WO2023238549A1 - 発光素子駆動システム、および発光素子駆動装置 - Google Patents

発光素子駆動システム、および発光素子駆動装置 Download PDF

Info

Publication number
WO2023238549A1
WO2023238549A1 PCT/JP2023/016672 JP2023016672W WO2023238549A1 WO 2023238549 A1 WO2023238549 A1 WO 2023238549A1 JP 2023016672 W JP2023016672 W JP 2023016672W WO 2023238549 A1 WO2023238549 A1 WO 2023238549A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light emitting
signal
terminal
follower
Prior art date
Application number
PCT/JP2023/016672
Other languages
English (en)
French (fr)
Inventor
徹 ▲高▼橋
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023238549A1 publication Critical patent/WO2023238549A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/14Controlling the light source in response to determined parameters by determining electrical parameters of the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means

Definitions

  • LEDs light emitting diodes
  • Patent Document 1 A conventional example of an LED driving device that drives an LED is disclosed in Patent Document 1.
  • the DC/DC controller includes an error amplifier that compares the lowest voltage among the cathode voltages of multiple LEDs with a reference voltage, and an internal PWM (pulse width modulation) signal by comparing the output of the error amplifier with a slope signal. and a PWM comparator that generates the PWM comparator.
  • the constant current driver is turned on and off based on an external PWM signal input to the PWM terminal.
  • PWM dimming control is performed.
  • the error amplifier and the PWM comparator drive the switching element in the output stage in a PWM manner using a switching pulse so that the lowest voltage of the cathode voltage matches the reference voltage.
  • the output voltage (the anode voltage of the LED) is controlled to a voltage value obtained by adding the reference voltage to the maximum voltage among the forward voltages of the plurality of LEDs.
  • the cathode voltage of the LED in the system where the forward voltage is maximum is controlled to the above reference voltage, and the cathode voltage of the LED in the other system is controlled to a voltage higher than the reference voltage.
  • LED driving device is constructed using a semiconductor IC (integrated circuit), but in order to reduce the package size, it is required to reduce the number of external terminals.
  • An object of the present disclosure is to provide a light emitting element driving device that makes it possible to reduce the number of external terminals, and a light emitting element driving system using the same.
  • a light emitting element driving system includes a reader light emitting element driving system that includes a DC/DC controller that is configured to be able to drive a light emitting element and that is configured to be able to control an output stage that is capable of outputting an output voltage.
  • the exemplary light emitting element driving system or light emitting element driving device of the present disclosure it is possible to reduce the number of external terminals.
  • FIG. 1 is a diagram showing the configuration of a reader LED driving device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a follower LED driving device according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing the configuration of an LED drive system according to an embodiment of the present disclosure.
  • FIG. 4A is a diagram illustrating a configuration example of a first buffer in a follower IC.
  • FIG. 4B is a diagram showing a different state from FIG. 4A in the first buffer.
  • FIG. 4C is a diagram showing a modification of the first buffer.
  • FIG. 4D is a diagram showing a different state from FIG. 4C in the first buffer.
  • FIG. 4A is a diagram illustrating a configuration example of a first buffer in a follower IC.
  • FIG. 4B is a diagram showing a different state from FIG. 4A in the first buffer.
  • FIG. 4C is a diagram showing a modification of the first buffer.
  • FIG. 5 is a timing chart showing an example of generation of the first and second operation information signals in the follower IC.
  • FIG. 6 is a diagram showing the configuration of an LED drive system according to a comparative example.
  • FIG. 7 is a diagram showing the configuration of an input/output buffer in a follower IC according to a comparative example.
  • FIG. 8 is a diagram illustrating a configuration in which input/output buffers in a follower IC according to a comparative example are star-connected.
  • FIG. 6 is a diagram showing the configuration of an LED drive system 100 according to a comparative example.
  • LED is an example of a light emitting element. That is, the LED driving system is an example of a light emitting element driving system.
  • the LED driving system 100 shown in FIG. 6 includes a leader LED driving device 110, a plurality of follower LED driving devices 120, and an output stage 30.
  • the reader LED driving device 110 has a built-in DC/DC controller (not shown), and controls the output stage 30 by the DC/DC controller.
  • the reader LED driving device 110 is constituted by a semiconductor IC (hereinafter referred to as a reader IC 110).
  • the output stage 30 includes a switching element Q1, a diode D1, an inductor L1, and an output capacitor Co.
  • the switching element Q1 is composed of an NMOS transistor (N-channel MOSFET (metal-oxide-semiconductor field-effect transistor)).
  • the drain of the switching element Q1 is connected to the application terminal of the input voltage Vin.
  • the cathode of the diode D1 is connected to the source of the switching element Q1 at a node Nsw.
  • the anode of diode D1 is connected to the ground terminal.
  • Node Nsw is connected to one end of inductor L1.
  • the other end of the inductor L1 is connected to one end of the output capacitor Co.
  • the other end of the output capacitor Co is connected to a ground terminal.
  • n number of follower LED driving devices 120 (n is an integer of 2 or more) are provided.
  • the follower LED driving device 120 is configured by a semiconductor IC (hereinafter referred to as follower IC 120).
  • the follower IC 120 is configured to be able to drive the LED arrays A1 to A24 by flowing an LED current ILED to each of the plurality of LED arrays A1 to A24.
  • the plurality of systems is 24 systems, but it is not limited to this.
  • An application terminal of the output voltage Vout is connected to each anode of the LED arrays A1 to A24 to be driven by the reader IC 120. That is, the application end of the output voltage Vout is connected to each anode of the (1+n) ⁇ 24 LED arrays.
  • the LED drive system 100 can drive (1+n) ⁇ 24 LED arrays.
  • the LED array that is the drive target of the reader IC 110 does not light up
  • the LED array that is the drive target of the follower IC 120 may be turned on. That is, even when the leader IC 110 does not light up the LED array that it is driving, the follower IC 120 may light the LED array. In such a case, it is necessary to prevent the operation of the DC/DC controller from stopping. be.
  • the follower IC 120 synthesizes the operation information signal related to the LED array to be driven by itself and the operation information signal input from the outside to the IN terminal, and outputs the operation information signal to the outside from the OUT terminal. Note that the follower IC 120 at the most subsequent stage outputs an operation information signal regarding the LED array to be driven by itself from the OUT terminal. Thereby, operation information signals regarding the LED arrays (n ⁇ 24 LED arrays) to be driven by all the follower ICs 120 can be transmitted to the leader IC 110. In the reader IC 110, a DC/DC controller controls the output stage 30 based on the input operation information signal.
  • the input/output buffer 120A includes an OR circuit OR1 and an inverter stage IV1.
  • An IN terminal is connected to a first input terminal of the OR circuit OR1.
  • the internal signal S is input to the second input terminal of the OR circuit OR1.
  • the internal signal S is an operation information signal regarding the LED array that is the drive target of the follower IC 120 itself.
  • the OR circuit OR1 calculates the logical sum of the operation information signal input to the IN terminal and the internal signal S.
  • the output of OR circuit OR1 is input to inverter stage IV1.
  • FIG. 1 is a diagram showing the configuration of a reader LED driving device (hereinafter referred to as a reader IC) 10 according to an embodiment of the present disclosure.
  • the reader IC 10 is configured to be able to drive the LED arrays A1 to A24.
  • the reader IC 10 is a semiconductor IC (semiconductor device) that integrates a DC/DC controller 1, a selector 2, a control logic section 3, and a current driver 4. Further, the reader IC 10 has a GH terminal, a SW terminal, a MINSELIN terminal, LED1 to LED24 terminals, a DCDCPWMIN terminal, a PRESIGIN terminal, and a PWMIN terminal as external terminals for establishing an electrical connection with the outside.
  • the output stage 30 provided outside the reader IC 10 has the same configuration as the comparative example (FIG. 6).
  • the DC/DC controller 1 converts the input voltage Vin into the output voltage Vout by controlling the switching of the switching element Q1 in the output stage 30.
  • the DC/DC controller 1 drives the switching element Q1 by outputting a gate signal from the GH terminal to the gate of the switching element Q1.
  • the selector 2 selects the minimum voltage between the cathode voltage applied to each of the LED1 terminal to LED24 terminal and the voltage input to the MINSELIN terminal.
  • the DC/DC controller 1 performs feedback control so that the voltage selected by the selector 2 becomes a desired value, and controls the switching element Q1.
  • the DC/DC controller 1 performs stable control of the output voltage Vout, for example, by PWM control or BANG-BANG control.
  • the current driver 4 has 24 systems of constant current drivers 41 corresponding to each of the LED arrays A1 to A24.
  • the constant current driver 41 drives the LED array by passing an LED current ILED through the corresponding LED array.
  • the control logic unit 3 issues a command to the current driver 4 based on the PWM dimming signal input to the PWMIN terminal.
  • PWM dimming control is performed in the constant current driver 41.
  • the constant current driver 41 is turned on, and during the off period, the constant current driver 41 is turned off. Thereby, the brightness of the LED array is adjusted according to the on-duty.
  • a first operation information signal is input to the DCDCPWMIN terminal, and a second operation information signal is input to the PRESIGIN terminal, which will be described later.
