WO2023241431A1 - 基于超宽带传输物理层协议数据单元的方法和装置 - Google Patents

基于超宽带传输物理层协议数据单元的方法和装置 Download PDF

Info

Publication number
WO2023241431A1
WO2023241431A1 PCT/CN2023/098870 CN2023098870W WO2023241431A1 WO 2023241431 A1 WO2023241431 A1 WO 2023241431A1 CN 2023098870 W CN2023098870 W CN 2023098870W WO 2023241431 A1 WO2023241431 A1 WO 2023241431A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
subfield
millisecond
value
indicate
Prior art date
Application number
PCT/CN2023/098870
Other languages
English (en)
French (fr)
Inventor
刘辰辰
钱彬
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023241431A1 publication Critical patent/WO2023241431A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • Embodiments of the present application relate to the field of communications, and more specifically, to a method and device for transmitting physical layer protocol data units based on ultra-wideband.
  • Ultra wideband (UWB) technology is a wireless carrier communication technology that uses nanosecond-level non-sinusoidal narrow pulses to transmit data. Because its pulses are very narrow and the radiation density is extremely low, the UWB system has the advantages of strong multipath resolution, low power consumption, and strong confidentiality.
  • the Federal Communications Commission limits the power spectral density of UWB signals to within 1 millisecond.
  • the total transmit energy such as 37nJ at 500M bandwidth
  • the transmitter can increase the instantaneous power of the transmit signal by concentrating the energy and transmit it in a shorter time to increase the signal coverage and reception The signal-to-noise ratio of the received signal at the end.
  • the transmitter can split the UWB signal to be transmitted into multiple segmented signals.
  • the length of each segmented signal is less than 1 millisecond, and then within each millisecond Only one of the segmented signals is sent.
  • the technical problem of how to realize segmented transmission of UWB signals has not yet been solved.
  • the embodiments of this application provide a method and device for transmitting physical layer protocol data unit (PPDU) based on ultra wideband (UWB), which can realize multi-millisecond segmented transmission of PPDU.
  • PPDU physical layer protocol data unit
  • UWB ultra wideband
  • the first aspect provides a method for transmitting PPDU based on UWB.
  • the method can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the sending device as an example.
  • the method may include: generating a PPDU, the PPDU including a physical header (PHR) field, the first subfield in the PHR field being used to indicate at least one of the following: whether the PPDU is transmitted in a multi-millisecond segmented manner, the The transmission duration of the PPDU in each millisecond, the number of symbols transmitted by the PPDU in each millisecond, or the number of segments of the PPDU; send the PPDU.
  • PHR physical header
  • the receiving device determines at least one of the following based on the first subfield: whether the PPDU is transmitted in multi-millisecond segments, and the PPDU is transmitted in each millisecond.
  • the transmission duration within each millisecond, the number of symbols of the PPDU in each millisecond, or the number of segments of the PPDU, is conducive to multi-millisecond segmented transmission of the PPDU, so that the receiving device can correctly receive the PPDU according to the PHR field.
  • the first subfield in the PHR field is used to indicate at least one of the above. It can also be understood that the first subfield carries at least one of the following information: used to indicate whether the PPDU adopts a multi-millisecond segmentation method. The transmitted information, the transmission duration of the PPDU in each millisecond, the number of symbols in the PPDU in each millisecond, or the number of segments of the PPDU.
  • the first subfield is used to indicate whether the PPDU is transmitted in multi-millisecond segmentation. If the value of the first subfield is the first value, then The first subfield is used to indicate that the PPDU is not transmitted in multi-millisecond segmentation; if the value of the first subfield is the second value, the first subfield is used to indicate that the PPDU is transmitted in multi-millisecond segmentation. transmission.
  • the receiving device can determine whether the PPDU is transmitted in multi-millisecond segments based on the first subfield in the PHR field, which is beneficial to the receiving device to determine that it needs to receive the PPDU within one millisecond. Or receive the PPDU within multiple milliseconds, which will help the receiving device receive the PPDU correctly. For example, when the value of the first subfield is the first value, the receiving device can determine to receive the PPDU within one millisecond based on the first subfield, and when the value of the second subfield is the second value, the receiving device can The receipt of the PPDU within multiple milliseconds may be determined based on the first subfield. For example, if the protocol predefines the number of PPDU segments to be 8, the receiving device can receive the PPDU within 8 milliseconds.
  • the value of the first subfield is the second value, which is also used to indicate the transmission duration of the PPDU in each millisecond and the segmentation of the PPDU. At least one of the numbers, the number of segments of the PPDU is 2 (M+d) , the transmission duration of the PPDU in each millisecond is 1/2 (M+d) milliseconds, and M is the second value , d is an integer greater than or equal to 0.
  • the first subfield when the first subfield is used to indicate that the PPDU is transmitted in multi-millisecond segments, the first subfield is also used to indicate the transmission duration of the PPDU in each millisecond and the number of segments of the PPDU. At least one of them, so that the receiving end device can determine to receive the PPDU within 2 (M+d) milliseconds according to the first subfield.
  • the value of the first subfield is a third value, used to indicate the number of segments of the PPDU, and the third value is a positive integer.
  • the receiving end device can determine the number of segments of the PPDU based on the first subfield in the PHR field, which is helpful for the receiving end device to determine whether it needs to receive the PPDU within one millisecond or multiple times. Receive the PPDU within milliseconds, which will help the receiving device receive the PPDU correctly. For example, if the receiving device determines that the number of segments of the PPDU is 1 based on the first subfield, the receiving device can determine to receive the PPDU within one millisecond. If the receiving device determines the number of segments of the PPDU based on the first subfield, Greater than 1, the receiving device can be sure to receive the PPDU within multiple milliseconds. For example, if the receiving device determines that the number of segments of the PPDU is 8 based on the first subfield, the receiving device can receive the PPDU within 8 milliseconds.
  • the value of the first subfield is a fourth value, used to indicate the number of symbols transmitted by the PPDU in each millisecond, and the fourth value is Positive integer.
  • the receiving end device can determine the number of symbols transmitted by the PPDU in each millisecond based on the first subfield in the PHR field, which is helpful for the receiving end device to determine that it needs to be received within one millisecond.
  • PPDU or receive PPDU within multiple milliseconds, which will help the receiving device receive the PPDU correctly. For example, if the receiving device determines based on the first subfield that the number of symbols transmitted by the PPDU in each millisecond is equal to The receiving end device can determine to receive the PPDU within one millisecond.
  • the receiving end device determines based on the first subfield that the number of symbols transmitted by the PPDU in each millisecond is less than the total number of symbols transmitted by the PPDU, Then the receiving end device can determine to receive the PPDU within multiple milliseconds.
  • the second subfield in the PHR field is used to indicate at least one of the following: whether the PPDU is transmitted in the same time period within each millisecond for sending The first hop sequence of the PPDU, or the seed or key used to generate the first hop sequence.
  • the receiving device determines at least one of the following based on the second subfield: whether the PPDU is transmitted in the same time period within each millisecond, the first time hop sequence , or, used to generate the seed or key of the first hop sequence, so that the receiving end device can determine the transmission time period of the PPDU in each millisecond based on the combination of the first subfield and the second subfield, which is conducive to the correct reception of the PPDU PPDU.
  • the second field in the PHR field is used to indicate at least one of the above.
  • the first subfield carries at least one of the following information: used to indicate whether the PPDU is the same in each millisecond. The information transmitted during the time period, the first hop sequence, or the seed or key used to generate the first hop sequence.
  • the second subfield is used to indicate whether the PPDU is transmitted in the same time period within each millisecond, and the value of the second subfield is the fifth value. , then the second subfield is used to indicate that the PPDU is transmitted in the same time period in every millisecond; the value of the second subfield is the sixth value, and the second subfield is used to indicate that the PPDU is not transmitted in every millisecond. transmitted within the same time period.
  • the receiving device can combine the first subfield and the second subfield to determine the transmission time period of the PPDU in each millisecond, which is beneficial to the receiving device within the transmission time period of the PPDU.
  • Receive PPDU For example, when the value of the second subfield is the fifth value, the receiving end device can determine the transmission start time of the PPDU in each millisecond based on the transmission duration of the PPDU in each millisecond and the predefined transmission start time of the PPDU in each millisecond. The transmission time period within each millisecond.
  • the receiving device can determine the transmission time of the PPDU in each millisecond based on the transmission duration of the PPDU in each millisecond and the time hopping sequence predefined by the protocol. part.
  • the second subfield is used to indicate the first time hopping sequence
  • the first time hopping sequence is a hop corresponding to the value of the second subfield. time series.
  • the receiving end device can determine the first time hopping sequence for transmitting the PPDU based on the second subfield, so that it can be combined with the transmission duration of the PPDU indicated by the first subfield in each millisecond. , determine the transmission time period of the PPDU within each millisecond, thereby facilitating the receiving end device to receive the PPDU within the transmission time period of the PPDU.
  • the second subfield is used to indicate a seed or key used to generate the first time hopping sequence, a seed used to generate the first time hopping sequence
  • the key is the seed or key corresponding to the value of the second subfield.
  • the receiving end device can determine the seed or key used to generate the first time hopping sequence based on the second subfield, so that the first time hopping sequence can be generated based on the seed or key, and the first time hopping sequence can be generated based on the first time hopping sequence.
  • the sequence determines the transmission time period of the PPDU within each millisecond.
  • the third subfield in the PHR field is used to indicate the modulation and coding strategy adopted for the bearer of the PPDU.
  • the receiving end device can also determine the modulation and coding strategies used to bear the PPDU based on the third subfield, which is helpful for correctly parsing the PPDU. For example, if the third subfield occupies two bits, the third subfield can indicate up to four different modulation and coding strategies, and the receiving end device can select different modulation and coding strategies to transmit the PPDU to meet the different requirements of the receiving end device. transmission requirements.
  • the fourth subfield in the PHR field is used to indicate the length of the payload of the PPDU, and the number of bits occupied by the fourth subfield is greater than 10.
  • the number of bits occupied by the fourth subfield in the PHR field of the PPDU is greater than 10, which is beneficial to realizing the transmission of PPDUs with a longer length.
  • the fourth subfield in the PHR field is used to indicate the length of the bearer of the PPDU, and the length of the bearer of the PPDU is greater than (2 10 -1) bytes .
  • the length of the PPDU indicated by the fourth subfield is greater than (2 10 -1) bytes, which is beneficial to transmitting more information through the PPDU.
  • the number of bits occupied by the fourth subfield is greater than 10, so the length of the PPDU indicated by the fourth subfield is greater than (2 10 -1) bytes.
  • the number of bits of the fourth subfield is N, and when its indicable bearer length values are arranged in ascending order, the difference between two consecutive bearer length values is greater than 1 bytes, the relationship between the maximum length of the bearer L max indicated by the fourth subfield and N can be expressed as: L max > 2 N -1. For example, even if the number of bits occupied by the fourth subfield N is 10, the length of the bearer of the PPDU indicated by the fourth subfield may be greater than (2 10 -1) bytes.
  • sending the PPDU includes: sending the PHR field and the synchronization header (SHR) field included in the PPDU through narrowband; sending the PHR field through ultra-wideband UWB PPDU bearer.
  • SHR synchronization header
  • the PPDU can be sent in a narrowband-assisted manner, that is, the PHR field and SHR field included in the PPDU are sent through the narrowband, and the bearer of the PPDU is sent through UWB, thereby reducing the power consumption of the UWB system.
  • the above technical solution sends part of the PPDUs through UWB instead of sending all PPDUs through UWB, so the power consumption of the UWB system can be reduced.
  • sending the PHR field and SHR field through UWB uses smaller bandwidth, so the power consumption of the sending end device can be reduced.
  • sending the PPDU includes: sending the PPDU through UWB, the first segment of the PPDU includes the PHR field and the SHR field included in the PPDU, The remaining segments of the PPDU except the first segment include the bearer of the PPDU.
  • the receiving end device can receive the SHR field and the PHR field in the first millisecond, so that it can The PHR field determines that the PPDU is transmitted in multi-millisecond segments, which helps the receiving device receive the PPDU correctly.
  • the second aspect provides a method for transmitting PPDU based on UWB.
  • the method can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the receiving end device as an example.
  • the method may include: receiving a PPDU, the PPDU including a PHR field, the first subfield in the PHR field being used to indicate at least one of the following: whether the PPDU is transmitted in a multi-millisecond segmentation manner, the PPDU within each millisecond Transmission duration, the number of symbols transmitted by the PPDU in each millisecond, or the number of segments of the PPDU; parse the PPDU.
  • the first subfield is used to indicate whether the PPDU is transmitted in a multi-millisecond segmentation manner.
  • the received PPDU includes: if the value of the first subfield If the value of the first subfield is the second value, the PPDU is received within one millisecond. If the value of the first subfield is the second value, the PPDU is received within multiple milliseconds.
  • the value of the first subfield is the second value, which is also used to indicate the transmission duration of the PPDU in each millisecond and the segmentation of the PPDU. At least one of the numbers, the number of segments of the PPDU is 2 (M+d) , the transmission duration of the PPDU in each millisecond is 1/2 (M+d) milliseconds, and M is the second value , d is an integer greater than or equal to 0; the PPDU should be received within multiple milliseconds, including: receiving the PPDU within the 2 (M+d) milliseconds.
  • the value of the first subfield is a third value, used to indicate the number of segments of the PPDU, and the third value is a positive integer; the receiving PPDU, including: receiving the PPDU within one or more milliseconds according to the number of segments of the PPDU.
  • the value of the first subfield is a fourth value, used to indicate the number of symbols transmitted by the PPDU in each millisecond, and the fourth value is Positive integer; receiving the PPDU includes: receiving the PPDU within one or more milliseconds according to the number of symbols transmitted by the PPDU in each millisecond.
  • the second subfield in the PHR field is used to indicate at least one of the following: whether the PPDU is transmitted in the same time period within each millisecond for sending The first hop sequence of the PPDU, or the seed or key used to generate the first hop sequence.
  • the second subfield is used to indicate whether the PPDU is transmitted in the same time period within each millisecond.
  • the received PPDU includes: the second subfield If the value is the fifth value, the PPDU is received in the same time period within each millisecond; if the value of the second subfield is the sixth value, the PPDU is received in different time periods within each millisecond.
  • the second subfield is also used to indicate the first time hopping sequence, and the first time hopping sequence corresponds to the value of the second subfield.
  • Time hopping sequence the method further includes: determining the transmission starting time of the PPDU in each millisecond according to the first time hopping sequence.
  • the second subfield is also used to indicate a seed or key used to generate the first time hopping sequence, and a seed or key used to generate the first time hopping sequence.
  • the seed or key is the seed or key corresponding to the value of the second subfield.
  • the third subfield in the PHR field is used to indicate the modulation and coding strategy used to bear the PPDU; parsing the PPDU includes: according to the modulation and encoding strategy to parse the bearer of the PPDU.
  • the fourth subfield in the PHR field is used to indicate the length of the bearer of the PPDU, and the number of bits occupied by the fourth subfield is greater than 10.
  • the fourth subfield in the PHR field is used to indicate the length of the bearer of the PPDU, and the length of the bearer of the PPDU is greater than (2 10 -1) bytes .
  • receiving the PPDU includes: receiving the PHR field and the synchronization header SHR field included in the PPDU through narrowband; receiving the bearer of the PPDU through ultra-wideband UWB.
  • receiving the PPDU includes: receiving the PHR field and the SHR field included in the PPDU in the first millisecond; one or more fields after the first millisecond.
  • the bearer of the PPDU is received within milliseconds.
  • a UWB-based measurement method which can be performed by a communication device, or can also be performed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by the sending device as an example.
  • the method may include: sending a declaration frame, the declaration frame including at least one of the following information: a measurement number, instruction information indicating that the measurement is performed, information on a sequence used for the measurement, or at least one station participating in the measurement. Identification information, the measurement includes ranging or sensing; send the PPDU used for the measurement, the PPDU only includes the SHR field.
  • the receiving device can obtain the above information from the announcement frame. Furthermore, when the sending end device sends a PPDU including only the SHR field, the receiving end device can also implement measurement based on the PPDU, thereby reducing the measurement overhead.
  • the method further includes: sending a trigger frame, the trigger frame including at least one of the following information: the measurement number, or a number used to indicate the requested measurement report. Segmented information.
  • the sending end device sends a PPDU that only includes the SHR field.
  • the receiving device can also report all or part of the measurement report to the sending device according to the trigger frame, thereby reducing the measurement overhead.
  • the measurement number carried in the trigger frame is the same as the measurement number carried in the declaration frame.
  • the declaration frame includes a first field, the first field includes at least one of the following information: the measurement number, instruction information indicating that the measurement is performed, or , information about the sequence used for this measurement.
  • the receiving device can obtain the above information from the first field in the declaration frame, so that the receiving device can implement measurement based on the PPDU including only the SHR field, and/or, Submit measurement report.
  • the receiving end device can determine the measurement performed this time based on the measurement number.
  • the receiving end device can also associate the measurement number with the measurement report obtained by performing the measurement, so that the sending end device determines the measurement corresponding to the measurement report based on the measurement number.
  • the receiving end device can determine based on the instruction information that the received PPDU is a PPDU for measurement, so that the receiving end device can perform measurements based on the PPDU. For example, if the indication information is indication information instructing to perform ranging, then the receiving end device may determine that the PPDU is used for ranging according to the indication information.
  • the receiving end device can determine the sequence used by the sending end to generate the PPDU based on the first field, thereby facilitating the receiving end device to receive and parse the PPDU.
  • the first field is a dialog token field.
  • the declaration frame includes a second field, and the second field includes identification information of at least one station participating in the measurement.
  • the receiving end device can determine whether to participate in measurement according to the second field. For example, if the identification information of at least one station participating in the measurement includes identification information of the receiving end device, the receiving end device determines to participate in the measurement.
  • the second field is a personal area network (personal area network, PAN) identifier (identifier, ID) list (PAN ID list) field.
  • PAN personal area network
  • the declaration frame includes a fifth field, the fifth field is used to indicate that the declaration frame includes at least one of the following information: the measurement number, indicating that the execution of the Instruction information of the measurement, information of the sequence used in the measurement, or identification information of at least one site participating in the measurement.
  • the receiving device can determine that the declaration frame includes the above information, so that the receiving device can parse the declaration frame and obtain the above information.
  • the fifth field is a frame control field.
  • the trigger frame includes a third field, and the third field includes the measurement number.
  • the receiving end device can determine which measurement report the sending end device is requesting based on the measurement number.
  • the third field is a conversation token field.
  • the trigger frame includes a fourth field, the fourth field including information indicating a segment of the requested measurement report.
  • the sending device can instruct the receiving device to report all measurements or part of the measurement report through the fourth field. For example, if the trigger frame sent each time can specify the receiving end device to report part of the measurement report, the receiving end device does not need to feed back all the measurement reports at once.
  • the measurement report data volume is large, the accuracy of the feedback results can be effectively improved. Efficiency and reliability, improving program flexibility.
  • the trigger frame includes a sixth field, the sixth field is used to indicate that the trigger frame includes at least one of the following information: the measurement number, or for Information indicating the segments of the requested measurement report.
  • the receiving device can determine that the trigger frame includes the above information, so that the receiving device can parse the trigger frame and obtain the above information.
  • the sixth field is a frame control field.
  • the fourth aspect provides a UWB-based measurement method, which can be performed by a communication device, or can also be performed by a component (such as a chip or circuit) of the communication device, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the receiving end device as an example.
  • the method may include: receiving a declaration frame, the declaration frame including at least one of the following information: a measurement number, instruction information indicating that the measurement is performed, information on a sequence used for the measurement, or at least one station participating in the measurement.
  • identification information the measurement includes ranging or sensing; receive the PPDU used for the measurement, the PPDU only includes SHR Field; determined based on the declaration frame, and measurement performed based on the PPDU.
  • the trigger frame includes at least one of the following information: the measurement number, or information used to indicate the segments of the requested measurement report; sent according to the trigger frame Full measurement report or partial measurement report.
  • the declaration frame includes a first field, the first field includes at least one of the following information: the measurement number, instruction information indicating that the measurement is performed, or , information about the sequence used for this measurement.
  • the first field is a conversation token field.
  • the declaration frame includes a second field, the second field includes identification information of at least one station participating in the measurement; it is determined according to the declaration frame, and executed according to the PPDU Measuring includes: determining to perform the measurement based on the identification information of at least one site participating in the measurement.
  • the second field is a PAN ID list field.
  • the declaration frame includes a fifth field, the fifth field is used to indicate that the declaration frame includes at least one of the following information: the measurement number, indicating that the execution of the Instruction information of the measurement, information of the sequence used in the measurement, or identification information of at least one site participating in the measurement.
  • the fifth field is a frame control field.
  • the trigger frame includes a third field, and the third field includes the measurement number; sending the entire measurement report or part of the measurement report according to the trigger frame includes: This measurement number sends all or part of the measurement report corresponding to this measurement number.
  • the third field is a conversation token field.
  • the trigger frame includes a fourth field, the fourth field includes information indicating segments of the requested measurement report; according to the information indicating the requested measurement report The segmented information determines whether to send the entire measurement report or part of the measurement report.
  • the trigger frame includes a sixth field, the sixth field is used to indicate that the trigger frame includes at least one of the following information: the measurement number, or for Information indicating the segments of the requested measurement report.
  • the sixth field is a frame control field.
  • the fifth aspect provides a UWB-based measurement method, which can be performed by a communication device, or can also be performed by a component (such as a chip or circuit) of the communication device, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the sending device as an example.
  • the method may include: sending an inquiry frame, the inquiry frame including one or more of the following: instruction information indicating to perform the measurement, identification information of at least one station participating in the measurement, or information required by the at least one station to perform the measurement. Parameters, the measurement includes ranging or sensing; receive a PPDU for the measurement, the PPDU only includes the SHR field.
  • the query frame includes a first field, and the first field It includes one or more of the following: instruction information instructing to perform the measurement, and the same parameters required by the at least one station to perform the measurement.
  • the transmission overhead of the query frame can be reduced.
  • the receiving end device may be instructed to perform measurement.
  • the indication information is indication information instructing to perform ranging
  • the indication information may instruct the receiving end device to perform ranging.
  • the at least one station may be instructed to perform measurement according to the parameters.
  • the first field is a common information (common info) field.
  • the inquiry frame includes a second field, and the second field includes at least one of the following: identification information of at least one station participating in the measurement, or the at least one station Parameters required to perform this measurement.
  • the receiving end device can determine whether to participate in measurement according to the second field, and the parameters required to perform measurement if participating in measurement. For example, if the identification information of at least one station participating in the measurement includes identification information of the receiving end device, the receiving end device determines to participate in the measurement.
  • the second field includes different parameters required by the at least one station to perform the measurement.
  • the second field is a user information list field.
  • the inquiry frame includes a third field, the third field is used to indicate that the inquiry frame includes at least one of the following information: indication information indicating to perform measurement, Identification information of at least one station participating in the measurement, or parameters required by the at least one station to perform the measurement, and the measurement includes ranging or sensing.
  • the receiving device can determine that the query frame includes the above information, so that the receiving device can parse the query frame and obtain the above information.
  • the third field is a frame control field.
  • a UWB-based measurement method is provided, which method can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by the receiving end device as an example.
  • the method may include: receiving an inquiry frame, the inquiry frame including one or more of the following: instruction information indicating to perform the measurement, identification information of at least one station participating in the measurement, or information required by the at least one station to perform the measurement.
  • the measurement includes ranging or sensing; the PPDU used for the measurement is sent according to the inquiry frame, and the PPDU only includes the SHR field.
  • the query frame includes a first field, the first field includes one or more of the following: indication information indicating to perform the measurement, the at least one station performs the The same parameters required for measurement; the method further includes: determining to perform ranging or performing sensing according to the indication information, and/or, according to the The same parameters are sent in the PPDU used for this measurement.
  • the first field is a public information field.
  • the inquiry frame includes a second field, and the second field includes at least one of the following: identification information of at least one station participating in the measurement, or the at least one station Parameters required to perform the measurement; the method further includes: determining whether to participate in the measurement based on the identification information of at least one site participating in the measurement, and/or sending parameters required to perform the measurement based on the at least one site for The measured PPDU.
  • the second field includes different parameters required by the at least one station to perform the measurement.
  • the second field is a user information list field.
  • a seventh aspect provides a device for performing the method provided in any one of the above-mentioned first to sixth aspects.
  • the device may include units and/or modules for executing the first aspect or the method provided by any of the above implementations of the first aspect, or may include units and/or modules for executing the second aspect or any of the above implementations of the second aspect.
  • Units and/or modules of the method provided by one implementation or include units and/or modules for executing the method provided by the third aspect or any of the above implementations of the third aspect, or include units and/or modules for executing The units and/or modules of the method provided by the fourth aspect or any one of the above implementations of the fourth aspect, or include units and modules for executing the method provided by the fifth aspect or any one of the above implementations of the fifth aspect. /or modules, or include units and/or modules for executing the method provided by the sixth aspect or any of the above implementations of the sixth aspect, such as a processing unit and/or a transceiver unit.
  • the device is a device (such as a sending device or a receiving device).
  • the transceiver unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, chip system or circuit used in a device (such as a transmitting end device or a receiving end device).
  • the transceiver unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • An eighth aspect provides a device, which device includes: a memory for storing a program; and at least one processor for executing the computer program or instructions stored in the memory to execute the first aspect or any one of the first aspects.
  • the device is a device (such as a sending device or a receiving device).
  • the device is a chip, chip system or circuit used in a device (such as a transmitting end device or a receiving end device).
  • this application provides a processor for executing the methods provided in the above aspects.
  • a computer-readable storage medium stores a program code for device execution.
  • the program code includes a program code for executing the above-mentioned first aspect or any one of the above-mentioned implementations of the first aspect.
  • Instructions for the method provided by the above method, or instructions for executing the method provided by the above fourth aspect or any one of the above implementations of the fourth aspect, or including instructions for executing the above fifth aspect or any one of the above mentioned fifth aspects Instructions for a method provided by one of the above implementations, or instructions for executing the method provided by any one of the foregoing implementations of the sixth aspect or the sixth aspect.
  • An eleventh aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute the first aspect or any of the above implementations of the first aspect or the second aspect, or Cause the computer to execute the method provided by the above-mentioned second aspect or any one of the above-mentioned implementations of the second aspect, or cause the computer to execute the above-mentioned third aspect or the method provided by any one of the above-mentioned implementations of the third aspect, or cause the computer to execute the above-mentioned
  • a chip in a twelfth aspect, includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface and executes the method provided by the first aspect or any of the above implementations of the first aspect. , or perform the method provided by the above second aspect or any one of the above implementations of the second aspect, or perform the above third aspect or the method provided by any one of the above implementations of the third aspect, or perform the above fourth aspect or The method provided by any one of the above-mentioned implementations of the fourth aspect, or the method provided by any one of the above-mentioned implementations of the above-mentioned fifth aspect or the fifth aspect, or the above-mentioned sixth aspect or any one of the above-mentioned sixth aspects.
  • the chip also includes a memory, in which computer programs or instructions are stored.
  • the processor is used to execute the computer programs or instructions stored in the memory.
  • the processor is used to execute The method provided by the above-mentioned first aspect or any one of the above-mentioned implementations of the first aspect, or the method provided by the above-mentioned second aspect or any one of the above-mentioned implementations of the second aspect, or the above-mentioned third aspect or the third aspect
  • a communication system including the above sending device and receiving device.
  • Figure 1 is a schematic diagram of two application scenarios provided by this application.
  • FIG. 2 is a schematic diagram of a UWB signal suitable for embodiments of the present application.
  • Figure 3 is a schematic diagram of a PPDU structure applicable to the embodiment of the present application.
  • Figure 4 is a schematic flow chart of a method for transmitting PPDU based on UWB provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of the PHR field provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of a UWB-based measurement method provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a declaration frame provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a trigger frame provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a UWB-based measurement method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an inquiry frame provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the device 2000 provided by the embodiment of the present application.
  • Figure 12 is a schematic diagram of the device 3000 provided by the embodiment of the present application.
  • Figure 13 is a schematic diagram of a chip system 4000 provided by an embodiment of the present application.
  • WPAN wireless personal area network
  • IEEE Institute of Electrical and Electronics Engineer
  • WPAN can be used for communication between digital auxiliary equipment within a small range such as phones, computers, and accessory equipment. Its working range is generally within 10 meters (m).
  • technologies that can support wireless personal area networks include but are not limited to: bluetooth, ZigBee, ultra wideband (UWB), infrared data association (IrDA) infrared connection technology, home Radio frequency (HomeRF), etc.
  • WPAN can be located at the bottom of the entire network architecture and is used for wireless connections between devices within a small range, that is, point-to-point short-distance connections, which can be regarded as short-distance wireless communication networks.
  • WPAN can be divided into high rate (HR)-WPAN and low rate (LR)-WPAN.
  • HR-WPAN can be used to support various high-rate multimedia applications, including high-speed Quality audio and video distribution, multi-megabyte music and image file transfer, and more.
  • LR-WPAN can be used for general business in daily life.
  • WPAN In WPAN, according to the communication capabilities of the device, it can be divided into full-function device (FFD) and reduced-function device (RFD).
  • RFD is mainly used for simple control applications, such as light switches, passive infrared sensors, etc.
  • the amount of data transmitted is small, and it does not occupy much transmission resources and communication resources.
  • the cost of RFD is low.
  • FFDs can communicate with each other, and FFDs and RFDs can also communicate with each other. Usually, RFDs do not communicate directly with each other, but communicate with FFDs, or forward data through an FFD.
