WO2023228787A1 - 研削ウェーハの製造方法及びウェーハの製造方法 - Google Patents

研削ウェーハの製造方法及びウェーハの製造方法 Download PDF

Info

Publication number
WO2023228787A1
WO2023228787A1 PCT/JP2023/017977 JP2023017977W WO2023228787A1 WO 2023228787 A1 WO2023228787 A1 WO 2023228787A1 JP 2023017977 W JP2023017977 W JP 2023017977W WO 2023228787 A1 WO2023228787 A1 WO 2023228787A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
wafer
main surface
grinding
resin layer
Prior art date
Application number
PCT/JP2023/017977
Other languages
English (en)
French (fr)
Inventor
稜 多賀
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2023228787A1 publication Critical patent/WO2023228787A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for manufacturing a ground wafer and a method for manufacturing a wafer.
  • semiconductor wafers have been required to have a flat surface in order to produce fine patterns by photolithography.
  • a technique called nanotopography has been proposed for improving the flatness of semiconductor wafers by reducing surface waviness.
  • Patent Document 1 describes a resin coating step in which the entire surface of one side of a wafer sliced from an ingot is coated with resin, and a process in which one side of the wafer is held and the wafer is A processing process (see FIG. 2) is disclosed that includes the steps of grinding two sides of the wafer, holding the two sides of the wafer, and grinding one side of the wafer.
  • Patent Document 2 discloses that after holding one side of a wafer sliced from an ingot and grinding the second side of the wafer, holding the second side of the wafer and grinding the first side of the wafer. a primary grinding process, a resin coating process that covers the entire second side of the wafer with resin, and a resin coating process that covers the entire second side of the wafer with resin; A processing process is disclosed that includes a step of grinding a first surface of the wafer, removing the resin, and then grinding a second surface of the wafer using one surface of the wafer as a reference surface.
  • Patent Document 3 As a countermeasure, as disclosed in Patent Document 3, a technique has been proposed in which one side of the wafer is coated with resin and then ground, and the process is repeated twice from resin coating to grinding to improve the problem.
  • Patent Document 4 There is also a technique (for example, Patent Document 4) that produces a wafer with even less waviness by repeating the resin bonding and grinding twice in a row.
  • This document describes the following steps: resin pasting ⁇ surface grinding ⁇ resin pasting ⁇ back surface grinding ⁇ surface grinding.
  • the wafer is significantly warped due to the difference in processing damage between the front and back sides, so the resin thickness distribution in the second resin bonding tends to be uneven, and for this reason, after the final grinding, the wafer is warped significantly. It was found that the condition worsened (see Figure 5).
  • ground wafers and mirror-polished wafers not only have good nanotopography but also good long-wavelength waviness as represented by Warp.
  • the present invention was made in order to solve the above problems, and relates to a processing process for semiconductor wafers, particularly a processing process for highly flattening the surface of a raw material wafer, in order to simultaneously improve nanotopography and warp level.
  • An object of the present invention is to provide a method for manufacturing a ground wafer, and a method for manufacturing a wafer that can manufacture a wafer with excellent quality such as flatness.
  • the present invention has been made to achieve the above object, and is a method for manufacturing a ground wafer, which comprises manufacturing a ground wafer by grinding a raw material wafer having a first main surface and a second main surface.
  • a second resin pasting step of forming a resin layer a step of single-sided grinding of the first principal surface without the second resin layer; a second resin layer removing step of peeling off the second resin layer;
  • a method for manufacturing a ground wafer which includes a step of single-sided grinding the main surface.
  • the method for manufacturing a ground wafer may use a wafer obtained by slicing an ingot as the raw material wafer.
  • the method for manufacturing a ground wafer according to the present invention is particularly suitable when such a raw material wafer is used.
  • the surface states of the first main surface and the second main surface are the same as those of the ground wafer after the processing step. It can be a manufacturing method.
  • the present invention also provides a wafer manufacturing method in which the same processing step is performed multiple times on a raw material wafer having a first main surface and a second main surface.
  • the surface state of the second main surface is the same state after the processing process, and the first main surface and the second main surface of the raw material wafer are changed in the odd-numbered processing steps and the even-numbered processing steps.
  • a method for manufacturing a wafer in which processing is performed by exchanging the wafers.
  • wafers with excellent quality such as flatness can be manufactured.
  • the processing step is a step of applying a resin to the first main surface of the raw material wafer, grinding the second main surface on one side, then peeling off the resin, and grinding the first main surface on one side.
  • a certain wafer manufacturing method can be used.
  • nanotopography and warp level can be improved at the same time.
  • the method for manufacturing a ground wafer of the present invention it is possible to improve nanotopography and warp level at the same time. Furthermore, according to the wafer manufacturing method of the present invention, it is possible to manufacture wafers with excellent quality such as flatness.
  • FIG. 2 is a drawing showing a method for manufacturing a ground wafer according to the conventional example described in Patent Document 1, and illustrating a case where the thickness distribution of a resin layer formed by resin bonding is uniform.
  • 2 is a drawing showing a method for manufacturing a ground wafer according to a conventional example and a comparative example 2 described in Patent Document 1, and illustrating a case where the thickness distribution of a resin layer formed by resin bonding is non-uniform.
  • 3 is a drawing showing a method for manufacturing a ground wafer according to the conventional example and comparative example 3 described in Patent Document 3, and illustrating a case where the thickness distribution of a resin layer formed by resin bonding is non-uniform.
  • a method for manufacturing a ground wafer according to the conventional example and comparative example 4 described in Patent Document 4 will be shown.
  • a method for manufacturing a ground wafer which manufactures a ground wafer by grinding a raw material wafer having a first main surface and a second main surface, the method comprising: A first resin applying step of applying resin to the first main surface of the wafer and forming a first resin layer on the first main surface, and a step of single-side grinding the second main surface without the first resin layer. a first resin layer removing step of peeling off the first resin layer; a step of single-sided grinding of the first main surface; applying a resin to the second main surface; and applying a second resin to the second main surface.
  • a step of applying a second resin to form a layer a step of single-sided grinding the first main surface without the second resin layer; a second resin layer removing step of peeling off the second resin layer; and a step of removing the second resin layer.
