WO2023243437A1 - 正極活物質、その製造方法及び非水電解液二次電池 - Google Patents

正極活物質、その製造方法及び非水電解液二次電池 Download PDF

Info

Publication number
WO2023243437A1
WO2023243437A1 PCT/JP2023/020617 JP2023020617W WO2023243437A1 WO 2023243437 A1 WO2023243437 A1 WO 2023243437A1 JP 2023020617 W JP2023020617 W JP 2023020617W WO 2023243437 A1 WO2023243437 A1 WO 2023243437A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
secondary battery
producing
Prior art date
Application number
PCT/JP2023/020617
Other languages
English (en)
French (fr)
Inventor
裕一郎 滝本
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Publication of WO2023243437A1 publication Critical patent/WO2023243437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material, a method for producing the same, and a non-aqueous electrolyte secondary battery.
  • Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries can easily increase energy density. Taking advantage of these characteristics, nonaqueous electrolyte secondary batteries have recently been used in a wide range of applications, including small electronic devices such as mobile phones and laptop computers, and large electric drive devices such as electric cars and hybrid cars.
  • LiNi 0.33 Mn 0.33 Co 0.33 O 2 (so-called NMC111) containing Li (lithium), Ni (nickel), Mn (manganese) and Co (cobalt), and Li , LiNi 0.8 Co 0.15 Al 0.05 O 2 (so-called NCA) containing Ni, Co and Al (aluminum) have been put into practical use.
  • NMC111 LiNi 0.33 Mn 0.33 Co 0.33 O 2
  • NCA LiNi 0.8 Co 0.15 Al 0.05 O 2
  • these positive electrode active materials contain Co, which is a rare element, there is a relatively high risk that raw material costs will increase due to various reasons such as changes in the supply and demand situation.
  • Patent Document 1 describes the general formula Li a Ni b Mn 1-b W c O 2 (where 1 ⁇ a ⁇ 1.2, 0.5 ⁇ b ⁇ 0.7, A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium-transition metal composite oxide represented by 0 ⁇ c ⁇ 0.02) is described.
  • the present invention has been made in view of this background, and provides a positive electrode active material that can reduce raw material costs, has high discharge capacity, and has excellent thermal stability and output characteristics, a method for producing the same, and a positive electrode active material that can reduce raw material costs, has high discharge capacity, and has excellent thermal stability and output characteristics.
  • the present invention aims to provide a non-aqueous electrolyte secondary battery using a positive electrode active material.
  • One embodiment of the present invention is a positive electrode active material used in a non-aqueous electrolyte secondary battery, comprising: Composition formula of Li a Ni b Mn c W d Mg e Of (however, a to f in the above composition formula are 0.9 ⁇ a ⁇ 1.2, 0.45 ⁇ b ⁇ 0.6, 0.25 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.06, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1.)
  • the positive electrode active material has a layered rock salt type crystal structure that can be assigned to space group R-3m.
  • Another aspect of the present invention is a nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a nonaqueous electrolyte,
  • the positive electrode is in a non-aqueous electrolyte secondary battery that includes the positive electrode active material of the above embodiment.
  • the positive electrode active material has the specific composition and crystal structure. Since the positive electrode active material does not contain Co, the risk of an increase in raw material costs can be reduced. Further, in the positive electrode active material, a portion of Mn in the Li--Ni--Mn-based positive electrode active material is replaced with W and Mg. In this way, by adding W and Mg to the Li--Ni--Mn-based positive electrode active material, it is possible to improve the thermal stability of the positive electrode active material while ensuring high discharge capacity and excellent output characteristics.
  • the positive electrode active material has high discharge capacity, excellent thermal stability and output characteristics, and can easily reduce raw material costs.
  • the non-aqueous electrolyte secondary battery of the above embodiment has a positive electrode containing the specific positive electrode active material. Therefore, the non-aqueous electrolyte secondary battery can easily reduce raw material cost, has high discharge capacity, and is excellent in thermal stability and output characteristics.
  • FIG. 1 is a developed view showing the internal structure of a secondary battery in an example.
  • the positive electrode active material has a composition formula of Li a Ni b Mn c W d Mg e Of (however, a to f in the composition formula are 0.9 ⁇ a ⁇ 1.2, 0.45 ⁇ b ⁇ 0 .6, 0.25 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.06, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1.) have.
  • the value of a in the above compositional formula that is, the molar ratio of Li to the total number of moles of Li, Ni, Mn, W, Mg, and O is greater than 0.9 and less than 1.2.
  • a phenomenon called cation mixing in which lithium ion sites are replaced by transition metal ions, tends to occur in the crystal lattice of the positive electrode active material. Therefore, in this case, it becomes difficult to form a sufficient diffusion path for lithium ions in the positive electrode active material, which may lead to a decrease in discharge capacity and output characteristics.
  • the value of a in the above compositional formula is 1.2 or more, a lithium-excess layered rock salt crystal structure belonging to the space group C2/m is likely to be formed in the positive electrode active material, and the output characteristics This may lead to a decrease in
  • the value of d in the above composition formula that is, the molar ratio of W to the total number of moles of Li, Ni, Mn, W, Mg, and O is greater than 0 and less than 0.06.
  • the value of e in the composition formula that is, the molar ratio of Mg to the total number of moles of Li, Ni, Mn, W, Mg, and O is greater than 0 and less than 0.1.
  • the value of d in the compositional formula is 0, that is, if only Mg of W and Mg is added to the positive electrode active material, there is a risk that the discharge capacity and output characteristics will deteriorate.
  • the value of d in the composition formula is preferably 0.005 or more, and more preferably 0.01 or more.
  • a crystalline phase having a crystal structure other than the specific layered rock salt type crystal structure is likely to be formed in the positive electrode active material, and the discharge capacity and thermal This may lead to a decrease in stability.
  • the value of e in the compositional formula is 0, that is, if only W out of W and Mg is added to the positive electrode active material, there is a risk that the thermal stability of the positive electrode active material will decrease. be.
  • the value of e in the composition formula is preferably 0.005 or more, and more preferably 0.01 or more.
  • the values of b, c, and f in the above compositional formula that is, the molar ratio of Ni, Mn, or O to the total number of moles of Li, Ni, Mn, W, Mg, and O, are each within a range that satisfies the above relationship. .
  • a crystal phase having a crystal structure other than the specific layered rock salt crystal structure is likely to be formed in the positive electrode active material, This may lead to a decrease in discharge capacity.
  • the value of b in the compositional formula is preferably greater than 0.5 and less than 0.6.
  • the positive electrode active material has a composition formula of Li a Ni b Mn c W d Mg e Of (however, a to f in the composition formula are 0.9 ⁇ a ⁇ 1.2, 0.5 ⁇ b ⁇ 0.6, 0.25 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.06, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1.) It is preferable to have the following composition.
  • the value of c in the composition formula is preferably more than 0.25 and less than 0.42.
  • the positive electrode active material has a composition formula of Li a Ni b Mn c W d Mg e Of (however, a to f in the above composition formula are 0.9 ⁇ a ⁇ 1.2, 0.45 ⁇ b ⁇ 0.6, 0.25 ⁇ c ⁇ 0.42, 0 ⁇ d ⁇ 0.06, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1.) It is preferable to have the following composition.
  • the positive electrode active material has a composition formula of Li a Ni b Mn c W d Mg e Of (however, a to f in the above composition formula are 0.9 ⁇ a ⁇ 1.2, 0.5 ⁇ b ⁇ 0.6, 0.25 ⁇ c ⁇ 0.42, 0 ⁇ d ⁇ 0.06, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1.) It is more preferable to have a composition of Li a Ni b Mn c W d Mg e Of (however, a to f in the above composition formula are 0.9 ⁇ a ⁇ 1.2, 0. The following relationships are satisfied: 5 ⁇ b ⁇ 0.6, 0.25 ⁇ c ⁇ 0.42, 0.01 ⁇ d ⁇ 0.06, 0 ⁇ e ⁇ 0.08, 1.9 ⁇ f ⁇ 2.1. ) It is more preferable to have a composition represented by:
  • the a-axis length in the crystal lattice of the positive electrode active material is 2.880 ⁇ or more and 2.900 ⁇ or less, and the c-axis length is 14.290 ⁇ or more and 14.360 ⁇ or less.
  • the positive electrode active material has a diffraction angle of 64.5 ⁇ 1 with respect to a half-width w 44 of a peak appearing in a diffraction angle range of 44.4 ⁇ 1° in an X-ray diffraction pattern obtained by the ⁇ -2 ⁇ method. It is preferable to have a crystal structure in which the ratio w 64 / w 44 of the half width w 64 of the peak appearing in the range of 1.10 to 1.30 is obtained.
  • the positive electrode active material may contain a crystal phase having a crystal structure other than the specific layered rock salt type crystal structure as long as the above-described effects are not impaired.
  • the content of the crystalline phase having a crystal structure other than the specific layered rock salt crystal structure is preferably 20% by mass or less, more preferably 15% by mass or less, and preferably 10% by mass or less. More preferred.
  • the content of the crystalline phase in the positive electrode active material described above can be calculated based on the X-ray diffraction pattern obtained by powder X-ray diffraction method. More specifically, the scanning range of the diffraction angle 2 ⁇ in the powder X-ray diffraction method is 10° to 90°, the scanning speed is 2°/min, the sampling width is 0.02°, and the X-ray light source is CuK ⁇ radiation. shall be.
  • the above-mentioned positive electrode active material is usually used in a powder form from the viewpoint of further shortening the diffusion distance of lithium ions in the positive electrode active material. It is preferable that the positive electrode active material is composed of particles having a particle size of 10 ⁇ m or less. That is, the positive electrode active material may be composed of primary particles having a particle size distribution such that the maximum particle size is 10 ⁇ m or less, or may be formed by agglomeration of primary particles such that the maximum particle size is 10 ⁇ m or less.
  • the secondary particles may have a particle size distribution. In this case, the diffusion distance of lithium ions in the positive electrode active material can be made shorter, and the internal resistance in the non-aqueous electrolyte secondary battery can be more easily reduced. From the viewpoint of further shortening the diffusion distance of lithium ions in the positive electrode active material, the positive electrode active material is preferably composed of primary particles having a particle size of 1 ⁇ m or less.
  • the particle diameter of the primary particles of the positive electrode active material described above can be measured based on an enlarged photograph obtained by observing the positive electrode active material using a scanning electron microscope (SEM). More specifically, for 50 or more positive electrode active material particles randomly selected from enlarged photographs observed with SEM, the circumscribed circle for each particle is determined, and the diameter is taken as the particle diameter of each particle. . The maximum value of these particle sizes is defined as the particle size of the positive electrode active material. Further, the particle diameter of the secondary particles of the positive electrode active material described above can be measured using a laser scattering type particle size distribution measuring device.
