WO2023246684A1 - 一种列车吸能挡车器及挡车吸能方法 - Google Patents

一种列车吸能挡车器及挡车吸能方法 Download PDF

Info

Publication number
WO2023246684A1
WO2023246684A1 PCT/CN2023/101018 CN2023101018W WO2023246684A1 WO 2023246684 A1 WO2023246684 A1 WO 2023246684A1 CN 2023101018 W CN2023101018 W CN 2023101018W WO 2023246684 A1 WO2023246684 A1 WO 2023246684A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
absorbing
train
absorbing element
movable wall
Prior art date
Application number
PCT/CN2023/101018
Other languages
English (en)
French (fr)
Inventor
苏永章
苏柯
刘永强
李孟梁
刘雅玲
黄豪
匡希超
熊雄
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2023246684A1 publication Critical patent/WO2023246684A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K7/00Railway stops fixed to permanent way; Track brakes or retarding apparatus fixed to permanent way; Sand tracks or the like
    • B61K7/16Positive railway stops
    • B61K7/18Buffer stops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention relates to a train energy-absorbing blocker and a blocker energy-absorbing method, belonging to the field of rail vehicle energy absorption.
  • the most important mission of railway vehicles is to ensure the safety of drivers and passengers.
  • the front end of the train is usually equipped with an anti-climb device with energy absorption function, which can significantly improve the deformation and energy absorption characteristics of the rail vehicle in the event of a collision.
  • train barriers are usually installed at the ends of track lines to prevent trains from running off the track, causing derailment or overturning.
  • the car stopper is generally equipped with an impact point that matches the hook head of the train's hook and buffer system, and some are also equipped with an anti-climbing tooth plate that matches the anti-climbing device.
  • Energy-absorbing elements are installed behind the coupler impact point and the anti-climbing tooth plate to convert the train's kinetic energy into plastic deformation energy, friction energy or other forms of energy during the impact process.
  • this form of car stopper has two major flaws: First, it often causes the front end coupler of the leading car (hereinafter referred to as the headhook) to be damaged first.
  • the head Hooks are usually more complex in structure and more expensive, so the traditional model is less economical.
  • the collision energy absorption is the product of the collision interface force and the deformation energy absorption stroke, that is, the integral of the area under the load-displacement curve.
  • the installation space of the stopper at the end of the line is usually limited, and the crushing force value of the energy-absorbing element of the stopper is It needs to match the strength of the train body and cannot be increased without limit. Therefore, in a given space, if the energy absorption stroke cannot be increased, the total collision energy absorption will also be limited.
  • the CN201711487129.X patent solution provides a collision energy absorption system for rail trains
  • the front end of the hook and buffer device and the front end of the anti-climb device jointly form a collision stress surface, and the two work together when the train collides.
  • the focus of this plan is to solve the reliability problem of the collision energy absorption system, but it does not improve the collision energy absorption problem of the car body, nor does it solve the problem of the head hook being damaged first.
  • Chinese patent application CN202010971108.0 discloses a vehicle stopper and a rail vehicle anti-collision method, which provides two working modes of low-speed and medium-high-speed collisions. Although it can more fully utilize the functions of each energy-absorbing element, it can also solve the problem of head hooks to a certain extent. It took the lead in destroying the problem, but did not increase the energy-absorbing stroke, resulting in tight installation space at the road end; the three energy-absorbing components independently crushed and absorbed energy, and the overall stability was insufficient, and the automatic detection device of the two-mode car stopper may have malfunctions. This may cause problems with normal use. Therefore, the above two major shortcomings have not been effectively solved.
  • the present invention aims to provide a train energy-absorbing blocker and a blocker energy-absorbing method.
  • By innovating the structure of the train blocker and optimizing the configuration and action sequence of the energy-absorbing blocker at least one of the following problems can be solved:
  • a train energy-absorbing blocker whose structural characteristics include a fixed wall installed on the track, a movable wall installed on the track and movable along the track, and a main energy-absorbing element located between the movable wall and the fixed wall.
  • a fixed wall installed on the track
  • a movable wall installed on the track and movable along the track
  • a main energy-absorbing element located between the movable wall and the fixed wall.
  • the coupler portion penetrates the movable wall, and an energy-absorbing element is provided inside the portion of the coupler portion located behind the movable wall.
  • the main energy-absorbing element is located between the movable wall and the fixed wall, and the energy-absorbing element is located behind the movable wall.
  • This arrangement makes the compression energy-absorbing retreat path of the coupler partially overlap with the crushing path of the main energy-absorbing element, and the total length of the car stopper remains unchanged. In this case, the effective energy absorption stroke is increased, and it has better adaptability in areas with tight land use and stronger versatility.
  • the coupler part and the anti-climbing part of the present invention are fixed on the movable wall.
  • the coupler part penetrates the movable wall, and its energy-absorbing element is located behind the movable wall.
  • the main energy-absorbing element is located between the movable wall and the fixed wall and is distributed on the coupler. both sides of the head.
  • the movable wall is fixed on the track and can move backward along the track.
  • the train energy-absorbing car stopper of the present invention is placed at the end position of the track.
  • the head hook and anti-climb device at the front end of the train will collide with the car stopper respectively.
  • Energy absorbing By adding a coupler part as an energy-absorbing element, the present invention increases the effective energy-absorbing stroke of the car stop and improves the train collision safety performance.
  • a plurality of movable legs that can slide and retreat along the track are provided below the main energy-absorbing element, and the movable legs are located between the movable wall and the fixed wall.
  • the moving legs can ensure that the main energy-absorbing element works stably and orderly.
  • the present invention can also be further optimized.
  • the following is the technical solution formed after optimization:
  • the coupler part includes a stop head, a push rod, a rear box, The pressure head, the primary energy-absorbing element and the secondary energy-absorbing element; the rear box is detachably fixed on the movable wall, the stop head is located at the front end of the push rod, and the pressure head is located at the push rod. At the rear end of the rod, the pressure head is located at the end of the rear box; the first-level energy-absorbing element and the second-level energy-absorbing element are respectively placed at the front and rear ends of the rear box; when the train hits the stop head When, the stop head, push rod, and pressure head move backward simultaneously and compress the primary energy-absorbing element and secondary energy-absorbing element located in the rear box.
  • the stop head, push rod and pressure head are assembled into an integrated structure.
  • a guide groove for guiding the rear box to retreat is provided in the middle of the fixed wall.
  • the rear box of the coupler part can retreat and pass through the guide groove.
  • the guide groove plays a good guiding and positioning role for the coupler part and the movable wall 13 to ensure the main energy absorption. Components can be fully crushed.
  • the coupler part also includes an automatic valve mechanism, which includes a conical piece, a connecting rod, a partition and a rotating shaft; the partition is located on the first level of energy absorption. Between the element and the secondary energy-absorbing element, before the primary energy-absorbing element completes crushing and absorbing energy, the partition is in a closed state; the conical piece can be moved under the action of the pressure head.
