WO2023231229A1 - 换电调度方法、***及换电站 - Google Patents

换电调度方法、***及换电站 Download PDF

Info

Publication number
WO2023231229A1
WO2023231229A1 PCT/CN2022/119519 CN2022119519W WO2023231229A1 WO 2023231229 A1 WO2023231229 A1 WO 2023231229A1 CN 2022119519 W CN2022119519 W CN 2022119519W WO 2023231229 A1 WO2023231229 A1 WO 2023231229A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power
vehicles
remaining power
battery
Prior art date
Application number
PCT/CN2022/119519
Other languages
English (en)
French (fr)
Inventor
曲宏鹏
李松
黄贤辉
张宏涛
Original Assignee
三一重型装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一重型装备有限公司 filed Critical 三一重型装备有限公司
Publication of WO2023231229A1 publication Critical patent/WO2023231229A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • B60L2240/72Charging station selection relying on external data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present application relates to the technical field of power swap dispatching, and in particular to a power swap dispatching method, system and power swap station.
  • This application provides a power swap scheduling method, system and power swap station to solve the problem of the existing technology's power swap scheduling for vehicles in a closed operating environment, which still uses manual judgment, which easily leads to the failure to grasp the vehicle's power swap timing. Inaccurate defects can be realized based on the vehicle's predicted remaining power, and the vehicle's battery replacement reminder and dispatching can effectively ensure the timeliness of vehicle battery replacement.
  • This application provides a power swap scheduling method for power swap scheduling of vehicles operating in a closed scene, which includes a fixed power swap station.
  • the method includes:
  • predicting the predicted remaining power of each vehicle when it reaches the corresponding unloading point based on the current location and remaining power of each vehicle includes:
  • the predicted remaining power of the first vehicle when it reaches the corresponding unloading point is predicted.
  • predicting the predicted remaining power of each vehicle when it reaches the corresponding unloading point based on the current location and remaining power of each vehicle also includes:
  • the second distance and the preset second distance threshold determine whether each vehicle is a second vehicle, and the second vehicle is a vehicle located within the preset range of the corresponding unloading point;
  • the predicted remaining power of the second vehicle when it reaches the corresponding unloading point is predicted.
  • the method before sending a power exchange reminder to the vehicle with the power exchange requirement, the method further includes:
  • a vehicle with the power replacement requirement that matches the number of the swappable batteries is determined as a vehicle that satisfies the priority condition.
  • the construction of a priority sequence including the each vehicle based on the predicted remaining power includes:
  • a priority sequence including the vehicles is constructed according to the order of power consumption per unit time of the vehicles with the same predicted remaining power.
  • the remaining power of the third vehicle is predicted from the corresponding unloading point, through the corresponding collecting point, and to the corresponding unloading point again; the third vehicle is in addition to The other vehicles mentioned above except the vehicle with the battery swap requirement;
  • a fourth vehicle is screened out from the third vehicles; Vehicles with battery swap requirements;
  • the battery swapping dispatching method described in this application it is determined whether to send the battery to the battery based on the arrival time of the fourth vehicle arriving at the corresponding unloading point again and the number of the swappable batteries at the arrival time. Before the fourth vehicle sends the battery replacement reminder, it includes:
  • the battery replacement reminder is sent to the fourth vehicle.
  • This application also provides a power swap scheduling system for power swap scheduling of vehicles operating in a closed scene.
  • the closed scene includes a fixed battery swap station, including:
  • a prediction module configured to predict the predicted remaining power of each vehicle when it reaches the corresponding unloading point based on the current location and remaining power of each vehicle;
  • a judgment module used to judge whether each vehicle has a need for battery replacement based on the predicted remaining power
  • a reminder module is used to send battery replacement reminders to vehicles that require the battery replacement.
  • a storage module used to store the configuration information of each vehicle
  • the configuration information includes: location of the picking point, location of the unloading point, vehicle loading time, single no-load time, single no-load mileage, single no-load power consumption, single full load time, single full load mileage, And the power consumption of a single full load.
  • a display module configured to display the status information of each vehicle according to the priority order of each vehicle
  • the status information at least includes: current location, license plate number, remaining power, predicted remaining power, battery replacement reminder information, and priority.
  • the present application also provides a power swap station applied in a closed scenario.
  • the power swap station includes any one of the power swap dispatching systems described above.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • a processor executes the program, any one of the above is implemented.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the power swap scheduling method as described above is implemented.
  • This application provides a battery swap dispatching method, system and battery swap station.
  • a battery swap dispatching method By obtaining the current position and remaining power of each vehicle operating in a closed scene, and then predicting the arrival of each vehicle at the corresponding destination based on the current position and remaining power of each vehicle. The predicted remaining power at the unloading point is used, and finally a battery replacement reminder is sent to vehicles with power replacement needs determined based on the predicted remaining power.
  • Figure 1 is a schematic flow chart of a power replacement scheduling method provided by this application.
  • Figure 2 is a schematic flowchart of the automatic dispatching of vehicles in a closed scenario by combining the power exchange dispatching method provided by this application with the prompt interface;
  • FIG. 3 is a schematic structural diagram of a power replacement dispatching system provided by this application.
  • Figure 4 is a schematic structural diagram of an electronic device provided by this application.
  • closed scenes refer to closed operating environments such as mines, ports, and docks.
  • One or more fixed power swap stations are set up in the closed scene, and vehicles travel to and from predetermined picking points and unloading points in the closed scene. room for material handling.
  • the battery swap station is generally set up between the collection point and the unloading point, and the vehicle can only swap battery in the no-load state.
  • the power replacement scheduling method described in the embodiment of the present application is For the power swap scheduling of vehicles operating in a closed scene, the closed scene includes a fixed power swap station, and the method includes the following steps:
  • the current position and remaining power of the vehicle are the status parameters of the vehicle at the current moment.
  • the cloud controller used to execute the power swap scheduling method should store the configuration information of each vehicle, and in order to ensure the accuracy of the configuration information, Configuration information should be set to be updated in real time or periodically.
  • the vehicle travels between the collecting point and the unloading point along a predetermined path.
  • the distance between the vehicle and the corresponding unloading point can be known, and then based on The power consumption per unit length of vehicle travel and the remaining power of the vehicle can be used to predict the power consumed by the vehicle when traveling from the current location to the unloading point, and then the predicted remaining power of the vehicle when it reaches the corresponding unloading point can be obtained.
  • the power consumption of a vehicle when driving in a fully loaded state is obviously greater than that of driving in an unloaded state. Therefore, in order to improve the accuracy of the predicted remaining power, the vehicle's loading status can be further obtained, and then the vehicle's power consumption can be predicted. The predicted remaining power of the vehicle when it reaches the unloading point in the corresponding loading state.
  • the vehicle after knowing the predicted remaining power of the vehicle when it reaches the unloading point, based on the amount of power consumed by the vehicle from the picking point to the unloading point, it can be judged whether the current predicted remaining power of the vehicle can still support its round trip.
  • the remaining power is predicted to be insufficient to support the vehicle to travel to and from the collection point and the unloading point, it means that the vehicle needs to be replaced, that is, it is determined whether each vehicle has a need for battery replacement.
  • the driver can be reminded in time to go to the battery swap station for battery replacement, thereby avoiding the phenomenon of vehicles stopping during transportation due to insufficient battery, thereby ensuring that the vehicle can be safely transported in a closed scenario. operating efficiency.
  • the battery swapping station is generally set up between the material collection point and the unloading point.
  • the vehicle has passed the battery swapping station and is close to the material collection point, if the vehicle needs to turn back due to battery swapping, it will be very difficult to To a certain extent, it has caused a waste of electricity.
  • a more reasonable way should be to determine whether the vehicle that has passed through the battery swap station to the material collection point needs to change battery after arriving at the material collection point for loading and returning to the unloading point, thus effectively avoiding Waste of power.
  • predicting the predicted remaining power of each vehicle when it reaches the corresponding unloading point based on the current location and remaining power of each vehicle includes:
  • the predicted remaining power of the first vehicle when it reaches the corresponding unloading point is predicted.
  • the vehicles within the preset range of the sampling point that is, located near the sampling point, can be screened out from each vehicle, and then based on the loading status of the vehicles near the sampling point, it can be determined Whether the vehicle is going to the material collection point to load materials, or whether it is already loaded and ready to go to the material collection point. Then, based on the vehicle's loading time, no-load power consumption, and full-load power consumption, etc., based on the vehicle's current location and remaining power, It can predict the remaining power of the vehicle when it reaches the corresponding unloading point. This avoids the waste of power caused by the vehicle having to return to the battery swap station for battery swap when it has arrived near the material collection point.
