WO2023243302A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2023243302A1
WO2023243302A1 PCT/JP2023/018631 JP2023018631W WO2023243302A1 WO 2023243302 A1 WO2023243302 A1 WO 2023243302A1 JP 2023018631 W JP2023018631 W JP 2023018631W WO 2023243302 A1 WO2023243302 A1 WO 2023243302A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light emission
row
transistor
pixel
Prior art date
Application number
PCT/JP2023/018631
Other languages
English (en)
French (fr)
Inventor
圭 木村
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023243302A1 publication Critical patent/WO2023243302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes

Definitions

  • a self-luminous display device that has a pixel array section in which pixels including organic EL light emitting elements are arranged in a two-dimensional matrix.
  • light emission is controlled by line sequential driving.
  • This line sequential driving is a driving method in which display data is written and pixels are driven to emit light sequentially on a row-by-row basis.
  • a display device has been proposed that sequentially selects rows using a shift register and performs line-sequential driving (for example, see Patent Document 1).
  • the above-mentioned conventional technology has a problem in that it is difficult to perform local panel refresh of the pixel array section or bundled drive in which pixels in multiple rows are driven simultaneously. This is because it is difficult to select an arbitrary row in a shift register. Therefore, a display device has been proposed in which line-sequential driving is performed using a decoder that selects a row based on an input address instead of a shift register.
  • a self-luminous display device such as an organic EL display device
  • This duty drive is a driving method that alternately provides light emission and non-light emission periods in one frame period. In this duty driving, in addition to a scan to start light emission, a scan to stop light emission is required.
  • decoders are required for each of these multiple scans, which poses a problem in that the configuration of the display device becomes complicated.
  • the present disclosure proposes a display device that simplifies the configuration of a display device that performs duty drive.
  • a display device includes a pixel array section, a plurality of row signal lines, a plurality of data lines, and a vertical drive section.
  • a pixel array section a plurality of pixels each including a light emitting element and a pixel circuit that causes the light emitting element to emit light in accordance with an image signal are arranged in a two-dimensional matrix.
  • the plurality of row signal lines are arranged for each row in the pixel array section and transmit control signals for the pixel circuits.
  • a plurality of data lines are arranged for each column in the pixel array section and transmit the image signal.
  • FIG. 7 is a diagram illustrating a configuration example of a pixel according to a second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a pixel driving method according to a second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a configuration example of a vertical drive unit according to a second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a driving method according to a second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a drive signal according to a second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of light emission driving according to a second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a configuration example of a pixel according to a third modified example of the embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating another configuration example of a pixel according to a third modified example of the embodiment of the present disclosure.
  • FIG. 7 is a diagram showing drive waveforms of another configuration example of a pixel according to a third modified example of the embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating another configuration example of a pixel according to a third modified example of the embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of the appearance of a head-mounted display to which the technology according to the present disclosure can be applied.
  • FIG. 7 is a diagram illustrating a configuration example of a head-mounted display to which the technology according to the present disclosure can be applied.
  • FIG. 1 is a diagram illustrating a configuration example of a display device according to an embodiment of the present disclosure.
  • the figure is a block diagram showing an example of the configuration of the display device 10.
  • the display device 10 displays images based on image data input from the outside.
  • the display device 10 includes a pixel array section 20, a horizontal drive section 40, a vertical drive section 30, and a control section 50.
  • the pixel array section 20 is configured by arranging a plurality of pixels 100.
  • the pixel array section 20 in the figure represents an example in which a plurality of pixels 100 are arranged in the shape of a two-dimensional matrix.
  • the pixel 100 includes a light emitting element and a pixel circuit that causes the light emitting element to emit light, and emits light at a brightness according to an input image signal.
  • an organic EL element can be used as this light emitting element.
  • a row signal line 21 and a data line 22 are wired to each pixel 100.
  • the row signal line 21 transmits a control signal for the pixel circuit.
  • Data line 22 transmits an image signal. Note that the row signal line 21 is arranged for each row in the shape of a two-dimensional matrix, and is wired in common to a plurality of pixels 100 arranged in one row.
  • the data lines 22 are arranged for each column in the shape of a two-dimensional matrix, and are commonly wired to a plurality of pixels 100 arranged in one column.
  • FIG. 2 is a diagram illustrating a configuration example of a pixel according to the first embodiment of the present disclosure.
  • This figure is a circuit diagram showing an example of the configuration of the pixel 100.
  • the pixel 100 includes a light emitting element 101, a driving transistor 103, a sampling transistor 104, a reset transistor 105, and a storage capacitor 102.
  • the drive transistor 103, the sampling transistor 104, and the reset transistor 105 n-channel MOS transistors can be used.
  • the MOS transistor can be made conductive by applying a gate-source voltage Vgs exceeding the threshold voltage Vth to the gate.
  • the gate-source voltage Vgs that brings this conduction state is referred to as an on-voltage.
  • the on-voltage applied to the gate is higher than the voltage applied to the source.
  • a signal line WS, a signal line RESET, and a signal line Sig are wired to the pixel 100.
  • the signal line WS and the signal line RESET constitute the row signal line 21 described above.
  • the signal line Sig constitutes the data line 22 described above.
  • the pixel 100 is further wired with a power line Vccp, a power line Vss, and a power line Vcath.
  • the cathode of the light emitting element 101 is connected to the power supply line Vcath, and the anode is connected to the source of the drive transistor 103.
  • the drain of the drive transistor 103 is connected to the power supply line Vccp, and the gate is connected to the drain of the sampling transistor 104, the drain of the reset transistor 105, and one end of the storage capacitor 102.
  • the other end of the holding capacitor 102 is connected to the power supply line Vss.
  • the source of the sampling transistor 104 is connected to the signal line Sig, and the gate is connected to the signal line WS.
  • the source of the reset transistor 105 is connected to the power supply line Vss, and the gate is connected to the signal line RESET.
  • a circuit configured by the drive transistor 103, sampling transistor 104, and storage capacitor 102 of the pixel 100 constitutes a pixel circuit. That is, the circuits other than the light emitting element 101 in the pixel 100 constitute a pixel circuit.
  • This pixel circuit is a circuit that drives the light emitting element 101 by passing a current through the light emitting element 101.
  • an organic EL element can be used as the light emitting element 101.
  • This light emitting element 101 emits light with a brightness that corresponds to the flowing current.
  • the drive transistor 103 is a transistor that drives the light emitting element 101 by passing a current through it.
  • the reset transistor 105 is a transistor that discharges the image signal voltage Vsig held in the storage capacitor 102, makes the drive transistor 103 non-conductive, and stops the light emitting element 101 from emitting light. Reset transistor 105 is controlled by a control signal transmitted through signal line RESET.
  • FIG. 4 is a diagram illustrating a configuration example of a decoding circuit according to an embodiment of the present disclosure.
  • This figure is a circuit diagram showing an example of the configuration of the decoding circuit 31.
  • the decoding circuit 31 in the figure includes four inversion gates 202 and an AND gate 201 arranged for each row of the pixel array section 20.
  • "A0", “A1", “A2” and “A3" represent address signals.
  • the address signal in the figure is assumed to be a 4-bit signal.
  • a signal (bit value) corresponding to the row address of the pixel array section 20 among the 4-bit address signals is input to each AND gate 201 .
  • the output signal of AND gate 201 corresponds to a selection signal.
  • FIG. 5 is a diagram illustrating an example of a driving method according to the first embodiment of the present disclosure.
  • This figure is a timing chart showing an example of a method for driving the light emitting element 101 in the pixel 100.
  • "Hsync” in the figure is a signal representing the horizontal scanning period in line sequential driving.
  • "Horizontal scanning period” in the figure represents a horizontal scanning period. Note that the number added to the "horizontal scanning period” identifies the vertical scanning period. For example, “horizontal scanning period 0" represents the first horizontal scanning period in the vertical scanning period.
  • Address signal represents an address signal input to the decoding circuit 31.
  • Selection signal represents a selection signal output from the decoding circuit 31. This selection signal represents a state in which the "1" portion of the binarized signal is selected.
  • WRT_CLK and “RST_CLK” represent the clock signals described in FIG. 3.
  • WS and “RESET” represent control signals for the signal line WS and signal line RESET. The “1” portion of these binary control signals represents the above-mentioned on-voltage. On the other hand, the "0" portion represents the off-voltage.
  • the sampling transistor 104 of the pixel 100 described in FIG. A light emitting current corresponding to the written image signal flows through the drive transistor 103 and is supplied to the light emitting element 101. In this way, in the pixel 100 in FIG. 2, the light emitting element 101 starts emitting light at the same time as writing is performed.
  • the reset transistor 105 of the pixel 100 in FIG. is discharged. As a result, the drive transistor 103 of the pixel 100 becomes non-conductive, and the light emitting element 101 stops emitting light.
  • FIG. 6 is a diagram illustrating an example of light emission driving according to the first embodiment of the present disclosure.
  • This figure is a timing diagram showing an example of duty drive in the pixel array section 20.
  • "Vsync” in the figure is a signal representing the vertical scanning period in line sequential driving.
  • "Hsync” in the figure is a signal representing the horizontal scanning period in line sequential driving. Note that the numbers identify horizontal scanning periods.
  • “Row address” in the figure represents the address (in hexadecimal notation) of the row of the pixel array section 20. Row address "0" corresponds to the first row of pixel array section 20, and row address "F” corresponds to the last row of pixel array section 20.
  • a write address "0" is input to the decode circuit 31, writing is performed in the row with the row address "0" and light emission starts, and an erase address "8" is input to the decode circuit 31.
  • the row with row address "8” stops emitting light.
  • a value "1” is added to the write address and the erase address in each horizontal scanning period and input to the decoding circuit 31. Therefore, following writing 210, light emission start 211 and light emission stop 212 are sequentially executed for each row of the pixel array section 20. Thereby, duty driving can be performed in the pixel array section 20, and it is possible to reduce the feeling of afterimage when displaying a moving image.
  • a plurality of address signals are input to the decoding circuit 31 at different timings during one horizontal scanning period.
  • the decoding circuit 31 selects a row in response to these plural address signals. Therefore, the circuit can be simplified compared to the case where a decoding circuit is arranged for each of a plurality of address signals.
  • the display device 10 of the first embodiment described above the light emission current of the drive transistor 103 flows in accordance with the image signal held in the storage capacitor 102 of the pixel 100.
  • the display device 10 according to the second embodiment of the present disclosure differs from the above-described first embodiment in that variations in the threshold values of the drive transistors 103 of the pixels 100 are corrected.
  • FIG. 7 is a diagram illustrating a configuration example of a pixel according to the second embodiment of the present disclosure. Similar to FIG. 2, this figure is a circuit diagram showing an example of the configuration of the pixel 100.
  • the pixel 100 in the figure differs from the pixel 100 in FIG. 2 in that the reset transistor 105 is omitted and the pixel 100 further includes a light emission control transistor 107, a switching transistor 108, and an auxiliary capacitor 106.
  • p-channel MOS transistors can be used as the drive transistor 103, sampling transistor 104, light emission control transistor 107, and switching transistor 108 in the figure.
  • the cathode of the light emitting element 101 is connected to the power supply line Vcath, and the anode is connected to the drain of the drive transistor 103 and the drain of the switching transistor 108.
  • the source of the switching transistor 108 is connected to the power supply line Vss, and the gate is connected to the signal line AZ.
  • the gate of the drive transistor 103 is connected to the drain of the sampling transistor 104 and one end of the storage capacitor 102.
  • the other end of the storage capacitor 102 is connected to the source of the drive transistor 103, the drain of the light emission control transistor 107, and one end of the auxiliary capacitor 106.
  • the other end of the auxiliary capacitor 106 is connected to the power supply line Vccp.
  • the source of the light emission control transistor 107 is connected to the power supply line Vccp, and the gate is connected to the signal line DS.
  • the source of the sampling transistor 104 is connected to the signal line Sig, and the gate is connected to the signal line WS.
  • the light emission control transistor 107 is a transistor that controls light emission and non-light emission of the light emitting element 101. This light emission control transistor 107 is controlled by a light emission control signal transmitted through a signal line DS. Note that the light emission control transistor 107 is an example of a "switch element" in the present disclosure.
