded body with respect to the volume of the liquid storage part, and the filling rate of the molded body with respect to the volume of the liquid storage part were changed as follows. The residual liquid rate was evaluated in the same manner. ⁇ Molded body; multiple glass beads (particle size 0.71 to 0.99 mm) ⁇ Filling ratio of the molded body to the volume of the liquid storage part: 58% by volume ⁇ Amount of aerosol generation liquid used: 946.5mg
  • the residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 32.0% by volume. From this experiment, it was found that by setting the particle size of the molded body to 0.71 mm or more, it was possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
  • Example 3 A step of preparing an aerosol-generating liquid, a molding step of molding a molded object containing a non-tobacco base material, and arranging the molded object containing the aerosol-generating liquid and a non-tobacco base material in a liquid storage section,
  • a first liquid transport member PET nonwoven fabric
  • a second liquid transport member a plate-shaped porous body, made of the same material as the load described below
  • the residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 24.5% by volume (molded body: 2.5% by volume, first liquid transport member: 2% by volume, second liquid transport member: 15.5% by volume, wick :4.5% by volume). From this experiment, it was found that by using the second liquid transport member, it was possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use. In order to further reduce the residual rate, in Experiment 4 below, the first liquid transport member was changed to one having a larger capillary force than the second liquid transport member.
  • the residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 15.5% by volume (molded body: 1.5% by volume, first liquid transport member: 3.5% by volume, second liquid transport member: 6.5% by volume) , wick: 4% by volume). From this experiment, it was found that by using the first liquid transport member having a larger capillary force than the second liquid transport member, it was possible to more efficiently reduce the residual liquid ratio of the aerosol-generating liquid in the liquid storage section after use. I understand.
  • the residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 15.5% by volume. From this experiment, it was found that by decreasing the particle size of the compact as it approaches the first liquid transport member, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use. .
  • Embodiment 2 A method for manufacturing the atomization unit 12 according to Embodiment 2 of the present invention (hereinafter also simply referred to as a "method for manufacturing the atomization unit 12") will be described.
  • This embodiment is an embodiment of a method for manufacturing the atomization unit 12, and the conditions for the atomization unit 12 described above can be similarly applied to the atomization unit 12 obtained by manufacturing.
  • a step of arranging the aerosol generation liquid Le containing nicotine and the molded body 60 containing the non-tobacco base material in the liquid storage section 50 (liquid and molded body arrangement step);
  • the step of arranging the first liquid transport member 61 configured to be transported toward the electrical load 40 so as to be in liquid communication with the molded body 60 (the step of arranging the first liquid transport member) is performed.
  • the steps can be performed in any order, or may be performed simultaneously.
  • the manufacturing method according to the present embodiment may include steps other than the above-described arrangement step, such as a liquid preparation step of preparing an aerosol-generating liquid Le containing a tobacco extract component, or a molding step including a non-tobacco base material. It may include a molding step of molding the body 60.
  • tobacco is used as a source of tobacco components such as nicotine instead of powdered tobacco material that can form deposits as disclosed in Patent Document 1. Since the aerosol generation liquid Le containing extracted components is used, it is possible to suppress the supply source of tobacco components from adhering to the load of the atomization unit 12, and thereby suppress deterioration of the load. Further, since the first liquid transport member is configured to transport the aerosol generating liquid toward the load and has a larger capillary force than the molded body, it is possible to reduce the percentage of liquid remaining after use.
  • the method for manufacturing the atomization unit 12 may include a liquid preparation step of preparing an aerosol liquid containing tobacco extract components.
  • the specific method for preparing the aerosol-generating liquid (hereinafter also simply referred to as "liquid") Le containing tobacco extract components is not particularly limited, and any known method may be employed. For example, a method may be mentioned in which a component (which may be only natural nicotine) obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le.
  • the aerosol generating liquid Le for containing the above tobacco extract component may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
  • an alkaline substance is applied to tobacco leaves (referred to as alkali treatment).
  • alkali treatment a basic substance such as an aqueous potassium carbonate solution can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment).
  • a predetermined temperature for example, a temperature of 80° C. or higher and lower than 150° C.
  • the tobacco leaves are brought into contact with one or more substances selected from the group consisting of, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent.
  • a collection solvent for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • flavor components such as nicotine (hereinafter also simply referred to as “flavor components”) can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • the alkali-treated tobacco leaves are subjected to the above heat treatment and then cooled using a condenser or the like, thereby reducing the released components released from the tobacco leaves into the gas phase. It is also possible to condense and extract flavor components.
  • a configuration may be adopted in which the alkali treatment as described above is not performed.
  • 1 selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment).
  • tobacco leaves tobacco leaves that have not been subjected to alkali treatment.
  • Add more than one species of substance are added.
  • the tobacco leaves to which this has been added are heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • An aerosol containing more than one type of substance is passed through a tobacco leaf (tobacco leaf that has not been subjected to alkali treatment), and the aerosol that has passed through the tobacco leaf is collected by a collection solvent. Flavor components can also be extracted by such a process.
  • this liquid preparation step includes a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250°C”) that may be included in the flavor components extracted by the method described above. (also referred to as “reduction processing”).
  • amount of carbonized components that become carbide when heated to 250° C.” By reducing “the amount of carbonized components that become carbide when heated to 250° C.”, adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed.
  • the carbonized component that becomes carbonized when heated to 250° C. is mainly derived from the tobacco material such as tobacco leaves, so a method using a tobacco extract is not recommended. In this case, the effect of providing a reduction process is particularly large.
  • the specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
  • RO filter reverse osmosis membrane
  • Tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), so tobacco extract components are subjected to distillation treatment or vacuum distillation treatment, which can cause charring.
  • the substance is removed. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
  • non-tobacco base materials there are no particular restrictions on the method for molding materials such as non-tobacco base materials. Examples include a method of forming the mixture into a predetermined shape by a method such as press pressure molding, extrusion molding, injection molding, transfer molding, compression molding, or cast molding. It will be done.
  • the non-tobacco base material is a polymer
  • the molded article 60 in a predetermined shape is formed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining .
  • Another method is to obtain a composite material in any solid shape containing a non-tobacco base material and then process the composite material into a predetermined shape by cutting, grinding, or the like.
  • the molded body 60 is composed of a plurality of particles, for example, a method of extruding a material such as a non-tobacco base material using an extruder to obtain an extruded molded body, or a method of obtaining a non-tobacco base material using a tabletting machine, etc. It can be manufactured by a method of obtaining a tablet molded product by compressing a material such as wood into a tablet.
  • the molded body 60 when the molded body 60 is a porous body, it can be manufactured by, for example, pressure molding, tablet molding, extrusion molding, casting molding, lamination molding, etc. using a non-tobacco base material as a raw material. Further, it can be manufactured by a method used for manufacturing general ceramics, and a sheet manufactured by paper forming may be used as the porous body.
  • the method of imparting flavor materials such as tobacco materials to the non-tobacco base material is not particularly limited, and for example, ceramics, synthetic polymers, or plants other than tobacco plants may be used as raw materials for manufacturing the molded body 60 of the non-tobacco base material.
  • a method using a mixture of a non-tobacco base material such as a pulp derived from a non-tobacco base material and a flavoring material, and a surface of a molded article 60 of a non-tobacco base material obtained by the above method. Examples include methods of applying flavoring materials by coating or spraying.
  • the surface of the molded body 60 may be coated with a coating material.
  • the process may include coating the surface of the molded body 60 with a coating material.
  • wax can be used as this coating material.
  • this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
  • corn protein can also be used as a coating material.
  • Zein model number: Kobayashi Zein DP-N manufactured by Kobayashi Perfume Co., Ltd.
  • polyvinyl acetate can also be used as a coating material.
  • the coating material covering the surface of the molded body 60 has a plurality of pores (fine pores) that allow the flavor components in the non-tobacco base material to pass through while suppressing the passage of the non-tobacco base material. It is preferable that it is provided. That is, the pores of this coating material need only have a size larger than the size of the flavor component and smaller than the size of the non-tobacco base material. According to this configuration, the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
  • tobacco residue may be included in the non-tobacco base material.
  • the flavor components remaining in the tobacco residue can be eluted into the aerosol generation liquid Le while suppressing the tobacco residue from eluting into the extract liquid.
  • the molded body 60 can be manufactured by washing tobacco residue and the like with a cleaning liquid and incorporating the washed tobacco residue and the like into the non-tobacco base material.
  • the amount of carbonized components contained in the tobacco residue etc. can be reduced as much as possible by washing, and the molded body 60 can be manufactured using the tobacco residue etc. in which the amount of carbonized components has been reduced.
  • adhesion of carbonized components to the load 40 can be effectively suppressed.
  • occurrence of burnt on the load 40 can be effectively suppressed.
  • the method for manufacturing the atomization unit 12 includes a step of arranging an aerosol generating liquid Le containing a tobacco extract component and a molded body 60 containing a non-tobacco base material in the liquid storage section 50 (liquid and molded body arranging step); a step of arranging a first liquid transport member 61 configured to transport the aerosol generation liquid Le contained in the liquid storage section 50 toward the electrical load 40 so as to be in fluid communication with the molded body 60; (a step of arranging a first liquid transport member); and a step of arranging a first liquid transport member.
  • a step of arranging the aerosol generation liquid Le containing the tobacco extract component and the molded body 60 containing the non-tobacco base material in the liquid storage section 50""Placementstep) is “a step of disposing the molded body 60 containing the aerosol base material, the tobacco extract component-containing liquid, and the non-tobacco base material in the liquid storage section 50 (the step of disposing the liquid and the tobacco extract component-containing molded article)”
  • the object to which the tobacco extract component is pre-contained is not the aerosol base material but the molded body 60.
  • the tobacco extract component previously contained in the molded body is finally eluted into the aerosol base material, so the atomization unit 12 finally obtained is a mist obtained by the above-mentioned manufacturing method. It is similar to the conversion unit 12.
  • the following tobacco extract component-containing liquid preparation step may be included instead of the liquid preparation step described above, and the following addition step may also be included.
  • the method for manufacturing the atomization unit 12 according to Modification 2 may include a tobacco extract component-containing liquid preparation step of preparing a liquid containing tobacco extract components.
  • This modification is an embodiment in which an arbitrary liquid is used instead of the aerosol generation liquid Le in the liquid preparation step described above.
  • a method for obtaining a tobacco extract component-containing liquid includes, for example, a method in which a tobacco extract component obtained by extraction of tobacco material is dissolved in an arbitrary solvent.
  • Any solvent is not particularly limited as long as it can dissolve the substance to be dissolved, and may be an aerosol base material, such as glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • the method for manufacturing the atomization unit 12 according to Modification 2 includes an addition step of adding the tobacco extract component-containing liquid obtained in the tobacco extract component-containing liquid preparation step to the molded body 60 obtained in the molding step. You may do so.
  • the method of addition is not particularly limited, and a desired amount of the tobacco extract component-containing liquid may be added to the molded body 60 all at once, or the tobacco extract component-containing liquid may be added to the surface of the molded body 60 by coating or spraying. Alternatively, the molded body 60 may be added by immersing it in a liquid containing tobacco extract components.
  • the molded body 60 to which the tobacco extract component-containing liquid obtained in the above addition step is added and the aerosol base material are placed in the liquid storage section 50. be accommodated.
  • the arrangement step according to this modification is an embodiment in which the aerosol generating liquid Le containing the tobacco extract component is replaced with an aerosol base material in the above-mentioned arrangement step.
  • the aerosol base material is not particularly limited, and examples include one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • the tobacco extract component is eluted from the molded object 60 accommodated in the liquid storage section 50 to the aerosol base material, so that the aerosol containing the molded object 60 and the tobacco extract component is finally stored in the liquid storage section 50.
  • the liquid Le will be accommodated.
  • the process of arranging the first liquid transport member is similar to the process of arranging the first liquid transport member described above, and therefore detailed explanation will be omitted.
  • a further modification 2A of modification 2 is a method in which, instead of the above-described addition step, the tobacco extract component-containing liquid obtained in the tobacco extract component-containing liquid preparation step is attached to the inner surface of the wall defining the liquid storage section 50.
  • This is an embodiment in which a process is provided.
  • the tobacco extract component is eluted from the tobacco extract component-containing liquid attached to the wall of the liquid storage part 50 to the aerosol base material, so that the tobacco extract component is finally released into the liquid storage part 50.
  • 50 accommodates the molded body 60 and an aerosol generation liquid Le containing tobacco extract components.
  • the suction tool 10 extends in the direction of the central axis CL of the suction tool 10.
  • the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction” perpendicular to the long axis direction, and a “thickness” perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order.
  • the suction tool 10 includes a power supply unit 11 and the atomization unit 12 described above.
  • the power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged.
  • the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
  • the atomization unit 12 is provided with an outlet 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13.
  • air that is, air
  • the user of the suction tool 10 can inhale the air discharged from the outlet 13.
  • the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation.
  • the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch.
  • the control device that receives the air suction start request or suction end request starts or ends energization to the load 40.
  • the configuration of the power supply unit 11 as described above is the same as that of the power supply unit 11 of a known suction tool as exemplified in, for example, Patent Document 2, so a more detailed explanation will be omitted.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Provided is an atomizing unit comprising: a liquid containing part that contains an aerosol generating liquid that includes a tobacco extract ingredient; an electrical load to which the aerosol generating liquid in the liquid containing part is introduced and that atomizes the introduced aerosol generating liquid to generate an aerosol; and a first liquid transport member that is configured so as to transport the aerosol generating liquid contained in the liquid containing part toward the load, wherein a molded body that includes a non-tobacco base material is disposed inside the liquid containing part, and the capillary force of the first liquid transport member is greater than the capillary force of the molded body.

Description

霧化ユニット及びその製造方法、並びに吸引具Atomization unit and its manufacturing method, and suction tool
 本発明は、霧化ユニット及びその製造方法、並びに吸引具に関する。 The present invention relates to an atomization unit, a method for manufacturing the same, and a suction tool.
 従来、吸引具に用いられる霧化ユニットとして、所定の液体を収容する液体収容部と、この液体収容部の液体が導入されるとともに、導入された液体を霧化してエアロゾルを発生させる電気的な負荷と、を有し、この液体収容部の液体の内部にたばこ葉等のたばこ材料の粉体を収容し、該たばこ材料の粉体が分散されることを特徴とする霧化ユニットが知られている(例えば、特許文献1参照)。 Conventionally, an atomizing unit used in a suction tool includes a liquid storage part that stores a predetermined liquid, and an electrical unit that atomizes the introduced liquid and generates an aerosol. An atomizing unit is known which is characterized in that it has a load, stores powder of tobacco material such as tobacco leaves in the liquid of this liquid storage part, and disperses the powder of tobacco material. (For example, see Patent Document 1).
 なお、他の先行技術文献として、特許文献2、特許文献3、及び非特許文献1が挙げられる。特許文献2には、基本的な構成態様を有する吸引具に備わる霧化ユニットの構成態様が開示されている。特許文献3には、たばこ葉の抽出液に関する情報が開示されている。非特許文献1には、ニコチンに関する技術が開示されている。 Note that other prior art documents include Patent Document 2, Patent Document 3, and Non-Patent Document 1. Patent Document 2 discloses a configuration of an atomization unit included in a suction tool having a basic configuration. Patent Document 3 discloses information regarding tobacco leaf extract. Non-Patent Document 1 discloses a technology related to nicotine.
国際公開第2019/211332号International Publication No. 2019/211332 特開2020-141705号公報Japanese Patent Application Publication No. 2020-141705 国際公開第2015/129679号International Publication No. 2015/129679
 上述の特許文献1に例示されるような従来の吸引具の霧化ユニットの場合、液体収容部の液体の内部に分散されている粉体状のたばこ材料等の香味材料が、霧化ユニットの電気的な負荷に付着するおそれがある。この場合、霧化ユニットの負荷が劣化するおそれがある。この点において、従来技術は改善の余地があった。
 上記の負荷劣化の問題を改善するため、本発明者らは、香味材料を付与することができる成形体を用いることを検討した。この検討において、成形体の存在により、液体収容部中のエアロゾルを発生させるための液体(エアロゾル生成液)の負荷への送液が抑制され、使用された後の液体収容部中のエアロゾル生成液の残液率が増加してしまうという新たな問題が生じた。
In the case of the atomization unit of the conventional suction device as exemplified in Patent Document 1 mentioned above, the flavor material such as powdered tobacco material dispersed inside the liquid in the liquid storage part is dispersed in the atomization unit. There is a risk of it adhering to electrical loads. In this case, the load on the atomization unit may deteriorate. In this respect, the conventional technology has room for improvement.
In order to improve the above problem of load deterioration, the present inventors have considered using a molded article to which a flavoring material can be applied. In this study, the presence of the molded body suppresses the delivery of the liquid (aerosol generation liquid) for generating aerosol in the liquid storage part to the load, and the aerosol generation liquid in the liquid storage part after being used. A new problem arose in that the residual liquid rate increased.
 本発明は、上記のことを鑑みてなされたものであり、霧化ユニットの負荷が劣化することを抑制することができ、かつ、使用後の残液率を低減することができる技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and provides a technology that can suppress deterioration of the load on the atomization unit and reduce the residual liquid rate after use. This is one of the purposes.
 本発明者らは、鋭意検討の結果、特定の成形体を内部に配置する液体収容部、およびエアロゾル生成液を負荷に向けて輸送するように構成され、該成形体よりも毛管力が大きい部材を用いることにより、上記課題を解決できることを見出し、本発明に到達した。 As a result of extensive studies, the present inventors discovered a liquid storage section in which a specific molded body is disposed, and a member that is configured to transport the aerosol generating liquid toward a load and has a larger capillary force than the molded body. It has been discovered that the above problems can be solved by using the following, and the present invention has been achieved.
(態様1)
 上記目的を達成するため、本発明の一態様に係る霧化ユニットは、たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記液体収容部に収容された前記エアロゾル生成液を前記負荷に向けて輸送するように構成される第1液輸送部材と、を備え、前記液体収容部の内部には、非たばこ基材を含む成形体が配置されており、前記第1液輸送部材の毛管力は、前記成形体の毛管力よりも大きい。
(Aspect 1)
In order to achieve the above object, an atomization unit according to one aspect of the present invention includes a liquid storage section that stores an aerosol generation liquid containing a tobacco extract component, and a liquid storage section in which the aerosol generation liquid in the liquid storage section is introduced. , an electrical load that atomizes the introduced aerosol-generating liquid to generate an aerosol; and a first liquid configured to transport the aerosol-generating liquid contained in the liquid storage portion toward the load. a transport member, a molded body containing a non-tobacco base material is disposed inside the liquid storage section, and the capillary force of the first liquid transport member is larger than the capillary force of the molded body. .
 この態様によれば、液体収容部の内部に、所定の形状に成形された成形体が配置されており、成形体と霧化ユニットの電気的な負荷とが物理的に分離されているので、堆積物となり得るたばこ材料等の物質が霧化ユニットの負荷に付着することを抑制することができる。これにより、霧化ユニットの負荷が劣化することを抑制することができる。
 さらに、エアロゾル生成液を負荷に向けて輸送するように構成され、該成形体よりも毛管力が大きい第1液輸送部材を用いることにより、使用後の液体収容部中の残液率を低減することができる。
According to this aspect, the molded body formed into a predetermined shape is disposed inside the liquid storage part, and the molded body and the electrical load of the atomization unit are physically separated, so that It is possible to suppress substances such as tobacco materials that may become deposits from adhering to the load of the atomization unit. Thereby, it is possible to suppress deterioration of the load on the atomization unit.
Furthermore, by using a first liquid transport member that is configured to transport the aerosol-generating liquid toward the load and has a larger capillary force than the molded body, the percentage of liquid remaining in the liquid storage section after use is reduced. be able to.
(態様2)
 上記の態様1において、前記負荷に接して設けられるウィックを備え、前記第1液輸送部材は、前記成形体と前記ウィックとの間に設けられ、前記第1液輸送部材の毛管力は、前記ウィックの毛管力よりも小さく、かつ、前記成形体の毛管力よりも大きくてもよい。
(Aspect 2)
In the above aspect 1, a wick provided in contact with the load is provided, the first liquid transport member is provided between the molded body and the wick, and the capillary force of the first liquid transport member is It may be smaller than the capillary force of the wick and larger than the capillary force of the molded body.
 この態様によれば、成形体と第1液輸送部材との間に設けられたウィックにより第1液輸送部材から負荷への送液が容易になり、使用後の液体収容部中の残液率を低減することができる。 According to this aspect, the wick provided between the molded body and the first liquid transport member facilitates liquid delivery from the first liquid transport member to the load, and the residual liquid rate in the liquid storage section after use is can be reduced.
