WO2023245973A1 - Soc计算方法、控制电路及电子设备 - Google Patents

Soc计算方法、控制电路及电子设备 Download PDF

Info

Publication number
WO2023245973A1
WO2023245973A1 PCT/CN2022/132655 CN2022132655W WO2023245973A1 WO 2023245973 A1 WO2023245973 A1 WO 2023245973A1 CN 2022132655 W CN2022132655 W CN 2022132655W WO 2023245973 A1 WO2023245973 A1 WO 2023245973A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
voltage
battery module
correction coefficient
discharge
Prior art date
Application number
PCT/CN2022/132655
Other languages
English (en)
French (fr)
Inventor
詹军成
陈熙
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2023245973A1 publication Critical patent/WO2023245973A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • This application relates to the field of battery control technology, and in particular to a SOC calculation method, control circuit, electronic device and storage medium.
  • the battery's state of charge (State of Charge, SOC) is an important parameter to describe the battery's operating status. It is commonly expressed as the ratio of the remaining battery power to the actual battery capacity. Battery SOC usually needs to be estimated through parameters such as battery terminal voltage, charge and discharge current, and internal resistance. Users can judge the remaining power through the battery's SOC, which facilitates the control and management of battery power.
  • Various embodiments of the present application provide an SOC calculation method, a control circuit, an electronic device, and a storage medium.
  • this application provides a SOC calculation method for a battery module, including:
  • the discharge parameters of the battery module are obtained; the preset voltage is greater than the undervoltage protection voltage of the battery;
  • the correction coefficient is positively related to the discharge parameter and inversely related to the cell voltage
  • the value of the SOC is calculated based on the rated full load capacity of the battery module, the discharge parameters and the correction coefficient.
  • the present application also provides a control circuit, including a processor, a memory, and a data bus for realizing connection and communication between the processor and the memory, wherein the memory stores information that can be A computer program executed by the processor.
  • the computer program is executed by the processor, the steps of the SOC calculation method as described above are implemented.
  • this application also provides an electronic device, which includes:
  • a storage device configured to store one or more programs, which when the one or more programs are executed by the one or more processors, causes the electronic device to implement the SOC calculation method as described above.
  • the present application also provides a storage medium that stores one or more computer programs, and the one or more computer programs can be executed by one or more processors to implement the above. Steps of SOC calculation method.
  • Figure 1 is a schematic flowchart of the steps of a SOC calculation method for a battery module provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of the steps of another SOC calculation method for a battery module provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of the steps of another SOC calculation method for a battery module provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural block diagram of a control circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural block diagram of an electronic device provided by an embodiment of the present application.
  • Embodiments of the present application provide a SOC calculation method, control circuit, electronic device and storage medium for a battery module.
  • the SOC calculation method can be applied to electronic equipment.
  • the electronic equipment is provided with a control circuit and a battery module, where the control circuit can be a battery management system corresponding to the battery module.
  • the electronic device may be an energy storage device.
  • the energy storage device may include, for example, a battery module.
  • the battery module may include one or more electrical energy storage units.
  • the electrical energy storage unit may be, for example, one or more batteries.
  • the battery may include a cell.
  • Figure 1 is a schematic flowchart of the steps of a SOC calculation method for a battery module provided by an embodiment of the present application.
  • the SOC calculation method can be applied to a control circuit of an electronic device.
  • the SOC calculation method includes:
  • the battery module is in a discharge state, and the cell voltage of the battery module will decrease as the battery module discharges.
  • the battery module's remaining power and SOC and other battery parameters will also decrease as the battery module is discharged.
  • the battery module may include cells of multiple batteries, and the cell voltages of different batteries may be the same or may deviate within a certain range.
  • the cell voltage of the battery module can be the lowest cell voltage among all cell voltages, because in the discharge state, the lowest cell voltage among all cell voltages is used as the cell voltage of the battery module. Voltage can ensure that there will be no under-voltage problems caused by over-discharge of the battery cells during the discharge process.
  • the cell voltage can be collected through the voltage sampling circuit and transmitted to the control circuit.
  • the control circuit may be a battery management system (Battery Management System, BMS), and the BMS determines subsequent operations based on the cell voltage.
  • BMS Battery Management System
  • the SOC calculation method of this embodiment can be used to calculate the SOC of the battery module.
  • the preset voltage is greater than the undervoltage protection voltage of the battery.
  • the control circuit will activate the undervoltage protection, causing the output of the battery module to be turned off, that is, it can be
  • the battery management system disconnects the discharge switch tube located on the discharge circuit of the battery module.
  • the preset voltage is greater than the undervoltage protection voltage of the battery module.
  • the preset voltage can be set according to actual needs. For example, it is set to a preset value higher than the undervoltage protection voltage.
  • the preset value can be 0.5V or 1V or even higher.
  • the undervoltage protection voltage of the battery is 3V
  • the preset voltage is 3.5V. If the control circuit detects that the cell voltage of the battery module is 3.3V and determines that the cell voltage of 3.3V is less than or equal to the preset voltage of 3.5V, it obtains the discharge parameters of the battery module and performs subsequent steps.
  • the discharge parameter may include at least one of a discharge current and a resistance value of the discharge load.
  • the discharge current may be the current output current value of the battery module
  • the resistance value of the load may be the resistance value of the battery module currently connected to the load.
  • the first voltage difference refers to the voltage difference between the preset voltage v ref and the cell voltage v.
  • the operation of obtaining the first voltage difference between the preset voltage and the cell voltage and the aforementioned operation of obtaining the discharge parameters of the battery module can be performed simultaneously.
  • the operation of obtaining the first voltage difference between the preset voltage and the cell voltage can also be performed before or after the aforementioned operation of obtaining the discharge parameters of the battery module. This embodiment does not specifically limit this. .
  • the correction coefficient is used to characterize the rate at which SOC changes with the discharge of the battery module.
  • the larger the correction coefficient indicates the faster the SOC value decreases with the discharge of the battery module.
  • the smaller the correction coefficient the slower the SOC value decreases with the discharge of the battery module.
  • the SOC correction coefficient is calculated through the first voltage difference and the discharge parameter.
  • the correction coefficient is positively correlated with the discharge parameter and inversely correlated with the cell voltage, so that the SOC value can be updated in time according to the calculated correction coefficient. For example, when the cell voltage of the battery module becomes smaller, the correction coefficient that controls the SOC becomes larger to increase the rate at which the SOC value decreases with the discharge of the battery module, thereby causing the SOC of the battery module to change from the preset voltage to undervoltage protection. The voltage drops faster during this period, so that when the cell voltage of the battery module reaches the undervoltage protection voltage, its SOC value is the user-defined minimum SOC value or the default value. The minimum SOC value is, for example, 5%.
  • the default value can be 0, thereby ensuring that when the cell voltage of the battery module reaches the undervoltage protection voltage, the SOC is also updated to the system-set non-dischargeable value.
  • the SOC value can avoid SOC plummeting, for example, SOC can be prevented from plummeting to zero.
  • the SOC decline rate becomes faster, which can also serve as an early warning for users to predict the actual situation based on the SOC value and its changes. situation, so as to plan electricity consumption in advance.
  • the greater the discharge current of the battery module, the greater the SOC correction coefficient, and the greater the resistance value of the discharge load connected to the battery module the greater the SOC correction coefficient; the cell voltage of the battery module The smaller it is, the larger the SOC correction coefficient is; when the cell voltage is smaller, the first voltage difference between the preset voltage and the cell voltage is larger, and the corresponding SOC correction coefficient is also larger.
  • S105 Calculate the SOC value based on the rated full load capacity, discharge parameters and correction coefficient of the battery module.
  • the rated full load capacity can be the capacity of the rated battery module when it is fully charged.
  • the discharge parameters can include parameters such as the discharge current and discharge capacity of the battery module.
  • the correction coefficient is based on the aforementioned first voltage difference and discharge. parameters are calculated.
  • the SOC calculation method can use the traditional ampere-hour integration method.
  • the rated full-load capacity of the battery module remains unchanged, while the discharge parameters and correction coefficients change as the battery module discharges.
  • the SOC value can be accurately calculated based on the battery module's rated full load capacity, discharge parameters and correction coefficients, so that real-time adjustment of the SOC value can be achieved, so that the SOC of the battery module changes from the preset voltage to the under voltage.
  • the decline rate of the undervoltage protection voltage during this period becomes faster, so that when the cell voltage of the battery module reaches the undervoltage protection voltage, the SOC can be reduced to the preset value to avoid a sudden drop in SOC, thereby avoiding user-related damage caused by a sudden drop in SOC. Electricity abnormalities will not affect the user's power consumption plan.
  • the correction coefficient of the SOC can be based on the first voltage difference between the preset voltage and the cell voltage and the discharge parameters. Adjustment, because the correction coefficient is positively related to the discharge parameters and inversely related to the cell voltage, so during the discharge process of the battery module, the correction coefficient is during the period when the cell voltage decreases from the preset voltage to the undervoltage protection voltage. becomes larger, increasing the SOC decline rate, so that when the cell voltage of the battery module reaches the undervoltage protection voltage, its SOC value is the user-defined minimum SOC value or the default value.