  • the connecting rod and the partition plate are driven to rotate together around the rotation axis to open the partition plate; preferably, the connecting rod, the partition plate and the tapered piece are an integrated structure.
  • an overload valve is provided below the movable wall.
  • the movable wall slides along the track.
  • the collision interface force of the movable wall is lower than At a certain setting value, the moving wall will not slip. Therefore, the present invention sets a valve body with overload function on the movable wall, which is closed when the train hits at low speed to protect the main energy-absorbing element from moving; when the train hits at high speed, the valve body becomes overloaded and fails, so that the movable wall can move as a whole, and the The main energy-absorbing element absorbs energy stably.
  • the main energy-absorbing elements are distributed on both sides of the coupler part.
  • the present invention also provides a method of using a train energy-absorbing blocker to block trains and absorb energy, which includes:
  • the first set speed is 5km/h and the second set speed is 25km/h. h.
  • the first step the head hook contacts the stop head of the coupler, and the elastic element of the head hook itself acts and performs recoverable energy absorption;
  • Step 2 When the collision interface force is greater than the maximum force value of the elastic element of the headhook itself, the push rod and pressure head of the coupler part begin to move backward in the rear box, and the primary energy-absorbing element of the coupler part Carry out crushing and energy absorption;
  • Step 3 When the train continues to move forward, the anti-climb device contacts the anti-climb part of the car stop, and the anti-climb device begins to absorb energy. At the same time, the first-level energy-absorbing elements of the coupler part of the car stop are all crushed, and the energy absorption ends. ,car The secondary energy-absorbing element of the hook part starts to act. The strokes of the secondary energy-absorbing elements of the anti-climbing device and the coupler part are set to be the same. They start and complete the crushing energy absorption at the same time. The secondary energy-absorbing elements of the anti-climbing device and the coupler part are started at the same time. The sum of the crushing force values of the components is not greater than the crushing force value of the main energy-absorbing component and the crushing force value of the passenger compartment area of the train;
  • Step 4 When the anti-climb device is crushed, the overload valve is activated, the movable wall begins to retreat, and the main energy-absorbing element is crushed; at the same time, the coupler part and the movable wall retreat synchronously, and the rear box passes through the guide groove of the fixed wall. .
  • the train energy-absorbing barrier system of the present invention has the following functions: when the train hits the barrier at low speed (for example, below 5 km/h), the coupler elastic element acts and performs recoverable energy absorption.
  • the energy is absorbed in the following order: a) elastic element of the train coupler; b) first-level energy-absorbing element of the coupler; c) train anti-climb device+ The secondary energy-absorbing component of the car blocker's coupler; d) The main energy-absorbing component of the car blocker.
  • the additional coupler energy-absorbing element By configuring the additional coupler energy-absorbing element to be rear-mounted, the present invention increases the effective energy-absorbing stroke of the car stopper and improves the train collision safety performance.
  • the fully automatic coupler does not crush the tube or overload.
  • the device does not undergo permanent deformation.
  • the energy-absorbing element of the coupler part of the present invention is rear-mounted.
  • the coupler part includes primary and secondary energy-absorbing elements.
  • An automatic valve mechanism is set between the two-level energy-absorbing elements. When the primary energy-absorbing element is completed, When the pressure head continues to move backward, it will contact the automatic valve mechanism and open it, crushing the secondary energy-absorbing element.
  • the average crushing force value of the first-level energy-absorbing element is located at a value between the maximum value of the energy-absorbing action of the elastic element and the triggering force value of the coupler's crushing tube action.
  • the maximum force value of the elastic element of the A-type subway coupler during the energy absorption process is about 700kN
  • the triggering force value of the crushing tube is 1100-1200kN
  • the first-level energy-absorbing element of the anti-climbing part can be set at about 800kN.
  • the crushing force value of the secondary energy-absorbing element of the anti-climbing part is matched according to the force value of the anti-climbing device of the train.
  • the total collision interface force value is not greater than the strength of the train passenger compartment area, protecting the safety of the main train structure.
  • the coupler part of the car blocker is equipped with at least two levels of energy-absorbing elements, which fully considers the scenario where multiple energy-absorbing components such as the train coupler, anti-climb device and car blocker are involved in energy absorption at the same time during the train impacting the car blocker, to avoid multiple energy-absorbing elements.
  • the simultaneous force flow causes the total collision interface force to be too large, causing the main structure of the train body to collapse and deform before the energy-absorbing elements, thus better protecting the train.
  • the stopper system is equipped with an overload valve and is controlled mechanically. It does not require additional information sensors and complex transmission devices. It has a simple structure and more reliable performance.
  • the movable wall of the present invention uses existing rails for guidance, and the stability of the crushing process of the car stopper is better.
  • Figure 1 Schematic diagram of a train energy-absorbing stopper system according to an embodiment of the present invention
  • Figure 2 Structural diagram of the energy-absorbing vehicle blocker
  • Figure 3 Top view of the energy-absorbing vehicle blocker structure
  • Figure 4 Schematic diagram of the train front structure
  • Figure 5 Schematic diagram of the train hitting the stopper at low speed
  • Figure 6 Schematic diagram of the process of a train hitting the barrier at high speed
  • Figure 8 Magnified view II of b) in Figure 6;
  • Figure 9 Schematic diagram of the movement of the automatic valve mechanism.
  • Vehicle stopper 1 Vehicle stopper 1, coupler part 11, stop head 111, push rod 112, rear box 113, flange 114, pressure head 115, primary energy absorbing components 116, 116', secondary energy absorbing components 117, 117', Automatic valve mechanism 118, conical piece 1181, tip 1181a, connecting rod 1182, partition 1183, rotating shaft 1184, anti-climbing part 12, movable wall 13, overload valve 131, main energy-absorbing components 14, 14', fixed wall 15 , guide arm 151, guide groove 152, moving leg 16, train 2, head hook 21, anti-climb device 22, traction beam 23, middle connecting beam 24, side connecting beam 25, front end beam 26, passenger compartment area 27, track 3.
  • the train energy-absorbing blocker system blocker 1 of this embodiment is placed at the end position of the track 3.
  • the head hook located at the front end of the train 2 21, the anti-climb device 22 will collide with the vehicle blocker 1 respectively and absorb energy.
  • FIG. 2 is a schematic structural diagram of the energy-absorbing vehicle barrier
  • Figure 3 is a top view of the structure of the energy-absorbing vehicle barrier.
  • the vehicle barrier 1 at least includes a coupler part 11, an anti-climbing part 12, a movable wall 13, a main energy-absorbing element 14, a fixed wall 15 and a movable leg 16 and other systems.
  • the coupler part 11 and the anti-climbing part 12 are both fixed on the movable wall 13.
  • the main energy-absorbing element 14 is located between the movable wall 13 and the fixed wall 15.
  • a pass is set below the mobile wall 13
  • the overload valve 131 will perform a shearing action, allowing the moving wall 13 to slide along the track 3 .