(態様3)
 上記の態様1又は2において、前記成形体が、複数の粒子から構成されていてもよい。
(Aspect 3)
In the above aspect 1 or 2, the molded body may be composed of a plurality of particles.
 この態様によれば、複数の粒子間の空間により生じる毛管力により、使用後の液体収容部中のエアロゾル生成液の残液率を低減することができる。 According to this aspect, the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use can be reduced by the capillary force generated by the spaces between the plurality of particles.
(態様4)
 上記の態様1又は2において、前記複数の粒子は、流動しない状態で前記液体収容部に収容されていてもよい。
(Aspect 4)
In the above aspect 1 or 2, the plurality of particles may be accommodated in the liquid storage section in a non-flowing state.
 この態様によれば、エアロゾル生成液の流量を残液率に対する使用時の霧化ユニットの傾きの影響を低減することができる。 According to this aspect, the influence of the inclination of the atomization unit during use on the flow rate of the aerosol generation liquid and the residual liquid ratio can be reduced.
(態様5)
 上記の態様3において、前記複数の粒子は、前記液体収容部に流動可能に収容されていてもよい。
(Aspect 5)
In the third aspect described above, the plurality of particles may be fluidly accommodated in the liquid storage section.
 この態様によれば、使用時において霧化ユニットの傾きを変化させることによりエアロゾル生成液の流量を調整することができる。 According to this aspect, the flow rate of the aerosol generating liquid can be adjusted by changing the inclination of the atomization unit during use.
(態様6)
 上記の態様3~5のいずれかに係る態様において、前記粒子の平均粒径が0.71mm以上であってもよい。
(Aspect 6)
In the embodiment according to any one of the above embodiments 3 to 5, the average particle diameter of the particles may be 0.71 mm or more.
 この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。 According to this aspect, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(態様7)
 上記の態様3~6のいずれかに係る態様において、前記液体収容部の内部には、粒径が異なる複数の前記成形体が配置され、前記成形体が前記第1液輸送部材に接触して配置され、前記成形体から前記第1液輸送部材に向かう第1方向を鉛直下向きとするように静置した状態において、前記第1液輸送部材から離れた位置に形成された第1領域に配置される複数の成形体の平均粒径よりも、前記第1液輸送部材と前記第1領域の間に隣接して挟んで形成された第2領域に配置される複数の成形体の平均粒径の方が小さくともよい。
(Aspect 7)
In the aspect according to any one of the above aspects 3 to 6, a plurality of the molded bodies having different particle sizes are arranged inside the liquid storage part, and the molded bodies are in contact with the first liquid transport member. and arranged in a first region formed at a position away from the first liquid transporting member when the molded body is left standing so that the first direction from the molded body toward the first liquid transporting member is vertically downward. The average particle diameter of a plurality of molded bodies arranged in a second region adjacently sandwiched between the first liquid transport member and the first region is larger than the average particle diameter of a plurality of molded bodies arranged in may be smaller.
 この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。 According to this aspect, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(態様8)
 上記の態様1又は2において、前記成形体が、多孔質体であってもよい。
(Aspect 8)
In the above aspect 1 or 2, the molded body may be a porous body.
 この態様によれば、多孔質体中の空隙により生じる毛管力により、使用後の液体収容部中のエアロゾル生成液の残液率を低減することができる。 According to this aspect, the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use can be reduced by the capillary force generated by the voids in the porous body.
(態様9)
 上記の態様1~8のいずれかに係る態様において、前記液体収容部の内部に、さらに、前記第1液輸送部材から前記成形体に向かう第2方向に延びる第2液輸送部材を備え、前記第2液輸送部材は、前記第1液輸送部材および前記成形体に接触して設けられ、前記第2液輸送部材の毛管力は、前記第1液輸送部材の毛管力よりも小さく、かつ、前記成形体の毛管力よりも大きくともよい。
(Aspect 9)
In the aspect according to any one of the above aspects 1 to 8, a second liquid transport member is further provided inside the liquid storage portion and extends in a second direction from the first liquid transport member toward the molded body, and A second liquid transport member is provided in contact with the first liquid transport member and the molded body, and the capillary force of the second liquid transport member is smaller than the capillary force of the first liquid transport member, and The capillary force may be greater than the capillary force of the molded body.
 この態様によれば、第1液輸送部材および前記成形体に接触して設けられ、第1液輸送部材の毛管力よりも小さく、かつ、成形体の毛管力よりも大きい第2液輸送部材を用いることにより、使用後の液体収容部中の残液率を効率的に低減することができる。 According to this aspect, the second liquid transport member is provided in contact with the first liquid transport member and the molded body, and is smaller than the capillary force of the first liquid transport member and larger than the capillary force of the molded body. By using this, it is possible to efficiently reduce the percentage of liquid remaining in the liquid storage section after use.
(態様10)
 上記の態様1~9のいずれかに係る態様において、前記成形体が、さらに香味材料を含んでいてもよい。
(Aspect 10)
In the embodiment according to any one of the above embodiments 1 to 9, the molded article may further contain a flavoring material.
 この態様によれば、エアロゾル生成液に溶出する香味成分の量を増加させることができ、より優れた香味を確保することができる。 According to this aspect, the amount of flavor components eluted into the aerosol generation liquid can be increased, and more excellent flavor can be ensured.
(態様11)
 上記の態様10において、前記香味材料はたばこ材料を含むとともに前記成形体中の前記たばこ材料の含有量が10重量%以下であってもよい。
(Aspect 11)
In the above aspect 10, the flavor material may contain a tobacco material, and the content of the tobacco material in the molded article may be 10% by weight or less.
 この態様によれば、エアロゾル生成液に溶出するたばこ成分の量を増加させることができ、より優れた香味を確保することができる。 According to this aspect, the amount of tobacco components eluted into the aerosol generation liquid can be increased, and more excellent flavor can be ensured.
(態様12)
 上記の態様1~11のいずれかに係る態様において、前記成形体の密度が、前記エアロゾル生成液の密度よりも大きくともよい。
(Aspect 12)
In the embodiment according to any one of the above embodiments 1 to 11, the density of the molded body may be greater than the density of the aerosol generating liquid.
 この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を安定して低減することができる。 According to this aspect, it is possible to stably reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(態様13)
 上記の態様1~12のいずれかに係る態様において、前記液体収容部における前記成形体の充填率が40体積%以上であってもよい。
(Aspect 13)
In the aspect according to any one of the above aspects 1 to 12, the filling rate of the molded body in the liquid storage portion may be 40% by volume or more.
 この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。 According to this aspect, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(態様14)
 上記の態様1~13のいずれかに係る態様において、前記液体収容部を構成する容器は、前記第1液輸送部材と接続される接続部を有し、前記容器を構成する壁部のうち、前記接続部以外の部位に少なくとも1つの開孔が設けられていてもよい。
(Aspect 14)
In the aspect according to any one of the above aspects 1 to 13, the container constituting the liquid storage portion has a connecting portion connected to the first liquid transporting member, and among the wall portions constituting the container, At least one opening may be provided at a location other than the connection portion.
 この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。 According to this aspect, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(態様15)
 上記の態様15において、前記容器は、前記接続部を含む底部と、前記底部に立設された側部とを有し、前記側部に少なくとも1つの開孔が設けられていてもよい。
(Aspect 15)
In the above-mentioned aspect 15, the container may have a bottom portion including the connection portion and a side portion standing upright from the bottom portion, and at least one opening may be provided in the side portion.
 この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。 According to this aspect, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(態様16)
 上記の態様14又は15において、前記開孔の径が、2.0mm以下であってもよい。
(Aspect 16)
In the above aspect 14 or 15, the diameter of the opening may be 2.0 mm or less.
 この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。 According to this aspect, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(態様17)
 本発明の一態様に係る吸引具は、電源ユニットと、上記の態様1~16のいずれかに係る霧化ユニットと、を有する。
(Aspect 17)
A suction tool according to one aspect of the present invention includes a power supply unit and an atomization unit according to any one of aspects 1 to 16 above.
 この態様によれば、霧化ユニットの負荷が劣化することを抑制することができ、さらに、使用後の液体収容部中の残液率を低減することができる吸引具を提供することができる。 According to this aspect, it is possible to suppress deterioration of the load on the atomization unit, and furthermore, it is possible to provide a suction tool that can reduce the percentage of liquid remaining in the liquid storage section after use.
(態様18)
 上記目的を達成するため、本発明の一態様に係る霧化ユニットの製造方法は、液体収容部および電気的な負荷を有する霧化ユニットの製造方法であって、たばこ抽出成分を含むエアロゾル生成液および非たばこ基材を含む成形体を液体収容部に配置し、かつ、前記液体収容部に収容される前記エアロゾル生成液を電気的な負荷に向けて輸送するように構成される第1液輸送部材を、前記成形体と液体連通するように配置する、工程を有し、前記第1液輸送部材の毛管力は、前記成形体の毛管力よりも大きい。
(Aspect 18)
In order to achieve the above object, a method for manufacturing an atomization unit according to one aspect of the present invention is a method for manufacturing an atomization unit having a liquid storage part and an electrical load, the method comprising: producing an aerosol generation liquid containing tobacco extract components; and a first liquid transport configured to arrange a molded article including a non-tobacco base material in a liquid storage part, and to transport the aerosol generating liquid contained in the liquid storage part towards an electrical load. placing a member in fluid communication with the compact, the capillary force of the first liquid transport member being greater than the capillary force of the compact.
 この態様によれば、霧化ユニットの負荷が劣化することを抑制することができ、さらに、使用後の液体収容部中の残液率を低減することができる霧化ユニットを製造することができる。 According to this aspect, it is possible to suppress deterioration of the load on the atomization unit, and furthermore, it is possible to manufacture an atomization unit that can reduce the percentage of liquid remaining in the liquid storage section after use. .
(態様19)
 上記の態様17において、前記成形体が、複数の粒子から構成されていてもよい。
(Aspect 19)
In the above-mentioned aspect 17, the molded body may be composed of a plurality of particles.
 この態様によれば、複数の粒子間の空間により生じる毛管力により、使用後の液体収容部中のエアロゾル生成液の残液率を低減することができる。 According to this aspect, the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use can be reduced by the capillary force generated by the spaces between the plurality of particles.
(態様20)
 上記の態様18において、前記霧化ユニットは、前記液体収容部の内部には、粒径が異なる複数の前記成形体が配置され、前記成形体が前記第1液輸送部材に接触して配置され、前記成形体から前記第1液輸送部材に向かう第1方向を鉛直下向きとするように静置した状態において、前記第1液輸送部材から離れた位置に形成された第1領域に配置される複数の成形体の平均粒径よりも、前記第1液輸送部材と前記第1領域の間に隣接して挟んで形成された第2領域に配置される複数の成形体の平均粒径の方が小さくともよい。
(Aspect 20)
In the above aspect 18, the atomization unit is configured such that a plurality of the molded bodies having different particle sizes are arranged inside the liquid storage part, and the molded bodies are arranged in contact with the first liquid transport member. , disposed in a first region formed at a position away from the first liquid transporting member when the molded body is left standing so that the first direction from the molded body toward the first liquid transporting member is vertically downward. The average particle diameter of the plurality of molded bodies arranged in a second region adjacently sandwiched between the first liquid transport member and the first region is smaller than the average particle diameter of the plurality of molded bodies. may be small.
 この態様によれば、この態様によれば、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。 According to this aspect, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
 本発明の態様によれば、霧化ユニットの負荷が劣化することを抑制することができ、かつ、使用後の残液率を低減することができる。 According to the aspect of the present invention, it is possible to suppress deterioration of the load on the atomization unit, and it is also possible to reduce the residual liquid rate after use.
実施形態1に係る霧化ユニットの主要部を示す模式的断面図である。1 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 1. FIG. 図1のA1-A1線断面を模式的に示す図である。2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 1. FIG. 実施形態1に係る霧化ユニットの主要部を示す模式的断面図である。1 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 1. FIG. 実施形態1に係る霧化ユニットの主要部を示す模式的断面図である。1 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 1. FIG. 図4のA3-A3線断面を模式的に示す図である。5 is a diagram schematically showing a cross section taken along line A3-A3 in FIG. 4. FIG. 実施形態1に係る霧化ユニットの主要部を示す模式的断面図である。1 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 1. FIG. 図6のA4-A4線断面を模式的に示す図である。7 is a diagram schematically showing a cross section taken along the line A4-A4 in FIG. 6. FIG. 実施形態1に係る霧化ユニットの主要部を示す模式的断面図である。1 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 1. FIG. たばこ抽出成分を含むエアロゾル生成液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。FIG. 2 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of aerosol generation liquid containing tobacco extract components. 実施形態3に係る吸引具の外観を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing the appearance of a suction tool according to Embodiment 3.
 以下に本発明の実施の形態を詳細に説明するが、これらの説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限りこれらの内容に限定されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
 また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。
 また、本願明細書では、各実施形態について必要に応じて図面を参照して説明する。なお、本願の図面は、実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。
 また、本実施形態に記載されている構成要素の寸法、材質、形状、対応その相対配置等は一例である。
 また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。
Embodiments of the present invention will be described in detail below, but these descriptions are only examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to these contents unless the gist thereof is exceeded.
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits, and "A to B" means A or more. It means that it is below B.
Furthermore, although a plurality of embodiments will be described in this specification, various conditions in each embodiment may be applied to each other within an applicable range.
Further, in this specification, each embodiment will be described with reference to the drawings as necessary. Note that the drawings of the present application are schematically illustrated to facilitate understanding of the features of the embodiments, and the dimensional ratios of each component are not necessarily the same as the actual ones. Further, in the drawings of the present application, XYZ orthogonal coordinates are illustrated as necessary.
Furthermore, the dimensions, materials, shapes, relative arrangements, etc. of the constituent elements described in this embodiment are merely examples.
Furthermore, although a plurality of embodiments will be described in this specification, various conditions in each embodiment may be applied to each other within an applicable range.
<実施形態1>
 本発明の実施形態1に係る霧化ユニット(以下、単に「霧化ユニット」とも称する。)は、たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、
 前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
 前記液体収容部に収容された前記エアロゾル生成液を前記負荷に向けて輸送するように構成される第1液輸送部材と、
を備え、
 前記液体収容部の内部には、非たばこ基材を含む成形体が配置されており、
 前記第1液輸送部材の毛管力は、前記成形体の毛管力よりも大きい、
霧化ユニットである。
 以下、本実施形態1に係る具体的態様を説明するが、説明する具体的態様に限定されず、ニコチン等のたばこ成分の供給源が特許文献1に開示されるような堆積物となり得る粉体等の固形物でなければ、霧化ユニットの負荷が劣化することを抑制することができる効果を得ることができ、また、エアロゾル生成液を負荷に向けて輸送するように構成され、成形体よりも毛管力が大きい第1液輸送部材用いれば、使用後の残液率を低減することができる効果を得ることができ、これらの効果が得られる範囲内で任意に各条件を組み合わせることができる。
<Embodiment 1>
The atomization unit (hereinafter also simply referred to as "atomization unit") according to Embodiment 1 of the present invention includes a liquid storage section that stores an aerosol generation liquid containing tobacco extract components;
an electrical load that causes the aerosol generation liquid in the liquid storage section to be introduced and atomizes the introduced aerosol generation liquid to generate an aerosol;
a first liquid transport member configured to transport the aerosol generating liquid contained in the liquid storage portion toward the load;
Equipped with
A molded body containing a non-tobacco base material is disposed inside the liquid storage part,
The capillary force of the first liquid transport member is greater than the capillary force of the molded body.
It is an atomization unit.
Hereinafter, specific embodiments according to Embodiment 1 will be described, but the supply source of tobacco components such as nicotine is powder that can become deposits as disclosed in Patent Document 1. If it is not a solid material such as, it is possible to obtain the effect of suppressing the deterioration of the load on the atomization unit, and it is configured to transport the aerosol generation liquid toward the load, and the molded body is By using the first liquid transport member having a large capillary force, it is possible to obtain the effect of reducing the residual liquid rate after use, and each condition can be arbitrarily combined within the range where these effects can be obtained. .
 本実施形態では、ニコチン等のたばこ成分の供給源として、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料の代わりに、たばこ抽出成分を含むエアロゾル生成液を用いているため、ニコチン等のたばこ成分の供給源が霧化ユニットの負荷に付着することを抑制し、ひいては該負荷の劣化を抑制することができる。また、エアロゾル生成液を負荷に向けて輸送するように構成され、該成形体よりも毛管力が大きい第1液輸送部材を用いることにより、使用後の液体収容部中の残液率を低減することができる。 In this embodiment, as a source of tobacco components such as nicotine, an aerosol generation liquid containing tobacco extract components is used instead of a powdered tobacco material that can become deposits as disclosed in Patent Document 1. Therefore, it is possible to suppress the supply source of tobacco components such as nicotine from adhering to the load of the atomization unit, and thereby suppress deterioration of the load. Furthermore, by using the first liquid transport member that is configured to transport the aerosol-generating liquid toward the load and has a larger capillary force than the molded body, the percentage of liquid remaining in the liquid storage section after use is reduced. be able to.
 本実施形態に係る霧化ユニットの一例を図1に示す。以下、該図1を参照しながら霧化ユニットの説明を行う。
 図1は、霧化ユニット12の主要部を示す模式的断面図である。具体的に図1は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面を模式的に図示している。図2は、図1のA1-A1線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)を模式的に示す図である。図1及び図2を参照しつつ、霧化ユニット12について説明する。
FIG. 1 shows an example of the atomization unit according to this embodiment. Hereinafter, the atomization unit will be explained with reference to FIG. 1.
FIG. 1 is a schematic cross-sectional view showing the main parts of the atomization unit 12. Specifically, FIG. 1 schematically shows a cross section of the main part of the atomization unit 12 taken along a plane including the central axis CL. FIG. 2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 1 (that is, a cross section cut along a plane normal to the central axis CL). The atomization unit 12 will be explained with reference to FIGS. 1 and 2.
 本実施形態に係る霧化ユニット12は、一例として、霧化ユニット12の中心軸線CLの方向に延在している。具体的には、霧化ユニット12は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。霧化ユニット12の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。 The atomization unit 12 according to the present embodiment extends in the direction of the central axis CL of the atomization unit 12, for example. Specifically, the atomization unit 12 is configured, for example, in a "major axis direction (direction of the center axis CL)", a "width direction" perpendicular to the major axis direction, and a "width direction" perpendicular to the major axis direction and the width direction. It exhibits an external shape having a thickness direction. The dimensions of the atomization unit 12 in the long axis direction, width direction, and thickness direction become smaller in this order. In this embodiment, among the orthogonal coordinates of X-Y-Z, the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction, and the X-axis direction (X direction or -X direction) corresponds to the width direction, and the Y-axis direction (Y direction or −Y direction) corresponds to the thickness direction.
 霧化ユニット12は、長軸方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70g)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c)を備えている。また、霧化ユニット12は、エア通路20と、電気的な負荷40と、液体収容部50と、成形体60と、第1液輸送部材61とを備えている。
 本明細書では、液体収容部50に収容されたエアロゾル生成液を負荷40に向けて輸送する部材のうち、成形体60に直接接触する部材を「第1液輸送部材」と称する。つまり、図1に示すように、液体収容部50に収容されたエアロゾル生成液を前記負荷40に向けて輸送する部材として用いられるウィック30を用い、成形体60がウィック30に直接接触する場合には、ウィック30が第1液輸送部材61となる。一方で、図3に示すように、ウィック30と成形体60との間に、毛管力を有する別の部材が設けられた態様では、この別の部材が第1液輸送部材61となる。図3のA2-A2線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)は、図2と同様の図となる。
The atomization unit 12 includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and a plurality of walls (walls 70a to 70g) extending in the width direction. 71a to wall portion 71c). Further, the atomization unit 12 includes an air passage 20, an electrical load 40, a liquid storage section 50, a molded body 60, and a first liquid transport member 61.
In this specification, among the members that transport the aerosol generating liquid contained in the liquid storage section 50 toward the load 40, the member that directly contacts the molded body 60 is referred to as a "first liquid transport member." That is, as shown in FIG. 1, when the wick 30 is used as a member for transporting the aerosol generating liquid contained in the liquid storage part 50 toward the load 40, and the molded body 60 comes into direct contact with the wick 30, In this case, the wick 30 becomes the first liquid transport member 61. On the other hand, as shown in FIG. 3, in an embodiment in which another member having capillary force is provided between the wick 30 and the molded body 60, this other member becomes the first liquid transport member 61. A cross section taken along line A2-A2 in FIG. 3 (that is, a cross section taken along a cross section normal to the central axis CL) is similar to FIG. 2.
 エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、下流通路部23とを備えている。本実施形態に係る上流通路部は、一例として、複数の上流通路部、具体的には、上流通路部21a(「第1の上流通路部」)、及び、上流通路部21b(「第2の上流通路部」)を備えている。 The air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol). The air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23. As an example, the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a ("first upstream passage section") and an upstream passage section 21b. ("second upstream passage section").
 上流通路部21a及び21bは、負荷通路部22よりも上流側(エア流動方向で上流側)に配置されている。上流通路部21a及び21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。下流通路部23は、負荷通路部22よりも下流側(エア流動方向で下流側)に配置された通路部である。下流通路部23の上流側端部は負荷通路部22に連通している。また、下流通路部23の下流側端部は、前述した排出口13に連通している。下流通路部23を通過したエアは、排出口13から排出される。 The upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction). The downstream ends of the upstream passages 21a and 21b communicate with the load passage 22. The load passage section 22 is a passage section in which a load 40 is disposed. The downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
 具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。下流通路部23は、筒状の壁部70gによって囲まれた領域に設けられている。 Specifically, the upstream passage section 21a according to the present embodiment is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. There is. Further, the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. The load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c. The downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
 壁部71aには、孔72a及び孔72bが設けられている。エアは、孔72aから上流通路部21aに流入し、孔72bから上流通路部21bに流入する。また、壁部71bには、孔72c及び孔72dが設けられている。上流通路部21aを通過したエアは、孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、孔72dから負荷通路部22に流入する。 A hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage section 21a through the hole 72a, and flows into the upstream passage section 21b through the hole 72b. Further, the wall portion 71b is provided with a hole 72c and a hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the hole 72d.
 本実施形態において、上流通路部21a及び21bにおけるエアの流動方向は、下流通路部23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a及び21bにおけるエアの流動方向は、-Z方向であり、下流通路部23におけるエアの流動方向は、Z方向である。 In this embodiment, the direction of air flow in the upstream passage sections 21a and 21b is opposite to the direction of air flow in the downstream passage section 23. Specifically, in this embodiment, the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction, and the direction of air flow in the downstream passage section 23 is the Z direction.
 また、図1及び図2を参照して、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。 Further, with reference to FIGS. 1 and 2, the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
 具体的には、本実施形態に係る上流通路部21aは、図2に示すように、中心軸線CLを法線とする切断面で切断した断面視で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、吸引具10の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、吸引具10の幅方向で、液体収容部50の他方の側に配置されている。 Specifically, as shown in FIG. 2, the upstream passage section 21a according to the present embodiment has one side with the liquid storage section 50 in between, in a cross-sectional view taken along a section normal to the central axis CL. side (-X direction side). On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view. In other words, the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10. placed on the other side.
 第1液輸送部材61は、液体収容部50に収容されたニコチンを含むエアロゾル生成液(以下、単に「エアロゾル生成液」とも称する。)を前記負荷に向けて輸送するように構成され、その毛管力が成形体の毛管力よりも大きい部材である。このような機能を有するものであれば、第1液輸送部材61の具体的な構成は特に限定されるものではないが、例えば、綿(コットン)、不織布、多孔質体セラミック等を用いることができ、より具体的に、成形体60とウィック30との間に第1液輸送部材61を設ける態様においては、第1液輸送部材として板状にカットした綿等を用いることできる。不織布の材料としては、例えば、セルロース、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セラミック、又はガラス繊維等が挙げられる。
 毛管力が小さい成形体中のエアロゾル生成液は、毛管現象(毛細管現象)により、毛管力の大きい第1液輸送部材61に輸送される。第1液輸送部材61の毛管力は、部材中の空隙率や空隙のサイズを変更することにより調整することができ、例えば、空隙のサイズが小さいほど毛管力は大きくなる。
 なお、上述したように、後述するウィック30と成形体60とが直接接触する場合には、ウィック30が第1液輸送部材61となる。一方で、ウィック30と成形体60との間に毛管力を有する別の部材が設けられる態様では、該別の部材が第1液輸送部材61となるが、この場合、使用後の液体収容部中のエアロゾル生成液の残液率を低減することができる観点から、第1液輸送部材61の毛管力は、ウィックの毛管力よりも小さいことが好ましい。
The first liquid transport member 61 is configured to transport an aerosol-generating liquid containing nicotine (hereinafter also simply referred to as "aerosol-generating liquid") stored in the liquid storage part 50 toward the load, and This is a member whose force is larger than the capillary force of the molded body. The specific structure of the first liquid transport member 61 is not particularly limited as long as it has such a function, but for example, cotton, nonwoven fabric, porous ceramic, etc. can be used. More specifically, in an embodiment in which the first liquid transport member 61 is provided between the molded body 60 and the wick 30, cotton or the like cut into a plate shape can be used as the first liquid transport member. Examples of the material for the nonwoven fabric include cellulose, polyethylene, polypropylene, polyethylene terephthalate, ceramic, and glass fiber.
The aerosol generating liquid in the molded body having a small capillary force is transported to the first liquid transport member 61 having a large capillary force by capillarity. The capillary force of the first liquid transport member 61 can be adjusted by changing the porosity and the size of the voids in the member; for example, the smaller the void size, the greater the capillary force.
Note that, as described above, when the wick 30 and the molded body 60, which will be described later, come into direct contact, the wick 30 becomes the first liquid transport member 61. On the other hand, in an embodiment in which another member having capillary force is provided between the wick 30 and the molded body 60, the other member becomes the first liquid transport member 61, but in this case, the liquid storage part after use The capillary force of the first liquid transport member 61 is preferably smaller than the capillary force of the wick from the viewpoint of being able to reduce the residual liquid rate of the aerosol generating liquid inside.
 ウィック30は、液体収容部50中のたばこ抽出成分を含むエアロゾル生成液(以下、単に「エアロゾル生成液」とも称する。)を負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではない。 The wick 30 is a member for introducing the aerosol-generating liquid (hereinafter also simply referred to as "aerosol-generating liquid") containing tobacco extract components in the liquid storage part 50 into the load 40 of the load passage part 22. The specific configuration of the wick 30 is not particularly limited as long as it has such a function.
 霧化ユニット12は、図4に示すように、液体収容部50の内部に、さらに、第1液輸送部材61から成形体に向かう第2方向に延びる第2液輸送部材62を備え、第2液輸送部材62は、第1液輸送部材61および成形体60に接触して設けられ、第2液輸送部材62の毛管力は、第1液輸送部材61の毛管力よりも小さく、かつ、成形体60の毛管力よりも大きいことが好ましい。この態様によれば、第1液輸送部材および前記成形体に接触して設けられ、第1液輸送部材の毛管力よりも小さく、かつ、成形体の毛管力よりも大きい第2液輸送部材を用いることにより、使用後の液体収容部中の残液率を効率的に低減することができる。
 図5は、図4のA3-A3線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)を模式的に示す図である。
As shown in FIG. 4, the atomization unit 12 further includes a second liquid transport member 62 extending in a second direction toward the molded body from the first liquid transport member 61 inside the liquid storage section 50. The liquid transport member 62 is provided in contact with the first liquid transport member 61 and the molded body 60, and the capillary force of the second liquid transport member 62 is smaller than the capillary force of the first liquid transport member 61, and Preferably, it is greater than the capillary force of body 60. According to this aspect, the second liquid transport member is provided in contact with the first liquid transport member and the molded body, and is smaller than the capillary force of the first liquid transport member and larger than the capillary force of the molded body. By using this, it is possible to efficiently reduce the percentage of liquid remaining in the liquid storage section after use.
FIG. 5 is a diagram schematically showing a cross section taken along the line A3-A3 in FIG. 4 (that is, a cross section cut along a plane normal to the central axis CL).
 第2液輸送部材62の態様は、上記の構成を有していれば特段制限されず、例えば、多孔質体等を用いることができ、より具体的には、棒状の多孔質体、又は板状の多孔質体等を用いることができる。第2液輸送部材62の材料は特段制限されないが、例えば、後述する成形体60に用い得る材料を用いることができる。第2液輸送部材63の毛管力は、部材中の空隙率や空隙のサイズを変更することにより調整することができ、例えば、空隙のサイズが小さいほど毛管力は大きくなる。
 また、第2液輸送部材62の個数は特段限定されず、1個でもよく、2個以上であってもよく、複数である場合、それらは互いに一体化されていてもよく、一体化されていなくともよい。複数の第2液輸送部材62が互いに一体化されている態様は、1個の部材として扱う。
The mode of the second liquid transport member 62 is not particularly limited as long as it has the above configuration. For example, a porous body or the like can be used. More specifically, a rod-shaped porous body or a plate A porous body or the like can be used. Although the material of the second liquid transport member 62 is not particularly limited, for example, a material that can be used for the molded body 60 described later can be used. The capillary force of the second liquid transport member 63 can be adjusted by changing the porosity and the size of the voids in the member; for example, the smaller the void size, the greater the capillary force.
Further, the number of second liquid transport members 62 is not particularly limited, and may be one, two or more, and if there are a plurality of them, they may be integrated with each other or may not be integrated. It is not necessary. A mode in which the plurality of second liquid transport members 62 are integrated with each other is treated as one member.
 負荷40は、液体収容部50中のエアロゾル生成液が導入されるとともに、この導入されたエアロゾル生成液を霧化してエアロゾルを発生させるための電気的な負荷である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータが用いられる。このヒータとしては、発熱抵抗体(すなわち、電熱線)、セラミックヒータ、又は誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体が用いられる。また、本実施形態において、負荷40としてのヒータは、コイル形状を有していてもよい。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータであってよい。このコイルヒータは、ウィック30に巻き付けられていてよい。 The load 40 is an electrical load for introducing the aerosol generation liquid in the liquid storage section 50 and atomizing the introduced aerosol generation liquid to generate an aerosol. The specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used. In this embodiment, a heater is used as an example of the load 40. As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heater, or the like can be used. In this embodiment, a heating resistor is used as an example of this heater. Further, in this embodiment, the heater serving as the load 40 may have a coil shape. That is, the load 40 according to this embodiment may be a so-called coil heater. This coil heater may be wound around the wick 30.
 また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50中のエアロゾル生成液を加熱することで霧化して、エアロゾルを発生させる。 Further, the load 40 according to the present embodiment is arranged in the wick 30 inside the load passage section 22, for example. The load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device. The load 40 heats and atomizes the aerosol-generating liquid in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
 なお、このウィック30や負荷40の構成は、例えば特許文献2等に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。 Note that the configurations of the wick 30 and the load 40 are similar to those used in known suction tools such as those exemplified in Patent Document 2, so any further detailed explanation will be omitted.
 液体収容部50は、エアロゾル生成液(Le)を収容するための部位である。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、本実施形態において、前述した下流通路部23は、液体収容部50を、中心軸線CLの方向に貫通するように設けられている。液体収容部50に液体が収容されている状態で使用者に提供されてもよいし、液体収容部50に液体が収容されていない状態で使用者に提供され、使用者が液体を導入して使用する構成としてもよい。 The liquid storage section 50 is a part for storing the aerosol generation liquid (Le). The liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Further, in this embodiment, the aforementioned downstream passage section 23 is provided so as to penetrate the liquid storage section 50 in the direction of the central axis CL. The liquid may be provided to the user with the liquid contained in the liquid storage part 50, or the liquid may be provided to the user with no liquid contained in the liquid storage part 50, and the user may introduce the liquid. It is also possible to use a configuration.
[エアロゾル生成液]
 液体収容部50に収容されるエアロゾル生成液Leはたばこ抽出成分を含んでいれば特段制限されない。エアロゾル生成液Leに含まれるたばこ抽出成分を得る方法は特段制限されず、たばこ葉等のたばこ材料を溶媒に溶解させて抽出することにより得られる。
[Aerosol generation liquid]
The aerosol generation liquid Le stored in the liquid storage section 50 is not particularly limited as long as it contains tobacco extract components. The method for obtaining the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and it can be obtained by dissolving tobacco materials such as tobacco leaves in a solvent and extracting it.
 たばこ抽出成分は、たばこ植物に含まれるニコチン等の物質であり、ニコチン以外の物質としては例えば、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられ、これらのニコチン以外の成分は含まれていても含まれていなくともよく、含まれる場合には香料として機能し得る。エアロゾル生成液Leは、たばこ抽出物として特にニコチンを少なくとも含んでいることが好ましく、この態様においては「たばこ抽出成分を含む」を「天然ニコチンを含む」と換言してもよい。ニコチンには、(S)-ニコチンと(R)-ニコチンが存在し、通常、天然に存在するニコチンのほとんどがS体であり、R体は1モル%未満である。一方で、合成ニコチンでは、合成方法や精製方法によるが、通常、S体とR体との比率が1:1に近いものとなる。よって、口腔用組成物中のニコチンの全量に対するR体の量が5モル%以上(1モル%以上としてもよく、10モル%以上としてもよく、40~60モル%としてもよい。)であれば、口腔用組成物中のニコチンが合成ニコチンであると推測することができる。
 抽出する対象は、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものであってもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)であってもよいが、十分な使用量の確保や不要な成分の含有を回避する観点から、たばこ葉を用いることが好ましい。たばこ材料の抽出により得られるたばこ抽出成分を用いる態様は、合成等により得られるニコチンを用いる態様と比較して、エアロゾル生成液Leの原料コストや製造コストを低くすることができる。なお、エアロゾル生成液Leに含まれるニコチンは、天然ニコチン及び後述する合成ニコチンのいずれにおいても、ニコチン塩等のニコチン化合物として存在していてもよい。
 エアロゾル生成液Leにたばこ抽出成分を含有させる方法は特段制限されず、例えば、たばこ材料の抽出により得られるたばこ抽出成分をエアロゾル基材に溶解させる方法、又はこのたばこ抽出成分を溶媒に溶解させた後にエアロゾル生成液Leと混合する方法等が挙げられる。また、たばこ材料の抽出に用いられる溶媒として、エアロゾル基材にもなり得る物質を用いた場合には、たばこ抽出液をそのままエアロゾル生成液Leとして用いることもでき、このような物質としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。
 本実施形態では、たばこ抽出成分の供給源として上記のたばこ抽出成分を含む液体状のエアロゾル生成液Leを用いることにより、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料をニコチン供給源として用いる場合に生じる霧化ユニット12の負荷40の劣化を抑制することができる。
Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance. The aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains a tobacco extract component" may also be referred to as "contains natural nicotine." There are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually the S-form, with the R-form accounting for less than 1 mol%. On the other hand, in synthetic nicotine, the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%). For example, it can be assumed that the nicotine in the oral composition is synthetic nicotine.
The target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable. The embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like. Note that the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
The method of incorporating the tobacco extract component into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco material in an aerosol base material, or a method of dissolving this tobacco extract component in a solvent. Examples include a method of later mixing with the aerosol generation liquid Le. In addition, when a substance that can also be used as an aerosol base material is used as a solvent for extracting tobacco materials, the tobacco extract can be used as it is as the aerosol generation liquid Le. Examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
In this embodiment, by using the liquid aerosol generation liquid Le containing the tobacco extract component as a supply source of the tobacco extract component, powdered tobacco material that can form deposits as disclosed in Patent Document 1 is removed. It is possible to suppress deterioration of the load 40 of the atomization unit 12 that occurs when using the nicotine supply source as a nicotine supply source.
 たばこ抽出成分が天然ニコチンを含む場合、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。 When the tobacco extract component contains natural nicotine, specifically, natural nicotine extracted and purified from tobacco leaves can be used. For such a method for producing natural nicotine, a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
 また、たばこ抽出成分が天然ニコチンを含む場合、たばこ葉等のたばこ材料の抽出液を精製して、たばこ材料の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、エアロゾル生成液Leの所定の溶媒に含有される天然ニコチンの純度は99.9重量%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1重量%よりも少ない)。 In addition, when tobacco extract components contain natural nicotine, the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials. , natural nicotine with increased purity may be used. To give a specific numerical example, the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
 エアロゾル生成液Le中のニコチン(特には天然ニコチン)の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
 エアロゾル生成液Le中のたばこ抽出成分の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
 ニコチンの供給源としてたばこ抽出液を用いることができるが、この場合、エアロゾル生成液Le中のたばこ抽出液の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
The content of nicotine (particularly natural nicotine) in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it is, for example, 0.1% by weight or more and 10% by weight or less. It may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
The content of the tobacco extract component in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.1% by weight or more and 10% by weight or less. It may be 5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
Tobacco extract can be used as a nicotine supply source. In this case, the content of tobacco extract in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, for example, It may be 0.1% by weight or more and 10% by weight or less, 0.5% by weight or more and 7.5% by weight or less, and 1% by weight or more and 5% by weight or less.
 エアロゾル生成液Leに含まれ得る所定の溶媒は特段制限されず、例えば、エアロゾル基材(エアロゾルを生成するための基材)を用いることができる。エアロゾル基材の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。
 エアロゾル生成液Le中のエアロゾル基材の含有量は特段制限されないが、所望のエアロゾルの発生を達成する観点から、例えば、40重量%以上、95重量%以下であってよく、50重量%以上、90重量%以下であってよく、60重量%以上、80重量%以下であってよい。
The predetermined solvent that can be included in the aerosol generation liquid Le is not particularly limited, and for example, an aerosol base material (a base material for generating an aerosol) can be used. The type of aerosol base material is not particularly limited, and for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
The content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
 上記のたばこ抽出成分を得るための抽出に用いられる溶媒の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質、又はこの物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。なお、溶媒がエアロゾル生成としても作用する場合には、たばこ抽出液をそのままエアロゾル生成液Leとして利用することができるが、たばこ抽出液には加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、減圧蒸留等の手段を用いて焦げの原因となる物質を除去することが好ましい。
 なお、たばこ抽出液は、ニコチン以外のたばこ材料中の香味成分を含んでいてもよく、その具体例としては、例えばネオフィタジエン等が挙げられる。
The type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances, or liquids containing the substances, can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent. In addition, if the solvent also acts as an aerosol generator, the tobacco extract can be used as is as the aerosol generator Le, but the tobacco extract may contain components that can cause burns when heated (e.g., lipids, metals, etc.). ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching using means such as vacuum distillation.
Note that the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
 エアロゾル生成液Leは、ニコチンを付与し得るための成分としてたばこ抽出成分を含むが、ニコチンの含有量を増加させるため、さらに、合成等により得られる合成ニコチンを含ませてもよい。なお、合成ニコチンは、ニコチンとして存在してもよく、ニコチン塩等のニコチン含有化合物として存在していてもよい。
 本明細書では、合成により得られたニコチンを「合成ニコチン」とも称するが、これは化学合成によって生成されたニコチンである。すなわち、合成ニコチンは、たばこ材料を抽出することで得られるニコチン(天然ニコチン)ではなく、化学物質を用いて化学合成することで得られるニコチンである。
 合成ニコチンの生成方法は、特に限定されるものではなく、化学物質を用いた化学合成を行うことにより行うことができ、公知の生成方法を用いることができる。
 この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。
The aerosol generation liquid Le contains a tobacco extract component as a component for imparting nicotine, but may further contain synthetic nicotine obtained by synthesis or the like in order to increase the nicotine content. Note that the synthetic nicotine may exist as nicotine or as a nicotine-containing compound such as a nicotine salt.
In this specification, nicotine obtained by synthesis is also referred to as "synthetic nicotine," which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances.
The method for producing synthetic nicotine is not particularly limited, and can be carried out by chemical synthesis using chemical substances, and known production methods can be used.
The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
 ニコチン含有化合物の種類は特段制限されず、例えば、ピルビン酸ニコチン、クエン酸ニコチン、乳酸ニコチン、サリチル酸ニコチン、フマル酸ニコチン、ニコチンレブリン酸塩、ニコチン安息香酸塩、又はニコチン酒石酸塩等のニコチン塩が挙げられる。ニコチン塩等のニコチン含有化合物を合成により得る場合、その生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。 The type of nicotine-containing compound is not particularly limited, and examples thereof include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinic acid salt, nicotine benzoic acid salt, or nicotine tartrate. Can be mentioned. When a nicotine-containing compound such as a nicotine salt is synthesized, the production method is not particularly limited, and any known production method can be used.