  • predicting the predicted remaining power of each vehicle when it reaches the corresponding unloading point based on the current location and remaining power of each vehicle also includes:
  • the second distance and the preset second distance threshold determine whether each vehicle is a second vehicle, and the second vehicle is a vehicle located within the preset range of the corresponding unloading point;
  • the predicted remaining power of the second vehicle when it reaches the corresponding unloading point is predicted.
  • the vehicles within the preset range of the unloading point that is, the vehicles near the unloading point
  • the vehicles near the unloading point can be screened out from each vehicle, and then based on the loading status of the vehicles near the unloading point, it can be determined Whether the vehicle has been unloaded or is preparing to unload, and then combined with the vehicle's loading time, no-load power consumption, full-load power consumption, etc., based on the vehicle's current location and remaining power, the prediction of the vehicle's arrival at the unloading point can be predicted remaining battery. Thereby improving the accuracy of predicting the remaining power of vehicles near the unloading point.
  • the power swap scheduling method described in the embodiment of the present application preferably obtains the current location and remaining power of each vehicle in a preset period, such as 5 seconds, 8 seconds, 10 seconds, etc., and then based on the current location and The remaining power predicted to arrive at the corresponding unloading point is used to determine the vehicles that require battery replacement, and the remaining power and current location of all vehicles in the closed scene can be guaranteed through the setting of a shorter period.
  • a preset period such as 5 seconds, 8 seconds, 10 seconds, etc.
  • the method before sending a battery replacement reminder to the vehicle with the battery replacement requirement, the method further includes:
  • the number of replaceable batteries in the battery swap station can be counted in segments based on battery power and time period. For example, it can be divided into the number of batteries with a power of greater than or equal to 95%, the number of batteries with a power of greater than or equal to 80% and less than 95%, and the number of batteries with a power of less than 80%. That is, the number of batteries is counted in each time period based on the three levels of power.
  • the priority of vehicles with power swap needs can be arranged based on the predicted remaining power of the vehicles after arriving at the corresponding unloading point. That is, vehicles with less predicted remaining power have higher priorities, thereby ensuring that the remaining power is Fewer vehicles can swap batteries.
  • the power replacement scheduling method further includes:
  • a vehicle with the power replacement requirement that matches the number of the swappable batteries is determined as a vehicle that satisfies the priority condition.
  • each vehicle can be sorted in the priority sequence according to the urgency of the need for battery replacement, thereby facilitating the arrangement of battery replacement reminders based on the urgency of the battery replacement need.
  • battery swapping reminders are sent to vehicles that match the number of swappable batteries, thereby avoiding vehicle congestion at battery swapping stations.
  • further tracking can be performed on the vehicles that have accepted the battery swap reminder, that is, the vehicles that have accepted the battery swap reminder but have not gone to the battery swap station for battery swap. , automatically arrange its priority, and then send a battery replacement reminder to the vehicle next in the priority sequence, which ultimately enables the battery swap station and the vehicles in the closed scene to run smoothly, and improves the utilization of the battery and the vehicle. .
  • constructing a priority sequence including each vehicle based on the predicted remaining power includes:
  • a priority sequence including the vehicles is constructed according to the order of power consumption per unit time of the vehicles with the same predicted remaining power.
  • the predicted remaining power of each vehicle can reflect the remaining power of each vehicle when it reaches the corresponding unloading point, and is then used to determine whether the vehicle will continue to go to the corresponding material collection point after arriving at the unloading point, or go to the battery swap station. Therefore, the priority sequence of each vehicle is constructed based on the predicted remaining power of each vehicle from least to most, matching the vehicle's power replacement demand.
  • the priority order is determined based on the vehicle's power consumption per unit time in the order of most and least, which can also match the vehicle's battery replacement needs.
  • the power replacement scheduling method further includes:
  • the remaining power of the third vehicle is predicted from the corresponding unloading point, through the corresponding collecting point, and to the corresponding unloading point again; the third vehicle is in addition to The other vehicles mentioned above except the vehicle with the battery swap requirement;
  • a fourth vehicle is screened out from the third vehicles; Vehicles with battery swap requirements;
  • the determined vehicle with power exchange needs is a vehicle that is predicted to have insufficient remaining power to transport materials once it reaches the corresponding unloading point based on the current remaining power.
  • the third vehicle after another material transportation
  • the fourth vehicle on the one hand, if there is no replaceable battery available at the time of arrival, then at the time of arrival, Finally, the fourth vehicle can no longer transport materials and needs to wait for battery replacement at the battery swap station.
  • the battery swap station has a swappable battery that can swap the battery of the fourth vehicle before the fourth vehicle carries out another material transport, then the fourth vehicle will wait at the battery swap station after another material transport.
  • the battery swapping going to the battery swapping station for battery swapping before another material transport is carried out, which is more conducive to improving the utilization rate of the battery and vehicles and avoiding congestion at the battery swapping station caused by the queue of the fourth vehicle.
  • the battery is sent to the fourth vehicle.
  • the fourth vehicle sends a battery replacement reminder, and when the number of battery replacement batteries is sufficient, a battery replacement reminder is sent to the fourth vehicle after the fourth vehicle carries out another material transportation.
  • the arrival time of the fourth vehicle arriving at the corresponding unloading point again and the number of the replaceable batteries at the arrival time it is determined whether to charge the battery to the Before the fourth vehicle sends the battery replacement reminder, it includes:
  • the battery replacement reminder is sent to the fourth vehicle.
  • the number of replaceable batteries in each subsequent preset time period can be predicted, and then in the fourth At the arrival time of the vehicle, when the predicted number of swappable batteries is less than the number of the fourth vehicle, a battery replacement reminder is sent to the fourth vehicle at the current moment, thereby preventing the fourth vehicle from changing batteries when the arrival time is reached.
  • the congestion at the power swap station is caused by the insufficient number of swappable batteries at the power swap station.
  • the prerequisite for sending a battery replacement reminder to the fourth vehicle at the current moment includes not only predicting that the number of rechargeable batteries is insufficient at the arrival moment, but also including that at the current moment, the rechargeable battery can meet the charging demand. There are also idle rechargeable batteries behind the vehicles, thus avoiding congestion at the battery swap station caused by insufficient number of swappable batteries at the current moment.
  • the power exchange dispatching method described in the above embodiments of this application first obtains the current location (for example, longitude and latitude) and remaining power of each vehicle, and then based on the current location and remaining power, combined with the pre-stored location of the picking point corresponding to each vehicle , unloading point location, full-load power consumption, no-load power consumption, vehicle loading time, single empty-load mileage, single full-load mileage and other configuration information of each vehicle, and predict the remaining predicted value of each vehicle when it reaches the corresponding unloading point power, and then determine whether each vehicle has a need for power swaps based on the predicted remaining power, and whether vehicles that currently do not have a need for power swaps will have a need for power swaps after another material transportation.
  • the current location for example, longitude and latitude
  • battery replacement reminders are sent to vehicles with battery replacement needs, and data transmission based on the vehicle to the cloud and then to the station control is realized, as well as the data feedback capability from the station control to the cloud and then to the vehicle end, to realize vehicle operations.
  • the battery swap process are automatically pushed, and some vehicles with the same push (such as requiring battery swap or no battery swap) are arranged into a priority echelon. For vehicles that accept the push but do not execute it, the priority is automatically queued, and finally the vehicle can be
  • the overall battery swap station and battery swap operation vehicles achieve smooth operation and high utilization rate.
  • a power exchange dispatch prompt interface can also be set, and on the prompt interface, each vehicle is listed in the form of a list according to the priority order of vehicles with power exchange needs.
  • the specific information can include the priority of each vehicle, location, license plate number, current power, estimated power to reach the unloading point, estimated number of trips, estimated time to arrive at the unloading point, The estimated time to arrive at the unloading point again, whether a battery replacement reminder is issued, and the content of the battery replacement reminder, etc.
  • the vehicle route may be changed, when the estimated number of trips is greater than or equal to one, it is uniformly displayed as 1. This allows the user to intuitively understand the situation of each vehicle based on the prompt interface, which is conducive to manual adjustment of the dispatch of each vehicle using the power exchange scheduling method described in the embodiment of the present application.