  • the FFD associated with an RFD may also be called the coordinator of the RFD.
  • the coordinator can also be called a personal area network (PAN) coordinator or central control node.
  • PAN personal area network
  • the PAN coordinator is the master control node of the entire network, and there is a PAN coordinator in each ad hoc network, which is mainly used for membership management, link information management, and packet forwarding functions.
  • the device in the embodiment of this application may be a device that supports multiple WPAN standards such as 802.15.4a and 802.15.4z, as well as those currently under discussion or subsequent versions.
  • the above-mentioned devices may be tags, communication servers, routers, switches, network bridges, computers or mobile phones, home smart devices, vehicle-mounted communication devices, wearable devices, etc.
  • Wearable devices can also be called wearable smart devices, which are general terms that apply wearable technology to smarten devices for daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • Use such as various smart bracelets for physical sign monitoring, Smart jewelry, etc.
  • the above-mentioned device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example. Linux operating system, Unix operating system, Android operating system, iOS operating system or Windows operating system, etc.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. It suffices to communicate using a method.
  • the execution subject of the method provided by the embodiment of the present application may be FFD or RFD, or a functional module in FFD or RFD that can call a program and execute the program.
  • the embodiments of the present application can also be used in other communication systems, such as fifth generation (5th generation, 5G) or new radio (NR) systems, long term evolution (long term evolution, LTE) systems, frequency division Duplex (frequency division duplex, FDD) system, time division duplex (time division duplex, TDD) system, etc.
  • 5th generation, 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • frequency division Duplex frequency division duplex
  • time division duplex time division duplex
  • TDD time division duplex
  • 6G sixth generation mobile communication systems.
  • the embodiments of this application can also be used for device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine-type communication ( machine type communication (MTC), and the Internet of things (IoT) communication system or other communication systems.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine-type communication
  • IoT Internet of things
  • Figure 1 is a schematic diagram of two application scenarios provided by this application.
  • the system 101 shown in (A) in Figure 1 is a communication system with star topology, and the system 102 shown in (B) in Figure 1 is a peer to peer topology. Communication Systems.
  • the system 101 may include multiple FFDs and multiple RFDs, and the multiple FFDs and multiple RFDs may form a star topology communication system.
  • one FFD among multiple FFDs is a PAN controller.
  • the PAN controller can transmit data with one or more other devices, that is, multiple devices can establish a one-to-many or many-to-many communication system.
  • One-to-one data transmission architecture One-to-one data transmission architecture.
  • the system 102 may include multiple FFDs and one RFD, and the multiple FFDs and one RFD may form a point-to-point topology communication system.
  • one FFD among multiple FFDs is a PAN controller.
  • a many-to-many data transmission architecture can be established between multiple different devices.
  • UWB technology It is a wireless carrier communication technology that uses nanosecond-level non-sinusoidal narrow pulses to transmit data, so it occupies a wide spectrum range. Due to its very narrow pulses and extremely low radiation spectral density, UWB systems have multipath The advantages of strong resolution, low power consumption, and strong confidentiality are conducive to coexistence with other systems, thereby improving spectrum utilization and system capacity.
  • ultra-wideband wireless communication has become one of the popular physical layer technologies for short-distance, high-speed wireless networks.
  • Many world-famous large companies, research institutions, and standardization organizations are actively involved in the research, development, and standardization of ultra-wideband wireless communication technology.
  • IEEE has incorporated UWB technology into its IEEE 802 series of wireless standards, and has released The WPAN standard IEEE 802.15.4a, and its evolved version IEEE 802.15.4z, the formulation of the WPAN standard 802.15.4ab of the next generation UWB technology has also been put on the agenda.
  • UWB technology does not require the use of carriers in the traditional communication system, but transmits data by sending and receiving extremely narrow pulses with nanoseconds or less, it has high requirements for the time synchronization of the sending and receiving equipment.
  • due to its communication bandwidth Larger, so when using ultra-wideband channels to send and receive signals, the power consumption and complexity of the equipment are high, and most UWB communication equipment relies on battery power.
  • the next generation standard hopes to further reduce the power consumption of UWB systems, so narrowband can be used In the signal-assisted method, all signals except the reference signals for ranging and sensing are sent and received through the narrowband system, thereby reducing the overall power consumption overhead.
  • Rule 1 limits the total energy transmitted by UWB within 1 millisecond (such as 37nJ at 500M bandwidth), but the instantaneous power of the transmitted signal can be increased by concentrating the energy and transmitting it in a shorter time to increase the signal coverage and increase the signal-to-noise ratio of the received signal at the receiving end. Based on this, in some scenarios where the transmission power needs to be increased, the transmitter splits the UWB signal to be transmitted into multiple segmented signals. The length of each segmented signal is less than 1 millisecond, and then only Send one of the segmented signals.
  • FIG 2 is a schematic diagram of a UWB signal provided by an embodiment of the present application.
  • the transmitter splits the UWB signal to be transmitted into multiple segmented signals (UWB segmented signal #1, UWB segmented signal #2 and UWB segmented signal # shown in Figure 2 3...), the time length of each segment signal is less than 1 millisecond, and only one of the segment signals is sent in each millisecond.
  • the "segmented signal” in this application may also be called “blocked signal”, “short signal”, “partial signal”, “segmented” or “blocked”, etc. There is no limit to the name of the segmented signal. .
  • Ranging or sensing For ranging or sensing scenarios, the accuracy of the measurement or sensing results is related to the signal bandwidth. The larger the signal bandwidth, the higher the accuracy of the sensing or ranging results. Therefore, you can consider sending and receiving reference signals for ranging or sensing through the UWB system, and transmitting other reference signals and/or data through narrowband transmission, which can not only ensure the accuracy of ranging and sensing, but also save power consumption. .
  • the perception involved in this application can be understood as the underlying perception technology of the Internet of Things technology architecture, which is the primary link for the Internet of Things to obtain information and realize object control; ranging can be understood as The solution is the measurement of distance between devices, including but not limited to the distance measurement between two objects in the Internet of Things.
  • UWB technology does not require the use of carriers in the traditional communication system, but transmits data by sending and receiving extremely narrow pulses with nanoseconds or less. Therefore, its Synchronization of sending and receiving devices is crucial in UWB technology.
  • the so-called synchronization of transceiver equipment can be understood as PPDUs being sent in the form of pulse signals, and the receiving end determines which of the multiple received pulse signals starts with the PPDU it wants to receive.
  • the synchronization of transceiver devices is mainly achieved through the synchronization header (SHR) in PPDU. Specifically, the receiving end can perform correlation detection with the synchronization header to determine which of the multiple received pulse signals comes from. It starts with the PPDU it wants to receive.
  • SHR synchronization header
  • FIG. 3 shows a schematic diagram of the frame structure of PPDU.
  • PPDU includes SHR, physical header (physical header, PHR) and physical layer (physical layer, PHY) bearer (payload) fields.
  • SHR is used for PPDU detection and synchronization by the receiving end.
  • the receiving end can detect whether the sending end has sent a PPDU and the starting position of the PPDU based on the SHR.
  • the SHR field can include a standard predefined preamble sequence and start-of-frame delimiter (SFD).
  • SFD start-of-frame delimiter
  • the receiving end can use the predefined preamble sequence to perform correlation operations with the received signal.
  • Information such as the peak position of the relevant operation results is used to determine the arrival time of the signal.
  • the arrival time usually refers to the time relative to the ranging marker (RMARKER).
  • the RMARKER here refers to the first signal immediately after the SFD. The time it takes for a pulse to arrive at the receiving antenna.
  • the PHR field carries physical layer indication information, such as modulation and coding information, PPDU length, and the recipient of the PPDU, etc., to assist the receiving end in correctly demodulating the data.
  • the structure of the PHR field is shown in (B) in Figure 3.
  • the PHY payload length subfield is used to indicate the number of bytes of information carried by the PPDU, and the ranging subfield is used to indicate whether it is needed. Use this PPDU for ranging. If there is a scramble timestamp sequence (STS) field behind the PHY bearer, the A1 and A0 subfields are used to indicate the gap length between the STS subfield and the PHY bearer field.
  • STS scramble timestamp sequence
  • A1 and A0 can also be used together with the PHY bearer length subfield to indicate the number of bytes of information carried by the PHY bearer.
  • the single-error correction and double-error detection (SECDED) subfield is an encoded check bit used to detect and correct errors in the PHR field.
  • the physical layer bearer (PHY payload) field carries transmission data
  • the physical layer bearer field can include a physical layer service data unit (PHY service data unit, PSDU).
  • PHY service data unit PHY service data unit
  • Narrowband system In a communication system, after the source signal is modulated by the carrier signal, the signal whose effective bandwidth is much smaller than the carrier frequency or center frequency is called a narrowband signal.
  • the frequency band resources allocated to user equipment + the real propagation environment are called channels, and channels also have certain spectrum characteristics. Normally, the wider the allocated frequency band resources, the more stable the propagation environment, and the higher the data rate that the channel can carry.
  • the signal bandwidth (or “source characteristic”) is ⁇ f
  • the carrier frequency or "channel characteristic”
  • fc the carrier frequency
  • for indicating may include direct instructions and indirect instructions.
  • direct instructions and indirect instructions When describing certain information to indicate A, it may include that the information directly indicates A or indirectly indicates A, but it does not mean that the information must contain A.
  • the information indicated by the information is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated. Index of information, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be achieved by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the indication overhead to a certain extent.
  • the common parts of each piece of information can also be identified and indicated in a unified manner to reduce the instruction overhead caused by indicating the same information individually.
  • At least one of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the sending device may be a device with communication capabilities in the WPAN, such as FFD or RFD; similarly, the receiving device may also be a device with communication capabilities in the WPAN, such as FFD or RFD.
  • Figure 4 is a schematic flow chart of a method for transmitting PPDU based on UWB provided by an embodiment of the present application, which includes the following steps:
  • S410 The sending device generates a PPDU.
  • the PPDU includes a PHR field.
  • the first subfield in the PHR field is used to indicate at least one of the following: whether the PPDU is transmitted in multi-millisecond segments, the transmission duration of the PPDU in each millisecond, and the symbols transmitted by the PPDU in each millisecond. The number, or the number of segments of PPDU.
  • the number of segments of the PPDU is used to indicate the number of segments of the PPDU when the PPDU is split into multiple segments. It should be noted that if the PPDU is split into multiple segments, the SHR field and PHR field included in the PPDU are included in the first segment of the PPDU, and the bearer of the PPDU is included in the remaining segments of the PPDU. In the following embodiments, the number of segments of the PPDU is used to indicate the number of all segments of the PPDU as an example for description.
  • the first subfield in the PHR field is used to indicate at least one of the above. It can also be understood that the first subfield carries at least one of the following information: information used to indicate whether the PPDU is transmitted in multi-millisecond segmentation, PPDU The transmission duration in each millisecond, the number of symbols transmitted by the PPDU in each millisecond, or the number of segments of the PPDU.
  • the first subfield may be called segment length (segment length) subfield, segment information (segment info) subfield, segment (segment) subfield, multi-millisecond transmission (multi-millisecond, MSS) subfield. fields etc. It should be understood that in the embodiment of this application, there is no limitation on the name of the first subfield.
  • the first subfield is used to indicate whether the PPDU is transmitted in multi-millisecond segments. For example, if the value of the first subfield is the first value, the first subfield is used to indicate that the PPDU is not transmitted in multi-millisecond segmentation. If the value of the first subfield is the second value, the second subfield is used to indicate that the PPDU is not transmitted in multi-millisecond segments. field is used to indicate that the PPDU is transmitted in multi-millisecond segments. For example, the first value is 0, that is, when the value of the first subfield is 0, the first subfield is used to indicate that the PPDU is not transmitted in multi-millisecond segmentation.
  • the second value is a positive integer, for example, the second value is 1, that is, when the value of the first subfield is 1, the first subfield is used to indicate that the PPDU is transmitted in multi-millisecond segments. It should be understood that in the embodiment of the present application, there is no limitation on the values of the first value and the second value.
  • the first subfield is also used to indicate at least one of the transmission duration of the PPDU in each millisecond and the number of segments of the PPDU.
  • the number of segments of PPDU is 2 (M+d)
  • the transmission duration of PPDU in each millisecond is 1/2 (M+d) milliseconds
  • M is the second value
  • d is an integer greater than or equal to 0. .
  • the value of d is predefined by the protocol.
  • the value of d is determined by the minimum number of segments of PPDU predefined by the protocol, for example, N min represents the minimum number of segments of PPDU predefined by the protocol, and M min is the minimum value of the second value.
  • N min represents the minimum number of segments of PPDU predefined by the protocol
  • M min is the minimum value of the second value.
  • M min 1.
  • the first subfield is also used to indicate the number of symbols transmitted by the PPDU in each millisecond.
  • the number of symbols transmitted by the PPDU in each millisecond corresponds to the second value.
  • the second value is 1, and the number of symbols corresponding to 1 is 2, then the number of symbols transmitted by the PPDU in each millisecond is The number is 2.
  • the number of symbols transmitted by the PPDU in each millisecond is equal to the second value. For example, if the second value is 1, then the number of symbols transmitted by the PPDU in each millisecond is 1.
  • the value of the first subfield is a third value, which is used to indicate the number of segments of the PPDU.
  • the number of segments of the PPDU is equal to the third value
  • the third value is a positive integer.
  • the third value is 1, it means that the first subfield is used to indicate that the number of segments of the PPDU is 1.
  • the third value is 4, it means that the first subfield is used to indicate that the number of segments of the PPDU is 4.
  • the number of segments of the PPDU is a value corresponding to the third value. For example, if the third value is 1, and 1 corresponds to 8, it means that the first subfield is used to indicate that the number of segments of the PPDU is 8.
  • the first subfield indicates that the number of segments of the PPDU is 1, it is equivalent to that the PPDU is not transmitted in multi-millisecond segmentation.
  • the first subfield indicates that the number of segments of the PPDU is greater than 1, it is equivalent to PPDU is transmitted in multi-millisecond segments. Therefore, when the third value is 1, the first subfield can also be used to indicate that the PPDU is not transmitted in multi-millisecond segments. When the third value is greater than 1, the first subfield can also be used to indicate that the PPDU is transmitted in multi-millisecond segments. Transmitted in segments.
  • the first subfield when the first subfield is used to indicate the number of segments of the PPDU, the first subfield may also be used to indicate that the PPDU is in each The transmission duration within milliseconds, the transmission duration of PPDU within each millisecond is 1/S milliseconds, and S is the third value.
  • the value of the first subfield is a seventh value, which is used to indicate the transmission duration of the PPDU in each millisecond.
  • the transmission duration of the PPDU in each millisecond is equal to the seventh value, and the seventh value is greater than 0 and less than or equal to 1.
  • the seventh value is 1, it means that the first subfield is used to indicate that the transmission duration of the PPDU in each millisecond is 1 millisecond.
  • the seventh value is 0.25
  • the transmission duration of the PPDU within each millisecond corresponds to the seventh value.
  • the third value is 1, and 1 corresponds to 0.25 milliseconds, it means that the first subfield is used to indicate that the transmission duration of the PPDU in each millisecond is 0.25 milliseconds.
  • the first subfield indicates that the transmission duration of the PPDU in each millisecond is 1 millisecond, it is equivalent to that the PPDU is not transmitted in multi-millisecond segments.
  • the first subfield indicates that the transmission duration of the PPDU in each millisecond When it is less than 1 millisecond, it is equivalent to PPDU being transmitted in multi-millisecond segments. Therefore, when the seventh value is 1, the first subfield can also be used to indicate that the PPDU is not transmitted in multi-millisecond segments. When the seventh value is less than 1, the first subfield can also be used to indicate that the PPDU is transmitted in multi-millisecond segments. Transmitted in segments.
  • the first subfield when the first subfield is used to indicate the transmission duration of the PPDU in each millisecond , the first subfield can also be used to indicate the number of segments of the PPDU.
  • the number of segments of the PPDU is 1/P, and P is the seventh value.
  • the embodiments of the present application do not limit the transmission duration of the PPDU in each millisecond to be the same, and the transmission duration of the PPDU in each millisecond may also be different.
  • the first subfield includes multiple indication information, and the multiple indication information is respectively used to indicate the transmission duration of the PPDU in different milliseconds.
  • the first subfield includes indication information #A and indication information #B.
  • the indication information #A is used to indicate the transmission duration of the PPDU #A in the first millisecond
  • the indication information #B is used to indicate the transmission duration of the PPDU in the second millisecond.
  • the transmission duration #B within the transmission duration #A is different from the transmission duration #B.
  • the value of the first subfield is a fourth value, which is used to indicate the number of symbols transmitted by the PPDU in each millisecond.
  • the number of symbols transmitted by the PPDU in each millisecond is equal to the fourth value.
  • the number of symbols transmitted by the PPDU in each millisecond corresponds to the fourth value.
  • the first subfield when the first subfield indicates that the number of symbols transmitted by the PPDU in each millisecond is equal to the total number of symbols transmitted by the PPDU, it is equivalent to that the PPDU is not transmitted in multi-millisecond segmentation, that is, the first subfield also Can be used to indicate that the PPDU is not transmitted in multi-millisecond segments.
  • the first subfield indicates that the number of symbols transmitted by the PPDU in each millisecond is less than the total number of symbols transmitted by the PPDU, it is equivalent to the PPDU being transmitted in multi-millisecond segments, that is, the first subfield can also be used to indicate the PPDU. Transmitted in multi-millisecond segments.
  • the first subfield is used to indicate the number of symbols transmitted by the PPDU in each millisecond, according to the total length of the PPDU, the modulation and coding strategy of the bearer of the PPDU, and the number of symbols transmitted by the PPDU in each millisecond.
  • the number of symbols can determine how many milliseconds it takes to transmit a PPDU, which is equivalent to determining the number of segments of the PPDU. Therefore, the first subfield may also be used to indicate the number of segments of the PPDU.
  • the embodiments of the present application do not limit the number of symbols transmitted by a PPDU in each millisecond to be the same.
  • the number of symbols transmitted by a PPDU in each millisecond may also be different.
  • the first subfield includes a plurality of indication information, and the plurality of indication information is respectively used to indicate the number of symbols transmitted by the PPDU in different milliseconds.
  • the first subfield includes indication information #a and indication information #b.
  • the indication information #a is used to indicate the number of symbols #a transmitted by the PPDU in the first millisecond
  • the indication information #b is used to indicate that the PPDU is transmitted in the second millisecond.
  • the number of symbols #a transmitted within milliseconds, the number of symbols #a and the number of symbols is different.
  • the first subfield is used to indicate any two of the above, or to indicate any three of the above, or to indicate the four of the above.
  • the first subfield includes indication information #1 and indication information #2.
  • the indication information #1 is used to indicate whether the PPDU is transmitted in multi-millisecond segments
  • the indication information #2 is used to indicate the number of segments of the PPDU. For example, if the value of indication information #1 is the first value, then indication information #1 is used to indicate that the PPDU is not transmitted in multi-millisecond segmentation. If the value of indication information #1 is the second value, then indication information #1 1 is used to indicate that the PPDU is transmitted in multi-millisecond segments. For example, the value of indication information #2 is the third value, and the number of segments of the PPDU is equal to the third value.
  • the first subfield includes indication information #1, indication information #2, and indication information #3.
  • the indication information #1 is used to indicate whether the PPDU is transmitted in multi-millisecond segmentation
  • the indication information #2 is used to indicate the segmentation of the PPDU.
  • Number of segments indication information #3 is used to indicate the transmission duration of PPDU in each millisecond.
  • the value of indication information #3 is the seventh value, and the transmission duration of the PPDU in each millisecond is equal to the seventh value.
  • the first subfield is also used to indicate other parameters used to determine whether the PPDU is transmitted in multi-millisecond segments, the number of segments of the PPDU, the transmission duration of the PPDU in each millisecond, or whether the PPDU is transmitted in each millisecond.
  • the information on the number of symbols is not limited in the embodiment of this application.
  • the first subfield is used to indicate the number of information bits transmitted by the PPDU in each millisecond.
  • the PHR field also includes a second subfield, and the second subfield is used to indicate at least one of the following: whether the PPDU is transmitted in the same time period within each millisecond, the first hop sequence used to send the PPDU, or The seed or key used to generate the first hop sequence.
  • the first hop sequence is used to determine the start time of PPDU transmission within each millisecond.
  • the second subfield in the PHR field is used to indicate at least one of the above. It can also be understood that the second subfield carries at least one of the following information: used to indicate whether the PPDU is transmitted in the same time period within each millisecond. Information indicating the first hop sequence, or a seed or key used to generate the first hop sequence.
  • the second subfield may be called a time hopping (TH) subfield. It should be understood that the embodiment of this application does not impose any limitation on the name of the second subfield.
  • TH time hopping
  • the second subfield is used to indicate whether the PPDU is transmitted in the same time period within each millisecond. For example, if the value of the second subfield is the fifth value, then the second subfield is used to indicate that the PPDU is transmitted in the same time period within each millisecond. If the value of the second subfield is the sixth value, then the second subfield is used to indicate that the PPDU is transmitted in the same time period within each millisecond. The two subfields are used to indicate that the PPDU is transmitted in different time periods within each millisecond. For example, the fifth value is 0, that is, when the value of the second subfield is 0, the second subfield is used to indicate that the PPDU is transmitted in the same time period within each millisecond.
  • the sixth value is a positive integer, for example, the sixth value is 1, that is, when the value of the second subfield is 1, the second subfield is used to indicate that the PPDU is transmitted in different time periods within each millisecond. It should be understood that there is no limitation on the fifth value and the sixth value in the embodiment of the present application.
  • the second subfield is also used to indicate the first time hopping sequence used to send the PPDU, and the first time hopping sequence is the time hopping sequence corresponding to the value of the second subfield.
  • the first time hopping sequence is the time hopping sequence corresponding to the fifth value.
  • the first time hopping sequence is time hopping sequence #1 corresponding to 0.
  • the first time hopping sequence is the time hopping sequence corresponding to the sixth value.
  • the sixth value is 1, then the first time hopping sequence is time hopping sequence #2 corresponding to 1, or if the sixth value is 2, then the first time hopping sequence is time hopping sequence #3 corresponding to 2.
  • the second subfield is also used to indicate the seed or key used to generate the first time hop sequence.
  • the value of the second subfield is the seed or key used to generate the first hop sequence, or the value used to generate the first hop sequence.
  • the seed or key is the seed or key corresponding to the value of the second subfield.
  • the value of the second subfield is the fifth value
  • the fifth value is the seed or key used to generate the first time-hopping sequence.
  • t n K
  • t n the start time of PPDU transmission within the nth millisecond
  • K the seed or key used to generate the time hopping sequence
  • the value of the second subfield is the sixth value
  • the sixth value is the seed or key used to generate the first time-hopping sequence.
  • H is a predefined value
  • L is the seed or key used to generate the time hopping sequence, that is, L is the sixth value
  • the second subfield is used to indicate a first time hopping sequence
  • the second subfield can be used to indicate that PPDUs are transmitted during the same time period within each millisecond.
  • the second subfield can be used for Indicates that PPDUs are transmitted during different time periods within each millisecond.
  • the sending device does not use the first hop sequence when sending the PPDU, which is equivalent to the sending device PPDUs are sent during the same time period within each millisecond.
  • the second subfield is used to indicate any two of the above, or to indicate the three above.
  • the second subfield includes indication information #4 and indication information #5.
  • Indication information #4 is used to indicate whether the PPDU is transmitted in the same time period within each millisecond
  • indication information #5 is used to indicate the first time hopping sequence. For example, if the value of the indication information #4 is the fifth value, the indication information #4 is used to indicate that the PPDU is transmitted in the same time period within each millisecond. If the value of the indication information #4 is the sixth value, the indication information #4 Information #4 is used to indicate that the PPDU is transmitted during different time periods within each millisecond. For example, the first time hopping sequence indicated by indication information #5 is the time hopping sequence corresponding to the value of indication information #5.
  • the second subfield includes indication information #4, indication information #5, and indication information #6.
  • Indication information #4 is used to indicate whether the PPDU is transmitted in the same time period within each millisecond
  • indication information #5 is used to indicate First hop sequence
  • indication information #6 is used to indicate the seed or key used to generate the first hop sequence.
  • the value of indication information #6 is the seed or key for generating the first hop sequence.
  • the PHR field also includes a third subfield, and the third subfield is used to indicate the modulation and coding scheme (MSC) used to carry the PPDU.
  • the modulation and coding strategy includes the channel coding rate used in the bearer part of the PPDU and/or the number of information bits carried by each symbol.
  • the third subfield may be called the MSC subfield. It should be understood that the embodiment of this application does not impose any limitation on the name of the third subfield.
  • different values of the third subfield correspond to different modulation and coding strategies.
  • the embodiment of the present application does not limit the correspondence between different values of the third subfield and different modulation and coding strategies.
  • the third subfield may occupy three bits, indicating up to eight different modulation and coding strategies.
  • the PHR field also includes a fourth subfield.
  • the fourth subfield is used to indicate the length of the PPDU bearer.
  • the maximum length of the PPDU bearer indicated by the fourth subfield may be greater than (2 10 -1) bytes. ).
  • the number of bits occupied by the fourth subfield is greater than 10.
  • the number of bits occupied by the fourth subfield is 12.
  • L max 2 N -1. Therefore, when the number of bits occupied by the fourth subfield is greater than 10, the maximum length of the bearer indicated by the fourth subfield may be greater than (2 10 -1) bytes. For example, if the number of bits occupied by the fourth subfield is 12, the maximum length of the bearer indicated by the fourth subfield is (2 12 -1) bytes.
  • the number of bits of the fourth subfield is M, and when its indicable bearer length values are arranged in order from small to large, the difference between two consecutive bearer length values is greater than 1 bytes, the relationship between the maximum length of the bearer L max indicated by the fourth subfield and N can be expressed as: L max > 2 N -1. For example, even if the number of bits occupied by the fourth subfield is 10, the length of the bearer of the PPDU indicated by the fourth subfield may be greater than (2 10 -1) bytes.
  • the bearer length value indicated by the fourth subfield is as follows: When arranged in order from small to large, it is expressed as: 0, 2, 4,..., 2 ⁇ (2 10 -1), that is, the maximum length of the bearer indicated by the fourth subfield is 2 ⁇ (2 10 -1) bytes.
  • the fourth subfield may be called a payload length subfield. It should be understood that the embodiment of the present application does not impose any limitation on the name of the fourth subfield.
  • the PHR field also includes a fifth subfield, and the fifth subfield is used to indicate whether the PPDU is used for ranging.
  • the fifth subfield is used to indicate that the PPDU is not used for ranging; if the value of the fifth subfield is the ninth value, the fifth subfield is used to indicate PPDU is used for ranging. It should be understood that there is no limitation on the eighth value and the ninth value in the embodiment of the present application.
  • the fifth subfield may be called a ranging subfield. It should be understood that in the embodiment of this application, there is no limitation on the name of the fifth subfield.
  • the PHR field also includes a sixth subfield.
  • the sixth subfield is a check field of the PHR field, which is used to determine whether the PHR field is correct and to correct some error information bits.
  • the sixth subfield may use a five-bit check bit generated by a Hamming code (Hanming code) encoding of (Xp, X-5-p).
  • X is the maximum number of bits occupied by the PHR field
  • Xp is the code length after encoding, ) difference.
  • the sixth subfield may be a check bit generated using a cyclic redundancy check (cyclic redundancy check, CRC) generation algorithm.
  • CRC cyclic redundancy check
  • the sixth subfield may be called SECDED subfield. It should be understood that in the embodiment of this application, there is no limitation on the name of the fifth subfield.
  • Figure 5 shows a schematic structural diagram of the PHR field provided by the embodiment of the present application.
  • the PHR field can occupy 32 bits, in which the MCS subfield occupies the 0th bit to The 2nd bit, the ranging subfield occupies the 3rd bit, the PHY bearer length subfield occupies the 4th to 15th bits, and the time hopping subfield occupies the 21st to 26th bits bit, the SECDED subfield occupies the 27th to 31st bits.
  • the embodiment of the present application takes Figure 5 as an example to illustrate the structure of the PHR field provided by the embodiment of the present application.
  • the embodiment of the present application does not limit the subfields included in the PHR field, nor does it limit the number of bits occupied by each subfield. .
  • the PHR field provided by the embodiment of this application may also include the A0 subfield and the A1 subfield. If the PHY bearer included in the PPDU is followed by an STS field, the A1 and A0 subfields are used to indicate the gap duration between the STS field and the PHY bearer field. If there is no STS field behind the PHY bearer, the A1 and A0 subfields can also be combined with the STS field.
  • the PHY bearer length subfield is used together to indicate the number of bytes of information carried by the PHY bearer.
  • the PPDU generated by the sending device may also include the SHR field and PHY payload.
  • the sending device sends a PPDU to the receiving device, and accordingly, the receiving device receives the PPDU from the sending device.
  • the embodiment of this application does not limit the way in which the sending device sends PPDU.
  • the sending device sends the PHR field and SHR field included in the PPDU through narrowband; and sends the bearer of the PPDU through UWB.
  • the sending device sends the PPDU bearer through UWB, it can use multi-millisecond segmentation to send the PPDU bearer.
  • the sending device sends the PPDU in multi-millisecond segments through UWB.
  • the first segment of the PPDU includes the PHR field and the SHR field, and the remaining segments of the PPDU include the bearer of the PPDU.
  • the sending end device before sending the PPDU, the sending end device also sends first indication information to the receiving end device.
  • the first indication information is used to instruct to send the SHR field and PHR field through narrowband, or to instruct to send the SHR field and PHR field through UWB. field.
  • the receiving end device receives the SHR field and the PHR field through the narrowband. If the first indication information indicates that the SHR field and the PHR field are sent through UWB, the receiving end device receives the SHR field and the PHR field through UWB.
  • the sending device when the receiving device receives the PPDU, the receiving device first receives the SHR field and the PHR field included in the PPDU, and then receives the bearer of the PPDU according to the PHR field.
  • the PHR field includes the first subfield.
  • the receiving end device can determine at least one of the following based on the first subfield: whether the PPDU is transmitted in multi-millisecond segments.
  • the PPDU is transmitted in each millisecond.
  • the transmission duration, the number of symbols transmitted by the PPDU in each millisecond, or the number of segments of the PPDU, will help the receiving device correctly receive the PPDU.
  • the receiving end device determines based on the first subfield that the PPDU is not transmitted in multi-millisecond segments, then the receiving end device determines that the PPDU is transmitted within one millisecond, so the receiving end device The device receives the PPDU within one millisecond.
  • the receiving device determines based on the first subfield that the PPDU is transmitted in multi-millisecond segments, then the PPDU is received within multiple milliseconds. For example, in the protocol predefined PPDU When the number of segments is 8, the receiving device receives the PPDU within 8 milliseconds. For another example, the receiving device determines to receive the PPDU within 2 (M+d) milliseconds.
  • the receiving device may receive the PPDU within one or more milliseconds based on the number of segments of the PPDU. For example, if the receiving device determines that the number of segments of the PPDU is 1 based on the first subfield, the receiving device receives the PPDU within one millisecond. If the receiving device determines that the number of segments of the PPDU is 2 (M+d) based on the first subfield, the receiving device receives the PPDU within 2 (M+d) milliseconds.
  • the receiving device may receive the PPDU in one or more milliseconds based on the transmission duration of the PPDU in each millisecond. For example, if the receiving device determines that the transmission duration of the PPDU within each millisecond is 1 millisecond based on the first subfield, the receiving device receives the PPDU within one millisecond. If the receiving device determines based on the first subfield that the transmission duration of the PPDU in each millisecond is less than 1 millisecond, for example, 1/2 (M+d) milliseconds, then the receiving device receives it within 2 (M+d) milliseconds. PPDU.