 エアロゾル生成液Leは、たばこ抽出成分及びエアロゾル基材以外の成分を(その他の成分)有してよく、例えば、たばこ抽出成分以外の香味成分等が挙げられる。
 たばこ抽出成分以外の香味成分しては、例えば、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。なお、たばこ抽出成分となり得るネオフィタジエン、ソラノン、又はソラネソール等を、たばこ抽出成分としてでなく、合成により得られた物質としてエアロゾル生成液Leに含有させてもよい。
The aerosol generation liquid Le may contain components other than the tobacco extract component and the aerosol base material (other components), such as flavor components other than the tobacco extract component.
Flavor components other than tobacco extract components include, for example, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum). , vetiver oil, rose oil, lovage oil), esters (e.g., menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g., menthone, ionone, ethyl maltol, etc.) , alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadecalactone, etc.) etc. Note that neophytadiene, solanone, solanesol, or the like, which can be tobacco extract components, may be contained in the aerosol generation liquid Le as a synthetically obtained substance instead of as a tobacco extract component.
[成形体]
 成形体60は、非たばこ基材等の材料が固められて所定形状に成形されたものであり、毛管力を有する態様であれば特段制限されない。本実施形態に係る成形体60は、液体収容部50中のエアロゾル生成液Leの内部にそれぞれ2個配置されている。但し、成形体60の個数は特段限定されず、1個でもよく、3個以上であってもよく、複数である場合、それらは互いに一体化されていてもよく、一体化されていなくともよい。成形体60は、香味材料を含んでいることが好ましく、この物質から香味成分をエアロゾル生成液Leに溶出させることにより、更なる香味の付与を達成することができる。また、香味材料は成形体60中に含まれるため、特許文献1に開示されるような堆積物となり得る粉体状の固形物の使用により生じていた霧化ユニット12の負荷40への付着の問題が生じないため、該負荷40の劣化を抑制することができる。
 また、霧化ユニット12内の成形体60により毛管作用が発生する場合には、この毛管作用によりエアロゾル生成液Leが保持されるため、液漏れ防止の効果を得ることができる。成形体60の毛管力は、成形体60中の空隙率や空隙のサイズを変更することにより調整することができ、例えば、空隙のサイズが小さいほど毛管力は大きくなる。
[Molded object]
The molded body 60 is formed by solidifying a material such as a non-tobacco base material and molded into a predetermined shape, and is not particularly limited as long as it has a capillary force. Two molded bodies 60 according to this embodiment are arranged inside each aerosol generation liquid Le in the liquid storage part 50. However, the number of molded bodies 60 is not particularly limited, and may be one, three or more, and if there are multiple molded bodies 60, they may or may not be integrated with each other. . The molded body 60 preferably contains a flavoring material, and by eluting the flavoring component from this substance into the aerosol generation liquid Le, it is possible to further impart flavor. In addition, since the flavor material is contained in the molded body 60, it is possible to avoid adhesion to the load 40 of the atomization unit 12, which occurs due to the use of powdery solids that can become deposits as disclosed in Patent Document 1. Since no problem occurs, deterioration of the load 40 can be suppressed.
Further, when capillary action is generated by the molded body 60 in the atomization unit 12, the aerosol-generating liquid Le is retained by this capillary action, so that the effect of preventing liquid leakage can be obtained. The capillary force of the molded body 60 can be adjusted by changing the porosity and the size of the voids in the molded body 60. For example, the smaller the void size, the greater the capillary force.
 成形体60に毛管力を付与させる手段は特段制限されないが、例えば、使用後の液体収容部中のエアロゾル生成液の残液率を低減することができる観点から、複数の粒子から構成される態様、又は多孔質状に形成される態様(多孔質体)等が挙げられる。該粒子の形状は、粒子と認識し得る形状であれば特段制限されず、球形状(略球形状も含む。)であってもよく、球形状以外の形状であってもよい。本明細書において、粒子の形状が球形状以外の形状である場合、後述する粒子の粒径は、粒子を任意に切断して得られる断面上で取り得る線分のうち、長さが最大となる線分の長さを意味する。図6に、成形体が複数の粒子から構成される態様の一例を示す。図7は、図6のA4-A4線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)を模式的に示す図である。
 複数の粒子から構成される態様では、複数の粒子間の空間により生じる毛管力により、エアロゾル生成液Leを保持することができる。また、多孔質体の態様では、多孔質体中の空隙により生じる毛管力により、エアロゾル生成液Leを保持することができる。
The means for applying capillary force to the molded body 60 is not particularly limited, but for example, from the viewpoint of reducing the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use, an embodiment composed of a plurality of particles is preferable. , or an embodiment formed in a porous state (porous body). The shape of the particles is not particularly limited as long as it can be recognized as a particle, and may be spherical (including approximately spherical) or may have a shape other than spherical. In this specification, when the shape of the particle is other than spherical, the particle size of the particle described later is the maximum length of the line segments that can be taken on the cross section obtained by arbitrarily cutting the particle. means the length of the line segment. FIG. 6 shows an example of an embodiment in which the molded body is composed of a plurality of particles. FIG. 7 is a diagram schematically showing a cross section taken along the line A4-A4 in FIG. 6 (that is, a cross section cut along a plane normal to the central axis CL).
In the embodiment composed of a plurality of particles, the aerosol generation liquid Le can be held by capillary force generated by the spaces between the plurality of particles. Further, in the case of a porous body, the aerosol generation liquid Le can be held by capillary force generated by voids in the porous body.
 成形体60が複数の粒子から構成される場合、該複数の粒子は、流動しない状態で液体収容部50に収容されていてもよい。このような態様とすることにより、液体収容部50が傾くような状態で霧化ユニット12を使用してもその傾きによる粒子の移動が生じないため、エアロゾル生成液Leの残液率に対する使用時の霧化ユニット12の傾きの影響を低減することができる。
 また、成形体60が複数の粒子から構成される場合、液体収容部50に流動可能に収容されていてもよい。このような態様とすることにより、液体収容部50が傾くような状態で霧化ユニット12を使用してもその傾きに合わせて複数の粒子が移動するため、使用時において、霧化ユニット12の傾きを変化させることによりエアロゾル生成液Leの流量を調整することができる。
When the molded body 60 is composed of a plurality of particles, the plurality of particles may be accommodated in the liquid storage section 50 in a non-flowing state. With this configuration, even if the atomization unit 12 is used in a state where the liquid storage section 50 is tilted, particles will not move due to the tilt. The influence of the tilt of the atomization unit 12 can be reduced.
Furthermore, when the molded body 60 is composed of a plurality of particles, it may be fluidly accommodated in the liquid storage section 50 . By adopting such an aspect, even if the atomizing unit 12 is used in a state where the liquid storage section 50 is tilted, a plurality of particles will move according to the tilt, so that the atomizing unit 12 will not be tilted during use. By changing the slope, the flow rate of the aerosol generation liquid Le can be adjusted.
 成形体60が複数の粒子から構成される場合、これらの粒子の平均粒径は特段制限されないが、使用後の液体収容部中のエアロゾル生成液の残液率の低下を効率的に抑制することができる観点から、0.2mm以上、2.0mm以下であることが好ましく、0.3mm以上、1.5mm以下であることがより好ましく、0.35mm以上、1.0mm以下であることがさらに好ましく、0.7mm以上、1.0mm以下であることが特に好ましく、0.71mm以上、1.0mm以下であることが殊更特に好ましい。 When the molded body 60 is composed of a plurality of particles, the average particle size of these particles is not particularly limited, but it is possible to efficiently suppress a decrease in the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use. From the viewpoint of being able to It is preferably 0.7 mm or more and 1.0 mm or less, particularly preferably 0.71 mm or more and 1.0 mm or less.
 成形体60が複数の粒子から構成される場合、成形体60が第1液輸送部材61に接触して配置され、成形体60から第1液輸送部材61に向かう第1方向を鉛直下向きとするように静置した状態において、第1液輸送部材61から離れた位置に形成された第1領域に配置される複数の成形体60の平均粒径よりも、第1液輸送部材61と第1領域の間に隣接して挟んで形成された第2領域に配置される複数の成形体の平均粒径の方が小さいことが好ましい。粒径が小さい方が液体の毛管力が大きくなるため、このような態様では、第2領域の毛管力よりも第1領域の毛管力の方が大きくなる。つまり、第1領域に保持される液体は、第1領域から第2領域を通じて第1液輸送部材61に送液されやすくなり、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。
 液体収容部50に粒径の異なる粒状が含まれる場合において、第1方向を鉛直下向きとした状態で、収容される粒子全体が移動する程度に液体収容部50に振動を与え続けると、粒径が小さい粒子の方が鉛直下向きの方向に移動する。
When the molded body 60 is composed of a plurality of particles, the molded body 60 is placed in contact with the first liquid transport member 61, and the first direction from the molded body 60 toward the first liquid transport member 61 is directed vertically downward. In the state where the first liquid transport member 61 and the first It is preferable that the average particle size of the plurality of molded bodies arranged in the second region formed adjacent to and sandwiched between the regions is smaller. Since the smaller the particle size, the larger the capillary force of the liquid, in such an embodiment, the capillary force in the first region is greater than the capillary force in the second region. In other words, the liquid held in the first area is easily transported from the first area to the first liquid transport member 61 through the second area, and the remaining liquid rate of the aerosol generating liquid in the liquid storage section after use is efficiently reduced. can be reduced.
When the liquid storage part 50 contains particles with different particle sizes, if the liquid storage part 50 is continuously vibrated to the extent that all the contained particles move with the first direction facing vertically downward, the particle size will change. Particles with a smaller value move in a vertically downward direction.
 成形体60が多孔質体である場合、毛管力を有するように連続多孔質であれば特段制限されず、例えば、形状は、板状、又は棒状等であってよく、第1方向を法線とする断面の形状は、円形、又は多角形(三角形、四角形、五角形、もしくは六角形等)等であってよい。
 第1液輸送部材61から成形体60に向かう第2方向を長手方向とした場合において、成形体60の短手方向の断面における最長長さ、及び、成形体60の長手方向の長さの具体的な値は、特に限定されるものではないが、数値の一例を挙げると、以下のとおりである。すなわち、成形体60の短手方向の断面における最長長さとして、例えば2mm以上20mm以下の範囲から選択された値を用いることができる。成形体60の長手方向の長さとして、例えば5mm以上50mm以下の範囲から選択された値を用いることができる。但し、これらの値は一例に過ぎず、霧化ユニット12のサイズに応じて好適な値を設定すればよい。成形体60が複数個で存在する場合におけるこれらのパラメータは、それぞれの成形体60で算出した数値の平均値とする。
When the molded body 60 is a porous body, it is not particularly limited as long as it is continuous porous so as to have capillary force. For example, the shape may be a plate shape or a rod shape, and the first direction is the normal line. The shape of the cross section may be circular or polygonal (triangular, quadrilateral, pentagonal, hexagonal, etc.).
When the second direction from the first liquid transport member 61 toward the molded body 60 is defined as the longitudinal direction, the maximum length in the transverse cross section of the molded body 60 and the specific length of the molded body 60 in the longitudinal direction Although the value is not particularly limited, an example of a numerical value is as follows. That is, as the longest length in the transverse cross section of the molded body 60, a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used. As the length of the molded body 60 in the longitudinal direction, a value selected from a range of, for example, 5 mm or more and 50 mm or less can be used. However, these values are only examples, and suitable values may be set according to the size of the atomization unit 12. When a plurality of molded bodies 60 are present, these parameters are the average value of the numerical values calculated for each molded body 60.
 非たばこ基材の材料の種類は、たばこ材料(具体的には、たばこ植物)に由来する物質でなければ特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等であってよい。セラミックとしては、例えば、アルミナ、ジルコニア、窒化アルミ、又は炭化ケイ素等が挙げられる。また、合成ポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル、ポリカーボネート、PAN、又はEVOH等が挙げられる。また、たばこ植物以外の植物としては、例えば、針葉樹パルプ、広葉樹パルプ、コットン、果実パルプ、又は茶葉等が挙げられる。また、非たばこ基材は、成形体60の主たる材料、特に、成形体60の成形を担保する主たる材料であってよい。
 成形体60中の非たばこ基材の含有量は特段制限されず、例えば、10重量%以上、100重量%以下であってよく、30重量%以上、90重量%以下であってよく、50重量%以上、80重量%以下であってよい。
The type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be. Examples of the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide. Examples of the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH. Examples of plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves. Further, the non-tobacco base material may be the main material of the molded body 60, particularly the main material that ensures the molding of the molded body 60.
The content of the non-tobacco base material in the molded body 60 is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, and 50% by weight. % or more and 80% by weight or less.
 また、成形体60は、吸液による膨張を抑制するため、また、膨張抑制により液体収容部50内の液体を無駄なく使用できるため、被覆材で被覆されていることが好ましく、具体的には、樹脂等の被覆材(コーティング材)で被覆されていること、又はニコチン含有被覆材で被覆されていることが好ましい。 Further, the molded body 60 is preferably covered with a coating material in order to suppress expansion due to liquid absorption, and because the liquid in the liquid storage section 50 can be used without wasting the liquid by suppressing the expansion. , a coating material such as resin, or a nicotine-containing coating material.
 樹脂により被覆を行う場合の被覆材(コーティング)は、ポリエチレン、ポリエチレンワックス、マイクロクリスタリンワックス、みつろう、又はツェイン等が挙げられる。
 樹脂等の被覆材は、成形体60の膨潤を抑制する。コーティングは、成形体60の表面の50%以上を被覆することが、成形体60に含まれる非たばこ基材等の材料の膨潤を防止する効果を高めるうえで好ましく、90%以上がより好ましい。しかしコーティングは、成形体60の少なくとも一部を被覆することができればその形状は特に限定されない。
Examples of the coating material (coating) when coating with resin include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
The coating material such as resin suppresses swelling of the molded body 60. It is preferable for the coating to cover 50% or more of the surface of the molded body 60 in order to enhance the effect of preventing swelling of materials such as non-tobacco base materials included in the molded body 60, and more preferably 90% or more. However, the shape of the coating is not particularly limited as long as it can cover at least a portion of the molded body 60.
 ニコチン含有被覆材は、ニコチンを含む被覆材であれば特段制限されず、例えば、上述した樹脂の材料にニコチンを含有させたものであってよい。 The nicotine-containing coating material is not particularly limited as long as it contains nicotine, and may be, for example, the above-mentioned resin material containing nicotine.
 被覆材を用いる場合には、後述する実施形態2に係る霧化ユニット12の製造方法において、成形体60を成形する成形工程の後に、被覆材により成形体60を被覆する被覆工程を設けることができる。被覆工程においては、成形体60の表面を、水ガラス等の珪酸ナトリウム、又は樹脂を含むコーティング剤を用いて被覆し、コーティングを形成する。これにより、成形体60として、所定形状に固められたたばこ残渣の表面が被覆材で覆われた構造の成形体60を製造することができる。被覆材の形成方法は特に限定されず、例えば、珪酸ナトリウム又は樹脂を含む液状のコーティング剤の膜を成形体60の表面に形成した後、加熱または酸若しくは塩の添加等により固化処理またはゲル化処理を行うことができる。なお、被覆工程を行わず、成形工程において、水ガラス等の珪酸ナトリウム又は樹脂を含む溶液を用い、適宜香味成分が添加された非たばこ基材等の材料を固めることで成形体60を被覆してもよい。 In the case of using a coating material, in the method for manufacturing the atomization unit 12 according to Embodiment 2 described below, a coating step of covering the molded body 60 with the coating material may be provided after the molding step of molding the molded body 60. can. In the coating step, the surface of the molded body 60 is coated with a coating agent containing sodium silicate such as water glass or a resin to form a coating. Thereby, it is possible to manufacture a molded object 60 having a structure in which the surface of tobacco residue solidified into a predetermined shape is covered with a covering material. The method of forming the coating material is not particularly limited, and for example, a film of a liquid coating agent containing sodium silicate or resin is formed on the surface of the molded body 60, and then solidified or gelled by heating or addition of acid or salt. can be processed. It should be noted that the molded body 60 may be coated without performing the coating process by solidifying a material such as a non-tobacco base material to which a flavor component has been appropriately added using a solution containing sodium silicate or resin such as water glass in the molding process. You can.
 成形体60は、エアロゾル生成液に溶出する香味成分の量を増加させることができる観点から、香味材料を含んでいてもよい。成形体は、香味材料を含む場合、香味成形体と称することもできる。成形体60に含まれる香味材料の態様は特段制限されず、例えば、香味成分自体であってよく、また、香味成分を付与する材料(「香味成分付与材料」)であってもよく、香味成分付与材料としては、例えば、たばこ材料が挙げられる。例えば、香味材料としてたばこ材料を用いた場合、スパイスとしてたばこ成分による香味を付与することができる。なお、本明細書において、成形体60に香味成分付与材料が含まれる場合には、香味成分付与材料に含まれる香味成分でなく、香味成分付与材料を香味材料として扱う。例えば、成形体60がたばこ材料を含む場合、香味材料は、たばこ材料に含まれる香味成分でなく、たばこ材料である。
 香味材料はたばこ材料を含み得るが、たばこ材料の態様は特段制限されず、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものを含ませてもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、又はたばこシート等)を含ませてもよいが、十分な使用量の確保や加工の容易性の観点から、たばこ葉又はたばこ葉を用いた加工物が好ましい。また、たばこ材料は、これらの材料を抽出した後に得られるたばこ残渣であってもよく、抽出していないたばこ材料とたばこ残渣を併用してもよく、混合した混合物として用いてもよい。成形体60が含むたばこ材料は、香喫味の観点上、スパイスの役割を担う。本明細書において、「香味材料はたばこ材料を含む」とは、香味材料の内部にたばこ材料が含まれるということでなく、香味材料の種類の一つとしてたばこ材料が含まれるということを意味し、「香味材料はたばこ材料を含むとともに成形体60中のたばこ材料の含有量が10重量%以下である」の表現は、「香味材料として少なくともたばこ材料を含むとともに前記成形体60中の前記たばこ材料は10重量%以下である」の表現に換言することができる。
 香味材料となる香味成分は特段制限されず、例えば、ニコチン、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。
The molded body 60 may contain a flavor material from the viewpoint of increasing the amount of flavor components eluted into the aerosol-generating liquid. The molded body can also be referred to as a flavored molded body when it contains a flavor material. The form of the flavor material contained in the molded body 60 is not particularly limited, and for example, it may be the flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and the flavor component may be a flavor component itself. Examples of the imparting material include tobacco materials. For example, when a tobacco material is used as a flavoring material, the tobacco component can be used as a spice to impart flavor. In addition, in this specification, when the molded object 60 contains a flavor component imparting material, the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material. For example, when the molded body 60 contains a tobacco material, the flavor material is not a flavor component contained in the tobacco material, but the tobacco material.
The flavoring material may include tobacco material, but the form of the tobacco material is not particularly limited, and may include, for example, tobacco plant leaves, stems, flowers, roots, reproductive organs, or tissues themselves such as embryos; , processed products using the tissues of these tobacco plants (for example, tobacco powder, shredded tobacco, or tobacco sheets used in known tobacco products) may be included, but it is necessary to ensure a sufficient amount of use and processing. From the viewpoint of ease of processing, tobacco leaves or processed products using tobacco leaves are preferred. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture. The tobacco material included in the molded body 60 plays the role of spice in terms of aroma and taste. As used herein, "the flavor material contains tobacco material" does not mean that the flavor material contains tobacco material, but rather that tobacco material is included as one of the types of flavor material. , the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the molded body 60 is 10% by weight or less" means "the flavoring material contains at least a tobacco material and the content of the tobacco material in the molded body 60 is 10% by weight or less". The content of the material is 10% by weight or less."
Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone, ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadeca), lactone, etc.).
 香味材料中の香味成分(香味成分自体が香味材料であってよい。)は、液体収容部50に収容されるエアロゾル生成液Leに溶出し、最終的に霧化ユニット12の使用により発生するエアロゾルとして使用者にデリバリーされる。 The flavor component in the flavor material (the flavor component itself may be a flavor material) is eluted into the aerosol generation liquid Le stored in the liquid storage section 50, and finally the aerosol generated by using the atomization unit 12. delivered to the user as
 香味材料を非たばこ基材に付与する方法は特段制限されず、例えば、非たばこ基材の製造の際に香味材料を非たばこ基材の原料中に混合させることにより付与してもよく、また、塗布や噴霧等により香味材料を非たばこ基材の表面に付与してもよく、また、これらを組み合わせてもよい。
 成形体60がその表面に香味材料を有する態様では、液体収容部50中のエアロゾル生成液Leと香味材料との接触を十分に確保することができるため、液体への香味成分が十分に溶出し、優れた香味を確保することができる。
The method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
In the embodiment in which the molded body 60 has the flavor material on its surface, sufficient contact between the aerosol generation liquid Le in the liquid storage section 50 and the flavor material can be ensured, so that the flavor component is sufficiently eluted into the liquid. , can ensure excellent flavor.