  • the minimum SOC value is, for example, 5%.
  • the default value is 0, for example.
  • the SOC calculation method obtains the cell voltage of the battery module in the discharge state, and obtains the discharge parameters of the battery module when the cell voltage is less than or equal to the preset voltage, and the preset voltage is greater than The undervoltage protection voltage of the battery; calculate the SOC correction coefficient based on the first voltage difference between the preset voltage and the cell voltage and the discharge parameters.
  • the correction coefficient is positively related to the discharge parameters and inversely related to the cell voltage; based on the battery model Calculate the SOC value based on the group's rated full load capacity, discharge parameters and correction coefficients.
  • the correction coefficient of the SOC is calculated based on the first voltage difference and the discharge parameter, and the correction coefficient can be used to adjust the decrease of the SOC rate, the SOC of the battery module changes at a faster rate of decline to ensure that when the cell voltage drops to the undervoltage protection voltage, the SOC can be reduced to the preset value.
  • the preset value can be the allowed discharge set by the user.
  • the minimum SOC value may be a default value to avoid a sudden drop in SOC during the discharge process, thereby avoiding abnormal power consumption caused by a sudden drop in SOC, and will not have an impact on the user's power consumption plan.
  • the undervoltage protection voltage of the battery is 3V
  • the preset voltage is 3.5V
  • the current cell voltage of the battery module is 3.3V.
  • the control circuit of this application detects that the cell voltage 3.3V is less than or equal to the preset voltage 3.5V, it obtains the discharge parameters of the battery module and the first voltage difference between the preset voltage and the cell voltage, and uses the discharge parameters And the first pressure difference is used to adjust the SOC correction coefficient, thereby adjusting the SOC falling rate, so that the SOC can change at a faster falling rate and avoid a sudden drop in the SOC.
  • the solution of this application can serve as a warning to users, reminding them of the discharge status of the battery module. Users can make reasonable arrangements for power consumption planning based on SOC, which improves user experience.
  • the SOC correction coefficient is 1; when the cell voltage of the battery module is 3.3V, the corresponding SOC is 15%, and the SOC is 15%.
  • the correction coefficient is 1.1; when the cell voltage of the battery module is 3.1V, the corresponding SOC is 8%, and the SOC correction coefficient is 1.2; when the cell voltage of the battery module is equal to the undervoltage protection voltage of 3V, the SOC The correction coefficient is 1.3. At this time, the SOC drops to the preset value of 0.
  • FIG. 2 is a schematic flow chart of another SOC calculation method for a battery module provided by an embodiment of the present application.
  • the SOC calculation method of the battery module includes steps S201 to S206.
  • Step S201 Obtain the cell voltage of the battery module in a discharged state.
  • the battery module may include one or more cells.
  • the battery cell voltage may be the lowest voltage among the voltages of the multiple battery cells.
  • the under-voltage protection when the battery module is in a discharge state and the cell voltage is less than or equal to the under-voltage protection voltage, the under-voltage protection will be activated. Therefore, the lowest voltage among the voltages of multiple cells is used as the cell voltage of the battery module to ensure that the undervoltage protection of the battery module can be activated in a timely and effective manner.
  • the cell voltage of the battery module when the cell voltage is greater than the preset voltage, the cell voltage of the battery module is collected at a first sampling frequency; when the cell voltage is less than or equal to the preset voltage, the battery module is collected at a second sampling frequency.
  • the second sampling frequency is higher than the first sampling frequency, and the first sampling frequency and the second sampling frequency can be set according to actual conditions.
  • the cell voltage of the battery module is collected at a first sampling frequency with a lower sampling frequency.
  • the first sampling frequency is, for example, 10 Once every minute, the SOC value will not drop suddenly.
  • the cell voltage of the battery module is collected at a second sampling frequency with a higher sampling frequency.
  • the second sampling frequency is, for example, 2 minutes. Once, thereby improving the adjustment accuracy of the SOC value.
  • the SOC calculation method provided by the embodiment of the present application may be performed based on the first sampling frequency or the second sampling frequency. That is to say, after the control circuit obtains the cell voltage of the battery module in the discharge state, it can determine whether to use the first sampling frequency or the second sampling frequency to collect the battery module based on the comparison relationship between the preset voltage and the cell voltage. Set the cell voltage and perform the subsequent steps of the SOC calculation method. When the cell voltage is less than or equal to the preset voltage, collecting the cell voltage of the battery module through a second sampling frequency with a higher sampling frequency can improve the adjustment accuracy of the SOC value.
  • the cell voltage of the battery module in the discharge state obtains the cell voltage of the battery module in the discharge state, and determine whether the cell voltage is less than or equal to the preset voltage; if the cell voltage is greater than the preset voltage, collect the battery module at the first sampling frequency The cell voltage is determined, and the SOC correction coefficient is determined to be 1. The SOC value is calculated using the correction coefficient of 1; if the cell voltage is less than or equal to the preset voltage, the cell voltage of the battery module is collected at the second sampling frequency. , and calculate the SOC correction coefficient based on the first voltage difference between the preset voltage and the cell voltage and the discharge parameters of the battery module, and calculate the SOC value based on the rated full load capacity, discharge parameters and correction coefficient of the battery module .
  • Step S202 When the cell voltage is less than or equal to the preset voltage, obtain the discharge parameters of the battery module, where the discharge parameters include discharge current.
  • the preset voltage is greater than the undervoltage protection voltage of the battery.
  • the SOC of the battery module can plummet to zero. Therefore, when the cell voltage is greater than the undervoltage protection voltage and less than or equal to the preset voltage, the discharge parameters of the battery module, such as the discharge current, are obtained to perform the relevant steps of the subsequent SOC calculation method, which can be calculated by calculating the SOC correction coefficient. Achieve reasonable adjustment of the SOC decline rate to avoid the sudden drop of the SOC value to zero.
  • the SOC correction coefficient can be determined to be 1, and the SOC value can be calculated using the SOC correction coefficient 1, without the need to adjust the SOC decline rate.
  • Step S203 Obtain the first voltage difference between the preset voltage and the cell voltage.
  • the first voltage difference refers to the voltage difference between the preset voltage and the cell voltage.
  • the first voltage difference is obtained by calculating the difference between the preset voltage and the cell voltage.
  • the step of obtaining the first voltage difference may be performed simultaneously with the step of obtaining the discharge current of the battery module, or may be performed earlier or later than the step of obtaining the discharge current.
  • Step S204 Calculate the current difference between the discharge current and the reference current.
  • the discharge current can be the current value output by the battery module
  • the reference current can be the reference value of the output current of the battery module.
  • the reference current can be set according to the actual situation of the battery module.
  • the reference current is, for example, 5A.
  • the discharge current is greater than the reference current; when the discharge current is greater than the reference current, the current difference between the discharge current and the reference current is calculated. It should be noted that the current difference between the discharge current and the reference current should be positive. Therefore, when the discharge current is greater than the reference current, calculating the current difference between the discharge current and the reference current can ensure the correction coefficient of the SOC. There will be no errors in the calculation results.
  • Step S205 Calculate the correction coefficient of the SOC according to the current difference and the first voltage difference.
  • the correction coefficient is positively correlated with the discharge parameters and inversely correlated with the cell voltage.
  • the SOC correction coefficient is calculated through the first pressure difference and the discharge parameter, so that the SOC value can be updated in time according to the calculated correction coefficient.
  • the greater the current difference and the first voltage difference the greater the calculated correction coefficient.
  • the correction coefficient of SOC is calculated using the following formula:
  • K represents the correction coefficient of SOC
  • a represents a preset constant greater than zero and less than 1
  • i represents the discharge current
  • i ref represents the reference current
  • v ref represents the preset voltage
  • v represents the cell voltage.
  • ii ref represents the current difference
  • v ref -v represents the first voltage difference
  • the preset constant a can be set according to the actual situation, for example, a can be 0.5.
  • the correction coefficient K of the SOC can be obtained by adding the product value between the preset constant, the current difference value, and the first voltage difference on the basis of the constant value 1.
  • the SOC correction coefficient K can be increased to increase the SOC decline rate.
  • the SOC correction coefficient is controlled to become larger to increase the SOC.
  • the rate at which the value decreases with the discharge of the battery module which makes the SOC of the battery module decrease faster from the preset voltage to the undervoltage protection voltage, so that the SOC value does not appear during the battery discharge process. The phenomenon of sudden drop in SOC value.
  • the method is executed according to the first voltage difference and the current. Steps for calculating the SOC correction coefficient from the difference.
  • the preset remaining power can be set according to the actual situation of the battery module, and the preset remaining power is less than the rated full load power of the battery module. It should be noted that when the remaining power of the battery module is less than or equal to the preset remaining power, the SOC value may drop sharply. Therefore, it is necessary to perform the steps of calculating the SOC correction coefficient based on the first voltage difference and current difference to ensure the necessity of adjusting the SOC correction coefficient and avoid a sudden drop in the SOC value.