  • FIG. 2 is a diagram showing the configuration of a follower LED driving device (hereinafter referred to as follower IC) 20 according to an embodiment of the present disclosure.
  • the follower IC 20 is configured to be able to drive the LED arrays A1 to A24.
  • follower IC 20 is used together with reader IC 10.
  • the follower IC 20 has a selector 2, a control logic section 3, and a current driver 4, but is not provided with a DC/DC controller like the reader IC 10. Therefore, each anode of the LED arrays A1 to A24 to be driven by the follower IC 20 is connected to the application terminal of the output voltage Vout (FIG. 1).
  • the selector 2 performs the same selection operation as the reader IC 10, but outputs the selection result from the MINSELOUT terminal.
  • the current driver 4 performs PWM dimming based on the PWM dimming signal input to the PWMIN terminal.
  • the follower IC 20 further includes a first buffer 5 and a second buffer 6.
  • the first buffer 5 outputs the first operation information signal from the DCDCPWMOUT terminal.
  • the second buffer 6 outputs the second operation information signal from the PRESIGOUT terminal.
  • the first and second operation information signals are information regarding driving of the LED arrays A1 to A24 that are driven by the follower IC 20, and details thereof will be described later.
  • FIG. 3 is a diagram showing the configuration of an LED drive system 50 according to an embodiment of the present disclosure.
  • the LED driving system 50 shown in FIG. 3 includes a reader IC 10, a plurality of follower ICs 20 (n follower ICs 20), and an output stage 30.
  • an output voltage Vout is applied to each anode of the LED arrays A1 to A24 that are driven by the reader IC 10 and to each anode of the LED arrays A1 to A24 that are driven by each follower IC 20.
  • the application end is connected.
  • each DCDCPWMOUT terminal in the n follower ICs 20 is connected to the first node N1.
  • each PRESIGOUT terminal of the n follower ICs 20 is connected to the second node N2.
  • the first node N1 is connected to the DCDCPWMIN terminal in the reader IC10.
  • the second node N2 is connected to the PRESIGIN terminal in the reader IC10.
  • the leader IC 10 and n follower ICs 20 are star-connected.
  • the star connection eliminates the need for an IN terminal for inputting an operation information signal in the follower IC 20, and the number of external terminals can be reduced. Therefore, the package size of the follower IC 20 can be reduced. Moreover, the star connection suppresses the transmission delay of the operation information signal from each follower IC 20 to the leader IC 10.
  • FIG. 4A is a diagram showing an example of the configuration of the first buffer 5 in the follower IC 20.
  • FIG. 4A only two representative follower ICs 20 out of n follower ICs 20 are illustrated, and the connection relationship between the first buffer 5 and the input stage of the reader IC 10 is shown. Note that since the second buffer 6 also has the same configuration as that in FIG. 4A, the first buffer 5 will be representatively explained here.
  • the first buffer 5 includes an inverter stage 51, a PMOS transistor 5C, and a diode 5D.
  • the inverter stage 51 includes an inverter stage 5A composed of a plurality of inverters connected in sequence, and an output inverter 5B connected after the inverter stage 5A.
  • An internal signal S5 is input to the inverter stage 5A.
  • the internal signal S5 is a first operation information signal related to driving of the LED arrays A1 to A24 that are driven by the follower IC20.
  • the gate of the PMOS transistor 5C is connected to the output end of the output inverter 5B.
  • the source of PMOS transistor 5C is connected to the application terminal of power supply voltage Vcc.
  • the drain of PMOS transistor 5C is connected to the anode of diode 5D.
  • the cathode of diode 5D is connected to the DCDCPWMOUT terminal.
  • the DCDCPWMOUT terminals of the plurality of follower ICs 20 are connected to the first node N1.
  • the first node N1 is connected to the DCDCPWMIN terminal in the reader IC10.
  • the input stage of the reader IC 10 includes a pull-down resistor 10A and an inverter 10B.
  • the DCDCPWMIN terminal is connected to one end of a pull-down resistor 10A.
  • the other end of the pull-down resistor 10A is connected to a ground terminal.
  • the DCDCPWMIN terminal is connected to the input terminal of inverter 10B.
  • the first buffer 5 has a drain output configuration using the PMOS transistor 5C.
  • the internal signal S5 when the internal signal S5 is at a high level, the output of the inverter stage 5A is at a high level, the output of the output inverter 5B is at a low level, the PMOS transistor 5C is turned on, and a high level signal is output from the drain of the PMOS transistor 5C. Output.
  • the internal signal S5 when the internal signal S5 is at a low level, the output of the inverter stage 5A is at a low level, the output of the output inverter 5B is at a high level, the PMOS transistor 5C is turned off, and a low level signal is output from the drain of the PMOS transistor 5C. be done.
  • the diode 5D prevents reverse current and prevents the signal input to the DCDCPWMIN terminal from becoming insufficient.
  • current flows through the pull-down resistor 10A through the PMOS transistor 5C which is in the on state, and the signal at the DCDCPWMIN terminal (input terminal of the inverter 10B) becomes high level.
  • FIG. 8 shows a configuration in the case where the input/output buffers 120A in the follower IC 120 according to the comparative example described above are temporarily connected in a star configuration.
  • the power supply voltage Vcc is From the application terminal to the ground terminal via the PMOS transistor in the final stage inverter of one inverter stage IV1, one OUT terminal, the other OUT terminal, and the NMOS transistor in the final stage inverter of the other inverter stage IV1. Current flows. This results in insufficient input signals to the reader IC. Therefore, with the configuration of the follower IC 120 according to the comparative example, it is difficult to perform star connection.
  • FIG. 4C is a diagram showing a modification of the first buffer 5.
  • an NMOS transistor 5E is provided in the first buffer 5 in place of the PMOS transistor 5C.
  • the source of NMOS transistor 5E is connected to a ground terminal.
  • the drain of the NMOS transistor 5E is connected to the DCDCPWMOUT terminal.
  • the DCDCPWMOUT terminal is connected to the other end of a pull-up resistor PU, which has one end connected to the application end of the power supply voltage.
  • an inverter IV is provided between the node N1 and the DCDCPWMIN terminal. Note that in this modification, no pull-down resistor is provided at the front stage of the inverter 10B.
  • the output of the inverter stage 5A is set to a low level, and the output of the output inverter 5B is set to a high level. level, and the NMOS transistor 5E is turned on.
  • the internal signal S5 is set to a low level, so the output of the inverter stage 5A is set to a high level, the output of the output inverter 5B is set to a low level, and the NMOS transistor 5E is turned off.
  • the embodiment in which the PMOS transistor 5C (FIG. 4A) is used in the first buffer 5 has the advantage that the inverter IV is not required.
  • FIG. 5 is a timing chart showing an example of generation of the first and second operation information signals in the follower IC 20.
  • the PWM dimming signal for LED array A1 channel CH1
  • the pre-boost signal for channel CH1 channel CH2
  • the pre-boost for channel CH2. 3 shows examples of waveforms of the signal, the first operation information signal (DCDCPWM signal), the second operation information signal (preboost signal), and the output voltage Vout.
  • DCDCPWM signal first operation information signal
  • preboost signal preboost signal
  • FIG. 5 for convenience, only CH1 and CH2 are shown as the LED array systems, but in reality, there are signals for 24 systems.
  • the PWM dimming signal indicates that the constant current driver 41 is on when it is at a high level, and indicates that the constant current driver 41 is off when it is at a low level. That is, the LED array lights up when the level is high, and turns off when the level is low.
  • the PWM dimming signals of the LED arrays of each system are combined to generate a first operation information signal. More specifically, when at least one of the PWM dimming signals of each system is at a high level, the first operation information signal is set at a high level, and when all of the PWM dimming signals of each system are at a low level, the first operation information signal is set at a high level. , the first operation information signal is set to low level.
  • the generated first operation information signal is outputted from the DCDCPWMOUT terminal via the first buffer 5 as an internal signal S5 (FIG. 4A, etc.).
  • n follower ICs 20 are connected in order from the most downstream follower IC 20 by connecting the MINSELOUT terminal to the MINSELIN terminal of the previous IC. Then, the MINSELOUT terminal of the follower IC 20 at the most preceding stage is connected to the MINSELIN terminal of the reader IC 10. Thereby, the DC/DC controller 1 in the reader IC 10 performs feedback control so that the minimum voltage among the cathode voltages of the (1+n) ⁇ 24 LED arrays becomes a desired value.
  • the DC/DC controller 1 controls the output voltage Vout to a fixed voltage value and performs preboosting.
  • the DC/DC controller 1 performs feedback control.
  • the DC/DC controller 1 stops operating and the output voltage Vout is no longer generated. will be stopped.
  • the MOS transistor may be a PMOS transistor (5C) (third configuration).
  • the operation information signal is for performing PWM dimming of the light emitting elements (A1 to A24) that are driven by the follower light emitting element driving device (20).
  • the configuration may include a signal generated based on the PWM dimming signal (fifth configuration).
  • the operation information signal is for controlling the output voltage to a higher voltage value than the output voltage (Vout) generated by feedback control by the DC/DC controller (1).
  • the preboost signal may be generated for a predetermined period of time immediately before the timing at which the PWM dimming signal switches from a dimming off state to a dimming on state (sixth configuration).
  • the buffer (5) is a diode (5) including an anode connected to the drain of the PMOS transistor (5C) and a cathode connected to the signal output terminal (DCDCPWMOUT terminal). 5D) (ninth configuration).
  • the present disclosure can be used, for example, to drive an LED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electronic Switches (AREA)