  • the receiving device can determine the number of symbols based on the length of the received SHR field, the length of the PHR field, and the length of the PPDU bearer. The total length of the PPDU, and then determine the number of PPDU segments based on the total length of the PPDU, the modulation and coding strategy carried by the PPDU, and the number of symbols transmitted by the PPDU in each millisecond, and then the receiving end device can determine the number of segments according to the segmentation of the PPDU. Number of PPDUs received within one or more milliseconds.
  • the receiving end device may determine the length of the bearer of the PPDU according to the fourth subfield included in the PHR field, and may determine the adjustment and coding strategy of the bearer of the PPDU according to the third subfield included in the PHR field.
  • the length of the PPDU bearer and/or the modulation and coding strategy may also be predefined by the protocol, which is not limited in the embodiments of the present application.
  • the PHR field may also include a second subfield.
  • the receiving end device may determine at least one of the following based on the second subfield: whether the PPDU is transmitted in the same time period within each millisecond;
  • the first hop sequence, or the seed or key used to generate the first hop sequence helps the receiving device determine the transmission time period of the PPDU within each millisecond and receive the PPDU within the transmission time period of the PPDU. .
  • the receiving device determines based on the second subfield that the PPDU is to be transmitted in the same time period within each millisecond, then the protocol pre-defines that the starting time of transmission of the PPDU within each millisecond is the starting time of each millisecond.
  • the receiving end device can determine the transmission time period of the PPDU within each millisecond. For example, if the receiving device determines that the number of segments of the PPDU is 8 based on the first subfield, the receiving device can determine that the PPDU is transmitted within 8 milliseconds, and the transmission time period of the PPDU within each millisecond is 0 to 0.125 milliseconds. .
  • the receiving end device can determine the transmission start time of the PPDU in each millisecond based on the first time hopping sequence. Furthermore, the receiving end device can determine the transmission time period of the PPDU in each millisecond by combining the transmission duration of the PPDU in each millisecond determined based on the first subfield.
  • the first subfield in the PHR field is used to indicate at least one of the following: whether the bearer included in the PPDU adopts multi-millisecond Transmitted in segmented manner, the transmission duration of the PPDU bearer is in each millisecond, and the PPDU bearer is transmitted in each millisecond. The number of symbols transmitted within seconds, or the number of segments carried by a PPDU.
  • the receiving end device can determine the bearer to receive the PPDU within one millisecond according to the first subfield, or the bearer to receive the PPDU within multiple milliseconds,
  • the second subfield in the PHR field is used to indicate at least one of the following: whether the bearer of the PPDU is transmitted in the same time period within each millisecond, the first hop sequence used to send the bearer of the PPDU, or using The seed or key used to generate the first hop sequence.
  • the receiving end device can combine the first subfield and the second subfield to determine the transmission time period of the PPDU bearer in each millisecond, and receive the PPDU bearer in the transmission time period of the PPDU bearer.
  • S430 The receiving device parses the PPDU.
  • the receiving device After receiving the PPDU, the receiving device parses the PPDU based on the information carried in the PHR field. For example, the receiving end device determines the modulation and coding strategy used to bear the PPDU according to the third subfield in the PHR subsection, so that the receiving end device parses the bearer of the PPDU according to the modulation and coding strategy.
  • the receiving device determines at least one of the following based on the first subfield: whether the PPDU is transmitted in multi-millisecond segments, and how much the PPDU is transmitted in each millisecond. Duration, the number of symbols transmitted by the PPDU in each millisecond, or the number of segments of the PPDU, so that the receiving device can correctly receive the PPDU according to the PHR field.
  • the PHR field of the PPDU of the present application includes a second subfield, so that the receiving end device determines at least one of the following according to the second subfield: whether the PPDU is transmitted in the same time period within each millisecond, the first hop sequence, or , used to generate the seed or key of the first hop sequence, so that the receiving end device can receive the PPDU according to the transmission time period in each millisecond based on the combination of the first subfield and the second subfield, which is conducive to correctly receiving the PPDU.
  • the PHR field of the PPDU of this application includes a third subfield. Even when the receiving device transmits the PPDU through different modulation and coding strategies, the receiving device can determine the modulation used to bear the PPDU based on the third subfield. and encoding strategies to facilitate correct parsing of PPDUs. For example, if the third subfield occupies two bits, the third subfield can indicate up to four different modulation and coding strategies, and the receiving end device can select different modulation and coding strategies to transmit the PPDU to meet the different requirements of the receiving end device. transmission requirements.
  • the fourth subfield in the PHR field of the PPDU occupies more than 10 bits, which is beneficial to realizing the transmission of PPDUs with a longer length.
  • Embodiments of the present application also provide a measurement method based on UWB, in order to reduce the overhead of ranging or sensing.
  • the following describes the UWB-based measurement method provided by the embodiment of the present application with reference to FIGS. 6 to 10 .
  • FIG. 6 shows a schematic flow chart of the UWB-based measurement method provided by the embodiment of the present application, including the following steps:
  • the sending end device sends an announcement frame (announcement frame) to the receiving end device.
  • the receiving end device receives the announcement frame from the sending end device.
  • the announcement frame includes identification information of at least one station participating in the measurement.
  • the declaration frame also includes at least one of the following information: a measurement number, instruction information indicating that the measurement is to be performed, or information on the sequence used for the measurement. Measurement involves ranging or sensing.
  • the identification information of at least one site participating in the measurement includes: the address information of the at least one site participating in the measurement, and/or the PAN identifier (identifier, ID) of the at least one site participating in the measurement.
  • the measurement number is the number of the current upcoming measurement. If the measurement includes ranging, the instruction information instructing to perform the measurement is the instruction information instructing to perform the ranging, or in other words, the instruction information is used to instruct the execution of the ranging. If the measurement includes sensing, the instruction information instructing to perform the measurement is the instruction information instructing to perform the sensing, or in other words, the instruction information is used to instruct to perform the sensing. Line perception.
  • the sequence used for measurement is used to instruct the sending device to generate a PPDU for measurement based on a certain sequence.
  • the sequence includes but is not limited to:
  • the sequence length is 2 ⁇ m-1. Since the sequence after the M sequence is cyclically shifted is still an M sequence, and the cyclically shifted M sequence has a very low correlation (almost orthogonal) with the original sequence, different devices can use the M sequence to cyclically shift different bits.
  • the M sequence formed by the number makes the PPDUs sent by different devices almost orthogonal and reduces the interference between PPDUs.
  • the Hadamard matrix is a matrix consisting only of 1 and -1 elements. All its rows are orthogonal to each other, and all columns are also orthogonal to each other. Therefore, different devices can use different rows or columns of the Hadamard matrix, and the PPDUs sent by different devices can be orthogonal to each other, reducing interference between PPDUs.
  • the Gold sequence is obtained by multiplying the corresponding elements of two Maximum Length sequences of the same length. Its properties are similar to the Maximum Length sequence.
  • the declaration frame includes a first field
  • the first field includes at least one of the following information: a measurement number, instruction information indicating that the measurement is performed, or information on a sequence used for measurement.
  • the first field may be called the dialog token field. It should be understood that in the embodiment of this application, there is no limitation on the name of the first field.
  • the declaration frame includes a second field
  • the second field includes identification information of at least one station participating in the measurement.
  • the second field may be called a PAN ID list field. It should be understood that the embodiment of the present application does not impose any limitation on the name of the second field.
  • the declaration frame also includes a fifth field.
  • the fifth field is used to indicate that the declaration frame includes at least one of the following information: a measurement number, indication information indicating that the measurement is performed, information about the sequence used for the measurement, or participation. Identification information for at least one site being measured.
  • the receiving device determines that the announcement frame includes at least one of the above information according to the fifth field, it obtains the above information from the announcement frame.
  • the value of the fifth field is the ninth value
  • the fifth field is used to indicate that the announcement frame includes at least one item of the above information.
  • the fifth field may be called a frame control field. It should be understood that this embodiment of the present application does not place any restrictions on the name of the fifth field and the ninth value.
  • the announcement frame may also include an addressing field (addressing fields), which is used to indicate the identification information of the sending device and/or the identification information of the receiving device.
  • the identification information of the sending device includes the address information and/or PAN ID of the sending device
  • the identification information of the receiving device includes the address information and/or PAN ID of the receiving device.
  • the declaration frame may also include a frame check sequence (FCS) field.
  • FCS frame check sequence
  • FIG. 7 shows a schematic structural diagram of a declaration frame provided by an embodiment of the present application.
  • the declaration frame includes the frame control field, the address field, the conversation token field, the PAN ID list field and the FCS field.
  • the address field includes the destination PAN ID (destination PAN ID), destination address (destination address), Source PAN ID and source address.
  • the destination PAN ID is used to indicate the PAN ID of the receiving device
  • the destination address is used to indicate the address information of the receiving device
  • the source PAN ID is used to indicate the PAN ID of the sending device
  • the source address is used to indicate the address information of the sending device.
  • the frame control field and the address field field form the media access control (MAC) header (MAC header, MHR), the conversation token field and the PAN ID list field form the MAC payload, and the FCS field forms the MAC Tail (MAC footer, MFR).
  • MAC media access control
  • MHR media access control
  • the conversation token field and the PAN ID list field form the MAC payload
  • the FCS field forms the MAC Tail (MAC footer, MFR).
  • the sending end device sends a PPDU for measurement to the receiving end device.
  • the receiving end device receives the PPDU for measurement from the sending end device.
  • the PPDU used for measurement only includes the SHR field.
  • the PPDU used for measurement can also be called a dedicated sounding frame, which is not limited in this application.
  • the sending end device can send one PPDU for measurement to the receiving end device, or send multiple PPDUs for measurement. This is not limited in the embodiment of the present application.
  • S630 The receiving end device performs measurement according to the PPDU.
  • the receiving end device determines whether to perform measurement according to the declaration frame, and/or determines measurement-related information, and if it determines to perform measurement, performs measurement according to the PPDU.
  • the receiving end device determines to perform the measurement. Furthermore, after receiving the PPDU, the receiving device performs measurements based on the PPDU.
  • the receiving end device performs ranging according to the received PPDU.
  • the receiving device can determine the sequence used by the sending device to generate the PPDU based on this information, so that the receiving device can correctly receive the PPDU used for measurement based on the sequence.
  • the receiving device can associate the measurement performed and the measurement report obtained by performing the measurement based on the measurement number.
  • method 600 also includes S640.
  • the sending end device sends a trigger frame (trigger frame) to the receiving end device.
  • the receiving end device receives the trigger frame from the sending end device.
  • the trigger frame involved in this application is a frame with a trigger function.
  • the trigger frame includes at least one of the following information: a measurement number, or information indicating a segment of the requested measurement report.
  • the measurement number is the measurement number corresponding to the measurement report requested by the trigger frame instruction.
  • the measurement number included in the trigger frame is the same as the measurement number included in the declaration frame.
  • the segmented information used to indicate the requested measurement report is used to instruct the receiving end device to report part of the measurement results or all the measurement results.
  • the full measurement report refers to all measurement reports obtained by the receiving end device performing measurements corresponding to the measurement number.
  • the segment information used to indicate the requested measurement report is represented by a bitmap.
  • the number of bits contained in the bitmap, or the length of the bitmap is the same as the number of segments in the measurement report.
  • Each bit contained in the bitmap Corresponds to a segment of the measurement report. For example, when a certain bit indicates "1", it can be considered to indicate that the receiving device reports the segment of the measurement report corresponding to the bit. When a certain bit indicates "0", it can be considered to indicate that the receiving device does not report.
  • the segment of the measurement report corresponding to this bit contains 4 bits, and these 4 bits correspond to the 4 segments of the measurement report. If the bitmap is expressed as "1111”, then the bitmap instructs the receiving device to report all measurement reports. If the bitmap is The bitmap is represented as "0010", and the bitmap instructs the receiving device to report a partial measurement report, that is, to report the third segment of the measurement report.
  • the trigger frame includes a third field, and the third field includes a measurement number.
  • the third field may be called the conversation token field. It should be understood that in the embodiment of this application, there is no limitation on the name of the third field.
  • the trigger frame includes a fourth field
  • the fourth field includes information indicating a segment of the requested measurement report. interest.
  • the fourth field may be called a feedback segment retransmission bitmap field. It should be understood that there is no limitation on the name of the fourth field in the embodiment of this application.
  • the trigger frame further includes a sixth field
  • the sixth field is used to indicate that the trigger frame includes at least one of the following information: a measurement number, or information indicating segments of the requested measurement report.
  • the receiving device determines that the trigger frame includes at least one of the above information according to the sixth field, it obtains the above information from the trigger frame.
  • the sixth field is used to indicate that the trigger frame includes at least one item of the above information.
  • the sixth field may be called the frame control field. It should be understood that the embodiment of the present application does not place any restrictions on the name of the sixth field and the tenth value.
  • the trigger frame may also include an address field field, and the address field field is used to indicate the identification information of the sending end device and/or the identification information of the receiving end device.
  • the trigger frame may also include an FCS field.
  • the FCS field is used to indicate the check sequence of the trigger frame to verify whether the trigger frame has been changed.
  • FIG. 8 shows a schematic structural diagram of a trigger frame provided by an embodiment of the present application.
  • the trigger frame includes the frame control field, address field, conversation token field, feedback segment retransmission bitmap field and FCS field.
  • the address field field includes the destination PAN ID, destination address, source PAN ID and source address.
  • the frame control field and the address field form the MHR
  • the conversation token field and the feedback segment retransmission bitmap field form the MAC bearer
  • the FCS field forms the MFR.
  • the embodiment of the present application takes Figure 7 as an example to illustrate the structure of the declaration frame provided by the embodiment of the present application.
  • the embodiment of the present application does not limit the fields included in the declaration frame, nor does it limit the octets occupied by each field ( octet) number.
  • method 600 also includes S650.
  • the receiving end device sends a measurement report to the sending end device.
  • the sending end device receives the measurement report from the receiving end device.
  • the receiving device can send all measurement reports to the sending device according to predefined rules, or send them to the sending device in a segmented manner.
  • the device sends a measurement report for each segment.
  • all measurement reports can be split into 4 segments, and the receiving device can sequentially send the first segment to the fourth segment of the measurement report to the sending device.
  • the receiving end device determines the segmentation information based on the segmentation information used to indicate the requested measurement report. information and send a measurement report to the sending device. For example, if the segment information used to indicate the requested measurement report indicates reporting of all measurement reports, then the receiving end device sends all measurement reports to the sending end device. For another example, the segment information used to indicate the requested measurement report indicates reporting of a partial measurement report, for example, indicating reporting of the third segment of the measurement report, then the receiving end device sends the third segment of the measurement report to the sending end device. .
  • the receiving device can report a measurement report associated with the measurement number to the sending device based on the measurement number.
  • the receiving device can obtain the above information from the announcement frame. Furthermore, when the sending end device sends a PPDU including only the SHR field, the receiving end device can also implement measurement based on the PPDU, thereby reducing the measurement overhead.
  • the sending end device sends a PPDU including only the SHR field
  • the receiving device can also report all or part of the measurement report to the sending device according to the trigger frame, thereby reducing the measurement overhead.
  • FIG. 9 shows a schematic flow chart of the UWB-based measurement method provided by the embodiment of the present application, including the following steps:
  • S910 The sending device sends a poll frame to the receiving device.
  • the receiving device receives the poll frame from the sending device.
  • the query frame includes identification information of at least one station participating in the measurement.
  • the query frame also includes at least one of the following information: instruction information instructing to perform measurement, or parameters required by at least one station participating in the measurement to perform measurement. Measurement involves ranging or sensing.
  • the parameters required by at least one station participating in the measurement to perform the measurement may include information on the sequence used to perform the measurement, which is used to instruct at least one station participating in the measurement to generate a PPDU for measurement based on a certain sequence.
  • the sequence includes but is not limited to: Maximum Length sequence, a certain row or column of Hadamard matrix, or Gold sequence.
  • Maximum Length sequence a certain row or column of Hadamard matrix, or Gold sequence.
  • the embodiment of the present application does not limit whether the sequences used by the multiple sites to perform measurements are the same. That is, the sequences used by multiple sites to perform measurements can be the same or different.
  • the query frame includes a first field
  • the first field includes at least one of the following information: instruction information indicating to perform measurement, or the same parameters required by the at least one station to perform measurement.
  • the first field may be called a common info field. It should be understood that in the embodiment of this application, there is no limitation on the name of the first field. For example, if the sequence used by at least one station participating in the measurement to perform the measurement is the same, the first field may include information about the sequence used by the at least one station participating in the measurement to perform the measurement.
  • the query frame includes a second field
  • the second field includes identification information of at least one station participating in the measurement, or parameters required to perform the measurement of at least one station participating in the measurement.
  • the second field may be called a user info list field. It should be understood that the embodiment of the present application does not impose any limitation on the name of the second field.
  • the second field may include at least one subfield corresponding to at least one site, and each subfield includes identification information of the site corresponding to the subfield and parameters required by the site to perform measurement.
  • the second field includes different parameters required by at least one station participating in the measurement to perform the measurement. For example, if at least one site participating in the measurement uses different sequences to perform measurements, then in at least one subfield included in the second field, each subfield includes identification information of the site corresponding to the subfield and the sequence used by the site to perform measurements. Information.
  • the query frame also includes a third field
  • the third field is used to indicate that the query frame includes at least one of the following information: instruction information indicating to perform measurement, identification information of at least one site participating in the measurement, or participating in the measurement. parameters required to perform measurements at at least one site.
  • the receiving device determines that the query frame includes at least one of the above information according to the third field, it obtains the above information from the query frame. For example, if the value of the third field is the first value, Then the third field is used to indicate that the query frame includes at least one of the above information.
  • the third field may be called a frame control field. It should be understood that the embodiment of the present application does not impose any restrictions on the name and first value of the third field.
  • the inquiry frame may also include an address field field, and the address field field is used to indicate the identification information of the sending end device and/or the identification information of the receiving end device.
  • the identification information of the sending device includes the address information and/or PAN ID of the sending device
  • the identification information of the receiving device includes the address information and/or PAN ID of the receiving device.
  • the query frame may also include an FCS field.
  • the FCS field is used to indicate the check sequence of the query frame to verify whether the query frame has been changed.
  • FIG. 10 shows a schematic structural diagram of an inquiry frame provided by an embodiment of the present application.
  • the query frame includes the frame control field, address field, public information field, user information list field and FCS field.
  • the address field field includes the destination PAN ID, destination address, source PAN ID and source address.
  • the frame control field and the address field form the MHR
  • the public information field and the user information list field form the MAC bearer
  • the FCS field forms the MFR.
  • the embodiment of the present application takes Figure 10 as an example to illustrate the structure of the query frame provided by the embodiment of the present application.
  • the embodiment of the present application does not limit the fields included in the query frame, nor does it limit the number of octets occupied by each field. .
  • method 900 also includes S920.
  • the receiving device sends a response frame (response) to the sending device.
  • the sending device receives the response frame from the receiving device.
  • the receiving device After the receiving device receives the query frame, if it can perform measurements, it can send a response frame to the sending device.
  • S930 The receiving end device sends a PPDU for measurement to the sending end device.
  • the sending end device receives the PPDU for measurement from the receiving end device.
  • the PPDU used for measurement only includes the SHR field.
  • the PPDU used for measurement may also be called a dedicated measurement frame, which is not limited in this application.
  • the receiving device determines whether to send a PPDU for measurement to the sending device according to the query frame, and/or determines the parameters used for measurement.
  • the receiving end device determines to send the PPDU for measurement to the sending end device.
  • the receiving end device sends a PPDU for ranging.
  • the receiving device uses the Gold sequence to send the PPDU for measurement.
  • the sending end device can send one PPDU for measurement to the receiving end device, or send multiple PPDUs for measurement. This is not limited in the embodiment of the present application.
  • the receiving end device can send the PPDU for measurement after sending the response frame.
  • devices in the existing network architecture are mainly used as examples for illustrative explanations (such as sending devices, receiving devices, etc.). It should be understood that the specific form of the devices is The application examples are not limiting. For example, devices that can implement the same functions in the future are suitable for the embodiments of the present application.
  • the methods and operations implemented by devices can also be implemented by components of the device (such as chips or circuits).
  • the sending end device and the receiving end device include hardware structures and/or software modules corresponding to each function.
  • Embodiments of the present application can divide the sending end device or the receiving end device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one process. in the module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module according to each function.
  • FIG 11 is a schematic block diagram of a device provided by an embodiment of the present application.
  • the device 2000 may include a transceiver unit 2010 and a processing unit 2020.
  • the transceiver unit 2010 can communicate with the outside, and the processing unit 2020 is used for data processing.
  • the transceiver unit 2010 may also be called a communication interface or a communication unit.
  • the device 2000 may also include a storage unit, which may be used to store instructions and/or data, and the processing unit 2020 may read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments. .
  • the device 2000 may be the sending end device in the aforementioned embodiment, or may be a component (such as a chip) of the sending end device.
  • the device 2000 can implement steps or processes corresponding to those performed by the sending end device in the above method embodiment, wherein the transceiving unit 2010 can be used to perform operations related to the sending and receiving of the sending end device in the above method embodiment, and the processing unit 2020 can be used Perform operations related to processing of the sending device in the above method embodiments.
  • the processing unit 2020 is configured to generate a PPDU.
  • the PPDU includes a PHR field, and the first subfield in the PHR field is used to indicate at least one of the following: whether the PPDU is transmitted in a multi-millisecond segmentation manner. , the transmission duration of the PPDU in each millisecond, the number of symbols transmitted by the PPDU in each millisecond, or the number of segments of the PPDU; the transceiver unit 2010 is used to send the PPDU.
  • the transceiver unit 2010 is configured to send a declaration frame.
  • the declaration frame includes at least one of the following information: a measurement number, instruction information indicating that the measurement is performed, and information about the sequence used in the measurement. , or the identification information of at least one site participating in the measurement, which measurement includes ranging or sensing; the transceiver unit 2010 is also used to send a PPDU used for the measurement, the PPDU only includes the SHR field; the transceiver unit 2010 is also used Yu Fa
  • a trigger frame is sent, and the trigger frame includes at least one of the following information: the measurement number, or information indicating a segment of the requested measurement report.
  • the transceiver unit 2010 is configured to send an inquiry frame, which includes one or more of the following: instruction information instructing to perform measurement, identification information of at least one site participating in the measurement, or, The parameters required by the at least one station to perform the measurement, which includes ranging or sensing; the transceiver unit 2010 is also configured to receive a PPDU used for the measurement, the PPDU only includes the SHR field.
  • the device 2000 may be the receiving end device in the aforementioned embodiment, or may be a component (such as a chip) of the receiving end device.
  • the device 2000 can implement steps or processes corresponding to those performed by the receiving device in the above method embodiment, wherein the transceiving unit 2010 can be used to perform operations related to the receiving device in the above method embodiment, and the processing unit 2020 can be used Perform operations related to the processing of the receiving device in the above method embodiment.
  • the transceiver unit 2010 is configured to receive a PPDU.
  • the PPDU includes a PHR field, and the first subfield in the PHR field is used to indicate at least one of the following: whether the PPDU is transmitted in a multi-millisecond segmentation manner. , the transmission duration of the PPDU in each millisecond, the number of symbols transmitted by the PPDU in each millisecond, or the number of segments of the PPDU; the processing unit 2020 is used to parse the PPDU.
  • the transceiver unit 2010 is configured to receive a declaration frame, which includes at least one of the following information: a measurement number, instruction information indicating that the measurement is performed, and information on the sequence used for the measurement. , or the identification information of at least one site participating in the measurement, which measurement includes ranging or sensing; the transceiver unit 2010 is also used to receive the PPDU used for the measurement, the PPDU only includes the SHR field; the transceiver unit 2010 is also used Upon receiving a trigger frame, the trigger frame includes at least one of the following information: the measurement number, or information indicating a segment of the requested measurement report.
  • the transceiver unit 2010 is configured to receive an inquiry frame, which includes one or more of the following: instruction information instructing to perform measurement, identification information of at least one site participating in the measurement, or, The at least one station needs parameters to perform the measurement, and the measurement includes ranging or sensing; the transceiver unit 2010 is also configured to send a PPDU for the measurement according to the query frame, and the PPDU only includes the SHR field.
  • the device 2000 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (e.g., a shared processor, a dedicated processor, or a group of processors). processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the apparatus 2000 can be specifically the sending end device in the above embodiments, and can be used to perform various processes and/or steps corresponding to the sending end device in the above method embodiments.
  • the apparatus 2000 may be specifically the receiving end device in the above embodiments, and may be used to execute various processes and/or steps corresponding to the receiving end device in the above method embodiments. To avoid duplication, they will not be described again here.
  • the above-mentioned transceiver unit 2010 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit 2020 may be a processing circuit.
  • the device in Figure 11 may be the device in the aforementioned embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • the apparatus 2000 of each of the above solutions has the function of realizing the corresponding steps performed by the sending device or the receiving device in the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • FIG 12 is a schematic diagram of a device 3000 provided by an embodiment of the present application.
  • the device 3000 includes a processor 3010.
  • the processor 3010 is configured to execute computer programs or instructions stored in the memory 3020, or read data/signaling stored in the memory 3020, to execute the methods in each of the above method embodiments.
  • the device 3000 further includes a memory 3020, which is used to store computer programs or instructions and/or data.
  • the memory 3020 may be integrated with the processor 3010, or may be provided separately.
  • the device 3000 also includes a transceiver 3030, which is used for receiving and/or transmitting signals.
  • the processor 3010 is used to control the transceiver 3030 to receive and/or transmit signals.
  • the device 3000 is used to implement the operations performed by the sending end device in each of the above method embodiments.
  • the processor 3010 is used to execute computer programs or instructions stored in the memory 3020 to implement related operations of the sending device in each of the above method embodiments.
  • the apparatus 3000 is used to implement the operations performed by the receiving end device in each of the above method embodiments.
  • the processor 3010 is used to execute computer programs or instructions stored in the memory 3020 to implement related operations of the receiving device in each of the above method embodiments.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory.
  • ROM read-only memory
  • PROM programmable ROM
  • EPROM erasable programmable read-only memory
  • EPROM erasable PROM
  • EPROM erasable programmable read-only memory
  • Erase programmable read-only memory electrically EPROM, EEPROM
  • Volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM includes the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct memory bus random access Memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 13 is a schematic diagram of a chip system 4000 provided by an embodiment of the present application.
  • the chip system 4000 (or can also be called a processing system) includes a logic circuit 4010 and an input/output interface 4020.
  • the logic circuit 4010 may be a processing circuit in the chip system 4000.
  • the logic circuit 4010 can be coupled to the memory unit and call instructions in the memory unit, so that the chip system 4000 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 4020 can be an input/output circuit in the chip system 4000, which outputs information processed by the chip system 4000, or inputs data or signaling information to be processed into the chip system 4000 for processing.
  • the logic circuit 4010 can send a PPDU through the input/output interface 4020, and the PPDU can be generated for the logic circuit 4010.
  • the logic circuit 4010 can receive the PPDU through the input/output interface 4020, and the logic circuit 4010 parses the PPDU.
  • the chip system 4000 is used to implement the operations performed by the sending device in each of the above method embodiments.
  • the logic circuit 4010 is used to implement processing-related operations performed by the sending-end device in the above method embodiments, such as processing-related operations performed by the sending-end device in the embodiments shown in FIG. 4, FIG. 6, or FIG. 9. ;
  • the input/output interface 4020 is used to implement the sending and/or receiving related operations performed by the sending end device in the above method embodiment, such as the sending end device in the embodiment shown in Figure 4, Figure 6 or Figure 9. Send and/or receive related operations.
  • the chip system 4000 is used to implement the operations performed by the receiving end device in each of the above method embodiments.
  • the logic circuit 4010 is used to implement processing-related operations performed by the receiving end device in the above method embodiments, such as processing-related operations performed by the receiving end device in the embodiments shown in Figure 4, Figure 6 or Figure 9 ;
  • the input/output interface 4020 is used to implement the sending and/or receiving related operations performed by the receiving end device in the above method embodiment, such as the receiving end device in the embodiment shown in Figure 4, Figure 6 or Figure 9. Send and/or receive related operations.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the methods executed by the device in each of the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the sending device in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the receiving device in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product that includes instructions that, when executed by a computer, implement the methods executed by a device (such as a sending device or a receiving device) in each of the above method embodiments.
  • a device such as a sending device or a receiving device
  • An embodiment of the present application also provides a communication system, including the aforementioned sending device and receiving device.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)), etc.
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请应用于支持IEEE 802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi7或EHT,再如802.11be下一代,Wi-Fi8等802.11系列协议的无线局域网***,还可以应用于基于超宽带UWB的无线个人局域网***,感知(sensing)***。本申请实施例提供了一种基于UWB传输PPDU的方法和装置,该方法包括:生成PPDU,并发送PPDU,PPDU包括PHR字段中的第一子字段用于指示以下至少一项:PPDU是否采用多毫秒分段方式传输,PPDU在每个毫秒内的传输时长,PPDU在每个毫秒内传输的符号个数,或,PPDU的分段个数。本申请有利于实现PPDU的多毫秒分段传输。