  • the present invention has been completed based on the discovery that nanotopography and warp level can be improved at the same time by a method for manufacturing a ground wafer that includes a step of single-sided grinding.
  • the present inventors have also provided a method for manufacturing a wafer in which the same processing step is performed multiple times on a raw material wafer having a first main surface and a second main surface.
  • the surface state of the surface and the second main surface are the same after the processing process, and the first main surface and the second main surface of the raw material wafer are changed in the odd-numbered processing steps and the even-numbered processing steps.
  • the inventors have discovered that a wafer with excellent quality such as flatness can be manufactured by a wafer manufacturing method in which processing is performed by exchanging the surfaces, and the present invention has been completed.
  • the wafer manufacturing method according to the present invention is a wafer manufacturing method in which the same processing step is performed multiple times on a raw material wafer having a first main surface and a second main surface.
  • the surface states of the first main surface and the second main surface are the same after the processing process, and the first main surface and the second main surface of the raw material wafer are
  • This is a wafer manufacturing method in which processing is performed by exchanging the wafers. This makes it possible to manufacture wafers with excellent quality such as flatness.
  • This processing process is effective when repeating the same process multiple times, such as a grinding process, a lapping process, a DSP (double-sided polishing) process, and a polishing process.
  • the processing steps include applying a resin to the first main surface of the raw material wafer, grinding the second main surface on one side, and then peeling off the resin.
  • the step is grinding.
  • the present invention provides a method for manufacturing a ground wafer, which manufactures a ground wafer by grinding a raw material wafer having a first main surface and a second main surface, the method comprising: A first resin applying step of applying resin and forming a first resin layer on the first main surface, a step of single-sided grinding of the second main surface without the first resin layer, and a first step of peeling off the first resin layer. A resin layer removing step, a step of single-sided grinding the first main surface, a second resin applying step of applying resin to the second main surface and forming a second resin layer on the second main surface, and a second resin layer.
  • a method for manufacturing a ground wafer which includes the steps of single-side grinding a first main surface free of grains, a second resin layer removal step of peeling off a second resin layer, and one-side grinding of a second main surface.
  • front surface and back surface simply indicate the difference between the surfaces, and they can be distinguished by the expressions “first principal surface” and “second principal surface.”
  • first principal surface and “second principal surface.”
  • the above process is the same even if the process is ⁇ resin bonding on the back surface ⁇ surface grinding ⁇ back surface grinding, then the wafer is reversed, and the process is ⁇ resin bonding on the front surface ⁇ back surface grinding ⁇ surface grinding''.
  • the surface to start processing (the surface to which resin is applied) may be set depending on which surface the device will be formed on and whether the wafer will be reversed in the subsequent process.
  • the first principal surface or the second principal surface is treated as the principal surface.
  • the surface opposite to the odd-numbered machining is treated as the principal surface, thereby canceling out warpage and undulation caused by the machining method.
  • the first main surface and the second main surface are both sliced surfaces when applying the resin the first time, and the first main surface and the second main surface are both ground surfaces when the resin is applied the second time. It is preferable to apply the resin with no difference in damage between the front and back surfaces.
  • the first step is to "stick resin on both sides of the sliced surface ⁇ grind one side of the side without resin ⁇ after peeling off the resin, grind one side of the side where resin was pasted".
  • the second time is ⁇ applying resin with both sides ground, grinding one side of the surface without resin, and then grinding one side of the surface with resin after peeling off the resin.'' This occurs when resin is applied twice in a row: ⁇ Resin application with both sliced surfaces ⁇ surface grinding ⁇ resin application with one side as the sliced surface and the other as the ground surface ⁇ back surface grinding ⁇ surface grinding'' Warpage of the wafer due to differences in processing damage on the front and back surfaces due to differences in surface condition does not occur, and the resin thickness distribution in the second resin bonding process is easily stabilized, resulting in good warp after final grinding.
  • the method and conditions for applying the resin are not particularly limited, but, for example, the following steps are performed.
  • a lower surface plate 1 having a flat surface is prepared.
  • a light-transmitting film 2 that is transparent to ultraviolet light, for example, is laid on the lower surface plate 1.
  • a resin in a plastic state for example, a liquid state, which is a precursor of a resin layer (also referred to as a flattened resin layer), is supplied onto the light-transmitting film 2 and applied.
  • a UV curable resin is used as the resin.
  • the material of the resin is not particularly limited.
  • the second main surface S2 of the raw material wafer W is held by suction on an upper surface plate (not shown). Then, the raw material wafer W in this state is placed on the resin so that the first main surface S1 is in contact with the resin. As a result, resin, which is a precursor of the resin layer, is applied onto the first main surface S1 of the wafer.
  • the resin is cured.
  • the method of curing is not particularly limited, for example, as shown in FIG. 1, the resin can be cured by irradiating UV light from the lower surface plate side through which light can pass. Furthermore, the wafer to which the resin layer and the light-transmitting film 2 are attached is removed from the upper surface plate and the lower surface plate, and the removed wafer is irradiated with UV light from the light-transparent film side to harden the resin. can. Note that the curing process for the resin is changed depending on the material of the resin. When photo-curing treatment is not performed, the installation of a light-transmitting film can be omitted. Through this curing treatment, a wafer with a resin layer 3 is obtained.
  • the chuck table 5 is made of porous ceramic, for example, and can hold a wafer by vacuum suction. Furthermore, the chuck table 5 has a function of adjusting the axial angle of the wafer with respect to the grinding means.
  • the means for suctioning and holding the wafer is not particularly limited.
  • the light-transmitting film is in contact with the chuck table 5
  • the light-transmitting film has a smaller thickness than the thickness of the wafer and the resin layer, and does not interfere with suction and holding.
  • the second main surface S2 of the wafer which is held by suction, is ground as a first process.
  • the means for grinding is not particularly limited.
  • the first processed wafer W is released from the chuck table 5.
  • the resin layer 3 and the light-transmitting film 2 are removed from the wafer. This results in a wafer with one side processed.
  • the obtained wafer has a first processed second main surface S2 and a first main surface S1 opposite to the second main surface.