  • the collision interface force of the movable wall 13 is lower than a certain set value, no slip will occur, ensuring that the main energy-absorbing element 14 does not move.
  • the coupler part 11 includes a stop head 111, a push rod 112, a rear box 113, a flange 114, a pressure head 115, a primary energy absorbing element 116, a secondary energy absorbing element 117 and an automatic valve mechanism 118.
  • the flange 114 is arranged outside the rear box 113 and is fixed on the movable wall 13 through bolts.
  • the coupler part 11 is detachable and replaceable.
  • the stop head 111 is assembled with the push rod 112 and the pressure head 115 into an integrated structure and can move synchronously.
  • the stop head 111 is located at the front end of the push rod 112, the pressure head 115 is located at the rear end of the push rod 112, and the pressure head 115 is located at the rear.
  • a primary energy-absorbing element 116 and a secondary energy-absorbing element 117 are respectively placed at the front and rear ends of the rear box 113, and an automatic valve mechanism 118 is provided between the two-level energy absorbing elements.
  • the coupler part 11 is installed in a rear-mounted manner.
  • the rear box 113 , primary energy-absorbing element 116 , and secondary energy-absorbing element 117 are all fixed behind the movable wall 13 , and the stop head 111 is located in front of the movable wall 13 .
  • the average crushing force value of the primary energy-absorbing element 116 is located at a value between the maximum value of the energy-absorbing action of the elastic element in the headhook 21 and the triggering force value of the crushing tube action in the headhook 21 .
  • the maximum force value during the energy absorption process of the elastic element of the A-type subway head hook 21 is about 700kN
  • the triggering force value of the crushing tube is 1100-1200kN
  • the primary energy-absorbing element 116 of the coupler part 11 can be set at about 800kN.
  • the crushing force value of the secondary energy-absorbing element 117 is matched according to the force value of the anti-climbing device 22 of the train, and can be greater than, equal to or smaller than the force value of the primary energy-absorbing element 116 of the anti-climbing part, ensuring that the anti-climbing device 22 and the secondary anti-climbing part When the energy-absorbing elements 117 act to absorb energy at the same time, the total collision interface force value is not greater than the strength of the train passenger compartment area, protecting the safety of the main train structure.
  • a guide arm 151 and a guide groove 152 are provided at the middle position of the fixed wall 15, and are arranged behind the coupler part 11.
  • the box 113 is arranged in a coaxial center and is used to guide the backward movement of the rear box 113 .
  • FIG 4 is a schematic diagram of the train front structure.
  • the train 2 includes a head hook 21, two anti-climbing devices 22, a traction beam 23, a middle connecting beam 24, a side connecting beam 25, a front end beam 26 and a passenger compartment area 27.
  • the head hook 21 and the anti-climb device 22 are respectively fixed on the traction beam 23 and the front end beam 26.
  • the font frame structure has good overall load-bearing capacity during the collision.
  • Passenger room area 27 is located behind the "eye"-shaped frame structure, has the highest overall crushing strength, and is used to accommodate and protect passengers.
  • Figure 5 is a schematic diagram of a train hitting a stopper at low speed.
  • a low speed such as below 5km/h
  • the coupler part 11 of the vehicle blocker 1 does not move, and the vehicle blocker 1 does not operate.
  • Figure 6 is a schematic diagram of the process of a train hitting the barrier at high speed.
  • the energy-absorbing components of train 2 and block 1 absorb energy in the following order:
  • the first step the head hook 21 is in contact with the stop head 111 of the coupler part 11, and the elastic element of the head hook 21 itself acts and performs recoverable energy absorption.
  • Step 2 When the collision interface force is greater than the maximum force value of the elastic element action of the head hook 21 itself, the vehicle The push rod 112 and the pressure head 115 of the hook 11 begin to move backward in the rear box 113, and crush the primary energy-absorbing element 116; when the head hook 21 makes a "piston" movement in the rear box 113 , under the action of the closed cavity around the rear box 113, it has a better guiding effect, which is helpful to prevent the train from swerving or climbing up.
  • Step 3 When the train 2 continues to move forward, the anti-climb device 22 comes into contact with the anti-climb part 12 of the car stop 1 . Considering cost factors, it is preferable not to install energy-absorbing elements on the anti-climbing part 12 itself. At this time, the anti-climbing device 22 begins to absorb energy, and at the same time, the primary energy-absorbing elements 116' of the coupler 11 in the vehicle blocker 1 are all crushed, the energy absorption is completed, and its secondary energy-absorbing element 117 starts to act, and the anti-climbing device 22 and the second The strokes of the stage energy-absorbing elements 117 are set to the same, start at the same time, and complete the crushing energy absorption at the same time. The sum of the crushing force values of the two is not greater than the crushing force value of the main energy-absorbing element 14 and the pressure of the passenger compartment 27 of the train 2. Collapse force value.
  • Step 4 When the anti-climb device 22 is crushed, the collision interface force continues to rise, the overload valve 131 is activated, the movable wall 13 begins to retreat, and the main energy-absorbing element 14 is crushed. At the same time, the coupler part 11 retreats synchronously with the movable wall 13, and its rear box 113 passes through the guide arm 151 and guide groove 152 of the fixed wall 15, which plays a guiding function without interfering with the crushing process of the main energy-absorbing element 14. This further ensures that the main energy-absorbing elements 14 on the left and right sides can absorb energy smoothly and orderly.
  • Figure 7 is an enlarged view I of a) in Figure 6, and Figure 8 is an enlarged view II of b) in Figure 6.
  • Figure 9 is a schematic diagram of the movement of the automatic valve mechanism. According to the train collision interface force matching calculation results, when the secondary energy absorbing element 117 has a lower crushing force value than the primary energy absorbing element 116, an automatic valve mechanism 118 needs to be set.
  • the automatic valve mechanism 118 includes a conical piece 1181, a connecting rod 1182, a partition 1183 and a rotating shaft 1184.
  • the connecting rod 1182, the partition 1183 and the cone-shaped piece 1181 are integrated structures.
  • the cone-shaped piece 1181 can carry the connecting rod 1182 and the partition 1183 to rotate around the rotation axis 1184.
  • the partition 1183 is located between the primary energy absorbing element 116 and the secondary energy absorbing element 117 . Before the primary energy-absorbing element 116 completes crushing and energy-absorbing, the partition 1183 In the closed state, the secondary energy-absorbing element 117 with a lower crushing force value is prevented from deforming earlier than the primary energy-absorbing element 116 .
  • the pressure head 115 continues to make a "piston" movement and passes through the cone-shaped piece 1181 of the automatic valve mechanism 118 and the tip of the cone-shaped piece 1181.
  • 1181a can move up and down and rotate around the rotation axis 1184.
  • the tip 1181a pushes up to the outside, rotates, and drives the connecting rod 1182 and the partition 1183 to rotate together, causing the partition 1183 to open , the pressure head 115 can continue to crush the secondary energy-absorbing element 117 without the need for additional sensors and electric transmission systems.
  • the train collision interface force matching calculation result if the secondary energy absorbing element 117 has a higher crushing force value than the primary energy absorbing element 116, the automatic valve mechanism 118 is cancelled.
  • the primary energy-absorbing element 116 and the secondary energy-absorbing element 117 will automatically crush and absorb energy in order from small to large crushing force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)