  • the preset remaining power is 2,000 mA.
  • the SOC may drop to the preset value due to undervoltage. Therefore, when it is detected that the remaining power of the battery module is less than or equal to the preset remaining power of 2000 mAh, you can control and speed up the decline rate of SOC by increasing the correction coefficient of SOC, for example, making the correction coefficient of SOC greater than 1, so that The decline rate of SOC is accelerated, which can avoid the sudden drop in SOC value.
  • the correction coefficient when the cell voltage is greater than the preset voltage or when the battery module is not in a discharge state, the correction coefficient is updated to 1. It should be noted that the working status of the battery module will change during the working process. Factors such as the battery module being in a charging state or the battery module stopping discharging may cause the cell voltage of the battery module to increase, causing the battery to When the core voltage is greater than the preset voltage, the SOC value will not drop to zero at this time. In the initial discharge stage of the battery module, the cell voltage is also greater than the preset voltage. Therefore, when the battery cell voltage is greater than the preset voltage or when the battery module is not in a discharge state, the correction coefficient is updated to 1. Therefore, there is no need to calculate the SOC correction coefficient based on the current difference and the first voltage difference, and the SOC can be quickly obtained. Correction factor.
  • Step S206 Calculate the SOC value based on the rated full load capacity, discharge parameters and correction coefficient of the battery module.
  • the value of SOC can be accurately calculated based on the rated full load capacity, discharge parameters and correction coefficient of the battery module.
  • the discharge parameters include the discharge capacity or discharge current of the battery module. It should be noted that the SOC value can be accurately calculated through the rated full load capacity, discharge parameters and correction coefficients of the battery module, so that real-time adjustment of the SOC value can be achieved to ensure that the battery module avoids the SOC value during the discharge process. sudden drop, thus avoiding the impact of inaccurate SOC values on the user's power consumption plan.
  • fullcap represents the rated full load capacity of the battery module
  • ⁇ Idt represents the discharge capacity of the battery module
  • K represents the SOC correction coefficient.
  • the discharge capacity of the battery module can be obtained by calculating the integral value of the discharge current of the battery module.
  • the rated full load capacity, discharge parameters and correction coefficient of the battery module are substituted into the above formula for calculation, which can be quickly and Accurately obtain the SOC value.
  • the undervoltage protection voltage of the battery is 3.0V
  • the preset voltage is 3.5V.
  • the cell voltage of the battery module reaches 3.3v
  • the SOC will plummet to a preset value, such as zero, due to undervoltage. Therefore, when it is detected that the cell voltage is less than or equal to the preset voltage 3.5V, you can control and speed up the decline rate of SOC by increasing the SOC correction coefficient.
  • the correction coefficient is 1, and the calculated correction coefficient is 1.05. .
  • the value of SOC can change at a faster decreasing speed as the correction coefficient increases, so that when the cell voltage of the battery module reaches the undervoltage protection voltage of 3.0V, the SOC can be reduced to the preset value.
  • the preset value It can be 0 or the minimum SOC value set by the user to allow discharge, thereby preventing the SOC value from plummeting to zero and avoiding abnormal power consumption caused by the SOC plummeting to zero.
  • the SOC calculation method of the battery module when it is determined that the cell voltage of the battery module in the discharge state is near the undervoltage protection voltage, the correction coefficient of the SOC is calculated based on the first voltage difference and the current difference, Realize the adjustment of the SOC correction coefficient, so that the SOC of the battery module decreases faster from the preset voltage to the undervoltage protection voltage, so that when the cell voltage of the battery module reaches the undervoltage protection voltage,
  • the calculated SOC value is a preset value.
  • the preset value can be the minimum SOC value set by the user to allow discharge or the default value, so as to avoid the SOC sudden drop during the discharge process of the battery module and avoid the SOC sudden drop. resulting in abnormal power consumption.
  • FIG. 3 is a schematic flow chart of another SOC calculation method for a battery module provided by an embodiment of the present application.
  • the SOC calculation method includes steps S301 to S306.
  • Step S301 Obtain the cell voltage of the battery module in a discharge state.
  • Step S302 When the cell voltage is less than or equal to the preset voltage, obtain the discharge parameters of the battery module.
  • the discharge parameters include the resistance value of the load.
  • the preset voltage is greater than the undervoltage protection voltage of the battery.
  • the SOC of the battery module can plummet to zero. Therefore, when the cell voltage is greater than the undervoltage protection voltage and less than or equal to the preset voltage, the discharge parameters of the battery module, such as the resistance value of the load, are obtained to perform the relevant steps of the subsequent SOC calculation method.
  • the correction coefficient of the SOC can be used Calculate to achieve reasonable adjustment of the SOC decline rate, ensure the stability of the SOC value decline, and avoid the SOC value plummeting to zero.
  • Step S303 Obtain the first voltage difference between the preset voltage and the cell voltage.
  • the first voltage difference refers to the voltage difference between the preset voltage and the cell voltage.
  • the first voltage difference is obtained by calculating the difference between the preset voltage and the cell voltage.
  • the step of obtaining the first voltage difference may be performed simultaneously with the step of obtaining the resistance value of the load, or may be performed earlier or later than the step of obtaining the resistance value of the load.
  • Step S304 When the resistance value of the load is greater than the preset resistance value, calculate the resistance difference between the resistance value of the load and the preset resistance value.
  • the resistance value of the load is greater than the preset resistance value; when the resistance value of the load is greater than the preset resistance value, the resistance difference between the resistance value of the load and the preset resistance value is calculated.
  • the preset resistance value can be calculated according to Set according to the actual situation.
  • the resistance difference is calculated only when the resistance value of the load is greater than the preset resistance value.
  • the SOC correction coefficient is calculated based on the resistance difference and the first voltage difference, thereby adjusting the SOC decrease rate during battery discharge.
  • Step S305 Calculate the correction coefficient of the SOC according to the resistance difference and the first voltage difference.
  • the correction coefficient is positively correlated with the discharge parameters and inversely correlated with the cell voltage.
  • the SOC correction coefficient is calculated based on the resistance difference and the first voltage difference, so that the SOC value can be updated in time based on the calculated correction coefficient.
  • the greater the resistance difference and the first voltage difference the greater the calculated correction coefficient.
  • the larger the calculated correction coefficient the faster the SOC value will decrease as the battery module is discharged, thereby ensuring that the SOC value will not drop suddenly during the battery discharge process.
  • the resistance difference and the first voltage difference are substituted into a preset formula for calculation, and the correction coefficient of the SOC can be obtained.
  • the preset formula can be set according to the specific situation. For example, you can refer to the aforementioned current difference.
  • the value and the first pressure difference are used to calculate the correction coefficient of the SOC, which will not be described again in this embodiment.
  • the step of calculating the SOC correction coefficient based on the resistance difference and the first voltage difference it is determined whether the remaining power of the battery module is less than or equal to the preset remaining power; if so, the step of calculating the SOC correction coefficient based on the resistance difference and the first voltage difference is performed. 1. Steps for calculating SOC correction coefficient for differential pressure. Among them, the preset remaining power is less than the rated full load power of the battery module. It should be noted that after the remaining power of the battery module is greater than the preset remaining power, the SOC value may plummet to zero. Therefore, it is necessary to perform the step of calculating the correction coefficient of the SOC based on the first voltage difference and the resistance difference to avoid a sudden drop in the SOC value.
  • Step S306 Calculate the SOC value based on the rated full load capacity, discharge parameters and correction coefficient of the battery module.
  • the value of SOC can be accurately calculated based on the rated full load capacity, discharge parameters and correction coefficient of the battery module.
  • the discharge parameters include the discharge capacity of the battery module. It should be noted that the SOC value can be accurately calculated through the rated full load capacity, discharge parameters and correction coefficients of the battery module, so that the SOC value can be adjusted in real time to avoid a sudden drop in the SOC value.
  • the SOC value is displayed through the display device.
  • the display device is, for example, a display screen, which facilitates the user to reasonably control and manage the battery power through the SOC value displayed on the display device.
  • the SOC value displayed on the display device is not prone to plummeting to zero, which is extremely difficult. Greatly improves user experience.
  • the correction coefficient is updated to 1, and the correction coefficient is updated according to the battery module.
  • the SOC value is calculated based on the group's rated full load power, discharge parameters and correction coefficients, and then the SOC value is displayed through the display device to facilitate users to make reasonable power consumption planning.
  • the SOC calculation method of the battery module when it is determined that the cell voltage of the battery module in the discharge state is low, based on the resistance difference between the resistance value of the load and the preset resistance value and the first
  • the voltage difference adjusts the correction coefficient of the SOC, so that the SOC of the battery module decreases faster from the preset voltage to the undervoltage protection voltage, thereby ensuring that when the cell voltage drops to the undervoltage protection voltage, the SOC can Reduce to the preset value.