  • SEM scanning electron microscope
  • Method for producing positive electrode active material for example, a solid phase method can be adopted. Specifically, after preparing a mixture containing a compound serving as a Li source, a compound serving as a Ni source, a compound serving as a Mn source, a compound serving as a W source, and a compound serving as a Mg source, the mixture is heated under an oxidizing gas atmosphere. You can bake it with The ratio of each compound in the mixture may be appropriately set according to the desired compositional formula of the crystal phase in the positive electrode active material.
  • the mixture is a powder.
  • each raw material compound can be uniformly dispersed in the mixture. As a result, the deviation in composition of the fired body after firing can be further reduced, and the content of the crystal phase can be further increased.
  • the raw material compounds When producing a powdery mixture, the raw material compounds may be pulverized as necessary.
  • the pulverization method manual pulverization using a mortar, mechanical pulverization using a ball mill, etc. can be adopted.
  • the particle size of the mixture may be adjusted by classifying the raw material compound using a sieve or the like. By reducing the particle size of the mixture as much as possible using these techniques, the raw material compounds can be more uniformly dispersed. As a result, the deviation in composition of the fired body after firing can be further reduced, and the content of the crystal phase can be further increased.
  • a fired body of the positive electrode active material containing the specific crystal phase can be obtained.
  • the oxidizing gas for example, the atmosphere can be used.
  • the firing temperature during firing can be appropriately set within the range of 800 to 1100°C.
  • the holding time during firing can be appropriately set within the range of 0.5 to 50 hours.
  • a powdered positive electrode active material can be obtained by crushing the obtained fired body.
  • the method for crushing the fired body is not particularly limited. For example, various methods such as manual crushing using a mortar, mechanical crushing using a ball mill, etc. can be used as the crushing method. Further, after crushing the fired body, the powder may be classified as necessary to adjust the particle size of the positive electrode active material.
  • a coprecipitation method may be employed as a method for producing the positive electrode active material.
  • a coprecipitation method for example, an alkaline reaction solution, a raw material solution containing ions of two or more metal elements excluding Li among the metal elements constituting the positive electrode active material, and an alkaline Prepare a pH adjustment solution. Thereafter, the raw material solution containing the ions is dropped into the reaction solution, and at the same time, a pH adjustment solution is added dropwise to adjust the pH of the reaction solution after the raw material solution has been dropped. As a result, a precursor containing the aforementioned metal element is precipitated in the reaction solution.
  • the concentration of each ion in the raw material solution may be appropriately set according to the desired compositional formula of the crystal phase in the positive electrode active material.
  • a compound serving as a Li source and other raw materials added as necessary are mixed with the precursor to prepare a mixture.
  • a fired body of the positive electrode active material containing the specific crystal phase can be obtained.
  • the atmosphere can be used as the oxidizing gas.
  • the firing temperature during firing can be appropriately set within the range of 800 to 1100°C.
  • the holding time during firing can be appropriately set within the range of 0.5 to 50 hours.
  • a powdered positive electrode active material can be obtained by crushing the obtained fired body.
  • the method for crushing the fired body is not particularly limited. For example, various methods such as manual crushing using a mortar, mechanical crushing using a ball mill, etc. can be used as the crushing method. Further, after crushing the fired body, the powder may be classified as necessary to adjust the particle size of the positive electrode active material.
  • a precursor containing all metal elements other than Li in the composition is produced by a coprecipitation method, and a mixture is produced by mixing the precursor and a compound containing Li. death, It is preferable to obtain the positive electrode active material by firing the mixture in an oxidizing gas atmosphere.
  • the distribution of each metal element in the precursor can be made more uniform. Then, by mixing such a precursor and a compound serving as a Li source and then firing the mixture, a more homogeneous positive electrode active material can be obtained. According to this method, the discharge capacity, output characteristics, and thermal stability of the positive electrode active material can be improved in a better balance.
  • the number of raw material solutions dropped into the reaction solution may be one or two or more.
  • some of the compounds may be difficult to dissolve in the raw material solution, making it difficult to adjust the ratio of metal elements in the precursor to a desired range.
  • this raw material solution may be dropped into the reaction solution. More specifically, when producing the precursor, a reaction solution exhibiting alkalinity, a first raw material solution containing W, a second raw material solution containing a metal element other than Li and W in the composition, Prepare, Dropping the first raw material solution into the second raw material solution to create a mixed solution, Thereafter, the mixed solution can be dropped into the reaction solution to produce the precursor.
  • all the raw material solutions may be dropped into the reaction solution at the same time. More specifically, when producing the precursor, a reaction solution exhibiting alkalinity, a first raw material solution containing W, a second raw material solution containing a metal element other than Li and W in the composition, Prepare, The precursor can also be produced by simultaneously dropping the first raw material solution and the second raw material solution into the reaction solution.
  • a pH adjusting solution exhibiting alkalinity is prepared, and the pH adjusting solution is dropped into the reaction solution together with the first raw material solution, the second raw material solution, or the mixed solution.
  • the precursor may be produced by In this case, changes in the pH of the reaction solution due to dropping of the raw material solution can be suppressed, and a precursor having a desired composition can be produced more reliably.
  • the positive electrode active material is used in nonaqueous electrolyte secondary batteries, and is particularly suitable for lithium ion secondary batteries.
  • the secondary battery can include a positive electrode containing the positive electrode active material, a negative electrode, a separator, a non-aqueous electrolyte, an additive, a case housing these, and the like as main components.
  • the shape of the secondary battery includes, for example, a coin shape, a cylindrical shape, a stacked type, a square shape, and the like.
  • the positive electrode of the secondary battery includes a positive electrode active material and a positive electrode current collector that holds the positive electrode active material.
  • a positive electrode current collector various conductors can be used, such as metal foils such as copper foil, aluminum foil, and nickel foil, stainless steel mesh, punched metal, expanded metal, and metal mesh.
  • the positive electrode may include a binder interposed between the positive electrode active material and the positive electrode current collector.
  • a binder for example, fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, and thermoplastic resins such as polypropylene, polyethylene, and polyethylene terephthalate can be used.
  • the positive electrode may contain a conductive agent or a conductive aid to improve electrical conductivity.
  • a conductive agent for example, graphite, carbon black, acetylene black, coke, etc. can be used.
  • the positive electrode can be produced, for example, by the following method. First, a paste-like positive electrode composite material containing a positive electrode active material is prepared. The positive electrode mixture may contain an organic solvent for dispersing or dissolving solid content such as the positive electrode active material, if necessary. Next, a positive electrode active material layer is formed on the surface of the positive electrode current collector by applying the positive electrode mixture onto the surface of the positive electrode current collector and drying it. After forming the positive electrode active material layer, the positive electrode active material layer may be pressed as necessary to increase the density of the positive electrode active material layer. A positive electrode can be obtained through the above steps.
  • a negative electrode of a secondary battery includes a negative electrode active material and a negative electrode current collector that holds the negative electrode active material.
  • a negative electrode active material for example, a carbon material having a graphite structure such as graphite or hard carbon, or a lithium-based oxide such as lithium titanate (Li 4 Ti 5 O 12 ) can be used.
  • a conductor similar to the above-described positive electrode current collector can be used.
  • the negative electrode may contain a binder, a conductive agent, and a conductive aid.
  • the binder, conductive agent, and conductive aid that can be used for the negative electrode are the same as those for the positive electrode.
  • the method for producing the negative electrode is the same as that for the positive electrode. That is, first, a paste-like negative electrode composite material containing a negative electrode active material is produced.
  • the negative electrode composite material may contain an organic solvent for dispersing or dissolving solid content such as the negative electrode active material, if necessary.
  • a negative electrode active material layer is formed on the surface of the negative electrode current collector by applying the negative electrode composite material onto the surface of the negative electrode current collector and drying it. After forming the negative electrode active material layer, the negative electrode active material layer may be pressed as necessary to increase the density of the negative electrode active material layer.
  • a negative electrode can be obtained through the above steps.
  • the non-aqueous electrolyte can contain an organic solvent and an electrolyte made of a lithium salt.
  • the lithium salt include LiPF 6 and the like.
  • the organic solvent can be at least one selected from the group consisting of ethylene carbonate, dimethyl carbonate, and ethylmethyl carbonate. These organic solvents have high polarity and can dissolve a large amount of electrolyte. Therefore, by using these organic solvents as a nonaqueous electrolyte, it is possible to easily increase the transfer number of charge carriers such as lithium ions in a secondary battery.
  • the positive electrode active material of this example has a composition formula of Li a Ni b Mn c W d Mg e Of (however, a to f in the above composition formula are 0.9 ⁇ a ⁇ 1.2, 0.45 ⁇ b ⁇ 0.6, 0.25 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.06, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1.) It has a composition. Further, the positive electrode active material has a layered rock salt type crystal structure that can be assigned to space group R-3m.