Abstract

発光素子駆動システム(50)は、発光素子(A1~A24)を駆動可能に構成されて、出力電圧(Vout)を出力可能な出力段(30)を制御可能に構成されたDC/DCコントローラ(1)を有するリーダー発光素子駆動装置(10)と、前記出力電圧が印加される発光素子を駆動可能に構成される複数のフォロワ発光素子駆動装置(20)と、を備え、前記フォロワ発光素子駆動装置は、前記発光素子の駆動に関する動作情報信号を出力可能な信号出力端子(DCDCPWMOUT端子、PRESIGOUT端子)を少なくとも1つ有し、同一ノード(N1,N2)に複数の前記信号出力端子が接続され、前記同一ノードが前記リーダー発光素子駆動装置の信号入力端子(DCDCPWMIN端子、PRESIGIN端子)に接続される。

Description

発光素子駆動システム、および発光素子駆動装置
 本開示は、発光素子駆動システムに関する。
 従来、消費電力が小さく寿命の長いLED(発光ダイオード)が様々な用途に用いられる。LEDを駆動するLED駆動装置の従来例は、特許文献1に開示されている。
 特許文献1のLED駆動装置は、入力電圧から出力電圧を生成してLEDに供給するための出力段を制御するDC/DCコントローラと、LEDに流れる出力電流を生成する定電流ドライバと、を有し、複数系統のLEDを駆動する。1系統は、LEDの直列接続により構成され、系統ごとのLEDは並列に接続される。
 DC/DCコントローラは、複数系統のLEDのカソード電圧のうち最低電圧と基準電圧とを比較するエラーアンプと、当該エラーアンプの出力とスロープ信号とを比較して内部PWM(パルス幅変調)信号を生成するPWMコンパレータと、を有する。
 定電流ドライバは、PWM端子に入力される外部PWM信号に基づいてオンオフされる。これにより、PWM調光制御が行われる。定電流ドライバがオンの期間において、エラーアンプおよびPWMコンパレータにより上記カソード電圧の最低電圧が基準電圧と一致するように出力段におけるスイッチング素子がスイッチングパルスによりPWM駆動される。これにより、複数系統のLEDの各順方向電圧のうちの最大電圧に上記基準電圧を加えた電圧値に出力電圧(LEDのアノード電圧)が制御される。
特開2013-21117号公報
 上記のようなLED駆動装置により、順方向電圧が最大となる系統のLEDのカソード電圧が上記基準電圧に制御され、それ以外の系統のLEDのカソード電圧は、上記基準電圧以上の電圧に制御される。
 昨今、アニメーション表示などのため、多数の系統のLEDを駆動する場合がある。このような場合、多数のLED駆動装置を使用して、LEDを制御する必要がある。このようなLED駆動装置は、半導体IC(集積回路)により構成されるが、パッケージサイズを小さくするため、外部端子数を削減することが要求される。
 本開示は、外部端子数を削減することが可能となる発光素子駆動装置、およびこれを用いた発光素子駆動システムを提供することを目的とする。
 例えば、本開示の一態様に係る発光素子駆動システムは、発光素子を駆動可能に構成されて、出力電圧を出力可能な出力段を制御可能に構成されたDC/DCコントローラを有するリーダー発光素子駆動装置と、
 前記出力電圧が印加される発光素子を駆動可能に構成される複数のフォロワ発光素子駆動装置と、
 を備え、
 前記フォロワ発光素子駆動装置は、前記発光素子の駆動に関する動作情報信号を出力可能な信号出力端子を少なくとも1つ有し、
 同一ノードに複数の前記信号出力端子が接続され、
 前記同一ノードが前記リーダー発光素子駆動装置の信号入力端子に接続される。
 また、本開示の一態様に係る発光素子駆動装置は、信号出力端子と、
 インバータ段と、
 前記インバータ段の出力端が接続されるゲートと、前記信号出力端子に接続されるドレインと、を含むMOSトランジスタと、
 を有するバッファを備え、
 駆動対象の発光素子の駆動に関する動作情報信号が前記インバータ段に入力可能である。
 本開示の例示的な発光素子駆動システムあるいは発光素子駆動装置によれば、外部端子数を削減することが可能となる。
図1は、本開示の実施形態に係るリーダーLED駆動装置の構成を示す図である。 図2は、本開示の実施形態に係るフォロワLED駆動装置の構成を示す図である。 図3は、本開示の実施形態に係るLED駆動システムの構成を示す図である。 図4Aは、フォロワICにおける第1バッファの構成例を示す図である。 図4Bは、第1バッファにおける図4Aとは別の状態を示す図である。 図4Cは、第1バッファの変形例を示す図である。 図4Dは、第1バッファにおける図4Cとは別の状態を示す図である。 図5は、フォロワICにおける第1、第2動作情報信号の生成に関する一例を示すタイミングチャートである。 図6は、比較例に係るLED駆動システムの構成を示す図である。 図7は、比較例に係るフォロワICにおける入出力バッファの構成を示す図である。 図8は、比較例に係るフォロワICにおける入出力バッファを仮にスター接続した場合の構成を示す図である。
 以下、本開示の例示的な実施形態について、図面を参照して説明する。
<1.比較例>
 ここでは、本開示の実施形態について説明する前に、対比のための比較例について説明する。これにより、本開示の実施形態の課題が明らかとなる。
 図6は、比較例に係るLED駆動システム100の構成を示す図である。LEDは、発光素子の一例である。すなわち、LED駆動システムは、発光素子駆動システムの一例である。図6に示すLED駆動システム100は、リーダー(Leader)LED駆動装置110と、複数のフォロワ(Follower)LED駆動装置120と、出力段30と、を備える。
 リーダーLED駆動装置110は、図示しないDC/DCコントローラを内蔵し、DC/DCコントローラにより出力段30を制御する。リーダーLED駆動装置110は、半導体ICにより構成される(以下、リーダーIC110と呼ぶ)。出力段30は、スイッチング素子Q1と、ダイオードD1と、インダクタL1と、出力コンデンサCoと、を有する。
 スイッチング素子Q1は、NMOSトランジスタ(Nチャネル型MOSFET(metal-oxide-semiconductor field-effect transistor))により構成される。スイッチング素子Q1のドレインは、入力電圧Vinの印加端に接続される。ダイオードD1のカソードは、スイッチング素子Q1のソースにノードNswで接続される。ダイオードD1のアノードは、接地端に接続される。ノードNswは、インダクタL1の一端に接続される。インダクタL1の他端は、出力コンデンサCoの一端に接続される。出力コンデンサCoの他端は、接地端に接続される。
 上記DC/DCコントローラによりスイッチング素子Q1がスイッチング制御されることで、入力電圧Vinが出力電圧Voutに変換される。出力電圧Voutは、出力コンデンサCoの一端に生じる。
 リーダーIC110は、複数系統のLEDアレイA1~A24のそれぞれにLED電流ILEDを流すことでLEDアレイA1~A24を駆動可能に構成される。LEDアレイは、LED素子が直列に接続されて構成される。ただし、LEDアレイは、その他にも例えば、直並列に接続されたLED素子であってもよいし、単数のLED素子であってもよい。ここでは、一例として複数系統は24系統であるが、これに限らない。リーダーIC110の駆動対象であるLEDアレイA1~A24の各アノードには、出力電圧Voutの印加端が接続される。
 フォロワLED駆動装置120は、LED駆動システム100においてn個(nは2以上の整数)設けられる。フォロワLED駆動装置120は、半導体ICにより構成される(以下、フォロワIC120と呼ぶ)。フォロワIC120は、複数系統のLEDアレイA1~A24のそれぞれにLED電流ILEDを流すことでLEDアレイA1~A24を駆動可能に構成される。ここでは、一例として複数系統は24系統であるが、これに限らない。リーダーIC120の駆動対象であるLEDアレイA1~A24の各アノードには、出力電圧Voutの印加端が接続される。すなわち、出力電圧Voutの印加端は、(1+n)×24系統のLEDアレイの各アノードに接続される。
 フォロワIC120には、DC/DCコントローラは設けられない。従って、DC/DCコントローラを有するリーダーIC110により出力段30を制御することで出力電圧Voutを生成し、生成された出力電圧Voutを(1+n)×24系統のLEDアレイの各アノードに供給できる。