 成形体60中の香味材料の含有量は特段制限されず、例えば、0.1重量%以上、70重量%以下であってよく、1重量%以上、60重量%以下であってよく、3重量%以上、50重量%以下であってよい。
 特に、成形体60がたばこ材料を含む場合、成形体60中のたばこ材料の含有量は特段制限されないが、香味のスパイスとしての役割を発揮する観点からは、1重量%以上であることが好ましく、3重量%以上であることがより好ましく、7重量%以上であることがさらに好ましく、また、たばこ材料の量が多すぎるとたばこ材料が成形体60から分離して堆積物となるおそれがある観点、及びたばこ材料に含まれる加熱により負荷40の焦げの原因となり得る成分の量の抑制の観点からは、10重量%以下であることが好ましく、7重量%以下であることがより好ましく、3重量%以下であることがさらに好ましい。
The content of the flavor material in the molded body 60 is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, and 3% by weight. % or more and 50% by weight or less.
In particular, when the molded body 60 contains tobacco material, the content of the tobacco material in the molded body 60 is not particularly limited, but from the viewpoint of exerting its role as a flavoring spice, it is preferably 1% by weight or more. , more preferably 3% by weight or more, even more preferably 7% by weight or more, and if the amount of tobacco material is too large, there is a risk that the tobacco material will separate from the molded body 60 and form a deposit. From the viewpoint of suppressing the amount of components contained in the tobacco material that may cause scorching of the load 40 due to heating, the amount is preferably 10% by weight or less, more preferably 7% by weight or less, and 3 More preferably, it is less than % by weight.
 成形体60は、非たばこ基材等の成形体60に含まれる材料を接着するため、バインダーを含んでいてもよく、特に、成形体60中に粉体となり得る物質が含まれるときは、それが堆積物となって負荷40の劣化を促進してしまうことを抑制できる点からバインダーが含まれることが好ましい。
 バインダーの種類は特段制限されず、例えば、澱粉、ヒドロキシアルキルセルロース、酢酸ビニル樹脂、又はアルキルヒドロキシアルキルセルロース等を用いることができ、特に、バインダーがエアロゾル生成液Leに溶解しない、あるいは、溶解しにくい観点から、また、バインダー成分自体が焦げ因子にならず、かつ成型体の形状を維持することができる観点から、澱粉、ヒドロキシアルキルセルロース、及び酢酸ビニル樹脂からなる群の中から選択される1種以上の物質であることが好ましい。酢酸ビニル樹脂としては、例えば、ポリ酢酸ビニル、又は酢酸ビニル等が挙げられる。
 成形体60中のバインダーの含有量は、接着性と焦げ成分溶出抑制のバランスの観点から、1重量%以上、20重量%以下であってよく、3重量%以上、15重量%以下であってよく、5重量%以上、10重量%以下であってよい。
The molded body 60 may contain a binder in order to bond materials contained in the molded body 60 such as non-tobacco base materials, and in particular, when the molded body 60 contains a substance that can become powder, it may contain a binder. It is preferable that a binder be included in order to prevent the particles from becoming deposits and promoting deterioration of the load 40.
The type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, vinyl acetate resin, alkylhydroxyalkylcellulose, etc. can be used, and in particular, the binder does not dissolve or is difficult to dissolve in the aerosol generation liquid Le. From the viewpoint that the binder component itself does not become a scorching factor and can maintain the shape of the molded product, one type selected from the group consisting of starch, hydroxyalkyl cellulose, and vinyl acetate resin. The above substances are preferable. Examples of the vinyl acetate resin include polyvinyl acetate and vinyl acetate.
The content of the binder in the molded body 60 may be 1% by weight or more and 20% by weight or less, and 3% by weight or more and 15% by weight or less, from the viewpoint of the balance between adhesiveness and suppression of elution of burnt components. It may be more than 5% by weight and less than 10% by weight.
 成形体60は、上記の各種成分以外の成分を含んでいてもよく、例えば、乳酸カルシウム等のゲル化剤、又はグリセリンもしくはプロピレングリコール等の保湿剤等が挙げられる。ゲル化剤を用いることで、バインダー強度を向上させることができる。 The molded body 60 may contain components other than the above-mentioned various components, such as a gelling agent such as calcium lactate, or a humectant such as glycerin or propylene glycol. By using a gelling agent, binder strength can be improved.
 また、本実施形態において、成形体60の密度(単位体積当たりの質量)は特段制限されないが、エアロゾル生成液Leの密度よりも大きいことが好ましい。成形体60の密度がエアロゾル生成液Leの密度よりも大きい場合、成形体60がエアロゾル生成液Le中に沈降するため、使用後の液体収容部50中のエアロゾル生成液Leの残液率を安定して低減することができる。成形体60の密度は、、一例として、1000mg/cm以上、1450mg/cm以下であってよく、また、1100mg/cm以上、1450mg/cm以下であってもよい。但し、成形体60の密度は、これに限定されるものではなく、1000mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよく、また、1100mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよい。成形体60が複数個で存在する場合には、この密度は、成形体60の総体積に対する総質量として求める。 Further, in this embodiment, the density (mass per unit volume) of the molded body 60 is not particularly limited, but it is preferably larger than the density of the aerosol generation liquid Le. If the density of the molded body 60 is greater than the density of the aerosol generation liquid Le, the molded body 60 will settle into the aerosol generation liquid Le, thereby stabilizing the residual liquid rate of the aerosol generation liquid Le in the liquid storage section 50 after use. can be reduced. The density of the molded body 60 may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg/cm 3 or less. However, the density of the molded body 60 is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of molded bodies 60 are present, this density is determined as the total mass relative to the total volume of the molded bodies 60.
 液体収容部50における成形体60の充填率は特段制限されないが、使用後の液体収容部50中のエアロゾル生成液の残液率を効率的に低減することができる観点から、40体積%以上、75体積%以下であることが好ましく、45体積%以上、75体積%以下であることが好ましく、50体積%以上、60体積%以下であることがより好ましい。この充填率は、液体収容部50の容積に対する成形体60の全体の体積であり、成形体60の密度と総重量から総体積を求め、液体収容部50の内容積で除すことで算出することができる測定することができる。 The filling rate of the molded body 60 in the liquid storage part 50 is not particularly limited, but from the viewpoint of being able to efficiently reduce the residual liquid rate of the aerosol generation liquid in the liquid storage part 50 after use, it is 40% by volume or more, It is preferably 75 volume% or less, preferably 45 volume% or more and 75 volume% or less, and more preferably 50 volume% or more and 60 volume% or less. This filling rate is the entire volume of the molded body 60 with respect to the volume of the liquid storage portion 50, and is calculated by finding the total volume from the density and total weight of the molded body 60 and dividing it by the internal volume of the liquid storage portion 50. can be measured.
 液体収容部50を構成する容器は、図8に示すように、第1液輸送部材と接続される接続部を有し、容器を構成する壁部のうち、接続部以外の部位に少なくとも1つの開孔72eが設けられていてもよい。このような態様とすることにより、容器外部から容器内部に空気等の外気が導入され、容器内部のエアロゾル生成液Leを下方向に押し下げる圧力が発生するため、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。図8のA5-A5線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)は、図2と同様の図となる。
 上記の容器は、接続部を含む底部と、該底部に立設された側部とを有し、該側部に少なくとも1つの開孔が設けられていてもよい。この態様とすることにより、容器内部への開孔からの外気の導入が容易となり、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる。
 効率的に外気を容器内に取り入れることができる観点から、液体収容部50を構成する容器に対して負荷40が位置する側を下流側、その反対側を上流側とした場合において、開孔は上流側に設けられることが好ましい。具体的には、容器を上流側の部分と下流側の部分で半分に分けた場合に、上流側の部分に開孔が設けられることが好ましい。より具体的には、下流側から上流側に向かう方向の容器の長さを100%とした場合において、開孔は、容器の上流側端部から50%以下の領域に設けられることが好ましく、30%以下の領域に設けられることがより好ましく、25%以下の領域に設けられることがさらに好ましく、20%以下の領域に設けられることが特に好ましく、また、下限は特段設定を要せず、容器の上流側端部(0%)に設けられていてもよく、容器の上流側端部から5%以上の領域に設けられていてもよく、10%以上領域に設けられていてもよい。
As shown in FIG. 8, the container constituting the liquid storage section 50 has a connecting part connected to the first liquid transport member, and at least one wall part other than the connecting part of the wall part constituting the container. An opening 72e may be provided. With this configuration, outside air such as air is introduced from the outside of the container into the inside of the container, and pressure is generated to push down the aerosol-generating liquid Le inside the container, so that the aerosol in the liquid storage section after use is The residual liquid ratio of the produced liquid can be efficiently reduced. The cross section taken along the line A5-A5 in FIG. 8 (that is, the cross section cut along the plane normal to the central axis CL) is similar to FIG. 2.
The container described above has a bottom including a connecting portion and a side that stands upright from the bottom, and the side may be provided with at least one opening. By adopting this aspect, it becomes easy to introduce outside air from the opening into the inside of the container, and it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
From the viewpoint of being able to take outside air into the container efficiently, when the side where the load 40 is located with respect to the container constituting the liquid storage section 50 is designated as the downstream side, and the opposite side is designated as the upstream side, the openings are Preferably, it is provided on the upstream side. Specifically, when the container is divided into halves into an upstream portion and a downstream portion, it is preferable that an opening be provided in the upstream portion. More specifically, when the length of the container in the direction from the downstream side to the upstream side is taken as 100%, the opening is preferably provided in an area of 50% or less from the upstream end of the container, It is more preferably provided in an area of 30% or less, even more preferably in an area of 25% or less, particularly preferably provided in an area of 20% or less, and the lower limit does not require a special setting, It may be provided at the upstream end (0%) of the container, it may be provided in an area of 5% or more from the upstream end of the container, or it may be provided in an area of 10% or more from the upstream end of the container.
 上記の開孔の径(直径)は特段制限されないが、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる観点から、0.3mm以上、3.0mm以下であることが好ましく、0.3mm以上、2.0mm以下であることがより好ましく、0.5mm以上、1.0mm以下であることがさらに好ましい。開孔の形状が円形でない場合、この径は、同様の面積を有する円形における直径とする。
 開孔の個数は特段制限されず、1個であってもよく、2個以上であってもよいが、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができる観点から、2個以上であることが好ましい。
The diameter of the above-mentioned openings is not particularly limited, but from the viewpoint of efficiently reducing the residual liquid rate of the aerosol-generating liquid in the liquid storage part after use, it is 0.3 mm or more and 3.0 mm. It is preferably the following, more preferably 0.3 mm or more and 2.0 mm or less, and even more preferably 0.5 mm or more and 1.0 mm or less. If the shape of the aperture is not circular, this diameter is the diameter of a circle with a similar area.
The number of openings is not particularly limited, and may be one or two or more, but the number of openings may be one, or two or more, but the remaining liquid rate of the aerosol-generating liquid in the liquid storage section after use can be efficiently reduced. It is preferable that the number is two or more from the viewpoint of being able to do this.
 また、本実施形態において、成形体60の湿潤引張強度は特段制限されないが、湿潤環境下での崩壊を抑制するため、15mm当たり5N以上であることが好ましく、15mm当たり10N以上であることがより好ましい。この湿潤引張強度は、特開2019-187451号公報に記載の方法に準拠して測定することができる。この測定において測定対象となる標本は、22±2℃、相対湿度60±5%で、少なくとも24時間調整した後、試験試料を縦250±0.1mm、横15±0.1mmとなるように切断して準備する。 Further, in this embodiment, the wet tensile strength of the molded body 60 is not particularly limited, but in order to suppress collapse in a wet environment, it is preferably 5 N or more per 15 mm, and more preferably 10 N or more per 15 mm. preferable. This wet tensile strength can be measured according to the method described in JP-A-2019-187451. The specimen to be measured in this measurement is adjusted at 22 ± 2°C and relative humidity 60 ± 5% for at least 24 hours, and then the test sample is adjusted to a length of 250 ± 0.1 mm and a width of 15 ± 0.1 mm. Cut and prepare.
 また、霧化ユニット12は、負荷40を保持すると共に液体収容部50内からエアロゾル生成液Leが供給されるウィック30と、成形体60及びウィック30の双方に当接するように液体収容部50内に配置された液保持部材(コットンなど)と、を備え、少なくとも液保持部材の毛管力が成形体60の毛管力よりも大きいことが好ましい。この態様によれば、液体収容部50中のエアロゾル生成液Leを無駄なく使用することができる。 Further, the atomization unit 12 is arranged inside the liquid storage section 50 so as to be in contact with both the wick 30 that holds the load 40 and the aerosol generation liquid Le is supplied from inside the liquid storage section 50, and the molded body 60 and the wick 30. It is preferable that the capillary force of at least the liquid retaining member is larger than the capillary force of the molded body 60. According to this aspect, the aerosol generation liquid Le in the liquid storage section 50 can be used without wasting it.
 霧化ユニット12を用いた吸引は以下のように行われる。まず、ユーザがエアの吸引を開始した場合、エアはエア通路20の上流通路部21a及び21bを通過して、負荷通路部22に流入する。負荷通路部22に流入したエアには、負荷40において発生したエアロゾルが付加される。このエアロゾルには、液体収容部50中のエアロゾル生成液Leに含まれるたばこ抽出成分と、成形体60から溶出し得る香味成分と、が含まれている。このエアロゾルが付加されたエアは、下流通路部23を通過して排出口13から排出されて、ユーザに吸引される。 Suction using the atomization unit 12 is performed as follows. First, when the user starts suctioning air, the air passes through the upstream passage sections 21 a and 21 b of the air passage 20 and flows into the load passage section 22 . Aerosol generated in the load 40 is added to the air that has flowed into the load passage section 22 . This aerosol contains tobacco extract components contained in the aerosol generation liquid Le in the liquid storage section 50 and flavor components that can be eluted from the molded body 60. The air to which this aerosol has been added passes through the downstream passage section 23, is discharged from the discharge port 13, and is sucked into the user.
 以上説明したような本実施形態に係る霧化ユニット12によれば、負荷40が発生するエアロゾルに、液体収容部50中のエアロゾル生成液Leに含まれるニコチンに加えて、成形体60に含まれ得る香味材料由来の香味成分を付加することができる。これにより、香味を十分に味わうことができる。 According to the atomization unit 12 according to the present embodiment as described above, the aerosol generated by the load 40 contains nicotine contained in the molded body 60 in addition to the nicotine contained in the aerosol generation liquid Le in the liquid storage part 50. Flavor components derived from the flavor materials obtained can be added. This allows you to fully enjoy the flavor.
 また、本実施形態に係る霧化ユニット12によれば、液体収容部50中のエアロゾル生成液Leの内部に成形体60が配置されており、成形体60と電気的な負荷40とが物理的に分離されているので、たばこ材料が霧化ユニット12の負荷40に付着することを抑制することができる。これにより、霧化ユニット12の負荷40が劣化することを抑制することができる。 Further, according to the atomization unit 12 according to the present embodiment, the molded body 60 is disposed inside the aerosol generation liquid Le in the liquid storage section 50, and the molded body 60 and the electrical load 40 are physically connected. Since the tobacco material is separated into two parts, it is possible to prevent the tobacco material from adhering to the load 40 of the atomization unit 12. Thereby, deterioration of the load 40 of the atomization unit 12 can be suppressed.
 また、成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Le1g中に含まれる炭化成分の量(mg)は、6mg以下であることが好ましく、3mg以下であることがより好ましい。 Further, the amount (mg) of carbonized components contained in the aerosol generation liquid Le1g with the molded body 60 disposed inside the liquid storage section 50 is preferably 6 mg or less, and preferably 3 mg or less. More preferred.
 この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。 According to this configuration, the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
 なお、「成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Le中に含まれる炭化成分」は、具体的には、成形体60が配置される前の状態のエアロゾル生成液Leに含まれる炭化成分の量と、成形体60からエアロゾル生成液Leに溶出した炭化成分の量とを合計した値に相当する。 Note that "the carbonized component contained in the aerosol generating liquid Le in a state where the molded body 60 is placed inside the liquid storage section 50" specifically refers to the aerosol in the state before the molded body 60 is placed. This value corresponds to the sum of the amount of carbonized components contained in the generated liquid Le and the amount of carbonized components eluted from the compact 60 into the aerosol generated liquid Le.
 また、本実施形態において、「炭化成分」とは、250℃に加熱された場合に炭化物になる成分をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。 Furthermore, in the present embodiment, the term "carbonized component" refers to a component that becomes carbide when heated to 250°C. Specifically, the "carbonized component" refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
 なお、この「成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Le1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Leを所定量(g)、準備する。次いで、このエアロゾル生成液Leを180℃に加熱して、エアロゾル生成液Leに含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)のエアロゾル生成液Leに含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、エアロゾル生成液Le1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。 Note that this "amount (mg) of carbonized components contained in the aerosol generation liquid Le1g with the molded body 60 disposed inside the liquid storage section 50" can be measured, for example, by the following method. . First, a predetermined amount (g) of the aerosol generation liquid Le with the molded body 60 disposed inside the liquid storage section 50 is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured. By the above method, it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid Le is determined. That is, the amount (mg) of carbonized components can be calculated.
[炭化成分の量とTMP減少量との関係]
 続いて、たばこ抽出成分を含むエアロゾル生成液Le1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図9は、エアロゾル生成液Leとしてたばこ抽出液(以下、単に「抽出液」とも称する。)を用いた場合において、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図9の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。なお、以下の実験では、霧化ユニットとして上述した実施形態の一部の条件が満たされていないものを用いているが、ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量とTPM減少率との関係を検討するという本実験の目的は達成できている。満たされていない一部の条件としはて、例えば、成形体について、上述した実施形態では非たばこ基材を含む成形体を用いるが、本実験で用いた成形体はたばこ残渣であり非たばこ基材が含まれていない。
[Relationship between the amount of carbonized components and the amount of TMP reduction]
Next, the relationship between the amount of carbonized components contained in the aerosol generation liquid Le1g containing tobacco extract components and the TPM reduction rate will be explained. Figure 9 shows the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as the aerosol generation liquid Le. FIG. The horizontal axis of FIG. 9 shows the amount of carbonized components contained in 1 g of extract, and the vertical axis shows the TPM reduction rate ( RTPM ) (%). In addition, in the following experiment, an atomization unit that does not satisfy some of the conditions of the embodiment described above is used, but the amount of carbonized components contained in 1 g of aerosol generation liquid containing nicotine and the decrease in TPM The purpose of this experiment, which was to examine the relationship with the rate, was achieved. Some of the conditions that are not satisfied include, for example, regarding the molded product, the above-mentioned embodiment uses a molded product that includes a non-tobacco base material, but the molded product used in this experiment is tobacco residue and contains a non-tobacco base material. Material not included.
 図9のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の霧化ユニットのサンプルを準備した。具体的には、この複数の霧化ユニットのサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。 The TPM reduction rate (R TPM :%) in FIG. 9 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
(工程1)
 たばこ葉からなるたばこ材料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(Step 1)
To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(Step 2)
Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
(Step 3)
Next, 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at ℃. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。 Through the above steps, a plurality of samples with different amounts of carbonized components contained in 1 g of immersion liquid (extract liquid) were prepared.
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。 Next, the multiple samples prepared in the above steps were subjected to automatic smoking using an automatic smoking machine (“Analytical Vaping Machine” manufactured by Borgwaldt) under “CRM (Coresta Recommended Method) 81 smoking conditions”. Ta. Incidentally, the smoking condition of CRM81 is that 55 cc of aerosol is inhaled over 3 seconds multiple times every 30 seconds.
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図9のTPM減少率(RTPM)は測定された。 The amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1). The TPM reduction rate (R TPM ) shown in FIG. 9 was measured by the above method.
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1) R TPM (%) = (1-TPM (201puff ~ 250puff) / TPM (1puff ~ 50puff)) x 100... (1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。 Here, TPM (Total Particle Molecule) indicates the total particulate matter collected by the Cambridge filter of the automatic smoking machine. "TPM (1puff to 50puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine. "TPM (201puff to 250puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。 In other words, the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
 図9から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図9の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。 As can be seen from FIG. 9, there is a proportional relationship between the amount of carbonized components contained in 1 g of extract and the TPM reduction rate. As can be seen from samples SA1 to SA4 in FIG. 9, when the amount of carbonized components contained in 1 g of extract is 6 mg or less, the TPM reduction rate can be suppressed to 20% or less.