  • test materials S1 to S9 in this example have the compositions shown in Table 1.
  • test materials R1 to R8 in Table 1 are positive electrode active materials for comparison with test materials S1 to S9.
  • the method for producing the positive electrode active material of this example will be explained below.
  • Test material S1 200 mL of distilled water was placed in a 2 L reaction vessel, and sodium hydroxide was dissolved therein to prepare a reaction solution with a pH of 12. Separately from this reaction solution, a raw material solution in which nickel sulfate and manganese sulfate were dissolved in distilled water, and a pH adjustment solution in which a sodium hydroxide aqueous solution and aqueous ammonia were mixed were prepared.
  • reaction solution was heated to 50°C.
  • a precursor containing Ni and Mn was precipitated in the reaction solution by simultaneously dropping the raw material solution and the pH adjustment solution into the reaction solution while stirring the reaction solution while maintaining the temperature of the reaction solution.
  • a mixture was prepared by mixing the thus obtained precursor with LiOH as a Li source, WO 3 as a W source, and MgO as an Mg source. This mixture was fired in the air at a temperature of 950° C. for 5 hours, and then annealed at a temperature of 700° C. for 12 hours to obtain a bulk positive electrode active material.
  • a powdered positive electrode active material (test material S1) was obtained by crushing the lumped positive electrode active material using a mortar. Note that the symbol "M1" is written in the "Production method” column of Table 1 for the positive electrode active material produced by the method described above.
  • Test materials R1 to R3 have the same configuration as test material S1, except that at least one of W and Mg is not included.
  • the method for producing test materials R1 to R3 is the same as the method for producing test material S1, except that WO 3 and/or MgO is not added to the precursor.
  • Test materials S2 to S9 200 mL of distilled water was placed in a 2 L reaction vessel, and sodium hydroxide was dissolved therein to prepare a reaction solution with a pH of 12. Separately from this reaction solution, a first raw material solution in which ammonium tungstate is dissolved in distilled water, a second raw material solution in which nickel sulfate, manganese sulfate and magnesium sulfate are dissolved in distilled water, an aqueous sodium hydroxide solution and ammonia A pH adjusting solution was prepared by mixing with water.
  • reaction solution was heated to 50°C. Ni, Mn, W, and A precursor containing Mg was precipitated.
  • a mixture was prepared by mixing LiOH as a Li source with the precursor. This mixture was fired in the air at a temperature of 950° C. for 5 hours, and then annealed at a temperature of 700° C. for 12 hours to obtain a bulk positive electrode active material. Powdered positive electrode active materials (test materials S2 to S9) were obtained by crushing the bulk positive electrode active materials using a mortar. Note that the symbol "M2" is written in the "Production method" column of Table 1 for the positive electrode active material produced by the method described above.
  • Test materials R4 to R8 have the same configuration as test materials S2 to S9, except that at least one of W and Mg is not included.
  • the method for producing test materials R4 to R8 was the same as the method for producing test materials S2 to S9, except that WO 3 and/or MgO was not added to the precursor.
  • test materials S1 to S9 and test materials R1 to S8 were identified.
  • composition of positive electrode active material The molar ratio of each metal element in the positive electrode active material was measured by inductively coupled plasma emission spectrometry (ie, ICP-AES). The composition of each test material when the molar ratio of oxygen atoms was 2 was as shown in the "Composition of positive electrode active material" column of Table 1.
  • the crystal structure of the positive electrode active material was identified and the lattice constant was measured by powder X-ray diffraction.
  • the X-ray diffraction apparatus "SmartLab (registered trademark)" manufactured by Rigaku Co., Ltd. was used, and the characteristic X-rays irradiated were CuK ⁇ rays.
  • the scanning range of the diffraction angle 2 ⁇ was 10° to 90°, the scanning speed was 2°/min, and the sampling width was 0.02°.
  • test materials S1 to S9 and test materials R1 to R8 all had layered rock-salt crystal structures that could be assigned to space group R-3m. It had Table 1 shows the lengths of the a-axis and the c-axis in the crystal lattice of each positive electrode active material. Table 2 also shows the content of layered rock-salt crystal structure in each positive electrode active material, and the half-width w of the peak appearing in the diffraction angle range of 44.4 ⁇ 1°. The ratio w 64 /w 44 of the half width w 64 of the peak appearing in the range is shown.
  • the nonaqueous electrolyte secondary battery 1 of this example is a CR2032 type coin battery including a positive electrode 2, a negative electrode 3, a separator 4, and a nonaqueous electrolyte 5.
  • the secondary battery 1 includes a case 11 that is relatively small in height and has a cylindrical shape with a bottom, and an upper lid 12 that closes the opening of the case 11. A space is formed between the case 11 and the upper lid 12. The upper lid 12 is joined to the case 11 by caulking.
  • a positive electrode 2, a negative electrode 3, a separator 4, and a non-aqueous electrolyte 5 are housed in the space between the case 11 and the upper lid 12.
  • a rubber packing 15 is arranged between the positive electrode 2 and the separator 4.
  • a spacer 13 and a washer 14 are provided between the upper lid 12 and the positive electrode 2. Spacer 13 is arranged so as to be in contact with positive electrode 2 .
  • the washer 14 is arranged between the spacer 13 and the upper lid 12.
  • the spacer 13 of this example is a disc-shaped stainless steel plate.
  • the positive electrode 2 includes a positive electrode current collector 21 and a positive electrode active material layer 22 provided on the positive electrode current collector 21 and containing one of the positive electrode active materials shown in Table 1.
  • the positive electrode current collector 21 of this example is an aluminum foil having a disc shape with a diameter of 16 mm.
  • the negative electrode 3 is a disk-shaped metal lithium foil.
  • the separator 4 is made of polypropylene and is interposed between the positive electrode 2 and the negative electrode 3.
  • the non-aqueous electrolyte 5 is filled between at least the positive electrode 2 and the negative electrode 3 in the secondary battery 1 .
  • the non-aqueous electrolyte 5 of this example is made of an ethylene carbonate-based organic solvent containing LiPF 6 at a concentration of 1 mol/L.
  • a positive electrode composite material was obtained.
  • This positive electrode composite material was applied onto the positive electrode current collector 21 to form the positive electrode active material layer 22.
  • the thickness of the positive electrode active material layer 22 immediately after coating was approximately 220 ⁇ m.
  • the positive electrode active material layer 22 on the positive electrode current collector 21 was pressed at a pressure of about 100 MPa. Thereafter, the positive electrode 2 was obtained by punching the positive electrode active material layer 22 together with the positive electrode current collector 21 into a disk shape with a diameter of 16 mm. Further, a negative electrode 3 was produced by punching out a lithium foil into a disk shape.
  • the secondary battery was charged in constant current mode at a temperature of 25°C.
  • the current density in constant current mode was 11 mA/g, and the end-of-charge voltage was 4.5V.
  • the battery was discharged to 2.5V at a constant current with a current density of 11 mA/g, and a discharge curve at this time was obtained. Based on the discharge curve obtained in this way, the discharge capacity of the secondary battery was calculated.
  • Table 2 shows the discharge capacity of secondary batteries using each positive electrode active material.
  • the secondary battery was charged in constant current-constant voltage mode at a temperature of 25°C.
  • the current density in constant current mode was 11 mA/g.
  • the end-of-charge voltage in the constant voltage mode was set to 4.5 V, and the end-of-charge voltage was maintained by flowing an appropriate charging current for 5 hours after the voltage of the secondary battery reached the end-of-charge voltage.
  • the secondary battery was disassembled in a glove box filled with an argon atmosphere, and the positive electrode was taken out. After washing this positive electrode with dimethyl carbonate, it was dried in a glove box.
  • the positive electrode active material layer was collected from the dried positive electrode and subjected to differential scanning calorimetry analysis.
  • the conditions for differential scanning calorimetry were as follows.
  • Measurement start temperature Room temperature Measurement end temperature: 500°C Heating rate: 10°C/min
  • Table 2 shows the peak temperature of the exothermic peak appearing in the DSC curve obtained by differential scanning calorimetry and the calorific value at the exothermic peak.
  • test materials S1 to S8 have a composition represented by the above-mentioned specific compositional formula and a layered rock salt type crystal structure represented by space group R-3m. Therefore, as shown in Table 2, these test materials have excellent thermal stability and output characteristics.
  • test material R1 which has the same Ni content as test materials S1 to S8 and does not contain both W and Mg, has a higher DC resistance and inferior output characteristics than test materials S1 to S8. ing. Furthermore, the test material R1 has a larger calorific value than the test materials S1 to S8, and is inferior in thermal stability.
  • Test material R2 which has the same Ni content as test materials S1 to S8 and does not contain Mg, has a lower exothermic peak temperature than test materials S1 to S8, and may decompose at a relatively low temperature. Furthermore, test material R2 has a large calorific value and is inferior in thermal stability.
  • Test material R4 which has the same Ni content as test materials S1 to S8 and does not contain Mg, has a larger calorific value and inferior thermal stability than test materials S1 to S8.
  • Test materials R3 and R5 which have the same Ni content as test materials S1 to S8 and do not contain W, have higher DC resistance and inferior output characteristics than test materials S1 to S8.
  • test material S9 has a composition represented by the above-mentioned specific compositional formula, and has a layered rock salt type crystal structure represented by a space group R-3m. Therefore, test material S9 has excellent thermal stability and output characteristics.
  • test material R6 which has the same Ni content as the test material S9 and does not contain both W and Mg, has a higher DC resistance and inferior output characteristics than the test material S9.
  • test material R6 has a lower exothermic peak temperature than test material S9, and there is a risk that it will decompose at a relatively low temperature.
  • test material R6 has a large calorific value and is inferior in thermal stability.
  • Test material R7 which has the same Ni content as test material S9 and does not contain Mg, has a larger calorific value and inferior thermal stability than test material S9.
  • Test material R8 which has the same Ni content as test material S9 and does not contain W, has a higher DC resistance and inferior output characteristics than test material S9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正極活物質は、非水電解液二次電池に用いることができるように構成されている。正極活物質は、LiaNibMncWdMgeOfの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.45<b<0.6、0.25<c<0.5、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有するとともに、空間群R-3mに帰属可能な層状岩塩型結晶構造を有する。