  • step 204 Determine whether each vehicle is the first vehicle in the preset range of the collection point; if so, proceed to step 205; if not, proceed to step 207;
  • step 207 Determine whether each vehicle is the second vehicle within the preset range of the unloading point; if so, proceed to step 208; if not, proceed to step 214;
  • step 210 Based on the information of each vehicle in the list, determine whether each vehicle has a need for battery replacement; if so, proceed to step 211; if not, proceed to step 214;
  • step 213. Determine whether the vehicle with charging needs meets the priority condition; if yes, return to step 212; if not, proceed to step 214;
  • Table 1 it can be obtained as shown in Table 2, including the license plate number of each vehicle, the time when each vehicle reaches the corresponding unloading point again, the current power of each vehicle, and the predicted remaining power of the first arrival at the unloading point. Then based on the analysis of the data shown in Table 2, we can get the number of replaceable batteries in each preset time period, taking every 20 minutes as an example for Table 2, as shown in Table 3, so based on each preset The number of replaceable batteries in a time period is used to selectively send battery replacement reminders to the vehicle.
  • a power replacement scheduling system provided by this application is described below.
  • the power replacement scheduling system described below and the power replacement scheduling method described above can be mutually referenced.
  • a power swap scheduling system provided by this application is shown in Figure 3, which is used for power swap scheduling of vehicles operating in a closed scene.
  • the closed scene includes a fixed power swap station, including: an acquisition module 310 and a prediction module. 320. Judgment module 330 and reminder module 340; wherein,
  • the acquisition module 310 is used to acquire the current location and remaining power of each vehicle
  • the prediction module 320 is configured to predict the predicted remaining power of each vehicle when it reaches the corresponding unloading point based on the current location and remaining power of each vehicle;
  • the determination module 330 is used to determine whether each vehicle has a need for battery replacement based on the predicted remaining power
  • the reminder module 340 is configured to send a battery replacement reminder to vehicles that require the battery replacement.
  • the power exchange dispatching system described in the embodiment of the present application obtains the current position and remaining power of each vehicle operating in a closed scene, and then predicts the time for each vehicle to arrive at the corresponding unloading point based on the current position and remaining power of each vehicle. Predict the remaining power, and finally send battery replacement reminders to vehicles with power replacement needs determined based on the predicted remaining power. Based on the predicted remaining power of each vehicle after arriving at the corresponding unloading point, it is judged whether there is a need for battery swapping in each vehicle. This not only fully considers the problem that the vehicle needs to be in an unloaded state in a closed scenario to perform battery swapping, but also fully considers the problem. It improves the accuracy of judging the timing of vehicle battery swapping, thereby avoiding untimely battery swapping operations that are easily caused by manual prediction and ensuring operating efficiency in closed scenarios.
  • the power replacement dispatching system further includes:
  • a storage module used to store the configuration information of each vehicle
  • the configuration information includes: location of the picking point, location of the unloading point, vehicle loading time, single no-load time, single no-load mileage, single no-load power consumption, single full load time, single full load mileage, And the power consumption of a single full load.
  • the prediction module predicts the predicted remaining power of each vehicle when it reaches the corresponding unloading point based on the information of each vehicle obtained by the acquisition module and the storage module.
  • the power replacement dispatching system further includes:
  • a display module configured to display the status information of each vehicle according to the priority order of each vehicle
  • the status information at least includes: current location, license plate number, remaining power, predicted remaining power, battery replacement reminder information, and priority.
  • the display module is preferably a human-computer interaction interface, thereby facilitating manual adjustment and control of the scheduling of the battery swap dispatching system.
  • the acquisition module is also used to acquire the distance of each vehicle to the corresponding picking point as the first distance, and to acquire the loading status of the first vehicle; the judgment module is also used to acquire the distance based on the The relationship between the first distance and the preset first distance threshold is used to determine whether each vehicle is a first vehicle, and the first vehicle is a vehicle located within the preset range of the corresponding sampling point; the prediction module also Used to predict and obtain the predicted remaining power of the first vehicle when it reaches the corresponding unloading point based on the remaining power and loading status of the first vehicle.
  • the acquisition module is also used to obtain the distance to the unloading point corresponding to the distance between each vehicle as the second distance, and to obtain the loading status of the second vehicle;
  • the judgment module is also used to obtain According to the relationship between the second distance and the preset second distance threshold, determine whether each vehicle is a second vehicle, and the second vehicle is a vehicle located within the preset range of the corresponding unloading point;
  • the prediction module is further configured to predict the predicted remaining power of the second vehicle when it reaches the corresponding unloading point based on the remaining power and loading status of the second vehicle.
  • the acquisition module is also used to obtain the number of swappable batteries in the battery swap station; the judgment module is also used to determine whether the number of swappable batteries is greater than or equal to the demand for battery swaps.
  • the number of vehicles and when the number is greater than or equal to the number of vehicles with power swap needs, send the power swap reminder to the vehicles with power swap needs; and when the number is less than the number of vehicles with power swap needs , sending the battery swap reminder to vehicles that meet the priority conditions and have the battery swap requirement.
  • the power exchange dispatching system further includes: building modules;
  • the building module is configured to construct a priority sequence including each vehicle based on the predicted remaining power
  • the determination module is further configured to determine, based on the priority of the vehicle with the power replacement requirement in the priority sequence, the vehicle with the power replacement requirement that matches the number of the swappable batteries, As a vehicle to be reminded that satisfies the priority condition; the reminder module is also configured to send the battery replacement reminder to the vehicle to be reminded.
  • the building module constructs a priority sequence including each vehicle in the order of the predicted remaining power from least to most; in the When there are vehicles with the same predicted remaining power among the vehicles, a priority sequence including the vehicles is constructed according to the order of greater power consumption per unit time among the vehicles with the same predicted remaining power.
  • the prediction module is further configured to predict, based on the predicted remaining power, that the third vehicle will pass from the corresponding unloading point through the corresponding picking point and arrive at the corresponding unloading point again.
  • the remaining power of the material point; the third vehicle is each of the vehicles except the vehicle with the power exchange requirement; the judgment module is also used to arrive at the corresponding unloading site again based on the third vehicle.
  • a fourth vehicle is selected from the third vehicle; the fourth vehicle is a vehicle that needs the power exchange after arriving at the corresponding unloading point again; and based on the fourth vehicle
  • the arrival time of reaching the corresponding unloading point again and the number of the replaceable batteries at the arrival time determine whether to send the battery replacement reminder to the fourth vehicle.
  • the prediction module is also used to predict the arrival time when the fourth vehicle reaches the corresponding unloading point again based on the current location and remaining power of the fourth vehicle; based on the time from the current time to the In each preset time period before the arrival time, the charging status of vehicles with the charging demand is predicted to predict the number of replaceable batteries at the arrival time; the judgment module is also used to predict the number of replaceable batteries at the arrival time.
  • the reminder module is caused to send the battery replacement reminder to the fourth vehicle.
  • the present application also provides a power swap station applied in a closed scenario.
  • the power swap station includes any one of the power swap dispatching systems described above.
  • the power swap station including any one of the power swap dispatching systems described above and used in a closed scenario has all the advantages and technical effects of the power swap dispatch system, which will not be described again here.
  • Figure 4 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 410, a communications interface (Communications Interface) 420, a memory (memory) 430 and a communication bus 440.
  • the processor 410, the communication interface 420, and the memory 430 complete communication with each other through the communication bus 440.
  • the processor 410 can call logical instructions in the memory 430 to execute a power swap scheduling method for power swap scheduling of vehicles operating in a closed scene, which includes fixed power swap stations.
  • the method It includes: obtaining the current position and remaining power of each vehicle; based on the current position and remaining power of each vehicle, predicting the predicted remaining power of each vehicle when it reaches the corresponding unloading point; based on the predicted remaining power, judging the Whether there is a need for battery swapping in each vehicle; sending a battery swapping reminder to vehicles with the said need for battery swapping.
  • the above-mentioned logical instructions in the memory 430 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions.
  • the program instructions When the program instructions are read by a computer, When executed, the computer can execute a power swap scheduling method provided by each of the above methods, which is used for power swap scheduling of vehicles operating in a closed scene.
  • the closed scene includes a fixed power swap station.