Abstract

本发明公开了一种列车吸能挡车器及挡车吸能方法。所述挡车器包括装在轨道上的固定墙,装在轨道上的移动墙,主吸能元件,以及车钩部和防爬部;在主吸能元件下方设有若干可沿轨道滑移后退的移动腿,该移动腿位于所述移动墙和固定墙之间;所述车钩部贯穿所述移动墙,车钩部位于移动墙之后的部分的内部设有吸能元件,所述吸能元件的至少一部分位于所述移动墙和固定墙之间。本发明通过增加车钩部作为吸能元件,增大了挡车器有效吸能行程,提高列车碰撞安全性能。

Description

一种列车吸能挡车器及挡车吸能方法 技术领域
本发明涉及一种列车吸能挡车器及挡车吸能方法,属于轨道车辆吸能领域。
背景技术
铁道车辆最重要的使命是保证司乘人员的安全。列车前端通常会设置带吸能功能的防爬装置可显著改善轨道车辆在发生碰撞时的变形吸能特性。同时,在轨道线路的尽头也通常会设置挡车器以防止列车冲出轨道导致出轨或者发生倾覆。
目前挡车器一般设置有与列车钩缓***的钩头匹配的撞击点,有的还设有与防爬器匹配的防爬齿板。在车钩撞击点和防爬齿板后方再设置吸能元件,在撞击过程中把列车动能转化为塑性变形能、摩擦能或其它形式的能量。但这种形式的挡车器存在两大缺陷:一是往往会导致头车前端车钩(以下简称头钩)率先破坏,相对于列车两侧的防爬器、以及挡车器上的吸能元件,头钩通常结构比较复杂,价格更昂贵,因此传统模式的经济性较差。二是没有解决碰撞吸能量的提高,与路端有限的安装空间之间的矛盾。碰撞吸能量为碰撞界面力和变形吸能行程的乘积,即载荷-位移曲线下面积的积分,在实际上线路终点挡车器的设置空间通常比较有限,而挡车器吸能元件的压溃力值需要与列车车体强度进行匹配,不能无限制提高,因此在给定的空间内,如果吸能行程不能提高,那么碰撞总吸能量也受到限制。
CN201711487129.X专利方案提供了一种用于轨道列车的碰撞吸能*** 及轨道列车,基于提高碰撞过程中吸能元件的稳定性,其钩缓装置的前端与防爬装置的前端共同形成碰撞受力面,在列车相撞时两者共同作用。该方案重点是解决碰撞吸能***的可靠性问题,但没有提高车体的碰撞能量吸收问题,也没解决头钩率先破坏问题。
中国专利申请CN202010971108.0公开了一种挡车器及轨道车辆防撞方法,提供了低速和中高速碰撞两种工作模式,虽然能更充分发挥各吸能元件的功能,也能一定程度解决头钩率先破坏问题,但并没有增加吸能行程,导致路端安装空间紧张问题;三件吸能元件独立压溃吸能,整体稳定性不够,且既有两种模式挡车器自动检测装置可能存在故障会导致无法正常使用问题。因此上述两大缺陷并没有得以有效解决。
发明内容
本发明旨在提供一种列车吸能挡车器及挡车吸能方法,通过创新挡车器结构,优化吸能挡车器配置及动作顺序,可以至少解决以下问题中的至少一个:
1)传统挡车器工作模式列车头钩会率先破坏,经济性较差;
2)在给定的安装空间内,挡车器的碰撞总吸能量不能得以大幅提升;
3)既有两种工作模式的挡车器没有设置过载功能,在止挡阀失效的情况下,挡车器与列车无法按设定的中高速撞击工作模式进行吸能缓冲;
4)既有没有设防撞移动墙的挡车器,吸能元件长度过长,存在垂向刚度不足,无法有效阻止爬车现象。
为了实现上述目的,本发明所采用的技术方案是:
一种列车吸能挡车器,其结构特点是,包括装在轨道上的固定墙,装在轨道上并可沿着轨道移动的移动墙,位于移动墙和固定墙之间的主吸能元件,以及固定在移动墙上的车钩部和防爬部;
所述车钩部贯穿所述移动墙,车钩部位于移动墙之后的部分的内部设有吸能元件。
主吸能元件位于移动墙和固定墙之间,吸能元件位于移动墙之后,这样设置使得车钩部压缩吸能后退路径与主吸能元件压溃路径设置为部分重叠,挡车器总长度不变的情况下,有效吸能行程增加,在用地紧张的区域具有更好的适应性,通用性更强。
由此,本发明的车钩部、防爬部固定在移动墙上,车钩部贯穿移动墙,其吸能元件位于移动墙后方,主吸能元件位于移动墙和固定墙之间,并分布在车钩部的两侧。移动墙固定在轨道上,可沿着轨道后退运动。工作时,本发明的列车吸能挡车器放置在轨道的终点位置,当列车在轨道的终点还以一定的速度移动时,位于列车前端的头钩、防爬器便会分别与挡车器撞击并吸能。本发明通过增加车钩部作为吸能元件,增大了挡车器有效吸能行程,提高列车碰撞安全性能。
优选地,在所述主吸能元件下方设有若干可沿轨道滑移后退的移动腿,该移动腿位于所述移动墙和固定墙之间。移动腿可保障保证主吸能元件稳定、有序地工作。
根据本发明的实施例,还可以对本发明作进一步的优化,以下为优化后形成的技术方案:
在其中一个优选的实施例中,所述车钩部包括止挡头、推杆、后置箱、 压头、一级吸能元件和二级吸能元件;所述后置箱可拆卸地固定在移动墙上,所述止挡头位于所述推杆的前端,所述压头位于所述推杆的后端,所述压头位于后置箱的端头;所述后置箱内部前后端分别放置了所述一级吸能元件和所述二级吸能元件;当列车撞击止挡头时,止挡头、推杆、压头同步向后运动并压缩位于后置箱中的一级吸能元件、二级吸能元件。
在其中一个优选的实施例中,所述止挡头与推杆、压头装配为一体化结构。
在其中一个优选的实施例中,在固定墙的中间位置设置了用于引导所述后置箱后退的引导槽。在防爬器主吸能元件压溃过程中所述车钩部的后置箱可后退并穿过该引导槽,引导槽对车钩部和移动墙13起到了很好引导定位作用,确保主吸能元件能充分压溃。
在其中一个优选的实施例中,所述车钩部还包括有自动阀机构,所述自动阀机构包括锥形片,连杆,隔板和旋转轴;所述隔板位于所述一级吸能元件和所述二级吸能元件之间,在所述一级吸能元件未完成压溃吸能之前,所述隔板处于关闭状态;所述锥形片在所述压头的作用下可带动连杆、隔板一起绕着旋转轴旋转运动而使隔板打开;优选所述连杆、隔板与锥形片为一体化结构。
在其中一个优选的实施例中,在移动墙下方设置了过载阀,当移动墙的碰撞界面力高于某一设定值时移动墙沿着轨道滑移,当移动墙的碰撞界面力低于某一设定值时移动墙不发生滑移。由此,本发明在移动墙上设置带过载功能的阀体,列车低速撞击时关闭,保护主吸能元件不发生动作;列车高速撞击时,阀体过载失效,移动墙可整体移动,并使主吸能元件稳定吸能。