  • the switching transistor 108 is a transistor that controls the light emitting element 101 so that it does not emit light during the non-emission period of the light emitting element 101. This switching transistor 108 is controlled by a control signal transmitted through a signal line AZ. When the switching transistor 108 becomes conductive, a path bypassing the light emitting element 101 is formed, and the light emitting element 101 stops emitting light. Note that the switching transistor 108 is an example of a "second switching element" in the present disclosure.
  • the auxiliary capacitor 106 is a capacitor that suppresses fluctuations in the source voltage of the drive transistor 103 when the image signal voltage Vsig is written. Further, the auxiliary capacitor 106 has the function of adjusting the gate-source voltage Vgs of the drive transistor 103 to the threshold voltage Vth of the drive transistor 103.
  • the on-voltage applied to the gate is lower than that to the source.
  • FIG. 8 is a diagram illustrating an example of a pixel driving method according to the second embodiment of the present disclosure. This figure is a timing chart showing an example of a method for driving the light emitting element 101 in the pixel 100.
  • "Sig” in the figure represents the image signal voltage Vsig and reference voltage Vofs transmitted by the signal line Sig.
  • Vsig” and “Vofs” in the figure represent portions to which the image signal voltage Vsig and the reference voltage Vofs are applied.
  • "WS”, “DS”, and “AZ” in the figure represent the control signals transmitted by the signal line WS, signal line DS, and signal line AZ, respectively, and are the values of these binary control signals.
  • the “0” portion represents the above-mentioned on-voltage.
  • the value “1” represents the off-voltage.
  • “Vs” and “Vg” in the figure represent the source voltage and gate voltage of the drive transistor 103.
  • the reference voltage Vofs is applied to the signal line Sig.
  • An off voltage is applied to the signal line DS, signal line WS, and signal line AZ.
  • an on-voltage is applied to the signal line DS, and the light emission control transistor 107 becomes conductive. Further, an on-voltage is applied to the signal line AZ, and the switching transistor 108 becomes conductive. As a result, the current flowing through the drive transistor 103 flows into the power supply line Vss via the switching transistor 108.
  • an on-voltage is applied to the signal line WS, and the sampling transistor 104 becomes conductive.
  • the power supply voltage Vccp is applied to the source node of the drive transistor 103.
  • a reference voltage Vofs is written to the gate node of the drive transistor 103 via the sampling transistor 104 .
  • the gate node and source node of the drive transistor 103 are both brought into a floating state, whereby a self-discharge operation is performed.
  • the self-discharge operation the potential of each node is discharged through a path of the drive transistor 103, the switching transistor 108, and the power supply line Vss.
  • both the source voltage Vs and gate voltage Vg of the drive transistor 103 gradually decrease due to the self-discharge operation.
  • the gate-source voltage Vgs reaches the threshold voltage Vth, the drive transistor 103 becomes non-conductive and the self-discharge operation is stopped.
  • an on-voltage is applied to the signal line WS, and the sampling transistor 104 becomes conductive.
  • the signal voltage Vsig is written by sampling by the sampling transistor 104 while the source node of the drive transistor 103 remains in a floating state.
  • the voltage held in the holding capacitor 102 is Vth+Vsig. Further, application of the on-voltage to the signal line AZ is stopped, and the switching transistor 108 becomes non-conductive.
  • FIG. 9 is a diagram illustrating a configuration example of a vertical drive unit according to a second embodiment of the present disclosure.
  • This figure like FIG. 3, is a block diagram showing a configuration example of the vertical drive section 30.
  • the vertical drive unit 30 in FIG. 3 further includes an AND gate 34, a NAND gate 35, and a logic circuit 36, and a signal line EM_CLK and a signal line STP_CLK are arranged instead of the signal line RES_CLK. Different from 30.
  • a light emission start address signal and a light emission stop address signal are input to the decoding circuit 31 shown in the figure.
  • the Q output of the latch circuit 32 in the figure outputs the WT_EN signal, which is a write selection signal. This signal is input to the logic circuit 36.
  • the AND gate 34 receives a selection signal and a clock signal EM_CLK transmitted through the signal line EM_CLK. The output of the AND gate 34 is connected to the clock terminal of the latch circuit 33.
  • a selection signal and a clock signal STP_CLK transmitted through the signal line STP_CLK are input to the input of the NAND gate 35 .
  • the output of the NAND gate 35 is connected to the clear terminal of the latch circuit 33. Further, a power supply voltage is applied to the D input terminal of the latch circuit 33.
  • the latch circuit 33 generates a signal with a pulse width from the rising edge of EM_CLK to the rising edge of STP_CLK.
  • the Q output of the latch circuit 33 outputs an EM_EN signal which is a light emission control selection signal. This signal is input to the logic circuit 36.
  • the logic circuit 36 is a circuit that generates a drive signal for the pixel 100. This logic circuit 36 generates control signals to be applied to the signal line WS, signal line DS, and signal line AZ described in FIG. 7 based on the input WT_EN signal and EM_EN signal.
  • the logic circuit 36 can be configured, for example, by a circuit that is a combination of logic gates. Specifically, a combinational logic circuit based on a truth table receives the WT_EN signal, the EM_EN signal, and a signal that toggles in one horizontal period as input, and generates control signals for the signal line WS, signal line DS, and signal line AZ. Can be configured.
  • FIG. 10 is a diagram illustrating an example of a driving method according to the second embodiment of the present disclosure. Similar to FIG. 5, this figure is a timing chart showing an example of a method for driving the light emitting element 101 in the pixel 100.
  • EM_CLK and “STP_CLK” represent the clock signals explained in FIG.
  • WT_EN and “EM_EN” represent the WT_EN signal and EM_EN signal described in FIG. 9.
  • the same notation as in FIG. 5 is used.
  • a write address 220, a light emission start address 222, and a light emission stop address 223 are input to the decoding circuit 31 every horizontal scanning period. Rows of the pixel array section 20 corresponding to these addresses are selected and a selection signal is output.
  • the selection signal selected by the write address is held in the latch circuit 32 at the rising edge of WRT_CLK and output as the WT_EN signal.
  • the selection signal selected by the light emission start address is held in the latch circuit 33 at the rising edge of EM_CLK, and the EM_EN signal changes to "1".
  • the output of the latch circuit 33 is cleared by the AND signal of the selection signal selected by the light emission stop address and STP_CLK, and the EM_EN signal changes to "0". Note that this figure shows an example in which the write address and the light emission start address are the same.
  • the selection signal selected by the write address corresponds to the write selection signal representing the row of the pixel array section 20 to which writing is to be performed. Further, the selection signal selected by the light emission start address and the selection signal selected by the light emission stop address correspond to the light emission control selection signal representing the row in which the light emission current is controlled. Among these, the selection signal selected by the light emission start address corresponds to the light emission start control selection signal, and the selection signal selected by the light emission stop address corresponds to the light emission stop control selection signal.
  • the write address signal, the light emission start address signal, and the light emission stop address signal are input to the decoding circuit 31 during one horizontal scanning period, and the selection signal of the corresponding row is outputted.
  • the selection signal based on the write address signal and the selection signal based on the light emission stop address signal are captured and held in the latch circuits 32 and 33 at different timings by the clock signals WRT_CLK and EM_CLK. Further, the signal held in the latch circuit 33 is cleared in synchronization with the selection signal based on the light emission stop address signal and the signal based on the clock signal STP_CLK.
  • FIG. 11 is a diagram illustrating an example of a drive signal according to the second embodiment of the present disclosure. This figure is a timing diagram showing an example of a drive signal generated by the logic circuit 36.
  • “Address signal” in the figure represents an address signal input to the decoding circuit 31.
  • “WRT_CLK”, “EM_CLK” and “STP_CLK” represent clock signals.
  • “WS” and “DS” represent control signals generated by the logic circuit 36 and output to the signal line WS and the signal line DS.
  • a signal having the waveform described in FIG. 8 is generated and sequentially output to the signal line WS and the signal line DS in the row corresponding to the address signal.
  • this figure represents a drive signal when the number of horizontal scanning periods is greater than the number of rows of the pixel array section 20.
  • a blanking period (vertical blanking period) is arranged after write driving is completed for all rows. This vertical blanking period is a period in which writing and light emission start control are not performed.
  • the supply of WRT_CLK and EM_CLK is stopped during the vertical blanking period, and row selection is stopped.
  • STP_CLK as well, supply of the clock signal can be stopped and selection of unnecessary rows can be stopped. Note that it is also possible to adopt a method of stopping row selection by outputting an address signal that does not correspond to a row of the pixel array section 20 during the vertical blanking period.
  • FIG. 12 is a diagram illustrating an example of light emission driving according to the second embodiment of the present disclosure. Similar to FIG. 6, this figure is a timing chart showing an example of duty driving in the pixel array section 20, and is a diagram showing a state of light emission driving using the drive signal of FIG. 11. In this figure, the same notation as in FIG. 6 is used. Further, the figure shows an example in which the number of rows of the pixel array section 20 is 16 and the number of horizontal scanning periods is 26. The periods “horizontal scanning period 16" to "horizontal scanning period 25" correspond to the above-mentioned vertical blanking period. Duty driving can be performed in the pixel array section 20.
  • the display device 10 performs bundling drive by simultaneously selecting two adjacent rows of the pixel array section 20 based on the address signal input during the horizontal scanning period. It can be carried out.
  • the display device 10 of the second embodiment described above performs duty driving by inputting the light emission start address signal and the light emission stop address signal to the decoding circuit 31 during the horizontal scanning period.
  • the display device 10 according to the fourth embodiment of the present disclosure differs from the second embodiment in that a plurality of light emission start address signals and light emission stop address signals are input to the decoding circuit 31 during the horizontal scanning period. different from.
  • the light emission drive according to the fourth embodiment of the present disclosure is not limited to this example.
  • the configuration of the display device 10 other than this is the same as the configuration of the display device 10 in the second embodiment of the present disclosure, so a description thereof will be omitted.
  • two light emission start address signals and two light emission stop address signals are input to the decoding circuit 31 in one horizontal scanning period. . Thereby, split light emission can be performed.
  • FIG. 16 is a diagram illustrating a configuration example of a vertical drive unit according to a fifth embodiment of the present disclosure.
  • This figure like FIG. 9, is a block diagram showing a configuration example of the vertical drive section 30.
  • the vertical drive unit 30 in the figure is different from the vertical drive unit 30 in FIG. 9 in that it further includes an AND gate 38, an OR gate 39, and a latch circuit 37, and a signal line Vsync and a signal line GEM are arranged.
  • the signal line Vsync is a signal line that transmits a vertical synchronization signal.
  • the signal line GEM is a signal line that transmits a GEM signal that controls collective light emission.
  • FIG. 17 is a diagram illustrating an example of light emission driving according to the fifth embodiment of the present disclosure. Similar to FIG. 12, this figure is a timing chart showing an example of driving in the pixel array section 20, and is a diagram showing a state of light emission driving using the drive signal of FIG. 16. In the figure, "GEM" represents a GEM signal.
  • writing 210 is sequentially performed on the rows of the pixel array section 20. Thereafter, all the rows of the pixel array section 20 collectively enter a light emitting state during the period when the GEM signal is "1".
  • the light emission drive in the two vertical scanning periods in the latter part of the figure represents an example in which light emission drive is performed for a row in which writing 210 has been performed. This can be done, for example, by using the vertical drive section 30 that has the function of latching the write flag.
  • the configuration of the display device 10 other than this is the same as the configuration of the display device 10 in the second embodiment of the present disclosure, so a description thereof will be omitted.
  • the display device 10 can drive all the rows of the pixel array section 20 to emit light at once.
  • FIG. 18 is a diagram illustrating a configuration example of a pixel according to a first modified example of the embodiment of the present disclosure. Similar to FIG. 7, this figure is a circuit diagram showing a configuration example of the pixel 100.
  • the pixel 100 in the figure differs from the pixel 100 in FIG. 2 in that the auxiliary capacitor 106 is omitted and the pixel 100 further includes a switching transistor 109.
  • the switching transistor 109 is a transistor that short-circuits the gate and drain of the drive transistor 103.
  • a p-channel MOS transistor can be used as switching transistor 109.
  • a signal line AZ2 is connected to the gate of the switching transistor 109.
  • the light emission control transistor 107 when performing light emission control similar to that of the pixel circuit of FIG. 2, the light emission control transistor 107 is made non-conductive, and the switching transistor 109 is made conductive. As a result, the storage capacitor 102 is discharged, the drive transistor 103 can be brought into a non-conductive state, and the supply of light emitting current to the light emitting element 101 can be stopped.