  • the method includes: obtaining The current position and remaining power of each vehicle; based on the current position and remaining power of each vehicle, predict the predicted remaining power of each vehicle when it reaches the corresponding unloading point; based on the predicted remaining power, determine whether each vehicle There is a need for power exchange; a power exchange reminder is sent to vehicles with the need for power exchange.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by the processor, it implements a power exchange scheduling method for vehicles operating in a closed scene.
  • Power swap scheduling of vehicles The closed scene includes a fixed power swap station.
  • the method includes: obtaining the current location and remaining power of each vehicle; and predicting the current location and remaining power of each vehicle based on the current location and remaining power of each vehicle. The predicted remaining power when reaching the corresponding unloading point; based on the predicted remaining power, determine whether each vehicle has a need for power exchange; and send a power exchange reminder to the vehicle with the need for power exchange.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种换电调度方法、***及换电站,用于在封闭场景中运转的车辆的换电调度,且封闭场景中包含有固定的换电站,其中方法包括:获取各车的当前位置和剩余电量;基于各车的当前位置和剩余电量,预测各车到达对应的卸料点的预测剩余电量;基于预测剩余电量,判断各车是否存在换电需求;向有换电需求的车辆发送换电提醒。本方法用以解决现有技术中针对在封闭运转环境中车辆的换电调度,仍采用人工判断的方式,容易造成的对车辆换电时机掌握不准确的缺陷,实现基于车辆的预测剩余电量,对车辆的换电提醒和调度,有效保证了车辆换电的及时性。

Description

换电调度方法、***及换电站
相关申请的交叉引用
本申请要求于2022年06月02日提交的申请号为202210626451.0,发明名称为“换电调度方法、***及换电站”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及换电调度技术领域,尤其涉及一种换电调度方法、***及换电站。
背景技术
随着环境保护形势的日益严峻,越来越多的车辆转为利用电池进行驱动,然而,电动车辆的使用虽然避免了环境污染,但是需要充电或换电。
目前,对于矿山、港口、码头等封闭运转环境,一般是设置固定的换电站,然后使往返于采料点和卸料点间的运输车辆,在电量较低时,能够去往换电站进行换电。然而,针对当前的封闭运转环境,还没有较为合理的调度方式,一般还是基于作业人员的主观意愿来决定什么时候取换电站进行换电,这会使得因换电不及时或对电池电量错误判断,造成车辆在运输途中电池电量不足,进而使得车辆在运输途中无法动作,对作业效率造成影响。
发明内容
本申请提供一种换电调度方法、***及换电站,用以解决现有技术中针对在封闭运转环境中车辆的换电调度,仍采用人工判断的方式,容易造成的对车辆换电时机掌握不准确的缺陷,实现基于车辆的预测剩余电量,对车辆的换电提醒和调度,有效保证了车辆换电的及时性。
本申请提供一种换电调度方法,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,所述方法包括:
获取各车的当前位置和剩余电量;
基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;
基于所述预测剩余电量,判断所述各车是否存在换电需求;
向有所述换电需求的车辆发送换电提醒。
根据本申请所述的换电调度方法,所述基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量,包括:
获取所述各车距离对应的采料点的距离,作为第一距离;
基于所述第一距离和预设第一距离阈值间的关系,判断所述各车是否为第一车辆,所述第一车辆为位于相应的所述采样点预设范围的车辆;
获取所述第一车辆的装载状态;
基于所述第一车辆的剩余电量和装载状态,预测得到所述第一车辆到达相应的所述卸料点的预测剩余电量。
根据本申请所述的换电调度方法,所述基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量,还包括:
获取所述各车距离对应的所述卸料点的距离,作为第二距离;
根据所述第二距离和预设第二距离阈值间的关系,判断所述各车是否为第二车辆,所述第二车辆为位于对应的所述卸料点预设范围的车辆;
获取所述第二车辆的装载状态;
基于所述第二车辆的所述剩余电量和装载状态,预测得到所述第二车辆到达相应的所述卸料点的预测剩余电量。
根据本申请所述的换电调度方法,所述向有所述换电需求的车辆发送换电提醒前,还包括:
获取所述换电站内的可换电电池的数量;
判断所述可换电电池的数量是否大于或等于有所述换电需求的车辆的数量;
若是,向有所述换电需求的车辆发送所述换电提醒;
若否,向满足优先级条件的有所述换电需求的车辆发送所述换电提醒。
根据本申请所述的换电调度方法,还包括:
基于所述预测剩余电量构建包含所述各车的优先级序列;
所述向满足优先级条件的有所述换电需求的车辆发送所述换电提醒, 包括:
基于有所述换电需求的车辆在所述优先级序列中的优先级,确定出与所述可换电电池的数量相匹配的有所述换电需求的车辆,作为满足所述优先级条件的待提醒车辆;
向所述待提醒车辆发送所述换电提醒。
根据本申请所述的换电调度方法,所述基于所述预测剩余电量构建包含所述各车的优先级序列,包括:
当所述各车的所述预测剩余电量均不同时,按照所述预测剩余电量由少至多的顺序,构建包含所述各车的优先级序列;
当所述各车中有所述预测剩余电量相同的车辆时,按照所述预测剩余电量相同的车辆在单位时长内的耗电量由多至少的顺序,构建包含所述各车的优先级序列。
根据本申请所述的换电调度方法,还包括:
基于所述预测剩余电量,预测所述第三车辆由对应的所述卸料点经对应的所述采料点,再次到达对应的所述卸料点的剩余电量;所述第三车辆为除有所述换电需求的车辆外的其他所述各车;
基于所述第三车辆再次到达对应的所述卸料点的剩余电量,从所述第三车辆中筛选出第四车辆;所述第四车辆为再次到达对应的所述卸料点后有所述换电需求的车辆;
基于所述第四车辆再次到达对应的所述卸料点的到达时刻,以及在所述到达时刻所述可换电电池的数量,确定是否向所述第四车辆发送所述换电提醒。
根据本申请所述的换电调度方法,所述基于所述第四车辆再次到达对应的所述卸料点的到达时刻,以及在所述到达时刻所述可换电电池的数量,确定是否向所述第四车辆发送所述换电提醒前,包括:
基于所述第四车辆的当前位置和剩余电量,预测所述第四车辆再次到达对应的所述卸料点的所述到达时刻;
基于从当前时刻到所述到达时刻之前的各预设时长周期内,有所述充电需求的车辆的充电情况,预测在所述到达时刻所述可换电电池的数量;
当在所述到达时刻所述可换电电池的数量小于所述第四车辆的数量时, 向所述第四车辆发送所述换电提醒。
本申请还提供一种换电调度***,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,包括:
获取模块,用于获取各车的当前位置和剩余电量;
预测模块,用于基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;
判断模块,用于基于所述预测剩余电量,判断所述各车是否存在换电需求;
提醒模块,用于向有所述换电需求的车辆发送换电提醒。
根据本申请所述的换电调度***,还包括:
存储模块,用于存储所述各车的配置信息;
所述配置信息包括:采料点位置、卸料点位置、车辆装载时长、单次空载时长、单次空载里程、单次空载耗电量、单次满载时长、单次满载里程,以及单次满载耗电量。
根据本申请所述的换电调度***,还包括:
显示模块,用于按照所述各车的优先级顺序显示所述各车的状态信息;