  • the preset value can be the minimum SOC value set by the user to allow discharge or the default value to avoid the sudden drop in SOC value and avoid abnormal power consumption caused by the sudden drop in SOC.
  • FIG. 4 is a schematic structural block diagram of a control circuit provided by an embodiment of the present application.
  • control circuit 300 includes a processor 302 and a memory 303 connected through a system bus 301; the memory 303 may include a non-volatile storage medium and an internal memory.
  • Non-volatile storage media stores operating systems and computer programs.
  • the computer program includes program instructions, which when executed, can cause the processor 302 to perform any SOC calculation method.
  • the processor 302 is used to provide computing and control capabilities to support the operation of the entire control circuit 300 .
  • the internal memory provides an environment for the execution of the computer program in the non-volatile storage medium.
  • the computer program When executed by the processor 302, it can cause the processor 302 to perform any SOC calculation method.
  • the control circuit 300 may also include a network interface, which is used for network communication, such as sending assigned tasks.
  • a network interface which is used for network communication, such as sending assigned tasks.
  • the processor 302 can be a central processing unit (Central Processing Unit, CPU), and the processor 302 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application specific integrated circuits). Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general processor may be a microprocessor or the processor may be any conventional processor.
  • the processor 302 is used to run a computer program stored in the memory to implement the following steps:
  • the discharge parameters of the battery module are obtained; the preset voltage is greater than the battery's undervoltage protection voltage;
  • the correction coefficient is positively related to the discharge parameters and inversely related to the cell voltage
  • the processor 302 when implementing the method of obtaining the cell voltage of a battery module in a discharged state, the processor 302 is used to implement:
  • the cell voltage of the battery module is collected at a second sampling frequency; the second sampling frequency is higher than the first sampling frequency.
  • the discharge parameters include discharge current; when the processor 302 calculates the correction coefficient of the SOC according to the first pressure difference and the discharge parameters, the processor 302 is used to implement:
  • the SOC correction coefficient is calculated.
  • the processor 302 when the processor 302 calculates the SOC correction coefficient based on the current difference and the first voltage difference, it is used to implement:
  • K represents the correction coefficient of SOC
  • a represents a preset constant greater than zero and less than 1
  • i represents the discharge current
  • i ref represents the reference current
  • v ref represents the preset voltage
  • v represents the cell voltage
  • processor 302 is also used to implement:
  • the correction coefficient is updated to 1.
  • the discharge parameters include the resistance value of the load; after the processor 302 calculates the correction coefficient of the SOC according to the first voltage difference and the discharge parameters, the processor 302 is also used to implement:
  • the SOC correction coefficient is calculated.
  • the discharge parameters include the discharge capacity; before implementing the step of calculating the correction coefficient of the SOC based on the first pressure difference and the discharge parameters, the processor 302 is also configured to implement:
  • FIG. 5 is a schematic structural block diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 400 includes: a battery module 401 and a control circuit 402.
  • the control circuit 402 is connected to the battery module 401.
  • the control circuit 402 can serve as the BMS (Battery Management System) of the battery module 401.
  • the control circuit 402 is used to calculate the SOC of the battery module 401 .
  • the battery module 401 includes one or more electrical energy storage units.
  • the electrical energy storage units are, for example, one or more batteries.
  • the batteries include battery cells.
  • the control circuit 402 may be the control circuit 300 in the previous embodiment.
  • the electronic device 400 may be an energy storage device, for example.
  • This application also provides an electronic device, including: a battery module; one or more processors; and a storage device for storing one or more programs, when the one or more programs are executed by one or more processors , allowing electronic equipment to implement the above SOC calculation method.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • One or more computer programs are stored on the computer-readable storage medium.
