WO2023231274A1 - 一种耦合超级电容器的混合制氢***及其控制方法 - Google Patents

一种耦合超级电容器的混合制氢***及其控制方法 Download PDF

Info

Publication number
WO2023231274A1
WO2023231274A1 PCT/CN2022/126235 CN2022126235W WO2023231274A1 WO 2023231274 A1 WO2023231274 A1 WO 2023231274A1 CN 2022126235 W CN2022126235 W CN 2022126235W WO 2023231274 A1 WO2023231274 A1 WO 2023231274A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen production
supercapacitor
alkaline
subsystem
production system
Prior art date
Application number
PCT/CN2022/126235
Other languages
English (en)
French (fr)
Inventor
金黎明
张存满
吕洪
耿振
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2023231274A1 publication Critical patent/WO2023231274A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/109Scheduling or re-scheduling the operation of the DC sources in a particular order, e.g. connecting or disconnecting the sources in sequential, alternating or in subsets, to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to the technical field of hydrogen production, and in particular, to a hybrid hydrogen production system coupled with a supercapacitor and a control method thereof.
  • the major categories of new energy are mainly divided into solar energy, nuclear energy, hydrogen energy, wind energy, etc.
  • hydrogen energy as the cleanest energy without any secondary pollution products, is expected to become one of the main energy sources in the future.
  • Hydrogen production by electrolysis of water is currently one of the most commonly used hydrogen production technologies.
  • the source of electric energy for the alkaline water electrolysis hydrogen production system mainly includes the power grid, renewable energy, etc. Renewable energy can achieve intrinsic low-carbonization and achieve carbon-free generation in the entire industry chain.
  • renewable energy mainly includes wind power and solar cells.
  • these renewable energy sources are affected by the climate environment and are intermittent and unstable, such as changes in wind direction and speed, changes in sunlight angle and intensity, etc. Therefore, There are fluctuations in the current entering the electrolysis system.
  • typical current changes are mainly caused by the current oscillating within a small range, resulting in instantaneous high-frequency fluctuations in the working state of the electrolytic cell system, resulting in a decrease in the stability and service life of the electrolytic cell.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a hybrid hydrogen production system coupled with supercapacitors and a control method thereof that can ensure efficient and stable operation of the electrolytic hydrogen production system and improve energy utilization.
  • a hybrid hydrogen production system coupled with a supercapacitor includes an alkaline electrolysis hydrogen production subsystem, a shunt module, a supercapacitor and a power generation subsystem;
  • the electronic system is connected to the shunt module; the supercapacitor and the alkaline electrolysis hydrogen production subsystem are connected to the shunt module respectively; the shunt module inputs a stable current into the alkaline electrolysis system according to whether there is a current fluctuation exceeding a preset threshold.
  • the hydrogen subsystem feeds fluctuating current into the supercapacitor.
  • the alkaline electrolysis hydrogen production subsystem includes an alkaline water electrolysis hydrogen production device and an alkaline membrane electrolysis hydrogen production device; the alkaline water electrolysis hydrogen production device and the alkaline membrane electrolysis hydrogen production device are respectively Connect to the shunt module.
  • the alkaline water electrolysis hydrogen production device includes an alkaline water electrolyzer, alkali liquid circulation equipment and gas-liquid separation equipment; the alkali liquid circulation equipment and gas-liquid separation equipment are respectively connected to the alkaline water electrolyzer.
  • the alkaline water electrolyzer is assembled from positive and negative electrodes, separators and end plates.