 このように、LED駆動システム100では、(1+n)×24系統のLEDアレイを駆動することが可能である。例えばアニメーション表示を行う場合、リーダーIC110の駆動対象であるLEDアレイが点灯しない場合に、フォロワIC120の駆動対象であるLEDアレイを点灯させる場合がある。すなわち、リーダーIC110は、自身の駆動対象のLEDアレイを点灯させない場合でも、フォロワIC120がLEDアレイを点灯させる場合があり、このような場合、DC/DCコントローラの動作を停止させないようにする必要がある。
 そこで、LED駆動システム100では、フォロワIC120からリーダーIC110へLEDアレイの駆動に関する動作情報信号を伝送する構成としている。そのため、フォロワIC120は、IN端子とOUT端子とを有する。IN端子は、外部から動作情報信号を入力させるための外部端子である。OUT端子は、外部へ動作情報信号を出力するための外部端子である。
 リーダーIC110に近い側を前段側、遠い側を後段側とすると、後段側のフォロワIC120のOUT端子が前段側のフォロワIC120のIN端子に接続されることでn個のフォロワIC120が順次接続され、最も前段側のフォロワIC120のOUT端子がリーダーIC110に接続される。すなわち、リーダーIC110およびフォロワIC120は、デイジーチェーン接続される。
 フォロワIC120は、自身の駆動対象のLEDアレイに関する動作情報信号と、外部からIN端子へ入力された動作情報信号を合成して、OUT端子から外部へ動作情報信号を出力する。なお、最も後段側のフォロワIC120は、自身の駆動対象のLEDアレイに関する動作情報信号をOUT端子から出力する。これにより、すべてのフォロワIC120の駆動対象であるLEDアレイ(n×24系統のLEDアレイ)に関する動作情報信号をリーダーIC110に伝送できる。リーダーIC110では、入力された動作情報信号に基づいてDC/DCコントローラが出力段30を制御する。
 図7は、比較例に係るフォロワIC120における入出力バッファ120Aの構成を示す図である。図7は、後段側のフォロワIC120(符号は1201)と、前段側のフォロワIC120(符号は1202)との間の接続関係を示す。フォロワIC1201,1202で入出力バッファ120Aの構成は同じである。
 入出力バッファ120Aは、OR回路OR1と、インバータ段IV1と、を有する。OR回路OR1の第1入力端には、IN端子が接続される。OR回路OR1の第2入力端には、内部信号Sが入力される。内部信号Sは、フォロワIC120の自身の駆動対象であるLEDアレイに関する動作情報信号である。OR回路OR1は、IN端子に入力される動作情報信号と内部信号Sとの論理和をとる。OR回路OR1の出力は、インバータ段IV1に入力される。
 インバータ段IV1は、順次接続される複数のインバータから構成される。1つのインバータは、電源電圧Vccと接地端との間に接続されるPMOSトランジスタ(Pチャネル型MOSFET)とNMOSトランジスタを有する。OR回路OR1から出力されてインバータ段IV1に入力された信号は、各インバータにより論理反転され、OUT端子から出力される。なお、OR回路OR1の出力と、OUT端子から出力される信号の論理レベルは同じである。
 図7では、フォロワIC1201のIN端子(符号はIN1)に入力された動作情報信号は、フォロワIC1201内部の入出力バッファ120Aにおいて内部信号Sと合成されてOUT端子(符号はOUT1)から出力され、後段側のフォロワIC1202のIN端子(符号はIN2)に入力される。フォロワIC1202のIN端子(符号はIN2)に入力された動作情報信号は、フォロワIC1202内部の入出力バッファ120Aにおいて内部信号Sと合成されてOUT端子(符号はOUT2)から出力され、後段側に伝送される。
 しかしながら、このような比較例においては、次のような課題が存在する。まず、デイジーチェーンによりICを接続するため、動作情報信号を入出力するためにIN端子とOUT端子が必要であり、動作情報信号の種類が増えると、より端子数が増加する。従って、ICのパッケージサイズを小さくできない。また、デイジーチェーンにより、リーダーIC110から遠いフォロワIC120の場合、動作情報信号がリーダーIC110に伝送されるまでにいくつものフォロワIC120を経由することとなり、遅延が発生する。これにより、リーダーIC110においてDC/DC動作反応が遅れてしまい、LEDのアノード電圧に十分な電圧が与えられず、瞬間的にLEDの明るさが暗くなる可能性がある。
 そこで、以下説明する本開示の実施形態は、上記のような課題を解決すべく実施される。
<2.LED駆動装置の構成>
 図1は、本開示の実施形態に係るリーダーLED駆動装置(以下、リーダーIC)10の構成を示す図である。リーダーIC10は、LEDアレイA1~A24を駆動可能に構成される。
 リーダーIC10は、DC/DCコントローラ1と、セレクタ2と、制御ロジック部3と、電流ドライバ4と、を集積化して有する半導体IC(半導体装置)である。また、リーダーIC10は、外部との電気的接続を確立するための外部端子として、GH端子、SW端子、MINSELIN端子、LED1~LED24端子、DCDCPWMIN端子、PRESIGIN端子、およびPWMIN端子を有する。
 リーダーIC10の外部に設けられる出力段30は、比較例(図6)と同様の構成である。DC/DCコントローラ1は、出力段30におけるスイッチング素子Q1をスイッチング制御することで、入力電圧Vinから出力電圧Voutに変換する。DC/DCコントローラ1は、GH端子からゲート信号をスイッチング素子Q1のゲートに出力することでスイッチング素子Q1を駆動する。
 LEDアレイA1~A24の構成は、比較例(図6)と同様である。出力電圧Voutの印加端は、LEDアレイA1~A24の各アノードに接続される。LEDアレイA1~A24のカソードは、それぞれLED1端子~LED24端子に接続される。
 セレクタ2は、LED1端子~LED24端子の各端子に印加されるカソード電圧と、MINSELIN端子に入力される電圧とのうち最小の電圧を選択する。DC/DCコントローラ1は、セレクタ2により選択された電圧が所望値となるように帰還制御を行い、スイッチング素子Q1を制御する。DC/DCコントローラ1は、例えばPWM制御あるいはBANG-BANG制御などにより、出力電圧Voutの安定制御を行う。
 電流ドライバ4は、LEDアレイA1~A24のそれぞれに対応する24系統分の定電流ドライバ41を有する。定電流ドライバ41は、対応するLEDアレイにLED電流ILEDを流すことでLEDアレイを駆動する。
 制御ロジック部3は、PWMIN端子に入力されるPWM調光信号に基づいて電流ドライバ4に指令を行う。これにより、定電流ドライバ41においてPWM調光制御が行われる。PWM調光の1周期におけるオン期間では、定電流ドライバ41がオンとされ、オフ期間では、定電流ドライバ41がオフとされる。これにより、オンデューティに応じてLEDアレイの明るさが調整される。
 また、DCDCPWMIN端子には第1動作情報信号が入力され、PRESIGIN端子には第2動作情報信号が入力されるが、これについては後述する。
 図2は、本開示の実施形態に係るフォロワLED駆動装置(以下、フォロワIC)20の構成を示す図である。フォロワIC20は、LEDアレイA1~A24を駆動可能に構成される。フォロワIC20は、リーダーIC10とともに使用される。
 フォロワIC20は、リーダーIC10と同様に、セレクタ2と、制御ロジック部3と、電流ドライバ4を有するが、リーダーIC10のようなDC/DCコントローラは設けられない。そこで、フォロワIC20の駆動対象であるLEDアレイA1~A24の各アノードは、出力電圧Vout(図1)の印加端に接続される。
 フォロワIC20は、外部端子として、MINSELIN端子、PWMIN端子およびLED1~LED24端子に加えて、MINSELOUT端子、DCDCPWMOUT端子、およびPRESIGOUT端子を有する。
 セレクタ2は、リーダーIC10と同様な選択動作を行うが、MINSELOUT端子から選択結果を出力する。