  • the previously obtained wafer is turned over so that the first main surface S1 faces upward, and the second main surface S2, which has undergone the first processing, is held by suction on the chuck table 5.
  • This adsorption causes the wafer to be elastically deformed.
  • the first processed second main surface S2 is also elastically deformed to become a second main surface S2 that follows the surface of the chuck table 5.
  • the first main surface S1 becomes the first main surface S1 that is elastically deformed and displaced downward.
  • the first main surface S1 of the wafer which is thus suctioned and held, is ground as a second process.
  • the first principal surface S1 is ground using the grinding wheel 4 as a grinding means.
  • the process from the resin pasting process to the grinding process is a series of processing processes, and in the present invention, this processing process is performed multiple times (an even number of times).
  • this processing process is performed multiple times (an even number of times).
  • the main surface is different in the odd-numbered machining process and the even-numbered machining process.
  • the above resin application is performed on the first main surface S1, but if resin application is performed on the first main surface S1 in the first (odd numbered) processing process, then the second (even numbered) processing process In the processing process, resin is applied to the second main surface S2. In this way, when repeating the same process, by reversing the surfaces to be treated, it is possible to cancel the warpage caused by the processing process.
  • the wafer was held by suction on a ceramic surface plate (upper surface plate), and was pressed and bonded to the resin. Pressure control was performed by driving a servo motor that held the ceramic surface plate, and applying pressure until a predetermined load was detected.
  • a UV-LED with a wavelength of 365 nm was used as a light source for curing the resin.
  • Comparative Example 1 back surface grinding and surface grinding were performed without resin pasting. The grinding process was performed under the above processing conditions.
  • Comparative Example 4 as shown in FIG. Grinding ⁇ backside grinding was performed continuously. That is, after grinding the back surface, the resin was peeled off and then the resin was pasted on the back surface. In addition, after surface grinding, the resin was peeled off, and then back surface grinding was performed. The resin pasting process and the grinding process were performed under the above processing conditions.
  • Comparative Example 2 nanotopography was improved by resin bonding and grinding, but Warp deteriorated. This is because the resin thickness distribution was non-uniform and warpage was created by resin bonding and grinding.
  • the front surface of the wafer is a sliced surface, and the back surface is a ground surface, and the processing damage on the front and back surfaces is different. For this reason, the wafer becomes greatly warped due to the difference in processing damage between the front and back sides.
  • both Warp and nanotopography reached the target values.
  • both sides of the wafer are processed into ground surfaces, so there is no warping of the wafer due to damage, and in the second processing, resin is applied to a different surface than the first, so resin-based grinding is possible. I was able to cancel the warpage created by this method.