所述状态信息至少包括:当前位置、车牌号、剩余电量、预测剩余电量、换电提醒信息,以及优先级。
本申请还提供一种在封闭场景中应用的换电站,所述换电站包括如上述任一种所述的换电调度***。
本申请还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述的换电调度方法。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述的换电调度方法。
本申请提供的一种换电调度方法、***及换电站,通过获取在封闭场景中运转的各车的当前位置和剩余电量,然后基于各车的当前位置和剩余电量,预测各车到达对应的卸料点的预测剩余电量,最后向基于预测剩余电量确定的存在换电需求的车辆发送换电提醒。基于预测得到的各车到达 对应的卸料点后的剩余电量,来判断各车是否存在换电需求,不仅充分考虑了车辆在封闭场景下需要在空载状态下才能进行换电的问题,也提高了对车辆换电时机判断的准确性,从而避免了因人工预判所容易造成的换电操作不及时,保证了封闭场景下的作业效率,即达到车辆最优运营。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的一种换电调度方法的流程示意图;
图2是采用本申请提供的换电调度方法与提示界面进行结合,进行封闭场景下的车辆的自动调度的流程示意图;
图3是本申请提供的一种换电调度***的结构示意图;
图4是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,封闭场景指矿山、港口、码头等封闭运转环境,封闭场景中设置有固定的一个或多个换电站,车辆在封闭场景中往返于预先规定的采料点和卸料点之间,用于物料的搬运。其中,可以理解的是,换电站一般设置在采料点和卸料点之间,且车辆仅能在空载状态下进行换电。
下面结合图1和图2描述本申请的一种换电调度方法,基于云端控制器和/或其中的软件或硬件执行,如图1所示,本申请实施例所述的换电调度方法用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,所述方法包括以下步骤:
101、获取各车的当前位置和剩余电量;
可以理解的是,车辆的当前位置和剩余电量是车辆在当前时刻的状态参数,为了基于车辆的当前位置和剩余电量,还需获知采料点位置、卸料点位置、车辆耗电量等车辆的配置信息,因而,在本申请实施例所述的换电调度方法中,用于执行换电调度方法的云端控制器中应该存储由各车的配置信息,且为了保证配置信息的准确性,应该设置配置信息实时更新或周期性更新。
102、基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;
具体地,在封闭场景下,车辆沿预先规定的路径往返于采料点和卸料点之间,在获取了车辆的当前位置后,就能知道车辆距离对应的卸料点的距离,进而根据车辆行驶单位长度的耗电量,以及车辆的剩余电量,就能预测出车辆由当前位置行驶到卸料点所需要消耗的电量,进而得到车辆到达对应的卸料点的预测剩余电量。
进一步地,车辆在满载状态下行驶的耗电量显然要大于在空载状态下行驶的耗电量,因而为了提高得到的预测剩余电量的准确性,还可以进一步获取车辆的装载状态,进而预测车辆在相应装载状态下到达卸料点的预测剩余电量。
103、基于所述预测剩余电量,判断所述各车是否存在换电需求;
104、向有所述换电需求的车辆发送换电提醒。
具体地,在获知了车辆到达卸料点的预测剩余电量后,根据车辆往返于采料点至卸料点所需耗费的电量,就能判断针对车辆当前的预测剩余电量是否还能支撑其往返一次采料点和卸料点,当预测剩余电量不足以支撑车辆再往返一次采料点和卸料点时,则说明需要对车辆进行换电,即确定出各车是否存在换电需求。
更具体地,通过对有换电需求的车辆发送换电提醒,能够及时提醒驾驶员前往换电站进行电池更换,从而避免了车辆因电量不足在运输途中停止的现象,进而保证了在封闭场景下的作业效率。
可以理解的是,换电站一般设置于采料点和卸料点之间,当车辆已经经过了换电站而距离采料点较近时,如果因为换电而需要使车辆折返,则在很大程度上造成了电量的浪费,较为合理的方式应该是判断已经经过换 电站去往采料点的车辆,在到达采料点进行装载,并返回卸料点后,是否需要换电,从而有效避免电量的浪费。
基于此,在本申请的一种实施例中,所述基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量,包括:
获取所述各车距离对应的采料点的距离,作为第一距离;
基于所述第一距离和预设第一距离阈值间的关系,判断所述各车是否为第一车辆,所述第一车辆为位于相应的所述采样点预设范围的车辆;
获取所述第一车辆的装载状态;
基于所述第一车辆的剩余电量和装载状态,预测得到所述第一车辆到达相应的所述卸料点的预测剩余电量。
具体地,通过合理设置第一距离阈值,能够由各车中筛选出在采料点预设范围,即位于采样点附近的车辆,然后基于在采料点附近的车辆的装载状态,就能判断车辆是去往采料点装料,还是已经装料后准备去往采料点,之后结合车辆的装载时长、空载耗电量以及满载耗电量等,基于车辆的当前位置和剩余电量,就能预测出车辆到达相应的卸料点的预测剩余电量。从而避免了车辆在已经到达采料点附近,还需空载折返至换电站进行换电所造成的电量浪费。
作为本申请的一种实施例,所述基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量,还包括:
获取所述各车距离对应的所述卸料点的距离,作为第二距离;
根据所述第二距离和预设第二距离阈值间的关系,判断所述各车是否为第二车辆,所述第二车辆为位于对应的所述卸料点预设范围的车辆;
获取所述第二车辆的装载状态;
基于所述第二车辆的所述剩余电量和装载状态,预测得到所述第二车辆到达相应的所述卸料点的预测剩余电量。
具体地,通过合理设置第二距离阈值,能够由各车中筛选出在卸料点预设范围,即卸料点附近的车辆,然后基于在卸料点附近的车辆的装载状态,就能判断车辆是已经卸料还是正准备卸料,之后结合车辆的装载时长、空载耗电量以及满载耗电量等,基于车辆的当前位置和剩余电量,就能预测出车辆到达卸料点的预测剩余电量。从而提高对在卸料点附近的车辆的 预测剩余电量的预测的准确度。
更具体地,通过仅对在采料点附近和卸料点附近的车辆的到达对应卸料点后的预测剩余电量进行预测,避免了对封闭场景内所有车辆进行预测的麻烦,有效降低了数据处理量,提高了处理效率。
进一步地,本申请实施例所述的换电调度方法,优选以预设的周期来获取各车的当前位置和剩余电量,例如:5秒、8秒,10秒等,然后基于通过当前位置和剩余电量预测得到的到达相应卸料点的预测剩余电量,来确定存在换电需求的车辆,实现通过较短的时长周期的设置,来达到保证针对封闭场景内所有的车辆的剩余电量和当前位置来得到准确的预测剩余电量,并避免既不位于采料点附近,也不位于卸料附近的车辆因电量不足而造成无法运行的现象的发生。
作为本申请的一种实施例,所述向有所述换电需求的车辆发送换电提醒前,还包括:
获取所述换电站内的可换电电池的数量;
判断所述可换电电池的数量是否大于或等于有所述换电需求的车辆的数量;
若是,向有所述换电需求的车辆发送所述换电提醒;
若否,向满足优先级条件的有所述换电需求的车辆发送所述换电提醒。
具体地,换电站内虽然配置有较多数量的站备电池,但是随着车辆不断换电,以及站备电池充电所需要的耗时,使得当前时刻能够用于换电的可换电电池的数量并不一定能够满足所有有换电需求的车辆,因而,在预测车辆有换电需求后,基于换电站内电池情况和需要换电的车辆的优先级,选择性地对车辆进行换电提醒,不仅提高了电池的利用率,还避免了换电站内车辆的拥挤。
更具体地,所述换电站内的可换电池的数量可以基于电池电量和时间段,分段进行统计。例如可分为大于等于95%电量的电池数量,大于等于80%并小于95%电量的电池数量,小于80%电量的电池数量,即基于三段电量在各时间段统计电池数量。
进一步地,对于有换电需求的车辆的优先级,可以基于车辆在到达对应的卸料点后的预测剩余电量进行排列,即预测剩余电量越少的车辆的优 先级越高,从而保证剩余电量较少的车辆能够换电。
作为本申请的一种实施例,所述的换电调度方法还包括:
基于所述预测剩余电量构建包含所述各车的优先级序列;
所述向满足优先级条件的有所述换电需求的车辆发送所述换电提醒,包括:
基于有所述换电需求的车辆在所述优先级序列中的优先级,确定出与所述可换电电池的数量相匹配的有所述换电需求的车辆,作为满足所述优先级条件的待提醒车辆;
向所述待提醒车辆发送所述换电提醒。
具体地,预测剩余电量越少的车辆越需要及时换电,从而保证车辆的正常工作。通过基于预测剩余电量构建各车的优先级序列,能够在优先级序列中将各车按照需要换电的紧迫程度进行排序,从而便于更具换电需求的紧迫程度进行换电提醒的安排。
更具体地,向与可换电电池的数量匹配的车辆发送换电提醒,避免了换电站车辆的拥堵。
进一步地,在对满足优先级条件的车辆进行换电提醒后,还可以针对接受了换电提醒的车辆进行进一步地追踪,即对于接受了换电提醒而未去到换电站进行换电的车辆,将其优先级自动排后,然后向在优先级序列中下一顺的车辆发送换电提醒,进而最终使换电站与封闭场景内的车辆达到运行通畅,并提高了电池以及车辆的利用率。
作为本申请的一种实施例,所述基于所述预测剩余电量构建包含所述各车的优先级序列,包括:
当所述各车的所述预测剩余电量均不同时,按照所述预测剩余电量由少至多的顺序,构建包含所述各车的优先级序列;