[霧化ユニットの形状と残液率との関係]
 本発明者らは、様々な形状の霧化ユニットを用いて残液率の評価を行った。本評価において、複数回同様の測定が行われているものについては、その平均値を評価値として採用した。なお、以下の実験では、霧化ユニットとして上述した実施形態の一部の条件が満たされていないものを用いているが、霧化ユニットの形状と残液率との関係を検討するという本実験の目的は達成できている。満たされていない一部の条件としはて、例えば、エアロゾル生成液について、上述した実施形態ではたばこ抽出成分を含むエアロゾル生成液を用いるが、本実験で用いたエアロゾル生成液にはニコチンが含まれていない。
[Relationship between the shape of the atomization unit and the residual liquid rate]
The present inventors evaluated the residual liquid rate using atomization units of various shapes. In this evaluation, if similar measurements were performed multiple times, the average value was adopted as the evaluation value. In addition, in the following experiment, an atomization unit that does not meet some of the conditions of the above-mentioned embodiment is used. However, in this experiment, the relationship between the shape of the atomization unit and the residual liquid rate was investigated. The objective has been achieved. Some of the conditions that are not met include, for example, regarding the aerosol generation liquid, the above embodiment uses an aerosol generation liquid containing tobacco extract components, but the aerosol generation liquid used in this experiment does not contain nicotine. Not yet.
(実験1)
 エアロゾル生成液を準備する工程、非たばこ基材を含む成形体を成形する成形工程、並びに、エアロゾル生成液および非たばこ基材を含む成形体を液体収容部に配置し、かつ、前記液体収容部に収容される前記エアロゾル生成液を電気的な負荷に向けて輸送するように構成される第1液輸送部材(板状の綿)を、前記成形体と液体連通するように配置する工程、及びエアロゾル生成液を液体収容部に収容するエアロゾル生成液収容工程を経て、図3に示す形状を有する霧化ユニットを製造した。霧化ユニットの条件を以下に示す。
・液体収容部の容積;1.8cm
・成形体;複数のガラスビーズ(粒径0.5~0.71mm)
・液体収容部の容積に対する成形体の充填率;59体積%
・毛管力の比較:第1液輸送部材>成形体
・エアロゾル生成液;グリセリン:プロピレングリコール:水=4.5:4.5:1(体積比)
・エアロゾル生成液の使用量:945.5mg
・負荷;coil-wickヒータ
(Experiment 1)
A step of preparing an aerosol-generating liquid, a molding step of molding a molded object containing a non-tobacco base material, and arranging the molded object containing the aerosol-generating liquid and a non-tobacco base material in a liquid storage section, arranging a first liquid transport member (a plate-like cotton) configured to transport the aerosol-generating liquid contained in the aerosol-generating liquid toward an electrical load in fluid communication with the molded body; An atomization unit having the shape shown in FIG. 3 was manufactured through an aerosol generation liquid accommodation step in which the aerosol generation liquid was accommodated in a liquid storage section. The conditions of the atomization unit are shown below.
・Volume of liquid storage part; 1.8cm 3
・Molded object; multiple glass beads (particle size 0.5 to 0.71 mm)
・Filling ratio of the molded body to the volume of the liquid storage part: 59% by volume
・Comparison of capillary force: 1st liquid transport member>molded body/aerosol generation liquid; glycerin: propylene glycol: water = 4.5:4.5:1 (volume ratio)
・Amount of aerosol generation liquid used: 945.5mg
・Load: coil-wick heater
 上記の霧化ユニットを準備し、自動喫煙機(直流電源)及びエアロゾルを捕集するためのケンブリッジフィルターを用いて、下記の条件に従い、ACM(Aerosol Collected Matter)の生成量の急な低下が確認されるまで複数回パフを行った。この実験では、25回のパフごとにエアロゾルを捕集したケンブリッジフィルターを取り出し、その前後でのケンブリッジフィルターの重量変化を測定することにより、ACMの生成量を測定した。上記のACMの生成量の急な低下とは、25回のパフを1パフブロックとした際に、あるパフブロックにおけるACMの生成量が、その前のパフブロックにおけるACMの生成量の90%以下となることを意味する。さらに、25回のパフごとの測定のうちの最後の測定から、最後のパフまでのACMの生成量も測定した。
・通気流量;1100cc/分
・通電時間;2.4秒
・パフ間隔;20秒
・吸引角度;45°(図3の手前方向に45°傾けてパフを行った。)
 上記の測定後の液体収容部中のエアロゾル生成液の残液率は、以下の式を用いて算出した。
 残液率(体積%)=(測定後の液体収容部中のエアロゾル生成液の体積)×100/(測定前の液体収容部中のエアロゾル生成液の体積)
 上記の測定を行った結果、残液率は43.5体積%であった。
By preparing the above atomization unit and using an automatic smoking machine (DC power supply) and a Cambridge filter to collect aerosol, a sudden decrease in the amount of ACM (Aerosol Collected Matter) produced was confirmed under the following conditions. Puffed several times until it did. In this experiment, the amount of ACM produced was measured by taking out the Cambridge filter that had collected the aerosol every 25 puffs and measuring the change in weight of the Cambridge filter before and after. The above-mentioned sudden decrease in the amount of ACM produced means that the amount of ACM produced in a certain puff block is 90% or less of the amount of ACM produced in the previous puff block, when 25 puffs are defined as one puff block. It means that. Furthermore, the amount of ACM produced from the last measurement to the last puff among the 25 puff measurements was also measured.
- Ventilation flow rate: 1100 cc/min - Current application time: 2.4 seconds - Puff interval: 20 seconds - Suction angle: 45° (Puffing was performed at a 45° tilt toward the front in Figure 3.)
The remaining liquid percentage of the aerosol-generating liquid in the liquid storage section after the above measurement was calculated using the following formula.
Residual liquid rate (volume %) = (Volume of aerosol generation liquid in the liquid storage part after measurement) x 100/(Volume of aerosol generation liquid in the liquid storage part before measurement)
As a result of the above measurements, the residual liquid rate was 43.5% by volume.
(実験2)
 成形体として用いた複数のガラスビーズの粒径、液体収容部の容積に対する成形体の充填率、および液体収容部の容積に対する成形体の充填率を以下のように変更したこと以外は実験1と同様にして残液率の評価を行った。
・成形体;複数のガラスビーズ(粒径0.71~0.99mm)
・液体収容部の容積に対する成形体の充填率;58体積%
・エアロゾル生成液の使用量:946.5mg
(Experiment 2)
Experiment 1 was performed except that the particle size of the plurality of glass beads used as the molded body, the filling rate of the molded body with respect to the volume of the liquid storage part, and the filling rate of the molded body with respect to the volume of the liquid storage part were changed as follows. The residual liquid rate was evaluated in the same manner.
・Molded body; multiple glass beads (particle size 0.71 to 0.99 mm)
・Filling ratio of the molded body to the volume of the liquid storage part: 58% by volume
・Amount of aerosol generation liquid used: 946.5mg
 上記の実験1と同様の方法で残液率の評価を行った。上記の測定を行った結果、残液率は32.0体積%であった。
 この実験から、成形体の粒径を0.71mm以上とすることで使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができることが分かった。
The residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 32.0% by volume.
From this experiment, it was found that by setting the particle size of the molded body to 0.71 mm or more, it was possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use.
(実験3)
 エアロゾル生成液を準備する工程、非たばこ基材を含む成形体を成形する成形工程、並びに、エアロゾル生成液および非たばこ基材を含む成形体を液体収容部に配置し、かつ、前記液体収容部に収容される前記エアロゾル生成液を電気的な負荷に向けて輸送するように構成される第1液輸送部材(PET不織布)を、前記成形体と液体連通するように配置し、第1液輸送部材から成形体に向かう第2方向に延びる第2液輸送部材(板状の多孔質体、材質は下記の負荷と同様のものを使用)を、第1液輸送部材および成形体に接触するように配置する工程、及びエアロゾル生成液を液体収容部に収容するエアロゾル生成液収容工程を経て、図4に示す霧化ユニットを準備した。霧化ユニットの条件を以下に示す。なお、第2液輸送部材である板状の多孔質体の材質は、下記の負荷と同じものを用いており、これらの部材の毛管力は同じである。
・液体収容部の容積;1.4cm(第2液輸送部材を含まない液体収容部自体の容積)
・成形体;複数のガラスビーズ(粒径0.5~0.71mm)
・液体収容部の容積に対する成形体の充填率;53.5体積%
・毛管力の比較:第1液輸送部材=第2液輸送部材>成形体
・エアロゾル生成液;グリセリン:プロピレングリコール:水=4.5:4.5:1(体積比)
・エアロゾル生成液の使用量:1240.5mg
・負荷;coil-wickヒータ
(Experiment 3)
A step of preparing an aerosol-generating liquid, a molding step of molding a molded object containing a non-tobacco base material, and arranging the molded object containing the aerosol-generating liquid and a non-tobacco base material in a liquid storage section, A first liquid transport member (PET nonwoven fabric) configured to transport the aerosol-generating liquid contained in the body toward an electrical load is disposed in fluid communication with the molded body, and A second liquid transport member (a plate-shaped porous body, made of the same material as the load described below) extending in a second direction from the member to the molded body is brought into contact with the first liquid transport member and the molded body. The atomization unit shown in FIG. 4 was prepared through a process of arranging the aerosol-generating liquid in a liquid container and an aerosol-generating liquid accommodating process of accommodating the aerosol-generating liquid in a liquid storage part. The conditions of the atomization unit are shown below. Note that the material of the plate-shaped porous body that is the second liquid transport member is the same as the load described below, and the capillary force of these members is the same.
・Volume of liquid storage part; 1.4 cm 3 (volume of liquid storage part itself not including the second liquid transport member)
・Molded object; multiple glass beads (particle size 0.5 to 0.71 mm)
・Filling ratio of the molded body to the volume of the liquid storage part: 53.5% by volume
・Comparison of capillary force: 1st liquid transport member = 2nd liquid transport member > Molded body/aerosol generation liquid; Glycerin: Propylene glycol: Water = 4.5:4.5:1 (volume ratio)
・Amount of aerosol generation liquid used: 1240.5mg
・Load: coil-wick heater
 上記の実験1と同様の方法で残液率の評価を行った。上記の測定を行った結果、残液率は24.5体積%(成形体:2.5体積%、第1液輸送部材:2体積%、第2液輸送部材:15.5体積%、ウィック:4.5体積%)であった。
 この実験から、第2液輸送部材を用いることにより、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができることが分かった。さらに残存率を低減させるため、下記の実験4では、第1液輸送部材を、第2液輸送部材よりも毛管力が大きいものに変更して実験を行った。
The residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 24.5% by volume (molded body: 2.5% by volume, first liquid transport member: 2% by volume, second liquid transport member: 15.5% by volume, wick :4.5% by volume).
From this experiment, it was found that by using the second liquid transport member, it was possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use. In order to further reduce the residual rate, in Experiment 4 below, the first liquid transport member was changed to one having a larger capillary force than the second liquid transport member.
(実験4)
 第1液輸送部材として、第2液輸送部材よりも毛管力が大きいカット綿を用いたこと、また、液体収容部の容積に対する成形体の充填率、液体収容部の容積に対する成形体の充填率、および吸引角度を以下のように変更したこと以外は実験3と同様にして残液率の評価を行った。
・液体収容部の容積に対する成形体の充填率;52体積%
・毛管力:第1液輸送部材>第2液輸送部材>成形体
・エアロゾル生成液の使用量:1434mg
・吸引角度;90°(吸引方向が水平方向)
(Experiment 4)
Cut cotton having a larger capillary force than the second liquid transport member was used as the first liquid transport member, and the filling rate of the molded body with respect to the volume of the liquid storage portion, and the filling ratio of the molded body with respect to the volume of the liquid storage portion. The residual liquid rate was evaluated in the same manner as in Experiment 3, except that , and the suction angle were changed as follows.
・Filling ratio of the molded body to the volume of the liquid storage part: 52% by volume
・Capillary force: 1st liquid transport member > 2nd liquid transport member > Molded body ・Amount of aerosol generation liquid used: 1434 mg
・Suction angle: 90° (suction direction is horizontal)
 上記の実験1と同様の方法で残液率の評価を行った。上記の測定を行った結果、残液率は15.5体積%(成形体:1.5体積%、第1液輸送部材:3.5体積%、第2液輸送部材:6.5体積%、ウィック:4体積%)であった。
 この実験から、第2液輸送部材よりも毛管力が大きい第1液輸送部材を用いることにより、使用後の液体収容部中のエアロゾル生成液の残液率をより効率的に低減することができることが分かった。
The residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 15.5% by volume (molded body: 1.5% by volume, first liquid transport member: 3.5% by volume, second liquid transport member: 6.5% by volume) , wick: 4% by volume).
From this experiment, it was found that by using the first liquid transport member having a larger capillary force than the second liquid transport member, it was possible to more efficiently reduce the residual liquid ratio of the aerosol-generating liquid in the liquid storage section after use. I understand.
(実験5)
 図8における70bおよび70cを液輸送部材の側面とした場合、両側面において、図8の向きで液体収容部の下から1~5mmの位置、図2の向きで中間の位置に、直径0.6mmの開孔を設けたこと、また、液体収容部の容積に対する成形体の充填率、液体収容部の容積に対する成形体の充填率、および吸引角度を以下のように変更したこと以外は実験1と同様にして残液率の評価を行った。
・液体収容部の容積に対する成形体の充填率;60体積%
・エアロゾル生成液の使用量:1069.7mg
・吸引角度;45°
(Experiment 5)
When 70b and 70c in FIG. 8 are the side surfaces of the liquid transport member, on both sides, a diameter of 0.5 mm is placed at a position 1 to 5 mm from the bottom of the liquid storage part in the orientation shown in FIG. 8, and at an intermediate position in the orientation shown in FIG. Experiment 1 except that a 6 mm opening was provided, and the filling ratio of the molded body to the volume of the liquid storage part, the filling ratio of the molded body to the volume of the liquid storage part, and the suction angle were changed as follows. The residual liquid rate was evaluated in the same manner as above.
・Filling ratio of the molded body to the volume of the liquid storage part: 60% by volume
・Amount of aerosol generation liquid used: 1069.7mg
・Suction angle: 45°
 上記の実験1と同様の方法で残液率の評価を行った。上記の測定を行った結果、残液率は24.5体積%であった。
 この実験から、液体収容部の側面に開孔を設けることにより、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができることが分かった。
The residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 24.5% by volume.
From this experiment, it was found that by providing openings on the side surface of the liquid storage section, it was possible to efficiently reduce the percentage of remaining aerosol-generating liquid in the liquid storage section after use.
(実験6)
 液体収容部の容積に対する成形体の種類および充填率、並びに液体収容部の容積に対する成形体の充填率を以下のように変更したこと以外は実験1と同様にして残液率の評価を行った。
・成形体;複数のガラスビーズ(粒径0.35~0.5mm:粒径0.5~0.71mm:粒径0.71~0.99mm=1:1:1(体積比))
 液体収容部への収容順番は、粒径0.35~0.5mmの粒子、粒径0.5~0.71mmの粒子、粒径0.71~0.99mmの粒子の順番とした(つまり、下から上に向けて粒径が大きくなるに成形体を配置した)。
・液体収容部の容積に対する成形体の充填率;56.5体積%
・エアロゾル生成液の使用量:1070.5mg
(Experiment 6)
The residual liquid rate was evaluated in the same manner as in Experiment 1, except that the type and filling rate of the molded body with respect to the volume of the liquid storage part, and the filling rate of the molded body with respect to the volume of the liquid storage part were changed as follows. .
- Molded object; multiple glass beads (particle size 0.35 to 0.5 mm: particle size 0.5 to 0.71 mm: particle size 0.71 to 0.99 mm = 1:1:1 (volume ratio))
The order of storing particles in the liquid storage section was particles with a particle size of 0.35 to 0.5 mm, particles with a particle size of 0.5 to 0.71 mm, and particles with a particle size of 0.71 to 0.99 mm (i.e., , the compacts were arranged so that the particle size increased from bottom to top).
・Filling ratio of the molded body to the volume of the liquid storage part: 56.5% by volume
・Amount of aerosol generation liquid used: 1070.5mg
 上記の実験1と同様の方法で残液率の評価を行った。上記の測定を行った結果、残液率は15.5体積%であった。
 この実験から、第1液輸送部材に近づくに従い成形体の粒径を小さくすることにより、使用後の液体収容部中のエアロゾル生成液の残液率を効率的に低減することができることが分かった。
The residual liquid rate was evaluated in the same manner as in Experiment 1 above. As a result of the above measurements, the residual liquid rate was 15.5% by volume.
From this experiment, it was found that by decreasing the particle size of the compact as it approaches the first liquid transport member, it is possible to efficiently reduce the residual liquid rate of the aerosol-generating liquid in the liquid storage section after use. .
<実施形態2>
 本発明の実施形態2に係る霧化ユニット12の製造方法(以下、単に「霧化ユニット12の製造方法」とも称する。)について説明する。本実施形態は、霧化ユニット12の製造方法の実施形態であり、製造して得られる霧化ユニット12は、上述した霧化ユニット12の条件を同様に適用することができる。
 本実施形態に係る製造方法は、液体収容部50および電気的な負荷40を有する霧化ユニット12の製造方法であって、
 ニコチンを含むエアロゾル生成液Leおよび非たばこ基材を含む成形体60を液体収容部50に配置し、かつ、前記液体収容部50に収容される前記エアロゾル生成液Leを電気的な負荷40に向けて輸送するように構成される第1液輸送部材61を、前記成形体60と液体連通するように配置する、工程(配置工程)を有し、
 前記第1液輸送部材61の毛管力は、前記成形体60の毛管力よりも大きい、
霧化ユニットの製造方法である。この製造方法によって得られた霧化ユニット12は、上述で説明した霧化ユニット12の条件を同様に適用することができる。
 ニコチンを含むエアロゾル生成液Leおよび非たばこ基材を含む成形体60を液体収容部50に配置する工程(液体および成形体の配置工程)と、液体収容部50に収容されるエアロゾル生成液Leを電気的な負荷40に向けて輸送するように構成される第1液輸送部材61を、成形体60と液体連通するように配置する工程(第1液輸送部材の配置工程)とは、実施する順番に限定はなく、任意の順番で実施することができ、また、同時に実施してもよい。
<Embodiment 2>
A method for manufacturing the atomization unit 12 according to Embodiment 2 of the present invention (hereinafter also simply referred to as a "method for manufacturing the atomization unit 12") will be described. This embodiment is an embodiment of a method for manufacturing the atomization unit 12, and the conditions for the atomization unit 12 described above can be similarly applied to the atomization unit 12 obtained by manufacturing.
The manufacturing method according to the present embodiment is a manufacturing method of the atomization unit 12 having the liquid storage section 50 and the electrical load 40,
An aerosol-generating liquid Le containing nicotine and a molded body 60 containing a non-tobacco base material are placed in a liquid storage section 50, and the aerosol-generating liquid Le contained in the liquid storage section 50 is directed toward an electrical load 40. a step (arrangement step) of arranging a first liquid transport member 61 configured to transport the molded body so as to be in fluid communication with the molded body 60;
The capillary force of the first liquid transport member 61 is greater than the capillary force of the molded body 60.
This is a method for manufacturing an atomization unit. The conditions for the atomization unit 12 described above can be similarly applied to the atomization unit 12 obtained by this manufacturing method.
A step of arranging the aerosol generation liquid Le containing nicotine and the molded body 60 containing the non-tobacco base material in the liquid storage section 50 (liquid and molded body arrangement step); The step of arranging the first liquid transport member 61 configured to be transported toward the electrical load 40 so as to be in liquid communication with the molded body 60 (the step of arranging the first liquid transport member) is performed. There is no limitation on the order, and the steps can be performed in any order, or may be performed simultaneously.
 本実施形態に係る製造方法は、上記の配置工程以外の工程を有していてもよく、例えば、たばこ抽出成分を含むエアロゾル生成液Leを準備する液体準備工程、又は非たばこ基材を含む成形体60を成形する成形工程を有していてもよい。 The manufacturing method according to the present embodiment may include steps other than the above-described arrangement step, such as a liquid preparation step of preparing an aerosol-generating liquid Le containing a tobacco extract component, or a molding step including a non-tobacco base material. It may include a molding step of molding the body 60.