  • the resin application conditions (resin type, amount of resin dripped, press load, press speed, press load distribution, etc.) will vary and the resin thickness distribution will become uneven. It was found that the warp of the wafer after grinding is stable even when the grinding process is performed. In this way, a wafer with good warp and good nanotopography (NT) can be manufactured.
  • a method for manufacturing a ground wafer which manufactures a ground wafer by grinding a raw material wafer having a first main surface and a second main surface, A first resin pasting step of applying resin to the first main surface of the raw material wafer and forming a first resin layer on the first main surface; a step of single-sided grinding the second main surface without the first resin layer; a first resin layer removing step of peeling off the first resin layer; a step of single-sided grinding the first main surface; A second resin applying step of applying resin to the second main surface and forming a second resin layer on the second main surface; a step of single-sided grinding the first main surface without the second resin layer; a second resin layer removal step of peeling off the second resin layer; A method for manufacturing a ground wafer, comprising the step of single-sided grinding the second main surface.
  • [2] The method for manufacturing a ground wafer according to [1] above, characterized in that a wafer obtained by slicing an ingot is used as the raw material wafer.
  • the first main surface and the second main surface are The surface states of the two main surfaces are in the same state after the processing process, and the first main surface and the second main surface of the raw material wafer are exchanged in the odd-numbered processing steps and the even-numbered processing steps.
  • a method for manufacturing a wafer characterized in that processing is performed using a wafer.
  • the processing step is a step of applying a resin to the first main surface of the raw material wafer, grinding the second main surface on one side, then peeling off the resin, and grinding the first main surface on one side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

本発明は、第1主面と第2主面とを有する原料ウェーハを研削して研削ウェーハを製造する研削ウェーハの製造方法であって、前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第1主面に第1樹脂層を形成する第1樹脂貼り工程と、前記第1樹脂層の無い前記第2主面を片面研削する工程と、前記第1樹脂層を剥離する第1樹脂層除去工程と、前記第1主面を片面研削する工程と、前記第2主面に樹脂貼りを行い、前記第2主面に第2樹脂層を形成する第2樹脂貼り工程と、前記第2樹脂層の無い前記第1主面を片面研削する工程と、前記第2樹脂層を剥離する第2樹脂層除去工程と、前記第2主面を片面研削する工程とを含む研削ウェーハの製造方法である。これにより、ナノトポグラフィー及びWarpレベルを同時に良好にするための研削ウェーハの製造方法、並びに、平坦度等の品質に優れたウェーハを製造することが可能なウェーハの製造方法を提供する。

Description

研削ウェーハの製造方法及びウェーハの製造方法
 本発明は、研削ウェーハの製造方法及びウェーハの製造方法に関する。
 従来、半導体ウェーハは、微細なパターンを写真製版により作製するために、ウェーハの表面の平坦化が求められていた。特にナノトポグラフィーと呼ばれる表面うねりを低減することで半導体ウェーハの平坦度を向上させるための技術が提案されている。
 このようなウェーハの平坦化加工方法として、例えば特許文献1には、インゴットからスライスされたウェーハの一の面の面全面を樹脂で覆う樹脂塗布工程と、ウェーハの一の面を保持し、ウェーハの二の面を研削した後、ウェーハの二の面を保持し、ウェーハの一の面を研削する工程とを含む加工プロセス(図2参照)が開示されている。
 また、例えば特許文献2には、インゴットからスライスされたウェーハの一の面を保持し、ウェーハの二の面を研削した後、ウェーハの二の面を保持し、ウェーハの一の面を研削する一次研削工程と、一次研削工程に続いてウェーハの二の面全面を樹脂で覆う樹脂塗布工程と、この樹脂塗布工程に続いてウェーハの二の面を基準面として保持し、ウェーハの一の面を研削し、樹脂を取り除いた後にウェーハの一の面を基準面としてウェーハの二の面を研削する工程とを含む加工プロセスが開示されている。
特開平08-066850号公報 特開2011-249652号公報 特開2009-148866号公報 国際公開第2019/163017号
 スライス工程において、切断後のウェーハ表面に発生するうねりが大きい場合、ナノトポグラフィーが悪化する問題があった。