Description

基于超宽带传输物理层协议数据单元的方法和装置
本申请要求于2022年06月16日提交中国国家知识产权局、申请号为202210682649.0、申请名称为“基于超宽带传输物理层协议数据单元的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种基于超宽带传输物理层协议数据单元的方法和装置。
背景技术
超宽带(ultra wideband,UWB)技术是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据。由于其脉冲很窄,且辐射密度极低,UWB***具有多径分辨能力强、功耗低、保密性强等优点。
由于超宽带***的带宽很大,为了减小其在工作时对其他窄带设备的干扰,联邦通信委员会(Federal Communications Commission,FCC)对UWB信号的功率谱密度的限制规则限制了UWB在1毫秒内的发射总能量(如500M带宽下为37nJ),但是发射端可以通过将该能量集中在更短的时间内发射出去,从而提高发射信号的瞬时功率,以增大信号的覆盖范围和增大接收端接收信号的信噪比。基于此,在部分需要增大发射功率的场景下,发射端可以将要发射的UWB信号拆分为多个分段信号,每一段分段信号在时间长度上小于1毫秒,然后在每个毫秒内只发送其中一个分段信号。然而如何实现UWB信号的分段传输这一技术问题还未解决。
发明内容
本申请实施例提供一种基于超宽带(ultra wideband,UWB)传输物理层协议数据单元(physical protocol data unit,PPDU)的方法和装置,可以实现对PPDU的多毫秒分段传输。
第一方面,提供了一种基于UWB传输PPDU的方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法可以包括:生成PPDU,该PPDU包括物理头(physical header,PHR)字段,该PHR字段中的第一子字段用于指示以下至少一项:该PPDU是否采用多毫秒分段方式传输,该PPDU在每个毫秒内的传输时长,该PPDU在每个毫秒内传输的符号个数,或,该PPDU的分段个数;发送该PPDU。
基于上述技术方案,通过PPDU的PHR字段中的第一子字段,使得接收端设备根据第一子字段确定以下至少一项:PPDU是否采用多毫秒分段方式传输,PPDU在每个毫秒 内的传输时长,PPDU在每个毫秒内的符号个数,或,PPDU的分段个数,从而有利于实现PPDU的多毫秒分段传输,使得接收端设备可以根据PHR字段正确接收PPDU。
需要说明的是,PHR字段中的第一子字段用于指示上述至少一项,也可以理解为第一子字段中承载以下信息中的至少一项:用于指示PPDU是否采用多毫秒分段方式传输的信息,PPDU在每个毫秒内的传输时长,PPDU在每个毫秒内的符号个数,或,PPDU的分段个数。
结合第一方面,在第一方面的某些实现方式中,该第一子字段用于指示该PPDU是否采用多毫秒分段方式传输,若该第一子字段的取值为第一值,则该第一子字段用于指示该PPDU未采用多毫秒分段方式传输;若该第一子字段的取值为第二值,则该第一子字段用于指示该PPDU采用多毫秒分段方式传输。
基于上述技术方案,接收端设备接收到PHR字段之后,可以根据PHR字段中的第一子字段确定PPDU是否采用多毫秒分段方式传输,从而有利于接收端设备确定需要在一个毫秒内接收PPDU,还是在多个毫秒内接收PPDU,进而有利于接收端设备正确接收PPDU。例如,在第一子字段的取值为第一值时,接收端设备可以根据第一子字段确定在一个毫秒内接收PPDU,在第二子字段的取值为第二值时,接收端设备可以根据第一子字段确定在多个毫秒内接收PPDU。例如,若协议预定义PPDU的分段个数为8,则接收端设备可以在8个毫秒内接收PPDU。
结合第一方面,在第一方面的某些实现方式中,该第一子字段的取值为该第二值,还用于指示该PPDU在每个毫秒内的传输时长和该PPDU的分段个数中的至少一个,该PPDU的分段个数为2(M+d)个,该PPDU在每个毫秒内的传输时长为1/2(M+d)毫秒,M为该第二值,d为大于或等于0的整数。
基于上述技术方案,在第一子字段用于指示PPDU采用多毫秒分段方式传输的情况下,第一子字段还用于指示PPDU在每个毫秒内的传输时长和该PPDU的分段个数中的至少一个,从而接收端设备可以根据第一子字段确定在2(M+d)个毫秒内接收PPDU。
结合第一方面,在第一方面的某些实现方式中,该第一子字段的取值为第三值,用于指示该PPDU的分段个数,该第三值为正整数。
基于上述技术方案,接收端设备接收到PHR字段之后,可以根据PHR字段中的第一子字段确定PPDU的分段个数,从而有利于接收端设备确定需要在一个毫秒内接收PPDU,还是在多个毫秒内接收PPDU,进而有利于接收端设备正确接收PPDU。例如,若接收端设备根据第一子字段确定PPDU的分段个数为1,则接收端设备可以确定在一个毫秒内接收PPDU,若接收端设备根据第一子字段确定PPDU的分段个数大于1,接收端设备可以确定在多个毫秒内接收PPDU。例如,若接收端设备根据第一子字段确定PPDU的分段个数为8,则接收端设备可以在8个毫秒内接收PPDU。
结合第一方面,在第一方面的某些实现方式中,该第一子字段的取值为第四值,用于指示该PPDU在每个毫秒内传输的符号个数,该第四值为正整数。
基于上述技术方案,接收端设备接收到PHR字段之后,可以根据PHR字段中的第一子字段确定PPDU在每个毫秒内传输的符号个数,从而有利于接收端设备确定需要在一个毫秒内接收PPDU,还是在多个毫秒内接收PPDU,进而有利于接收端设备正确接收PPDU。例如,若接收端设备根据第一子字段确定PPDU在每个毫秒内传输的符号个数等于PPDU 的传输全部符号个数,则接收端设备可以确定在一个毫秒内接收PPDU,若接收端设备根据第一子字段确定PPDU在每个毫秒内传输的符号个数小于PPDU传输的全部符号个数,则接收端设备可以确定在多个毫秒内接收PPDU。
结合第一方面,在第一方面的某些实现方式中,该PHR字段中的第二子字段用于指示以下至少一项:该PPDU是否在每个毫秒内的同一时间段传输,用于发送该PPDU的第一跳时序列,或用于生成该第一跳时序列的种子或密钥。
基于上述技术方案,通过PPDU的PHR字段中的第二子字段,使得接收端设备根据第二子字段确定以下至少一项:PPDU是否在每个毫秒内的同一时间段传输,第一跳时序列,或,用于生成第一跳时序列的种子或密钥,从而接收端设备可以根据结合第一子字段和第二子字段确定PPDU在每个毫秒内的传输时间段,有利于PPDU正确接收PPDU。
需要说明的是,PHR字段中的第二字段用于指示上述至少一项,也可以理解为第一子字段中承载以下信息中的至少一项:用于指示PPDU是否在每个毫秒内的同一时间段传输的信息,第一跳时序列,或,用于生成第一跳时序列的种子或密钥。
结合第一方面,在第一方面的某些实现方式中,该第二子字段用于指示该PPDU是否在每个毫秒内的同一时间段传输,该第二子字段的取值为第五值,则该第二子字段用于指示该PPDU在每个毫秒内的同一时间段传输;该第二子字段的取值为第六值,该第二子字段用于指示该PPDU不在每个毫秒内的同一时间段传输。
基于上述技术方案,接收端设备接收到PHR字段之后,可以结合第一子字段和第二子字段确定PPDU在每个毫秒内的传输时间段,从而有利于接收端设备在PPDU的传输时间段内接收PPDU。例如,在第二子字段的取值为第五值时,接收端设备可以根据PPDU在每个毫秒内的传输时长、协议预定义的PPDU在每个毫秒内的传输起始时刻,确定PPDU在每个毫秒内的传输时间段。又例如,在第二子字段的取值为第六值时,接收端设备可以根据PPDU在每个毫秒内的传输时长、协议预定义的跳时序列,确定PPDU在每个毫秒内的传输时间段。
结合第一方面,在第一方面的某些实现方式中,该第二子字段用于指示该第一跳时序列,该第一跳时序列是与该第二子字段的取值对应的跳时序列。
基于上述技术方案,接收端设备接收到PHR字段之后,可以根据第二子字段确定用于传输PPDU的第一跳时序列,从而可以结合第一子字段指示的PPDU在每个毫秒内的传输时长,确定PPDU在每个毫秒内的传输时间段,从而有利于接收端设备在PPDU的传输时间段内接收PPDU。
结合第一方面,在第一方面的某些实现方式中,该第二子字段用于指示用于生成该第一跳时序列的种子或密钥,用于生成该第一跳时序列的种子或密钥是与该第二子字段的取值对应的种子或密钥。
基于上述技术方案,接收端设备可以根据第二子字段确定用于生成第一跳时序列的种子或密钥,从而可以根据该种子或密钥生成第一跳时序列,并根据第一跳时序列确定PPDU在每个毫秒内的传输时间段。
结合第一方面,在第一方面的某些实现方式中,该PHR字段中的第三子字段用于指示该PPDU的承载所采用的调制与编码策略。
基于上述技术方案,通过PPDU的PHR字段中的第三子字段,即使在接收端设备通 过不同调制与编码策略传输PPDU的情况下,接收端设备也可以根据第三子字段确定PPDU的承载所使用的调制与编码策略,有利于正确解析PPDU。例如,若第三子字段占用两个比特,则第三子字段最多可以指示四种不同的调制与编码策略,进而接收端设备可以选择不同调制与编码策略传输PPDU,以满足接收端设备的不同传输需求。
结合第一方面,在第一方面的某些实现方式中,该PHR字段中的第四子字段用于指示该PPDU的承载(payload)的长度,该第四子字段占用的比特数大于10。
基于上述技术方案,PPDU的PHR字段中的第四子字段占用的比特数大于10,从而有利于实现传输长度更长的PPDU。
其中,第四子字段占用的比特数N与第四子字段指示的承载的最大长度Lmax的关系可以表示为:Lmax=2N-1。
结合第一方面,在第一方面的某些实现方式中,该PHR字段中的第四子字段用于指示该PPDU的承载的长度,该PPDU的承载的长度大于(210-1)字节。
基于上述技术方案,第四子字段指示的PPDU的承载的长度大于(210-1)字节,从而有利于实现通过PPDU传输更多的信息。
一种可能的实现方式中,第四子字段占用的比特数大于10,从而第四子字段指示的PPDU的承载的长度大于(210-1)字节。
另一种可能的实现方式中,第四子字段的比特数为N,当其可指示的承载长度值按照从小到大的顺序排列时,两个连续的承载长度值之间的差值大于1个字节时,第四子字段指示的承载的最大长度Lmax与N之间的关系可以表示为:Lmax>2N-1。例如,即使第四子字段占用的比特数N为10,第四子字段指示的PPDU的承载的长度也可以大于(210-1)字节。
结合第一方面,在第一方面的某些实现方式中,该发送该PPDU,包括:通过窄带发送该PHR字段和该PPDU包括的同步头(synchronization header,SHR)字段;通过超宽带UWB发送该PPDU的承载。
基于上述技术方案,可以通过窄带辅助的方式发送PPDU,即通过窄带发送PPDU包括的PHR字段和SHR字段,通过UWB发送PPDU的承载,从而可以降低UWB***的功耗。具体来说,相比于将PPDU全部通过UWB发送的方式,上述技术方案通过UWB发送部分PPDU,而不是通过UWB发送全部PPDU,因此可以降低UWB***的功耗。此外,相比于通过UWB发送PHR字段和SHR字段的方式,通过窄带发送PHR字段和SHR字段使用的带宽更小,因此可以减小发送端设备的功耗。
结合第一方面,在第一方面的某些实现方式中,该发送该PPDU,包括:通过UWB发送该PPDU,该PPDU的第一个分段包括该PHR字段和该PPDU包括的SHR字段,该PPDU的除该第一个分段以外的其余分段包括该PPDU的承载。
基于上述技术方案,在分段传输PPDU的情况下,PHR字段和SHR字段在PPDU的第一个分段中,则接收端设备可以在第一个毫秒接收到SHR字段和PHR字段,从而可以根据PHR字段确定PPDU采用多毫秒分段传输,从而有利于接收端设备正确接收PPDU。
第二方面,提供了一种基于UWB传输PPDU的方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端端设备执行为例进行说明。
该方法可以包括:接收PPDU,该PPDU包括PHR字段,该PHR字段中的第一子字段用于指示以下至少一项:该PPDU是否采用多毫秒分段方式传输,该PPDU在每个毫秒内的传输时长,该PPDU在每个毫秒内传输的符号个数,或,该PPDU的分段个数;解析该PPDU。
第二方面及第二方面中任一种可能实现方式的有益效果可以参考上述第一方面。
结合第二方面,在第二方面的某些实现方式中,该第一子字段用于指示该PPDU是否采用多毫秒分段方式传输,该接收PPDU,包括:若该第一子字段的取值为第一值,则在一个毫秒内接收该PPDU;若该第一子字段的取值为第二值,则在多个毫秒内接收该PPDU。
结合第二方面,在第二方面的某些实现方式中,该第一子字段的取值为该第二值,还用于指示该PPDU在每个毫秒内的传输时长和该PPDU的分段个数中的至少一个,该PPDU的分段个数为2(M+d)个,该PPDU在每个毫秒内的传输时长为1/2(M+d)毫秒,M为该第二值,d为大于或等于0的整数;该在多个毫秒内接收该PPDU,包括:在该2(M+d)个毫秒内接收该PPDU。
结合第二方面,在第二方面的某些实现方式中,该第一子字段的取值为第三值,用于指示该PPDU的分段个数,该第三值为正整数;该接收PPDU,包括:根据该PPDU的分段个数在一个或多个毫秒内接收该PPDU。
结合第二方面,在第二方面的某些实现方式中,该第一子字段的取值为第四值,用于指示该PPDU在每个毫秒内传输的符号个数,该第四值为正整数;该接收PPDU,包括:根据该PPDU在每个毫秒内传输的符号个数在一个或多个毫秒内接收该PPDU。
结合第二方面,在第二方面的某些实现方式中,该PHR字段中的第二子字段用于指示以下至少一项:该PPDU是否在每个毫秒内的同一时间段传输,用于发送该PPDU的第一跳时序列,或用于生成该第一跳时序列的种子或密钥。
结合第二方面,在第二方面的某些实现方式中,该第二子字段用于指示该PPDU是否在每个毫秒内的同一时间段传输,该接收PPDU,包括:该第二子字段的值为第五值,则在每个毫秒内的同一时间段接收该PPDU;该第二子字段的值为第六值,则在每个毫秒内的不同时间段接收该PPDU。
结合第二方面,在第二方面的某些实现方式中,该第二子字段还用于指示该第一跳时序列,该第一跳时序列是与该第二子字段的取值对应的跳时序列;该方法还包括:根据该第一跳时序列确定该PPDU在每个毫秒内的传输起始时刻。
结合第二方面,在第二方面的某些实现方式中,该第二子字段还用于指示用于生成该第一跳时序列的种子或密钥,用于生成该第一跳时序列的种子或密钥是与该第二子字段的取值对应的种子或密钥。
结合第二方面,在第二方面的某些实现方式中,该PHR字段中的第三子字段用于指示该PPDU的承载所采用的调制与编码策略;该解析该PPDU,包括:根据该调制与编码策略,解析该PPDU的承载。
结合第二方面,在第二方面的某些实现方式中,该PHR字段中的第四子字段用于指示该PPDU的承载的长度,该第四子字段占用的比特数大于10。
结合第二方面,在第二方面的某些实现方式中,该PHR字段中的第四子字段用于指示该PPDU的承载的长度,该PPDU的承载的长度大于(210-1)字节。
结合第二方面,在第二方面的某些实现方式中,该接收PPDU,包括:通过窄带接收该PHR字段和该PPDU包括的同步头SHR字段;通过超宽带UWB接收该PPDU的承载。
结合第二方面,在第二方面的某些实现方式中,该接收PPDU,包括:在第一个毫秒接收该PHR字段和该PPDU包括的SHR字段;在第一个毫秒之后的一个或多个毫秒内接收该PPDU的承载。
第三方面,提供了一种基于UWB的测量方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法可以包括:发送声明帧,该声明帧包括以下信息中的至少一项:测量编号,指示执行该测量的指示信息,该测量所使用的序列的信息,或,参与该测量的至少一个站点的标识信息,该测量包括测距或感知;发送用于该测量的PPDU,该PPDU仅包括SHR字段。
基于上述技术方案,通过在声明帧中携带以下信息中的至少一项:测量编号,指示执行测量的指示信息,测量所使用的序列的信息,或,参与测量的至少一个站点的标识信息,使得接收端设备可以从声明帧中获取到上述信息。进而在发送端设备发送仅包括SHR字段的PPDU的情况下,接收端设备也可以根据该PPDU实现测量,从而可以降低测量的开销。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:发送触发帧,该触发帧包括以下信息中的至少一项:该测量编号,或用于指示索取的测量报告的分段的信息。
基于上述技术方案,通过在触发帧中携带以下信息中的至少一项:测量编号,或,用于指示索取的测量报告的分段的信息,从而在发送端设备发送仅包括SHR字段的PPDU的情况下,接收端设备也可以根据该触发帧向发送端设备上报全部测量报告或部分测量报告,从而可以降低测量的开销。
需要说明的是,触发帧中携带的测量编号与声明帧中携带的测量编号相同。
结合第三方面,在第三方面的某些实现方式中,该声明帧包括第一字段,该第一字段包括以下信息中的至少一项:该测量编号,指示执行该测量的指示信息,或,该测量所使用的序列的信息。
基于上述技术方案,若声明帧包括第一字段,则接收端设备可以从声明帧中的第一字段获取上述信息,从而使得接收端设备可以根据仅包括SHR字段的PPDU实现测量,和/或,上报测量报告。
例如,在执行多次测量的情况下,若第一字段包括测量编号,则接收端设备可以根据该测量编号确定本次所执行的测量。此外,接收端设备还可以将测量编号与执行测量得到的测量报告关联起来,使得发送端设备根据该测量编号确定测量报告所对应的测量。
又例如,若第一字段包括执行该测量的指示信息,则接收端设备可以根据该指示信息确定接收到的PPDU是用于测量的PPDU,从而接收端设备可以根据该PPDU进行测量。例如,该指示信息是指示执行测距的指示信息,则接收端设备可以根据指示信息确定该PPDU用于测距。
再例如,若第一字段包括执行该测量所使用的序列的信息,则接收端设备可以根据第一字段确定发送端生成PPDU所使用的序列,从而有利于接收端设备接收和解析PPDU。
结合第三方面,在第三方面的某些实现方式中,该第一字段是对话令牌(dialog token)字段。
结合第三方面,在第三方面的某些实现方式中,该声明帧包括第二字段,该第二字段包括参与该测量的至少一个站点的标识信息。
基于上述技术方案,若声明帧包括第二字段,则接收端设备可以根据该第二字段确定是否参与测量。例如,若参与该测量的至少一个站点的标识信息包括接收端设备的标识信息,则接收端设备确定参与测量。
结合第三方面,在第三方面的某些实现方式中,该第二字段是个人局域网(personal area network,PAN)标识(identifier,ID)列表(PAN ID list)字段。
结合第三方面,在第三方面的某些实现方式中,该声明帧包括第五字段,该第五字段用于指示该声明帧包括以下信息中的至少一项:该测量编号,指示执行该测量的指示信息,该测量所使用的序列的信息,或,参与该测量的至少一个站点的标识信息。
基于上述技术方案,通过声明帧中的第五字段,使得接收端设备可以确定声明帧包括上述信息,从而接收端设备可以解析声明帧并获取上述信息。
结合第三方面,在第三方面的某些实现方式中,该第五字段是帧控制(frame control)字段。
结合第三方面,在第三方面的某些实现方式中,该触发帧包括第三字段,该第三字段包括该测量编号。
基于上述技术方案,若触发帧包括第三字段,则在执行多次测量的情况下,接收端设备可以根据测量编号确定发送端设备索取的是哪次测量的测量报告。
结合第三方面,在第三方面的某些实现方式中,该第三字段是对话令牌字段。
结合第三方面,在第三方面的某些实现方式中,该触发帧包括第四字段,该第四字段包括用于指示索取的测量报告的分段的信息。
基于上述技术方案,若触发帧包括第四字段,则发送端设备可以通过第四字段指示接收端设备上报全部测量或部分测量报告。例如,若每次下发的触发帧可以指定接收端设备上报部分测量报告,则接收端端设备无需一次性反馈全部的测量报告,在测量报告数据量较大时,能够有效的提高反馈结果的效率和可靠性,提高方案的灵活性。
结合第三方面,在第三方面的某些实现方式中,该触发帧包括第六字段,该第六字段用于指示该触发帧包括以下信息中的至少一项:该测量编号,或用于指示索取的测量报告的分段的信息。
基于上述技术方案,通过触发帧中的第六字段,使得接收端设备可以确定触发帧包括上述信息,从而接收端设备可以解析触发帧并获取上述信息。
结合第三方面,在第三方面的某些实现方式中,该第六字段是帧控制字段。
第四方面,提供了一种基于UWB的测量方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端端设备执行为例进行说明。
该方法可以包括:接收声明帧,该声明帧包括以下信息中的至少一项:测量编号,指示执行该测量的指示信息,该测量所使用的序列的信息,或,参与该测量的至少一个站点的标识信息,该测量包括测距或感知;接收用于该测量的PPDU,该PPDU仅包括SHR 字段;根据该声明帧确定,根据该PPDU执行测量。
第四方面及第四方面中任一种可能实现方式的有益效果可以参考上述第三方面。
结合四方面,在第四方面的某些实现方式中,该触发帧包括以下信息中的至少一项:该测量编号,或用于指示索取的测量报告的分段的信息;根据该触发帧发送全部测量报告或部分测量报告。
结合第四方面,在第四方面的某些实现方式中,该声明帧包括第一字段,该第一字段包括以下信息中的至少一项:该测量编号,指示执行该测量的指示信息,或,该测量所使用的序列的信息。
结合第四方面,在第四方面的某些实现方式中,该第一字段是对话令牌字段。
结合第四方面,在第四方面的某些实现方式中,该声明帧包括第二字段,该第二字段包括参与该测量的至少一个站点的标识信息;根据该声明帧确定,根据该PPDU执行测量,包括:根据参与测量的至少一个站点的标识信息确定执行该测量。
结合第四方面,在第四方面的某些实现方式中,该第二字段是PAN ID list字段。
结合第四方面,在第四方面的某些实现方式中,该声明帧包括第五字段,该第五字段用于指示该声明帧包括以下信息中的至少一项:该测量编号,指示执行该测量的指示信息,该测量所使用的序列的信息,或,参与该测量的至少一个站点的标识信息。
结合第四方面,在第四方面的某些实现方式中,该第五字段是帧控制字段。
结合第四方面,在第四方面的某些实现方式中,所述触发帧包括第三字段,该第三字段包括该测量编号;根据该触发帧发送全部测量报告或部分测量报告,包括:根据该测量编号发送该测量编号对应的全部测量报告或部分测量报告。
结合第四方面,在第四方面的某些实现方式中,该第三字段是对话令牌字段。
结合第四方面,在第四方面的某些实现方式中,该触发帧包括第四字段,该第四字段包括用于指示索取的测量报告的分段的信息;根据用于指示索取的测量报告的分段的信息,确定发送全部测量报告或部分测量报告。
结合第四方面,在第四方面的某些实现方式中,该触发帧包括第六字段,该第六字段用于指示该触发帧包括以下信息中的至少一项:该测量编号,或用于指示索取的测量报告的分段的信息。
结合第四方面,在第四方面的某些实现方式中,该第六字段是帧控制字段。
第五方面,提供了一种基于UWB的测量方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法可以包括:发送询问帧,该询问帧包括以下一项或多项:指示执行测量的指示信息,参与该测量的至少一个站点的标识信息,或,该至少一个站点执行所述测量所需要的参数,该测量包括测距或感知;接收用于该测量的PPDU,该PPDU仅包括SHR字段。
基于上述技术方案,通过在询问帧中携带以下信息中的至少一项:指示执行测量的指示信息,参与测量的至少一个站点的标识信息,或,参与测量的至少一个站点执行测量所需要的参数,使得在接收端设备发送仅包括SHR字段的PPDU的情况下,也可以实现测量,从而可以降低测量的开销。
结合第五方面,在第五方面的某些实现方式中,该询问帧包括第一字段,该第一字段 包括以下一项或多项:指示执行该测量的指示信息,该至少一个站点执行该测量所需要的相同的参数。
基于上述技术方案,通过将指示执行该测量的指示信息和该至少一个站点执行该测量所需要的相同的参数,携带在一个字段中,可以减小询问帧的发送开销。
此外,该第一字段包括该指示执行测量的指示信息,则可以指示接收端设备执行测量。例如,该指示信息是指示执行测距的指示信息,则该指示信息可以指示接收端设备执行测距。
此外,该第一字段包括该该至少一个站点执行该测量所需要的相同的参数,则可以指示该至少一个站根据该参数进行测量。
结合第五方面,在第五方面的某些实现方式中,该第一字段是公共信息(common info)字段。
结合第五方面,在第五方面的某些实现方式中,该询问帧包括第二字段,该第二字段包括以下至少一项:参与该测量的至少一个站点的标识信息,或该至少一个站点执行该测量所需要的参数。
基于上述技术方案,若询问帧包括该第二字段,则接收端设备可以根据该第二字段确定是否参与测量,以及在参与测量的情况下执行测量所需的参数。例如,若参与该测量的至少一个站点的标识信息包括接收端设备的标识信息,则接收端设备确定参与测量。
结合第五方面,在第五方面的某些实现方式中,该第二字段包括该至少一个站执行该测量所需要的不同的参数。
结合第五方面,在第五方面的某些实现方式中,该第二字段是用户信息列表(user info list)字段。
结合第五方面,在第五方面的某些实现方式中,该询问帧包括第三字段,该第三字段用于指示该询问帧包括以下信息中的至少一项:指示执行测量的指示信息,参与该测量的至少一个站点的标识信息,或,该至少一个站点执行所述测量所需要的参数,该测量包括测距或感知。
基于上述技术方案,通过询问帧中的第三字段,使得接收端设备可以确定询问帧包括上述信息,从而接收端设备可以解析询问帧并获取上述信息。
结合第五方面,在第五方面的某些实现方式中,该第三字段是帧控制字段。
第六方面,提供了一种基于UWB的测量方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端端设备执行为例进行说明。
该方法可以包括:接收询问帧,该询问帧包括以下一项或多项:指示执行测量的指示信息,参与该测量的至少一个站点的标识信息,或,该至少一个站点执行该测量所需要的参数,该测量包括测距或感知;根据该询问帧发送用于该测量的PPDU,该PPDU仅包括SHR字段。
第六方面及第六方面中任一种可能实现方式的有益效果可以参考上述第五方面。
结合第六方面,在第六方面的某些实现方式中,该询问帧包括第一字段,该第一字段包括以下一项或多项:指示执行该测量的指示信息,该至少一个站执行该测量所需要的相同的参数;所述方法还包括:根据该指示信息确定执行测距或执行感知,和/或,根据该 相同的参数发送用于该测量的PPDU。
结合第六方面,在第六方面的某些实现方式中,该第一字段是公共信息字段。
结合第六方面,在第六方面的某些实现方式中,该询问帧包括第二字段,该第二字段包括以下至少一项:参与该测量的至少一个站点的标识信息,或该至少一个站点执行该测量所需要的参数;所述方法还包括:根据该参与该测量的至少一个站点的标识信息确定是否参与测量,和/或,根据该至少一个站点执行该测量所需要的参数发送用于该测量的PPDU。