  • the light emission control transistor 107 when performing light emission control similar to the pixel circuit of FIG. 7, the light emission control transistor 107 is controlled to be conductive or non-conductive. Thereby, the start and stop of supply of light emitting current to the light emitting element 101 can be controlled.
  • FIG. 19 is a diagram illustrating a configuration example of a pixel according to a second modified example of the embodiment of the present disclosure. Similar to FIG. 18, this figure is a circuit diagram showing a configuration example of the pixel 100. The pixel 100 in the figure differs from the pixel 100 in FIG. 18 in that it further includes a sampling transistor 110 and capacitors 112 and 113.
  • the source of the sampling transistor 110 is connected to the drain of the sampling transistor 104, and the drain is connected to the signal line Sig1.
  • a signal line WS1 is connected to the gate of the sampling transistor 110.
  • Capacitor 112 is connected between the drain and source of sampling transistor 110.
  • Capacitor 113 is connected between the drain of sampling transistor 110 and power supply line Vss.
  • a signal line Sig2 is connected to the drain of the sampling transistor 104.
  • a signal line WS2 is connected to the gate of the sampling transistor 104.
  • the light emission control transistor 107 when performing light emission control similar to the pixel circuit of FIG. 2, the light emission control transistor 107 is made non-conductive, and the switching transistor 109 and the sampling transistor 104 are made conductive. As a result, the storage capacitor 102 is discharged, the drive transistor 103 can be brought into a non-conductive state, and the supply of light emitting current to the light emitting element 101 can be stopped.
  • the light emission control transistor 107 when performing light emission control similar to the pixel circuit of FIG. 7, the light emission control transistor 107 is controlled to be conductive or non-conductive. Thereby, the start and stop of supply of light emitting current to the light emitting element 101 can be controlled.
  • FIG. 20 is a diagram illustrating a configuration example of a pixel according to a third modification of the embodiment of the present disclosure. Similar to FIG. 2, this figure is a circuit diagram showing an example of the configuration of the pixel 100.
  • the pixel 100 in FIG. 2 differs from the pixel 100 in FIG. 2 in that it further includes a sampling transistor 114, a light emission control transistor 107, and a switching transistor 108.
  • a p-channel MOS transistor can be used as sampling transistor 114.
  • the drain and source of the sampling transistor 114 are connected to the drain and source of the sampling transistor 104, respectively.
  • the light emission control transistor 107 is connected between the source of the drive transistor 103 and the anode of the light emitting element 101.
  • the storage capacitor 102 is connected between the gate and source of the drive transistor 103.
  • the drain and source of the reset transistor 105 are connected to the gate and source of the drive transistor 103, respectively.
  • the drain of the switching transistor 108 is connected to the source of the drive transistor 103, and the source is connected to the power supply line Vss.
  • a signal line WS_N and a signal line WS_P are connected to the gates of the sampling transistors 104 and 401, respectively.
  • a signal line DS is connected to the gate of the light emission control transistor 107.
  • a signal line AZ is connected to the gate of the switching transistor 108.
  • the reset transistor 105 when performing light emission control similar to the pixel circuit of FIG. 2, the reset transistor 105 is made conductive and the storage capacitor 102 is discharged.
  • the drive transistor 103 can be brought into a non-conductive state, and the supply of light emitting current to the light emitting element 101 can be stopped.
  • FIG. 21A is a diagram illustrating another configuration example of a pixel according to a third modification of the embodiment of the present disclosure.
  • the pixel circuit in the figure is the same as the pixel circuit in FIG. 20, with the reset transistor 105 omitted.
  • light emission control similar to that of the pixel circuit of FIG. 7 can be performed by controlling the voltage of the power supply line Vccp.
  • FIG. 22 is a diagram illustrating another configuration example of pixels according to the third modification of the embodiment of the present disclosure.
  • the pixel circuit in the figure includes a storage capacitor 102, a drive transistor 103, a sampling transistor 104, a light emission control transistor 107, a switching transistor 108, transistors 405 to 409, and a light emitting element 101.
  • the drive transistor 103, the sampling transistor 104, the light emission control transistor 107, the switching transistor 108, and the transistors 405 to 409 are p-channel MOS transistors.
  • the sampling transistor 104 has a gate connected to the signal line WS, a source connected to the signal line Sig, and a drain connected to the drain of the light emission control transistor 107 and the source of the drive transistor 103.
  • the gate of the light emission control transistor 107 is connected to the signal line DS, the source is connected to the power supply line Vccp, and the drain is connected to the drain of the sampling transistor 104 and the source of the drive transistor 103.
  • the gate of the drive transistor 103 is connected to the source of the transistor 405, the drain of the transistor 407, and the storage capacitor 102, the source is connected to the drains of the sampling transistor 104 and the light emission control transistor 107, and the drain is connected to the sources of the transistor 408 and transistor 409. Connected.
  • One end of the storage capacitor 102 is connected to the power supply line Vccp, and the other end is connected to the gate of the drive transistor 103, the source of the transistor 405, and the drain of the transistor 407.
  • the holding capacitor 102 may include two capacitors connected in parallel.
  • the gate of the transistor 405 is connected to the signal line AZ2, the source is connected to the gate of the drive transistor 103, the drain of the transistor 407, and the other end of the storage capacitor 102, and the drain is connected to the source of the transistor 406.
  • the gate of the transistor 406 is connected to the signal line AZ2, the source is connected to the drain of the transistor 405, and the drain is connected to the power supply line Vss.
  • the gate of the transistor 407 is connected to the signal line WS, the drain is connected to the gate of the drive transistor 103, the source of the transistor 405, and the other end of the storage capacitor 102, and the source is connected to the drain of the transistor 408.
  • the gate of the transistor 408 is connected to the signal line WS, the drain is connected to the source of the transistor 407, and the source is connected to the drain of the drive transistor 103 and the source of the transistor 409.
  • the gate of the transistor 409 is connected to the signal line DS, the source is connected to the drain of the driving transistor 103 and the source of the transistor 408, and the drain is connected to the source of the switching transistor 108 and the anode of the light emitting element 101.
  • the gate of the switching transistor 108 is connected to the signal line AZ1, the source is connected to the drain of the transistor 409 and the anode of the light emitting element 101, and the drain is connected to the power supply line Vss.
  • the sampling transistor 104, the driving transistor 103, the transistor 408, and the transistor 407 are turned on, so that the voltage across the storage capacitor 102 increases based on the image signal supplied from the signal line Sig. Set.
  • the light emission control transistor 107 and the transistor 409 are turned on and off based on the signal on the signal line DS.
  • the drive transistor 103 causes a current corresponding to the voltage across the storage capacitor 102 to flow through the light emitting element 101 during a period when the light emission control transistor 107 and the transistor 409 are in an on state.
  • the light emitting element 101 emits light based on the current supplied from the drive transistor 103. In this way, the pixel 100 emits light with a brightness that corresponds to the pixel signal.
  • Transistor 405 and transistor 406 are turned on and off based on the signal on signal line AZ2.
  • the voltage at the gate of the drive transistor 103 is initialized by being set to the voltage of the power supply line Vss.
  • the switching transistor 108 is turned on and off based on the signal on the signal line AZ1.
  • the voltage at the anode of the light emitting element 101 is initialized by being set to the voltage of the power supply line Vss.
  • all the MOS transistors in the pixel circuits in FIGS. 2, 7, 18, 19, 20, 21A, and 22 may be transistors using low temperature polycrystalline silicon (LTPS).
  • LTPS low temperature polycrystalline silicon
  • a transistor using an oxide semiconductor may be used as at least one of the sampling transistor 104 and the reset transistor 105.
  • a transistor using an oxide semiconductor may be used as at least one of the sampling transistor 104 and the switching transistor 108.
  • a transistor using an oxide semiconductor may be used as at least one of the sampling transistor 104, the switching transistor 108, and the transistor 109.
  • a transistor using an oxide semiconductor may be used as at least one of the sampling transistor 104, the switching transistor 108, and the sampling transistor 110.
  • a transistor using an oxide semiconductor may be used as at least one of the sampling transistor 104, the reset transistor 105, the switching transistor 108, and the sampling transistor 114.
  • a transistor using an oxide semiconductor may be used as at least one of the sampling transistor 104, the switching transistor 108, and the sampling transistor 114.
  • a transistor using an oxide semiconductor may be used as the switching transistor 108 and at least one of the transistors 405 to 408.
  • the head mounted display 620 is a so-called light guide plate type head mounted display, it is not limited thereto, and may be, for example, a so-called bird bath type head mounted display.
  • This birdbath type head-mounted display includes, for example, a beam splitter and a partially transparent mirror.
  • the beam splitter outputs light encoded with image information toward a mirror, which reflects the light toward the user's eyes.
  • Both the beam splitter and the partially transparent mirror are partially transparent. This allows light from the surrounding environment to reach the user's eyes.
  • the monitor 514 is provided on the left side of the rear surface of the camera body 131 from approximately the center.
  • Electronic viewfinder 515 is provided above monitor 514 on the back of camera body 131 . By looking through the electronic viewfinder 515, the photographer can visually recognize the light image of the subject guided from the photographic lens unit 512 and determine the composition.
  • the technology according to the embodiments described above can be applied to the electronic viewfinder 515.
  • FIG. 26 is a diagram illustrating an example of the appearance of a television device 710 to which the technology according to the present disclosure can be applied.
  • Television device 710 has a video display screen section 711 including a front panel 712 and filter glass 713.
  • the techniques related to the above embodiments and the like can be applied to this video display screen section 711.
  • FIG. 27 is a diagram illustrating an example of the appearance of a smartphone 800 to which the technology according to the present disclosure can be applied.
  • the smartphone 800 includes a display section 801 that displays various information, and an operation section 802 that includes buttons and the like that accept operation inputs from the user.
  • the technology related to the above embodiments and the like can be applied to this display portion 801.
  • FIGS. 28A and 28B are diagrams illustrating an example of the configuration of a vehicle to which the technology according to the present disclosure can be applied.
  • 28A shows an example of the interior of the vehicle 200 as seen from the rear
  • FIG. 28B shows an example of the interior of the vehicle as seen from the left rear of the vehicle 200.
  • the vehicle of FIGS. 28A and 28B has a center display 911, a console display 912, a head-up display 913, a digital rear mirror 914, a steering wheel display 915, and a rear entertainment display 916.
  • the safety-related information is based on sensor detection results, such as detection of falling asleep, detection of looking away, detection of mischief by children in the same vehicle, presence or absence of seatbelts, and detection of occupants being left behind.
  • the operation-related information is information on gestures related to the occupant's operations, which are detected using a sensor.
  • the gesture may include the operation of various equipment in the vehicle, and includes, for example, the operation of an air conditioner, a navigation device, an AV (Audio/Visual) device, a lighting device, and the like.
  • the life log includes life logs of all crew members. For example, a life log includes a record of each occupant's actions.
  • the digital rear mirror 914 can not only display the rear of the vehicle but also display the state of the occupants in the rear seats, so it can be used, for example, to display life log information of the occupants in the rear seats.
  • the technology according to the above embodiments can be applied to the center display 911, console display 912, head-up display 913, digital rear mirror 914, steering wheel display 915, and rear entertainment display 916.
  • a display device comprising: a decoding circuit that outputs a plurality of the selection signals, and generates the control signal based on the plurality of output selection signals.
  • the pixel circuit includes a storage capacitor that holds the image signal, and drives the light emitting element to emit light by supplying a light emitting current according to the image signal held in the storage capacitor,
  • the decoding circuit includes a write selection signal, which is the selection signal representing the row in which writing is performed to cause the storage capacitor to hold the image signal, and a light emission control selection signal, which is the selection signal representing the row in which the light emission current is to be controlled.
  • the display device wherein the vertical drive section generates a signal based on the light emission control selection signal that controls a voltage of a power supply line that is arranged for each row and supplies the light emission current.
  • the decoding circuit transmits a light emission start control selection signal representing the row in which control is performed to start supply of the light emission current and a light emission stop control selection signal representing the row in which control is performed to stop supply of the light emission current to the light emission control. Generate as a selection signal, The display device according to (2), wherein the vertical drive section generates the control signal based on the light emission start control selection signal and the light emission stop control selection signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