  • the one or more computer programs include program instructions.
  • the program instructions can be processed by one or more processors.
  • the method implemented when the program instructions are executed may refer to various embodiments of the SOC calculation method of this application.
  • the computer-readable storage medium may be the control circuit or the internal storage unit of the electronic device described in the previous embodiments, such as the hard disk or memory of the control circuit or electronic device.
  • the computer-readable storage medium may also be an external storage device of the control circuit or electronic device, such as a plug-in hard disk, a smart memory card (SmartMedia Card, SMC), or a secure digital device equipped on the control circuit or electronic device. (Secure Digital, SD) card, Flash Card, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种SOC计算方法、控制电路、电子设备及存储介质,该方法包括:获取处于放电状态下的电池模组的电芯电压(S101);在电芯电压小于或等于预设电压时,获取电池模组的放电参数(S102);其中,预设电压大于电池的欠压保护电压;获取预设电压和电芯电压的第一压差(S103);根据第一压差和放电参数计算SOC的修正系数,修正系数与放电参数正相关且与电芯电压反相关(S104);根据电池模组的额定满载电量、放电参数和修正系数计算SOC的数值(S105)。

Description

SOC计算方法、控制电路及电子设备
相关申请的交叉引用
本申请要求于2022年06月21日提交中国专利局、申请号为202210706862.0、发明名称为“SOC计算方法、控制电路、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池控制技术领域,尤其涉及一种SOC计算方法、控制电路、电子设备及存储介质。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
电池的荷电状态(State of Charge,SOC)是描述电池运行状态的重要参数,其常用电池剩余电量与电池实际容量的比值表示。电池SOC通常需要通过电池端电压、充放电电流及内阻等参数来估算其大小。用户能够通过电池的SOC来判断剩余电量,从而便于电池电量的控制和管理。
在电池的放电过程中,电池电压会随剩余电量的降低而变小。相应的,SOC也会随剩余电量的降低不断变小,然而,在SOC的下降过程中会出现SOC骤降的情况,例如,会出现SOC从一定数值骤降为零的情况,导致用电异常,影响用户的用电规划。
发明内容
本申请的各种实施例,提供一种SOC计算方法、控制电路、电子设备及存储介质。
第一方面,本申请提供一种电池模组的SOC计算方法,包括:
获取处于放电状态下的电池模组的电芯电压;
在所述电芯电压小于或等于预设电压时,获取所述电池模组的放电参数;所述预设电压大于所述电池的欠压保护电压;
获取所述预设电压和所述电芯电压的第一压差;
根据所述第一压差和所述放电参数计算所述SOC的修正系数,所述修正系数与所述放电参数正相关且与所述电芯电压反相关;
根据所述电池模组的额定满载电量、放电参数和所述修正系数计算所述SOC的数值。
第二方面,本申请还提供一种控制电路,包括处理器、存储器以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述存储器上存储有可被所述处理器执行的计算机程序,所述计算机程序被所述处理器执行时,以实现如上所述的SOC计算方法的步骤。
第三方面,本申请还提供一种电子设备,所述电子设备包括:
电池模组;
一个或多个处理器;以及
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述电子设备实现如上所述的SOC计算方法。
第四方面,本申请还提供一种存储介质,所述存储介质存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如上所述的SOC计算方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电池模组的SOC计算方法的步骤流程示 意图。
图2是本申请实施例提供的另一种电池模组的SOC计算方法的步骤流程示意图。
图3为本申请实施例提供的另一种电池模组的SOC计算方法的步骤流程示意图。
图4为本申请实施例提供的一种控制电路的结构示意性框图。
图5为本申请实施例提供的一种电子设备的结构示意性框图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种电池模组的SOC计算方法、控制电路、电子设备及存储介质。其中,该SOC计算方法可应用于电子设备中,该电子设备设置有控制电路以及电池模组,其中控制电路可以是与电池模组对应的电池管理***。
示例性的,该电子设备可以为储能设备,储能设备例如包括电池模组,电池模组包括一个或多个电能存储单元,电能存储单元例如为一个或多个电池,电池包括电芯。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参照图1,图1为本申请实施例提供的一种电池模组的SOC计算方法的步骤流程示意图,该SOC计算方法可应用于电子设备的控制电路中,该SOC计算方法包括:
S101,获取处于放电状态下的电池模组的电芯电压。
在本步骤中,电池模组处于放电状态,电池模组的电芯电压会随电池模 组的放电而降低。在本步骤中,电池模组的剩余电量和SOC等电池参数也会随电池模组的放电而降低。
在本步骤中,电池模组可以包括多个电池的电芯,不同电池的电芯电压可以相同或者会存在一定范围内的偏差。在本步骤中,电池模组的电芯电压可以是所有电芯电压中的最低电芯电压,因为在处于放电状态下,以所有电芯电压中的最低电芯电压作为电池模组的电芯电压,能够确保放电过程中都不会出现因电芯过放而导致欠压的问题发生。
在本步骤中,电芯电压可以通过电压采样电路来采集,并传输至控制电路上。在一实施例中,控制电路可以为电池管理***(Battery Management System,BMS),由BMS根据电芯电压进行后续操作判断。
例如,可以通过获取电池管理***中的放电开光管的导通或者关断状态来判断当前电池模组是否处于放电状态,也可以通过控制电路中自定义的标识字段的值来获取电池模组是否处于放电状态,从而能够在获取到电池模组处于放电状态时,采用本实施例的SOC计算方法对电池模组的SOC进行计算。
S102,在电芯电压小于或等于预设电压时,获取电池模组的放电参数。
在本步骤中,预设电压大于电池的欠压保护电压,控制电路在电池的电芯电压小于或等于欠压保护电压时会启动欠压保护,导致关闭电池模组的输出,也即可以通过电池管理***断开位于电池模组放电回路上的放电开关管。
在本步骤中,预设电压大于电池模组的欠压保护电压,可以根据实际的需求对预设电压进行设置,比如将其设置比欠压保护电压高预设值,该预设值可以为0.5V或者1V甚至更高。
示例性的,电池的欠压保护电压为3V,预设电压为3.5V。若控制电路检测到电池模组的电芯电压为3.3V,判断电芯电压3.3V小于或等于预设电压3.5V,则获取电池模组的放电参数,并执行后续步骤。
在本步骤中,放电参数可以包括放电电流和放电负载的电阻值中的至少一种。需要说明的是,放电电流可以为电池模组的当前输出的电流值,负载的电阻值可以为电池模组的当前接入负载的电阻值。
S103,获取预设电压和电芯电压的第一压差。
在本步骤中,在电芯电压小于或等于预设电压时,获取预设电压和电芯 电压的第一压差。在本步骤中,第一压差是指预设电压v ref与电芯电压v之间的电压差值。
在本步骤中,获取预设电压和电芯电压的第一压差的操作与前述获取电池模组的放电参数的操作可以同时执行。在本步骤中,该获取预设电压和电芯电压的第一压差的操作也可以先于或者后于前述获取电池模组的放电参数的操作进行执行,本实施例对此不做具体限定。
S104,根据第一压差和放电参数计算SOC的修正系数,修正系数与放电参数正相关且与电芯电压反相关。
在本步骤中,修正系数用于表征SOC随电池模组的放电而变化的速率,在电池放电状态下,该修正系数越大则表明SOC的数值随电池模组的放电而下降的越快,修正系数越小则表明SOC的数值随电池模组的放电而下降的越慢。
在本步骤中,通过第一压差和放电参数计算SOC的修正系数,修正系数与放电参数正相关且与电芯电压反相关,从而能够根据计算得到的修正系数及时更新SOC的数值。例如在电池模组的电芯电压变小时控制SOC的修正系数变大,以提高SOC的数值随电池模组的放电而下降的速率,从而使得电池模组的SOC从预设电压到欠压保护电压这段时间的下降速度变快,从而使得在电池模组的电芯电压到达欠压保护电压时,其SOC值为用户自定义的最小SOC值或者默认值,该最小SOC值例如为5%,在电池模组的SOC下降到5%时就停止放电,该默认值可以为0,从而确保在电池模组的电芯电压达到欠压保护电压时SOC也同样更新为***设定的不可放电SOC值,避免出现SOC骤降的情况发生,例如可以避免SOC骤降为零的情况发生。
同时,在电池模组的电芯电压处于预设电压到欠压保护电压期间,SOC的下降速率变快,也可以起到提示预警作用,以供用户根据SOC的值以及其变化情况预判实际情况,从而提前做好用电规划。
在本实施例中,电池模组的放电电流越大则SOC的修正系数越大,连接于电池模组的放电负载的电阻值越大则SOC的修正系数越大;电池模组的电芯电压越小则SOC的修正系数越大;当电芯电压越小,预设电压与电芯电压之间的第一压差则越大,对应的SOC修正系数也越大。
S105,根据电池模组的额定满载电量、放电参数和修正系数计算SOC的数值。
在本步骤中,额定满载电量可以为额定的电池模组充满电量时的电量大小,放电参数可以包括电池模组的放电电流、放电电量等参数,修正系数是根据前述的第一压差和放电参数计算得到的。SOC的计算方法可以采用传统的安时积分法。