在其中一个优选的实施例中,所述主吸能元件分布在车钩部的两侧。
基于同一个发明构思,本发明还提供了一种利用列车吸能挡车器进行挡车吸能的方法,其包括:
i.当列车以低于第一设定速度撞击挡车器时,仅靠列车的头钩自身的弹性元件动作并进行吸能,挡车器的车钩部不发生位移,挡车器不动作;
ii.当列车车以高于第一设定速度且低于第二设计速度撞击挡车器时,列车和挡车器吸能元件依次按以下顺序进行部分或者全部的吸能步骤:
a)列车的头钩弹性元件;
b)车钩部的一级吸能元件;
c)列车防爬器、车钩部的二级吸能元件;
d)主吸能元件;
iii.当列车以高于第二设定速度撞击挡车器时,列车前端与挡车器中所有吸能元件均发生动作;优选第一设定速度为5km/h,第二设定速度为25km/h。
在iii情况中,当列车以高于第二设定速度撞击挡车器时,按照如下顺序吸能:
第一步:头钩与车钩部的止挡头相接触,头钩自身的弹性元件动作并进行可恢复式吸能;
第二步:当碰撞界面力大于头钩自身的弹性元件动作的最大力值时,车钩部的推杆、压头开始在后置箱中往后动作,并对车钩部的一级吸能元件进行压溃吸能;
第三步:列车继续向前运动时,防爬器与挡车器的防爬部接触,由防爬器开始吸能,同时挡车器中车钩部的一级吸能元件全部压溃,吸能结束,车 钩部的二级吸能元件开始动作,防爬器与车钩部的二级吸能元件的行程设置为相同,同时启动并同时完成压溃吸能,防爬器与车钩部的二级吸能元件的压溃力值之和不大于主吸能元件的压溃力值和列车的客室区压溃力值;
第四步:当防爬器压溃完毕,过载阀启动,移动墙开始后退,并对主吸能元件进行压溃;同时车钩部与移动墙同步后退,后置箱穿过固定墙的引导槽。
以下对本发明做进一步的介绍:
本发明的列车吸能挡车器***具有以下功能:当列车低速(例如5km/h以下)撞击挡车器时,车钩弹性元件动作并进行可恢复式吸能。当列车以中高速(例如5km/h-25km/h之间)撞击时,按以下顺序吸能:a)列车车钩弹性元件;b)车钩部一级吸能元件;c)列车防爬器+挡车器车钩部二级吸能元件;d)挡车器主吸能元件。本发明通过将附加的车钩部吸能元件设置为后置式,增大了挡车器有效吸能行程,提高列车碰撞安全性能,同时整个过程全自动车钩除了弹性元件发生动作外,压溃管、过载装置不发生永久变形。
本发明的车钩部吸能元件为后置式,车钩部包括一级、二级两级吸能元件,在两级吸能元件之间设置了自动阀机构,当一级吸能元件动作完后,压头继续向后运动时,将接触自动阀机构并将其打开,对二级吸能元件进行压溃。其中一级吸能元件平均压溃力值,位于弹性元件吸能动作的最大值及车钩压溃管动作触发力值之间的某一个值。如A型地铁车钩弹性元件吸能过程最大力值为700kN左右,压溃管触发力值在1100-1200kN,则防爬部一级吸能元件可设置在800kN左右。防爬部二级吸能元件压溃力值根据列车防爬器力值进行匹配,可大于或小于防爬部一级吸能元件力值,保证防爬器与防爬部 二级吸能元件同时动作吸能时,碰撞总界面力值不大于列车客室区域强度,保护列车主结构安全。
与现有技术相比,本发明的有益效果是:
1)车钩部压缩吸能后退路径与主吸能元件压溃路径设置为部分重叠,设备总长度不变,有效吸能行程增加,在用地紧张的区域具有更好的适应性,通用性更强。
2)挡车器车钩部设有至少2级吸能元件,充分考虑了列车撞击挡车器过程中,列车车钩、防爬器与挡车器等多种吸能元件同时参与吸能的场景,避免多道力流同时作用出现总的碰撞界面力过大,导致列车车身主结构先于吸能元件发生压溃变形,更好地保护列车。
3)头钩在碰撞过程中不率先发生损坏,经济性更好。
4)挡车器***设置过载阀,采用机械方式控制,不需额外设置信息传感器及复杂的传动装置,结构简单,性能更可靠。
5)本发明的移动墙利用既有铁轨进行导向,挡车器压溃过程稳定性更好。
附图说明
图1:本发明一种实施例的列车吸能挡车器***示意图;
图2:吸能挡车器结构示意图;
图3:吸能挡车器结构俯视图;
图4:列车车头结构示意图;
图5:列车低速撞击挡车器示意图;
图6:列车高速撞击挡车器过程示意图;
图7:图6中a)的放大图Ⅰ;
图8:图6中b)的放大图Ⅱ;
图9:自动阀机构运动原理图。
在图1至图9中:
挡车器1,车钩部11,止挡头111,推杆112,后置箱113,法兰114,压
头115,一级吸能元件116,116’,二级吸能元件117,117’,自动阀机构118,锥形片1181,尖端1181a,连杆1182,隔板1183,旋转轴1184,防爬部12,移动墙13,过载阀131,主吸能元件14,14’,固定墙15,引导臂151,引导槽152,移动腿16,列车2,头钩21,防爬器22,牵引梁23,中间连接梁24,侧连接梁25,前端梁26,客室区27,轨道3。
具体实施方式
以下将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。为叙述方便,下文中如出现“上”、“下”、“左”、“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用。
如图1所示,本实施例的列车吸能挡车器***挡车器1放置在轨道3的终点位置,当列车2在轨道3的终点还以一定的速度移动时,位于列车2前端的头钩21,防爬器22便会分别与挡车器1撞击并吸能。
图2是吸能挡车器结构示意图,图3是吸能挡车器结构俯视图。挡车器1至少包括车钩部11,防爬部12,移动墙13,主吸能元件14,固定墙15和移动腿16等***。车钩部11,防爬部12均固定在移动墙13上,主吸能元件14位于移动墙13和固定墙15之间,在主吸能元件14下方设有若干移动腿16,可沿轨道3滑移后退,保证主吸能元件14稳定、有序地工作。在移动墙13下方设置了过 载阀131,当移动墙13的碰撞界面力高于某一设定值时,过载阀131会发生剪切动作,使移动墙13能沿着轨道3滑移。当移动墙13的碰撞界面力低于某一设定值时,则不发生滑移,保证主吸能元件14不发生动作。