  • the alkaline membrane electrolysis hydrogen production device includes an alkaline water electrolyzer, alkali liquid circulation equipment and gas-liquid separation equipment; the alkali liquid circulation equipment and gas-liquid separation equipment are respectively connected to the alkaline water electrolyzer.
  • the alkaline water electrolyzer is assembled from positive and negative electrodes, alkaline membranes and end plates.
  • the number of the alkaline water electrolyzers is single or multiple.
  • the supercapacitor is specifically: a high power density energy storage device.
  • the supercapacitor is an electric double layer supercapacitor, a pseudocapacitive supercapacitor or a battery-capacitor hybrid supercapacitor.
  • control method for the above-mentioned hybrid hydrogen production system.
  • the control method includes:
  • Step 1 The power generation subsystem converts renewable energy into DC power and inputs it into the shunt module;
  • Step 2 The shunt module detects the current fluctuation of the output current of the power generation subsystem, inputs the fluctuating current into the supercapacitor, and inputs the stable current into the alkaline electrolysis hydrogen production subsystem;
  • the shunt module also detects whether the output current of the power generation subsystem meets the preset threshold. If it is lower than the preset threshold and is a stable current, the current is input into the alkaline electrolysis hydrogen production subsystem and the supercapacitor is called to produce alkaline electrolysis hydrogen. Subsystem power supply.
  • the present invention has the following beneficial effects:
  • the supercapacitor can be used as a power source to power the electrolysis system, ensuring that the electrolysis system Efficient and stable operation; at the same time, the installation of shunt modules and supercapacitors can eliminate the high-frequency fluctuation characteristics of renewable energy power generation, keep the current input to the electrolyzer in a stable state, and significantly extend the service life of the alkaline electrolyzer.
  • the supercapacitor can effectively store electrical energy and improve the utilization of electrical energy generated by renewable energy generation.
  • Figure 1 is a schematic structural diagram of a hybrid hydrogen production system coupled with supercapacitors in an embodiment of the present invention
  • Figure 2 is another structural schematic diagram of a hybrid hydrogen production system coupled with a supercapacitor in an embodiment of the present invention.
  • references herein to "one embodiment” or “an embodiment” refers to a particular feature, structure, or characteristic that may be included in at least one implementation of the present application.
  • the orientation or positional relationship indicated by the terms “upper”, “lower”, “left”, “right”, “top”, “bottom”, etc. are based on those shown in the accompanying drawings.
  • the orientation or positional relationship is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. Furthermore, the terms “first”, “second”, etc. are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein.
  • Figures 1 and 2 are schematic structural diagrams of a hybrid hydrogen production system coupled with supercapacitors provided in the embodiment of the present application, including: alkaline electrolysis hydrogen production subsystem 1, shunt module 2, supercapacitor 3 and power generation subsystem 4 .
  • the power generation subsystem 4 is connected to the shunt module 2
  • the supercapacitor 3 and the alkaline electrolysis hydrogen production subsystem 1 are respectively connected to the shunt module 2.
  • the shunt module 2 inputs a stable current into the alkaline electrolysis according to whether there is a current fluctuation exceeding a preset threshold.
  • the hydrogen production subsystem 1 inputs the fluctuating current into the supercapacitor 3.
  • the alkaline electrolysis hydrogen production subsystem 1 includes an alkaline water electrolysis hydrogen production device and an alkaline membrane electrolysis hydrogen production device.
  • the alkaline water electrolysis hydrogen production device and the alkaline membrane electrolysis hydrogen production device are respectively connected to the shunt module.