结合第六方面,在第六方面的某些实现方式中,所述第二字段包括所述至少一个站执行所述测量所需要的不同的参数。
结合第六方面,在第六方面的某些实现方式中,该第二字段是用户信息列表字段。
第七方面,提供一种装置,该装置用于执行上述第一方面至第六方面中任一方面提供的方法。具体地,该装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第二方面或第二方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第四方面或第四方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第五方面或第五方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第六方面或第六方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和/或收发单元。
在一种实现方式中,该装置为设备(如发送端设备,又如接收端设备)。当该装置为设备时,收发单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于设备(如发送端设备,又如接收端设备)中的芯片、芯片***或电路。当该装置为用于设备中的芯片、芯片***或电路时,收发单元可以是该芯片、芯片***或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第八方面,提供一种装置,该装置包括:存储器,用于存储程序;至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面或第一方面的上述任意一种实现方式提供的方法,或以执行上述第二方面或第二方面的上述任意一种实现方式提供的方法,或执行上述第三方面或第三方面的上述任意一种实现方式提供的方法,或执行上述第四方面或第四方面的上述任意一种实现方式提供的方法,或执行上述第五方面或第五方面的上述任意一种实现方式提供的方法,或执行上述第六方面或第六方面的上述任意一种实现方式提供的方法。
在一种实现方式中,该装置为设备(如发送端设备,又如接收端设备)。
在另一种实现方式中,该装置为用于设备(如发送端设备,又如接收端设备)中的芯片、芯片***或电路。
第九方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入 等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第一方面的上述任意一种实现方式提供的方法的指令,或包括用于执行上述第二方面或第二方面的上述任意一种实现方式提供的方法的指令,或包括用于执行上述第三方面或第三方面的上述任意一种实现方式提供的方法的指令,或包括用于执行上述第四方面或第四方面的上述任意一种实现方式提供的方法的指令,或包括用于执行上述第五方面或第五方面的上述任意一种实现方式提供的方法的指令,或包括用于执行上述第六方面或第六方面的上述任意一种实现方式提供的方法的指令。
第十一方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第一方面的上述任意一种实现方式或第二方面,或使得计算机执行上述第二方面或第二方面的上述任意一种实现方式提供的方法,或使得计算机执行上述第三方面或第三方面的上述任意一种实现方式提供的方法,或使得计算机执行上述第四方面或第四方面的上述任意一种实现方式提供的方法,或使得计算机执行上述第五方面或第五方面的上述任意一种实现方式提供的方法,或使得计算机执行上述第六方面或第六方面的上述任意一种实现方式提供的方法。
第十二方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第一方面的上述任意一种实现方式提供的方法,或执行上述第二方面或第二方面的上述任意一种实现方式提供的方法,或执行上述第三方面或第三方面的上述任意一种实现方式提供的方法,或执行上述第四方面或第四方面的上述任意一种实现方式提供的方法,或执行上述第五方面或第五方面的上述任意一种实现方式提供的方法,或执行上述第六方面或第六方面的上述任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第一方面的上述任意一种实现方式提供的方法,或执行上述第二方面或第二方面的上述任意一种实现方式提供的方法,或执行上述第三方面或第三方面的上述任意一种实现方式提供的方法,或执行上述第四方面或第四方面的上述任意一种实现方式提供的方法,或执行上述第五方面或第五方面的上述任意一种实现方式提供的方法,或执行上述第六方面或第六方面的上述任意一种实现方式提供的方法。
第十三方面,提供一种通信***,包括上文的发送端设备和接收端设备。
附图说明
图1是本申请提供的两种应用场景的示意图;
图2是适用于本申请实施例的一种UWB信号的示意图;
图3是适用于本申请实施例一种PPDU结构的示意图;
图4是本申请实施例提供的基于UWB传输PPDU的方法的示意性流程图;
图5是本申请实施例提供的PHR字段的示意图;
图6是本申请实施例提供的基于UWB的测量方法的示意图;
图7是本申请实施例提供的声明帧的结构示意图;
图8是本申请实施例提供的触发帧的结构示意图;
图9是本申请实施例提供的基于UWB的测量方法的示意图;
图10是本申请实施例提供的询问帧的结构示意图;
图11是本申请实施例提供的装置2000的示意图;
图12是本申请实施例提供的装置3000的示意图;
图13是本申请实施例提供的芯片***4000的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于无线个人局域网(wireless personal area network,WPAN)。目前WPAN采用的标准为电气和电子工程协会(institute of electrical and electronics engineer,IEEE)802.15系列。WPAN可以用于电话、计算机、附属设备等小范围内的数字辅助设备之间的通信,其工作范围一般是在10米(m)以内。作为示例,能够支持无线个人局域网的技术包括但不限于:蓝牙(bluetooth)、紫峰(ZigBee)、超宽带(ultra wideband,UWB)、红外线数据标准协会(infrared data association,IrDA)红外连接技术、家庭射频(HomeRF)等。从网络构成上来看,WPAN可位于整个网络架构的底层,用于小范围内的设备之间的无线连接,即点到点的短距离连接,可以视为短距离无线通信网络。根据不同的应用场景,WPAN可分为高速率(high rate,HR)-WPAN和低速率(low rate,LR)-WPAN,其中,HR-WPAN可用于支持各种高速率的多媒体应用,包括高质量声像配送、多兆字节音乐和图像文档传送等。LR-WPAN可用于日常生活的一般业务。
在WPAN中,根据设备所具有的通信能力,可以分为全功能设备(full-function device,FFD)和精简功能设备(reduced-function device,RFD)。RFD主要用于简单的控制应用,如灯的开关、被动式红外线传感器等,传输的数据量较少,对传输资源和通信资源占用不多,RFD的成本较低。FFD之间可以通信,FFD与RFD之间也可以通信。通常,RFD之间不直接通信,而是与FFD通信,或者通过一个FFD向外转发数据。与RFD相关联的FFD也可称为该RFD的协调器(coordinator)。协调器也可以称为个人局域网(personal area network,PAN)协调器或中心控制节点等。PAN协调器为整个网络的主控节点,并且每个自组网中有一个PAN协调器,主要用于成员身份管理、链路信息管理、分组转发功能。可选地,本申请实施例中的设备可以为支持802.15.4a和802.15.4z、以及现在正在讨论中的或后续版本等多种WPAN制式的设备。
本申请实施例中,上述设备可以是标签、通信服务器、路由器、交换机、网桥、计算机或者手机,家居智能设备,车载通信设备,可穿戴设备等。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设备、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其他设备如智能手机配合使用,如各类进行体征监测的智能手环、 智能首饰等。
在本申请实施例中,上述设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层之上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如。Linux操作***、Unix操作***、Android操作***、iOS操作***或Windows操作***等。该应用层包括浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是FFD或RFD,或者,是FFD或RFD中能够调用程序并执行程序的功能模块。
上述关于WPAN的介绍仅是举例说明,其不对本申请实施例的保护范围造成限定。
可以理解,本申请实施例还可以用于其他通信***,例如,第五代(5th generation,5G)或新无线(new radio,NR)***、长期演进(long term evolution,LTE)***、频分双工(frequency division duplex,FDD)***、时分双工(time division duplex,TDD)***等。本申请实施例还可以用于未来的通信***,如第六代(6th generation,6G)移动通信***等。本申请实施例还可以用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信***或者其他通信***。上述适用于本申请的通信***仅是举例说明,适用于本申请的通信***不限于此,在此统一说明,以下不再赘述。
首先结合图1简单介绍适用于本申请的应用场景,如下。
图1是本申请提供的两种应用场景的示意图。图1中的(A)所示的***101为一种星型拓扑(star topology)的通信***,图1中的(B)所示的***102为一种点对点拓扑(peer to peer topology)的通信***。
如图1中的(A)所示,该***101中可包括多个FFD和多个RFD,该多个FFD和多个RFD可形成星型拓扑的通信***。其中,多个FFD中的某一个FFD为PAN控制器,在星型拓扑的通信***中,PAN控制器可同一个或多个其他设备进行数据传输,即多个设备可以建立一对多或多对一的数据传输架构。
如图1中的(B)所示,该***102中可包括多个FFD和一个RFD,该多个FFD和一个RFD可形成点对点拓扑的通信***。其中,多个FFD中的某一个FFD为PAN控制器,在点对点拓扑的通信***中,多个不同设备之间可以建立多对多的数据传输架构。
应理解,图1中的(A)和图1中的(B)仅为便于理解而示例的简化示意图,并不构成对本申请的应用场景的限定。例如,该***101和/或***102中还可以包括其他FFD和/或RFD等。
为了便于理解本申请实施例的技术方案,首先对本申请实施例可能涉及到的一些术语或概念进行简单描述。
1、UWB技术:是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。由于其脉冲很窄,且辐射谱密度极低,UWB***具有多径 分辨能力强,功耗低,保密性强等优点,有利于与其他***共存,从而提高频谱利用率和***容量。
随着2002年联邦通信委员会(Federal Communications Commission,FCC)批注UWB技术进入民用领域,超宽带无线通信成为短距离、高速无线网络热门的物理层技术之一。许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中,IEEE已经将UWB技术纳入其IEEE 802系列无线标准,已经发布了基于UWB技术的WPAN标准IEEE 802.15.4a,以及其演进版本IEEE 802.15.4z,目前下一代UWB技术的WPAN标准802.15.4ab的制定也已经提上日程。
由于UWB技术不需要使用传统通信体制中的载波,而是通过收发具有纳秒或纳秒以下的极窄脉冲来传输数据,其对收发设备的时间同步具有很高的要求,同时由于其通信宽带较大,所以在利用超宽带信道上收发信号时,设备的功耗和复杂度较高,而大多UWB通信设备依靠电池驱动,下一代标准希望能进一步降低UWB***的功耗,所以可以采用窄带信号辅助的方式,将除测距和感知的参考信号外的其他所有信号,全部通过窄带***收发,从而降低整体功耗开销。
2、UWB信号的功率:由于超宽带***的带宽很大,为了减小其在工作时对其他窄带设备的干扰,FCC对UWB信号的功率谱密度进行了严格的限制,根据联邦规则汇编(Code of Federal Regulations,CFR),主要有两个规则:
规则一:发射的UWB信号的最大功率谱密度(power spectral density,PSD)在一毫秒内的平均值不能大于41.3dBm每兆赫兹;
规则二:发射的UWB信号在任何50M带宽内的最大功率不能超过1毫瓦。
规则一限制了UWB在1毫秒内的发射总能量(如500M带宽下为37nJ),但是可以通过将该能量集中在更短的时间内发射出去,从而提高发射信号的瞬时功率,以增大信号的覆盖范围和增大接收端接收信号的信噪比。基于此,在部分需要增大发射功率的场景下,发射端将要发射的UWB信号拆分为多个分段信号,每一段分段信号在时间长度上小于1毫秒,然后在每个毫秒内只发送其中一个分段信号。
图2是本申请实施例提供的一种UWB信号的示意图。从图2中可以看出,发射端将要发射的UWB信号拆分为多个分段信号(如图2中所示的UWB分段信号#1、UWB分段信号#2和UWB分段信号#3…),每一段分段信号在时间长度上小于1毫秒,且在每个毫秒内只发送其中一个分段信号。
另外,本申请中“分段信号”也可以称为“分块信号”、“短信号”、“部分信号”、“分段”或“分块”等,对于分段信号的名称不做限定。
由上述可知,将要发射的UWB信号拆分为多个分段信号进行分段传输,可以增加UWB信号的瞬时功率,但是也不能无限增大。规则二实际上限定了UWB分段传输的功率增大倍数。
3、测距或感知:对与测距或感知场景,其测量或感知的结果的精度跟信号带宽相关,信号带宽越大,其感知或测距得到的结果的精度越高。因此,可以考虑将用于测距或感知的参考信号通过UWB***收发,而把其他参考信号和/或数据的传输通过窄带传输,从而既能保证测距和感知的精度,又可以节约功耗。其中,本申请涉及的感知可以理解为物联网技术架构的底层感知技术,是物联网获取信息和实现物体控制的首要环节;测距可以理 解为设备之间距离的测量,包括但不限于物联网中两个物体之间的距离测量。
4、物理层协议数据单元(physical protocol data unit,PPDU):UWB技术不需要使用传统通信体制中的载波,而是通过收发具有纳秒或纳秒以下的极窄脉冲来传输数据,因此,其对收发设备的同步在UWB技术中至关重要。所谓收发设备的同步,可以理解为PPDU以脉冲信号的形式进行发送,接收端确定接收到的多个脉冲信号中从哪个开始是其要接收的PPDU。当前,收发设备的同步主要通过PPDU中的同步头(synchronization header,SHR)来实现,具体来说,接收端可以根据与同步头进行相关性检测,从而确定接收到的多个脉冲信号中从哪个开始是其要接收的PPDU。
图3示出了PPDU的帧结构示意图。如图3中的(A)所示,PPDU包括SHR、物理头(physical header,PHR)和物理层(physical layer,PHY)承载(payload)字段。
其中,SHR用于接收端进行PPDU检测和同步,具体而言,接收端可以根据SHR检测到发送端是否发送了PPDU以及PPDU的起始位置。SHR字段可以包括一个标准预定义的前导码序列(preamble sequence)和帧开始分隔符(start-of-frame delimiter,SFD),接收端可以使用该预定义的前导码序列与接收信号做相关运算,利用相关运算结果的峰值位置等信息来确定信号的到达时间,通常所指的到达时间是指相对于测距标志(ranging marker,RMARKER)的时间,这里的RMARKER是指紧跟SFD之后的第一个脉冲到到接收到的天线的时间。
PHR字段携带物理层的指示信息,例如,调制编码信息、PPDU长度以及该PPDU的接收者等,协助接收端正确解调数据。PHR字段的结构如图3中的(B)所示,PHY承载长度(PHY payload length)子字段用于指示PPDU所携带的信息的字节数,测距(ranging)子字段用来指示是否需要使用该PPDU进行测距。若PHY承载后边还有加密时间戳序列(scramble timestamp sequence,STS)字段,则A1和A0子字段用于指示STS子字段与PHY承载字段之间的间隙时长,若PHY承载后边没有STS字段,则A1和A0也可以和PHY承载长度子字段一起用来指示PHY承载所携带信息的字节数。单错校正双错检测(single-error correlation,double-error detection,SECDED)子字段是编码后的校验比特,用来对PHR字段的错误进行检测和纠正。
物理层承载(PHY payload)字段携带传输数据,物理层承载字段可以包括物理层业务数据单元(PHY service data unit,PSDU)。
5、窄带***:在通信***中,信源信号经过载波信号调制后,信源信号的有效带宽比其所在的载波频率或中心频率要小得多的信号就称为窄带信号。实际通信中,分配给用户设备的频带资源+真实的传播环境,称之为信道,信道也具备一定的频谱特征。通常情况下,分配到的频带资源越宽,传播环境越稳定,信道能够承载的数据速率就越高。
从信号波形的频谱来看,信号带宽(或者称为“信源特征”)为Δf,载波频率(或者称为“信道特征”)为fc,当Δf远远小于fc时称该***为窄带***。可见“窄带信道”和“窄带信号”其实都在同一个定义范畴之内,就是“窄带***”,二者相辅相成。
基于将要发射的UWB信号(即PPDU)拆分为多个分段信号进行分段传输的方案,有必要设计一种PPDU的物理头,以实现发送端对PPDU的分段传输,以及接收端对PPDU的正确接收和解析。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括直接指示和间接指示。当描述某一信息用于指示A时,可以包括该信息直接指示A或间接指示A,而并不代表该信息中一定携带有A。
将信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
第二,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同信道等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第三,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
以下不失一般性地,以发送端设备和接收端设备之间的交互为例详细说明本申请实施例提供的基于UWB传输PPDU的方法。
作为示例而非限定,发送端设备可以是WPAN中具有通信能力的设备,如,FFD或RFD;同理,接收端设备也可以是WPAN中具有通信能力的设备,如,FFD或RFD。
应理解,本申请实施例对于发送端设备和接收端设备的具体类型不做限定,具有收发PPDU的通信设备即可。
图4是本申请实施例提供的一种基于UWB传输PPDU的方法的示意性流程图,包括以下步骤:
S410,发送端设备生成PPDU。
PPDU包括PHR字段,PHR字段中的第一子字段用于指示以下至少一项:PPDU是否采用多毫秒分段方式传输,PPDU在每个毫秒内的传输时长,PPDU在每个毫秒内传输的符号个数,或,PPDU的分段个数。
其中,PPDU的分段个数用于指示PPDU被拆分为多个分段的情况下,PPDU的分段的个数。需要说明的是,若PPDU被拆分为多个分段,则PPDU包括的SHR字段和PHR字段包含于PPDU的第一个分段,PPDU的承载包含于PPDU的其余分分段。下文实施例中以PPDU的分段个数用于指示PPDU的全部分段的个数为例进行说明。
可选的,PPDU的分段个数与PPDU在每个毫秒内的传输时长满足如下关系:T=1/N,T表示PPDU在每个毫秒内的传输时长,N表示PPDU的分段个数。
PHR字段中的第一子字段用于指示上述至少一项,也可以理解为第一子字段中承载以下信息中的至少一项:用于指示PPDU是否采用多毫秒分段方式传输的信息,PPDU在每个毫秒内的传输时长,PPDU在每个毫秒内传输的符号个数,或,PPDU的分段个数。
示例性的,第一子字段可以称为分段长度(segment length)子字段、分段信息(segment info)子字段、分段(segment)子字段、多毫秒传输(multi-millisecond,MSS)子字段等。应理解,本申请实施例中对于第一子字段的名称不做任何限定。
一种可能的实现方式中,第一子字段用于指示PPDU是否采用多毫秒分段方式传输。例如,若第一子字段的取值为第一值,则第一子字段用于指示PPDU未采用多毫秒分段方式传输,若第一子字段的取值为第二值,则第二子字段用于指示PPDU采用多毫秒分段方式传输。例如,第一值为0,即当第一子字段的取值为0时,第一子字段用于指示PPDU未采用多毫秒分段方式传输。例如,第二值为正整数,例如第二值为1,即当第一子字段的取值为1时,第一子字段用于指示PPDU为采用多毫秒分段方式传输。应理解,本申请实施例中对于第一值和第二值的取值不做任何限定。
可选的,若第一子字段的取值为第二值,第一子字段还用于指示PPDU在每个毫秒内的传输时长和PPDU的分段个数中的至少一个。其中,PPDU的分段个数为2(M+d)个,PPDU在每个毫秒的传输时长为1/2(M+d)毫秒,M为第二值,d为大于或等于0的整数。例如,M=1,d=2,则PPDU的分段个数为8,PPDU在每个毫秒的传输时长为0.125毫秒。又例如,M=2,d=2,则PPDU的分段个数为16,PPDU在每个毫秒的传输时长为0.0625毫秒。可选的,d的值是协议预定义的。例如,d的值由协议预定义的PPDU的最小分段个数确定,例如,Nmin表示协议预定义的PPDU的最小分段个数,Mmin为第二值的最小值,如前所述,第二值为正整数,则Mmin=1。例如,Nmin=8,则d=2。
可选的,若第一子字段的取值为第二值,第一子字段还用于指示PPDU在每个毫秒内传输的符号个数。示例性的,PPDU在每个毫秒内传输的符号个数与第二值对应,例如,第二值为1,与1对应的符号个数是2,则PPDU在每个毫秒内传输的符号个数是2。又示例性的,PPDU在每个毫秒内传输的符号个数等于第二值,例如,第二值为1,则PPDU在每个毫秒内传输的符号个数是1。
又一种可能的实现方式中,第一子字段的取值为第三值,用于指示PPDU的分段个数。示例性的,PPDU的分段个数等于第三值,第三值为正整数。例如,第三值为1,则表示第一子字段用于指示PPDU的分段个数为1个。又例如,第三值为4,则表示第一子字段用于指示PPDU的分段个数为4个。又示例性的,PPDU的分段个数是与第三值对应的值。例如,第三值为1,1与8对应,则表示第一子字段用于指示PPDU的分段个数是8个。
可以理解,当第一子字段指示PPDU的分段个数为1个时,相当于PPDU未采用多毫秒分段方式传输,当第一子字段指示PPDU的分段个数大于1时,相当于PPDU采用多毫秒分段方式传输。因此,当第三值为1时,第一子字段也可以用于指示PPDU未采用多毫秒分段方式传输,当第三值大于1时,第一子字段也可以用于指示PPDU采用多毫秒分段方式传输。
可选的,若PPDU的分段个数与PPDU在每个毫秒内的传输时长满足如下关系:T=1/N,则当第一子字段用于指示PPDU的分段个数时,第一子字段也可以用于指示PPDU在每个 毫秒内的传输时长,PPDU在每个毫秒内的传输时长为1/S毫秒,S为第三值。
再一种可能的实现方式中,第一子字段的取值为第七值,用于指示PPDU在每个毫秒内的传输时长。示例性的,PPDU在每个毫秒内的传输时长等于第七值,第七值大于0且小于等于1。例如,第七值为1,则表示第一子字段用于指示PPDU在每个毫秒内的传输时长为1毫秒。又例如,第七值为0.25,则表示第一子字段用于指示PPDU在每个毫秒内的传输时长为0.25毫秒。又示例性的,PPDU的在每毫秒内的传输时长与第七值对应。例如,第三值为1,1与0.25毫秒对应,则表示第一子字段用于指示PPDU在每个毫秒内的传输时长为0.25毫秒。
可以理解,当第一子字段指示PPDU在每个毫秒内的传输时长为1毫秒时,相当于PPDU未采用多毫秒分段方式传输,当第一子字段指示PPDU在每个毫秒内的传输时长小于1毫秒时,相当于PPDU采用多毫秒分段方式传输。因此,当第七值为1时,第一子字段也可以用于指示PPDU未采用多毫秒分段方式传输,当第七值小于1时,第一子字段也可以用于指示PPDU采用多毫秒分段方式传输。
可选的,若PPDU的分段个数与PPDU在每个毫秒内的传输时长满足如下关系:T=1/N,则当第一子字段用于指示PPDU在每个毫秒内的传输时长时,第一子字段也可以用于指示PPDU的分段个数,PPDU的分段个数为1/P个,P为第七值。
需要说明的是,本申请实施例并不限定PPDU在每个毫秒内的传输时长一定相同,PPDU在每个毫秒内的传输时长也可以不同。例如,第一子字段包括多个指示信息,该多个指示信息分别用于指示PPDU在不同毫秒内的传输时长。例如,第一子字段包括指示信息#A和指示信息#B,指示信息#A用于指示PPDU在第一个毫秒内的传输时长#A,指示信息#B用于指示PPDU在第二个毫秒内的传输时长#B,传输时长#A与传输时长#B不同。
再一种可能的实现方式中,第一子字段的取值为第四值,用于指示PPDU在每个毫秒内传输的符号个数。示例性的,PPDU在每个毫秒内传输的符号个数等于第四值。又示例性的,PPDU在每个毫秒内传输的符号个数与第四值对应。
可以理解,当第一子字段指示PPDU在每个毫秒内传输的符号个数与PPDU传输的总的符号个数相等时,相当于PPDU未采用多毫秒分段方式传输,即第一子字段也可以用于指示PPDU未采用多毫秒分段方式传输。当第一子字段指示PPDU在每个毫秒内传输的符号个数小于PPDU传输的总的符号个数时,相当于PPDU采用多毫秒分段方式传输,即第一子字段也可以用于指示PPDU采用多毫秒分段方式传输。
还可以理解,在第一子字段用于指示PPDU在每个毫秒内传输的符号个数的情况下,根据PPDU的总长度、PPDU的承载的调制与编码策略和PPDU在每个毫秒内传输的符号个数,可以确定传输PPDU需要多少毫秒,相当于可以确定PPDU的分段个数。因此,第一子字段也可以用于指示PPDU的分段个数。