在本步骤中,电池模组的额定满载电量是不变的,而放电参数和修正系数会随电池模组的放电而出现变化。在本步骤中,能够通过电池模组的额定满载电量、放电参数和修正系数准确的计算SOC的数值,从而能够实现对SOC的数值的实时调整,使得电池模组的SOC从预设电压到欠压保护电压这段时间的下降速度变快,从而使得在电池模组的电芯电压到达欠压保护电压时,SOC能够降低至预设值,避免SOC骤降,从而避免SOC骤降导致的用电异常,不会影响用户的用电规划。
在本步骤中,在处于放电状态下的电池模组的电芯电压小于或等于预设电压时,可以根据预设电压与电芯电压之间的第一压差以及放电参数对SOC的修正系数进行调节,由于该修正系数与放电参数正相关且与电芯电压反相关,因此在电池模组的放电过程中,修正系数在电芯电压由预设电压降低至欠压保护电压这段时间的变大,提高了SOC的下降速率,从而使得电池模组的电芯电压在到达欠压保护电压时,其SOC值为用户自定义的最小SOC值或者为默认值,最小SOC值例如为5%,默认值例如为0。
上述实施例提供的SOC计算方法,通过获取处于放电状态下的电池模组的电芯电压,并在电芯电压小于或等于预设电压时,获取电池模组的放电参数,该预设电压大于电池的欠压保护电压;根据预设电压与电芯电压之间的第一压差和放电参数计算SOC的修正系数,该修正系数与放电参数正相关且与电芯电压反相关;根据电池模组的额定满载电量、放电参数和修正系数计算SOC的数值。通过这种方式,在确定处于放电状态下的电池模组的电芯电压低于预设电压值时,根据该第一压差和放电参数计算SOC的修正系数,利用修正系数可以调整SOC的下降速率,电池模组的SOC以较快的下降速度进行变化,确保在电芯电压下降至欠压保护电压时,SOC能够降低至预设值, 该预设值可以为由用户设置的允许放电的最小SOC值或者为默认值,从而避免在放电过程中SOC出现骤降,从而避免SOC骤降导致的用电异常问题,不会对用户的用电规划产生影响。
示例性的,电池的欠压保护电压为3V,预设电压为3.5V,电池模组当前的电芯电压为3.3V。本申请的控制电路在检测到电芯电压3.3V小于或等于预设电压3.5V时,获取电池模组的放电参数以及预设电压与电芯电压之间的第一压差,并通过放电参数以及第一压差来调整SOC的修正系数,从而调整SOC的下降速率,使得SOC能够以较快的下降速度进行变化,避免SOC骤降。同时,利用本申请的方案可以给用户起到警示作用,提示用户电池模组的放电情况,用户可以根据SOC来合理的安排用电规划,提高了用户体验。
例如,电池模组的电芯电压为3.5V时对应的SOC为20%,此时SOC的修正系数为1;电池模组的电芯电压为3.3V时对应的SOC为15%,此时SOC的修正系数为1.1;电池模组的电芯电压为3.1V时对应的SOC为8%,此时SOC的修正系数为1.2;在电池模组的电芯电压等于欠压保护电压3V时,SOC的修正系数为1.3,此时SOC下降为预设值0。
请参照图2,图2为本申请实施例提供的另一种电池模组的SOC计算方法的步骤流程示意图。
如图2所示,该电池模组的SOC计算方法包括步骤S201至步骤S206。
步骤S201、获取处于放电状态下的电池模组的电芯电压。
其中,电池模组可以包括一个或多个电芯。当电池模组包括多个电芯时,电芯电压可以为多个电芯的电压中的最低电压。
需要说明的是,电池模组处于放电状态下,电芯电压小于或等于欠压保护电压时会启动欠压保护。因此,将多个电芯的电压中的最低电压作为电池模组的电芯电压,保证能够及时且有效的启动对电池模组的欠压保护。
在一实施例中,在电芯电压大于预设电压时,以第一采样频率采集电池模组的电芯电压;在电芯电压小于或等于预设电压时,以第二采样频率采集电池模组的电芯电压。其中,第二采样频率高于第一采样频率,第一采样频率和第二采样频率可以根据实际情况进行设置。
需要说明的是,在电芯电压大于预设电压时,无需调整SOC的修正系数, 因此以采样频率较低的第一采样频率采集电池模组的电芯电压,该第一采样频率例如为10分钟一次,SOC的数值不会出现骤降。在电芯电压小于或等于预设电压时,需要避免SOC的数值出现骤降,因此以采样频率较高的第二采样频率采集电池模组的电芯电压,该第二采样频率例如为2分钟一次,从而能够提高SOC的数值的调节精度。
在一实施例中,本申请实施例提供的SOC计算方法可以是根据该第一采样频率或第二采样频率进行的。也就是说,控制电路获取处于放电状态下的电池模组的电芯电压之后,可以根据预设电压与电芯电压之间的比较关系,确定采用第一采样频率还是第二采样频率采集电池模组的电芯电压,并执行后续的SOC计算方法的步骤。在电芯电压小于或等于预设电压时,通过采样频率较高的第二采样频率采集电池模组的电芯电压,能够提高SOC的数值的调节精度。
示例性的,获取处于放电状态下的电池模组的电芯电压,并判断电芯电压是否小于或等于预设电压;若电芯电压大于预设电压,则以第一采样频率采集电池模组的电芯电压,并确定SOC的修正系数为1,以修正系数为1来计算SOC的数值;若电芯电压小于或等于预设电压,则以第二采样频率采集电池模组的电芯电压,并根据预设电压与电芯电压之间的第一压差以及电池模组的放电参数,计算SOC的修正系数,并根据电池模组的额定满载电量、放电参数和修正系数计算SOC的数值。
步骤S202、在电芯电压小于或等于预设电压时,获取电池模组的放电参数,放电参数包括放电电流。
其中,预设电压大于电池的欠压保护电压,在电芯电压小于或等于欠压保护电压时,电池模组的SOC可以骤降为零。因此,在电芯电压大于欠压保护电压且小于或等于预设电压时,获取电池模组的放电参数如放电电流来执行后续的SOC计算方法的相关步骤,能够通过SOC的修正系数的计算来实现SOC的下降速率的合理调节,避免SOC的数值骤降为零的情况发生。
在一实施例中,若电芯电压大于预设电压,则无需执行后续步骤。示例性的,在电芯电压大于预设电压时,电池模组的电量还较多,SOC的数值不会出现骤降。因此可以确定SOC的修正系数为1,并以该SOC的修正系数1 来计算SOC的数值,无需实现对SOC的下降速率的进行调节。
步骤S203、获取预设电压和电芯电压的第一压差。
其中,第一压差是指预设电压与电芯电压之间的电压差值,通过计算预设电压与电芯电压之间的差值,得到该第一压差。
在一实施例中,获取第一压差的步骤可以与获取电池模组的放电电流的步骤同时进行,也可以早于或者晚于该获取放电电流的步骤进行。
步骤S204、计算放电电流与参考电流之间的电流差值。
其中,放电电流可以为电池模组输出的电流值,参考电流可以为电池模组的输出电流的参考值,参考电流可以根据电池模组的实际情况进行设置,参考电流例如为5A。
在一实施例中,判断放电电流是否大于参考电流;在放电电流大于参考电流时,计算放电电流与参考电流之间的电流差值。需要说明的是,该放电电流与参考电流之间的电流差值应当为正值,因此在放电电流大于参考电流时,计算放电电流与参考电流之间的电流差值,能够保证SOC的修正系数的计算结果不会出现错误。
步骤S205、根据电流差值和第一压差,计算SOC的修正系数,修正系数与放电参数正相关且与电芯电压反相关。
需要说明的是,通过第一压差和放电参数计算SOC的修正系数,从而能够根据计算得到的修正系数及时更新SOC的数值。电流差值、第一压差越大,则计算后的修正系数越大。计算后的修正系数越大,则SOC的数值随电池模组的放电而下降的越快。
在一实施例中,利用以下公式计算SOC的修正系数:
K=1+a×(i-i ref)×(v ref-v)
其中,K表示SOC的修正系数,a表示大于零小于1的预设常数,i表示放电电流,i ref表示参考电流,v ref表示预设电压,v表示电芯电压。需要说明的是,i-i ref表示电流差值,v ref-v表示第一压差,预设常数a可以根据实际情况进行设置,例如为a可以为0.5。将该电流差值i-i ref以及第一压差v ref-v代入至上述公式进行计算,能够快速的得到SOC的修正系数K。
需要说明的是,SOC的修正系数K可以是在常数值1的基础上加上预设 常数、电流差值、第一压差之间乘积值得到的。在电芯电压小于或等于预设电压时,能够调高SOC的修正系数K以提高SOC的下降速率,例如在电池模组的电芯电压变小时控制SOC的修正系数变大,以提高SOC的数值随电池模组的放电而下降的速率,从而使得电池模组的SOC从预设电压到欠压保护电压这段时间的下降速度变快,从而使得SOC的数值在电池放电过程中不会出现SOC的数值骤降的现象。
在一实施例中,根据电流差值和第一压差,计算SOC的修正系数之前,判断电池模组的剩余电量是否小于或等于预设剩余电量;若是,则执行根据第一压差和电流差值计算SOC的修正系数的步骤。
其中,预设剩余电量可以根据电池模组的实际情况进行设置,预设剩余电量小于电池模组的额定满载电量。需要说明的是,该电池模组的剩余电量小于或等于预设剩余电量后,SOC的数值可能出现骤降的现象。因此需要执行根据第一压差和电流差值计算SOC的修正系数的步骤,保证对SOC的修正系数进行调整计算的必要性,避免SOC的数值出现骤降。
示例性的,如果额定满载电量为10000毫安,预设剩余电量为2000毫安。当电池模组的剩余电量小于等于2000毫安的时候,可能会发生SOC因为欠压骤降为预设值的情况。因此,在检测到电池模组的剩余电量小于或等于预设剩余电量2000毫安的时候,可以通过增大SOC的修正系数来控制加快SOC的下降速率,例如让SOC的修正系数大于1,这样SOC的下降速率就加快了,能够避免SOC的数值骤降。
在一实施例中,在电芯电压大于预设电压或者当电池模组未处于放电状态时,将修正系数更新为1。需要说明的是,电池模组的工作过程中其工作状态是会发生变化的,电池模组处于充电状态或者电池模组停止放电等因素可能会导致电池模组的电芯电压升高,使得电芯电压大于预设电压,此时不会出现SOC的数值骤降为零的现象。而在电池模组的初始放电阶段,电芯电压也大于预设电压。因此在电芯电压大于预设电压或者当电池模组未处于放电状态,将修正系数更新为1,从而无需根据电流差值和第一压差来计算SOC的修正系数,能够快速的获取SOC的修正系数。
步骤S206、根据电池模组的额定满载电量、放电参数和修正系数计算SOC 的数值。
其中,SOC的数值可以根据电池模组的额定满载电量、放电参数和修正系数准确的计算得到,放电参数包括电池模组的放电电量或放电电流。需要说明的是,通过电池模组的额定满载电量、放电参数和修正系数准确的计算SOC的数值,从而能够实现对SOC的数值的实时调整,保证电池模组在放电过程中避免SOC的数值出现骤降,从而能够避免因SOC的数值不准确而影响用户的用电规划。
示例性的,利用以下公式计算SOC的数值:
SOC=(fullcap-K*∫Idt)/fullcap
其中,fullcap表示电池模组的额定满载电量,∫Idt表示电池模组的放电电量,K表示SOC的修正系数。需要说明的是,电池模组的放电电量可以通过求取电池模组的放电电流的积分值得到,将电池模组的额定满载电量、放电参数和修正系数代入至上述公式进行计算,能够快速且准确的得到SOC的数值。
示例性的,电池的欠压保护电压为3.0V,预设电压为3.5V。当电池模组的电芯电压到了3.3v的时候,随着电芯电压的继续下降大概率会发生SOC因为欠压骤降为预设值,例如为零的情况。因此,在检测到电芯电压小于或等于预设电压3.5V的时候,可以通过增大SOC的修正系数来控制加快SOC的下降速率,例如的修正系数为1,经过计算后的修正系数为1.05。SOC的数值随修正系数的增大能够以较快的下降速度进行变化,从而使得电池模组的电芯电压在到达欠压保护电压3.0V时候,SOC能够降低至预设值,该预设值可以为0或者用户设置的允许放电的最小SOC值,从而避免SOC的数值骤降为零的情况发生,同时避免由于SOC骤降为零导致的用电异常问题。