 電流ドライバ4は、リーダーIC10と同様に、PWMIN端子に入力されるPWM調光信号に基づいてPWM調光を行う。
 フォロワIC20は、第1バッファ5と、第2バッファ6と、をさらに有する。第1バッファ5は、DCDCPWMOUT端子から第1動作情報信号を出力する。第2バッファ6は、PRESIGOUT端子から第2動作情報信号を出力する。第1、第2動作情報信号は、フォロワIC20の駆動対象であるLEDアレイA1~A24の駆動に関する情報であり、その詳細については後述する。
<3.LED駆動システム>
 図3は、本開示の実施形態に係るLED駆動システム50の構成を示す図である。図3に示すLED駆動システム50は、リーダーIC10と、複数のフォロワIC20(n個のフォロワIC20)と、出力段30と、を有する。
 LED駆動システム50では、比較例と同様に、リーダーIC10の駆動対象であるLEDアレイA1~A24の各アノード、および各フォロワIC20の駆動対象であるLEDアレイA1~A24の各アノードに出力電圧Voutの印加端が接続される。
 図3に示すように、n個のフォロワIC20におけるそれぞれのDCDCPWMOUT端子は、第1ノードN1に接続される。同様に、n個のフォロワIC20におけるそれぞれのPRESIGOUT端子は、第2ノードN2に接続される。第1ノードN1は、リーダーIC10におけるDCDCPWMIN端子に接続される。第2ノードN2は、リーダーIC10におけるPRESIGIN端子に接続される。
 このように本実施形態では、リーダーIC10とn個のフォロワIC20は、スター接続される。スター接続により、フォロワIC20において動作情報信号を入力するためのIN端子が不要となり、外部端子数を削減できる。従って、フォロワIC20のパッケージサイズを小さくできる。また、スター接続により、各フォロワIC20からリーダーIC10への動作情報信号の伝送遅延が抑制される。
<4.バッファ>
 図4Aは、フォロワIC20における第1バッファ5の構成例を示す図である。図4Aでは、n個のフォロワIC20のうち代表的に2個のフォロワIC20のみについて図示し、第1バッファ5とリーダーIC10における入力段との接続関係を示す。なお、第2バッファ6についても図4Aと同様の構成であるため、ここでは第1バッファ5について代表的に説明する。
 第1バッファ5は、インバータ段51と、PMOSトランジスタ5Cと、ダイオード5Dと、を有する。インバータ段51は、順次接続される複数のインバータから構成されるインバータ段5Aと、インバータ段5Aの後段に接続される出力インバータ5Bと、を有する。インバータ段5Aには、内部信号S5が入力される。内部信号S5は、フォロワIC20の駆動対象であるLEDアレイA1~A24の駆動に関する第1動作情報信号である。
 PMOSトランジスタ5Cのゲートは、出力インバータ5Bの出力端に接続される。PMOSトランジスタ5Cのソースは、電源電圧Vccの印加端に接続される。PMOSトランジスタ5Cのドレインは、ダイオード5Dのアノードに接続される。ダイオード5Dのカソードは、DCDCPWMOUT端子に接続される。
 先述したように、複数のフォロワIC20におけるDCDCPWMOUT端子は、第1ノードN1に接続される。第1ノードN1は、リーダーIC10におけるDCDCPWMIN端子に接続される。リーダーIC10における入力段は、プルダウン抵抗10Aと、インバータ10Bと、を有する。DCDCPWMIN端子は、プルダウン抵抗10Aの一端に接続される。プルダウン抵抗10Aの他端は、接地端に接続される。DCDCPWMIN端子は、インバータ10Bの入力端に接続される。
 このように、本実施形態では、第1バッファ5をPMOSトランジスタ5Cによるドレイン出力の構成としている。これにより、内部信号S5がハイレベルの場合、インバータ段5Aの出力がハイレベル、出力インバータ5Bの出力がローレベルとなり、PMOSトランジスタ5Cはオン状態となり、PMOSトランジスタ5Cのドレインからハイレベルの信号が出力される。一方、内部信号S5がローレベルの場合、インバータ段5Aの出力がローレベル、出力インバータ5Bの出力がハイレベルとなり、PMOSトランジスタ5Cはオフ状態となり、PMOSトランジスタ5Cのドレインからローレベルの信号が出力される。
 例えば図4Aに示す状態のように、n個のフォロワIC20のうち一部のフォロワIC20において内部信号S5がハイレベルとされることでPMOSトランジスタ5Cのドレイン出力がハイレベルの場合に、残りのフォロワIC20(内部信号S5はローレベル)におけるPMOSトランジスタ5Cのドレイン出力がローレベルであっても、ダイオード5Dにより逆流が防止され、DCDCPWMIN端子に入力される信号が不十分となることが抑制される。このとき、図4Aに破線矢印で示すように、オン状態であるPMOSトランジスタ5Cを介してプルダウン抵抗10Aに電流が流れ、DCDCPWMIN端子(インバータ10Bの入力端)の信号はハイレベルとなる。
 なお、図4Bに示すように、すべてのフォロワIC20において内部信号S5がローレベルとされることでPMOSトランジスタ5Cのドレイン出力がローレベルの場合に、DCDCPWMIN端子(インバータ10Bの入力端)の信号はローレベルとなる。
 ここで、先述した比較例に係るフォロワIC120における入出力バッファ120Aを仮にスター接続した場合の構成を図8に示す。この場合、一方のインバータ段IV1からハイレベルの信号が出力され、他方のインバータ段IV1からローレベルの信号が出力される場合に、図8に破線矢印で示す経路のように、電源電圧Vccの印加端から、一方のインバータ段IV1の最終段のインバータにおけるPMOSトランジスタ、一方のOUT端子、他方のOUT端子、および、他方のインバータ段IV1の最終段のインバータにおけるNMOSトランジスタを介して接地端へ大電流が流れる。これにより、リーダーICへの入力信号が不十分となってしまう。従って、比較例に係るフォロワIC120の構成では、スター接続することが難しい。
 図4Cは、第1バッファ5の変形例を示す図である。本変形例では、第1バッファ5においてPMOSトランジスタ5Cの代わりにNMOSトランジスタ5Eを設けている。NMOSトランジスタ5Eのソースは、接地端に接続される。NMOSトランジスタ5Eのドレインは、DCDCPWMOUT端子に接続される。本変形例では、DCDCPWMOUT端子は、電源電圧の印加端に接続される一端を有するプルアップ抵抗PUの他端に接続される。また、ノードN1とDCDCPWMIN端子との間には、インバータIVが設けられる。なお、本変形例では、インバータ10Bの前段にプルダウン抵抗は設けない。
 例えば図4Cに示す状態のように、n個のフォロワIC20のうち一部のフォロワIC20において内部信号S5がハイレベルとされると、インバータ段5Aの出力がローレベル、出力インバータ5Bの出力がハイレベルとなり、NMOSトランジスタ5Eはオン状態となる。残りのフォロワIC20においては、内部信号S5がローレベルとされるため、インバータ段5Aの出力がハイレベル、出力インバータ5Bの出力がローレベルとなり、NMOSトランジスタ5Eはオフ状態となる。この場合、図4Cに破線矢印で示すように、プルアップ抵抗PUを介してオン状態であるNMOSトランジスタ5Eに電流が流れ、インバータIVの入力端の信号はローレベルとなり、インバータIVから出力されてDCDCPWMIN端子に入力される信号はハイレベルとなる。
 なお、図4Dに示すように、すべてのフォロワIC20において内部信号S5がローレベルとされる場合は、すべてのNMOSトランジスタ5Eがオフ状態となり、インバータIVの入力端の信号はハイレベルとなり、インバータIVから出力されてDCDCPWMIN端子に入力される信号はローレベルとなる。
 このように、第1バッファ5においてPMOSトランジスタ5C(図4A)を用いる実施形態では、インバータIVが不要となるメリットがある。
<5.動作情報信号>
 ここで、動作情報信号の一例である第1、第2動作情報信号について説明する。先述したように、第1動作情報信号は第1バッファ5から出力され、第2動作情報信号は第2バッファ6から出力される。