Description

正極活物質、その製造方法及び非水電解液二次電池
 本発明は、正極活物質、その製造方法及び非水電解液二次電池に関する。
 リチウムイオン二次電池などの非水電解液二次電池は、エネルギー密度を容易に高くすることができる。かかる特性を活かし、近年では、携帯電話及びラップトップコンピュータ等の小型電子機器や、電気自動車及びハイブリッド自動車等の大型電気駆動装置等の幅広い用途に非水電解液二次電池が用いられている。
 非水電解液二次電池の正極活物質としては、Li(リチウム)、Ni(ニッケル)、Mn(マンガン)及びCo(コバルト)を含むLiNi0.33Mn0.33Co0.332(いわゆるNMC111)や、Li、Ni、Co及びAl(アルミニウム)を含むLiNi0.8Co0.15Al0.052(いわゆるNCA)などが実用化されている。しかし、これらの正極活物質よりもさらに放電容量の高い正極活物質が強く望まれている。また、これらの正極活物質は、希少元素であるCoを含有しているため、需給状況の変化等の種々の理由によって原料コストが上昇するリスクが比較的高い。
 Coを含まない正極活物質として、例えば特許文献1には、一般式LiaNibMn1-bc(但し1<a<1.2、0.5≦b≦0.7、0<c≦0.02)で表されるリチウム遷移金属複合酸化物からなる非水電解液二次電池用正極活物質が記載されている。
特開2012-43637号公報
 非水電解液二次電池の正極と負極とが何らかの原因で短絡した場合に、ジュール熱によって非水電解液二次電池の温度が上昇することがある。また、非水電解液二次電池の温度が過度に上昇すると、正極活物質の分解を招くおそれがある。かかる観点から、特許文献1に記載された正極活物質よりもさらに高い熱的安定性を有する正極活物質が望まれている。
 本発明は、かかる背景に鑑みてなされたものであり、原料コストを低減することができ、高い放電容量を有し、熱的安定性及び出力特性に優れた正極活物質、その製造方法及びこの正極活物質を用いた非水電解液二次電池を提供しようとするものである。
 本発明の一態様は、非水電解液二次電池に用いられる正極活物質であって、
 LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.45<b<0.6、0.25<c<0.5、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有するとともに、
 空間群R-3mに帰属可能な層状岩塩型結晶構造を有する、正極活物質にある。
 本発明の他の態様は、正極と、負極と、非水電解液とを有する非水電解液二次電池であって、
 前記正極は、前記の態様の正極活物質を含む、非水電解液二次電池にある。
 前記正極活物質は、前記特定の組成及び結晶構造を有している。前記正極活物質にはCoが含まれていないため、原料コスト上昇のリスクを低減することができる。また、前記正極活物質においては、Li-Ni-Mn系正極活物質におけるMnの一部がW及びMgにより置換されている。このように、Li-Ni-Mn系正極活物質にW及びMgを添加することにより、高い放電容量及び優れた出力特性を確保しつつ正極活物質の熱的安定性を向上させることができる。
 従って、前記正極活物質は、高い放電容量を有し、熱的安定性及び出力特性に優れているとともに、原料コストを容易に低減することができる。
 また、前記の態様の非水電解液二次電池は、前記特定の正極活物質を含む正極を有している。それ故、前記非水電解液二次電池は、原料コストを容易に低減することができ、高い放電容量を有し、熱的安定性及び出力特性に優れている。
図1は、実施例における二次電池の内部構造を示す展開図である。
(正極活物質)
 前記正極活物質は、LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.45<b<0.6、0.25<c<0.5、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有している。
 前記組成式におけるaの値、つまりLi、Ni、Mn、W、Mg及びOのモル数の合計に対するLiのモル比は0.9より大きく1.2より小さい。これにより、充放電時に前記特定の結晶構造が維持されやすくなり、前記正極活物質内にリチウムイオンの拡散経路を十分に形成することができる。その結果、前記正極活物質の放電容量及び出力特性を向上させることができる。
 前記組成式におけるaの値が0.9以下である場合には、前記正極活物質の結晶格子において、リチウムイオンサイトが遷移金属イオンによって置換される、カチオンミキシングと呼ばれる現象が起こりやすくなる。そのため、この場合には、正極活物質中にリチウムイオンの拡散経路を十分に形成することが難しくなり、放電容量や出力特性の低下を招くおそれがある。また、前記組成式におけるaの値が1.2以上である場合には、正極活物質中に、空間群C2/mに帰属されるリチウム過剰層状岩塩型結晶構造が形成されやすくなり、出力特性の低下を招くおそれがある。
 前記組成式におけるdの値、つまり、Li、Ni、Mn、W、Mg及びOのモル数の合計に対するWのモル比は0より大きく0.06未満である。また、前記組成式におけるeの値、つまりLi、Ni、Mn、W、Mg及びOのモル数の合計に対するMgのモル比は、0を超え0.1未満である。正極活物質中にWとMgとの両方を添加し、かつ、これらの元素の含有率を前記特定の範囲とすることにより、正極活物質の放電容量及び出力特性を損なうことなく、熱的安定性を向上させることができる。
 前記組成式におけるdの値が0の場合、つまり、例えばW及びMgのうちMgのみを前記正極活物質に添加する場合には、放電容量及び出力特性の低下を招くおそれがある。WとMgとの併用による効果をより確実に得る観点からは、前記組成式におけるdの値は、0.005以上であることが好ましく、0.01以上であることがより好ましい。
 前記組成式におけるdの値が0.06以上の場合には、正極活物質中に、前記特定の層状岩塩型結晶構造以外の結晶構造を有する結晶相が形成されやすくなり、放電容量及び熱的安定性の低下を招くおそれがある。
 また、前記組成式におけるeの値が0の場合、つまり、例えばW及びMgのうちWのみを前記正極活物質に添加する場合には、正極活物質の熱的安定性の低下を招くおそれがある。WとMgとの併用による効果をより確実に得る観点からは、前記組成式におけるeの値は、0.005以上であることが好ましく、0.01以上であることがより好ましい。
 一方、前記組成式におけるeの値が0.1以上の場合には、正極活物質中に、前記特定の層状岩塩型結晶構造以外の結晶構造を有する結晶相が形成されやすくなり、放電容量の低下を招くおそれがある。
 前記組成式におけるb、c及びfの値、つまり、Li、Ni、Mn、W、Mg及びOのモル数の合計に対するNi、MnまたはOのモル比は、それぞれ前記の関係を満たす範囲とする。前記組成式におけるb、c及びfの値が前記の関係を満たさない場合には、前記正極活物質中に前記特定の層状岩塩型結晶構造以外の結晶構造を有する結晶相が形成されやすくなり、放電容量の低下を招くおそれがある。
 優れた熱的安定性及び出力特性を確保しつつ、より放電容量を高める観点からは、前記組成式におけるbの値は0.5を超え0.6未満であることが好ましい。つまり、前記正極活物質は、LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.5<b<0.6、0.25<c<0.5、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有していることが好ましい。
 同様の観点から、前記組成式におけるcの値は0.25を超え0.42未満であることが好ましい。つまり、前記正極活物質は、LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.45<b<0.6、0.25<c<0.42、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有していることが好ましい。また、前記正極活物質は、LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.5<b<0.6、0.25<c<0.42、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有していることがより好ましく、LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.5<b<0.6、0.25<c<0.42、0.01<d<0.06、0<e<0.08、1.9<f<2.1の関係を満たす。)で表される組成を有していることがさらに好ましい。