 本実施形態に係る製造方法により得られた成形体60では、ニコチン等のたばこ成分の供給源として、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料の代わりに、たばこ抽出成分を含むエアロゾル生成液Leを用いているため、たばこ成分の供給源が霧化ユニット12の負荷に付着することを抑制し、ひいては該負荷の劣化を抑制することができる。また、エアロゾル生成液を負荷に向けて輸送するように構成され、成形体よりも毛管力が大きい第1液輸送部材用いているため、使用後の残液率を低減することができる。 In the molded body 60 obtained by the manufacturing method according to the present embodiment, tobacco is used as a source of tobacco components such as nicotine instead of powdered tobacco material that can form deposits as disclosed in Patent Document 1. Since the aerosol generation liquid Le containing extracted components is used, it is possible to suppress the supply source of tobacco components from adhering to the load of the atomization unit 12, and thereby suppress deterioration of the load. Further, since the first liquid transport member is configured to transport the aerosol generating liquid toward the load and has a larger capillary force than the molded body, it is possible to reduce the percentage of liquid remaining after use.
[液体準備工程]
 霧化ユニット12の製造方法は、たばこ抽出成分を含むエアロゾル液を準備する液体準備工程を有していてもよい。たばこ抽出成分を含むエアロゾル生成液(以下、単に「液体」とも称する。)Leを準備する具体的な手法は、特に限定されず、公知の方法を採用することができる。例えば、たばこ材料の抽出により得られる成分(天然ニコチンのみであってよい)をエアロゾル生成液Leに溶解させる方法等が挙げられる。
 上記のたばこ抽出成分を含有させるためのエアロゾル生成液Leは、エアロゾル基材を含む液体であってよく、また、エアロゾル基材自体であってもよい。
[Liquid preparation process]
The method for manufacturing the atomization unit 12 may include a liquid preparation step of preparing an aerosol liquid containing tobacco extract components. The specific method for preparing the aerosol-generating liquid (hereinafter also simply referred to as "liquid") Le containing tobacco extract components is not particularly limited, and any known method may be employed. For example, a method may be mentioned in which a component (which may be only natural nicotine) obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le.
The aerosol generating liquid Le for containing the above tobacco extract component may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
 液体を得る方法のうち、一例として、たばこ葉を溶媒に溶解させて得られた抽出液をエアロゾル基材と混合して液体を得る方法について具体的に説明する。
 まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。
As an example of methods for obtaining a liquid, a method for obtaining a liquid by mixing an extract obtained by dissolving tobacco leaves in a solvent with an aerosol base material will be specifically described.
First, an alkaline substance is applied to tobacco leaves (referred to as alkali treatment). As the alkaline substance used here, for example, a basic substance such as an aqueous potassium carbonate solution can be used.
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質をたばこ葉に接触させる。 Next, the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment). During this heat treatment, the tobacco leaves are brought into contact with one or more substances selected from the group consisting of, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここにはニコチン等の香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。これにより、ニコチン等の香味成分(以下、単に「香味成分」とも称する。)を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。 By this heat treatment, released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent. As the collection solvent, for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used. As a result, a collection solvent containing flavor components such as nicotine (hereinafter also simply referred to as "flavor components") can be obtained (that is, flavor components can be extracted from tobacco leaves).
 あるいは、上述したような捕集溶媒を使用しない構成とすることもできる。具体的には、この場合、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後に、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出することもできる。 Alternatively, a configuration may be adopted in which the above-mentioned collection solvent is not used. Specifically, in this case, the alkali-treated tobacco leaves are subjected to the above heat treatment and then cooled using a condenser or the like, thereby reducing the released components released from the tobacco leaves into the gas phase. It is also possible to condense and extract flavor components.
 あるいは、上述したようなアルカリ処理を行わない構成とすることもできる。具体的には、この場合、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を添加する。次いで、これが添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させる、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。 Alternatively, a configuration may be adopted in which the alkali treatment as described above is not performed. Specifically, in this case, 1 selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment). Add more than one species of substance. Next, the tobacco leaves to which this has been added are heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
 あるいは、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させる。このような工程によっても、香味成分を抽出することができる。 Alternatively, an aerosol of one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or two substances selected from this group. An aerosol containing more than one type of substance is passed through a tobacco leaf (tobacco leaf that has not been subjected to alkali treatment), and the aerosol that has passed through the tobacco leaf is collected by a collection solvent. Flavor components can also be extracted by such a process.
 また、本液体準備工程は、上述したような手法で抽出された香味成分に含まれ得る、「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させる処理(以下、単に「低減処理」とも称する。)をさらに含んでいてもよい。「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。
 なお、成形体60がたばこ葉等のたばこ材料を含む態様では、250℃に加熱された場合に炭化物になる炭化成分は、主としてたばこ葉等のたばこ材料に由来するため、たばこ抽出物を用いる方法では、特に低減処理を設けることの効果が大きい。
In addition, this liquid preparation step includes a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250°C") that may be included in the flavor components extracted by the method described above. (also referred to as "reduction processing"). By reducing "the amount of carbonized components that become carbide when heated to 250° C.", adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed.
In addition, in an embodiment in which the molded body 60 includes a tobacco material such as tobacco leaves, the carbonized component that becomes carbonized when heated to 250° C. is mainly derived from the tobacco material such as tobacco leaves, so a method using a tobacco extract is not recommended. In this case, the effect of providing a reduction process is particularly large.
 この抽出された香味成分等に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。 The specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced. The amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
 たばこ抽出液は、加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、たばこ抽出成分を蒸留処理又は減圧蒸留処理に供し、焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液を用いない場合でも、焦げの原因となる物質が含まれる場合には、たばこ抽出液を蒸留処理又は減圧蒸留処理に供することが好ましい。 Tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), so tobacco extract components are subjected to distillation treatment or vacuum distillation treatment, which can cause charring. Preferably, the substance is removed. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
[成形工程]
 霧化ユニット12の製造方法は、非たばこ基材及び香味材料を含む成形体60を成形する成形工程を有していてもよく、この成形工程においては、非たばこ基材等の材料を含む成形体60を所定形状に成形すること、具体的には、固めて所定形状(一例として粒状、又は多孔質体状等)に成形することで、成形体60を製造する。
[Molding process]
The method for manufacturing the atomization unit 12 may include a molding step of molding a molded body 60 containing a non-tobacco base material and a flavoring material. The molded body 60 is manufactured by molding the body 60 into a predetermined shape, specifically, by solidifying it and molding it into a predetermined shape (for example, a granular or porous body shape).
 非たばこ基材等の材料を成形する方法は特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)を混合して混合物を得た後に、プレス加圧成形、押出成形、射出成形、転写成形、圧縮成形、又は鋳込成形等の方法により該混合物を所定の形状に成形する方法が挙げられる。また、非たばこ基材がポリマーである場合には、ポリマーを溶媒に溶解させて得られた溶液から加熱等により溶媒を揮発させる方法、又はモノマーを重合させる方法等により所定の形状の成形体60を得る方法を採用することもできる。また、非たばこ基材を含む任意の固体形状の複合材料を得た後に、切削又は研削等により該複合材料を所定の形状となるように加工する方法が挙げられる。
 具体的に、成形体60が複数の粒子から構成される場合、例えば、押し出し機を用いて非たばこ基材等の材料を押し出して押出成形体を得る方法、打錠機を用いて非たばこ基材等の材料を打錠成形して打錠成形体を得る方法により製造することができる。
 また、成形体60が多孔質体である場合、例えば、非たばこ基材を原料に用いて、加圧成形、打錠成形、押出成形、キャスティング成形、又はラミネート成形等により製造することができ、また、一般的なセラミックの製造に用いる方法により製造することができ、また、抄造により製造したシートを多孔質体として用いてもよい。
There are no particular restrictions on the method for molding materials such as non-tobacco base materials. Examples include a method of forming the mixture into a predetermined shape by a method such as press pressure molding, extrusion molding, injection molding, transfer molding, compression molding, or cast molding. It will be done. In addition, when the non-tobacco base material is a polymer, the molded article 60 in a predetermined shape is formed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining . Another method is to obtain a composite material in any solid shape containing a non-tobacco base material and then process the composite material into a predetermined shape by cutting, grinding, or the like.
Specifically, when the molded body 60 is composed of a plurality of particles, for example, a method of extruding a material such as a non-tobacco base material using an extruder to obtain an extruded molded body, or a method of obtaining a non-tobacco base material using a tabletting machine, etc. It can be manufactured by a method of obtaining a tablet molded product by compressing a material such as wood into a tablet.
Further, when the molded body 60 is a porous body, it can be manufactured by, for example, pressure molding, tablet molding, extrusion molding, casting molding, lamination molding, etc. using a non-tobacco base material as a raw material. Further, it can be manufactured by a method used for manufacturing general ceramics, and a sheet manufactured by paper forming may be used as the porous body.
 非たばこ基材にたばこ材料等の香味材料を付与する方法は特段制限されず、例えば、上記の非たばこ基材の成形体60の製造における原料として、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)及び香味材料の混合物を用いる方法、また、上記の方法により得られる非たばこ基材の成形体60の表面に塗布又は噴霧等により香味材料を付与する方法等が挙げられる。 The method of imparting flavor materials such as tobacco materials to the non-tobacco base material is not particularly limited, and for example, ceramics, synthetic polymers, or plants other than tobacco plants may be used as raw materials for manufacturing the molded body 60 of the non-tobacco base material. A method using a mixture of a non-tobacco base material (which may be a melt of the non-tobacco base material) such as a pulp derived from a non-tobacco base material and a flavoring material, and a surface of a molded article 60 of a non-tobacco base material obtained by the above method. Examples include methods of applying flavoring materials by coating or spraying.
 さらに、上述の霧化ユニット12の説明で述べたように、成形体60はその表面が被覆材(コーティング材)で被覆(コーティング)されていてもよい。この場合には、成形体60の表面を、コーティング材でコーティングする処理を含んでよい。これにより、成形体60として、所定形状に固められた非たばこ基材の表面がコーティング材で覆われた構造の成形体60を製造することができる。 Furthermore, as described in the description of the atomization unit 12 above, the surface of the molded body 60 may be coated with a coating material. In this case, the process may include coating the surface of the molded body 60 with a coating material. Thereby, it is possible to manufacture a molded object 60 having a structure in which the surface of a non-tobacco base material hardened into a predetermined shape is covered with a coating material.
 このコーティング材としては、例えば、ワックスを用いることができる。このワックスとしては、例えば、日本精蝋社製のマイクロクリスタンWAX(型番:Hi-Mic-1080、又は、型番:Hi-Mic-1090)や、三井化学社製の水分散アイオノマー(型番:ケミパールS120)や、三井化学社製のハイワックス(型番:110P)等を用いることができる。 For example, wax can be used as this coating material. Examples of this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
 あるいは、コーティング材として、トウモロコシのタンパク質を用いることもできる。この具体例を挙げると、小林香料社製のツェイン(型番:小林ツェインDP-N)が挙げられる。 Alternatively, corn protein can also be used as a coating material. A specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd.
 あるいは、コーティング材として、ポリ酢酸ビニルを用いることもできる。 Alternatively, polyvinyl acetate can also be used as a coating material.
 成形体60の表面を覆っているコーティング材には、非たばこ基材が通過することを抑制しつつ、非たばこ基材中の香味成分が通過することが可能な孔(微細な孔)が複数設けられていることが好ましい。すなわち、このコーティング材の孔は、香味成分の大きさよりも大きく且つ非たばこ基材の大きさよりも小さいサイズの孔であればよい。この構成によれば、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、非たばこ基材中の香味成分をエアロゾル生成液Leに溶出させることができる。 The coating material covering the surface of the molded body 60 has a plurality of pores (fine pores) that allow the flavor components in the non-tobacco base material to pass through while suppressing the passage of the non-tobacco base material. It is preferable that it is provided. That is, the pores of this coating material need only have a size larger than the size of the flavor component and smaller than the size of the non-tobacco base material. According to this configuration, the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
 このコーティング材に設けられた孔の具体的なサイズ(直径)は、特に限定されるものではないが、具体例を挙げると、例えば、10μm以上、3mm以下の範囲から選択された値を用いることができる。 The specific size (diameter) of the pores provided in this coating material is not particularly limited, but to give a specific example, a value selected from the range of 10 μm or more and 3 mm or less may be used. Can be done.
 また、成形工程において、非たばこ基材にたばこ残渣を含ませてもよい。この場合においても、たばこ残渣が抽出液に溶出することを抑制しつつ、たばこ残渣に残存した香味成分をエアロゾル生成液Leに溶出させることができる。また、たばこ抽出成分を含むエアロゾル液の製造においてたばこ抽出液を得る場合には、該たばこ抽出物を得る際の抽出で得られたたばこ残渣を用いることが好ましい。このたばこ残渣は、上述した実施形態1におけるたばこ材料として扱う。 Additionally, in the molding process, tobacco residue may be included in the non-tobacco base material. In this case as well, the flavor components remaining in the tobacco residue can be eluted into the aerosol generation liquid Le while suppressing the tobacco residue from eluting into the extract liquid. Further, when obtaining a tobacco extract liquid in the production of an aerosol liquid containing tobacco extract components, it is preferable to use tobacco residue obtained by extraction when obtaining the tobacco extract. This tobacco residue is treated as the tobacco material in the first embodiment described above.
 あるいは、成形工程において、たばこ残渣等を洗浄液で洗浄し、この洗浄後のたばこ残渣等を非たばこ基材に含ませるようにして成形体60を製造することもできる。この構成によれば、洗浄によって、たばこ残渣等に含まれる炭化成分の量をできるだけ低減させ、この炭化成分の量が低減されたたばこ残渣等を用いて成形体60を製造することができる。これにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。 Alternatively, in the molding process, the molded body 60 can be manufactured by washing tobacco residue and the like with a cleaning liquid and incorporating the washed tobacco residue and the like into the non-tobacco base material. According to this configuration, the amount of carbonized components contained in the tobacco residue etc. can be reduced as much as possible by washing, and the molded body 60 can be manufactured using the tobacco residue etc. in which the amount of carbonized components has been reduced. Thereby, adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed.
[配置工程]
 霧化ユニット12の製造方法は、たばこ抽出成分を含むエアロゾル生成液Leおよび非たばこ基材を含む成形体60を液体収容部50に配置する工程(液体および成形体の配置工程)、並びに、前記液体収容部50に収容される前記エアロゾル生成液Leを電気的な負荷40に向けて輸送するように構成される第1液輸送部材61を、前記成形体60と液体連通するように配置する工程(第1液輸送部材の配置工程)を有する工程(第1液輸送部材の配置工程)を有する。
[Placement process]
The method for manufacturing the atomization unit 12 includes a step of arranging an aerosol generating liquid Le containing a tobacco extract component and a molded body 60 containing a non-tobacco base material in the liquid storage section 50 (liquid and molded body arranging step); a step of arranging a first liquid transport member 61 configured to transport the aerosol generation liquid Le contained in the liquid storage section 50 toward the electrical load 40 so as to be in fluid communication with the molded body 60; (a step of arranging a first liquid transport member); and a step of arranging a first liquid transport member.
 液体および成形体の配置工程は、たばこ抽出成分を含むエアロゾル生成液Leおよび非たばこ基材を含む成形体60を液体収容部50に配置できれば特段制限されず、エアロゾル生成液Leを配置した後に成形体60を配置してもよく、成形体60を配置した後にエアロゾル生成液Leを配置してもよく、同時に配置してもよい。なお、前述した成形工程で成形体60に添加された香味成分とは別に、液体収容部50に収容された上記のエアロゾル生成液Leに、香味成分をさらに添加してもよい。 The step of arranging the liquid and the molded body is not particularly limited as long as the aerosol generation liquid Le containing the tobacco extract component and the molded body 60 containing the non-tobacco base material can be placed in the liquid storage section 50, and the process of arranging the aerosol generation liquid Le containing the tobacco extract component and the molded body 60 is not particularly limited. The body 60 may be placed, the aerosol generating liquid Le may be placed after the molded body 60 is placed, or the aerosol generating liquid Le may be placed at the same time. Note that, apart from the flavor component added to the molded body 60 in the above-described molding process, a flavor component may be further added to the aerosol generation liquid Le stored in the liquid storage section 50.
 第1液輸送部材の配置工程は、第1液輸送部材61を成形体60と液体連通するように配置できれば特段制限されず、図1に示すように、ウィック30として配置させてもよく、また、図3に示すように、ウィック30と成形体60とに挟持され、液体収容部50の壁の一部を置換するように配置させてもよい。 The step of arranging the first liquid transport member is not particularly limited as long as the first liquid transport member 61 can be arranged so as to be in fluid communication with the molded body 60, and as shown in FIG. 1, it may be arranged as a wick 30, or , as shown in FIG. 3, it may be sandwiched between the wick 30 and the molded body 60 and disposed so as to replace a part of the wall of the liquid storage section 50.
 本実施形態の変形例1は、配置工程において、「たばこ抽出成分を含むエアロゾル生成液Leおよび非たばこ基材を含む成形体60を液体収容部50に配置する工程(液体および成形体の配置工程)」が「非たばこ基材を含む成形体60を液体収容部50に配置する工程(成形体の配置工程)」である態様である。つまり、上述の態様において、エアロゾル生成液Leを液体収容部50に配置することを有さない態様である。この場合、霧化ユニット12のユーザは自ら液体収容部50に液体を補充することができる。 Modification 1 of the present embodiment includes a step of arranging an aerosol-generating liquid Le containing a tobacco extract component and a molded body 60 containing a non-tobacco base material in the liquid storage section 50 (liquid and molded body arrangement step). )" is the "step of arranging the molded object 60 containing the non-tobacco base material in the liquid storage section 50 (the step of arranging the molded object)". That is, in the above embodiment, the aerosol generation liquid Le is not disposed in the liquid storage section 50. In this case, the user of the atomization unit 12 can replenish the liquid into the liquid storage section 50 by himself/herself.
 また、本実施形態の変形例2は、配置工程において、「たばこ抽出成分を含むエアロゾル生成液Leおよび非たばこ基材を含む成形体60を液体収容部50に配置する工程(液体および成形体の配置工程)」が「エアロゾル基材、並びに、たばこ抽出成分含有液および非たばこ基材を含む成形体60を液体収容部50に配置する工程(液体およびたばこ抽出成分含有成形体の配置工程)」である態様である。つまり、上述の態様において、あらかじめたばこ抽出成分を含ませる対象を、エアロゾル基材でなく、成形体60とする。この変形例2では、成形体にあらかじめに含まれていたたばこ抽出成分は、最終的にエアロゾル基材に溶出するため、最終的に得られる霧化ユニット12は、上述の製造方法で得られる霧化ユニット12と同様となる。
 この態様では、上記の液体準備工程の代わりに下記のたばこ抽出成分含有液準備工程を有していてもよく、さらに、下記の添加工程を有していてもよい。
In addition, in the second modification of the present embodiment, in the arrangement step, "a step of arranging the aerosol generation liquid Le containing the tobacco extract component and the molded body 60 containing the non-tobacco base material in the liquid storage section 50""Placementstep)" is "a step of disposing the molded body 60 containing the aerosol base material, the tobacco extract component-containing liquid, and the non-tobacco base material in the liquid storage section 50 (the step of disposing the liquid and the tobacco extract component-containing molded article)" This is an aspect. That is, in the above embodiment, the object to which the tobacco extract component is pre-contained is not the aerosol base material but the molded body 60. In this modification example 2, the tobacco extract component previously contained in the molded body is finally eluted into the aerosol base material, so the atomization unit 12 finally obtained is a mist obtained by the above-mentioned manufacturing method. It is similar to the conversion unit 12.
In this embodiment, the following tobacco extract component-containing liquid preparation step may be included instead of the liquid preparation step described above, and the following addition step may also be included.
[たばこ抽出成分含有液準備工程]
 変形例2に係る霧化ユニット12の製造方法は、たばこ抽出成分を含む液体を準備するたばこ抽出成分含有液準備工程を有していてもよい。本変形例は、上述した液体準備工程において、エアロゾル生成液Leの代わりに任意の液体を用いる態様である。具体的には、たばこ抽出成分含有液を得る方法として、例えば、たばこ材料の抽出により得られるたばこ抽出成分を任意の溶媒に溶解させる方法等が挙げられる。
 任意の溶媒は、溶解させる対象の物質を溶解させることができれば特段制限されず、エアロゾル基材であってもよく、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。
[Tobacco extract ingredient-containing liquid preparation process]
The method for manufacturing the atomization unit 12 according to Modification 2 may include a tobacco extract component-containing liquid preparation step of preparing a liquid containing tobacco extract components. This modification is an embodiment in which an arbitrary liquid is used instead of the aerosol generation liquid Le in the liquid preparation step described above. Specifically, a method for obtaining a tobacco extract component-containing liquid includes, for example, a method in which a tobacco extract component obtained by extraction of tobacco material is dissolved in an arbitrary solvent.