车钩部11包括止挡头111,推杆112,后置箱113,法兰114,压头115,一级吸能元件116,二级吸能元件117以及自动阀机构118等结构。法兰114设置在后置箱113外侧,并通过螺栓固定在移动墙13上,车钩部11可拆卸更换。止挡头111与推杆112、压头115装配为一体化结构,可同步运动,止挡头111位于推杆112的前端,压头115位于推杆112的后端,压头115位于后置箱113的端头。后置箱113内部前后端分别放置了一级吸能元件116和二级吸能元件117,在两级吸能元件之间设置了自动阀机构118。当列车2撞击止挡头111时,止挡头111、推杆112、压头115同步向后运动,压缩位于后置箱113中的一级吸能元件116,二级吸能元件117。
车钩部11的安装方式为后置式,后置箱113、一级吸能元件116,二级吸能元件117均固定在移动墙13的后面,而止挡头111位于移动墙13的前面。其中、一级吸能元件116平均压溃力值,位于头钩21中弹性元件吸能动作的最大值及头钩21中压溃管动作触发力值之间的某一个值。如A型地铁头钩21弹性元件吸能过程最大力值为700kN左右,压溃管触发力值在1100-1200kN,则车钩部11的一级吸能元件116可设置在800kN左右。二级吸能元件117压溃力值根据列车防爬器22力值进行匹配,可大于,等于或小于防爬部一级吸能元件116力值,保证防爬器22与防爬部二级吸能元件117同时动作吸能时,碰撞总界面力值不大于列车客室区域强度,保护列车主结构安全。
在固定墙15的中间位置设置了引导臂151和引导槽152,与车钩部11的后置 箱113同轴对中布置,用于引导后置箱113的后退运动。
图4是列车车头结构示意图。列车2包括一个头钩21,两个防爬器22,牵引梁23,中间连接梁24,侧连接梁25,前端梁26以及客室区27。头钩21,防爬器22分别固定在牵引梁23和前端梁26上,牵引梁23和前端梁26的中心和两侧分别有中间连接梁24,侧连接梁25相连,整体呈“目”字型框架结构,在碰撞过程中整体承载性良好。客室区27的位于“目”字型框架结构后方,整体压溃强度最高,用于容纳和保护乘客。
图5是列车低速撞击挡车器示意图。当列车2车以低速如5km/h以下撞击挡车器1的止挡头111时,仅靠头钩21自身的弹性元件动作并进行可恢复式吸能。挡车器1的车钩部11不发生位移,挡车器1不动作。
图6是列车高速撞击挡车器过程示意图。当列车2车以中高速如5km/h以上撞击挡车器1的止挡头111时,列车2和挡车器1吸能元件按以下顺序吸能:
a)列车头钩21弹性元件;
b)车钩部11的一级吸能元件116;
c)列车防爬器22+车钩部11的二级吸能元件117;
d)挡车器1的主吸能元件14。当前面动作的吸能元件能完成吸能时,设置在后面动作的吸能元件不发生动作,可继续使用。
列车2以较高速度撞击挡车器1时,列车2前端与挡车器1中所有吸能元件均发生动作,如图6所示,具体过程如下:
第一步:头钩21与车钩部11的止挡头111相接触,头钩21自身的弹性元件动作并进行可恢复式吸能。
第二步:当碰撞界面力大于头钩21自身的弹性元件动作的最大力值后,车 钩部11的推杆112、压头115开始在后置箱113中往后动作,并对一级吸能元件116进行压溃吸能;当头钩21在后置箱113做“活塞”运动时,在后置箱113的四周封闭腔的作用下,拥有较好的导向作用,有利于防止列车发生侧偏或爬起现象。
第三步:列车2继续向前运动时,防爬器22与挡车器1的防爬部12接触。考虑到成本因素,防爬部12自身优先不考虑设置吸能元件。此时防爬器22开始吸能,同时挡车器1中车钩部11的一级吸能元件116’全部压溃,吸能结束,其二级吸能元件117开始动作,防爬器22与二级吸能元件117的行程设置为相同,同时启动,并同时完成压溃吸能,两者压溃力值之和不大于主吸能元件14的压溃力值和列车2的客室区27压溃力值。
第四步:当防爬器22压溃完毕,碰撞界面力继续上升,过载阀131启动,移动墙13开始后退,并对主吸能元件14进行压溃。同时车钩部11与移动墙13同步后退,其后置箱113穿过固定墙15的引导臂151和引导槽152,在起到导向功能的同时,不干扰主吸能元件14的压溃进程,进一步保证左右两侧的主吸能元件14能平稳,有序地吸收能量。
图7是图6中a)的放大图Ⅰ,图8是图6中b)的放大图Ⅱ。图9是自动阀机构运动原理图。根据列车碰撞界面力匹配计算结果,当二级吸能元件117比一级吸能元件116压溃力值更低时,需设置自动阀机构118。
自动阀机构118包括锥形片1181,连杆1182,隔板1183和旋转轴1184。连杆1182,隔板1183与锥形片1181为一体化结构,锥形片1181可带着连杆1182,隔板1183一起绕着旋转轴1184旋转运动。隔板1183位于一级吸能元件116和二级吸能元件117之间。在一级吸能元件116未完成压溃吸能之前,隔板1183处 于关闭状态,阻止压溃力值更低的二级吸能元件117比一级吸能元件116更早发生变形。
其工作原理是:当车钩部11的一级吸能元件116即将完成全部压溃,压头115继续做“活塞”运动,并途经自动阀机构118的锥形片1181,锥形片1181的尖端1181a可上下活动,并绕着旋转轴1184旋转。当压头115滑移到锥形片1181部位时,在压头115的压力作用下,尖端1181a向外侧顶起,发生旋转,并带动连杆1182和隔板1183一起转动,使隔板1183打开,压头115可以继续对二级吸能元件117进行压溃,不需要额外的传感器及电传动***。
根据列车碰撞界面力匹配计算结果,如果二级吸能元件117比一级吸能元件116压溃力值更高,则取消设置自动阀机构118。一级吸能元件116和二级吸能元件117将自动按照压溃力从小到大的先后顺序进行压溃吸能。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本实施例的各种等价形式的修改均落入本发明所附权利要求所限定的范围。