デューティ駆動を行う表示装置の構成を簡略化する。表示装置は、画素アレイ部と、複数の行信号線と、複数のデータ線と、垂直駆動部とを有する。画素アレイ部は、発光素子及び当該発光素子を画像信号に応じて発光させる画素回路を備える複数の画素が2次元行列状に配置される。複数の行信号線は、画素アレイ部における行毎に配置されて画素回路の制御信号を伝達する。複数のデータ線は、画素アレイ部における列毎に配置されて画像信号を伝達する。垂直駆動部は、画素アレイ部の画素を線順次駆動する制御信号を生成して行信号線を介して行毎に画素に供給する。垂直駆動部は、入力されるアドレス信号に応じて選択した行に選択信号を出力するデコード回路であって、線順次駆動における水平走査期間毎に入力される複数のアドレス信号に応じて複数の選択信号を出力するデコード回路を備え、出力された複数の選択信号に基づく制御信号を生成する。

Description

表示装置
 本開示は、表示装置に関する。
 有機ELによる発光素子を備える画素が2次元行列状に配置された画素アレイ部を有する自発光型の表示装置が使用されている。このような画素アレイ部は、線順次駆動により発光が制御される。この線順次駆動は、表示データの書込みや画素の発光させる駆動を行単位で順次実行する駆動方法である。例えば、シフトレジスタにより順次行を選択して線順次駆動を行う表示装置が提案されている(例えば、特許文献1参照)。
特開2009-047818号公報
 しかしながら、上記の従来技術では、画素アレイ部の局所的なパネルリフレッシュや複数の行の画素を同時に駆動する束ね駆動が困難という問題がある。シフトレジスタにおいては、任意の行の選択が困難であるためである。そこで、シフトレジスタの代わりに入力されたアドレスにより行の選択を行うデコーダにて線順次駆動を行う表示装置が提案されている。一方、有機EL等の自発光型の表示装置においては、動画表示の際の残像感を低減するため、デューティ駆動が行われる。このデューティ駆動は、1フレームの期間において発光及び非発光の期間を交互に設ける駆動方法である。このデューティ駆動においては、発光開始の走査に加えて発光停止の走査が必要となる。このデューティ駆動を行う際には、これら複数の走査のためのデコーダがそれぞれ必要となり、表示装置の構成が複雑になるという問題がある。
 そこで、本開示では、デューティ駆動を行う表示装置の構成を簡略化する表示装置を提案する。
 本開示に係る表示装置は、画素アレイ部と、複数の行信号線と、複数のデータ線と、垂直駆動部とを有する。画素アレイ部は、発光素子及び当該発光素子を画像信号に応じて発光させる画素回路を備える複数の画素が2次元行列状に配置される。複数の行信号線は、上記画素アレイ部における行毎に配置されて上記画素回路の制御信号を伝達する。複数のデータ線は、上記画素アレイ部における列毎に配置されて上記画像信号を伝達する。垂直駆動部は、上記画素アレイ部の上記画素を線順次駆動する制御信号を生成して上記行信号線を介して上記行毎に上記画素に供給する。上記垂直駆動部は、入力されるアドレス信号に応じて選択した上記行に選択信号を出力するデコード回路であって、上記線順次駆動における水平走査期間毎に入力される複数の上記アドレス信号に応じて複数の上記選択信号を出力するデコード回路を備え、上記出力された複数の選択信号に基づく上記制御信号を生成する。
本開示の実施形態に係る表示装置の構成例を示す図である。 本開示の第1の実施形態に係る画素の構成例を示す図である。 本開示の第1の実施形態に係る垂直駆動部の構成例を示す図である。 本開示の実施形態に係るデコード回路の構成例を示す図である。 本開示の第1の実施形態に係る駆動方法の一例を示す図である。 本開示の第1の実施形態に係る発光駆動の一例を示す図である。 本開示の第2の実施形態に係る画素の構成例を示す図である。 本開示の第2の実施形態に係る画素の駆動方法の一例を示す図である。 本開示の第2の実施形態に係る垂直駆動部の構成例を示す図である。 本開示の第2の実施形態に係る駆動方法の一例を示す図である。 本開示の第2の実施形態に係る駆動信号の一例を示す図である。 本開示の第2の実施形態に係る発光駆動の一例を示す図である。 本開示の第3の実施形態に係る駆動信号の一例を示す図である。 本開示の第4の実施形態に係る駆動方法の一例を示す図である。 本開示の第4の実施形態に係る発光駆動の一例を示す図である。 本開示の第5の実施形態に係る垂直駆動部の構成例を示す図である。 本開示の第5の実施形態に係る発光駆動の一例を示す図である。 本開示の実施形態の第1の変形例に係る画素の構成例を示す図である。 本開示の実施形態の第2の変形例に係る画素の構成例を示す図である。 本開示の実施形態の第3の変形例に係る画素の構成例を示す図である。 本開示の実施形態の第3の変形例に係る画素の他の構成例を示す図である。 本開示の実施形態の第3の変形例に係る画素の他の構成例の駆動波形を示す図である。 本開示の実施形態の第3の変形例に係る画素の他の構成例を示す図である。 本開示に係る技術が適用され得るヘッドマウントディスプレイの外観の一例を示す図である。 本開示に係る技術が適用され得るヘッドマウントディスプレイの外観の他の一例を示す図である。 本開示に係る技術が適用され得るデジタルスチルカメラの外観の一例を示す図である。 本開示に係る技術が適用され得るデジタルスチルカメラの外観の一例を示す図である。 本開示に係る技術が適用され得るテレビジョン装置の外観の一例を示す図である。 本開示に係る技術が適用され得るスマートフォンの外観の一例を示す図である。 本開示に係る技術が適用され得る車両の構成の一例を示す図である。 本開示に係る技術が適用され得る車両の構成の一例を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。説明は、以下の順に行う。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
1.第1の実施形態
2.第2の実施形態
3.第3の実施形態
4.第4の実施形態
5.第5の実施形態
6.変形例
7.適用例
 (1.第1の実施形態)
 [表示装置の構成]
 図1は、本開示の実施形態に係る表示装置の構成例を示す図である。同図は、表示装置10の構成例を表すブロック図である。表示装置10は、外部から入力される画像データに基づく画像の表示を行うものである。表示装置10は、画素アレイ部20と、水平駆動部40と、垂直駆動部30と制御部50とを備える。
 画素アレイ部20は、複数の画素100が配置されて構成されたものである。同図の画素アレイ部20は、複数の画素100が2次元行列の形状に配列される例を表したものである。ここで、画素100は、発光素子及び発光素子を発光させる画素回路を備え、入力された画像信号に応じた輝度に発光するものである。この発光素子には、例えば、有機EL素子を使用することができる。
 それぞれの画素100には、行信号線21及びデータ線22が配線される。行信号線21は、画素回路の制御信号を伝達する。データ線22は、画像信号を伝達する。なお、行信号線21は、2次元行列の形状の行毎に配置され、1行に配置された複数の画素100に共通に配線される。データ線22は、2次元行列の形状の列毎に配置され、1列に配置された複数の画素100に共通に配線される。
 垂直駆動部30は、上述の画素100の制御信号を生成するものである。同図の垂直駆動部30は、画素アレイ部20の2次元行列の行毎に制御信号を生成し、行信号線21を介して順次出力する。
 水平駆動部40は、画素100の画像信号を生成し、生成した画像信号を画素100に対して出力するものである。同図の水平駆動部40は、データ線22を介して画素アレイ部20の列毎に画像信号を出力する。なお、画像信号は、映像信号や輝度信号とも称される。
 制御部50は、垂直駆動部30及び水平駆動部40を制御するものである。同図の制御部50は、信号線51及び52を介して制御信号をそれぞれ出力して垂直駆動部30及び水平駆動部40を制御する。
 [画素の構成]
 図2は、本開示の第1の実施形態に係る画素の構成例を示す図である。同図は、画素100の構成例を表す回路図である。画素100は、発光素子101と、駆動トランジスタ103と、サンプリングトランジスタ104と、リセットトランジスタ105と、保持容量102とを備える。駆動トランジスタ103、サンプリングトランジスタ104及びリセットトランジスタ105は、nチャネルMOSトランジスタを使用することができる。なお、MOSトランジスタは、閾値電圧Vthを超えるゲート-ソース間電圧Vgsをゲートに印加することにより導通させることができる。この導通状態にするゲート-ソース間電圧Vgsをオン電圧と称する。nチャネルMOSトランジスタでは、ゲートに印加されるオン電圧はソースに対して高い電圧となる。
 画素100には、信号線WS、信号線RESET及び信号線Sigが配線される。信号線WS及び信号線RESETは、前述の行信号線21を構成する。信号線Sigは、前述のデータ線22を構成する。また、画素100には、電源線Vccp、電源線Vss及び電源線Vcathが更に配線される。
 発光素子101のカソードは電源線Vcathに接続され、アノードは駆動トランジスタ103のソースに接続される。駆動トランジスタ103のドレインは電源線Vccpに接続され、ゲートはサンプリングトランジスタ104のドレイン、リセットトランジスタ105のドレイン及び保持容量102の一端に接続される。保持容量102の他の一端は電源線Vssに接続される。サンプリングトランジスタ104のソースは信号線Sigに接続され、ゲートは信号線WSに接続される。リセットトランジスタ105のソースは電源線Vssに接続され、ゲートは信号線RESETに接続される。
 なお、画素100の駆動トランジスタ103、サンプリングトランジスタ104及び保持容量102により構成される回路は、画素回路を構成する。すなわち、画素100における発光素子101以外の回路は、画素回路を構成する。この画素回路は、発光素子101に電流を流すことにより、発光素子101を駆動する回路である。
 発光素子101には、例えば、有機EL素子を使用することができる。この発光素子101は、流れる電流に応じた輝度の光を照射する。
 駆動トランジスタ103は、発光素子101に電流を流して駆動するトランジスタである。
 サンプリングトランジスタ104は、信号線Sigにより伝達される画像信号をサンプリングすることによって駆動トランジスタ103のゲートノード(ゲート電極)に書き込むトランジスタである。なお、ここでの「書き込む」という表現は、ゲートノードに対して画像信号電圧を印加し、当該ゲートノードの電位が、当該画像信号電圧に基づく電位に保持されることを示すものとする。サンプリングトランジスタ104は、信号線WSにより伝達される制御信号により制御される。
 保持容量102は、サンプリングトランジスタ104によるサンプリングによって書き込まれた画像信号電圧Vsigを保持する容量である。駆動トランジスタ103は、保持容量102の保持電圧に応じた駆動電流を発光素子101に流すことによって発光素子101を駆動する。
 リセットトランジスタ105は、保持容量102に保持された画像信号電圧Vsigを放電させて駆動トランジスタ103を非導通にして発光素子101の発光を停止させるトランジスタである。リセットトランジスタ105は、信号線RESETにより伝達される制御信号により制御される。
 [垂直駆動部の構成]
 図3は、本開示の第1の実施形態に係る垂直駆動部の構成例を示す図である。同図は、垂直駆動部30の構成例を表すブロック図である。垂直駆動部30は、画素アレイ部20の行毎に配置された信号線WS及び信号線RESETに制御信号を出力する。同図において「選択信号」、「WS」及び「RESET」等に付加された数字は、画素アレイ部20の対応する行を表す。便宜上、画素アレイ部20の行は、「0」から始まる番号により識別する。垂直駆動部30は、デコード回路31と、ラッチ回路32及び33とを備える。また、クロック信号を伝達する信号線WRT_CLK及び信号線RES_CLKが配置される。
 デコード回路31は、入力されるアドレス信号に応じて画素アレイ部20の行を選択するものである。このデコード回路31は、選択した行に対応する信号線に選択信号を出力する。すなわち、デコード回路31は、画素アレイ部20の行と同数の信号線を備え、選択信号を出力する。デコード回路31には、書込みアドレス信号及び消去アドレス信号が入力される。書込みアドレス信号は、書込みを行う行のアドレスを表す信号である。消去アドレス信号は、発光素子101の発光を停止させる行のアドレスを表す信号である。発光の停止は、保持容量102を放電することにより行うことができる。
 ラッチ回路32及び33は、画素アレイ部20の行毎に配置されてクロック信号に同期して選択信号を保持するものである。ラッチ回路32及び33は、例えば、Dフリップフロップにより構成することができる。ラッチ回路32は信号線WRT_CLKにより伝達されるクロック信号であるWRT_CLK信号に同期して選択信号を保持する。ラッチ回路32のQ出力の信号は書込みを行う画素アレイ部20の行を表す選択信号である書込み選択信号に該当する。このラッチ回路32のQ出力は、信号線WSに接続される。ラッチ回路33は信号線RES_CLKにより伝達されるクロック信号であるRST_CLK信号に同期して選択信号を保持する。このラッチ回路33のQ出力の信号は、発光電流の制御を行う画素アレイ部20の行を表す選択信号である発光制御選択信号に該当する。ラッチ回路33のQ出力は、信号線RESETに接続される。
 アドレス信号やクロック信号は、例えば、図1の制御部50により生成されて出力される。
 [デコード回路の構成]
 図4は、本開示の実施形態に係るデコード回路の構成例を示す図である。同図は、デコード回路31の構成例を表す回路図である。同図のデコード回路31は、4つの反転ゲート202及び画素アレイ部20の行毎に配置されるANDゲート201を備える。同図において、「A0」、「A1」、「A2」及び「A3」は、アドレス信号を表す。同図のアドレス信号は、4ビットの信号を想定したものである。それぞれのANDゲート201の入力は、4ビットのアドレス信号のうち画素アレイ部20の行のアドレスに対応する信号(ビット値)が入力される。これにより、画素アレイ部20の行のアドレスに対応するANDゲート201のみが信号を出力する。ANDゲート201の出力信号は、選択信号に該当する。
 [駆動方法]
 図5は、本開示の第1の実施形態に係る駆動方法の一例を示す図である。同図は、画素100における発光素子101の駆動方法の一例を表すタイミング図である。同図の「Hsync」は、線順次駆動における水平走査期間を表す信号である。同図の「水平走査期間」は、水平走査期間を表す。なお、「水平走査期間」に付加された数字は、垂直走査期間を識別するものである。例えば、「水平走査期間0」は、垂直走査期間における最初の水平走査期間を表す。
 「アドレス信号」は、デコード回路31に入力されるアドレス信号を表す。「選択信号」はデコード回路31から出力される選択信号を表す。この選択信号は、2値化された信号の「1」の部分が選択された状態を表す。「WRT_CLK」及び「RST_CLK」は、図3において説明したクロック信号を表す。「WS」及び「RESET」は、信号線WS及び信号線RESETの制御信号を表す。これらの2値化された制御信号の「1」の部分が前述のオン電圧を表す。一方、「0」の部分はオフ電圧を表す。
 同図に表したように、水平走査期間毎に書込みアドレス220及び消去アドレス221がデコード回路31に入力される。これらのアドレスに対応する画素アレイ部20の行が選択されて選択信号が出力される。例えば、書込みアドレス及び消去アドレスとして値「0」が入力されると選択信号0が「1」に遷移する。出力された選択信号は、WRT_CLKの立ち上がりでラッチ回路32に保持され、信号線WSに制御信号として出力される。同様に、出力された選択信号は、RST_CLKの立ち上がりでラッチ回路33に保持され、信号線RESETに制御信号として出力される。
 信号線WSに「1」の制御信号が入力されると、図2において説明した画素100のサンプリングトランジスタ104が導通し、信号線Sigの画像信号が保持容量102に書き込まれる。この書き込まれた画像信号に応じた発光電流が駆動トランジスタ103に流れ、発光素子101に供給される。このように、図2の画素100は、書込みと同時に発光素子101の発光が開始される。その後、書込みが行われた行の画素100の信号線RESETに「1」の制御信号が入力されると、図2の画素100のリセットトランジスタ105が導通し、保持容量102に書き込まれた画像信号が放電される。これにより、当該画素100の駆動トランジスタ103が非導通の状態となり、発光素子101の発光が停止される。