当所述各车中有所述预测剩余电量相同的车辆时,按照所述预测剩余电量相同的车辆在单位时长内的耗电量由多至少的顺序,构建包含所述各车的优先级序列。
具体地,各车的预测剩余电量能够反应各车在到达对应卸料点的剩余电量,进而用于判断车辆在到达卸料点后是继续去往对应的采料点材料,还是去往换电站换电,因而,基于各车的预测剩余电量由少至多构建各车 的优先级序列,与车辆的换电需求程度相匹配。
更进一步地,因为封闭场景中存在的车辆数量很多,很可能会出现预测剩余电量相同的车辆,然而,在单位时长内耗电量越大的车辆,在进行运输时,所消耗的电量也越快,因而,对于预测剩余电量相同的车辆,基于车辆在单位时长内的耗电量由多至少的顺序确定优先级顺序,也能够与车辆的换电需求程度相匹配。
作为本申请的一种实施例,所述的换电调度方法还包括:
基于所述预测剩余电量,预测所述第三车辆由对应的所述卸料点经对应的所述采料点,再次到达对应的所述卸料点的剩余电量;所述第三车辆为除有所述换电需求的车辆外的其他所述各车;
基于所述第三车辆再次到达对应的所述卸料点的剩余电量,从所述第三车辆中筛选出第四车辆;所述第四车辆为再次到达对应的所述卸料点后有所述换电需求的车辆;
基于所述第四车辆再次到达对应的所述卸料点的到达时刻,以及在所述到达时刻所述可换电电池的数量,确定是否向所述第四车辆发送所述换电提醒。
具体地,基于本申请实施例所述的换电调度方法,确定的存在换电需求的车辆为基于当前剩余电量到达对应的卸料点后,预测剩余电量不够车辆再进行一次材料运输的车辆,然而,对于到达卸料点后,还能够进行一次材料运输的车辆,也就是第三车辆来说,如果经过再一次的材料运输后,很可能需要进行换电。可以理解的是,对于再经过再一次的材料运输而需要换电的车辆,也就是第四车辆来说,一方面,如果在其到达时刻,没有可提供的可换电电池,则在到达时刻后,第四车辆不能再进行材料运输,而需要在换电站等待换电。另一方面,如果在第四车辆进行再一次的材料运输前,换电站有能够使第四车辆换电的可换电电池,则相对于第四车辆再进行一次材料运输后,到换电站等待换电,在进行再一次材料运输前,即前往换电站进行换电,更利于提高电池和车辆的利用率,并避免因第四车辆排队造成的换电站拥堵。
更具体地,在本申请实施例所述的换电调度方法中,对于第四车辆,在到达时刻时,可换电电池的数量不足时,在第四车辆进行再一次材料运 输前,向第四车辆发送换电提醒,而在换电电池的数量充足时,在第四车辆进行再一次材料运输后,向第四车辆发送换电提醒。
作为本申请的一种实施例,所述基于所述第四车辆再次到达对应的所述卸料点的到达时刻,以及在所述到达时刻所述可换电电池的数量,确定是否向所述第四车辆发送所述换电提醒前,包括:
基于所述第四车辆的当前位置和剩余电量,预测所述第四车辆再次到达对应的所述卸料点的所述到达时刻;
基于从当前时刻到所述到达时刻之前的各预设时长周期内,有所述充电需求的车辆的充电情况,预测在所述到达时刻所述可换电电池的数量;
当在所述到达时刻所述可换电电池的数量小于所述第四车辆的数量时,向所述第四车辆发送所述换电提醒。
具体地,通过以预设时长周期为单位,基于当前预设时长周期前的有充电需求的车辆的充电情况,能够预测后续各预设时长周期内的可换电电池的数量,进而在第四车辆的到达时刻,预测的可换电电池的数量小于第四车辆的数量时,在当前时刻即向第四车辆发送换电提醒,从而避免第四车辆在到达到达时刻时再去换电,因换电站可换电电池数量不足所造成的换电站拥堵。
更具体地,可以理解的是,在当前时刻向第四车辆发送换电提醒的前提不仅包括在到达时刻预测可充电电池的数量不足,还应该包括在当前时刻,可充电电池在满足有充电需求的车辆后,还有空闲的可充电电池,从而避免在当前时刻,因可换电电池数量不足,所造成的换电站拥堵。
本申请上述实施例所述的换电调度方法,首先通过获取各车的当前位置(例如:经纬度)和剩余电量,然后基于当前位置和剩余电量,结合预先存储的各车对应的采料点位置、卸料点位置、满载耗电量、空载耗电量、车辆装载时长、单次空载里程、单次满载里程等各车的配置信息,预测各车到达对应的卸料点的预测剩余电量,然后基于预测剩余电量判断各车是否具有换电需求,以及当前没有换电需求的车辆再进行一次材料运输后是否具有换电需求,最后结合换电站内可换电电池的数量,以及各车的优先级,向有换电需求的车辆发送换电提醒,实现基于车辆到云端,再到站控的传输数据,以及由站控到云端,再到车端的数据反馈能力,实现对车辆 运营及换电工序进行自动推送,并对一些具有相同推送(如需要换电或无需换电)的车辆排列出优先级梯队,对于接受推送但不执行的车辆将优先级自动排后,最终可使整体换电站与换电运营车辆达到运行通畅,利用率高的效果。
进一步地,还可以基于本申请上述实施例所述的换电调度方法,设置换电调度提示界面,并在提示界面上依据有换电需求的车辆的优先级顺序将各车以列表的形式进行如表1所示的显示,其中,具体可以包括各车优先级、所在位置点、车牌号、当前电量,预计到达卸料点的电量,预计可跑趟数、预计到达卸料点的时间、预计再次到达卸料点的时间,是否发出换电提醒,以及换电提醒的内容,等等,其中,考虑到车辆路线可能改表,预计可跑趟数在大于或等于一次时,统一显示为1。从而使得用户基于提示界面能够对各车的情况进行直观的了解,有利于人工对应用本申请实施例所述的换电调度方法的各车的调度进行调整。
表1各车情况列表
Figure PCTCN2022119519-appb-000001
Figure PCTCN2022119519-appb-000002
具体地,采用本申请上述实施例所述的换电调度方法与提示界面进行结合,进行在矿山、港口、码头等封闭运转环境下的车辆的自动调度时,主要包括如图2所示的以下步骤:
201、调度开始;
202、加载各车的配置信息;
203、获取各车的当前位置和剩余电量;
204、判断各车是否为在采料点预设范围的第一车辆;若是,进入步骤205;若否,进入步骤207;
205、预测第一车辆到达对应的卸料点的时刻和预测剩余电量;
206、基于第一车辆的预测剩余电量和到达对应卸料点的时刻更新提示界面的列表;
207、判断各车是否为在卸料点预设范围的第二车辆;若是,进入步骤208;若否,进入步骤214;
208、预测第二车辆到达对应的卸料点的时刻和预测剩余电量;
209、基于第二车辆的预测剩余电量和到达对应卸料点的时刻更新提示界面的列表;
210、基于列表中各车的信息,判断各车是否有换电需求;若是,进入步骤211;若否,进入步骤214;
211、判断可充电电池数量是否充足;若是,进入步骤212;若否,进入步骤213;
212、发出换电提醒;
213、判断有充电需求的车辆是否满足优先级条件;若是,进入返回步骤212;若否,进入步骤214;
214、结束调度。
更具体地,基于表1,能够得到如表2所示,包含各车车牌号、各车再次到达对应卸料点的时间,各车的当前电量以及首次到达卸料点的预测剩余电量一目了然,然后基于对表2所示数据的分析,就能得到在各个预设时长周期内,对于表2以每20分钟为例,可换电电池的数量,如表3所 示,从而基于各预设时长周期内可换电电池的数量来对车辆选择性的发送换电提醒。
表2可换电电池数量分析表
Figure PCTCN2022119519-appb-000003
表3各预设时长周期内的可换电电池数量
Figure PCTCN2022119519-appb-000004
下面对本申请提供的一种换电调度***进行描述,下文描述的一种换电调度***与上文描述的一种换电调度方法可相互对应参照。
本申请提供的一种换电调度***如图3所示,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,包括:获取模块310、预测模块320、判断模块330和提醒模块340;其中,
所述获取模块310用于获取各车的当前位置和剩余电量;
所述预测模块320用于基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;
所述判断模块330用于基于所述预测剩余电量,判断所述各车是否存在换电需求;
所述提醒模块340用于向有所述换电需求的车辆发送换电提醒。
本申请实施例所述的换电调度***,通过获取在封闭场景中运转的各车的当前位置和剩余电量,然后基于各车的当前位置和剩余电量,预测各 车到达对应的卸料点的预测剩余电量,最后向基于预测剩余电量确定的存在换电需求的车辆发送换电提醒。基于预测得到的各车到达对应的卸料点后的剩余电量,来判断各车是否存在换电需求,不仅充分考虑了车辆在封闭场景下需要在空载状态下才能进行换电的问题,也提高了对车辆换电时机判断的准确性,从而避免了因人工预判所容易造成的换电操作不及时,保证了封闭场景下的作业效率。
作为本申请的一种实施例,所述的换电调度***还包括:
存储模块,用于存储所述各车的配置信息;
所述配置信息包括:采料点位置、卸料点位置、车辆装载时长、单次空载时长、单次空载里程、单次空载耗电量、单次满载时长、单次满载里程,以及单次满载耗电量。
具体地,预测模块基于由获取模块和存储模块获取的各车的信息,来预测各车到达对应卸料点的预测剩余电量。
作为本申请的一种实施例,所述的换电调度***还包括:
显示模块,用于按照所述各车的优先级顺序显示所述各车的状态信息;
所述状态信息至少包括:当前位置、车牌号、剩余电量、预测剩余电量、换电提醒信息,以及优先级。
具体地,通过显示模块的设置,使得用户能够对各车的信息进行直观的了解,同时,该显示模块优选为人机交互界面,从而便于人工对所述换电调度***的调度进行调整和控制。