需要说明的是,本申请实施例并不限定PPDU在每个毫秒内传输的符号个数一定相同,PPDU在每个毫秒内传输的符号个数也可以不同。例如,第一子字段包括多个指示信息,该多个指示信息分别用于指示PPDU在不同毫秒内传输的符号个数。例如,第一子字段包括指示信息#a和指示信息#b,指示信息#a用于指示PPDU在第一个毫秒内传输的符号个数#a,指示信息#b用于指示PPDU在第二个毫秒内传输的符号个数#a,符号个数#a与符 号个数#b不同。
再一种可能的实现方式中,第一子字段用于指示上述任意两项,或者,用于指示上述任意三项,或者用于指示上述四项。
例如,第一子字段包括指示信息#1和指示信息#2,指示信息#1用于指示PPDU是否采用多毫秒分段方式传输,指示信息#2用于指示PPDU的分段个数。例如,若指示信息#1的取值为第一值,则指示信息#1用于指示PPDU未采用多毫秒分段方式传输,若指示信息#1的取值为第二值,则指示信息#1用于指示PPDU采用多毫秒分段方式传输。例如,指示信息#2的取值为第三值,PPDU的分段个数等于第三值。
又例如,第一子字段包括指示信息#1、指示信息#2和指示信息#3,指示信息#1用于指示PPDU是否采用多毫秒分段方式传输,指示信息#2用于指示PPDU的分段个数,指示信息#3用于指示PPDU在每个毫秒内的传输时长。例如,指示信息#3的取值为第七值,PPDU在每个毫秒内的传输时长等于第七值。
可选的,第一子字段还用于指示其他用于确定PPDU是否采用多毫秒分段方式传输、PPDU的分段个数、PPDU在每个毫秒内的传输时长或PPDU在每个毫秒内传输的符号个数的信息,本申请实施例对此不做限定。例如,第一子字段用于指示PPDU在每个毫秒内传输的信息比特个数。
可选的,PHR字段还包括第二子字段,第二子字段用于指示以下至少一项:PPDU是否在每个毫秒内的同一时间段传输,用于发送PPDU的第一跳时序列,或用于生成第一跳时序列的种子或密钥。第一跳时序列用于确定PPDU在每个毫秒内的传输起始时刻。PHR字段中的第二子字段用于指示上述至少一项,也可以理解为第二子字段中承载以下信息中的至少一项:用于指示PPDU是否在每个毫秒内的同一时间段传输的信息,指示第一跳时序列的信息,或,用于生成第一跳时序列的种子或密钥。
示例性的,第二子字段可以称为跳时(time hopping,TH)子字段。应理解,本申请实施例对于第二子字段的名称不做任何限定。
一种可能的实现方式中,第二子字段用于指示PPDU是否在每个毫秒内的同一时间段传输。例如,若第二子字段的取值为第五值,则第二子字段用于指示PPDU在每个毫秒内的同一时间段传输,若第二子字段的取值为第六值,则第二子字段用于指示PPDU在每个毫秒内的不同时间段传输。例如,第五值为0,即当第二子字段的取值为0时,第二子字段用于指示PPDU在每个毫秒内的同一时间段传输。例如,第六值为正整数,例如第六值为1,即当第二子字段的取值为1时,第二子字段用于指示PPDU在每个毫秒内的不同时间段传输。应理解,本申请实施例中对于第五值和第六值不做任何限定。
可选的,第二子字段还用于指示用于发送PPDU的第一跳时序列,第一跳时序列是与第二子字段的取值对应的跳时序列。例如,第二子字段的取值为第五值,则第一跳时序列是与第五值对应的跳时序列。例如,第五值为0,则第一跳时序列是与0对应的跳时序列#1。又例如,第二子字段的取值为第六值,则第一跳时序列是与第六值对应的跳时序列。例如,第六值为1,则第一跳时序列是与1对应的跳时序列#2,或者,第六值为2,则第一跳时序列是与2对应的跳时序列#3。
可选的,第二子字段还用于指示用于生成第一跳时序列的种子或密钥。示例性的,第二子字段的取值是用于生成第一跳时序列的种子或密钥,或者,用于生成第一跳时序列的 种子或密钥是与第二子字段的取值对应的种子或密钥。
例如,第二子字段的取值为第五值,第五值是用于生成第一跳时序列的种子或密钥,若与第五值对应的跳时序列表示为tn=K,tn表示PPDU在第n个毫秒内的传输起始时刻,K为用于生成跳时序列的种子或密钥,即K为第五值,则当第五值为0时,第一跳时序列表示为tn=0,即PPDU在第n个毫秒内的传输起始时刻是第n个毫秒的开始时刻。
又例如,第二子字段的取值为第六值,第六值是用于生成第一跳时序列的种子或密钥,若与第六值对应的跳时序列表示为tn=H□n+L/100,H为预定义的值,L为用于生成跳时序列的种子或密钥,即L为第六值,则当H=0.01,L=1时,用于发送PPDU的第一跳时序列表示为tn=0.01n+0.01,即PPDU在第n个毫秒内的传输起始时刻是第n个毫秒内的第(0.01n+0.01)毫秒。
又一种可能的实现方式中,第二子字段用于指示第一跳时序列,第一跳时序列是与第二子字段的取值对应的跳时序列。例如,第二子字段的取值为0,则第一跳时序列是与0对应的跳时序列#1,例如,跳时序列#1表示为tn=0。又例如,第二子字段的取值为1,则第一跳时序列是与1对应的跳时序列#2,例如,跳时序列#2表示为tn=0.01n+0.01。
可以理解,当根据第二子字段指示的第一跳时序列确定PPDU在每个毫秒内的传输起始时刻相同时,相当于PPDU在每个毫秒内的同一时间段传输,即第二子字段可以用于指示PPDU在每个毫秒内的同一时间段传输。当根据第二子字段指示的第一跳时序列确定PPDU在每个毫秒内的传输起始时刻不同时,相当于PPDU在每个毫秒内的不同时间段传输,即第二子字段可以用于指示PPDU在每个毫秒内的不同时间段传输。
可选的,当第二子字段用于指示第一跳时序列时,若第二子字段为空,可以理解为发送端设备发送PPDU时不使用第一跳时序列,即相当于发送端设备在每个毫秒内的同一时间段发送PPDU。
再一种可能的实现方式中,第二子字段用于指示上述任意两项,或者,用于指示上述三项。
例如,第二子字段包括指示信息#4和指示信息#5,指示信息#4用于指示PPDU是否在每个毫秒内的同一时间段传输,指示信息#5用于指示第一跳时序列。例如,若指示信息#4的取值为第五值,则指示信息#4用于指示PPDU在每个毫秒内的同一时间段传输,若指示信息#4的取值为第六值,则指示信息#4用于指示PPDU在每个毫秒内的不同时间段传输。例如,指示信息#5指示的第一跳时序列是指示信息#5的取值对应的跳时序列。
又例如,第二子字段包括指示信息#4、指示信息#5和指示信息#6,指示信息#4用于指示PPDU是否在每个毫秒内的同一时间段传输,指示信息#5用于指示第一跳时序列,指示信息#6用于指示用于生成第一跳时序列的种子或密钥。例如,指示信息#6的取值为生成第一跳时序列的种子或密钥。
可选的,PHR字段还包括第三子字段,第三子字段用于指示PPDU的承载所采用的调制与编码策略(modulation and coding scheme,MSC)。示例性的,调制与编码策略包括PPDU的承载部分所采用的信道编码码率和/或每个符号所携带的信息比特个数。
示例性的,第三子字段可以称为MSC子字段。应理解,本申请实施例对于第三子字段的名称不做任何限定。
示例性的,第三子字段的不同取值与不同调制与编码策略对应。以第三子字段占用两 个比特为例,第三子字段的不同取值与不同调制与编码策略的对应关系如表1所示。
表1
应理解,本申请实施例对于第三子字段的不同取值与不同调制与编码策略的对应关系不做限定。例如,第三子字段可以占用三个比特,从而指示最多八种不同调制与编码策略。
可选的,PHR字段还包括第四子字段,第四子字段用于指示PPDU的承载的长度,第四子字段指示的PPDU的承载的最大长度可以大于(210-1)字节(byte)。
一种可能的实现方式中,第四子字段占用的比特数大于10。例如,第四子字段占用的比特数为12。需要说明的是,第四子字段占用的比特数N与第四子字段指示的承载的最大长度Lmax的关系可以表示为:Lmax=2N-1。因此,当第四子字段占用的比特数大于10时,第四子字段指示的承载的最大长度可以大于(210-1)字节(byte)。例如,若第四子字段占用的比特数为12,则第四子字段指示的承载的最大长度为(212-1)字节。
另一种可能的实现方式中,第四子字段的比特数为M,当其可指示的承载长度值按照从小到大的顺序排列时,两个连续的承载长度值之间的差值大于1个字节时,第四子字段指示的承载的最大长度Lmax与N之间的关系可以表示为:Lmax>2N-1。例如,即使第四子字段占用的比特数为10,第四子字段指示的PPDU的承载的长度也可以大于(210-1)字节。例如,第四子字段指示的两个连续的承载长度值之间的差值为2个字节,则当第四子字段占用10个比特时,第四子字段可指示的承载的长度值按照从小到大顺序排列时表示为:0,2,4,……,2×(210-1),即第四子字段指示的承载最大长度为2×(210-1)字节。
示例性的,第四子字段可以称为承载长度(payload length)子字段。应理解,本申请实施例对于第四子字段的名称不做任何限定。
可选的,PHR字段还包括第五子字段,第五子字段用于指示PPDU是否用于测距。例如,若第五子字段的取值为第八值,则第五子字段用于指示PPDU不用于测距,若第五子字段的取值为第九值,则第五子字段用于指示PPDU用于测距。应理解,本申请实施例中对于第八值和第九值不做任何限定。
示例性的,第五子字段可以称为测距(ranging)子字段。应理解,本申请实施例中对于第五子字段的名称不做任何限定。
可选的,PHR字段还包括第六子字段,第六子字段为PHR字段的校验字段,用于判断PHR字段是否正确,以及用于纠正部分错误信息比特。示例性的,第六子字段可以采用(X-p,X-5-p)的汉明码(Hanming code)编码生成的五比特的校验比特位。其中,X为PHR字段最大占用的比特数,X-p为编码后的码长,X-5-p为编码前的码长,p为打孔比特长度,即编码前信息比特长度与(X-5)的差。例如,X=31,则第六子字段采用(31-p,26-p)的汉明码编码生成的五比特的校验比特位。示例性的,第六子字段可以是采用循环冗余校验(cyclic redundancy check,CRC)生成算法生成的校验比特。
示例性的,第六子字段可以称为SECDED子字段。应理解,本申请实施例中对于第五子字段的名称不做任何限定。
示例性的,图5示出了本申请实施例提供的PHR字段的示意性结构图,如图5所示,PHR字段可以占用32个比特位,其中,MCS子字段占用第0个比特位至第2个比特位,测距子字段占用第3个比特位,PHY承载长度子字段占用第4个比特位至第15个比特位,跳时子字段占用第21个比特位至第26个比特位,SECDED子字段占用第27个比特位至第31个比特位。应理解,本申请实施例以图5为例对本申请实施例提供的PHR字段的结构进行说明,本申请实施例并不限定PHR字段包括的子字段,以及不限定各个子字段所占用的比特数。
可选的,本申请实施例提供的PHR字段还可以包括A0子字段和A1子字段。若PPDU包括的PHY承载后边还有STS字段,则A1和A0子字段用于指示STS字段与PHY承载字段之间的间隙时长,若PHY承载后边没有STS字段,则A1和A0子字段也可以和PHY承载长度子字段一起用来指示PHY承载所携带信息的字节数。
发送端设备生成的PPDU还可以包括SHR字段和PHY负载。
S420,发送端设备向接收端设备发送PPDU,相应地,接收端设备接收来自发送端设备的PPDU。
本申请实施例对发送端设备发送PPDU的方式不做限定。
一种可能的实现方式中,发送端设备通过窄带发送PPDU包括的PHR字段和SHR字段;通过UWB发送PPDU的承载。可选的,发送端设备通过UWB发送PPDU的承载时,可以使用多毫秒分段方式发送PPDU的承载。
另一种可能的实现方式中,发送端设备通过UWB以多毫秒分段的方式发送PPDU,PPDU的第一个分段包括PHR字段和SHR字段,PPDU的其余分段包括PPDU的承载。
可选的,发送端设备发送PPDU之前,还向接收端设备发送第一指示信息,第一指示信息用于指示通过窄带发送SHR字段和PHR字段,或者,用于指示通过UWB发送SHR字段和PHR字段。相应的,若第一指示信息指示通过窄带发送SHR字段和PHR字段,则接收端设备通过窄带接收SHR字段和PHR字段。若第一指示信息指示通过UWB发送SHR字段和PHR字段,则接收端设备通过UWB接收SHR字段和PHR字段。
可以理解,不论发送端设备以何种方式发送PPDU,在接收端设备接收PPDU的过程中,接收端设备首先接收到PPDU包括的SHR字段和PHR字段,然后根据PHR字段接收PPDU的承载。
如S410所述,PHR字段包括第一子字段,则接收端设备接收到PHR字段之后,可以根据第一子字段确定以下至少一项:PPDU是否采用多毫秒分段方式传输,PPDU在每个毫秒内的传输时长,PPDU在每个毫秒内传输的符号个数,或,PPDU的分段个数,进而有利于接收端设备正确接收PPDU。
例如,若第一子字段的取值为第一值,则接收端设备根据第一子字段确定PPDU未采用多毫秒分段方式传输,则接收端设备确定PPDU在一个毫秒内传输,从而接收端设备在一个毫秒内接收PPDU。
又例如,若第一子字段的取值为第二值,则接收端设备根据第一子字段确定PPDU采用多毫秒分段方式传输,则PPDU在多个毫秒内接收PPDU。例如,在协议预定义PPDU 的分段个数为8个的情况下,接收端设备在8个毫秒内接收PPDU。又例如,接收端设备确定在2(M+d)个毫秒内接收PPDU。
又例如,若接收端设备根据第一子字段确定PPDU的分段个数,则接收端设备可以根据PPDU的分段个数在一个或多个毫秒内接收PPDU。例如,若接收端设备根据第一子字段确定PPDU的分段个数为1,则接收端设备在一个毫秒内接收PPDU。若接收端设备根据第一子字段确定PPDU的分段个数为2(M+d),则接收端设备在2(M+d)个毫秒内接收PPDU。
又例如,若接收端设备根据第一子字段确定PPDU在每个毫秒内的传输时长,则接收端设备可以根据PPDU在每个毫秒内的传输时长在一个或多个毫秒内接收PPDU。例如,若接收端设备根据第一子字段确定PPDU在每个毫秒内的传输时长为1毫秒,则接收端设备在一个毫秒内接收PPDU。若接收端设备根据第一子字段确定PPDU在每个毫秒内的传输时长小于1毫秒,例如为1/2(M+d)毫秒,则接收端设备在2(M+d)个毫秒内接收PPDU。
又例如,若接收端设备根据第一子字段确定PPDU在每个毫秒内传输的符号个数,则接收端设备可以根据接收到的SHR字段的长度、PHR字段的长度和PPDU的承载的长度确定PPDU的总长度,然后根据PPDU的总长度、PPDU的承载的调制与编码策略和PPDU在每个毫秒内传输的符号个数确定PPDU的分段个数,进而接收端设备可以根据PPDU的分段个数在一个或多个毫秒内接收PPDU。其中,接收端设备可以根据PHR字段包括的第四子字段确定PPDU的承载的长度,以及可以根据PHR字段包括的第三子字段确定PPDU的承载的调整与编码策略。PPDU的承载的长度和/或调制与编码策略也可以是协议预定义的,本申请实施例对此不做限定。
如S410所述,PHR字段还可以包括第二子字段,则接收端设备接收到PHR字段之后,可以根据第二子字段确定以下至少一项:PPDU是否在每个毫秒内的同一时间段传输,第一跳时序列,或,用于生成第一跳时序列的种子或密钥,进而有利于接收端设备确定PPDU在每个毫秒内的传输时间段,并在PPDU的传输时间段内接收PPDU。
例如,若接收端设备根据第二子字段确定PPDU在每个毫秒内的同一时间段传输,则在协议预定义PPDU在每个毫秒内的传输起始时刻是每个毫秒的开始时刻的情况下,接收端设备可以确定PPDU在每个毫秒内的传输时间段。例如,接收端设备根据第一子字段确定PPDU的分段个数为8,则接收端设备可以确定PPDU在8个毫秒内传输,且PPDU在每个毫秒内的传输时间段为0至0.125毫秒。
又例如,若接收端设备根据第二子字段确定第一跳时序列,则接收端设备可以根据第一跳时序列确定PPDU在每个毫秒内的传输起始时刻。进而,接收端设备结合根据第一子字段确定的PPDU在每个毫秒内的传输时长,可以确定PPDU在每个毫秒内的传输时间段。例如,接收端设备根据第一子字段确定PPDU的分段个数为4,PPDU在每个毫秒内的传输时长为0.25毫秒,根据第二子字段确定第一跳时序列表示为tn=0.01n+0.01,则接收端设备确定PPDU在第一个毫秒内的传输时间段为0.02至0.27毫秒,在第二个毫秒内的传输时间段为0.03至0.28毫秒,在第三个毫秒内的传输时间段为0.04至0.29毫秒,在第四个毫秒内的传输时间段为0.05至0.30毫秒。
可选的,若在发送端设备通过窄带发送SHR字段和PHR字段,通过UWB发送PPDU的承载,则PHR字段中的第一子字段用于指示以下至少一项:PPDU包括的承载是否采用多毫秒分段方式传输,PPDU的承载在每个毫秒内的传输时长,PPDU的承载在每个毫 秒内传输的符号个数,或,PPDU的承载的分段个数。相应的,接收端设备可以根据第一子字段确定在一个毫秒内接收PPDU的承载,或者多个毫秒内接收PPDU的承载,
可选的,PHR字段中的第二子字段用于指示以下至少一项:PPDU的承载是否在每个毫秒内的同一时间段传输,用于发送PPDU的承载的第一跳时序列,或用于生成第一跳时序列的种子或密钥。相应的,接收端设备可以结合第一子字段和第二子字段,确定PPDU的承载在每个毫秒内的传输时间段,并且在PPDU的承载的传输时间段接收PPDU的承载。
S430,接收端设备解析PPDU。
接收端设备接收到PPDU之后,根据PHR字段携带的信息解析PPDU。例如,接收端设备根据PHR子段中的第三子字段确定PPDU的承载所采用的调制与编码策略,从而接收端设备根据该调制与编码策略解析PPDU的承载。
基于上述技术方案,通过PPDU的PHR字段中的第一子字段,使得接收端设备根据第一子字段确定以下至少一项:PPDU是否采用多毫秒分段方式传输,PPDU在每个毫秒内的传输时长,PPDU在每个毫秒内传输的符号个数,或,PPDU的分段个数,从而接收端设备可以根据PHR字段正确接收PPDU。
此外,本申请的PPDU的PHR字段包括第二子字段,使得接收端设备根据第二子字段确定以下至少一项:PPDU是否在每个毫秒内的同一时间段传输,第一跳时序列,或,用于生成第一跳时序列的种子或密钥,从而接收端设备可以根据结合第一子字段和第二子字段接收PPDU在每个毫秒内的传输时间段,有利于PPDU正确接收PPDU。
此外,本申请的PPDU的PHR字段包括第三子字段,即使在接收端设备通过不同调制与编码策略传输PPDU的情况下,接收端设备也可以根据第三子字段确定PPDU的承载所使用的调制与编码策略,有利于正确解析PPDU。例如,若第三子字段占用两个比特,则第三子字段最多可以指示四种不同的调制与编码策略,进而接收端设备可以选择不同调制与编码策略传输PPDU,以满足接收端设备的不同传输需求。
此外,本申请提供的PPDU的PHR字段中的第四子字段占用的比特数大于10,从而有利于实现传输长度更长的PPDU。
本申请实施例还提供一种基于UWB的测量方法,以期降低测距或感知的开销。下面结合图6至图10说明本申请实施例提供的基于UWB的测量方法。
图6中的(A)示出了本申请实施例提供的基于UWB的测量方法的示意性流程图,包括以下步骤:
S610,发送端设备向接收端设备发送声明帧(announcement frame),相应地,接收端设备接收来自发送端设备的声明帧。
声明帧包括参与测量的至少一个站点的标识信息。可选的,声明帧还包括以下信息中的至少一项:测量编号,指示执行测量的指示信息,或,测量所使用的序列的信息。测量包括测距或感知。
参与测量的至少一个站点的标识信息包括:参与测量的至少一个站点的地址信息,和/或,参与测量的至少一个站点的PAN标识(identifier,ID)。
测量编号是当前即将进行的测量的编号。若测量包括测距,则指示执行测量的指示信息是指示执行测距的指示信息,或者说,该指示信息用于指示执行测距。若测量包括感知,则指示执行测量的指示信息是指示执行感知的指示信息,或者说,该指示信息用于指示执 行感知。
测量所使用的序列用于指示发送端设备基于某个序列生成用于测量的PPDU,序列包括但不限于:
Maximum Length序列,序列长度为2^m-1。由于M序列循环移位后的序列仍然是M序列,且循环移位后的M序列与原序列具有很低的相关性(几乎正交),故不同的设备可以采用M序列循环移位不同位数形成的M序列,从而使得不同设备发送的PPDU几乎正交,减少PPDU间的干扰。
Hadamard矩阵的某一行或一列。Hadamard矩阵是一个仅由1和-1元素构成的矩阵,其所有行之间互相正交,所有列之间也互相正交。故可以让不同设备采用Hadamard矩阵的不同行或列,则不同设备发送的PPDU可以相互正交,减少PPDU间的干扰。
Gold序列,Gold序列是两个相同长度的Maximum Length序列的元素对应元素相乘得到的,性质与Maximum Length序列类似。
示例性的,声明帧包括第一字段,第一字段包括以下信息中的至少一项:测量编号,指示执行测量的指示信息,或,测量所使用的序列的信息。例如,第一字段可以称为对话令牌(dialog token)字段。应理解,本申请实施例中对于第一字段的名称不做任何限定。
示例性的,声明帧包括第二字段,第二字段包括参与测量的至少一个站点的标识信息。例如,第二字段可以称为PAN ID列表(PAN ID list)字段。应理解,本申请实施例对于第二字段的名称不做任何限定。
可选的,声明帧还包括第五字段,第五字段用于指示声明帧包括以下信息中的至少一项:测量编号,指示执行测量的指示信息,测量所使用的序列的信息,或,参与测量的至少一个站点的标识信息。相应的,接收端设备根据第五字段确定声明帧包括以上信息中的至少一项之后,从声明帧中获取上述信息。例如,若第五字段的取值为第九值,则第五字段用于指示声明帧包括以上信息中的至少一项。例如,第五字段可以称为帧控制(frame control)字段。应理解,本申请实施例对于第五字段的名称和第九值不做任何限定。
声明帧还可以包括地址域(addressing fields)字段,地址域字段用于指示发送端设备的标识信息和/或接收端设备的标识信息。发送端设备的标识信息包括发送端设备的地址信息和/或PAN ID,接收端设备的标识信息包括接收端设备的地址信息和/或PAN ID。
声明帧还可以包括帧校验序列(frame check sequence,FCS)字段,FCS字段用于指示声明帧的校验序列,以验证声明帧是否被更改过。
示例性的,图7示出了本申请实施例提供的声明帧的结构示意图。如图7所示,声明帧包括帧控制字段、地址域字段、对话令牌字段、PAN ID list字段和FCS字段,地址域字段包括目的PAN ID(destination PAN ID)、目的地址(destination address)、源PAN ID(source PAN ID)和源地址(source address)。目的PAN ID用于指示接收端设备的PAN ID,目的地址用于指示接收端设备的地址信息,源PAN ID用于指示发送端设备的PAN ID,源地址用于指示发送端设备的地址信息。其中,帧控制字段和地址域字段组成媒体接入控制(media access control,MAC)头(MAC header,MHR),对话令牌字段和PAN ID list字段组成MAC承载(MAC payload),FCS字段组成MAC尾(MAC footer,MFR)。应理解,本申请实施例以图7为例对本申请实施例提供的声明帧的结构进行说明,本申请实施例并不限定声明帧包括的字段,以及不限定各个字段所占用的八位组(octet)数。
S620,发送端设备向接收端设备发送用于测量的PPDU,相应地,接收端设备接收来自发送端设备的用于测量的PPDU。
用于测量的PPDU仅包括SHR字段。用于测量的PPDU还可以称为专用测量帧(dedicated sounding frame),本申请对此不做限定。
如图6中的(B)所示,发送端设备可以向接收端设备发送一个用于测量的PPDU,或者发送多个用于测量的PPDU,本申请实施例对此不做限定。
从图6中的(B)可以看出,发送端设备向接收端设备发送声明帧之后,发送用于测量的PPDU。
S630,接收端设备根据PPDU执行测量。
具体的,接收端设备根据声明帧确定是否执行测量,和/或,确定测量相关的信息,并且在确定执行测量的情况下,根据PPDU执行测量。
例如,声明帧包括的参与测量的至少一个站点的标识信息包括接收端设备的标识信息,则接收端设备确定执行测量。进而,接收端设备接收到PPDU之后,根据PPDU执行测量。
又例如,若声明帧包括的指示信息用于指示测距,则接收端设备根据接收到的PPDU执行测距。
又例如,若声明帧包括测量所使用的序列的信息,则接收端设备可以根据该信息确定发送端设备生成PPDU所使用的序列,从而接收端设备可以根据该序列正确接收用于测量的PPDU。
又例如,若声明帧包括测量编号,则接收端设备可以根据该测量编号将执行的测量,以及执行测量得到测量报告关联起来。
可选的,方法600还包括S640。
S640,发送端设备向接收端设备发送触发帧(trigger frame),相应地,接收端设备接收来自发送端设备的触发帧。应理解,本申请涉及的触发帧为具有触发功能的帧。
触发帧包括以下信息中的至少一项:测量编号,或,用于指示索取的测量报告的分段的信息。
测量编号是触发帧指示索取的测量报告对应的测量的编号。触发帧中包括的测量编号与声明帧中包括的测量编号相同。
用于指示索取的测量报告的分段信息用于指示接收端设备上报部分测量结果或全部测量结果,全部测量报告指的是接收端设备执行测量编号对应的测量得到的全部测量报告。例如,用于指示索取的测量报告的分段信息用位图表示,位图包含的比特数,或者说,位图的长度,与测量报告的分段个数相同,位图包含的每个比特对应于测量报告的一个分段。例如,当某一比特位指示“1”时,可认为指示接收端设备上报该比特位对应的测量报告的分段,当某一比特位指示“0”时,可认为指示接收端设备不上报该比特位对应的测量报告的分段。例如,位图包含4个比特,该4个比特与测量报告的4个分段一一对应,若该位图表示为“1111”,则该位图指示接收端设备上报全部测量报告,若该位图表示为“0010”,则该位图指示接收端设备上报部分测量报告,即上报测量报告的第3个分段。
示例性的,触发帧包括第三字段,第三字段包括测量编号。例如,第三字段可以称为对话令牌字段。应理解,本申请实施例中对于第三字段的名称不做任何限定。
示例性的,触发帧包括第四字段,第四字段包括用于指示索取的测量报告的分段的信 息。例如,第四字段可以称为反馈分段重传位图(feedback segment retransmission bitmap)字段。应理解,本申请实施例中对于第四字段的名称不做任何限定。
可选的,触发帧还包括第六字段,第六字段用于指示触发帧包括以下信息中的至少一项:测量编号,或,用于指示索取的测量报告的分段的信息。相应的,接收端设备根据第六字段确定触发帧包括以上信息中的至少一项之后,从触发帧中获取上述信息。例如,若第六字段的取值为第十值,则第六字段用于指示触发帧包括以上信息中的至少一项。例如,第六字段可以称为帧控制字段。应理解,本申请实施例对于第六字段的名称和第十值不做任何限定。
触发帧还可以包括地址域字段,地址域字段用于指示发送端设备的标识信息和/或接收端设备的标识信息。
触发帧还可以包括FCS字段,FCS字段用于指示触发帧的校验序列,以验证触发帧是否被更改过。
示例性的,图8示出了本申请实施例提供的触发帧的结构示意图。如图8所示,触发帧包括帧控制字段、地址域字段、对话令牌字段、反馈分段重传位图字段和FCS字段,地址域字段包括目的PAN ID、目的地址、源PAN ID和源地址。其中,帧控制字段和地址域字段组成MHR,对话令牌字段和反馈分段重传位图字段组成MAC承载,FCS字段组成MFR。应理解,本申请实施例以图7为例对本申请实施例提供的声明帧的结构进行说明,本申请实施例并不限定声明帧包括的字段,以及不限定各个字段所占用的八位组(octet)数。