 前記正極活物質の結晶格子におけるa軸の長さは2.880Å以上2.900Å以下であり、c軸の長さは14.290Å以上14.360Å以下であることが好ましい。この場合には、熱的安定性及び出力特性に優れた正極活物質をより確実に得ることができる。同様の観点から、前記正極活物質は、θ-2θ法により得られるX線回折パターンにおける、回折角44.4±1°の範囲に現れるピークの半値幅w44に対する回折角64.5±1°の範囲に現れるピークの半値幅w64の比w64/w44が1.10以上1.30以下となる結晶構造を有していることが好ましい。
 前記正極活物質中には、前述した効果を損なわない範囲で、前記特定の層状岩塩型結晶構造以外の結晶構造を有する結晶相が含まれていてもよい。前記特定の層状岩塩型結晶構造以外の結晶構造を有する結晶相の含有率は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 なお、前述した正極活物質中の結晶相の含有率は、粉末X線回折法により得られたX線回折パターンに基づいて算出することができる。より具体的には、粉末X線回折法における回折角2θの走査範囲は10°~90°とし、走査速度は2°/分とし、サンプリング幅は0.02°とし、X線光源はCuKα線とする。このような測定条件で得られるX線回折パターンに基づいてリートベルト解析を行うことにより、正極活物質中の結晶相の種類を同定するとともに各結晶相の含有率を算出することができる。
 前記正極活物質は、正極活物質中におけるリチウムイオンの拡散距離をより短くする観点から、通常、粉末の状態で使用される。前記正極活物質は、粒子径10μm以下の粒子から構成されていることが好ましい。すなわち、前記正極活物質は、例えば、最大粒子径が10μm以下となる粒径分布を有する一次粒子から構成されていてもよいし、一次粒子が凝集してなり、最大粒子径が10μm以下となる粒径分布を有する二次粒子であってもよい。この場合には、正極活物質中におけるリチウムイオンの拡散距離をより短くし、非水電解液二次電池における内部抵抗をより容易に低減することができる。正極活物質中におけるリチウムイオンの拡散距離をより短くする観点からは、正極活物質は、粒子径1μm以下の一次粒子から構成されていることが好ましい。
 なお、前述した正極活物質の一次粒子の粒子径は、走査型電子顕微鏡(SEM)を用いて正極活物質を観察して得られる、拡大写真に基づいて測定することができる。より具体的には、SEMで観察した拡大写真から無作為に選択した50個以上の正極活物質の粒子について、個々の粒子に対する外接円を決定し、その直径を個々の粒子の粒子径とする。そして、これらの粒子径の最大値を正極活物質の粒子径とする。また、前述した正極活物質の二次粒子の粒子径は、レーザ散乱方式の粒度分布測定装置を用いて測定することができる。
(正極活物質の製造方法)
 前記正極活物質の製造方法としては、例えば、固相法を採用することができる。具体的には、Li源となる化合物、Ni源となる化合物、Mn源となる化合物、W源となる化合物及びMg源となる化合物を含む混合物を作製した後、前記混合物を酸化性ガス雰囲気下で焼成すればよい。混合物中における各化合物の比率は、所望する正極活物質中の結晶相の組成式に応じて適宜設定すればよい。
 前記混合物は、粉末であることが好ましい。混合物を粉末とすることにより、混合物中において、各原料化合物を均一に分散させることができる。その結果、焼成後における焼成体の組成の偏りをより低減し、前記結晶相の含有率をより高くすることができる。
 粉末状の混合物を作製するにあたっては、必要に応じて原料化合物を粉砕してもよい。粉砕方法としては、乳鉢による手粉砕、ボールミル等による機械式粉砕等が採用できる。
 また、粉末状の混合物を作製するにあたっては、篩などを用いて原料化合物を分級することにより、混合物の粒度調整をおこなってもよい。これらの手法によって混合物の粒度をできるだけ小さくすることにより、原料化合物をより均一に分散させることができる。その結果、焼成後における焼成体の組成の偏りをより低減し、前記結晶相の含有率をより高くすることができる。
 混合物を作製した後、酸化性ガス雰囲気下で混合物を焼成することにより、前記特定の結晶相を含む正極活物質の焼成体を得ることができる。酸化性ガスとしては、例えば、大気等を使用することができる。焼成時の焼成温度は800~1100℃の範囲から適宜設定することができる。焼成時の保持時間は0.5~50時間の範囲から適宜設定することができる。
 焼成が完了した後、得られた焼成体を解砕することにより、粉末状の正極活物質を得ることができる。焼成体の解砕方法は特に限定されることはない。例えば、粉砕方法としては、乳鉢による手粉砕、ボールミル等による機械式粉砕等の種々の方法を採用することができる。また、焼成体を解砕した後、必要に応じて粉末を分級し、正極活物質の粒度を調整してもよい。
 また、前記正極活物質の製造方法としては、共沈法を採用してもよい。共沈法により前記正極活物質を作製する場合、例えば、アルカリ性の反応溶液と、前記正極活物質を構成する金属元素のうちLiを除く2種以上の金属元素のイオンを含む原料溶液と、アルカリ性のpH調整溶液とを準備する。その後、反応溶液中に、前記イオンを含む原料溶液を滴下すると同時に、原料溶液を滴下した後の反応溶液のpHを調整するためにpH調整溶液を滴下する。これにより、反応溶液中に、前述した金属元素を含む前駆体を析出させる。原料溶液中における各イオンの濃度は、所望する正極活物質中の結晶相の組成式に応じて適宜設定すればよい。
 次に、前駆体に、Li源となる化合物及び必要に応じて添加される他の原料を混合し、混合物を作製する。酸化性ガス雰囲気下で混合物を焼成することにより、前記特定の結晶相を含む正極活物質の焼成体を得ることができる。酸化性ガスとしては、例えば、大気等を使用することができる。焼成時の焼成温度は800~1100℃の範囲から適宜設定することができる。焼成時の保持時間は0.5~50時間の範囲から適宜設定することができる。
 焼成が完了した後、得られた焼成体を解砕することにより、粉末状の正極活物質を得ることができる。焼成体の解砕方法は特に限定されることはない。例えば、粉砕方法としては、乳鉢による手粉砕、ボールミル等による機械式粉砕等の種々の方法を採用することができる。また、焼成体を解砕した後、必要に応じて粉末を分級し、正極活物質の粒度を調整してもよい。
 前記正極活物質の製造方法においては、共沈法により前記組成のうちLi以外の全ての金属元素を含む前駆体を作製し、前記前駆体と、Liを含む化合物とを混合して混合物を作製し、
 前記混合物を酸化性ガス雰囲気中で焼成することにより前記正極活物質を得ることが好ましい。
 このように、共沈法によってLi以外の全ての金属元素を含む前駆体を作製することにより、前駆体中における各金属元素の分布をより均一にすることができる。そして、かかる前駆体とLi源となる化合物とを混合した後、混合物を焼成することにより、より均質な正極活物質を得ることができる。そして、かかる方法によれば、正極活物質の放電容量、出力特性及び熱的安定性をよりバランスよく向上させることができる。
 共沈法によりLi以外の全ての金属元素を含む前駆体を作製する場合、反応溶液中に滴下する原料溶液は、1種類であってもよいし、2種類以上であってもよい。しかし、原料溶液に溶解させる化合物の組み合わせによっては、原料溶液にいずれかの化合物が溶解しにくくなり、前駆体中の金属元素の比率を所望の範囲に調整しにくくなる場合がある。かかる問題をより確実に回避する観点からは、2種類以上の原料溶液を準備することが好ましい。2種類以上の原料溶液を準備することにより、各原料溶液中に、金属元素を含む化合物を容易に溶解させることができる。その結果、前駆体中の金属元素の比率をより容易に所望の範囲に調整することができる。