 対策として、特許文献3にあるように、ウェーハの片面に樹脂を被覆して研削する加工方法で、樹脂貼り→研削を2回繰り返すことで改善する技術が提案されている。
 特許文献1に示される従来方法では、樹脂貼り条件(樹脂種類や樹脂滴下量、プレス荷重、プレス速度、プレス荷重分布等)が適切でない場合、樹脂厚さ分布が不均一になり、研削加工後のウェーハの反り(Warp)が悪化する問題があった(図3参照)。
 特に、特許文献3の技術では、同じ面に樹脂貼りを行っているため、樹脂厚さ分布が不均一である場合、Warpを悪化させてしまうという問題があった(図4参照)。
 また、上記樹脂貼り研削を2回連続で繰り返すことで、さらにうねりの少ないウェーハを作製する技術(例えば特許文献4)もある。この文献では、樹脂貼り→表面研削→樹脂貼り→裏面研削→表面研削が示されている。しかし、1回目の樹脂貼り研削後は加工ダメージの表裏差に起因してウェーハが大きく反るため、樹脂貼り2回目の樹脂厚さ分布は不均一となりやすく、このため、最終的な研削後Warpは悪化してしまうことが分かった(図5参照)。
 研削ウェーハや鏡面研磨ウェーハは、ナノトポグラフィーが良好であることだけでなく、Warpに代表される長波長のうねりも良好であることが好ましい。
 本発明は、上記問題を解決するためになされたものであり、半導体ウェーハの加工プロセス、特に、原料ウェーハの表面を高平坦化する加工プロセスに関し、ナノトポグラフィー及びWarpレベルを同時に良好にするための研削ウェーハの製造方法、並びに、平坦度等の品質に優れたウェーハを製造することが可能なウェーハの製造方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、第1主面と第2主面とを有する原料ウェーハを研削して研削ウェーハを製造する研削ウェーハの製造方法であって、前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第1主面に第1樹脂層を形成する第1樹脂貼り工程と、前記第1樹脂層の無い前記第2主面を片面研削する工程と、前記第1樹脂層を剥離する第1樹脂層除去工程と、前記第1主面を片面研削する工程と、前記第2主面に樹脂貼りを行い、前記第2主面に第2樹脂層を形成する第2樹脂貼り工程と、前記第2樹脂層の無い前記第1主面を片面研削する工程と、前記第2樹脂層を剥離する第2樹脂層除去工程と、前記第2主面を片面研削する工程とを含む研削ウェーハの製造方法を提供する。
 このような研削ウェーハの製造方法によれば、ナノトポグラフィー及びWarpレベルを同時に良好にすることができる。
 このとき、前記原料ウェーハとしてインゴットをスライスした後のウェーハを用いる研削ウェーハの製造方法とすることができる。
 本発明に係る研削ウェーハの製造方法は、特にこのような原料ウェーハを用いる場合に好適である。
 このとき、前記第1樹脂貼り工程及び前記第2樹脂貼り工程を行う際には、前記第1主面及び前記第2主面の面状態が、同一の加工工程後の状態で行う研削ウェーハの製造方法とすることができる。
 これにより、より効果的にナノトポグラフィー及びWarpレベルを同時に良好にすることができる。
 本発明は、また、第1主面と第2主面とを有する原料ウェーハに対して同じ加工工程を複数回実施するウェーハの製造方法において、前記加工工程を行う際の前記第1主面及び前記第2主面の面状態を同一の加工工程後の状態とし、奇数回目の前記加工工程と、偶数回目の前記加工工程で、前記原料ウェーハの前記第1主面と前記第2主面とを入れ替えて加工を行うウェーハの製造方法を提供する。
 このようなウェーハの製造方法によれば、平坦度等の品質に優れたウェーハを製造することができる。
 このとき、前記加工工程が、前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第2主面を片面研削し、その後樹脂を剥離し、前記第1主面を片面研削する工程であるウェーハの製造方法とすることができる。
 これにより、ナノトポグラフィー及びWarpレベルを同時に良好にすることができる。
 以上のように、本発明の研削ウェーハの製造方法によれば、ナノトポグラフィー及びWarpレベルを同時に良好にすることが可能となる。また、本発明のウェーハの製造方法によれば、平坦度等の品質に優れたウェーハを製造することが可能となる。
本発明に係る研削ウェーハの製造方法の一例を示す。 特許文献1に記載の従来例に係る研削ウェーハの製造方法を示し、樹脂貼りで形成した樹脂層の厚さ分布が均一な場合について説明する図面である。 特許文献1に記載の従来例及び比較例2に係る研削ウェーハの製造方法を示し、樹脂貼りで形成した樹脂層の厚さ分布が不均一な場合について説明する図面である。 特許文献3に記載の従来例及び比較例3に係る研削ウェーハの製造方法を示し、樹脂貼りで形成した樹脂層の厚さ分布が不均一な場合について説明する図面である。 特許文献4に記載の従来例及び比較例4に係る研削ウェーハの製造方法を示す。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、ナノトポグラフィー及びWarpレベルを同時に良好にするための研削ウェーハの製造方法、並びに、平坦度等の品質に優れたウェーハを製造することが可能なウェーハの製造方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、第1主面と第2主面とを有する原料ウェーハを研削して研削ウェーハを製造する研削ウェーハの製造方法であって、前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第1主面に第1樹脂層を形成する第1樹脂貼り工程と、前記第1樹脂層の無い前記第2主面を片面研削する工程と、前記第1樹脂層を剥離する第1樹脂層除去工程と、前記第1主面を片面研削する工程と、前記第2主面に樹脂貼りを行い、前記第2主面に第2樹脂層を形成する第2樹脂貼り工程と、前記第2樹脂層の無い前記第1主面を片面研削する工程と、前記第2樹脂層を剥離する第2樹脂層除去工程と、前記第2主面を片面研削する工程とを含む研削ウェーハの製造方法により、ナノトポグラフィー及びWarpレベルを同時に良好にすることができることを見出し、本発明を完成した。
 本発明者らは、また、第1主面と第2主面とを有する原料ウェーハに対して同じ加工工程を複数回実施するウェーハの製造方法において、前記加工工程を行う際の前記第1主面及び前記第2主面の面状態を同一の加工工程後の状態とし、奇数回目の前記加工工程と、偶数回目の前記加工工程で、前記原料ウェーハの前記第1主面と前記第2主面とを入れ替えて加工を行うウェーハの製造方法により、平坦度等の品質に優れたウェーハを製造することができることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 本発明では、同じ加工工程を複数回(偶数回)実施するウェーハの製造方法において、奇数回目の加工工程では一方の面を主面として扱い加工し、偶数回目の加工工程では、他方の面を主面として扱い加工することで加工による反りの作り込みをキャンセルできることを見出した。すなわち、本発明に係るウェーハの製造方法は、第1主面と第2主面とを有する原料ウェーハに対して同じ加工工程を複数回実施するウェーハの製造方法において、加工工程を行う際の前記第1主面及び前記第2主面の面状態を同一の加工工程後の状態とし、奇数回目の加工工程と、偶数回目の加工工程で、原料ウェーハの第1主面と第2主面とを入れ替えて加工を行うウェーハの製造方法である。これにより、平坦度等の品質に優れたウェーハを製造することが可能となる。この加工工程は、例えば、研削工程、ラッピング工程、DSP(両面研磨)工程、研磨工程などで、同じ工程を複数回繰り返す場合に効果的である。