可选的,方法600还包括S650。
S650,接收端设备向发送端设备发送测量报告,相应地,发送端设备接收来自接收端设备的测量报告。
示例性的,若接收端设备未接收到来自发送端设备的触发帧,则接收端设备可以按照预定义的规则,向发送端设备发送全部测量报告,或者,采用分段的方式依次向发送端设备发送测量报告的每个分段。例如,全部测量报告可以拆分为4个分段,则接收端设备可以依次向发送端设备发送测量报告的第1个分段至第4个分段。
又示例性的,若接收端设备接收到来自发送端设备的触发帧,且触发帧包括用于指示索取的测量报告的分段信息,则接收端设备根据用于指示索取的测量报告的分段信息,向发送端设备发送测量报告。例如,用于指示索取的测量报告的分段信息指示上报全部测量报告,则接收端设备向发送端设备发送全部测量报告。又例如,用于指示索取的测量报告的分段信息指示上报部分测量报告,例如,指示上报测量报告的第3个分段,则接收端设备向发送端设备发送测量报告的第3个分段。
若触发帧包括测量编号,则接收端设备可以根据测量编号向发送端设备上报测量编号关联的测量报告。
基于上述技术方案,通过在声明帧中携带以下信息中的至少一项:测量编号,指示执行测量的指示信息,测量所使用的序列的信息,或,参与测量的至少一个站点的标识信息,使得接收端设备可以从声明帧中获取到上述信息。进而在发送端设备发送仅包括SHR字段的PPDU的情况下,接收端设备也可以根据该PPDU实现测量,从而可以降低测量的开销。
此外,通过在触发帧中携带以下信息中的至少一项:测量编号,或,用于指示索取的测量报告的分段的信息,从而在发送端设备发送仅包括SHR字段的PPDU的情况下,接收端设备也可以根据该触发帧向发送端设备上报全部测量报告或部分测量报告,从而可以降低测量的开销。
图9中的(A)示出了本申请实施例提供的基于UWB的测量方法的示意性流程图,包括以下步骤:
S910,发送端设备向接收端设备发送询问帧(poll frame),相应地,接收端设备接收来自发送端设备的询问帧。
询问帧包括参与测量的至少一个站点的标识信息。可选的,询问帧还包括以下信息中的至少一项:指示执行测量的指示信息,或,参与测量的至少一个站点执行测量所需要的参数。测量包括测距或感知。
指示执行测量的指示信息和参与测量的至少一个站点的标识信息可以参考上文S610中的描述。
参与测量的至少一个站点执行测量所需要的参数可以包括执行测量所使用的序列的信息,用于指示参与测量的至少一个站点基于某个序列生成用于测量的PPDU,序列包括但不限于:Maximum Length序列,Hadamard矩阵的某一行或一列,或,Gold序列。测量使用的序列的更多描述可以参考上文S610中的描述。
需要说明的是,在参与测量的至少一个站点包括多个站点的情况下,本申请实施例不限定该多个站点执行测量所使用的序列是否相同。也就是说,多个站点执行测量所使用的序列可以相同,也可以不同。
示例性的,询问帧包括第一字段,第一字段包括以下信息中的至少一项:指示执行测量的指示信息,或,所述至少一个站点执行测量所需要的相同的参数。例如,第一字段可以称为公共信息(common info)字段。应理解,本申请实施例中对于第一字段的名称不做任何限定。例如,若参与测量的至少一个站点执行测量使用的序列相同,则第一字段可以包括参与测量的至少一个站执行测量所使用的序列的信息。
示例性的,询问帧包括第二字段,第二字段包括参与测量的至少一个站点的标识信息,或,参与测量的至少一个站点的执行测量所需要的参数。例如,第二字段可以称为用户信息列表(user info list)字段。应理解,本申请实施例对于第二字段的名称不做任何限定。
第二字段可以包括与至少一个站点一一对应的至少一个子字段,每个子字段包括与该子字段对应的站点的标识信息和该站点执行测量所需要的参数。
可选的,第二字段包括参与测量的至少一个站点执行测量所需要的不同的参数。例如,参与测量的至少一个站点执行测量所使用的序列不同,则第二字段包括的至少一个子字段中,每个子字段包括与该子字段对应站点的标识信息和该站点执行测量所使用的序列的信息。
可选的,询问帧还包括第三字段,第三字段用于指示询问帧包括以下信息中的至少一项:指示执行测量的指示信息,参与测量的至少一个站点的标识信息,或,参与测量的至少一个站点执行测量所需要的参数。相应的,接收端设备根据第三字段确定询问帧包括以上信息中的至少一项之后,从询问帧中获取上述信息。例如,若第三字段的取值为第一值, 则第三字段用于指示询问帧包括以上信息中的至少一项。例如,第三字段可以称为帧控制字段。应理解,本申请实施例对于第三字段的名称和第一值不做任何限定。
询问帧还可以包括地址域字段,地址域字段用于指示发送端设备的标识信息和/或接收端设备的标识信息。发送端设备的标识信息包括发送端设备的地址信息和/或PAN ID,接收端设备的标识信息包括接收端设备的地址信息和/或PAN ID。
询问帧还可以包括,FCS字段,FCS字段用于指示询问帧的校验序列,以验证询问帧是否被更改过。
示例性的,图10示出了本申请实施例提供的询问帧的结构示意图。如图10所示,询问帧包括帧控制字段、地址域字段、公共信息字段、用户信息list字段和FCS字段,地址域字段包括目的PAN ID、目的地址、源PAN ID和源地址。其中,帧控制字段和地址域字段组成MHR,公共信息字段和用户信息list字段组成MAC承载,FCS字段组成MFR。应理解,本申请实施例以图10为例对本申请实施例提供的询问帧的结构进行说明,本申请实施例并不限定询问帧包括的字段,以及不限定各个字段所占用的八位组数。
可选的,方法900还包括S920。
S920,接收端设备向发送端设备发送响应帧(response),相应地,发送端设备接收到来自接收端设备的响应帧。
接收端设备接收到询问帧之后,若可以执行测量,则可以向发送端设备发送响应帧。
S930,接收端设备向发送端设备发送用于测量的PPDU,相应地,发送端设备接收来自接收端设备的用于测量的PPDU。
用于测量的PPDU仅包括SHR字段。用于测量的PPDU还可以称为专用测量帧,本申请对此不做限定。
接收端设备根据询问帧确定是否向发送端设备发送用于测量的PPDU,和/或,确定测量所使用的参数。
例如。询问帧包括的参与测量的至少一个站点的标识信息包括接收端设备的标识信息,则接收端设备确定向发送端设备发送用于测量的PPDU。
又例如,询问帧包括的指示执行测量的指示信息用于指示执行测距,则接收端设备发送用于测距的PPDU。
又例如,询问帧包括的接收端设备执行测量所使用的序列的信息指示Gold序列,则接收端设备使用Gold序列发送用于测量的PPDU。
如图9中的(B)所示,发送端设备可以向接收端设备发送一个用于测量的PPDU,或者发送多个用于测量的PPDU,本申请实施例对此不做限定。
从图9中的(B)可以看出,接收端设备可以在发送响应帧之后,发送用于测量的PPDU。
基于上述技术方案,通过在询问帧中携带以下信息中的至少一项:指示执行测量的指示信息,参与测量的至少一个站点的标识信息,或,参与测量的至少一个站点执行测量所需要的参数,使得在接收端设备发送仅包括SHR字段的PPDU的情况下,也可以实现测量,从而可以降低测量的开销。
应理解,本申请实施例仅以图4、图6和图9为例,对本申请实施例提供的方法进行说明,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明(如发送端设备、接收端设备等等),应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用本申请实施例。
可以理解的是,上述各个方法实施例中,由设备(如上述发送端设备、接收端设备等)实现的方法和操作,也可以由设备的部件(例如芯片或者电路)实现。
还可以理解的是,发送端设备和接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图11至图13详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不在赘述。
本申请实施例可以根据上述方法实施例对发送端设备或接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图11是本申请实施例提供的一种装置的示意性框图。如图11所示,该装置2000可以包括收发单元2010和处理单元2020。收发单元2010可以与外部进行通信,处理单元2020用于进行数据处理。收发单元2010还可以称为通信接口或通信单元。
可选的,该装置2000还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元2020可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。
在第一种设计中,该装置2000可以是前述实施例中的发送端设备,也可以是发送端设备的组成部件(如芯片)。该装置2000可实现对应于上文方法实施例中的发送端设备执行的步骤或者流程,其中,收发单元2010可用于执行上文方法实施例中发送端设备的收发相关的操作,处理单元2020可用于执行上文方法实施例中发送端设备的处理相关的操作。
一种可能的实现方式中,处理单元2020,用于生成PPDU,该PPDU包括PHR字段,该PHR字段中的第一子字段用于指示以下至少一项:该PPDU是否采用多毫秒分段方式传输,该PPDU在每个毫秒内的传输时长,该PPDU在每个毫秒内传输的符号个数,或,该PPDU的分段个数;收发单元2010,用于发送该PPDU。
又一种可能的实现方式中,收发单元2010,用于发送声明帧,该声明帧包括以下信息中的至少一项:测量编号,指示执行该测量的指示信息,该测量所使用的序列的信息,或,参与该测量的至少一个站点的标识信息,该测量包括测距或感知;收发单元2010,还用于发送用于该测量的PPDU,该PPDU仅包括SHR字段;收发单元2010,还用于发 送触发帧,该触发帧包括以下信息中的至少一项:该测量编号,或用于指示索取的测量报告的分段的信息。
再一种可能的实现方式中,收发单元2010,用于发送询问帧,该询问帧包括以下一项或多项:指示执行测量的指示信息,参与该测量的至少一个站点的标识信息,或,该至少一个站点执行该测量所需要的参数,该测量包括测距或感知;收发单元2010,还用于接收用于该测量的PPDU,该PPDU仅包括SHR字段。
在第二种设计中,该装置2000可以是前述实施例中的接收端设备,也可以是接收端设备的组成部件(如芯片)。该装置2000可实现对应于上文方法实施例中的接收端设备执行的步骤或者流程,其中,收发单元2010可用于执行上文方法实施例中接收端设备的收发相关的操作,处理单元2020可用于执行上文方法实施例中接收端设备的处理相关的操作。
一种可能的实现方式中,收发单元2010,用于接收PPDU,该PPDU包括PHR字段,该PHR字段中的第一子字段用于指示以下至少一项:该PPDU是否采用多毫秒分段方式传输,该PPDU在每个毫秒内的传输时长,该PPDU在每个毫秒内传输的符号个数,或,该PPDU的分段个数;处理单元2020,用于解析该PPDU。
又一种可能的实现方式中,收发单元2010,用于接收声明帧,该声明帧包括以下信息中的至少一项:测量编号,指示执行该测量的指示信息,该测量所使用的序列的信息,或,参与该测量的至少一个站点的标识信息,该测量包括测距或感知;收发单元2010,还用于接收用于该测量的PPDU,该PPDU仅包括SHR字段;收发单元2010,还用于接收触发帧,该触发帧包括以下信息中的至少一项:该测量编号,或用于指示索取的测量报告的分段的信息。
再一种可能的实现方式中,收发单元2010,用于接收询问帧,该询问帧包括以下一项或多项:指示执行测量的指示信息,参与该测量的至少一个站点的标识信息,或,该至少一个站点执行该测量所需要的参数,该测量包括测距或感知;收发单元2010,还用于根据该询问帧发送用于该测量的PPDU,该PPDU仅包括SHR字段。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置2000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置2000可以具体为上述实施例中的发送端设备,可以用于执行上述各方法实施例中与发送端设备对应的各个流程和/或步骤;或者,装置2000可以具体为上述实施例中的接收端设备,可以用于执行上述各方法实施例中与接收端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。上述收发单元2010还可以是收发电路(例如可以包括接收电路和发送电路),处理单元2020可以是处理电路。图11中的装置可以是前述实施例中的设备,也可以是芯片或者芯片***,例如:片上***(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
上述各个方案的装置2000具有实现上述方法中发送端设备或接收端设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
图12是本申请实施例提供的装置3000的示意图。该装置3000包括处理器3010,处理器3010用于执行存储器3020存储的计算机程序或指令,或读取存储器3020存储的数据/信令,以执行上文各方法实施例中的方法。可选地,处理器3010为一个或多个。
可选地,如图12所示,该装置3000还包括存储器3020,存储器3020用于存储计算机程序或指令和/或数据。该存储器3020可以与处理器3010集成在一起,或者也可以分离设置。可选地,存储器3020为一个或多个。
可选地,如图12所示,该装置3000还包括收发器3030,收发器3030用于信号的接收和/或发送。例如,处理器3010用于控制收发器3030进行信号的接收和/或发送。
作为一种方案,该装置3000用于实现上文各个方法实施例中由发送端设备执行的操作。
例如,处理器3010用于执行存储器3020存储的计算机程序或指令,以实现上文各个方法实施例中发送端设备的相关操作。例如,图4、图6或图9所示实施例中的发送端设备执行的方法。
作为另一种方案,该装置3000用于实现上文各个方法实施例中由接收端设备执行的操作。
例如,处理器3010用于执行存储器3020存储的计算机程序或指令,以实现上文各个方法实施例中接收端设备的相关操作。例如,图4、图6或图9所示实施例中的接收端设备执行的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取 存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图13是本申请实施例提供一种芯片***4000的示意图。该芯片***4000(或者也可以称为处理***)包括逻辑电路4010以及输入/输出接口(input/output interface)4020。
其中,逻辑电路4010可以为芯片***4000中的处理电路。逻辑电路4010可以耦合连接存储单元,调用存储单元中的指令,使得芯片***4000可以实现本申请各实施例的方法和功能。输入/输出接口4020,可以为芯片***4000中的输入输出电路,将芯片***4000处理好的信息输出,或将待处理的数据或信令信息输入芯片***4000进行处理。
具体地,例如,若发送端设备安装了该芯片***4000,逻辑电路4010与输入/输出接口4020耦合,逻辑电路4010可通过输入/输出接口4020发送PPDU,该PPDU可以为逻辑电路4010生成。又如,若接收端设备安装了该芯片***4000,逻辑电路4010与输入/输出接口4020耦合,逻辑电路4010可通过输入/输出接口4020接收PPDU,逻辑电路4010解析该PPDU。
作为一种方案,该芯片***4000用于实现上文各个方法实施例中由发送端设备执行的操作。
例如,逻辑电路4010用于实现上文方法实施例中由发送端设备执行的处理相关的操作,如,图4、图6或图9所示实施例中的发送端设备执行的处理相关的操作;输入/输出接口4020用于实现上文方法实施例中由发送端设备执行的发送和/或接收相关的操作,如,图4、图6或图9所示实施例中的发送端设备执行的发送和/或接收相关的操作。
作为另一种方案,该芯片***4000用于实现上文各个方法实施例中由接收端设备执行的操作。
例如,逻辑电路4010用于实现上文方法实施例中由接收端设备执行的处理相关的操作,如,图4、图6或图9所示实施例中的接收端设备执行的处理相关的操作;输入/输出接口4020用于实现上文方法实施例中由接收端设备执行的发送和/或接收相关的操作,如,图4、图6或图9所示实施例中的接收端设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由发送端设备执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由接收端设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如发送端设备,又如接收端设备)执行的方法。
本申请实施例还提供一种通信的***,包括前述的发送端设备和接收端设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方 法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种基于超宽带传输物理层协议数据单元的方法,其特征在于,包括:
    生成物理层协议数据单元PPDU,所述PPDU包括物理头PHR字段,所述PHR字段中的第一子字段用于指示以下至少一项:所述PPDU是否采用多毫秒分段方式传输,所述PPDU在每个毫秒内的传输时长,所述PPDU在每个毫秒内传输的符号个数,或,所述PPDU的分段个数;
    发送所述PPDU。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子字段用于指示所述PPDU是否采用多毫秒分段方式传输,
    若所述第一子字段的取值为第一值,则所述第一子字段用于指示所述PPDU未采用多毫秒分段方式传输;
    若所述第一子字段的取值为第二值,则所述第一子字段用于指示所述PPDU采用多毫秒分段方式传输。
  3. 根据权利要求2所述的方法,其特征在于,所述第一子字段的取值为所述第二值,还用于指示所述PPDU在每个毫秒内的传输时长和所述PPDU的分段个数中的至少一个,所述PPDU的分段个数为2(M+d)个,所述PPDU在每个毫秒内的传输时长为1/2(M+d)毫秒,M为所述第二值,d为大于或等于0的整数。
  4. 根据权利要求1所述的方法,其特征在于,所述第一子字段的取值为第三值,用于指示所述PPDU的分段个数,所述第三值为正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述第一子字段的取值为第四值,用于指示所述PPDU在每个毫秒内传输的符号个数,所述第四值为正整数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述PHR字段中的第二子字段用于指示以下至少一项:所述PPDU是否在每个毫秒内的同一时间段传输,用于发送所述PPDU的第一跳时序列,或,用于生成所述第一跳时序列的种子或密钥。
  7. 根据权利要求6所述的方法,其特征在于,所述第二子字段用于指示所述PPDU是否在每个毫秒内的同一时间段传输,
    所述第二子字段的取值为第五值,则所述第二子字段用于指示所述PPDU在每个毫秒内的同一时间段传输;
    所述第二子字段的取值为第六值,所述第二子字段用于指示所述PPDU不在每个毫秒内的同一时间段传输。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二子字段用于指示所述第一跳时序列,所述第一跳时序列是与所述第二子字段的取值对应的跳时序列。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第二子字段用于指示用于生成所述第一跳时序列的种子或密钥,用于生成所述第一跳时序列的种子或密钥是与所述第二子字段的取值对应的种子或密钥。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述PHR字段中的第三子字段用于指示所述PPDU的承载所采用的调制与编码策略。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述PHR字段中的第四子字段用于指示所述PPDU的承载的长度,所述第四子字段占用的比特数大于10。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述发送所述PPDU,包括:
    通过窄带发送所述PHR字段和所述PPDU包括的同步头SHR字段;
    通过超宽带UWB发送所述PPDU的承载。
  13. 根据权利要求1至11中任一项所述的方法,其特征在于,所述发送所述PPDU,包括:
    通过UWB发送所述PPDU,所述PPDU的第一个分段包括所述PHR字段和所述PPDU包括的SHR字段,所述PPDU的除所述第一个分段以外的其余分段包括所述PPDU的承载。
  14. 一种基于超宽带传输物理层协议数据单元的方法,其特征在于,包括:
    接收物理层协议数据单元PPDU,所述PPDU包括物理头PHR字段,所述PHR字段中的第一子字段用于指示以下至少一项:所述PPDU是否采用多毫秒分段方式传输,所述PPDU在每个毫秒内的传输时长,所述PPDU在每个毫秒内传输的符号个数,或,所述PPDU的分段个数;
    解析所述PPDU。
  15. 根据权利要求14所述的方法,其特征在于,所述第一子字段用于指示所述PPDU是否采用多毫秒分段方式传输,
    所述接收PPDU,包括:
    若所述第一子字段的取值为第一值,则在一个毫秒内接收所述PPDU;
    若所述第一子字段的取值为第二值,则在多个毫秒内接收所述PPDU。
  16. 根据权利要求15所述的方法,其特征在于,所述第一子字段的取值为所述第二值,还用于指示所述PPDU在每个毫秒内的传输时长和所述PPDU的分段个数中的至少一个,所述PPDU的分段个数为2(M+d)个,所述PPDU在每个毫秒内的传输时长为1/2(M+d)毫秒,M为所述第二值,d为大于或等于0的整数;
    所述在多个毫秒内接收所述PPDU,包括:
    在2(M+d)个毫秒内接收所述PPDU。
  17. 根据权利要求14所述的方法,其特征在于,所述第一子字段的取值为第三值,用于指示所述PPDU的分段个数,所述第三值为正整数;
    所述接收PPDU,包括:
    根据所述PPDU的分段个数在一个或多个毫秒内接收所述PPDU。
  18. 根据权利要求14所述的方法,其特征在于,所述第一子字段的取值为第四值,用于指示所述PPDU在每个毫秒内传输的符号个数,所述第四值为正整数;
    所述接收PPDU,包括:
    根据所述PPDU在每个毫秒内传输的符号个数在一个或多个毫秒内接收所述PPDU。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述PHR字段中的第二子字段用于指示以下至少一项:所述PPDU是否在每个毫秒内的同一时间段传输,用于发送所述PPDU的第一跳时序列,或,用于生成所述第一跳时序列的种子或密钥。
  20. 根据权利要求19所述的方法,其特征在于,所述第二子字段用于指示所述PPDU 是否在每个毫秒内的同一时间段传输,
    所述接收PPDU,包括:
    所述第二子字段的值为第五值,则在每个毫秒内的同一时间段接收所述PPDU;
    所述第二子字段的值为第六值,则在每个毫秒内的不同时间段接收所述PPDU。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第二子字段还用于指示所述第一跳时序列,所述第一跳时序列是与所述第二子字段的取值对应的跳时序列;
    所述方法还包括:
    根据所述第一跳时序列确定所述PPDU在每个毫秒内的传输起始时刻。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,所述第二子字段还用于指示用于生成所述第一跳时序列的种子或密钥,用于生成所述第一跳时序列的种子或密钥是与所述第二子字段的取值对应的种子或密钥。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述PHR字段中的第三子字段用于指示所述PPDU的承载所采用的调制与编码策略;
    所述解析所述PPDU,包括:
    根据所述调制与编码策略,解析所述PPDU的承载。
  24. 根据权利要求14至23中任一项所述的方法,其特征在于,所述PHR字段中的第四子字段用于指示所述PPDU的承载的长度,所述第四子字段占用的比特数大于10。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,所述接收PPDU,包括:
    通过窄带接收所述PHR字段和所述PPDU包括的同步头SHR字段;
    通过超宽带UWB接收所述PPDU的承载。
  26. 根据权利要求14至24中任一项所述的方法,其特征在于,所述接收PPDU,包括:
    在第一个毫秒接收所述PHR字段和所述PPDU包括的SHR字段;
    在第一个毫秒之后的一个或多个毫秒内接收所述PPDU的承载。
  27. 一种装置,其特征在于,所述装置包括用于执行如权利要求1至13中任一项所述的方法的单元,或者,包括用于执行如权利要求14至26中任一项所述的方法的单元。
  28. 一种装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行如权利要求1至13中任一项所述的方法,或者,使得所述装置执行如权利要求14至26中任一项所述的方法。
  29. 根据权利要求28所述的装置,其特征在于,所述装置还包括所述存储器。
  30. 根据权利要求28或29所述的装置,其特征在于,所述装置还包括通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  31. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1至13中任一项所述的方法的指令,或者,包括用于实现如权利要求14至26中任一项所述的方法的指令。
PCT/CN2023/098870 2022-06-16 2023-06-07 基于超宽带传输物理层协议数据单元的方法和装置 WO2023241431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210682649.0 2022-06-16
CN202210682649.0A CN117318902A (zh) 2022-06-16 2022-06-16 基于超宽带传输物理层协议数据单元的方法和装置