 2種類以上の原料溶液を準備する場合、例えば、いずれか1種の原料溶液中に他の原料溶液を滴下した後、この原料溶液を反応溶液に滴下してもよい。より具体的には、前記前駆体を作製する際に、アルカリ性を示す反応溶液と、Wを含む第1原料溶液と、前記組成のうちLi及びW以外の金属元素を含む第2原料溶液と、を準備し、
 前記第1原料溶液を前記第2原料溶液中に滴下して混合溶液を作製し、
 その後、前記混合溶液を前記反応溶液中に滴下して前記前駆体を作製することができる。
 また、例えば、全ての原料溶液を同時に反応溶液中に滴下してもよい。より具体的には、前記前駆体を作製する際に、アルカリ性を示す反応溶液と、Wを含む第1原料溶液と、前記組成のうちLi及びW以外の金属元素を含む第2原料溶液と、を準備し、
 前記第1原料溶液と前記第2原料溶液とを前記反応溶液中に同時に滴下して前記前駆体を作製することもできる。
 さらに、原料溶液及び反応溶液に加えて、アルカリ性を示すpH調整溶液を準備し、前記pH調整溶液を、前記第1原料溶液、前記第2原料溶液または前記混合溶液とともに前記反応溶液中に滴下して前記前駆体を作製してもよい。この場合には、原料溶液の滴下に伴う反応溶液のpHの変化を抑制し、所望の組成を有する前駆体をより確実に生成することができる。
(非水電解液二次電池)
 前記正極活物質は、非水電解液二次電池に用いられ、特にリチウムイオン二次電池に好適である。二次電池は、前記正極活物質を含有する正極、負極、セパレータ、非水電解液、添加剤、及びこれらを収容するケース等を主要な構成部材として備えることができる。二次電池の形状としては、例えばコイン型、円筒型、積層型、角型等がある。
 二次電池の正極は、正極活物質と、正極活物質を保持する正極集電体とを有している。正極集電体としては、例えば、銅箔、アルミニウム箔、ニッケル箔等の金属箔、ステンレス鋼メッシュ、パンチングメタル、エキスパンデッドメタル及び金属メッシュ等の種々の導体を使用することができる。
 正極には、正極活物質と正極集電体との間に介在する結着剤が含まれていてもよい。結着剤としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート等の熱可塑性樹脂を用いることができる。
 また、正極には、電気伝導性を高めるための導電剤や導電助剤が含まれていてもよい。導電剤としては、例えば黒鉛、カーボンブラック、アセチレンブラック、コークス類等を用いることができる。
 正極は、例えば、以下の方法により作製することができる。まず、正極活物質を含むペースト状の正極合材を作製する。正極合材には、必要に応じて、正極活物質等の固形分を分散または溶解させるための有機溶媒が含まれていてもよい。次に、正極合材を正極集電体の表面に塗布した後、乾燥させることにより、正極集電体の表面に正極活物質層を形成する。正極活物質層を形成した後、必要に応じて正極活物質層をプレスし、正極活物質層の密度を高めてもよい。以上により正極を得ることができる。
 二次電池の負極は、負極活物質と、負極活物質を保持する負極集電体とを有している。負極活物質としては、例えば、グラファイトやハードカーボン等のグラファイト構造を有する炭素材料や、チタン酸リチウム(Li4Ti512)等のリチウム系酸化物を用いることができる。また、負極集電体としては、前述した正極集電体と同様の導体を使用することができる。
 負極は、正極と同様に、結着剤や導電剤、導電助剤を含んでいてもよい。負極に使用し得る結着剤、導電剤及び導電助剤は、正極と同様である。
 負極の作製方法は、正極と同様である。すなわち、まず、負極活物質を含むペースト状の負極合材を作製する。負極合材には、必要に応じて、負極活物質等の固形分を分散または溶解させるための有機溶媒が含まれていてもよい。次に、負極合材を負極集電体の表面に塗布した後、乾燥させることにより、負極集電体の表面に負極活物質層を形成する。負極活物質層を形成した後、必要に応じて負極活物質層をプレスし、負極活物質層の密度を高めてもよい。以上により負極を得ることができる。
 非水電解液は、有機溶媒と、リチウム塩からなる電解質とを含有することができる。リチウム塩としては、例えばLiPF6等が挙げられる。また、有機溶媒は、エチレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートからなるグループから選ばれる少なくとも1種とすることができる。これらの有機溶媒は、極性が高く、電解質を大量に溶解することができる。そのため、これらの有機溶媒を非水電解液として使用することにより、二次電池における例えばリチウムイオン等の電荷担体の輸率を容易に高くすることができる。
 前記正極活物質、及び前記正極活物質を備えた非水電解液二次電池の実施例を説明する。本例の正極活物質は、LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.45<b<0.6、0.25<c<0.5、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有している。また、正極活物質は、空間群R-3mに帰属可能な層状岩塩型結晶構造を有している。
 本例における正極活物質(試験材S1~S9)は、具体的には、表1に示す組成を有している。なお、表1の試験材R1~R8は、試験材S1~S9との比較のための正極活物質である。本例の正極活物質の作製方法を以下に説明する。
(試験材S1)
 2Lの反応容器に蒸留水200mLを入れ、水酸化ナトリウムを溶解させてpH12の反応溶液を調製した。この反応溶液とは別に、蒸留水に硫酸ニッケル及び硫酸マンガンを溶解させた原料溶液と、水酸化ナトリウム水溶液とアンモニア水とを混合してなるpH調整溶液とを調製した。
 次に、反応溶液を50℃まで加熱した。反応溶液の温度を保持した状態で、反応溶液を攪拌しながら原料溶液とpH調整溶液とを反応溶液中に同時に滴下することにより、反応溶液中にNi及びMnを含む前駆体を析出させた。
 このようにして得られた前駆体に、Li源としてのLiOH、W源としてのWO3及びMg源としてのMgOを混合して混合物を作製した。この混合物を大気中において950℃の温度で5時間焼成し、次いで、700℃の温度で12時間アニールすることにより、塊状の正極活物質を得た。乳鉢を用いて塊状の正極活物質を解砕することにより、粉末状の正極活物質(試験材S1)を得た。なお、前述した方法により作製された正極活物質については、表1の「作製方法」欄に記号「M1」を記載した。
(試験材R1~R3)
 試験材R1~R3は、W及びMgのうち少なくとも一方の元素が含まれていない以外は、試験材S1と同様の構成を有している。試験材R1~R3の作製方法は、前駆体にWO及び/またはMgOを添加しない以外は試験材S1の作製方法と同様である。
(試験材S2~S9)
 2Lの反応容器に蒸留水200mLを入れ、水酸化ナトリウムを溶解させてpH12の反応溶液を調製した。この反応溶液とは別に、蒸留水にタングステン酸アンモニウムを溶解させた第1原料溶液と、蒸留水に硫酸ニッケル、硫酸マンガン及び硫酸マグネシウムを溶解させた第2原料溶液と、水酸化ナトリウム水溶液とアンモニア水とを混合してなるpH調整溶液とを調製した。
 次に、反応溶液を50℃まで加熱した。反応溶液の温度を保持した状態で、反応溶液を攪拌しながら第1原料溶液、第2原料溶液及びpH調整溶液を反応溶液中に同時に滴下することにより、反応溶液中にNi、Mn、W及びMgを含む前駆体を析出させた。
 次に、前駆体にLi源としてのLiOHを混合して混合物を作製した。この混合物を大気中において950℃の温度で5時間焼成し、次いで、700℃の温度で12時間アニールすることにより、塊状の正極活物質を得た。乳鉢を用いて塊状の正極活物質を解砕することにより、粉末状の正極活物質(試験材S2~S9)を得た。なお、前述した方法により作製された正極活物質については、表1の「作製方法」欄に記号「M2」を記載した。
(試験材R4~R8)
 試験材R4~R8は、W及びMgのうち少なくとも一方の元素が含まれていない以外は、試験材S2~S9と同様の構成を有している。試験材R4~R8の作製方法は、前駆体にWO及び/またはMgOを添加しない以外は試験材S2~S9の作製方法と同様である。
 次に、試験材S1~S9及び試験材R1~S8の組成及び結晶構造の同定を行った。
・正極活物質の組成
 誘導結合プラズマ発光分析(つまり、ICP-AES)により正極活物質中の各金属元素のモル比を測定した。酸素原子のモル比を2とした場合における各試験材の組成は、表1の「正極活物質の組成」欄に示す通りであった。