 書込みアドレスにより選択される選択信号は、書込みを行う画素アレイ部20の行を表す書込み選択信号に該当する。また、消去アドレスにより選択される選択信号は、発光電流の制御を行う行を表す発光制御選択信号に該当する。
 このように、1つの水平走査期間に複数のアドレス信号がデコード回路31に入力され、対応する行の選択信号がそれぞれ出力される。これらの選択信号は、複数のクロック信号(WRT_CLK及びRST_CLK)により異なるタイミングにおいてラッチ回路32及び33に取り込まれて保持される。
 [発光駆動]
 図6は、本開示の第1の実施形態に係る発光駆動の一例を示す図である。同図は、画素アレイ部20におけるデューティ駆動の一例を表すタイミング図である。同図の「Vsync」は、線順次駆動における垂直走査期間を表す信号である。同図の「Hsync」は、線順次駆動における水平走査期間を表す信号である。なお、数字は、水平走査期間を識別するものである。同図の「行アドレス」は、画素アレイ部20の行のアドレス(16進表記)を表す。行アドレス「0」は画素アレイ部20の最初の行に対応し、行のアドレス「F」は画素アレイ部20の最後の行に対応する。
 同図の矩形は、画素アレイ部20の行に配置される画素100の状態を表す。このうち点ハッチングが付された矩形は、書込みが行われる行を表す。また、斜線ハッチングが付された矩形は、発光状態の行を表す。また、白抜きの矩形は、非発光の状態の行を表す。
 水平走査期間0において、書込みアドレス「0」がデコード回路31に入力されて行アドレス「0」の行において書込みが行われて発光を開始し、消去アドレス「8」がデコード回路31に入力されて行アドレス「8」の行が発光を停止する。水平走査期間毎に書込みアドレス及び消去アドレスに値「1」が加算されてデコード回路31に入力される。このため、書込み210に続いて発光開始211及び発光停止212が画素アレイ部20の行毎に順に実行される。これにより、画素アレイ部20においてデューティ駆動を行うことができ、動画表示の際の残像感を低減することができる。
 このように、本開示の第1の実施形態の表示装置10は、1つの水平走査期間に複数のアドレス信号がそれぞれ異なるタイミングにおいてデコード回路31に入力される。デコード回路31は、これら複数のアドレス信号に対応して行の選択を行う。このため、複数のアドレス信号毎にデコード回路を配置する場合と比較して、回路を簡略化することができる。
 (2.第2の実施形態)
 上述の第1の実施形態の表示装置10は、画素100の保持容量102に保持された画像信号に応じて駆動トランジスタ103の発光電流を流していた。これに対し、本開示の第2の実施形態の表示装置10は、画素100の駆動トランジスタ103の閾値のばらつきを補正する点で、上述の第1の実施形態と異なる。
 [画素の構成]
 図7は、本開示の第2の実施形態に係る画素の構成例を示す図である。同図は、図2と同様に、画素100の構成例を表す回路図である。同図の画素100は、リセットトランジスタ105が省略され、発光制御トランジスタ107、スイッチングトランジスタ108及び補助容量106を更に備える点で、図2の画素100と異なる。なお、同図の駆動トランジスタ103、サンプリングトランジスタ104、発光制御トランジスタ107及びスイッチングトランジスタ108は、pチャネルMOSトランジスタを使用することができる。
 画素100には、信号線WS及び信号線Sigに加えて、信号線AZ及び信号線DSが配線される。なお、図2の信号線RESETは、省略される。
 発光素子101のカソードは、電源線Vcathに接続され、アノードは、駆動トランジスタ103のドレイン及びスイッチングトランジスタ108のドレインに接続される。スイッチングトランジスタ108のソースは、電源線Vssに接続され、ゲートは信号線AZに接続される。駆動トランジスタ103のゲートは、サンプリングトランジスタ104のドレイン及び保持容量102の一端に接続される。保持容量102の他の一端は、駆動トランジスタ103のソース、発光制御トランジスタ107のドレイン及び補助容量106の一端に接続される。補助容量106の他の一端は、電源線Vccpに接続される。発光制御トランジスタ107のソースは、電源線Vccpに接続され、ゲートは信号線DSに接続される。サンプリングトランジスタ104のソースは、信号線Sigに接続され、ゲートは信号線WSに接続される。
 発光制御トランジスタ107は、発光素子101の発光及び非発光を制御するトランジスタである。この発光制御トランジスタ107は、信号線DSにより伝達される発光制御信号により制御される。なお、発光制御トランジスタ107は、本開示の「スイッチ素子」の一例である。
 スイッチングトランジスタ108は、発光素子101の非発光期間に発光素子101が発光しないように制御するトランジスタである。このスイッチングトランジスタ108は、信号線AZにより伝達される制御信号により制御される。スイッチングトランジスタ108が導通状態になると、発光素子101を迂回する経路が形成され、発光素子101の発光が停止される。なお、スイッチングトランジスタ108は、本開示の「第2のスイッチ素子」の一例である。
 補助容量106は、画像信号電圧Vsigを書き込んだときに駆動トランジスタ103のソース電圧が変動するのを抑制するキャパシタである。また、補助容量106は、駆動トランジスタ103のゲート-ソース間電圧Vgsを駆動トランジスタ103の閾値電圧Vthにする作用を有する。
 同図の駆動トランジスタ103等のpチャネルMOSトランジスタは、ゲートに印加されるオン電圧はソースに対して低い電圧となる。
 [駆動方法]
 図8は、本開示の第2の実施形態に係る画素の駆動方法の一例を示す図である。同図は、画素100における発光素子101の駆動方法の一例を表すタイミング図である。同図の「Sig」は、信号線Sigにより伝達される画像信号電圧Vsig及び基準電圧Vofsを表す。同図の「Vsig」及び「Vofs」は、画像信号電圧Vsig及び基準電圧Vofsが印加される部分を表す。また、同図の「WS」、「DS」及び「AZ」は、それぞれ信号線WS、信号線DS及び信号線AZにより伝達される制御信号を表す、これらの2値化された制御信号の値「0」の部分が前述のオン電圧を表す。一方、値「1」の部分はオフ電圧を表す。同図の「Vs」及び「Vg」は、駆動トランジスタ103のソース電圧及びゲート電圧を表す。
 初期状態において、信号線Sigには基準電圧Vofsが印加される。信号線DS、信号線WS及び信号線AZにはオフ電圧が印加される。
 T1において、信号線DSにオン電圧が印加され、発光制御トランジスタ107が導通状態になる。また、信号線AZにオン電圧が印加され、スイッチングトランジスタ108が導通状態になる。これにより、駆動トランジスタ103に流れる電流は、スイッチングトランジスタ108を介して電源線Vssに流れ込むことになる。
 T2において、信号線WSにオン電圧が印加され、サンプリングトランジスタ104が導通状態になる。このとき、発光制御トランジスタ107が導通状態にあることで、駆動トランジスタ103のソースノードには電源電圧Vccpが印加された状態となる。サンプリングトランジスタ104を介して、基準電圧Vofsが駆動トランジスタ103のゲートノードに書き込まれる。
 T3において、信号線WSへのオン電圧の印加が停止されてサンプリングトランジスタ104が非導通の状態になる。これにより、基準電圧Vofsの書込みが終了する。なお、基準電圧Vofsの書き込みにより駆動トランジスタ103に電流が流れる。この電流は、スイッチングトランジスタ108を介して電源線Vssに流れ込む。このため、発光素子101は非発光となる。
 T4において、信号線DSへのオン電圧の印加が停止されて発光制御トランジスタTr3が非導通状態になる。これにより、駆動トランジスタ103のソースノードがフローティング状態になる。すなわち、駆動トランジスタ103のゲートノードに基準電圧Vofsを書き込んだ後、駆動トランジスタ103のゲートノード、次いでソースノードの順にフローティング状態になる。また、信号線Sigに画像信号電圧Vsigが印加される。
 そして、駆動トランジスタ103のゲートノード及びソースノードが共にフローティング状態になることで自己放電動作が行われる。自己放電動作での各ノードの電位の放電は、駆動トランジスタ103、スイッチングトランジスタ108及び電源線Vssの経路を通して行なわれる。そして、自己放電動作によって駆動トランジスタ103のソース電圧Vs及びゲート電圧Vgがともに徐々に低下していく。ゲート-ソース間電圧Vgsが閾値電圧Vthに達すると、駆動トランジスタ103が非導通となり自己放電動作が停止される。
 T5において、信号線WSにオン電圧が印加されてサンプリングトランジスタ104が導通状態になる。これにより、駆動トランジスタ103のソースノードをフローティング状態にしたまま、サンプリングトランジスタ104によるサンプリングによって信号電圧Vsigの書込みが行われる。保持容量102に保持される電圧は、Vth+Vsigとなる。また、信号線AZのオン電圧の印加が停止され、スイッチングトランジスタ108が非導通の状態になる。
 T6において、信号線WSのオン電圧の印加が停止され、サンプリングトランジスタ104が非導通の状態になる。
 T7において、信号線DSにオン電圧が印加されて発光制御トランジスタ107が導通状態になる。これにより、補助容量106の電荷が放電されるとともに駆動トランジスタ103のソースに電源電圧Vccpが印加される。保持容量102に保持された電圧に応じて駆動トランジスタ103が導通し、発光素子101に発光電流が供給される。これにより、発光素子101の発光が開始される。また、信号線Sigへの画像信号電圧Vsigの印加が停止される。
 T8において、信号線DSへのオン電圧の印加が停止されて駆動トランジスタ103が非導通状態になる。これにより、発光素子101への発光電流の供給が停止され、発光素子101の発光が停止される。以上の操作により、画素100への書込みと発光開始及び発光停止を行うことができる。
 [垂直駆動部の構成]
 図9は、本開示の第2の実施形態に係る垂直駆動部の構成例を示す図である。同図は、図3と同様に、垂直駆動部30の構成例を表すブロック図である。同図の垂直駆動部30は、ANDゲート34、NANDゲート35及びロジック回路36を更に備え、信号線RES_CLKの代わりに信号線EM_CLK及び信号線STP_CLKが配置される点で、図3の垂直駆動部30と異なる。また、同図のデコード回路31には、書込みアドレス信号の他に発光開始アドレス信号及び発光停止アドレス信号が入力される。発光開始アドレス信号は、発光素子101への発光電流の供給を開始する制御を行う画素アレイ部20の行を表す信号である。発光停止アドレス信号は、発光素子101への発光電流の供給を停止する制御を行う画素アレイ部20の行を表す信号である。なお、「選択信号」等に付加された数字は、画素アレイ部20の対応する行を表す。
 同図のラッチ回路32のQ出力は、書込み選択信号であるWT_EN信号を出力する。この信号は、ロジック回路36に入力される。ANDゲート34の入力には選択信号及び信号線EM_CLKにより伝達されるクロック信号であるEM_CLKが入力される。ANDゲート34の出力は、ラッチ回路33のクロック端子に接続される。NANDゲート35の入力には選択信号及び信号線STP_CLKにより伝達されるクロック信号であるSTP_CLKが入力される。NANDゲート35の出力は、ラッチ回路33のクリア端子に接続される。また、ラッチ回路33のD入力端子には電源電圧が印加される。ラッチ回路33は、EM_CLKの立ち上がりからSTP_CLKの立ち上がりまでのパルス幅の信号を生成する。ラッチ回路33のQ出力は、発光制御選択信号であるEM_EN信号を出力する。この信号は、ロジック回路36に入力される。
 ロジック回路36は、画素100の駆動信号を生成する回路である。このロジック回路36は、入力されたWT_EN信号及びEM_EN信号に基づいて図7において説明した信号線WS、信号線DS及び信号線AZに印加する制御信号を生成する。ロジック回路36は、例えば、論理ゲートを組み合わせた回路により構成することができる。具体的には、WT_EN信号、EM_EN信号及び1水平期間にトグルする信号を入力とし、信号線WS、信号線DS及び信号線AZのそれぞれの制御信号を生成する真理値表に基づく組合せ論理回路により構成することができる。
 [駆動方法]
 図10は、本開示の第2の実施形態に係る駆動方法の一例を示す図である。同図は、図5と同様に、画素100における発光素子101の駆動方法の一例を表すタイミング図である。「EM_CLK」及び「STP_CLK」は、図9において説明したクロック信号を表す。「WT_EN」及び「EM_EN」は、図9において説明したWT_EN信号及びEM_EN信号を表す。これ以外は、図5と同じ表記を使用する。
 同図に表したように、水平走査期間毎に書込みアドレス220、発光開始アドレス222及び発光停止アドレス223がデコード回路31に入力される。これらのアドレスに対応する画素アレイ部20の行が選択されて選択信号が出力される。書込みアドレスにより選択された選択信号は、WRT_CLKの立ち上がりでラッチ回路32に保持され、WT_EN信号として出力される。また、発光開始アドレスにより選択された選択信号は、EM_CLKの立ち上がりでラッチ回路33に保持されてEM_EN信号が「1」に遷移する。また、発光停止アドレスにより選択された選択信号及びSTP_CLKの論理積の信号によりラッチ回路33の出力がクリアされ、EM_EN信号が「0」に遷移する。なお、同図は、書込みアドレス及び発光開始アドレスが等しい場合の例を表したものである。
 同図においても、書込みアドレスにより選択される選択信号は、書込みを行う画素アレイ部20の行を表す書込み選択信号に該当する。また、発光開始アドレスにより選択される選択信号及び発光停止アドレスにより選択される選択信号は、発光電流の制御を行う行を表す発光制御選択信号に該当する。このうち、発光開始アドレスにより選択される選択信号は発光開始制御選択信号に該当し、発光停止アドレスにより選択される選択信号は発光停止制御選択信号に該当する。
 このように、1つの水平走査期間に書込みアドレス信号、発光開始アドレス信号及び発光停止アドレス信号がデコード回路31に入力され、対応する行の選択信号がそれぞれ出力される。これらの選択信号のうち書込みアドレス信号に基づく選択信号及び発光停止アドレス信号に基づく選択信号は、クロック信号であるWRT_CLK及びEM_CLKにより異なるタイミングにおいてラッチ回路32及び33に取り込まれて保持される。また、ラッチ回路33に保持された信号は、発光停止アドレス信号に基づく選択信号及びクロック信号であるSTP_CLKに基づく信号に同期してクリアされる。
 [駆動信号]
 図11は、本開示の第2の実施形態に係る駆動信号の一例を示す図である。同図は、ロジック回路36により生成される駆動信号の一例を表すタイミング図である。同図の「アドレス信号」は、デコード回路31に入力されるアドレス信号を表す。「WRT_CLK」、「EM_CLK」及び「STP_CLK」は、クロック信号を表す。「WS」及び「DS」は、ロジック回路36により生成されて信号線WS及び信号線DSに出力される制御信号を表す。
 同図に表したように、図8において説明した波形の信号が生成され、アドレス信号に応じた行の信号線WS及び信号線DSに順次出力される。なお、同図は、画素アレイ部20の行数より水平走査期間の数が大きい場合の駆動信号を表したものである。全ての行に対して書込み駆動が終わった後にブランキング期間(垂直ブランキング期間)が配置される。この垂直ブランキング期間は、書込み及び発光開始の制御を行わない期間となる。同図の例では、垂直ブランキング期間にWRT_CLK及びEM_CLKの供給を停止し、行の選択を停止する。また、STP_CLKにおいても、クロック信号の供給を停止し、不要な行の選択を停止することができる。なお、垂直ブランキング期間に画素アレイ部20の行に対応しないアドレス信号を出力することにより、行の選択を停止する方法を採ることもできる。