Any solvent is not particularly limited as long as it can dissolve the substance to be dissolved, and may be an aerosol base material, such as glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances selected from the group consisting of:
[添加工程]
 変形例2に係る霧化ユニット12の製造方法は、成形工程で得られた成形体60に、上記のたばこ抽出成分含有液準備工程で得られたたばこ抽出成分含有液を添加する添加工程を有していてもよい。
 添加する方法は特段制限されず、成形体60に所望の量のたばこ抽出成分含有液をまとめて添加してもよく、成形体60の表面に塗布又は噴霧等によりたばこ抽出成分含有液を添加してもよく、また、成形体60をたばこ抽出成分含有液に浸漬させることにより添加してもよい。
[Addition process]
The method for manufacturing the atomization unit 12 according to Modification 2 includes an addition step of adding the tobacco extract component-containing liquid obtained in the tobacco extract component-containing liquid preparation step to the molded body 60 obtained in the molding step. You may do so.
The method of addition is not particularly limited, and a desired amount of the tobacco extract component-containing liquid may be added to the molded body 60 all at once, or the tobacco extract component-containing liquid may be added to the surface of the molded body 60 by coating or spraying. Alternatively, the molded body 60 may be added by immersing it in a liquid containing tobacco extract components.
[配置工程]
 変形例1に係る霧化ユニット12の製造方法は、エアロゾル基材、並びに、たばこ抽出成分含有液および非たばこ基材を含む成形体60を液体収容部50に配置する工程(液体およびたばこ抽出成分含有成形体の配置工程)、並びに、前記液体収容部50に収容される前記エアロゾル生成液Leを電気的な負荷40に向けて輸送するように構成される第1液輸送部材61を、前記成形体60と液体連通するように配置する工程(第1液輸送部材の配置工程)を有する工程(第1液輸送部材の配置工程)を有する。本工程における液体およびたばこ抽出成分含有成形体の配置工程では、上記の添加工程で得られたたばこ抽出成分含有液が添加された成形体60と、エアロゾル基材とが、前記液体収容部50に収容される。本変形例に係る配置工程は、上述した配置工程において、たばこ抽出成分を含むエアロゾル生成液Leをエアロゾル基材に置き換えた態様である。
 エアロゾル基材は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。
 配置工程において液体収容部50に収容された成形体60からエアロゾル基材にたばこ抽出成分が溶出することにより、最終的に、液体収容部50には、成形体60及びたばこ抽出成分を含むエアロゾル生成液Leが収容されることとなる。
 第1液輸送部材の配置工程は、上述した第1液輸送部材の配置工程と同様であるため、詳細な説明は省略する。
[Placement process]
The manufacturing method of the atomization unit 12 according to the first modification includes a step of arranging a molded body 60 containing an aerosol base material, a tobacco extract component-containing liquid, and a non-tobacco base material in the liquid storage section 50 (liquid and tobacco extract component-containing liquid). the first liquid transport member 61 configured to transport the aerosol generation liquid Le stored in the liquid storage section 50 toward the electrical load 40; The method includes a step (a step of arranging the first liquid transport member) of arranging the liquid transport member so as to be in liquid communication with the body 60 (a step of arranging the first liquid transport member). In the step of arranging the liquid and the tobacco extract component-containing molded body in this step, the molded body 60 to which the tobacco extract component-containing liquid obtained in the above addition step is added and the aerosol base material are placed in the liquid storage section 50. be accommodated. The arrangement step according to this modification is an embodiment in which the aerosol generating liquid Le containing the tobacco extract component is replaced with an aerosol base material in the above-mentioned arrangement step.
The aerosol base material is not particularly limited, and examples include one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
In the placement process, the tobacco extract component is eluted from the molded object 60 accommodated in the liquid storage section 50 to the aerosol base material, so that the aerosol containing the molded object 60 and the tobacco extract component is finally stored in the liquid storage section 50. The liquid Le will be accommodated.
The process of arranging the first liquid transport member is similar to the process of arranging the first liquid transport member described above, and therefore detailed explanation will be omitted.
 変形例2のさらなる変形例2Aは、上記の添加工程の代わりに、たばこ抽出成分含有液準備工程で得られたたばこ抽出成分含有液を、液体収容部50を画定する壁の内面に付着させる付着工程を設ける態様である。
 本変形2Aの態様とすることにより、配置工程において、液体収容部50の壁に付着されたたばこ抽出成分含有液からエアロゾル基材にたばこ抽出成分が溶出することにより、最終的に、液体収容部50には、成形体60及びたばこ抽出成分を含むエアロゾル生成液Leが収容されることとなる。
A further modification 2A of modification 2 is a method in which, instead of the above-described addition step, the tobacco extract component-containing liquid obtained in the tobacco extract component-containing liquid preparation step is attached to the inner surface of the wall defining the liquid storage section 50. This is an embodiment in which a process is provided.
By adopting the aspect of Modification 2A, in the arrangement step, the tobacco extract component is eluted from the tobacco extract component-containing liquid attached to the wall of the liquid storage part 50 to the aerosol base material, so that the tobacco extract component is finally released into the liquid storage part 50. 50 accommodates the molded body 60 and an aerosol generation liquid Le containing tobacco extract components.
<実施形態3>
 本発明の実施形態3に係る吸引具(以下、単に「吸引具」とも称する。)10について説明する。図10は、本実施形態に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の電子たばこである。
<Embodiment 3>
A suction tool (hereinafter also simply referred to as "suction tool") 10 according to Embodiment 3 of the present invention will be described. FIG. 10 is a perspective view schematically showing the appearance of the suction tool 10 according to this embodiment. The suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, is a non-combustion heating type electronic cigarette.
 本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。 As an example, the suction tool 10 according to the present embodiment extends in the direction of the central axis CL of the suction tool 10. Specifically, the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction" perpendicular to the long axis direction, and a "thickness" perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order. In this embodiment, among the orthogonal coordinates of X-Y-Z, the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction, and the X-axis direction (X direction or -X direction) corresponds to the width direction, and the Y-axis direction (Y direction or −Y direction) corresponds to the thickness direction.
 吸引具10は、電源ユニット11と、上述した霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。 The suction tool 10 includes a power supply unit 11 and the atomization unit 12 described above. The power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged. When the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
 霧化ユニット12には、エア(すなわち、空気)を排出するための排出口13が設けられている。エアロゾルを含むエアは、この排出口13から排出される。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアを吸い込むことができる。 The atomization unit 12 is provided with an outlet 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13. When using the suction tool 10, the user of the suction tool 10 can inhale the air discharged from the outlet 13.
 電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、制御装置に伝え、制御装置が負荷40への通電を終了させる。 A sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13. When the user starts suctioning air, a sensor detects the start of suctioning air and notifies the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Furthermore, when the user finishes suctioning the air, the sensor detects the end of the suction of air, notifies the control device, and the control device ends the energization of the load 40.
 なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、このエアの吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。 Note that the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation. In this case, the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch. The control device that receives the air suction start request or suction end request starts or ends energization to the load 40.
 なお、上述したような電源ユニット11の構成は、例えば、特許文献2に例示されるような公知の吸引具の電源ユニット11と同様であるので、これ以上詳細な説明は省略する。 Note that the configuration of the power supply unit 11 as described above is the same as that of the power supply unit 11 of a known suction tool as exemplified in, for example, Patent Document 2, so a more detailed explanation will be omitted.
 以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能である。 Although the embodiments and modified examples of the present invention have been described in detail above, the present invention is not limited to such specific embodiments and modified examples, and within the scope of the gist of the present invention as described in the claims. , various modifications and changes are possible.
10  吸引具
12  霧化ユニット
20  エア通路
30  ウィック
40  負荷
50  液体収容部
60  成形体
61  第1液輸送部材
62  第2液輸送部材
CL  中心軸線
Le  エアロゾル生成液
10 Suction tool 12 Atomization unit 20 Air passage 30 Wick 40 Load 50 Liquid storage section 60 Molded body 61 First liquid transport member 62 Second liquid transport member CL Central axis Le Aerosol generation liquid

Claims (20)

  1.  たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、
     前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
     前記液体収容部に収容された前記エアロゾル生成液を前記負荷に向けて輸送するように構成される第1液輸送部材と、
    を備え、
     前記液体収容部の内部には、非たばこ基材を含む成形体が配置されており、
     前記第1液輸送部材の毛管力は、前記成形体の毛管力よりも大きい、
    霧化ユニット。
    a liquid storage section that accommodates an aerosol generation liquid containing tobacco extract components;
    an electrical load that causes the aerosol generation liquid in the liquid storage section to be introduced and atomizes the introduced aerosol generation liquid to generate an aerosol;
    a first liquid transport member configured to transport the aerosol generating liquid contained in the liquid storage portion toward the load;
    Equipped with
    A molded body containing a non-tobacco base material is disposed inside the liquid storage part,
    The capillary force of the first liquid transport member is greater than the capillary force of the molded body.
    atomization unit.
  2.  前記負荷に接して設けられるウィックを備え、
     前記第1液輸送部材は、前記成形体と前記ウィックとの間に設けられ、
     前記第1液輸送部材の毛管力は、前記ウィックの毛管力よりも小さく、かつ、前記成形体の毛管力よりも大きい、
    請求項1に記載の霧化ユニット。
    comprising a wick provided in contact with the load,
    The first liquid transport member is provided between the molded body and the wick,
    The capillary force of the first liquid transport member is smaller than the capillary force of the wick and larger than the capillary force of the molded body.
    The atomization unit according to claim 1.
  3.  前記成形体が、複数の粒子から構成される、請求項1又は2に記載の霧化ユニット。 The atomization unit according to claim 1 or 2, wherein the molded body is composed of a plurality of particles.
  4.  前記複数の粒子は、流動しない状態で前記液体収容部に収容される、請求項3に記載の霧化ユニット。 The atomization unit according to claim 3, wherein the plurality of particles are accommodated in the liquid storage section in a non-flowing state.
  5.  前記複数の粒子は、前記液体収容部に流動可能に収容される、請求項3に記載の霧化ユニット。 The atomization unit according to claim 3, wherein the plurality of particles are fluidly accommodated in the liquid storage section.
  6.  前記粒子の平均粒径が0.71mm以上である、請求項3~5のいずれか1項に記載の霧化ユニット。 The atomization unit according to any one of claims 3 to 5, wherein the average particle diameter of the particles is 0.71 mm or more.
  7.  前記液体収容部の内部には、粒径が異なる複数の前記成形体が配置され、
     前記成形体が前記第1液輸送部材に接触して配置され、
     前記成形体から前記第1液輸送部材に向かう第1方向を鉛直下向きとするように静置した状態において、前記第1液輸送部材から離れた位置に形成された第1領域に配置される複数の成形体の平均粒径よりも、前記第1液輸送部材と前記第1領域の間に隣接して挟んで形成された第2領域に配置される複数の成形体の平均粒径の方が小さい、
    請求項3~6のいずれか1項に記載の霧化ユニット。
    A plurality of the molded bodies having different particle sizes are arranged inside the liquid storage part,
    the molded body is placed in contact with the first liquid transport member,
    When the molded body is left standing so that the first direction from the molded body toward the first liquid transport member is vertically downward, a plurality of The average particle diameter of the plurality of molded bodies disposed in the second region sandwiched adjacently between the first liquid transport member and the first region is larger than the average particle diameter of the molded bodies of small,
    The atomization unit according to any one of claims 3 to 6.
  8.  前記成形体が、多孔質体である、請求項1又は2に記載の霧化ユニット。 The atomization unit according to claim 1 or 2, wherein the molded body is a porous body.
  9.  前記液体収容部の内部に、さらに、前記第1液輸送部材から前記成形体に向かう第2方向に延びる第2液輸送部材を備え、
     前記第2液輸送部材は、前記第1液輸送部材および前記成形体に接触して設けられ、
     前記第2液輸送部材の毛管力は、前記第1液輸送部材の毛管力よりも小さく、かつ、前記成形体の毛管力よりも大きい、
    請求項1~8のいずれか1項に記載の霧化ユニット。
    Further comprising a second liquid transport member extending in a second direction from the first liquid transport member toward the molded body inside the liquid storage part,
    the second liquid transport member is provided in contact with the first liquid transport member and the molded body,
    The capillary force of the second liquid transport member is smaller than the capillary force of the first liquid transport member and larger than the capillary force of the molded body.
    The atomization unit according to any one of claims 1 to 8.
  10.  前記成形体が、さらに香味材料を含む、請求項1~9のいずれか1項に記載の霧化ユニット。 The atomization unit according to any one of claims 1 to 9, wherein the molded body further contains a flavor material.
  11.  前記香味材料はたばこ材料を含むとともに前記成形体中の前記たばこ材料の含有量が10重量%以下である、請求項10に記載の霧化ユニット。 The atomization unit according to claim 10, wherein the flavor material contains a tobacco material and the content of the tobacco material in the molded body is 10% by weight or less.
  12.  前記成形体の密度が、前記エアロゾル生成液の密度よりも大きい、請求項1~11のいずれか1項に記載の霧化ユニット。 The atomization unit according to any one of claims 1 to 11, wherein the density of the molded body is higher than the density of the aerosol generating liquid.
  13.  前記液体収容部における前記成形体の充填率が40体積%以上である、請求項1~12のいずれか1項に記載の霧化ユニット。 The atomization unit according to any one of claims 1 to 12, wherein the filling rate of the molded body in the liquid storage portion is 40% by volume or more.
  14.  前記液体収容部を構成する容器は、前記第1液輸送部材と接続される接続部を有し、
     前記容器を構成する壁部のうち、前記接続部以外の部位に少なくとも1つの開孔が設けられている、請求項1~13のいずれか1項に記載の霧化ユニット。
    The container constituting the liquid storage part has a connection part connected to the first liquid transport member,
    The atomization unit according to any one of claims 1 to 13, wherein at least one opening is provided in a wall portion of the container other than the connection portion.
  15.  前記容器は、前記接続部を含む底部と、前記底部に立設された側部とを有し、前記側部に少なくとも1つの開孔が設けられている、請求項14に記載の霧化ユニット。 15. The atomization unit according to claim 14, wherein the container has a bottom portion including the connection portion and a side portion erected at the bottom portion, and the side portion is provided with at least one opening. .
  16.  前記開孔の径が、2.0mm以下である、請求項14又は15に記載の霧化ユニット。 The atomization unit according to claim 14 or 15, wherein the diameter of the opening is 2.0 mm or less.
  17.  電源ユニットと、請求項1~16のいずれか1項に記載の霧化ユニットとを有する吸引具。 A suction tool comprising a power supply unit and the atomization unit according to any one of claims 1 to 16.
  18.  液体収容部および電気的な負荷を有する霧化ユニットの製造方法であって、
     たばこ抽出成分を含むエアロゾル生成液および非たばこ基材を含む成形体を液体収容部に配置し、かつ、前記液体収容部に収容される前記エアロゾル生成液を電気的な負荷に向けて輸送するように構成される第1液輸送部材を、前記成形体と液体連通するように配置する、工程を有し、
     前記第1液輸送部材の毛管力は、前記成形体の毛管力よりも大きい、
    霧化ユニットの製造方法。
    A method of manufacturing an atomization unit having a liquid storage section and an electrical load, the method comprising:
    An aerosol-generating liquid containing a tobacco extract component and a molded body containing a non-tobacco base material are disposed in a liquid storage part, and the aerosol-generating liquid contained in the liquid storage part is transported toward an electrical load. arranging a first liquid transport member configured to be in fluid communication with the molded body,
    The capillary force of the first liquid transport member is greater than the capillary force of the molded body.
    Method of manufacturing an atomization unit.
  19.  前記成形体が、複数の粒子から構成される、請求項18に記載の霧化ユニットの製造方法。 The method for manufacturing an atomization unit according to claim 18, wherein the molded body is composed of a plurality of particles.
  20.  前記霧化ユニットは、
     前記液体収容部の内部には、粒径が異なる複数の前記成形体が配置され、
     前記成形体が前記第1液輸送部材に接触して配置され、
     前記成形体から前記第1液輸送部材に向かう第1方向を鉛直下向きとするように静置した状態において、前記第1液輸送部材から離れた位置に形成された第1領域に配置される複数の成形体の平均粒径よりも、前記第1液輸送部材と前記第1領域の間に隣接して挟んで形成された第2領域に配置される複数の成形体の平均粒径の方が小さい、
    請求億19に記載の霧化ユニットの製造方法。
    The atomization unit includes:
    A plurality of the molded bodies having different particle sizes are arranged inside the liquid storage part,
    the molded body is placed in contact with the first liquid transport member,
    When the molded body is left standing so that the first direction from the molded body toward the first liquid transport member is vertically downward, a plurality of The average particle diameter of the plurality of molded bodies disposed in the second region sandwiched adjacently between the first liquid transport member and the first region is larger than the average particle diameter of the molded bodies of small,
    A method for manufacturing an atomization unit according to claim 19.
PCT/JP2022/025369 2022-06-24 2022-06-24 Atomizing unit and method for manufacturing same, and enhaler WO2023248476A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025369 WO2023248476A1 (en) 2022-06-24 2022-06-24 Atomizing unit and method for manufacturing same, and enhaler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025369 WO2023248476A1 (en) 2022-06-24 2022-06-24 Atomizing unit and method for manufacturing same, and enhaler

Publications (1)

Publication Number Publication Date
WO2023248476A1 true WO2023248476A1 (en) 2023-12-28

Family

ID=89379354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025369 WO2023248476A1 (en) 2022-06-24 2022-06-24 Atomizing unit and method for manufacturing same, and enhaler

Country Status (1)

Country Link
WO (1) WO2023248476A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019129759A (en) * 2018-01-31 2019-08-08 日本たばこ産業株式会社 Cartridge for sucker, sucker having the cartridge, and aerosol generation method
JP2020005640A (en) * 2018-07-09 2020-01-16 ハウニ・マシイネンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Evaporator head for inhaler for especially electronic tobacco product
JP2020503859A (en) * 2017-01-13 2020-02-06 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Aerosol generation device and aerosol generation article
JP2020508660A (en) * 2017-03-01 2020-03-26 ニコベンチャーズ ホールディングス リミテッド Vapor supply device having liquid capturing means
JP2022524698A (en) * 2019-03-27 2022-05-10 ジェイティー インターナショナル エス.エイ. Electronic cigarette cartridge with compressible core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503859A (en) * 2017-01-13 2020-02-06 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Aerosol generation device and aerosol generation article
JP2020508660A (en) * 2017-03-01 2020-03-26 ニコベンチャーズ ホールディングス リミテッド Vapor supply device having liquid capturing means
JP2019129759A (en) * 2018-01-31 2019-08-08 日本たばこ産業株式会社 Cartridge for sucker, sucker having the cartridge, and aerosol generation method
JP2020005640A (en) * 2018-07-09 2020-01-16 ハウニ・マシイネンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Evaporator head for inhaler for especially electronic tobacco product
JP2022524698A (en) * 2019-03-27 2022-05-10 ジェイティー インターナショナル エス.エイ. Electronic cigarette cartridge with compressible core

Similar Documents

Publication Publication Date Title
WO2016184978A1 (en) Aerosol generating material and devices including the same
JP6707096B2 (en) Non-combustion suction article
JP7414970B2 (en) Non-combustible heated tobacco, electrically heated tobacco products, and non-combustible heated tobacco materials
JP7362891B2 (en) Flavor-carrying components of tobacco products, tobacco products, and manufacturing methods thereof
WO2023248476A1 (en) Atomizing unit and method for manufacturing same, and enhaler
WO2023248475A1 (en) Atomization unit and method for manufacturing same, and inhalation tool
WO2023188328A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188327A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188326A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188323A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188324A1 (en) Atomization unit and production method therefor, and inhalation implement
WO2023188325A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188322A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188321A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188436A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188435A1 (en) Atomization unit and method for producing same, and inhalation tool
WO2023188377A1 (en) Atomization unit, method for manufacturing same, and inhalation tool
WO2023188376A1 (en) Atomization unit, method for manufacturing same, and inhalation apparatus
WO2023188375A1 (en) Atomizing unit and method for manufacturing same, and inhaler
WO2023188374A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188329A1 (en) Atomization unit, inhalation implement, and method for producing atomization unit
WO2023188373A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188372A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023112132A1 (en) Inhalator and method for manufacturing inhalator
WO2023105746A1 (en) Inhalation tool and method for manufacturing atomizing unit for inhalation tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948035

Country of ref document: EP

Kind code of ref document: A1