・正極活物質の結晶構造
 粉末X線回折により、正極活物質の結晶構造の同定及び格子定数の測定を行った。X線回折装置としては、株式会社リガク製「SmartLab(登録商標)」を使用し、照射した特性X線はCuKα線とした。また、回折角2θの走査範囲は10°~90°とし、走査速度は2°/分とし、サンプリング幅は0.02°とした。
 得られたX線回折パターンに基づき、正極活物質の結晶構造を同定したところ、試験材S1~S9及び試験材R1~R8は、いずれも空間群R-3mに帰属可能な層状岩塩型結晶構造を有していた。表1に、各正極活物質の結晶格子におけるa軸の長さ及びc軸の長さを示す。また、表2に、各正極活物質中の層状岩塩型結晶構造の含有率、及び回折角44.4±1°の範囲に現れるピークの半値幅w44に対する回折角64.5±1°の範囲に現れるピークの半値幅w64の比w64/w44を示す。
・評価用二次電池の構成及び作製方法
 次に、得られた正極活物質を用いて非水電解液二次電池(テストセル)を作製した。図1に示すごとく、本例の非水電解液二次電池1は、正極2、負極3、セパレータ4及び非水電解液5を備えたCR2032型コイン電池である。
 より具体的には、二次電池1は、高さの比較的小さな有底円筒形状であるケース11と、ケース11の開口を閉鎖する上蓋12とを有している。ケース11と上蓋12との間には空間が形成されている。上蓋12は、かしめ加工によりケース11に接合されている。
 ケース11と上蓋12との間の空間内には、正極2、負極3、セパレータ4、非水電解液5が収容されている。正極2とセパレータ4との間には、ゴム製のパッキン15が配置されている。また、上蓋12と正極2との間には、スペーサ13及びワッシャ14が設けられている。スペーサ13は、正極2と当接するように配置されている。ワッシャ14は、スペーサ13と上蓋12との間に配置されている。本例のスペーサ13は、具体的には、円盤状のステンレス鋼板である。
 正極2は、正極集電体21と、表1に示した正極活物質のうちいずれかの正極活物質を含み正極集電体21上に設けられた正極活物質層22とを有している。本例の正極集電体21は、具体的には、直径16mmの円盤状を呈するアルミニウム箔である。負極3は、具体的には、円盤状の金属リチウム箔である。
 セパレータ4は、ポリプロピレンからなり、正極2と負極3との間に介在している。非水電解液5は、二次電池1内における少なくとも正極2と負極3との間に充填されている。本例の非水電解液5は、具体的には濃度1mol/LのLiPF6を含むエチレンカーボネート系の有機溶媒からなる。
 次に、二次電池1の作製方法について説明する。まず、正極活物質と、導電助剤としての黒鉛と、結着剤としてのポリフッ化ビニリデンとを、質量比において、正極活物質:導電助剤:結着剤=85:10:5となるように混合し、正極合材を得た。この正極合材を正極集電体21上に塗布し、正極活物質層22を形成した。塗布直後の正極活物質層22の厚みは約220μmとした。
 次いで、正極集電体21上の正極活物質層22を約100MPaの圧力でプレスした。その後、正極活物質層22を正極集電体21とともに直径16mmの円盤状に打ち抜くことにより、正極2を得た。また、リチウム箔を円盤状に打ち抜くことにより、負極3を作製した。
 次いで、ケース11内に、負極3、セパレータ4、パッキン15、正極2、スペーサ13及びワッシャ14を順次重ね合わせるとともに、ケース11内に非水電解液5を注入した。その後、上蓋12をケース11の開口に重ね合わせ、かしめ加工を行うことによりケース11と上蓋12との間の空間を密閉した。以上により、二次電池1を得た。
 次に、得られた電池を用い、放電容量測定及び出力特性の評価を行った。なお、放電容量測定及び出力特性の評価には、充放電装置(Bio-Logic社製「BCS-815」)を用いた。
・放電容量測定
 まず、25℃の温度において、定電流モードで二次電池を充電した。定電流モードにおける電流密度は11mA/gとし、充電終止電圧は4.5Vとした。充電が完了した後、11mA/gの電流密度の定電流で2.5Vまで放電させ、このときの放電曲線を取得した。このようにして得られた放電曲線に基づいて、二次電池の放電容量を算出した。表2に各正極活物質を用いた二次電池の放電容量を示す。
・出力特性の評価
 二次電池の開回路電圧(つまり、OCV)を4.4Vに調整した後、放電電流が5C相当(具体的には、およそ10mA)となるようにして二次電池を放電させ、放電中の二次電池の電圧を測定した。そして、放電開始から0.1秒後における二次電池の電圧と、10秒後における二次電池の電圧との電位差を放電電流で除することにより、二次電池の直流抵抗を算出した。表2の「直流抵抗」欄に、このようにして算出された二次電池の直流抵抗の値を示す。
・熱的安定性の評価
 まず、25℃の温度において、定電流-定電圧モードで二次電池を充電した。定電流モードにおける電流密度は11mA/gとした。また、定電圧モードにおける充電終止電圧は4.5Vとし、二次電池の電圧が充電終止電圧に達してから5時間にわたり、適切な充電電流を流して充電終止電圧を保持した。
 充電が完了した後の二次電池をアルゴン雰囲気で満たしたグローブボックス内で解体し、正極を取り出した。この正極をジメチルカーボネートで洗浄した後、グローブボックス内で乾燥させた。乾燥後の正極から正極活物質層を採取し、示差走査熱量分析を行った。なお、示差走査熱量分析の条件は以下の通りとした。
  測定開始温度:室温
  測定終了温度:500℃
  昇温速度:10℃/分
 示差走査熱量分析により得られたDSCカーブに現れる発熱ピークのピーク温度及び当該発熱ピークにおける発熱量を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示したように、試験材S1~S8は、前記特定の組成式で表される組成を有するとともに、空間群R-3mで表される層状岩塩型結晶構造を有している。そのため、表2に示すように、これらの試験材は、優れた熱的安定性及び出力特性を有している。
 これに対し、Niの含有率が試験材S1~S8と同程度であり、W及びMgの両方を含まない試験材R1は、試験材S1~S8に比べて直流抵抗が高く、出力特性に劣っている。また、試験材R1は、試験材S1~S8に比べて発熱量が大きく、熱的安定性に劣っている。
 Niの含有率が試験材S1~S8と同程度であり、Mgを含まない試験材R2は、試験材S1~S8に比べて発熱ピーク温度が低く、比較的低い温度で分解するおそれがある。さらに、試験材R2は、発熱量が大きく、熱的安定性に劣っている。
 Niの含有率が試験材S1~S8と同程度であり、Mgを含まない試験材R4は、試験材S1~S8に比べて発熱量が大きく、熱的安定性に劣っている。
 Niの含有率が試験材S1~S8と同程度であり、Wを含まない試験材R3及び試験材R5は、試験材S1~S8に比べて直流抵抗が高く、出力特性に劣っている。
 また、試験材S9は、前記特定の組成式で表される組成を有するとともに、空間群R-3mで表される層状岩塩型結晶構造を有している。そのため、試験材S9は、優れた熱的安定性及び出力特性を有している。
 これに対し、Niの含有率が試験材S9と同程度であり、W及びMgの両方を含まない試験材R6は、試験材S9に比べて直流抵抗が高く、出力特性に劣っている。また、試験材R6は、試験材S9に比べて発熱ピーク温度が低く、比較的低い温度で分解するおそれがある。さらに、試験材R6は、発熱量が大きく、熱的安定性に劣っている。
 Niの含有率が試験材S9と同程度であり、Mgを含まない試験材R7は、試験材S9に比べて発熱量が大きく、熱的安定性に劣っている。
 Niの含有率が試験材S9と同程度であり、Wを含まない試験材R8は、試験材S9に比べて直流抵抗が高く、出力特性に劣っている。
 以上のように、Niの含有率が同程度である試験材S1~S8と試験材R1~R5との比較、及び試験材S9と試験材R6~R8との比較から、Li-Ni-Mn系正極活物質にWとMgとの両方を添加することにより、放電容量、出力特性及び熱的安定性をバランスよく向上可能であることが理解できる。
 本発明に係る正極活物質及び非水電解液二次電池の具体的な構成は、前述した実施例の構成に限定されるものではなく、本発明の趣旨を損なわない範囲で適宜変更することができる。