 [発光駆動]
 図12は、本開示の第2の実施形態に係る発光駆動の一例を示す図である。同図は、図6と同様に、画素アレイ部20におけるデューティ駆動の一例を表すタイミング図であり、図11の駆動信号による発光駆動の様子を表す図である。同図において、図6と同じ表記を使用する。また、同図は、画素アレイ部20の行数が16に対し、水平走査期間の数が26の場合の例を表したものである。「水平走査期間16」乃至「水平走査期間25」の期間が上述の垂直ブランキング期間に該当する。画素アレイ部20においてデューティ駆動を行うことができる。
 これ以外の表示装置10の構成は本開示の第1の実施形態における表示装置10の構成と同様であるため、説明を省略する。
 このように、本開示の第2の実施形態の表示装置10は、1つの水平走査期間に書込み並びに発光開始及び発光停止のアドレス信号がデコード回路31に入力される。これにより、駆動トランジスタ103の閾値補正を行う場合においても垂直駆動部30の回路を簡略化することができる。
 (3.第3の実施形態)
 上述の第2の実施形態の表示装置10は、画素アレイ部20の1行毎に書込み等を行っていた。これに対し、本開示の第3の実施形態の表示装置10は、画素アレイ部20の2つの行に対して同時に書込み等を行う点で、上述の第2の実施形態と異なる。
 [発光駆動]
 図13は、本開示の第3の実施形態に係る駆動信号の一例を示す図である。同図は、図11と同様に、ロジック回路36により生成される駆動信号の一例を表すタイミング図である。同図には、制御信号「DBL」を更に記載した。このDBL信号は、アドレス信号により隣接する2つの行を選択させる制御信号である。DBL信号が「1」の時に2つの行が選択される。
 同図において、アドレス「0」が入力される際に、DBL信号が「1」となる。これにより、垂直駆動部30において、行アドレス「0」及び「1」が同時に選択される。垂直駆動部30は、選択した2行の画素100に対して書込み、発光開始及び発光停止の駆動を同時に行う。行アドレス「2」及び「3」、行アドレス「12」及び「13」並びに行アドレス「14」及び「15」においても、それぞれ同時に書込み等が行われる。このような駆動は束ね駆動又はダブラ駆動と称される。画素アレイ部20の上下の端部の行に対して束ね駆動を行うことにより、当該領域の解像度が1/2に低下する。
 一方、画素アレイ部20の中央部の行においては、1行毎に書込み等が行われる。このように、画素アレイ部20の中央部の解像度を上下の端部より高くすることにより、使用者の視点周辺の解像度を高くするFoveated駆動を行うことができる。
 これ以外の表示装置10の構成は本開示の第2の実施形態における表示装置10の構成と同様であるため、説明を省略する。
 このように、本開示の第3の実施形態の表示装置10は、水平走査期間に入力されたアドレス信号に基づいて画素アレイ部20の隣接する2つの行を同時に選択することにより、束ね駆動を行うことができる。
 (4.第4の実施形態)
 上述の第2の実施形態の表示装置10は、水平走査期間に発光開始アドレス信号及び発光停止アドレス信号をデコード回路31に入力してデューティ駆動を行っていた。これに対し、本開示の第4の実施形態の表示装置10は、水平走査期間に複数の発光開始アドレス信号及び発光停止アドレス信号をデコード回路31に入力する点で、上述の第2の実施形態と異なる。
 [駆動方法]
 図14は、本開示の第4の実施形態に係る駆動方法の一例を示す図である。同図は、図10と同様に、画素100における発光素子101の駆動方法の一例を表すタイミング図である。同図は、図5と同じ表記を使用する。
 同図に表したように、水平走査期間毎に書込みアドレス220の他に発光開始アドレス(1)224、発光停止アドレス(1)225、発光開始アドレス(2)226、発光停止アドレス(2)227がデコード回路31に入力される。すなわち、本開示の第4の実施形態の垂直駆動部30は、水平走査期間に発光開始及び発光停止の制御を2回行う。同図のEM_CLKは発光開始アドレス(1)及び発光開始アドレス(2)にそれぞれ対応するクロックパルスを有し、STP_CLKは発光停止アドレス(1)及び発光停止アドレス(2)にそれぞれ対応するクロックパルスを有する。
 発光開始アドレス(1)、発光停止アドレス(1)、発光開始アドレス(2)及び発光停止アドレス(2)に基づいて垂直走査期間に値「1」の期間を2つ有するEM_EN信号が生成される。このEM_EN信号に基づく制御信号を適用することにより、垂直走査期間に2回の発光期間を有する駆動を行うことができる。
 [発光駆動]
 図15は、本開示の第4の実施形態に係る発光駆動の一例を示す図である。同図は、図12と同様に、画素アレイ部20におけるデューティ駆動の一例を表すタイミング図であり、図14の駆動信号による発光駆動の様子を表す図である。同図において、図6と同じ表記を使用する。画素アレイ部20のそれぞれの行において発光開始211及び発光停止212が垂直走査期間に2回実行される。このような駆動方法は、分割発光と称される。
 なお、本開示の第4の実施形態に係る発光駆動は、この例に限定されない。例えば、画素アレイ部20のそれぞれの行において発光開始及び発光停止を垂直走査期間に3回以上実行することもできる。
 これ以外の表示装置10の構成は本開示の第2の実施形態における表示装置10の構成と同様であるため、説明を省略する。
 このように、本開示の第4の実施形態の表示装置10は、1つの水平走査期間に書込みアドレス信号に加えてそれぞれ2つの発光開始アドレス信号及び発光停止アドレス信号がデコード回路31に入力される。これにより、分割発光を行うことができる。
 (5.第5の実施形態)
 上述の第2の実施形態の表示装置10は、画素アレイ部20の行毎に発光開始及び発光停止のタイミングをずらして駆動していた。これに対し、本開示の第5の実施形態の表示装置10は、全ての行において一括して発光開始及び発光停止の制御を行う点で、上述の第2の実施形態と異なる。
 [垂直駆動部の構成]
 図16は、本開示の第5の実施形態に係る垂直駆動部の構成例を示す図である。同図は、図9と同様に、垂直駆動部30の構成例を表すブロック図である。同図の垂直駆動部30は、ANDゲート38、ORゲート39及びラッチ回路37を更に備え、信号線Vsync及び信号線GEMが配置される点で、図9の垂直駆動部30と異なる。信号線Vsyncは、垂直同期信号を伝達する信号線である。信号線GEMは、一括発光を制御するGEM信号を伝達する信号線である。
 ラッチ回路37のD入力端子には電源電圧が印加される。ラッチ回路37のクロック端子にはWT_EN信号が入力される。ラッチ回路37のクリア端子には信号線Vsyncが接続されて垂直同期信号が入力される。なお、ラッチ回路37のクリア端子は、正論理にて動作する。ANDゲート38の入力にはラッチ回路37のQ出力及び信号線GEMが接続される。ORゲート39の入力にはANDゲート38の出力及びラッチ回路33のQ出力が接続される。ORゲート39は、EM_EN信号を出力する。これ以外の結線は図9の垂直駆動部30と同様であるため、説明を省略する。
 GEM信号が入力されると、ORゲート39の作用によりEM_EN信号が「1」に遷移する。GEM信号は全ての行に共通に入力されるため、画素アレイ部20の全ての行に対して一括して発光の制御を行うことができる。
 [発光駆動]
 図17は、本開示の第5の実施形態に係る発光駆動の一例を示す図である。同図は、図12と同様に、画素アレイ部20における駆動の一例を表すタイミング図であり、図16の駆動信号による発光駆動の様子を表す図である。同図において、「GEM」は、GEM信号を表す。
 同図に表したように、画素アレイ部20の行に対して順次書込み210が行われる。その後、GEM信号が「1」の期間に画素アレイ部20の全ての行が一括して発光状態になる。なお、同図の後段の2つの垂直走査期間の発光駆動は、書込み210を行った行に対して発光駆動を行う例を表したものである。これは、例えば、書込みのフラグをラッチする機能を有する垂直駆動部30を使用することにより行うことができる。
 これ以外の表示装置10の構成は本開示の第2の実施形態における表示装置10の構成と同様であるため、説明を省略する。
 このように、本開示の第5の実施形態の表示装置10は、画素アレイ部20の全ての行を一括して発光駆動することができる。
 (6.変形例)
 画素回路の変形例について説明する。
 [第1の変形例]
 図18は、本開示の実施形態の第1の変形例に係る画素の構成例を示す図である。同図は、図7と同様に、画素100の構成例を表す回路図である。同図の画素100は、補助容量106が省略され、スイッチングトランジスタ109を更に備える点で、図2の画素100と異なる。
 スイッチングトランジスタ109は、駆動トランジスタ103のゲート及びドレインの間を短絡するトランジスタである。このスイッチングトランジスタ109にはpチャネルMOSトランジスタを使用することができる。スイッチングトランジスタ109のゲートには、信号線AZ2が接続される。
 また、同図の発光制御トランジスタ107は、駆動トランジスタ103のドレイン及び発光素子101のアノードの間に接続される。また、同図のスイッチングトランジスタ108のゲートには、信号線AZ1が接続される。
 同図の画素回路において、図2の画素回路と同様の発光制御を行う際には、発光制御トランジスタ107を非導通の状態にするとともにスイッチングトランジスタ109を導通させる。これにより、保持容量102が放電されて駆動トランジスタ103を非導通の状態にすることができ、発光素子101への発光電流の供給を停止させることができる。
 また、同図の画素回路において、図7の画素回路と同様の発光制御を行う際には、発光制御トランジスタ107の導通及び非導通の制御を行う。これにより、発光素子101の発光電流の供給の開始及び停止の制御を行うことができる。
 [第2の変形例]
 図19は、本開示の実施形態の第2の変形例に係る画素の構成例を示す図である。同図は、図18と同様に、画素100の構成例を表す回路図である。同図の画素100は、サンプリングトランジスタ110並びにキャパシタ112及び113を更に備える点で、図18の画素100と異なる。
 サンプリングトランジスタ110のソースはサンプリングトランジスタ104のドレインに接続され、ドレインは信号線Sig1に接続される。サンプリングトランジスタ110のゲートには、信号線WS1が接続される。キャパシタ112は、サンプリングトランジスタ110のドレイン及びソースの間に接続される。キャパシタ113は、サンプリングトランジスタ110のドレイン及び電源線Vssの間に接続される。またサンプリングトランジスタ104のドレインには信号線Sig2が接続される。また、サンプリングトランジスタ104のゲートには信号線WS2が接続される。
 同図の画素回路において、図2の画素回路と同様の発光制御を行う際には、発光制御トランジスタ107を非導通の状態にするとともにスイッチングトランジスタ109及びサンプリングトランジスタ104を導通させる。これにより、保持容量102が放電されて駆動トランジスタ103を非導通の状態にすることができ、発光素子101への発光電流の供給を停止させることができる。
 また、同図の画素回路において、図7の画素回路と同様の発光制御を行う際には、発光制御トランジスタ107の導通及び非導通の制御を行う。これにより、発光素子101の発光電流の供給の開始及び停止の制御を行うことができる。
 [第3の変形例]
 図20は、本開示の実施形態の第3の変形例に係る画素の構成例を示す図である。同図は、図2と同様に、画素100の構成例を表す回路図である。同図の画素100は、サンプリングトランジスタ114、発光制御トランジスタ107及びスイッチングトランジスタ108を更に備える点で、図2の画素100と異なる。サンプリングトランジスタ114には、pチャネルMOSトランジスタを使用することができる。
 サンプリングトランジスタ114のドレイン及びソースは、サンプリングトランジスタ104のドレイン及びソースにそれぞれ接続される。発光制御トランジスタ107は、駆動トランジスタ103のソース及び発光素子101のアノードの間に接続される。保持容量102は、駆動トランジスタ103のゲート及びソースの間に接続される。リセットトランジスタ105のドレイン及びソースは、駆動トランジスタ103のゲート及びソースにそれぞれ接続される。スイッチングトランジスタ108のドレインは駆動トランジスタ103のソースに接続され、ソースは電源線Vssに接続される。サンプリングトランジスタ104及び401のゲートには、信号線WS_N及び信号線WS_Pがそれぞれ接続される。発光制御トランジスタ107のゲートには信号線DSが接続される。スイッチングトランジスタ108のゲートには信号線AZが接続される。
 同図の画素回路において、図2の画素回路と同様の発光制御を行う際には、リセットトランジスタ105を導通させて保持容量102を放電する。駆動トランジスタ103を非導通の状態にすることができ、発光素子101への発光電流の供給を停止させることができる。
 図21Aは、本開示の実施形態の第3の変形例に係る画素の他の構成例を示す図である。同図の画素回路は、図20の画素回路においてリセットトランジスタ105を省略したものである。同図の画素回路においては、電源線Vccpの電圧を制御することにより、図7の画素回路と同様の発光制御を行うことができる。
 図21Bは、本開示の実施形態の第3の変形例に係る画素の他の構成例の駆動波形を示す図である。同図に表した波形の電源電圧を画素回路に印加することにより、発光及び消光の制御を行うことができる。電源線Vccpの電圧の制御は、MOSトランジスタ等のスイッチ素子により行うことができる。このスイッチ素子の制御端子には、発光制御選択信号に基づいて生成された制御信号を入力することができる。
 図22は、本開示の実施形態の第3の変形例に係る画素の他の構成例を示す図である。同図の画素回路は、保持容量102と、駆動トランジスタ103と、サンプリングトランジスタ104と、発光制御トランジスタ107と、スイッチングトランジスタ108と、トランジスタ405乃至409と、発光素子101とを有している。なお、駆動トランジスタ103、サンプリングトランジスタ104、発光制御トランジスタ107、スイッチングトランジスタ108及びトランジスタ405乃至409は、pチャネルMOSトランジスタである。サンプリングトランジスタ104のゲートは信号線WSに接続され、ソースは信号線Sigに接続され、ドレインは発光制御トランジスタ107のドレイン及び駆動トランジスタ103のソースに接続される。発光制御トランジスタ107のゲートは信号線DSに接続され、ソースは電源線Vccpに接続され、ドレインはサンプリングトランジスタ104のドレイン及び駆動トランジスタ103のソースに接続される。駆動トランジスタ103のゲートはトランジスタ405のソース、トランジスタ407のドレイン、及び保持容量102に接続され、ソースはサンプリングトランジスタ104、発光制御トランジスタ107のドレインに接続され、ドレインはトランジスタ408、トランジスタ409のソースに接続される。保持容量102の一端は電源線Vccpに接続され、他端は駆動トランジスタ103のゲート、トランジスタ405のソース、及びトランジスタ407のドレインに接続される。保持容量102は、互いに並列に接続された2つのキャパシタを含んでいてもよい。トランジスタ405のゲートは信号線AZ2に接続され、ソースは駆動トランジスタ103のゲート、トランジスタ407のドレイン、及び保持容量102の他端に接続され、ドレインはトランジスタ406のソースに接続される。トランジスタ406のゲートは信号線AZ2に接続され、ソースはトランジスタ405のドレインに接続され、ドレインは電源線Vssに接続される。トランジスタ407のゲートは信号線WSに接続され、ドレインは駆動トランジスタ103のゲート、トランジスタ405のソース、及び保持容量102の他端に接続され、ソースはトランジスタ408のドレインに接続される。トランジスタ408のゲートは信号線WSに接続され、ドレインはトランジスタ407のソースに接続され、ソースは駆動トランジスタ103のドレイン及びトランジスタ409のソースに接続される。トランジスタ409のゲートは信号線DSに接続され、ソースは駆動トランジスタ103のドレイン及びトランジスタ408のソースに接続され、ドレインはスイッチングトランジスタ108のソース及び発光素子101のアノードに接続される。スイッチングトランジスタ108のゲートは信号線AZ1に接続され、ソースはトランジスタ409のドレイン及び発光素子101のアノードに接続され、ドレインは電源線Vssに接続される。