上述实施例提供的电池模组的SOC计算方法,在确定处于放电状态下的电池模组的电芯电压位于欠压保护电压附近时,根据第一压差和电流差值计算SOC的修正系数,实现对SOC的修正系数进行调节,使得电池模组的SOC从预设电压到欠压保护电压这段时间的下降速度变快,从而使得在电池模组的电芯电压到达欠压保护电压时,计算SOC的数值为预设值,该预设值可以为由用户设置的允许放电的最小SOC值或者为默认值,从而避免电池模组放 电过程中SOC骤降的情况发生,并避免SOC骤降导致的用电异常问题。
请参照图3,图3为本申请实施例提供的另一种电池模组的SOC计算方法的步骤流程示意图。
如图3所示,该SOC计算方法包括步骤S301至S306。
步骤S301、获取处于放电状态下的电池模组的电芯电压。
步骤S302、在电芯电压小于或等于预设电压时,获取电池模组的放电参数,放电参数包括负载的电阻值。
其中,预设电压大于电池的欠压保护电压,在电芯电压小于或等于欠压保护电压时,电池模组的SOC可以骤降为零。因此,在电芯电压大于欠压保护电压且小于或等于预设电压时,获取电池模组的放电参数如负载的电阻值来执行后续的SOC计算方法的相关步骤,能够通过SOC的修正系数的计算来实现SOC的下降速率的合理调节,保证SOC的数值下降的稳定性,避免SOC的数值骤降为零的情况发生。
在一实施例中,若电芯电压大于预设电压,则确定SOC的修正系数K=1,无需获取如电池模组的负载的电阻值等放电参数。在另一实施例中,若电芯电压小于或等于预设电压,电池模组未处于放电状态,则确定SOC的修正系数K=1,此时不会出现SOC的数值骤降为零的现象,因此也无需获取如电池模组的负载的电阻值等放电参数。
步骤S303、获取预设电压和电芯电压的第一压差。
其中,第一压差是指预设电压与电芯电压之间的电压差值,通过计算预设电压与电芯电压之间的差值,得到该第一压差。
在一实施例中,获取第一压差的步骤可以与获取负载的电阻值的步骤同时进行,也可以早于或者晚于该获取该负载的电阻值的步骤进行。
步骤S304、在负载的电阻值大于预设阻值时,计算负载的电阻值与预设阻值之间的电阻差值。
其中,判断负载的电阻值是否大于预设阻值;在负载的电阻值大于预设阻值时,计算负载的电阻值与预设阻值之间的电阻差值,该预设阻值可以根据实际情况进行设置。
需要说明的是,在负载的电阻值小于或等于预设阻值时,不容易出现SOC 的数值骤降为零的现象,因此在负载的电阻值大于预设阻值时,才计算电阻差值以根据电阻差值和第一压差计算SOC的修正系数,从而调整电池放电过程中的SOC的下降速率。
步骤S305、根据电阻差值和第一压差,计算SOC的修正系数,修正系数与放电参数正相关且与电芯电压反相关。
需要说明的是,根据电阻差值和第一压差,计算SOC的修正系数,从而能够根据计算得到的修正系数及时更新SOC的数值。电阻差值、第一压差越大,则计算后的修正系数越大。计算后的修正系数越大,则SOC的数值随电池模组的放电而下降的越快,从而保证SOC的数值在电池放电过程不会出现骤降的现象。
在一实施例中,将电阻差值和第一压差代入至预设公式进行计算,能够得到SOC的修正系数,该预设公式的可根据具体情况进行设置,例如可以参照前述的根据电流差值和第一压差计算SOC的修正系数的实施例,本实施例对此不再赘述。
在一实施例中,在根据电阻差值和第一压差计算SOC的修正系数步骤之前,判断电池模组的剩余电量是否小于或等于预设剩余电量;若是,则执行根据电阻差值和第一压差计算SOC的修正系数的步骤。其中,预设剩余电量小于电池模组的额定满载电量。需要说明的是,该电池模组的剩余电量大于预设剩余电量后,SOC的数值可能出现骤降为零的现象。因此需要执行根据第一压差和电阻差值计算SOC的修正系数的步骤,避免SOC的数值出现骤降的情况发生。
步骤S306、根据电池模组的额定满载电量、放电参数和修正系数计算SOC的数值。
其中,SOC的数值可以根据电池模组的额定满载电量、放电参数和修正系数准确的计算得到,放电参数包括电池模组的放电电量。需要说明的是,通过电池模组的额定满载电量、放电参数和修正系数准确的计算SOC的数值,从而能够实现对SOC的数值的实时调整,避免SOC的数值出现骤降。
在一实施例中,计算SOC的数值之后,通过显示装置显示SOC的数值。其中,显示装置例如为显示屏,便于用户通过显示装置上显示的SOC的数值 合理的实现对电池电量的控制和管理,显示装置上显示的SOC的数值不容易出现骤降为零的现象,极大的提高了用户体验。
在一实施例中,通过显示装置显示SOC的数值之后,若确定电池模组的电芯电压大于预设电压或者当电池模组未处于放电状态时,将修正系数更新为1,并根据电池模组的额定满载电量、放电参数和修正系数计算SOC的数值,再通过该显示装置显示SOC的数值,便于用户合理的进行用电规划。
上述实施例提供的电池模组的SOC计算方法,在确定处于放电状态下的电池模组的电芯电压较低时,根据负载的电阻值与预设阻值之间的电阻差值和第一压差对SOC的修正系数进行调节,使得电池模组的SOC从预设电压到欠压保护电压这段时间的下降速度变快,从而确保在电芯电压下降至欠压保护电压时,SOC能够降低至预设值,该预设值可以为由用户设置的允许放电的最小SOC值或者为默认值,避免SOC的数值骤降的情况发生,同时避免SOC骤降导致的用电异常问题。
请参阅图4,图4为本申请实施例提供的一种控制电路的结构示意性框图。
如图4所示,该控制电路300包括通过***总线301连接的处理器302和存储器303;存储器303可以包括非易失性存储介质和内存储器。
非易失性存储介质可存储操作***和计算机程序。该计算机程序包括程序指令,该程序指令被执行时,可使得处理器302执行任意一种SOC计算方法。
处理器302用于提供计算和控制能力,支撑整个控制电路300的运行。
内存储器为非易失性存储介质中的计算机程序的运行提供环境,该计算机程序被处理器302执行时,可使得处理器302执行任意一种SOC计算方法。
控制电路300还可以包括网络接口,该网络接口用于进行网络通信,如发送分配的任务等。本领域技术人员可以理解,图4中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的控制电路300的限定,具体的控制电路300可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
应当理解的是,处理器302可以是中央处理单元(Central Processing Unit,CPU),该处理器302还可以是其他通用处理器、数字信号处理器(Digital  Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
其中,在一个实施例中,处理器302用于运行存储在存储器中的计算机程序,以实现如下步骤:
获取处于放电状态下的电池模组的电芯电压;
在电芯电压小于或等于预设电压时,获取电池模组的放电参数;预设电压大于电池的欠压保护电压;
获取预设电压和电芯电压的第一压差;
根据第一压差和放电参数计算SOC的修正系数,修正系数与放电参数正相关且与电芯电压反相关;
根据电池模组的额定满载电量、放电参数和修正系数计算SOC的数值。
在一个实施例中,处理器302在实现获取处于放电状态下的电池模组的电芯电压的方法时,用于实现:
在电芯电压大于预设电压时,以第一采样频率采集电池模组的电芯电压;
在电芯电压小于或等于预设电压时,以第二采样频率采集电池模组的电芯电压;第二采样频率高于第一采样频率。
在一个实施例中,放电参数包括放电电流;处理器302在实现根据第一压差和放电参数计算SOC的修正系数时,用于实现:
计算放电电流与参考电流之间的电流差值;
根据电流差值和第一压差,计算SOC的修正系数。
在一个实施例中,处理器302在实现根据电流差值和第一压差,计算SOC的修正系数时,用于实现:
利用以下公式计算SOC的修正系数:
K=1+a×(i-i ref)×(v ref-v)
其中,K表示SOC的修正系数,a表示大于零小于1的预设常数,i表示放电电流,i ref表示参考电流,v ref表示预设电压,v表示电芯电压。
在一个实施例中,处理器302还用于实现:
在电芯电压大于预设电压或者当电池模组未处于放电状态时,将修正系数更新为1。
在一个实施例中,放电参数包括负载的电阻值;处理器302在实现根据第一压差和放电参数计算SOC的修正系数之后,还用于实现:
在负载的电阻值大于预设阻值时,计算负载的电阻值与预设阻值之间的电阻差值;
根据电阻差值和第一压差,计算SOC的修正系数。
在一个实施例中,放电参数包括放电电量;处理器302在实现在根据第一压差和放电参数计算SOC的修正系数步骤之前,还用于实现:
判断电池模组的剩余电量是否小于或等于预设剩余电量;
若是,则执行根据第一压差和放电参数计算SOC的修正系数的步骤。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述控制电路300的具体工作过程,可以参考前述SOC计算方法实施例中的对应过程,在此不再赘述。
请参阅图5,图5为本申请实施例提供的一种电子设备的结构示意性框图。
如图5所示,电子设备400包括:电池模组401以及控制电路402,控制电路402连接于电池模组401,控制电路402可以作为电池模组401的BMS(Battery Management System,电池管理***)。控制电路402用于计算电池模组401的SOC。
其中,电池模组401包括一个或多个电能存储单元,电能存储单元例如为一个或多个电池,电池包括电芯。该控制电路402可以是前述实施例中的控制电路300。电子设备400例如可以为储能设备。
本申请还提供一种电子设备,包括:电池模组;一个或多个处理器;以及存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行时,使得电子设备实现如上的SOC计算方法。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有一个或者多个计算机程序,一个或者多个计算机程序中包括程序指令,程序指令可被一个或者多个处理器执行,程序指令被执行时所实现的方法可参照本申请SOC计算方法的各个实施例。
其中,计算机可读存储介质可以是前述实施例所述的控制电路或电子设备的内部存储单元,例如所述控制电路或电子设备的硬盘或内存。所述计算机可读存储介质也可以是所述控制电路或电子设备的外部存储设备,例如所述控制电路或电子设备上配备的插接式硬盘,智能存储卡(SmartMedia Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种电池模组的SOC计算方法,包括:
    获取处于放电状态下的电池模组的电芯电压;
    在所述电芯电压小于或等于预设电压时,获取所述电池模组的放电参数;所述预设电压大于电池的欠压保护电压;
    获取所述预设电压和所述电芯电压的第一压差;
    根据所述第一压差和所述放电参数计算所述SOC的修正系数,所述修正系数与所述放电参数正相关且与所述电芯电压反相关;
    根据所述电池模组的额定满载电量、放电参数和所述修正系数计算所述SOC的数值。
  2. 如权利要求1所述的SOC计算方法,其中,所述获取处于放电状态下的电池模组的电芯电压的方法,包括:
    在所述电芯电压大于所述预设电压时,以第一采样频率采集所述电池模组的电芯电压;
    在所述电芯电压小于或等于所述预设电压时,以第二采样频率采集所述电池模组的电芯电压;所述第二采样频率高于所述第一采样频率。
  3. 根据权利要求1所述的SOC计算方法,其中,所述放电参数包括放电电流;
    根据所述第一压差和所述放电参数计算所述SOC的修正系数,包括:
    计算所述放电电流与参考电流之间的电流差值;
    根据所述电流差值和所述第一压差,计算所述SOC的修正系数。
  4. 根据权利要求3所述的SOC计算方法,其中,根据所述电流差值和所述第一压差,计算所述SOC的修正系数,包括:
    利用以下公式计算所述SOC的修正系数:
    K=1+a×(i-i ref)×(v ref-v)
    其中,K表示所述SOC的修正系数,a表示大于零小于1的预设常数,i表示放电电流,i ref表示所述参考电流,v ref表示所述预设电压,v表示所述电芯电压。
  5. 根据权利要求1所述的SOC计算方法,其中,所述方法还包括:在 所述电芯电压大于所述预设电压或者当所述电池模组未处于放电状态时,将所述修正系数更新为1。
  6. 根据权利要求1所述的SOC计算方法,其中,所述放电参数包括负载的电阻值;
    所述根据所述第一压差和所述放电参数计算所述SOC的修正系数,包括:
    在所述负载的电阻值大于预设阻值时,计算所述负载的电阻值与预设阻值之间的电阻差值;
    根据所述电阻差值和所述第一压差,计算所述SOC的修正系数。
  7. 根据权利要求1-5中任一项所述的SOC计算方法,其中,在根据所述第一压差和所述放电参数计算所述SOC的修正系数步骤之前,所述方法还包括:
    判断所述电池模组的剩余电量是否小于或等于预设剩余电量;
    若是,则执行所述根据所述第一压差和所述放电参数计算所述SOC的修正系数的步骤。
  8. 根据权利要求1-6中任一项所述的SOC计算方法,其中,所述根据所述电池模组的额定满载电量、放电参数和所述修正系数计算所述SOC的数值的方法包括:
    利用以下公式计算所述SOC的数值:
    SOC=(fullcap-K*∫Idt)/fullcap
    其中,fullcap表示所述电池模组的额定满载电量,∫Idt表示电池模组的放电电量,K表示所述修正系数。
  9. 一种控制电路,包括处理器、存储器以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述存储器上存储有可被所述处理器执行的计算机程序,所述计算机程序被所述处理器执行时,实现如权利要求1至8中任一项所述的SOC计算方法的步骤。
  10. 一种电子设备,所述电子设备包括:
    电池模组;
    一个或多个处理器;以及
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一 个或多个处理器执行时,使得所述电子设备实现如权利要求1~8任意一项所述的SOC计算方法。
PCT/CN2022/132655 2022-06-21 2022-11-17 Soc计算方法、控制电路及电子设备 WO2023245973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210706862.0A CN115166542A (zh) 2022-06-21 2022-06-21 Soc计算方法、控制电路、电子设备及存储介质
CN202210706862.0 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023245973A1 true WO2023245973A1 (zh) 2023-12-28

Family

ID=83488264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132655 WO2023245973A1 (zh) 2022-06-21 2022-11-17 Soc计算方法、控制电路及电子设备

Country Status (2)

Country Link
CN (1) CN115166542A (zh)
WO (1) WO2023245973A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166542A (zh) * 2022-06-21 2022-10-11 深圳市正浩创新科技股份有限公司 Soc计算方法、控制电路、电子设备及存储介质
CN115774206A (zh) * 2022-12-09 2023-03-10 阳光储能技术有限公司 电池模组放电校准装置及电池模组放电校准方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014019A (ja) * 1998-06-22 2000-01-14 Nissan Motor Co Ltd バッテリの放電量測定装置
JP2020092593A (ja) * 2018-12-06 2020-06-11 新盛力科技股▲ふん▼有限公司 バッテリの充電状態の予測方法
CN111289902A (zh) * 2018-12-06 2020-06-16 新盛力科技股份有限公司 电池电量状态的预估方法
CN111337839A (zh) * 2020-03-12 2020-06-26 桂林电子科技大学 一种电动汽车电池管理***soc估算及均衡控制***及方法
CN111913111A (zh) * 2020-07-24 2020-11-10 蜂巢能源科技有限公司 放电功率校正方法、装置、存储介质及电子设备
CN112014751A (zh) * 2020-09-04 2020-12-01 福建飞毛腿动力科技有限公司 一种基于推测锂离子电池的实际可放电容量的soc估算方法
CN112909362A (zh) * 2018-10-16 2021-06-04 宁德时代新能源科技股份有限公司 电芯电压修正方法、装置、设备和介质
CN113300436A (zh) * 2021-06-11 2021-08-24 上海玫克生储能科技有限公司 锂电池储能***的动态管控方法
CN115166542A (zh) * 2022-06-21 2022-10-11 深圳市正浩创新科技股份有限公司 Soc计算方法、控制电路、电子设备及存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014019A (ja) * 1998-06-22 2000-01-14 Nissan Motor Co Ltd バッテリの放電量測定装置
CN112909362A (zh) * 2018-10-16 2021-06-04 宁德时代新能源科技股份有限公司 电芯电压修正方法、装置、设备和介质
JP2020092593A (ja) * 2018-12-06 2020-06-11 新盛力科技股▲ふん▼有限公司 バッテリの充電状態の予測方法
CN111289902A (zh) * 2018-12-06 2020-06-16 新盛力科技股份有限公司 电池电量状态的预估方法
CN111337839A (zh) * 2020-03-12 2020-06-26 桂林电子科技大学 一种电动汽车电池管理***soc估算及均衡控制***及方法
CN111913111A (zh) * 2020-07-24 2020-11-10 蜂巢能源科技有限公司 放电功率校正方法、装置、存储介质及电子设备
CN112014751A (zh) * 2020-09-04 2020-12-01 福建飞毛腿动力科技有限公司 一种基于推测锂离子电池的实际可放电容量的soc估算方法
CN113300436A (zh) * 2021-06-11 2021-08-24 上海玫克生储能科技有限公司 锂电池储能***的动态管控方法
CN115166542A (zh) * 2022-06-21 2022-10-11 深圳市正浩创新科技股份有限公司 Soc计算方法、控制电路、电子设备及存储介质

Also Published As

Publication number Publication date
CN115166542A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2023245973A1 (zh) Soc计算方法、控制电路及电子设备
WO2020259039A1 (zh) 荷电状态修正方法及装置
WO2021043225A1 (zh) 一种充电控制方法及充电控制装置
EP4303601A1 (en) Energy storage system control method and energy storage system
WO2023109088A1 (zh) 电池总容量计算方法、装置、***和存储介质
WO2023044874A1 (zh) 确定显示荷电状态的方法、装置和电池管理芯片
CN112455286A (zh) 一种充电控制方法及装置、电池管理***
CN115395603A (zh) 一种储能***充电电压、功率自动调节方法及***
CN103683266B (zh) 充电电池保护电路
US11846677B2 (en) Method and apparatus for monitoring battery backup unit, server, and readable storage medium
WO2024041445A1 (zh) 电池功率限制保护方法、***及存储介质
TWI511409B (zh) 電源管理方法、裝置與晶片以及非暫態之電腦可讀取記錄媒介
WO2024060385A1 (zh) 电池包的荷电状态修正方法、装置及电子设备
CN112014749A (zh) 电池显示电量的确定方法、装置、芯片及存储介质
WO2020097864A1 (zh) 一种充电检测方法、充电检测装置及终端设备
WO2023044875A1 (zh) 确定显示荷电状态的方法、装置及电池管理芯片
US20220326308A1 (en) State-of-charge cut-off control method, apparatus and system, and storage medium
CN113507154B (zh) 充电方法、装置、充电机和电子设备
CN115441539A (zh) Bms的均衡方法、终端
TWI740404B (zh) 電池保護充電方法及其系統
WO2018068329A1 (zh) 一种电量值计算方法、电子设备及存储介质
WO2023092414A1 (zh) 动力电池充电的方法和电池管理***
US11262411B2 (en) Terminal apparatus, and method and device for determining battery state of charge
WO2023092413A1 (zh) 动力电池充电的方法和电池管理***
WO2023092416A1 (zh) 动力电池充电的方法和电池管理***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947708

Country of ref document: EP

Kind code of ref document: A1