作为优选的,所述获取模块还用于获取所述各车距离对应的采料点的距离,作为第一距离,以及获取所述第一车辆的装载状态;所述判断模块还用于基于所述第一距离和预设第一距离阈值间的关系,判断所述各车是否为第一车辆,所述第一车辆为位于相应的所述采样点预设范围的车辆;所述预测模块还用于基于所述第一车辆的剩余电量和装载状态,预测得到所述第一车辆到达相应的所述卸料点的预测剩余电量。
作为优选的,所述获取模块还用于获取所述各车距离对应的所述卸料点的距离,作为第二距离,以及获取所述第二车辆的装载状态;所述判断模块还用于根据所述第二距离和预设第二距离阈值间的关系,判断所述各车是否为第二车辆,所述第二车辆为位于对应的所述卸料点预设范围的车 辆;所述预测模块还用于基于所述第二车辆的所述剩余电量和装载状态,预测得到所述第二车辆到达相应的所述卸料点的预测剩余电量。
进一步地,所述获取模块还用于获取所述换电站内的可换电电池的数量;所述判断模块还用于判断所述可换电电池的数量是否大于或等于有所述换电需求的车辆的数量;并在数量大于或等于有换电需求的车辆的数量时,向有所述换电需求的车辆发送所述换电提醒;而在数量小于有换电需求的车辆的数量时,向满足优先级条件的有所述换电需求的车辆发送所述换电提醒。
作为优选的,所述换电调度***中还包括:构建模块;
所述构建模块用于基于所述预测剩余电量构建包含所述各车的优先级序列;
所述判断模块还用于基于有所述换电需求的车辆在所述优先级序列中的优先级,确定出与所述可换电电池的数量相匹配的有所述换电需求的车辆,作为满足所述优先级条件的待提醒车辆;所述提醒模块还用于向所述待提醒车辆发送所述换电提醒。
进一步优选的是,所述构建模块在所述各车的所述预测剩余电量均不同时,按照所述预测剩余电量由少至多的顺序,构建包含所述各车的优先级序列;在所述各车中有所述预测剩余电量相同的车辆时,按照所述预测剩余电量相同的车辆在单位时长内的耗电量由多至少的顺序,构建包含所述各车的优先级序列。
更进一步优选的是,所述预测模块还用于基于所述预测剩余电量,预测所述第三车辆由对应的所述卸料点经对应的所述采料点,再次到达对应的所述卸料点的剩余电量;所述第三车辆为除有所述换电需求的车辆外的其他所述各车;所述判断模块还用于基于所述第三车辆再次到达对应的所述卸料点的剩余电量,从所述第三车辆中筛选出第四车辆;所述第四车辆为再次到达对应的所述卸料点后有所述换电需求的车辆;以及基于所述第四车辆再次到达对应的所述卸料点的到达时刻,以及在所述到达时刻所述可换电电池的数量,确定是否向所述第四车辆发送所述换电提醒。
另外,所述预测模块还用于基于所述第四车辆的当前位置和剩余电量,预测所述第四车辆再次到达对应的所述卸料点的所述到达时刻;基于从当 前时刻到所述到达时刻之前的各预设时长周期内,有所述充电需求的车辆的充电情况,预测在所述到达时刻所述可换电电池的数量;所述判断模块还用于在所述到达时刻所述可换电电池的数量小于所述第四车辆的数量时,使所述提醒模块向所述第四车辆发送所述换电提醒。
本申请还提供一种在封闭场景中应用的换电站,所述换电站包括如上述任一种所述的换电调度***。
可以理解的是,所述包括如上述任一种所述的换电调度***的在封闭场景中应用的换电站,具有所述换电调度***的所有优点和技术效果,此处不再赘述。
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行一种换电调度方法,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,所述方法包括:获取各车的当前位置和剩余电量;基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;基于所述预测剩余电量,判断所述各车是否存在换电需求;向有所述换电需求的车辆发送换电提醒。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序 包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供一种换电调度方法,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,所述方法包括:获取各车的当前位置和剩余电量;基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;基于所述预测剩余电量,判断所述各车是否存在换电需求;向有所述换电需求的车辆发送换电提醒。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现一种换电调度方法,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,所述方法包括:获取各车的当前位置和剩余电量;基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;基于所述预测剩余电量,判断所述各车是否存在换电需求;向有所述换电需求的车辆发送换电提醒。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不 使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种换电调度方法,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,所述方法包括:
    获取各车的当前位置和剩余电量;
    基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;
    基于所述预测剩余电量,判断所述各车是否存在换电需求;
    向有所述换电需求的车辆发送换电提醒。
  2. 根据权利要求1所述的换电调度方法,其中,所述基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量,包括:
    获取所述各车距离对应的采料点的距离,作为第一距离;
    基于所述第一距离和预设第一距离阈值间的关系,判断所述各车是否为第一车辆,所述第一车辆为位于相应的所述采样点预设范围的车辆;
    获取所述第一车辆的装载状态;
    基于所述第一车辆的剩余电量和装载状态,预测得到所述第一车辆到达相应的所述卸料点的预测剩余电量。
  3. 根据权利要求2所述的换电调度方法,其中,所述基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量,还包括:
    获取所述各车距离对应的所述卸料点的距离,作为第二距离;
    根据所述第二距离和预设第二距离阈值间的关系,判断所述各车是否为第二车辆,所述第二车辆为位于对应的所述卸料点预设范围的车辆;
    获取所述第二车辆的装载状态;
    基于所述第二车辆的所述剩余电量和装载状态,预测得到所述第二车辆到达相应的所述卸料点的预测剩余电量。
  4. 根据权利要求1所述的换电调度方法,其中,所述向有所述换电需求的车辆发送换电提醒前,还包括:
    获取所述换电站内的可换电电池的数量;
    判断所述可换电电池的数量是否大于或等于有所述换电需求的车辆的 数量;
    若是,向有所述换电需求的车辆发送所述换电提醒;
    若否,向满足优先级条件的有所述换电需求的车辆发送所述换电提醒。
  5. 根据权利要求4所述的换电调度方法,其中,还包括:
    基于所述预测剩余电量构建包含所述各车的优先级序列;
    所述向满足优先级条件的有所述换电需求的车辆发送所述换电提醒,包括:
    基于有所述换电需求的车辆在所述优先级序列中的优先级,确定出与所述可换电电池的数量相匹配的有所述换电需求的车辆,作为满足所述优先级条件的待提醒车辆;
    向所述待提醒车辆发送所述换电提醒。
  6. 根据权利要求5所述的换电调度方法,其中,所述基于所述预测剩余电量构建包含所述各车的优先级序列,包括:
    当所述各车的所述预测剩余电量均不同时,按照所述预测剩余电量由少至多的顺序,构建包含所述各车的优先级序列;
    当所述各车中有所述预测剩余电量相同的车辆时,按照所述预测剩余电量相同的车辆在单位时长内的耗电量由多至少的顺序,构建包含所述各车的优先级序列。
  7. 根据权利要求4所述的换电调度方法,其中,还包括:
    基于所述预测剩余电量,预测所述第三车辆由对应的所述卸料点经对应的所述采料点,再次到达对应的所述卸料点的剩余电量;所述第三车辆为除有所述换电需求的车辆外的其他所述各车;
    基于所述第三车辆再次到达对应的所述卸料点的剩余电量,从所述第三车辆中筛选出第四车辆;所述第四车辆为再次到达对应的所述卸料点后有所述换电需求的车辆;
    基于所述第四车辆再次到达对应的所述卸料点的到达时刻,以及在所述到达时刻所述可换电电池的数量,确定是否向所述第四车辆发送所述换电提醒。
  8. 根据权利要求7所述的换电调度方法,其中,所述基于所述第四 车辆再次到达对应的所述卸料点的到达时刻,以及在所述到达时刻所述可换电电池的数量,确定是否向所述第四车辆发送所述换电提醒前,包括:
    基于所述第四车辆的当前位置和剩余电量,预测所述第四车辆再次到达对应的所述卸料点的所述到达时刻;
    基于从当前时刻到所述到达时刻之前的各预设时长周期内,有所述充电需求的车辆的充电情况,预测在所述到达时刻所述可换电电池的数量;
    当在所述到达时刻所述可换电电池的数量小于所述第四车辆的数量时,向所述第四车辆发送所述换电提醒。
  9. 一种换电调度***,用于在封闭场景中运转的车辆的换电调度,所述封闭场景中包含有固定的换电站,包括:
    获取模块,用于获取各车的当前位置和剩余电量;