  • the alkaline water electrolysis hydrogen production device includes an alkaline water electrolyzer, alkali liquid circulation equipment and gas-liquid separation equipment.
  • the alkali liquid circulation equipment and gas-liquid separation equipment are respectively connected to the alkaline water electrolyzer.
  • Alkaline water electrolyzers are assembled from positive and negative electrodes, separators and end plates. Common hydrogen production capacities include but are not limited to 200Nm3/h, 500Nm3/h, 800Nm3/h, 1000Nm3/h, 1500Nm3/h, 3000Nm3/h, etc. .
  • the alkaline membrane electrolysis hydrogen production device includes an alkaline water electrolyzer, alkali liquid circulation equipment and gas-liquid separation equipment.
  • the alkali liquid circulation equipment and gas-liquid separation equipment are respectively connected to the alkaline water electrolyzer.
  • the alkaline water electrolyzer is assembled from positive and negative electrodes, alkaline membrane and end plates.
  • Common hydrogen production capacities include but are not limited to 50Nm3/h, 100Nm3/h, 200Nm3/h, 500Nm3/h, etc.
  • the number of the above-mentioned alkaline water electrolyzers is single or multiple.
  • supercapacitor 3 is: high power density energy storage device. Electric double layer supercapacitors, pseudocapacitive supercapacitors or battery-capacitor hybrid supercapacitors can be used.
  • the power generation subsystem in this embodiment includes wind power generation equipment and solar power generation equipment.
  • the output current of the wind power generation equipment is converted into direct current through an AC-DC converter and then input into the shunt module 2.
  • the output current of the solar power generation equipment is passed through DC.
  • the DC converter converts it into direct current and then inputs it into the shunt module 2.
  • a control method using the above hybrid hydrogen production system including:
  • Step 1 The power generation subsystem converts renewable energy into DC power and inputs it into the shunt module;
  • Step 2 The shunt module detects the current fluctuation of the output current of the power generation subsystem, inputs the fluctuating current into the supercapacitor, and inputs the stable current into the alkaline electrolysis hydrogen production subsystem;
  • the shunt module also detects whether the output current of the power generation subsystem meets the preset threshold. If it is lower than the preset threshold and is a stable current, the current is input into the alkaline electrolysis hydrogen production subsystem and the supercapacitor is called to produce alkaline electrolysis hydrogen. Subsystem power supply;
  • the preset current threshold is specifically: the lowest operating current of the electrolyzer.
  • the alkaline electrolysis system is an alkaline water electrolysis system with a rated power of 5MW.
  • the hydrogen efficiency is 1000Nm3/h and the rated current is 6000A;
  • the supercapacitor is an electric double layer capacitor with a rated power of 0.5MW.
  • the current input at the renewable energy power generation end is 8000A
  • the instantaneous current fluctuates by plus or minus 100A.
  • 6000A stable current is used to produce hydrogen in the electrolysis system
  • 2000A is used to charge the supercapacitor.
  • the supercapacitor is used for high-frequency charging and discharging. Renewable energy sources experience instantaneous current fluctuations.
  • the alkaline electrolysis system is an alkaline water electrolysis system with a rated power of 5MW.
  • the hydrogen efficiency is 1000Nm3/h and the rated current is 6000A;
  • the supercapacitor is an electric double layer capacitor with a rated power of 0.5MW.
  • the operating input current for hydrogen production in the electrolysis system is stabilized at 1200A (minimum operating current), of which 200A is provided by the supercapacitor, which is utilized in the process.
  • the high-frequency charging and discharging of supercapacitors absorbs instantaneous current fluctuations in renewable energy sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种耦合超级电容器的混合制氢***及其控制方法,包括碱性电解制氢子***、分流模块、超级电容器和发电子***,发电子***接入分流模块,超级电容器和碱性电解制氢子***分别接入分流模块,分流模块根据是否存在超过预设阈值的电流波动来将稳定电流输入碱性电解制氢子***,将波动电流输入超级电容器。与现有技术相比,本发明具有能够保证电解制氢***高效稳定工作、提高能源利用率等优点。