 特に本発明に係るウェーハの製造方法では、上記加工工程が、原料ウェーハの第1主面に樹脂貼りを行い、第2主面を片面研削し、その後樹脂を剥離し、第1主面を片面研削する工程であることが好ましい。
 より具体的には、本発明は、第1主面と第2主面とを有する原料ウェーハを研削して研削ウェーハを製造する研削ウェーハの製造方法であって、原料ウェーハの第1主面に樹脂貼りを行い、第1主面に第1樹脂層を形成する第1樹脂貼り工程と、第1樹脂層の無い第2主面を片面研削する工程と、第1樹脂層を剥離する第1樹脂層除去工程と、第1主面を片面研削する工程と、第2主面に樹脂貼りを行い、第2主面に第2樹脂層を形成する第2樹脂貼り工程と、第2樹脂層の無い第1主面を片面研削する工程と、第2樹脂層を剥離する第2樹脂層除去工程と、第2主面を片面研削する工程とを含む研削ウェーハの製造方法を提供する。
 例えば、「表面樹脂貼り→裏面研削→表面研削の加工」を2回繰り返す場合、「表面樹脂貼り→裏面研削→表面研削の加工後に、ウェーハを反転させて、裏面樹脂貼り→表面研削→裏面研削の加工」を行う。これにより、樹脂貼り加工による反りの作り込みをキャンセルできることを見出した。
 なお、表面、裏面の表記は単に面の違いを示しており、第1主面、第2主面という表現で区別することができる。上記工程が、「裏面樹脂貼り→表面研削→裏面研削の加工後に、ウェーハを反転させて、表面樹脂貼り→裏面研削→表面研削」の加工でも同様である。どちらの面にデバイスを形成するか及びその後の工程でウェーハ反転などを行うかにより、加工初めの面(樹脂貼する面)を設定すれば良い。
 本発明では、例えば、ウェーハの表面を第1主面、ウェーハの裏面を第2主面とした場合に、奇数回目の加工では、第1主面又は第2主面を主面として扱い加工し、偶数回目の加工では、奇数回目とは反対の面(第2主面又は第1主面)を主面として扱い加工することで、加工方法による反りやうねりの作り込みを打ち消すことができる。
 より具体的には図1に示すように、原料ウェーハWの第1主面S1に第1樹脂層を形成する第1樹脂貼り工程→樹脂の無い第2主面S2を片面研削する工程→第1樹脂層を除去(剥離)する第1樹脂層除去工程→樹脂(第1樹脂層)が貼ってあった第1主面S1を片面研削する工程の後、1回目とは異なる面である第2主面S2に樹脂貼りをする第2樹脂貼り工程→樹脂の無い第1主面S1を片面研削する工程→第2樹脂層を除去(剥離)する第2樹脂層除去工程→樹脂(第2樹脂層)が貼ってあった第2主面S2を片面研削する工程を行えば、樹脂貼りなどによる加工のばらつきが相殺され、ナノトポグラフィーが良好であることだけでなく、Warpに代表される長波長のうねりも良好なウェーハが加工可能となる。
 このように「樹脂貼り→樹脂の無い面を片面研削→樹脂を除去(剥離)後、樹脂が貼ってあった面を片面研削」する一連の工程を2回実施する際に、2回目(偶数回目)は1回目(奇数回目)とは異なる面に樹脂貼りをすることで、樹脂貼り条件(樹脂種類や樹脂滴下量、プレス荷重、プレス速度、プレス荷重分布等)がばらつき、樹脂厚さ分布が不均一になった場合でも、研削加工後のウェーハの反り(Warp)が安定することが分かった。このように同じ加工プロセスを繰り返す場合に効果がある。
 特に、樹脂貼りする際には、第1主面S1及び第2主面S2の面状態を揃えておくことが好ましい。例えば、1回目は樹脂貼りする際に、第1主面及び第2主面ともスライス面、2回目は、樹脂貼りする際に、第1主面及び第2主面とも研削面などにする。表裏のダメージ差などをなくした状態で樹脂貼りすることが好ましい。
 つまり、スライス後のウェーハを加工する場合、1回目の「両面スライス面状態での樹脂貼り→樹脂の無い面を片面研削→樹脂を剥離後、樹脂が貼ってあった面を片面研削」することにより両面とも研削面にしておくことで、2回目は「両面研削面状態での樹脂貼り→樹脂の無い面を片面研削→樹脂を剥離後、樹脂が貼ってあった面を片面研削」する。これにより「両面スライス面状態での樹脂貼り→表面研削→一方がスライス面、他方が研削面の面状態での樹脂貼り→裏面研削→表面研削」と2回連続で樹脂貼りを行った時に生じる面状態の違いによる加工ダメージの表裏差に起因したウェーハの反りが発生することなく、樹脂貼り2回目の樹脂厚さ分布も安定しやすく最終的な研削後Warpは良好となる。
 樹脂貼り方法及び条件としては、特に限定するものではないが、例えば、下記のようなステップで実施される。
 (樹脂貼り工程)
 図1を参照しながら説明する。初めに平坦な面を有する下定盤1を準備する。この下定盤1上に、例えば紫外光に透明な光透過性フィルム2を敷く。次いで、光透過性フィルム2上に、樹脂層(平坦化樹脂層ともいう)の前駆体である、可塑状態、例えば液状の樹脂を供給し、塗布する。樹脂としてUV硬化性樹脂を用いている。ただし、樹脂の材料は特に限定されない。
 次に、原料ウェーハWの第2主面S2を上定盤(不図示)に吸着保持させる。そして、この状態の原料ウェーハWを、第1主面S1が樹脂に接するようにこの樹脂上に載せる。これにより、ウェーハの第1主面S1上に、樹脂層の前駆体である樹脂が塗布される。
 次いで、樹脂の面が平坦となるように上定盤を用いて、所定荷重で押圧する。この際の押圧を調整することにより、樹脂の厚さのばらつきを調整することができる。適切な押圧をすることにより、樹脂を適切に押し広げることができ、適切な樹脂厚さ分布を有する樹脂層を得ることができる。
 次に、樹脂を硬化させる。硬化させる方法は特に限定されないが、例えば、図1に示されるように光を透過可能な下定盤側からUV光を照射し、樹脂を硬化させることができる。また、上定盤及び下定盤から、樹脂層及び光透過性フィルム2が取り付けられたウェーハを取り外し、取り外したウェーハに対し、光透過性フィルム側からUV光を照射し、樹脂を硬化させることができる。なお、樹脂の硬化処理は、樹脂の材料に応じて変更する。光硬化処理を行わない場合は、光透過性フィルムの敷設を省略することができる。この硬化処理により、樹脂層3付きのウェーハが得られる。
 (片面研削工程)
 次に、表裏面加工が実施される。つまり、以上のようにして得られた樹脂層3付きウェーハを、樹脂層3の平坦面を基準面として、研削装置のチャックテーブル5に吸着保持させる。このチャックテーブル5は、例えば多孔質セラミック製であり、ウェーハを真空吸着して保持することができる。また、チャックテーブル5は、研削手段に対するウェーハの軸角度を調整する機能が備わっている。ただし、本発明において、ウェーハを吸着保持する手段は、特に限定されない。
 なお、光透過性フィルムがチャックテーブル5に接しているが、光透過性フィルムは、ウェーハ及び樹脂層の厚さに比べて小さな厚さを有しており、吸着保持を阻害することはない。
 次に、吸着保持された状態のウェーハの第2主面S2を、第一加工として、研削する。研削ホイール4を用いて研削する例を示すが、研削する手段は特に限定されない。
 (樹脂層除去工程)
 次に、第一加工したウェーハWをチャックテーブル5から解放する。次いで、ウェーハから、樹脂層3及び光透過性フィルム2を除去する。これにより、片面が加工されたウェーハが得られる。得られたウェーハは、第一加工した第2主面S2、及び第2主面と反対側の第1主面S1を有する。
 (片面研削工程)
 次に、先に得られたウェーハを、第1主面S1が上向きになるように反転させ、第一加工した第2主面S2をチャックテーブル5に吸着保持させる。この吸着で、ウェーハは弾性変形する。この際、第一加工した第2主面S2も、弾性変形して、チャックテーブル5の表面に追随した第2主面S2となる。一方、第1主面S1は、弾性変形して下方に変位した第1主面S1となる。
 次に、このようにして吸着保持した状態のウェーハの第1主面S1を、第二加工として、研削する。研削手段として研削ホイール4を用いて、第1主面S1を研削する。