 図5は、フォロワIC20における第1、第2動作情報信号の生成に関する一例を示すタイミングチャートである。図5において、上段から順に、LEDアレイA1(チャネルCH1)用のPWM調光信号、チャネルCH1用のプリブースト信号、LEDアレイA2(チャネルCH2)用のPWM調光信号、チャネルCH2用のプリブースト信号、第1動作情報信号(DCDCPWM信号)、第2動作情報信号(プリブースト信号)、および出力電圧Voutの各波形例を示す。なお、図5では、便宜上、LEDアレイの系統をCH1,CH2のみとしているが、実際には24系統分の信号が存在する。
 PWM調光信号は、ハイレベルの場合に定電流ドライバ41のオンを示し、ローレベルの場合に定電流ドライバ41のオフを示す。すなわち、ハイレベルの場合にLEDアレイが点灯し、ローレベルの場合にLEDアレイが消灯する。
 フォロワIC20内部においては、各系統のLEDアレイのPWM調光信号を合成して第1動作情報信号を生成する。より具体的には、各系統のPWM調光信号のうち少なくともいずれかがハイレベルの場合は、第1動作情報信号をハイレベルとし、各系統のPWM調光信号のすべてがローレベルの場合は、第1動作情報信号をローレベルとする。生成された第1動作情報信号は内部信号S5(図4A等)として第1バッファ5を介してDCDCPWMOUT端子から出力される。
 ここで、図5に示したLED駆動システム50において、最も後段側のフォロワIC20から順に、MINSELOUT端子が前段側のICのMINSELIN端子に接続されることで、n個のフォロワIC20が接続される。そして、最も前段側のフォロワIC20のMINSELOUT端子がリーダーIC10のMINSELIN端子に接続される。これにより、リーダーIC10におけるDC/DCコントローラ1により、(1+n)×24個のLEDアレイのカソード電圧のうち最小の電圧が所望値となるように帰還制御される。
 プリブースト機能は、DC/DCコントローラ1により、このような帰還制御により制御される出力電圧Voutの値よりも高い所定の固定電圧値に出力電圧Voutを昇圧する制御を、PWM調光のオフからオンへの切り替え時の直前に行う機能である。
 フォロワIC20内部では、LEDアレイの系統ごとに、プリブースト信号がPWM調光信号の立ち上がりの直前に所定時間ハイレベルとされる。フォロワIC20内部においては、各系統のLEDアレイのプリブースト信号を合成して第2動作情報信号を生成する。より具体的には、各系統のプリブースト信号のうち少なくともいずれかがハイレベルの場合は、第2動作情報信号をハイレベルとし、各系統のプリブースト信号のすべてがローレベルの場合は、第2動作情報信号をローレベルとする。生成された第2動作情報信号は内部信号S6(第1バッファ5の内部信号S5に相当)として第2バッファ6を介してPRESIGOUT端子から出力される。
 リーダーIC10のPRESIGIN端子に入力される第2動作情報信号がハイレベルの場合、DC/DCコントローラ1により出力電圧Voutが固定電圧値に制御され、プリブーストが行われる。PRESIGIN端子に入力される第2動作情報信号がローレベル、かつリーダーIC10のDCDCPWMIN端子に入力される第1動作情報信号がハイレベルの場合、DC/DCコントローラ1により帰還制御が行われる。PRESIGIN端子に入力される第2動作情報信号がローレベル、かつDCDCPWMIN端子に入力される第1動作情報信号がローレベルの場合、DC/DCコントローラ1は動作を停止し、出力電圧Voutの生成が停止される。
<6.その他>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味および範囲内に属する全ての変更が含まれると理解されるべきである。
<7.付記>
 以上のように、本開示の一態様に係る発光素子駆動システム(50)は、
 発光素子(A1~A24)を駆動可能に構成されて、出力電圧(Vout)を出力可能な出力段(30)を制御可能に構成されたDC/DCコントローラ(1)を有するリーダー発光素子駆動装置(10)と、
 前記出力電圧が印加される発光素子を駆動可能に構成される複数のフォロワ発光素子駆動装置(20)と、
 を備え、
 前記フォロワ発光素子駆動装置は、前記発光素子の駆動に関する動作情報信号を出力可能な信号出力端子(DCDCPWMOUT端子、PRESIGOUT端子)を少なくとも1つ有し、
 同一ノード(N1,N2)に複数の前記信号出力端子が接続され、
 前記同一ノードが前記リーダー発光素子駆動装置の信号入力端子(DCDCPWMIN端子、PRESIGIN端子)に接続される構成としている(第1の構成)。
 また、上記第1の構成において、前記フォロワ発光素子駆動装置(20)は、
 前記動作情報信号が入力可能に構成されたインバータ段(51)と、
 前記インバータ段の出力端が接続されるゲートと、前記信号出力端子が接続されるドレインと、を含むMOSトランジスタ(5C)と、
 を有するバッファ(5)をさらに備える構成としてもよい(第2の構成)。
 また、上記第2の構成において、前記MOSトランジスタは、PMOSトランジスタ(5C)である構成としてもよい(第3の構成)。
 また、上記第3の構成において、前記バッファ(5)は、前記PMOSトランジスタ(5C)のドレインに接続されるアノードと、前記信号出力端子に接続されるカソードと、を含むダイオード(5D)をさらに有する構成としてもよい(第4の構成)。
 また、上記第1から第4のいずれかの構成において、前記動作情報信号は、前記フォロワ発光素子駆動装置(20)の駆動対象である前記発光素子(A1~A24)のPWM調光を行うためのPWM調光信号に基づいて生成される信号を含む構成としてもよい(第5の構成)。
 また、上記第5の構成において、前記動作情報信号は、前記DC/DCコントローラ(1)による帰還制御により生成される前記出力電圧(Vout)よりも高い電圧値に前記出力電圧を制御するためのプリブースト信号に基づいて生成される信号を含み、
 前記プリブースト信号は、前記PWM調光信号の調光オフ状態から調光オン状態へ切り替わるタイミングの直前に所定時間生成される構成としてもよい(第6の構成)。
 また、本開示の一態様に係る発光素子駆動装置(20)は、
 信号出力端子(DCDCPWMOUT端子)と、
 インバータ段(51)と、
 前記インバータ段の出力端が接続されるゲートと、前記信号出力端子に接続されるドレインと、を含むMOSトランジスタ(5C)と、
 を有するバッファ(5)を備え、
 駆動対象の発光素子(A1~A24)の駆動に関する動作情報信号(S5)が前記インバータ段に入力可能である構成としている(第7の構成)。
 また、上記第7の構成において、前記MOSトランジスタは、PMOSトランジスタ(5C)である構成としてもよい(第8の構成)。
 また、上記第8の構成において、前記バッファ(5)は、前記PMOSトランジスタ(5C)のドレインに接続されるアノードと、前記信号出力端子(DCDCPWMOUT端子)に接続されるカソードと、を含むダイオード(5D)をさらに有する構成としてもよい(第9の構成)。
 本開示は、例えば、LEDの駆動に利用することが可能である。
   1   DC/DCコントローラ
   2   セレクタ
   3   制御ロジック部
   4   電流ドライバ
   5   第1バッファ
   5A  インバータ段
   5B  出力インバータ
   5C  PMOSトランジスタ
   5D  ダイオード
   5E  NMOSトランジスタ
   6   第2バッファ
   10  リーダーLED駆動装置
   20  フォロワLED駆動装置
   10A  プルダウン抵抗
   10B  インバータ
   30   出力段
   41   定電流ドライバ
   50   LED駆動システム
   51   インバータ段
   100   LED駆動システム
   110   リーダーLED駆動装置
   120   フォロワLED駆動装置
   120A  入出力バッファ
   A1~A24 LEDアレイ
   Co   出力コンデンサ
   D1   ダイオード
   IV   インバータ
   IV1   インバータ段
   L1   インダクタ
   N1   第1ノード
   N2   第2ノード
   Nsw   ノード
   PU プルアップ抵抗
   Q1   スイッチング素子
   OR1   OR回路