Description

一种耦合超级电容器的混合制氢***及其控制方法 技术领域
本发明涉及制氢技术领域,尤其是涉及一种耦合超级电容器的混合制氢***及其控制方法。
背景技术
新能源的大类主要分为太阳能,核能,氢能,风能等,其中氢能作为没有任何二次污染产物,最清洁的能源,有望成为未来主要能源之一。电解水制氢是目前最常用的制氢技术之一,其中碱水电解制氢技术相对成熟,已经实现了商业化。对于碱水电解制氢***的电能来源,主要包括电网、可再生能源等,可再生能源能够实现本质低碳化,实现全产业链无碳生成。
目前,可再生能源主要包括风电和太阳能电池等,但是这些可再生能源会受到气候环境的影响,具有间歇性和不稳定性,例如风向和风速的变化、太阳光角度和强度的变化等,因此进入电解***的电流存在波动。根据电流的变化特点,典型的电流变化主要是电流在一个小范围内振荡,导致电解槽***工作状态存在瞬时的高频次波动,导致电解槽稳定性和使用寿命的下降。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能够保证电解制氢***高效稳定工作、提高能源利用率的耦合超级电容器的混合制氢***及其控制方法。
本发明的目的可以通过以下技术方案来实现:
作为本发明的第一方面,提供一种耦合超级电容器的混合制氢***,所述的混合制氢***包括碱性电解制氢子***、分流模块、超级电容器和发电子***;所述的发电子***接入分流模块;所述的超级电容器和碱性电解制氢子***分别接入分流模块;所述的分流模块根据是否存在超过预设阈值的电流波动来将稳定电流输入 碱性电解制氢子***,将波动电流输入超级电容器。
作为优选的技术方案,所述的碱性电解制氢子***包括碱水电解制氢装置和碱性膜电解制氢装置;所述的碱水电解制氢装置和碱性膜电解制氢装置分别接入分流模块。
作为优选的技术方案,所述的碱水电解制氢装置包括碱水电解槽、碱液循环设备和气液分离设备;所述的碱液循环设备和气液分离设备分别接入碱水电解槽。
作为优选的技术方案,所述的碱水电解槽由正负极、隔膜和端板组装而成。
作为优选的技术方案,所述的碱性膜电解制氢装置包括碱水电解槽、碱液循环设备和气液分离设备;所述的碱液循环设备和气液分离设备分别接入碱水电解槽。
作为优选的技术方案,所述的碱水电解槽由正负极、碱性膜和端板组装而成。
作为优选的技术方案,所述的碱水电解槽的数量为单个或多个。
作为优选的技术方案,所述的超级电容器具体为:高功率密度储能设备。
作为优选的技术方案,所述的超级电容器为双电层超级电容器、赝电容超级电容器或电池-电容混合型超级电容器。
作为本发明的第二方面,提供一种用于上述混合制氢***的控制方法,所述的控制方法包括:
步骤1:发电子***将可再生能源转换成直流电,并输入分流模块;
步骤2:分流模块检测发电子***输出电流的电流波动,将波动电流输入超级电容器,将稳定电流输入碱性电解制氢子***;
分流模块同时还检测发电子***输出电流大小是否满足预设阈值,若低于预设阈值且为稳定电流,则将电流输入碱性电解制氢子***,并调用超级电容器为碱性电解制氢子***供电。
与现有技术相比,本发明具有以下有益效果:
一、保证电解制氢***高效稳定工作:本发明中的混合制氢***及其控制方法在发电子***输出电流低于电解***最低电流时,超级电容器能够作为电源为电解***供电,保证电解***的高效稳定工作;同时,设置分流模块和超级电容器能够消除可再生能源发电高频次波动的特征,使输入电解槽的电流保持一个稳定的状态,显著提升碱性电解槽的使用寿命。
二、提高能源利用率:本发明中的混合制氢***及其控制方法在当电流高于电解***额定电流时,超级电容器能够有效地储存电能,提高可再生能源发电产生 电能的利用率。
附图说明
图1为本发明实施例中耦合超级电容器的混合制氢***的结构示意图;
图2为本实用新型实施例中耦合超级电容器的混合制氢***的另一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
图1和图2是本申请实施例中提供的一种耦合超级电容器的混合制氢***的结构示意图,包括:碱性电解制氢子***1、分流模块2、超级电容器3和发电子***4。发电子***4接入分流模块2,超级电容器3和碱性电解制氢子***1分别接入分流模块2,分流模块2根据是否存在超过预设阈值的电流波动来将稳定电流输入碱性电解制氢子***1,将波动电流输入超级电容器3。
具体的,碱性电解制氢子***1包括碱水电解制氢装置和碱性膜电解制氢装置,碱水电解制氢装置和碱性膜电解制氢装置分别接入分流模块。
可选的,碱水电解制氢装置包括碱水电解槽、碱液循环设备和气液分离设备,碱液循环设备和气液分离设备分别接入碱水电解槽。碱水电解槽由正负极、隔膜和端板组装而成,常见的产氢能力包括但不限于200Nm3/h,500Nm3/h,800Nm3/h,1000Nm3/h,1500Nm3/h,3000Nm3/h等。
可选的,碱性膜电解制氢装置包括碱水电解槽、碱液循环设备和气液分离设备,碱液循环设备和气液分离设备分别接入碱水电解槽。碱水电解槽由正负极、碱性膜和端板组装而成。常见的产氢能力包括但不限于50Nm3/h,100Nm3/h,200Nm3/h,500Nm3/h等。
可选的,上述碱水电解槽的数量为单个或者多个。
具体的,超级电容器3具体为:高功率密度储能设备。可以选用双电层超级电容器、赝电容超级电容器或电池-电容混合型超级电容器。
可选的,本实施例中的发电子***包括风力发电设备和太阳能发电设备,风力发电设备的输出电流通过AC-DC转换器转换为直流电后输入分流模块2,太阳能发电设备的输出电流通过DC-DC转换器转换为直流电后输入分流模块2。