Claims (10)

  1. 一种列车吸能挡车器,其特征在于,包括装在轨道上的固定墙(15),装在轨道上并可沿着轨道移动的移动墙(13),位于移动墙(13)和固定墙(15)之间的主吸能元件(14),以及固定在移动墙(13)上的车钩部(11)和防爬部(12);
    所述车钩部(11)贯穿所述移动墙(13),车钩部(11)位于移动墙(13)之后的部分的内部设有吸能元件。
  2. 根据权利要求1所述的列车吸能挡车器,其特征在于,所述车钩部(11)包括止挡头(111)、推杆(112)、后置箱(113)、压头(115)、一级吸能元件(116)和二级吸能元件(117);
    所述后置箱(113)可拆卸地固定在移动墙(13)上,所述止挡头(111)位于推杆(112)的前端,所述压头(115)位于所述推杆(112)的后端,所述压头(115)位于所述后置箱(113)的端头;所述后置箱(113)内部前后端分别放置了所述一级吸能元件(116)和所述二级吸能元件(117);当列车(2)撞击止挡头(111)时,止挡头(111)、推杆(112)、压头(115)同步向后运动并压缩位于后置箱(113)中的一级吸能元件(116)、二级吸能元件(117)。
  3. 根据权利要求2所述的列车吸能挡车器,其特征在于,所述止挡头(111)与推杆(112)、压头(115)装配为一体化结构。
  4. 根据权利要求2所述的列车吸能挡车器,其特征在于,在固定墙(15)的中间位置设置了用于引导后置箱(113)后退的和引导槽(152)。
  5. 根据权利要求2所述的列车吸能挡车器,其特征在于,所述车钩部(11)还包括有自动阀机构(118),所述自动阀机构(118)包括锥形片(1181),连杆(1182),隔板(1183)和旋转轴(1184);所述隔板(1183)位于所述一级吸能元件(116)和所述二级吸能元件(117)之间,在所述一级吸能元件(116)未完成压溃吸能之前,所述隔板(1183)处于关闭状态;所述锥形片(1181)在所述压头(115)的作用下可带动连杆(1182)、隔板(1183)一起绕着旋转轴(1184)旋转运动而使隔板(1183)打开;优选所述连杆(1182)、隔板(1183)与锥形片(1181)为一体化结构。
  6. 根据权利要求1-5中任一项所述的列车吸能挡车器,其特征在于,在所述主吸能元件(14)下方设有若干可沿所述轨道(3)滑移后退的移动腿(16),该移动腿(16)位于所述移动墙(13)和所述固定墙(15)之间。
  7. 根据权利要求1-5中任一项所述的列车吸能挡车器,其特征在于,在移动墙(13)下方设置了过载阀(131),当移动墙(13)的碰撞界面力高于某一设定值时移动墙(13)沿着轨道(3)滑移,当移动墙(13)的碰撞界面力低于某一设定值时移动墙(13)不发生滑移。
  8. 根据权利要求1-5中任一项所述的列车吸能挡车器,其特征在于,所述主吸能元件(14)分布在车钩部(11)的两侧。
  9. 一种利用列车吸能挡车器进行挡车吸能的方法,其特征在于,包括:
    i.当列车(2)以低于第一设定速度撞击挡车器(1)时,仅靠列车(2)的头钩(21)自身的弹性元件动作并进行吸能,挡车器(1)的车钩部(11)不发生位移,挡车器(1)不动作;
    ii.当列车(2)车以高于第一设定速度且低于第二设计速度撞击挡车器(1)时,列车(2)和挡车器(1)吸能元件依次按以下顺序进行部分或者全部的吸能步骤:
    a)列车(2)的头钩(21)弹性元件;
    b)车钩部(11)的一级吸能元件(116);
    c)列车防爬器(22)、车钩部(11)的二级吸能元件(117);
    d)主吸能元件(14);
    iii.当列车(2)以高于第二设定速度撞击挡车器(1)时,列车(2)前端与挡车器(1)中所有吸能元件均发生动作;优选第一设定速度为5km/h,第二设定速度为25km/h。
  10. 根据权利要求9所述的进行挡车吸能的方法,其特征在于,当列车(2)以高于第二设定速度撞击挡车器(1)时,按照如下顺序吸能:
    第一步:头钩(21)与车钩部(11)的止挡头(111)相接触,头钩(21)自身的弹性元件动作并进行可恢复式吸能;
    第二步:车钩部(11)的推杆(112)、压头(115)开始在后置箱(113)中往后动作,并对车钩部(11)的一级吸能元件(116)进行压溃吸能;
    第三步:列车(2)继续向前运动时,防爬器(22)与挡车器(1)的防爬部(12)接触,由防爬器(22)开始吸能,同时挡车器(1)中车钩部(11)的一级吸能元件(116’)全部压溃,吸能结束,车钩部(11)的二级吸能元件(117)开始动作,防爬器(22)与车钩部(11)的二级吸能元件(117)的行程设置为相同,同时启动并同时完成压溃吸能,防爬器(22)与车钩部(11)的二级吸能元件(117)的压溃力值之和不大于 主吸能元件(14)的压溃力值和列车(2)的客室区(27)压溃力值;
    第四步:当防爬器(22)压溃完毕,过载阀(131)启动,移动墙(13)开始后退,并对主吸能元件(14)进行压溃;同时车钩部(11)与移动墙(13)同步后退,其后置箱(113)穿过固定墙(15)的引导槽(152)。
PCT/CN2023/101018 2022-06-20 2023-06-19 一种列车吸能挡车器及挡车吸能方法 WO2023246684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210696292.1A CN115027527B (zh) 2022-06-20 2022-06-20 一种列车吸能挡车器及挡车吸能方法
CN202210696292.1 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023246684A1 true WO2023246684A1 (zh) 2023-12-28