Claims (9)

  1.  発光素子を駆動可能に構成されて、出力電圧を出力可能な出力段を制御可能に構成されたDC/DCコントローラを有するリーダー発光素子駆動装置と、
     前記出力電圧が印加される発光素子を駆動可能に構成される複数のフォロワ発光素子駆動装置と、
     を備え、
     前記フォロワ発光素子駆動装置は、前記発光素子の駆動に関する動作情報信号を出力可能な信号出力端子を少なくとも1つ有し、
     同一ノードに複数の前記信号出力端子が接続され、
     前記同一ノードが前記リーダー発光素子駆動装置の信号入力端子に接続される、発光素子駆動システム。
  2.  前記フォロワ発光素子駆動装置は、
     前記動作情報信号が入力可能に構成されたインバータ段と、
     前記インバータ段の出力端が接続されるゲートと、前記信号出力端子が接続されるドレインと、を含むMOSトランジスタと、
     を有するバッファをさらに備える、請求項1に記載の発光素子駆動システム。
  3.  前記MOSトランジスタは、PMOSトランジスタである、請求項2に記載の発光素子駆動システム。
  4.  前記バッファは、前記PMOSトランジスタのドレインに接続されるアノードと、前記信号出力端子に接続されるカソードと、を含むダイオードをさらに有する、請求項3に記載の発光素子駆動システム。
  5.  前記動作情報信号は、前記フォロワ発光素子駆動装置の駆動対象である前記発光素子のPWM調光を行うためのPWM調光信号に基づいて生成される信号を含む、請求項1から請求項4のいずれか1項に記載の発光素子駆動システム。
  6.  前記動作情報信号は、前記DC/DCコントローラによる帰還制御により生成される前記出力電圧よりも高い電圧値に前記出力電圧を制御するためのプリブースト信号に基づいて生成される信号を含み、
     前記プリブースト信号は、前記PWM調光信号の調光オフ状態から調光オン状態へ切り替わるタイミングの直前に所定時間生成される、請求項5に記載の発光素子駆動システム。
  7.  信号出力端子と、
     インバータ段と、
     前記インバータ段の出力端が接続されるゲートと、前記信号出力端子に接続されるドレインと、を含むMOSトランジスタと、
     を有するバッファを備え、
     駆動対象の発光素子の駆動に関する動作情報信号が前記インバータ段に入力可能である、発光素子駆動装置。
  8.  前記MOSトランジスタは、PMOSトランジスタである、請求項7に記載の発光素子駆動装置。
  9.  前記バッファは、前記PMOSトランジスタのドレインに接続されるアノードと、前記信号出力端子に接続されるカソードと、を含むダイオードをさらに有する、請求項8に記載の発光素子駆動装置。
PCT/JP2023/016672 2022-06-08 2023-04-27 発光素子駆動システム、および発光素子駆動装置 WO2023238549A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-092745 2022-06-08
JP2022092745 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238549A1 true WO2023238549A1 (ja) 2023-12-14