以上是关于***实施例的介绍,以下通过方法实施例,对本发明所述方案进行进一步说明。
一种用上述混合制氢***的控制方法,包括:
步骤1:发电子***将可再生能源转换成直流电,并输入分流模块;
步骤2:分流模块检测发电子***输出电流的电流波动,将波动电流输入超级电容器,将稳定电流输入碱性电解制氢子***;
分流模块同时还检测发电子***输出电流大小是否满足预设阈值,若低于预设阈值且为稳定电流,则将电流输入碱性电解制氢子***,并调用超级电容器为碱性电解制氢子***供电;
预设电流阈值具体为:电解槽最低工作电流。
下面提供两个具体的应用例来确定上述制氢***和控制方法的有效性:
一、针对可再生能源发电产生的电流密度具有间歇性的特点,提出一种耦合碱性电解***和超级电容器的混合制氢***,碱性电解***为碱水电解***,额定功率为5MW,产氢效率为1000Nm3/h,额定电流为6000A;超级电容器为双电层电容器,额定功率为0.5MW。当可再生能源发电端电流输入为8000A,瞬时电流波动正负100A,通过电流分配,6000A稳定电流用于电解***产氢,2000A对超级 电容器充电,过程中利用超级电容器高频次充放电消纳可再生能源发生瞬时电流波动。
二、针对可再生能源发电产生的电流密度具有间歇性的特点,提出一种耦合碱性电解***和超级电容器的混合制氢***,碱性电解***为碱水电解***,额定功率为5MW,产氢效率为1000Nm3/h,额定电流为6000A;超级电容器为双电层电容器,额定功率为0.5MW。当可再生能源发电端电流输入为1000A,瞬时电流波动正负50A,通过电流分配,电解***产氢的工作输入电流稳定在1200A(最低工作电流),其中200A电流由超级电容器提供,过程中利用超级电容器高频次充放电消纳可再生能源发生瞬时电流波动。
由上述两个应用例可以看出,本实施例提出的混合制氢***能够有效保证碱性电解制氢子状态的稳定运行。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种耦合超级电容器的混合制氢***,其特征在于,所述的混合制氢***包括碱性电解制氢子***、分流模块、超级电容器和发电子***;所述的发电子***接入分流模块;所述的超级电容器和碱性电解制氢子***分别接入分流模块;所述的分流模块根据是否存在超过预设阈值的电流波动来将稳定电流输入碱性电解制氢子***,将波动电流输入超级电容器。
  2. 根据权利要求1所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的碱性电解制氢子***包括碱水电解制氢装置和碱性膜电解制氢装置;所述的碱水电解制氢装置和碱性膜电解制氢装置分别接入分流模块。
  3. 根据权利要求2所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的碱水电解制氢装置包括碱水电解槽、碱液循环设备和气液分离设备;所述的碱液循环设备和气液分离设备分别接入碱水电解槽。
  4. 根据权利要求3所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的碱水电解槽由正负极、隔膜和端板组装而成。
  5. 根据权利要求2所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的碱性膜电解制氢装置包括碱水电解槽、碱液循环设备和气液分离设备;所述的碱液循环设备和气液分离设备分别接入碱水电解槽。
  6. 根据权利要求5所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的碱水电解槽由正负极、碱性膜和端板组装而成。
  7. 根据权利要求3或5所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的碱水电解槽的数量为单个或多个。
  8. 根据权利要求1所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的超级电容器具体为:高功率密度储能设备。
  9. 根据权利要求8所述的一种耦合超级电容器的混合制氢***,其特征在于,所述的超级电容器为双电层超级电容器、赝电容超级电容器或电池-电容混合型超级电容器。
  10. 一种用于如权利要求1所述混合制氢***的控制方法,其特征在于,所述的控制方法包括:
    步骤1:发电子***将可再生能源转换成直流电,并输入分流模块;
    步骤2:分流模块检测发电子***输出电流的电流波动,将波动电流输入超级电容器,将稳定电流输入碱性电解制氢子***;
    分流模块同时还检测发电子***输出电流大小是否满足预设阈值,若低于预设阈值且为稳定电流,则将电流输入碱性电解制氢子***,并调用超级电容器为碱性电解制氢子***供电。
PCT/CN2022/126235 2022-05-31 2022-10-19 一种耦合超级电容器的混合制氢***及其控制方法 WO2023231274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210610772.1 2022-05-31
CN202210610772.1A CN115011969A (zh) 2022-05-31 2022-05-31 一种耦合超级电容器的混合制氢***及其控制方法