 以上、樹脂貼り工程から研削工程までを一連の加工プロセスとし、本発明ではこの加工プロセスを複数回(偶数回)実施する。その際、奇数回目の加工プロセスと偶数回目の加工プロセスでは、主面とする面を異なる面とする。
 つまり、上記の樹脂貼りは第1主面S1に対して実施しているが、初め(奇数回目)の加工プロセスで第1主面S1に樹脂貼りを実施した場合、2回目(偶数回目)の加工プロセスでは第2主面S2に樹脂貼りを実施する。このように同じプロセスを繰り返す場合に扱う面を逆にすることで加工プロセスによる反りの作り込みをキャンセルできる。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 [実験内容]
 (樹脂貼り加工条件)
 原料ウェーハとしては、スライス後に面取り加工した直径300mmのP型Si単結晶ウェーハを用いた。被覆物としてUV硬化性樹脂、上記フィルムとしてPETフィルムを用いた。平坦なガラス定盤(下定盤)にPETフィルムを敷き、そのPETフィルム上にUV硬化性樹脂を10ml滴下した。
 ウェーハをセラミック定盤(上定盤)に吸着保持し、上記樹脂に押し当てて接着した。押圧制御は、セラミック定盤を保持するサーボモータで駆動させ、所定荷重を検出するまで加圧した。樹脂硬化用の光源としては波長365nmのUV-LEDを用いた。
 (研削加工条件)
 研削加工には、研削ホイールとしてダイヤ砥粒が結合されたものを用いた。被覆物側を真空吸着し、研削加工を行った。チャックテーブルの軸角度を調整することで、ウェーハ厚さばらつきが1μm以下となるように調整を行った。
 比較例1は、樹脂貼りなしで、裏面研削及び表面研削を実施した。研削加工は、上記加工条件の通りである。
 比較例2は図3に示すように、「表面樹脂貼り→裏面研削→表面研削」として樹脂貼り研削を1回のみ実施した。なお、裏面研削後に樹脂を剥離した後、表面研削を実施した。樹脂貼り加工及び研削加工は、上記加工条件の通りである。
 比較例3は図4に示すように、「表面樹脂貼り→裏面研削→表面研削→表面樹脂貼り→裏面研削→表面研削」として、同じ工程を2回繰り返し実施した。なお、2回とも裏面研削後は樹脂を剥離した後、表面研削を行った(同じ面に樹脂貼りを実施)。樹脂貼り加工及び研削加工は、上記加工条件の通りである。
 比較例4は図5に示すように、まずウェーハを反転させた後(この場合、最終研削面の裏面が上面(裏上)となる)、「表面樹脂貼り→裏面研削→裏面樹脂貼り→表面研削→裏面研削」として、樹脂貼り研削を連続して実施した。つまり、裏面研削後は樹脂を剥離した後、裏面樹脂貼りを行った。また、表面研削後は樹脂を剥離した後、裏面研削を実施した。樹脂貼り加工及び研削加工は、上記加工条件の通りである。
 実施例は図1に示すように行った。まずウェーハを反転させた後(この場合、最終研削面の裏面が上面(裏上)となる)、「表面樹脂貼り→裏面研削→表面研削後、ウェーハを反転し裏面樹脂貼り→表面研削→裏面研削」として、同じ工程を2回繰り返しているが、2回目は1回目と異なる面に樹脂貼りした。樹脂貼り加工及び研削加工は、上記加工条件の通りである。
 なお、各比較例、実施例とも、その後の評価を行うため、得られたウェーハについて同条件にて両面研磨及び上面を片面研磨し鏡面研磨加工を行った。これらの鏡面研磨は一般的に行われる条件で実施した。
 (測定及び結果)
 Warp及びナノトポグラフィーの測定には、光学干渉式の平坦度・ナノトポグラフィー測定装置(KLA社製:WaferSight2+)を用いた。ナノトポグラフィーの指標としては、SQMM10mm×10mmを使用した。実施例及び比較例で実施した工程と、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1では、Warpは目標値に達したが、樹脂貼りなしで研削を実施したため、ナノトポグラフィーが不良となった。
 比較例2では、樹脂貼り研削によりナノトポグラフィーが改善したが、Warpが悪化した。これは、樹脂厚さ分布が不均一であったため、樹脂貼り研削により反りを作りこんだためである。
 比較例3では、比較例2よりもナノトポグラフィーがより改善したが、Warpは悪化した。Warpがさらに悪化した原因は、樹脂厚さ分布が不均一な状態で、樹脂貼り研削を2回繰り返したことで、反りをさらに作りこんだためである。
 比較例4では、比較例2よりもナノトポグラフィーがより改善したが、Warpは悪化した。
 1回目の樹脂貼り研削(表面樹脂貼り→裏面研削)後のウェーハの表面はスライス面、裏面は研削面であり、表裏面の加工ダメージが異なっている。このため、加工ダメージの表裏差起因で、ウェーハが大きく反った状態となる。
 この表面がスライス面、裏面が研削面で、大きく反ったウェーハに対し2回目の樹脂貼り加工を行うと、1回目の樹脂厚さ分布とは著しく異なった樹脂厚さ分布となる。このため、2回目の樹脂貼り研削(裏面樹脂貼り→表面研削→裏面研削)後のWarpが悪化した(原料ウェーハのWarpの10倍以上に悪化することがあった)。
 実施例では、Warp、ナノトポグラフィーともに目標値に達した。特に1回目の加工プロセスで、ウェーハ両面とも研削面に加工しているため、ダメージ起因のウェーハのソリはなく、また2回目は1回目とは異なる面に樹脂貼りをすることで、樹脂貼り研削によって作りこむ反りをキャンセルすることができた。
 以上のとおり、本発明の実施例によれば、「樹脂貼り→樹脂の無い面を片面研削→樹脂を剥離→樹脂が貼ってあった面を片面研削」する工程を2回実施する際に、2回目は1回目とは異なる面に樹脂貼りをすることで、樹脂貼り条件(樹脂種類や樹脂滴下量、プレス荷重、プレス速度、プレス荷重分布等)がばらつき樹脂厚さ分布が不均一になった場合でも、研削加工後のウェーハの反り(Warp)が安定することが分かった。このように、Warpが良好でかつナノトポグラフィー(NT)も良好なウェーハを作製できる。
 本明細書は、以下の態様を包含する。
 [1]: 第1主面と第2主面とを有する原料ウェーハを研削して研削ウェーハを製造する研削ウェーハの製造方法であって、
 前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第1主面に第1樹脂層を形成する第1樹脂貼り工程と、
 前記第1樹脂層の無い前記第2主面を片面研削する工程と、
 前記第1樹脂層を剥離する第1樹脂層除去工程と、
 前記第1主面を片面研削する工程と、
 前記第2主面に樹脂貼りを行い、前記第2主面に第2樹脂層を形成する第2樹脂貼り工程と、
 前記第2樹脂層の無い前記第1主面を片面研削する工程と、
 前記第2樹脂層を剥離する第2樹脂層除去工程と、
 前記第2主面を片面研削する工程とを含むことを特徴とする研削ウェーハの製造方法。
 [2]:前記原料ウェーハとしてインゴットをスライスした後のウェーハを用いることを特徴とする上記[1]の研削ウェーハの製造方法。
 [3]:前記第1樹脂貼り工程及び前記第2樹脂貼り工程を行う際には、前記第1主面及び前記第2主面の面状態が、同一の加工工程後の状態で行うことを特徴とする上記[1]又は上記[2]の研削ウェーハの製造方法。
 [4]: 第1主面と第2主面とを有する原料ウェーハに対して同じ加工工程を複数回実施するウェーハの製造方法において、前記加工工程を行う際の前記第1主面及び前記第2主面の面状態を同一の加工工程後の状態とし、奇数回目の前記加工工程と、偶数回目の前記加工工程で、前記原料ウェーハの前記第1主面と前記第2主面とを入れ替えて加工を行うことを特徴とするウェーハの製造方法。