Family

ID=89118117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016672 WO2023238549A1 (ja) 2022-06-08 2023-04-27 発光素子駆動システム、および発光素子駆動装置

Country Status (1)

Country Link
WO (1) WO2023238549A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090187925A1 (en) * 2008-01-17 2009-07-23 Delta Electronic Inc. Driver that efficiently regulates current in a plurality of LED strings
JP2010040641A (ja) * 2008-08-01 2010-02-18 Oki Data Corp 発光素子アレイ、駆動装置および画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090187925A1 (en) * 2008-01-17 2009-07-23 Delta Electronic Inc. Driver that efficiently regulates current in a plurality of LED strings
JP2010040641A (ja) * 2008-08-01 2010-02-18 Oki Data Corp 発光素子アレイ、駆動装置および画像形成装置

Similar Documents

Publication Publication Date Title
US8288969B2 (en) Driving apparatus of light emitting diode and driving method thereof
US8134304B2 (en) Light source driving device capable of dynamically keeping constant current sink and related method
US7880404B2 (en) Controlling current through serial LEDs using a low voltage transistor when using a high voltage driver
US20100134041A1 (en) Led string driver with shift register and level shifter
JP4871970B2 (ja) 電源装置
CN104753349A (zh) 电源装置和包括该电源装置的显示设备
US10397997B2 (en) Dimming controllers and dimming methods capable of receiving PWM dimming signal and DC dimming signal
WO2013112985A1 (en) Led matrix manager
US8884545B2 (en) LED driving system and driving method thereof
CN111613185B (zh) 发光元件驱动装置、发光元件驱动***及发光***
JP2010063332A (ja) 負荷駆動装置
US8598803B2 (en) LED driver having a pre-chargeable feedback for maintaining current and the method using the same
US20160232832A1 (en) Display device and method for driving backlight thereof
US7986108B2 (en) LED driver and start-up feedback circuit therein
US20090160360A1 (en) Apparatus and method for controlling lighting brightness through pulse frequency modulation
US20080007419A1 (en) Light driving device
US9232598B2 (en) Operating circuit applied to backlight and associated method
WO2023238549A1 (ja) 発光素子駆動システム、および発光素子駆動装置
US10849202B1 (en) Lighting system
TWI419447B (zh) 電源轉換器及其功率電晶體的閘極驅動器
JP2006165545A (ja) 発光ダイオードの高速点滅回路
JP7101463B2 (ja) 発光素子駆動装置、半導体装置、発光装置及び液晶表示装置
CN111836432A (zh) 一种pwm调光的线性恒流驱动电路、芯片以及方法
WO2022153668A1 (ja) 発光素子駆動装置
TWI666967B (zh) 具有亮度控制的發光二極體驅動電路及其驅動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819536

Country of ref document: EP

Kind code of ref document: A1