Publications (1)

Publication Number Publication Date
WO2023231274A1 true WO2023231274A1 (zh) 2023-12-07

Family

ID=83071200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126235 WO2023231274A1 (zh) 2022-05-31 2022-10-19 一种耦合超级电容器的混合制氢***及其控制方法

Country Status (2)

Country Link
CN (1) CN115011969A (zh)
WO (1) WO2023231274A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011969A (zh) * 2022-05-31 2022-09-06 同济大学 一种耦合超级电容器的混合制氢***及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140970A (zh) * 2015-08-03 2015-12-09 浙江大学 一种风-氢-水-电混合能源***拓扑结构及其控制方法
AU2020103453A4 (en) * 2020-11-16 2021-01-28 Yangzhou University A hydrogen production device for solar photovoltaic electrolysis water
CN114395775A (zh) * 2022-01-30 2022-04-26 华中科技大学 一种闭式清洁能源制氢储能***
CN114447968A (zh) * 2022-01-10 2022-05-06 中国长江三峡集团有限公司 利用混合储能装置的大规模光伏电解水制氢***及方法
CN115011969A (zh) * 2022-05-31 2022-09-06 同济大学 一种耦合超级电容器的混合制氢***及其控制方法
CN115094433A (zh) * 2022-05-31 2022-09-23 同济大学 耦合电化学电源和超级电容器的混合制氢***及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140970A (zh) * 2015-08-03 2015-12-09 浙江大学 一种风-氢-水-电混合能源***拓扑结构及其控制方法
AU2020103453A4 (en) * 2020-11-16 2021-01-28 Yangzhou University A hydrogen production device for solar photovoltaic electrolysis water
CN114447968A (zh) * 2022-01-10 2022-05-06 中国长江三峡集团有限公司 利用混合储能装置的大规模光伏电解水制氢***及方法
CN114395775A (zh) * 2022-01-30 2022-04-26 华中科技大学 一种闭式清洁能源制氢储能***
CN115011969A (zh) * 2022-05-31 2022-09-06 同济大学 一种耦合超级电容器的混合制氢***及其控制方法
CN115094433A (zh) * 2022-05-31 2022-09-23 同济大学 耦合电化学电源和超级电容器的混合制氢***及控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG, RUIMING ET AL.: "Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 44, no. 46, 26 March 2019 (2019-03-26), pages 25104 - 25111, XP085832630, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2019.03.033 *
YANG SHAOSHUAI; LIU YI: "Modeling and Power Control of Active PV Electrolyzer and Supercapacitor Grid-connected System based on the Principle of Filtering", ELECTRICAL MEASUREMENT & INSTRUMENTATION, vol. 54, no. 15, 10 August 2017 (2017-08-10), pages 86 - 90, XP009551409, ISSN: 1001-1390 *

Also Published As

Publication number Publication date
CN115011969A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN109004665B (zh) 风电、光电储能及离/并网制氢***
WO2021082423A1 (zh) 一种直流耦合制氢***及其控制方法
CN103296739B (zh) 一种新型太阳能光伏与光热联合供电***装置
CN112481637A (zh) 一种用于波动性电源的电解水制氢***及其控制策略
CN108347063B (zh) 一种基于超级电容储能的船舶光伏并网发电***
CN208748209U (zh) 一种风能宽功率下电解水制氢装置
CN109962482B (zh) 基于市电功率补偿的风电非并网制氢***及其控制方法
CN114024327B (zh) 一种基于可再生能源发电多能互补的控制***及方法
CN110601231A (zh) 一种基于光伏制氢储能的光伏和燃料电池一体化发电***
CN202737555U (zh) 船舶用复合能源装置及设置有复合能源装置的船舶
WO2023231274A1 (zh) 一种耦合超级电容器的混合制氢***及其控制方法
CN114908356A (zh) 一种可再生能源电解水制氢控制***
CN108418202B (zh) 一种基于可再生能源的循环发电***
CN113949054A (zh) 电网自治***及方法
CN111030148B (zh) 一种多绿色能源组成的零污染电力微网***
CN110931674B (zh) 一种低压储能装置及其控制方法
CN202712956U (zh) 一种蓄电池储能和光伏发电混合***
CN107346830B (zh) 液流电池控制方法及其装置、液流电池
CN115094433A (zh) 耦合电化学电源和超级电容器的混合制氢***及控制方法
CN111682288A (zh) 一种具有高循环寿命铅酸液流电池的制备方法
CN104659835A (zh) 一种太阳能与氢能互补发电控制电路
CN115882515A (zh) 协同多类型电解制氢与储能电池的微电网***及运行方法
CN107856565A (zh) 一种复合式空铁驱动***
CN115637455A (zh) 一种基于太阳能发电供能的质子交换膜pem电解水制氢***
CN206060349U (zh) 一种光伏发电***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944582

Country of ref document: EP

Kind code of ref document: A1