Family

ID=83124346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101018 WO2023246684A1 (zh) 2022-06-20 2023-06-19 一种列车吸能挡车器及挡车吸能方法

Country Status (2)

Country Link
CN (1) CN115027527B (zh)
WO (1) WO2023246684A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115027527B (zh) * 2022-06-20 2023-07-11 中车株洲电力机车有限公司 一种列车吸能挡车器及挡车吸能方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077681A (ko) * 2008-12-29 2010-07-08 한국철도기술연구원 철도선로용 완충차막이장치의 클램프
CN203864709U (zh) * 2014-04-21 2014-10-08 北车建设工程有限责任公司 双缸液压缓冲滑动挡车器
CN105151075A (zh) * 2015-09-30 2015-12-16 南车青岛四方机车车辆股份有限公司 一种吸能装置及具有该吸能装置的轨道车辆
CN108001480A (zh) * 2017-06-21 2018-05-08 深圳市乾行达科技有限公司 组合式挡车吸能器
CN209441382U (zh) * 2019-01-22 2019-09-27 上海铁路站场调速技术中心有限公司 一种应用于普速铁路的滑移式挡车器
CN209927475U (zh) * 2019-05-09 2020-01-10 中车青岛四方机车车辆股份有限公司 挡车装置
CN210591919U (zh) * 2019-09-25 2020-05-22 中车青岛四方机车车辆股份有限公司 一种单车气液缓冲挡车器
CN214689527U (zh) * 2021-02-06 2021-11-12 吉林市宏远铁路运输科技开发有限公司 一种液压缓冲长行程防爬滑固结合型挡车器
CN115027527A (zh) * 2022-06-20 2022-09-09 中车株洲电力机车有限公司 一种列车吸能挡车器及挡车吸能方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011018915A1 (de) * 2011-04-28 2012-10-31 Daimler Ag Energieabsorptionselement für eine Fußgängerschutzeinrichtung eines Kraftwagens sowie Fußgängerschutzeinrichtung für einen Kraftwagen
CN106564457B (zh) * 2016-11-15 2018-10-16 华侨大学 一种组合式缓冲吸能装置
CN207374492U (zh) * 2017-08-30 2018-05-18 深圳市乾行达科技有限公司 吸能结构及汽车防撞梁结构
CN112109764B (zh) * 2020-09-16 2021-09-17 中车株洲电力机车有限公司 一种挡车器及轨道车辆防撞方法
CN112109758B (zh) * 2020-09-16 2021-10-26 中车株洲电力机车有限公司 一种轨道车辆防撞***及防撞方法
CN215513561U (zh) * 2021-07-08 2022-01-14 北京北汽模塑科技有限公司 一种分级吸能的保险杠前端防撞模块
CN215622009U (zh) * 2021-09-09 2022-01-25 中车青岛四方机车车辆股份有限公司 一种挡车装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077681A (ko) * 2008-12-29 2010-07-08 한국철도기술연구원 철도선로용 완충차막이장치의 클램프
CN203864709U (zh) * 2014-04-21 2014-10-08 北车建设工程有限责任公司 双缸液压缓冲滑动挡车器
CN105151075A (zh) * 2015-09-30 2015-12-16 南车青岛四方机车车辆股份有限公司 一种吸能装置及具有该吸能装置的轨道车辆
CN108001480A (zh) * 2017-06-21 2018-05-08 深圳市乾行达科技有限公司 组合式挡车吸能器
CN209441382U (zh) * 2019-01-22 2019-09-27 上海铁路站场调速技术中心有限公司 一种应用于普速铁路的滑移式挡车器
CN209927475U (zh) * 2019-05-09 2020-01-10 中车青岛四方机车车辆股份有限公司 挡车装置
CN210591919U (zh) * 2019-09-25 2020-05-22 中车青岛四方机车车辆股份有限公司 一种单车气液缓冲挡车器
CN214689527U (zh) * 2021-02-06 2021-11-12 吉林市宏远铁路运输科技开发有限公司 一种液压缓冲长行程防爬滑固结合型挡车器
CN115027527A (zh) * 2022-06-20 2022-09-09 中车株洲电力机车有限公司 一种列车吸能挡车器及挡车吸能方法

Also Published As

Publication number Publication date
CN115027527B (zh) 2023-07-11
CN115027527A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN105083317B (zh) 一种车钩组件及具有该车钩组件的轨道车辆
WO2022057424A1 (zh) 轨道车辆、轨道车辆防撞***及防撞方法
WO2019096109A1 (zh) 地铁车辆的吸能装置
WO2023246684A1 (zh) 一种列车吸能挡车器及挡车吸能方法
EP2792570B1 (en) Troubleshooting and energy absorbing device and leading car of motor train unit
CN103101553B (zh) 带防爬吸能装置的列车前端组成
US11167778B2 (en) Collision energy absorbing system concentrated around the VHS power car and first vehicle
CN204605838U (zh) 具有防爬吸能装置的高速车体结构
CN109050567B (zh) 一种防爬与分级触发嵌套式轨道车辆端部吸能结构
WO2022057423A1 (zh) 一种挡车器及轨道车辆防撞方法
CN102464002A (zh) 轨道车辆用防爬器
RU185243U1 (ru) Энергопоглощающий кузов вагона
CN112078620B (zh) 一种轨道车辆前端结构
CN107323479B (zh) 基于缺口导向分级触发的轨道车辆端部吸能结构
JP6561207B2 (ja) エネルギ吸収装置及び当該エネルギ吸収装置を含む鉄道車両
CN210760623U (zh) 一种双大梁高抗碰撞汽车
CN201923167U (zh) 轨道车辆用防爬器
CN209927475U (zh) 挡车装置
KR101306967B1 (ko) 열차의 장애물 제거장치
CN111071281A (zh) 一种轨道车辆防爬吸能装置
CN215622009U (zh) 一种挡车装置
CN214689527U (zh) 一种液压缓冲长行程防爬滑固结合型挡车器
KR100916597B1 (ko) 철도차량 튜브완충기용 스테빌라이저 및 스테빌라이저부가형성된 철도차량용 튜브완충기
CN212447589U (zh) 一种集成式车钩吸能装置
CN110606036A (zh) 一种双大梁高抗碰撞汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826332

Country of ref document: EP

Kind code of ref document: A1