Claims (6)

  1.  非水電解液二次電池に用いられる正極活物質であって、
     LiaNibMncdMgefの組成式(ただし、前記組成式におけるa~fは、0.9<a<1.2、0.45<b<0.6、0.25<c<0.5、0<d<0.06、0<e<0.1、1.9<f<2.1の関係を満たす。)で表される組成を有するとともに、
     空間群R-3mに帰属可能な層状岩塩型結晶構造を有する、正極活物質。
  2.  前記正極活物質の結晶格子におけるa軸の長さが2.880Å以上2.900Å以下であり、c軸の長さが14.290Å以上14.360Å以下である、請求項1に記載の正極活物質。
  3.  正極と、負極と、非水電解液とを有する非水電解液二次電池であって、
     前記正極は、請求項1または2に記載の正極活物質を含む、非水電解液二次電池。
  4.  請求項1または2に記載の正極活物質の製造方法であって、
     共沈法により前記組成のうちLi以外の全ての金属元素を含む前駆体を作製し、
     前記前駆体と、Liを含む化合物とを混合して混合物を作製し、
     前記混合物を酸化性ガス雰囲気中で焼成することにより前記正極活物質を得る、正極活物質の製造方法。
  5.  前記前駆体を作製する際に、アルカリ性を示す反応溶液と、Wを含む第1原料溶液と、前記組成のうちLi及びW以外の金属元素を含む第2原料溶液と、を準備し、
     前記第1原料溶液と前記第2原料溶液とを前記反応溶液中に同時に滴下して前記前駆体を作製する、請求項4に記載の正極活物質の製造方法。
  6.  前記前駆体を作製する際に、さらに、アルカリ性を示すpH調整溶液を準備し、
     前記pH調整溶液を、前記第1原料溶液及び前記第2原料溶液とともに前記反応溶液中に滴下して前記前駆体を作製する、請求項5に記載の正極活物質の製造方法。
PCT/JP2023/020617 2022-06-17 2023-06-02 正極活物質、その製造方法及び非水電解液二次電池 WO2023243437A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022098176A JP2023184180A (ja) 2022-06-17 2022-06-17 正極活物質、その製造方法及び非水電解液二次電池
JP2022-098176 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243437A1 true WO2023243437A1 (ja) 2023-12-21

Family

ID=89191006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020617 WO2023243437A1 (ja) 2022-06-17 2023-06-02 正極活物質、その製造方法及び非水電解液二次電池

Country Status (2)

Country Link
JP (1) JP2023184180A (ja)
WO (1) WO2023243437A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322480A (ja) * 2004-05-07 2005-11-17 Nec Corp リチウム二次電池用正極活物質およびそれを使用したリチウム二次電池
WO2012164693A1 (ja) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 リチウム二次電池
JP2014146473A (ja) * 2013-01-28 2014-08-14 Sanyo Electric Co Ltd 非水電解質二次電池、及び非水電解質二次電池用正極活物質
CN112582599A (zh) * 2020-12-10 2021-03-30 万华化学(四川)有限公司 一种无钴高镍四元正极材料、其制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322480A (ja) * 2004-05-07 2005-11-17 Nec Corp リチウム二次電池用正極活物質およびそれを使用したリチウム二次電池
WO2012164693A1 (ja) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 リチウム二次電池
JP2014146473A (ja) * 2013-01-28 2014-08-14 Sanyo Electric Co Ltd 非水電解質二次電池、及び非水電解質二次電池用正極活物質
CN112582599A (zh) * 2020-12-10 2021-03-30 万华化学(四川)有限公司 一种无钴高镍四元正极材料、其制备方法及其应用

Also Published As

Publication number Publication date
JP2023184180A (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP4644895B2 (ja) リチウム二次電池
US8753532B2 (en) Positive electrode materials combining high safety and high power in a Li rechargeable battery
US20090230349A1 (en) Method of producing lithium ion cathode materials
JP6201277B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP2004319129A (ja) 正極活物質及びそれを用いた非水電解質二次電池
JP4997700B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
US10431812B2 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
US11258055B2 (en) Cathode active material of lithium secondary battery
JP5997087B2 (ja) リチウム二次電池用正極材料の製造方法
CN112424976A (zh) 正极活性物质和二次电池
JP2005123180A (ja) リチウム二次電池正極材用リチウム複合酸化物粒子及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP7371364B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
KR20140143859A (ko) 나트륨이차전지용 나트륨 바나듐 산화물 음극소재, 이의 제조 방법 및 이를 포함하는 나트륨이차전지
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
US11329274B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
WO2009116841A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
JP4678457B2 (ja) リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池
JP2016051548A (ja) 非水系電解質二次電池用正極材料とその製造方法、および該正極材料を用いた非水系電解質二次電池
JP6400364B2 (ja) 非水系二次電池用正極活物質及びその製造方法
WO2023243437A1 (ja) 正極活物質、その製造方法及び非水電解液二次電池
JP7194493B2 (ja) 非水系電解質二次電池用正極活物質
KR102683637B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2023181703A1 (ja) 正極活物質、その製造方法及び非水電解質二次電池
JP7308586B2 (ja) 非水系電解質二次電池用正極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823730

Country of ref document: EP

Kind code of ref document: A1