Publications (1)

Publication Number Publication Date
WO2023241431A1 true WO2023241431A1 (zh) 2023-12-21

Family

ID=89192173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098870 WO2023241431A1 (zh) 2022-06-16 2023-06-07 基于超宽带传输物理层协议数据单元的方法和装置

Country Status (2)

Country Link
CN (1) CN117318902A (zh)
WO (1) WO2023241431A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869724A1 (en) * 2020-02-20 2021-08-25 Intel Corporation Eht station with segment parser for encoding an eht ppdu with a large multiple resource unit (mru)
CN113785531A (zh) * 2019-05-03 2021-12-10 三星电子株式会社 增强改变IEEE 802.15.4z中的STS索引/计数器的灵活性
CN114080005A (zh) * 2020-08-21 2022-02-22 华为技术有限公司 Ppdu的上行参数指示方法及相关装置
CN114449660A (zh) * 2020-11-02 2022-05-06 苹果公司 用于混合的超宽带和窄带信令的技术

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785531A (zh) * 2019-05-03 2021-12-10 三星电子株式会社 增强改变IEEE 802.15.4z中的STS索引/计数器的灵活性
EP3869724A1 (en) * 2020-02-20 2021-08-25 Intel Corporation Eht station with segment parser for encoding an eht ppdu with a large multiple resource unit (mru)
CN114080005A (zh) * 2020-08-21 2022-02-22 华为技术有限公司 Ppdu的上行参数指示方法及相关装置
CN114449660A (zh) * 2020-11-02 2022-05-06 苹果公司 用于混合的超宽带和窄带信令的技术

Also Published As

Publication number Publication date
CN117318902A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US11892538B2 (en) Method and apparatus for controlling ranging in wireless communication system
US11262445B2 (en) Method and device for transmitting and receiving data via UWB in wireless communication system
US9974023B2 (en) Apparatus, system and method of communicating a wakeup packet
US10004079B2 (en) Method, apparatus, and computer program product for wireless short-range communication channel selection
WO2022033516A1 (zh) 一种感知方法及其装置
EP3198947A1 (en) Method of communication and apparatus
US20190306795A1 (en) Apparatus, system and method of power management in a wireless network
WO2021134626A1 (zh) 传输同步信号块的方法和装置
JP2021519563A (ja) 信号伝送方法、中央アクセススポイントap、及び遠隔無線ユニットrru
WO2023241431A1 (zh) 基于超宽带传输物理层协议数据单元的方法和装置
WO2023198098A1 (zh) 传输信令的方法和装置
WO2024051245A1 (zh) 信号处理的方法及装置
WO2023165454A1 (zh) 通信方法和装置
WO2024012259A1 (zh) 通信方法及装置
WO2024051318A1 (zh) 通信方法及装置
WO2023236721A1 (zh) 传输信令的方法和装置
WO2024007477A1 (zh) 测距方法与装置
WO2023207602A1 (zh) 通信方法及相关装置
WO2023185633A1 (zh) 一种通信的方法、装置和***
WO2023185637A1 (zh) 安全测距的方法和通信装置
WO2023169247A1 (zh) 一种测距或感知的方法和装置
WO2023179430A1 (zh) 通信方法、装置和***
WO2024131745A1 (zh) 信息处理方法及装置
WO2023207593A1 (zh) 应用于超带宽uwb***感知测量的方法和装置
US20240163006A1 (en) Compressed psdu format for nba-mms-uwb control signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823000

Country of ref document: EP

Kind code of ref document: A1