 [5]:前記加工工程が、前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第2主面を片面研削し、その後樹脂を剥離し、前記第1主面を片面研削する工程であることを特徴とする上記[4]のウェーハの製造方法。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  第1主面と第2主面とを有する原料ウェーハを研削して研削ウェーハを製造する研削ウェーハの製造方法であって、
     前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第1主面に第1樹脂層を形成する第1樹脂貼り工程と、
     前記第1樹脂層の無い前記第2主面を片面研削する工程と、
     前記第1樹脂層を剥離する第1樹脂層除去工程と、
     前記第1主面を片面研削する工程と、
     前記第2主面に樹脂貼りを行い、前記第2主面に第2樹脂層を形成する第2樹脂貼り工程と、
     前記第2樹脂層の無い前記第1主面を片面研削する工程と、
     前記第2樹脂層を剥離する第2樹脂層除去工程と、
     前記第2主面を片面研削する工程とを含むことを特徴とする研削ウェーハの製造方法。
  2.  前記原料ウェーハとしてインゴットをスライスした後のウェーハを用いることを特徴とする請求項1に記載の研削ウェーハの製造方法。
  3.  前記第1樹脂貼り工程及び前記第2樹脂貼り工程を行う際には、前記第1主面及び前記第2主面の面状態が、同一の加工工程後の状態で行うことを特徴とする請求項1に記載の研削ウェーハの製造方法。
  4.  前記第1樹脂貼り工程及び前記第2樹脂貼り工程を行う際には、前記第1主面及び前記第2主面の面状態が、同一の加工工程後の状態で行うことを特徴とする請求項2に記載の研削ウェーハの製造方法。
  5.  第1主面と第2主面とを有する原料ウェーハに対して同じ加工工程を複数回実施するウェーハの製造方法において、前記加工工程を行う際の前記第1主面及び前記第2主面の面状態を同一の加工工程後の状態とし、奇数回目の前記加工工程と、偶数回目の前記加工工程で、前記原料ウェーハの前記第1主面と前記第2主面とを入れ替えて加工を行うことを特徴とするウェーハの製造方法。
  6.  前記加工工程が、前記原料ウェーハの前記第1主面に樹脂貼りを行い、前記第2主面を片面研削し、その後樹脂を剥離し、前記第1主面を片面研削する工程であることを特徴とする請求項5に記載のウェーハの製造方法。
PCT/JP2023/017977 2022-05-23 2023-05-12 研削ウェーハの製造方法及びウェーハの製造方法 WO2023228787A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022083790A JP2023172169A (ja) 2022-05-23 2022-05-23 研削ウェーハの製造方法及びウェーハの製造方法
JP2022-083790 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228787A1 true WO2023228787A1 (ja) 2023-11-30

Family

ID=88919211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017977 WO2023228787A1 (ja) 2022-05-23 2023-05-12 研削ウェーハの製造方法及びウェーハの製造方法

Country Status (3)

Country Link
JP (1) JP2023172169A (ja)
TW (1) TW202403863A (ja)
WO (1) WO2023228787A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866850A (ja) * 1994-08-29 1996-03-12 Shin Etsu Handotai Co Ltd ワークの平面研削方法及び装置
JPH10180599A (ja) * 1996-12-26 1998-07-07 Shin Etsu Handotai Co Ltd 薄板ワーク平面研削装置及び方法
JP2015008247A (ja) * 2013-06-26 2015-01-15 株式会社Sumco 半導体ウェーハの加工プロセス
WO2019163017A1 (ja) * 2018-02-21 2019-08-29 株式会社Sumco ウェーハの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866850A (ja) * 1994-08-29 1996-03-12 Shin Etsu Handotai Co Ltd ワークの平面研削方法及び装置
JPH10180599A (ja) * 1996-12-26 1998-07-07 Shin Etsu Handotai Co Ltd 薄板ワーク平面研削装置及び方法
JP2015008247A (ja) * 2013-06-26 2015-01-15 株式会社Sumco 半導体ウェーハの加工プロセス
WO2019163017A1 (ja) * 2018-02-21 2019-08-29 株式会社Sumco ウェーハの製造方法

Also Published As

Publication number Publication date
JP2023172169A (ja) 2023-12-06
TW202403863A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP3620554B2 (ja) 半導体ウェーハ製造方法
JP6187579B2 (ja) 半導体ウェーハの加工方法
JP3846706B2 (ja) ウエーハ外周面取部の研磨方法及び研磨装置
JP3925580B2 (ja) ウェーハ加工装置および加工方法
KR100504098B1 (ko) 실리콘 반도체웨이퍼 및 다수 반도체웨이퍼의 제조방법
JP6111893B2 (ja) 半導体ウェーハの加工プロセス
JP6878676B2 (ja) ウェーハの製造方法
JP6252098B2 (ja) 角形金型用基板
KR101994782B1 (ko) 경면연마 웨이퍼의 제조방법
JPH0997775A (ja) 半導体鏡面ウェーハの製造方法
TWI615893B (zh) 半導體晶圓之加工方法
WO2021235067A1 (ja) 基板ウェーハの製造方法、及び基板ウェーハ
JPH10223580A (ja) 片面がコーティングおよび仕上げされた半導体ウエハの製造方法
WO2023228787A1 (ja) 研削ウェーハの製造方法及びウェーハの製造方法
US20130149941A1 (en) Method Of Machining Semiconductor Substrate And Apparatus For Machining Semiconductor Substrate
JPH07201789A (ja) 化合物半導体ウェハの両面ラッピング方法
WO2022234714A1 (ja) ウェーハの製造方法
KR101249857B1 (ko) 실리콘 웨이퍼 제조 방법
JP2002110594A (ja) ウェーハの表面研磨方法
JP2004330399A (ja) 基板の両面研磨方法および両面研磨用ガイドリングならびに基板の両面研磨装置
JP2004255541A (ja) 半導体ウエハ製造方法
JP2001121414A (ja) 半導体ウエーハの研削方法および平面研削装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811661

Country of ref document: EP

Kind code of ref document: A1