 この構成により、画素100では、サンプリングトランジスタ104、駆動トランジスタ103、トランジスタ408、トランジスタ407がオン状態になることにより、信号線Sigから供給された画像信号に基づいて保持容量102の両端間の電圧が設定される。発光制御トランジスタ107及びトランジスタ409は、信号線DSの信号に基づいてオンオフする。駆動トランジスタ103は、発光制御トランジスタ107及びトランジスタ409がオン状態である期間において、保持容量102の両端間の電圧に応じた電流を、発光素子101に流す。発光素子101は、駆動トランジスタ103から供給された電流に基づいて発光する。このように、画素100は、画素信号に応じた輝度で発光する。トランジスタ405及びトランジスタ406は、信号線AZ2の信号に基づいてオンオフする。トランジスタ405及びトランジスタ406がオン状態である期間において、駆動トランジスタ103のゲートの電圧は電源線Vssの電圧に設定されることにより初期化される。スイッチングトランジスタ108は、信号線AZ1の信号に基づいてオンオフする。スイッチングトランジスタ108がオン状態である期間において、発光素子101のアノードの電圧は電源線Vssの電圧に設定されることにより初期化される。
 なお、図2、7、18、19、20、21A及び22の画素回路の全てのMOSトランジスタは、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタを適用しても良い。また、図2の画素回路において、サンプリングトランジスタ104及びリセットトランジスタ105の少なくとも何れかには、酸化物半導体を用いたトランジスタを適用しても良い。また、図7の画素回路において、サンプリングトランジスタ104及びスイッチングトランジスタ108の少なくとも何れかには、酸化物半導体を用いたトランジスタを適用しても良い。また、図18の画素回路において、サンプリングトランジスタ104、スイッチングトランジスタ108及びトランジスタ109の少なくとも何れかには、酸化物半導体を用いたトランジスタを適用しても良い。また、図19の画素回路において、サンプリングトランジスタ104、スイッチングトランジスタ108及びサンプリングトランジスタ110の少なくとも何れかには、酸化物半導体を用いたトランジスタを適用しても良い。また、図20の画素回路において、サンプリングトランジスタ104、リセットトランジスタ105、スイッチングトランジスタ108及びサンプリングトランジスタ114の少なくとも何れかには、酸化物半導体を用いたトランジスタを適用しても良い。また、図21Aの画素回路において、サンプリングトランジスタ104、スイッチングトランジスタ108及びサンプリングトランジスタ114の少なくとも何れかには、酸化物半導体を用いたトランジスタを適用しても良い。また、図22の画素回路において、スイッチングトランジスタ108及びトランジスタ405乃至408の少なくとも何れかには、酸化物半導体を用いたトランジスタを適用しても良い。
 (7.適用例)
 上記実施の形態及び変形例で説明した表示システムの適用例について説明する。
 [適用例1]
 図23は、本開示に係る技術が適用され得るヘッドマウントディスプレイ600の外観の一例を示す図である。ヘッドマウントディスプレイ600は、例えば、眼鏡形の表示部611の両側に、使用者の頭部に装着するための耳掛け部612を有する。このようなヘッドマウントディスプレイ600に、上記実施の形態等に係る技術を適用することができる。
 [適用例2]
 図24は、本開示に係る技術が適用され得るヘッドマウントディスプレイ620の外観の他の一例を示す図である。ヘッドマウントディスプレイ620は、本体部621と、アーム部622と、鏡筒部623とを有する、透過式のヘッドマウントディスプレイである。このヘッドマウントディスプレイ620は、眼鏡628に装着されている。本体部621は、ヘッドマウントディスプレイ620の動作を制御するための制御基板や表示部を有している。この表示部は、表示画像の画像光を射出する。アーム部622は、本体部621と鏡筒部623とを連結し、鏡筒部623を支持する。鏡筒部623は、本体部621からアーム部622を介して供給された画像光を、眼鏡628のレンズ629を介して、ユーザの目に向かって投射する。このようなヘッドマウントディスプレイ620に、上記実施の形態等に係る技術を適用することができる。
 なお、このヘッドマウントディスプレイ620は、いわゆる導光板方式のヘッドマウントディスプレイであるが、これに限定されるものではなく、例えば、いわゆるバードバス方式のヘッドマウントディスプレイであってもよい。このバードバス方式のヘッドマウントディスプレイは、例えば、ビームスプリッタと、部分的に透明なミラーとを備えている。ビームスプリッタは、画像情報でエンコードされた光をミラーに向けて出力し、ミラーは、光をユーザの目に向かって反射させる。ビームスプリッタ及び部分的に透明なミラーの両方は、部分的に透明である。これにより、周囲環境からの光がユーザの目に到達する。
 [適用例3]
 図25A及び25Bは、本開示に係る技術が適用され得るデジタルスチルカメラ600の外観の一例を示す図である。図25Aは正面図を示し、図25Bは背面図を示す。このデジタルスチルカメラ600は、レンズ交換式一眼レフレックスタイプのカメラであり、カメラ本体部(カメラボディ)131と、撮影レンズユニット512と、グリップ部513と、モニタ514と、電子ビューファインダ515とを有する。撮像レンズユニット312は、交換式のレンズユニットであり、カメラ本体部511の正面のほぼ中央付近に設けられる。グリップ部513は、カメラ本体部511の正面の左側に設けられ、撮影者は、このグリップ部513を把持するようになっている。モニタ514は、カメラ本体部131の背面のほぼ中央よりも左側に設けられる。電子ビューファインダ515は、カメラ本体部131の背面において、モニタ514の上部に設けられる。撮影者は、この電子ビューファインダ515を覗くことにより、撮影レンズユニット512から導かれた被写体の光像を視認し、構図を決定することができる。電子ビューファインダ515に、上記実施の形態等に係る技術を適用することができる。
 [適用例4]
 図26は、本開示に係る技術が適用され得るテレビジョン装置710の外観の一例を示す図である。テレビジョン装置710は、フロントパネル712及びフィルターガラス713を含む映像表示画面部711を有する。この映像表示画面部711に、上記実施の形態等に係る技術を適用することができる。
 [適用例5]
 図27は、本開示に係る技術が適用され得るスマートフォン800の外観の一例を示す図である。スマートフォン800は、各種情報を表示する表示部801と、ユーザによる操作入力を受け付けるボタンなどを含む操作部802とを有する。この表示部801に、上記実施の形態等に係る技術を適用することができる。
 [適用例6]
 図28A及び28Bは、本開示に係る技術が適用され得る車両の構成の一例を示す図である。図28Aは、車両200の後部から見た車両の内部の一例を示し、図28Bは、車両200の左後方からみた車両の内部の一例を示す。
 図28A及び28Bの車両は、センターディスプレイ911と、コンソールディスプレイ912と、ヘッドアップディスプレイ913と、デジタルリアミラー914と、ステアリングホイールディスプレイ915と、リアエンタテイメントディスプレイ916とを有する。
 センターディスプレイ911は、ダッシュボード910における、運転席901及び助手席902に対向する場所に配置されている。図28Aでは、運転席901側から助手席902側まで延びる横長形状のセンターディスプレイ911の例を示すが、センターディスプレイ911の画面サイズや配置場所はこれに限定されるものではない。センターディスプレイ911は、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ911には、イメージセンサで撮影した撮影画像、ToFセンサで計測された、車両前方や側方の障害物までの距離画像、赤外線センサで検出された乗員の体温などを表示可能である。センターディスプレイ911は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。
 安全関連情報は、センサの検出結果に基づく、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知などの情報である。操作関連情報は、センサを用いて検出された、乗員の操作に関するジェスチャの情報である。ジェスチャは、車両内の種々の設備の操作を含んでいてもよく、例えば、空調設備、ナビゲーション装置、AV(Audio Visual)装置、照明装置等の操作を含む。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、各乗員の行動記録を含む。ライフログを取得し保存することにより、事故が生じた際、乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサを用いて検出された乗員の体温や、検出された体温に基づいて推測された乗員の健康状態の情報を含む。あるいは、乗員の健康状態の情報は、イメージセンサにより撮像された乗員の顔に基づいて推測されてもよい。また、乗員の健康状態の情報は、乗員と自動音声を用いて会話を行うことにより得られた乗員の回答内容に基づいて推測されてもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能などの情報を含む。エンタテイメント関連情報は、センサにより検出された乗員によるAV装置の操作情報や、センサにより検出され認識された乗員に適した、表示すべきコンテンツの情報などを含む。
 コンソールディスプレイ912は、例えばライフログ情報の表示に用いることができる。コンソールディスプレイ912は、運転席901と助手席902の間のセンターコンソール907における、シフトレバー908の近くに配置されている。コンソールディスプレイ912も、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ912は、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。
 ヘッドアップディスプレイ913は、運転席901の前方のフロントガラス904の奥に仮想的に表示される。ヘッドアップディスプレイ913は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ913は、運転席901の正面に仮想的に配置されることが多いため、車両の速度、燃料の残量、バッテリの残量などの車両の操作に直接関連する情報を表示するのに適している。
 デジタルリアミラー914は、車両の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、例えば後部座席の乗員のライフログ情報の表示に用いることができる。
 ステアリングホイールディスプレイ915は、車両のステアリングホイール906の中心部に配置されている。ステアリングホイールディスプレイ915は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ915は、運転者の手の近くにあるため、運転者の体温等のライフログ情報やAV装置及び空調設備等の操作に関する情報などを表示するのに適している。
 リアエンタテイメントディスプレイ916は、運転席901や助手席902の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ916は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ916は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。リアエンタテイメントディスプレイ916は、例えば、AV装置や空調設備の操作に関する情報を表示することができる。また、リアエンタテイメントディスプレイ916は、後部座席の乗員の体温等を温度センサ5で計測した結果を表示してもよい。
 これらのセンターディスプレイ911、コンソールディスプレイ912、ヘッドアップディスプレイ913、デジタルリアミラー914、ステアリングホイールディスプレイ915、リアエンタテイメントディスプレイ916に、上記実施の形態等に係る技術を適用することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 発光素子及び当該発光素子を画像信号に応じて発光させる画素回路を備える複数の画素が2次元行列状に配置される画素アレイ部と、
 前記画素アレイ部における行毎に配置されて前記画素回路の制御信号を伝達する複数の行信号線と、
 前記画素アレイ部における列毎に配置されて前記画像信号を伝達する複数のデータ線と、
 前記画素アレイ部の前記画素を線順次駆動する制御信号を生成して前記行信号線を介して前記行毎に前記画素に供給する垂直駆動部と
 を有し、
 前記垂直駆動部は、入力されるアドレス信号に応じて選択した前記行に選択信号を出力するデコード回路であって、前記線順次駆動における水平走査期間毎に入力される複数の前記アドレス信号に応じて複数の前記選択信号を出力するデコード回路を備え、前記出力された複数の選択信号に基づく前記制御信号を生成する
 表示装置。
(2)
 前記画素回路は、前記画像信号を保持する保持容量を備えて当該保持容量に保持された画像信号に応じた発光電流を前記発光素子に供給して発光させる駆動を行い、
 前記デコード回路は、前記保持容量に前記画像信号を保持させる書込みを行う前記行を表す前記選択信号である書込み選択信号及び前記発光電流の制御を行う前記行を表す前記選択信号である発光制御選択信号を含む複数の前記選択信号を生成する前記(1)に記載の表示装置。
(3)
 前記垂直駆動部は、前記保持容量を放電することにより前記発光電流の供給を停止させる制御信号を前記発光制御選択信号に基づいて生成する前記(2)に記載の表示装置。
(4)
 前記垂直駆動部は、前記発光素子に前記発光電流を供給するスイッチ素子の制御信号を前記発光制御選択信号に基づいて生成する前記(2)に記載の表示装置。
(5)
 前記垂直駆動部は、前記発光素子の発光を停止させる制御を行う第2のスイッチ素子の制御信号を前記発光制御選択信号に基づいて生成する前記(2)に記載の表示装置。
(6)
 前記垂直駆動部は、前記行毎に配置されて前記発光電流を供給する電源線の電圧を制御する信号を前記発光制御選択信号に基づいて生成する前記(2)に記載の表示装置。
(7)
 前記デコード回路は、前記発光電流の供給を開始する制御を行う前記行を表す発光開始制御選択信号及び前記発光電流の供給を停止する制御を行う前記行を表す発光停止制御選択信号を前記発光制御選択信号として生成し、
 前記垂直駆動部は、前記発光開始制御選択信号及び前記発光停止制御選択信号に基づく前記制御信号を生成する
 前記(2)に記載の表示装置。
(8)
 前記垂直駆動部は、前記行毎に配置されてクロック信号に同期して前記選択信号を保持するラッチ回路を更に備え、前記ラッチ回路に保持された前記選択信号に基づいて前記制御信号を生成する前記(1)から(7)の何れかに記載の表示装置。
(9)
 前記垂直駆動部は、前記線順次駆動における垂直ブランキング期間に前記クロック信号の供給を停止する制御を行う前記(8)に記載の表示装置。
(10)
 前記垂直駆動部は、前記線順次駆動における垂直ブランキング期間に前記画素アレイ部の行に対応しないアドレス信号が前記デコード回路に入力される前記(1)から(9)の何れかに記載の表示装置。
 10 表示装置
 20 画素アレイ部
 21 行信号線
 22 データ線
 30 垂直駆動部
 31 デコード回路
 32、33、37 ラッチ回路
 100 画素
 101 発光素子
 102 保持容量
 103 駆動トランジスタ
 104、110、114 サンプリングトランジスタ
 105 リセットトランジスタ
 107 発光制御トランジスタ
 108 スイッチングトランジスタ