    预测模块,用于基于所述各车的当前位置和剩余电量,预测所述各车到达对应的卸料点的预测剩余电量;
    判断模块,用于基于所述预测剩余电量,判断所述各车是否存在换电需求;
    提醒模块,用于向有所述换电需求的车辆发送换电提醒。
  10. 根据权利要求9所述的换电调度***,还包括:
    存储模块,用于存储所述各车的配置信息;
    所述配置信息包括:采料点位置、卸料点位置、车辆装载时长、单次空载时长、单次空载里程、单次空载耗电量、单次满载时长、单次满载里程,以及单次满载耗电量。
  11. 根据权利要求9所述的换电调度***,还包括:
    显示模块,用于按照所述各车的优先级顺序显示所述各车的状态信息;
    所述状态信息至少包括:当前位置、车牌号、剩余电量、预测剩余电量、换电提醒信息,以及优先级。
  12. 一种换电站,应用在封闭场景中,所述换电站包括如权利要求9至11中任一项所述的换电调度***。
  13. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如权 利要求1至8任一项所述的换电调度方法。
  14. 一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述的换电调度方法。
PCT/CN2022/119519 2022-06-02 2022-09-19 换电调度方法、***及换电站 WO2023231229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210626451.0A CN114954375A (zh) 2022-06-02 2022-06-02 换电调度方法、***及换电站
CN202210626451.0 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023231229A1 true WO2023231229A1 (zh) 2023-12-07

Family

ID=82959291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119519 WO2023231229A1 (zh) 2022-06-02 2022-09-19 换电调度方法、***及换电站

Country Status (2)

Country Link
CN (1) CN114954375A (zh)
WO (1) WO2023231229A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954375A (zh) * 2022-06-02 2022-08-30 三一重型装备有限公司 换电调度方法、***及换电站
CN115848213B (zh) * 2023-02-09 2023-05-12 徐工汉云技术股份有限公司 电动矿卡的换电***、方法及装置
CN116338460B (zh) * 2023-04-11 2024-04-09 宁波禾旭汽车科技有限公司 基于多参数分析的新能源汽车电池余量鉴定***
CN117656922A (zh) * 2023-12-26 2024-03-08 三一重型装备有限公司 换电控制方法、装置、电子设备及车辆
CN118144763B (zh) * 2024-05-08 2024-07-09 三一重型装备有限公司 混动矿车的电平衡控制方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730271A (zh) * 2016-02-03 2016-07-06 武汉天梯极客网络科技有限公司 一种电动车辆更换电池的方法和云管理服务器
DE102016216338A1 (de) * 2016-08-30 2018-03-01 Robert Bosch Gmbh Verfahren zum Betrieb einer Ladevorrichtung
CN107804183A (zh) * 2017-09-11 2018-03-16 李苏安 一种采用活动电池解决电动车续航和充电问题的方法
CN109130944A (zh) * 2018-08-29 2019-01-04 成都信源恒创科技有限公司 一种用于电动汽车的电池资源智能管理***
CN109177804A (zh) * 2018-08-23 2019-01-11 南京信息工程大学 一种基于北斗定位的电动汽车电池更换***
DE102019213772A1 (de) * 2019-09-10 2021-03-11 Robert Bosch Gmbh Verfahren zur Führung von Elektrofahrzeugen
CN114954375A (zh) * 2022-06-02 2022-08-30 三一重型装备有限公司 换电调度方法、***及换电站

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730271A (zh) * 2016-02-03 2016-07-06 武汉天梯极客网络科技有限公司 一种电动车辆更换电池的方法和云管理服务器
DE102016216338A1 (de) * 2016-08-30 2018-03-01 Robert Bosch Gmbh Verfahren zum Betrieb einer Ladevorrichtung
CN107804183A (zh) * 2017-09-11 2018-03-16 李苏安 一种采用活动电池解决电动车续航和充电问题的方法
CN109177804A (zh) * 2018-08-23 2019-01-11 南京信息工程大学 一种基于北斗定位的电动汽车电池更换***
CN109130944A (zh) * 2018-08-29 2019-01-04 成都信源恒创科技有限公司 一种用于电动汽车的电池资源智能管理***
DE102019213772A1 (de) * 2019-09-10 2021-03-11 Robert Bosch Gmbh Verfahren zur Führung von Elektrofahrzeugen
CN114954375A (zh) * 2022-06-02 2022-08-30 三一重型装备有限公司 换电调度方法、***及换电站

Also Published As

Publication number Publication date
CN114954375A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023231229A1 (zh) 换电调度方法、***及换电站
US11453306B2 (en) Enqueuing electric vehicles for improved fleet availability
CN110350609B (zh) Agv的充电管理方法及***、设备和存储介质
Dong et al. Rec: Predictable charging scheduling for electric taxi fleets
WO2021036132A1 (zh) 一种无人驾驶车辆群组的充电调度方法和云管理服务器
CN110549877A (zh) 电动汽车及其充电方法和计算机可读存储介质
CN111463860B (zh) 协作式充电的方法、装置和物流设备
WO2019219027A1 (zh) 车辆混合调度
CN110766249A (zh) 车辆调度方法、装置、计算机设备及存储介质
CN113815481B (zh) 电池包选择方法、装置、电子设备及存储介质
JP2024502428A (ja) バッテリー交換ステーションの推奨方法、システム、電子装置及び記憶媒体
CN112895925A (zh) 车辆充电的方法、装置、电子设备及存储介质
CN114298559A (zh) 换电站的换电方法、换电管理平台及存储介质
CN112862214A (zh) 基于大数据的停车服务推荐方法、装置、介质及服务器
CN107527315B (zh) 提高安排即时响应和预定运输服务时的效率的***和方法
WO2020247750A1 (en) Routing based on vehicle characteristics
WO2022052043A1 (zh) 一种车辆充电的方法和装置
US11679689B2 (en) Electric vehicle charging support system
CN113570094A (zh) 一种换电站服务管理***及方法
CN116142030B (zh) 一种无人驾驶车辆的自动充电方法和***
CN111816939A (zh) 一种电池包维护方法、装置、电子设备和存储介质
CN115663867B (zh) 基于智能充电网络***的电动汽车充电调度方法
KR102522516B1 (ko) 전기버스 배터리를 효율적으로 충전하고 관리하는 시스템 및 방법
CN112669603B (zh) 基于大数据的城市交通协同方法及装置
CN114730445A (zh) 信息处理装置、程序和信息处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944538

Country of ref document: EP

Kind code of ref document: A1