Claims (10)

  1.  発光素子及び当該発光素子を画像信号に応じて発光させる画素回路を備える複数の画素が2次元行列状に配置される画素アレイ部と、
     前記画素アレイ部における行毎に配置されて前記画素回路の制御信号を伝達する複数の行信号線と、
     前記画素アレイ部における列毎に配置されて前記画像信号を伝達する複数のデータ線と、
     前記画素アレイ部の前記画素を線順次駆動する制御信号を生成して前記行信号線を介して前記行毎に前記画素に供給する垂直駆動部と
     を有し、
     前記垂直駆動部は、入力されるアドレス信号に応じて選択した前記行に選択信号を出力するデコード回路であって、前記線順次駆動における水平走査期間毎に入力される複数の前記アドレス信号に応じて複数の前記選択信号を出力するデコード回路を備え、前記出力された複数の選択信号に基づく前記制御信号を生成する
     表示装置。
  2.  前記画素回路は、前記画像信号を保持する保持容量を備えて当該保持容量に保持された画像信号に応じた発光電流を前記発光素子に供給して発光させる駆動を行い、
     前記デコード回路は、前記保持容量に前記画像信号を保持させる書込みを行う前記行を表す前記選択信号である書込み選択信号及び前記発光電流の制御を行う前記行を表す前記選択信号である発光制御選択信号を含む複数の前記選択信号を生成する請求項1に記載の表示装置。
  3.  前記垂直駆動部は、前記保持容量を放電することにより前記発光電流の供給を停止させる制御信号を前記発光制御選択信号に基づいて生成する請求項2に記載の表示装置。
  4.  前記垂直駆動部は、前記発光素子に前記発光電流を供給するスイッチ素子の制御信号を前記発光制御選択信号に基づいて生成する請求項2に記載の表示装置。
  5.  前記垂直駆動部は、前記発光素子の発光を停止させる制御を行う第2のスイッチ素子の制御信号を前記発光制御選択信号に基づいて生成する請求項2に記載の表示装置。
  6.  前記垂直駆動部は、前記行毎に配置されて前記発光電流を供給する電源線の電圧を制御する信号を前記発光制御選択信号に基づいて生成する請求項2に記載の表示装置。
  7.  前記デコード回路は、前記発光電流の供給を開始する制御を行う前記行を表す発光開始制御選択信号及び前記発光電流の供給を停止する制御を行う前記行を表す発光停止制御選択信号を前記発光制御選択信号として生成し、
     前記垂直駆動部は、前記発光開始制御選択信号及び前記発光停止制御選択信号に基づく前記制御信号を生成する
     請求項2に記載の表示装置。
  8.  前記垂直駆動部は、前記行毎に配置されてクロック信号に同期して前記選択信号を保持するラッチ回路を更に備え、前記ラッチ回路に保持された前記選択信号に基づいて前記制御信号を生成する請求項1に記載の表示装置。
  9.  前記垂直駆動部は、前記線順次駆動における垂直ブランキング期間に前記クロック信号の供給を停止する制御を行う請求項8に記載の表示装置。
  10.  前記垂直駆動部は、前記線順次駆動における垂直ブランキング期間に前記画素アレイ部の行に対応しないアドレス信号が前記デコード回路に入力される請求項1に記載の表示装置。
PCT/JP2023/018631 2022-06-17 2023-05-18 表示装置 WO2023243302A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-097923 2022-06-17
JP2022097923 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243302A1 true WO2023243302A1 (ja) 2023-12-21

Family

ID=89191157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018631 WO2023243302A1 (ja) 2022-06-17 2023-05-18 表示装置

Country Status (1)

Country Link
WO (1) WO2023243302A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060076A (ja) * 1999-06-17 2001-03-06 Sony Corp 画像表示装置
JP2004070293A (ja) * 2002-06-12 2004-03-04 Seiko Epson Corp 電子装置、電子装置の駆動方法及び電子機器
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法
JP2016170385A (ja) * 2015-03-13 2016-09-23 日本放送協会 画像表示装置
JP2023044353A (ja) * 2021-09-17 2023-03-30 セイコーエプソン株式会社 電気光学装置および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060076A (ja) * 1999-06-17 2001-03-06 Sony Corp 画像表示装置
JP2004070293A (ja) * 2002-06-12 2004-03-04 Seiko Epson Corp 電子装置、電子装置の駆動方法及び電子機器
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法
JP2016170385A (ja) * 2015-03-13 2016-09-23 日本放送協会 画像表示装置
JP2023044353A (ja) * 2021-09-17 2023-03-30 セイコーエプソン株式会社 電気光学装置および電子機器

Similar Documents

Publication Publication Date Title
JP3829778B2 (ja) 電子回路、電気光学装置、及び電子機器
TWI417839B (zh) 顯示面板模組,半導體積體電路,像素陣列區段之驅動方法,及電子裝置
US7283108B2 (en) Electro-optical device, method of driving electro-optical device, and electronic apparatus
JP5012729B2 (ja) 表示パネルモジュール、半導体集積回路、画素アレイ部の駆動方法及び電子機器
US7646363B2 (en) Display device and electronic equipment
US7969392B2 (en) Current programming apparatus and matrix type display apparatus
JP5779582B2 (ja) 表示装置
CN108091304A (zh) 栅极驱动器和使用该栅极驱动器的显示面板
WO2023243302A1 (ja) 表示装置
US9912940B2 (en) Stereoscopic image display device and method for driving the same
JP3982544B2 (ja) 電子回路、電気光学装置、及び電子機器
CN110738961A (zh) 有机发光显示装置
WO2024048221A1 (ja) 表示装置
JP2005107004A (ja) 発光表示パネルの駆動装置および駆動方法
JP2008241948A (ja) 表示装置とその駆動方法
WO2023243474A1 (ja) 表示装置
WO2024084876A1 (ja) 表示装置および電子機器
WO2024101213A1 (ja) 表示装置
WO2023182097A1 (ja) 表示装置及びその駆動方法
WO2024048268A1 (ja) 表示装置、電子機器及び表示装置の駆動方法
WO2023119861A1 (ja) 表示装置
WO2023189312A1 (ja) 表示装置
WO2022196492A1 (ja) 表示装置及び電子機器
WO2023013247A1 (ja) 表示装置、電子機器、及び表示制御方法
WO2022270300A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823603

Country of ref document: EP

Kind code of ref document: A1