WO2023228417A1 - Heat dissipation structure for semiconductor device - Google Patents

Heat dissipation structure for semiconductor device Download PDF

Info

Publication number
WO2023228417A1
WO2023228417A1 PCT/JP2022/021789 JP2022021789W WO2023228417A1 WO 2023228417 A1 WO2023228417 A1 WO 2023228417A1 JP 2022021789 W JP2022021789 W JP 2022021789W WO 2023228417 A1 WO2023228417 A1 WO 2023228417A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation structure
semiconductor device
semiconductor
refrigerant
Prior art date
Application number
PCT/JP2022/021789
Other languages
French (fr)
Japanese (ja)
Inventor
隆文 大島
拓真 白頭
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/021789 priority Critical patent/WO2023228417A1/en
Publication of WO2023228417A1 publication Critical patent/WO2023228417A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a heat dissipation structure for a semiconductor device.
  • Patent Document 1 describes a heat generating component including a semiconductor element, a cooling fin connected to the heat generating component to cool the heat generating component, and an exposed surface of the cooling fin on the opposite side to the heat generating component.
  • a laminate is constructed by stacking a plurality of units molded with the molded resin part as one unit, and the refrigerant flow path is configured in the laminate, and the refrigerant is In the flow path, the refrigerant flows between the adjacent units, and between the adjacent units, the exposed surface of the cooling fin in one unit and the exposed surface of the cooling fin in the other unit are arranged.
  • the surfaces are semiconductor modules that are arranged to face each other and come into contact with the refrigerant, and the heat generating component and the cooling fin are mechanically and electrically connected by metal bonding,
  • An electrically insulating insulating plate is provided between the exposed surface of the cooling fin in the one unit and the exposed surface of the cooling fin in the other unit, and the refrigerant is electrically insulated.
  • a semiconductor module is disclosed which is characterized in that it has the following characteristics.
  • a heat dissipation structure for a semiconductor device includes a semiconductor module having a conductive heat dissipation body in which a plurality of heat dissipation fins are formed, and a semiconductor element electrically connected to the heat dissipation body.
  • a flow path forming body having a refrigerant flow path space for circulating a refrigerant and having an opening connected to the refrigerant flow path space blocked by the semiconductor module;
  • An electrically insulating filling member is provided between the inner surface of the flow path forming body and the plurality of radiation fins and in contact with the tips of the plurality of radiation fins.
  • heat dissipation performance can be improved.
  • FIG. 1 is an external perspective view of the power conversion device 1.
  • the power conversion device 1 includes a flow path forming body 2 and three semiconductor modules 3.
  • the power converter 1 mutually converts DC power and AC power.
  • the flow path forming body 2 includes a refrigerant path inlet 21 and a refrigerant path outlet 22.
  • cooling water flows into the refrigerant path inlet 21 from the outside, and is discharged to the outside from the refrigerant path outlet 22.
  • Each of the semiconductor modules 3 processes power of each phase of UVW.
  • the configurations of the three semiconductor modules 3 are the same.
  • the refrigerant flowing inside the flow path forming body 2 is oil having electrical insulation properties, such as ATF (Automatic Transmission Fluid).
  • FIG. 2 is an exploded perspective view of the power conversion device 1. However, in FIG. 2, only two semiconductor modules 3 are shown, and one is shown upside down. In the upside-down semiconductor module 3 shown in the lower right corner of FIG. 2, it can be seen that a large number of heat dissipation fins, which will be described later, are lined up.
  • the flow path forming body 2 includes three individual refrigerant paths 23.
  • the three individual refrigerant passages 23 are connected by a connecting refrigerant passage 24 shown by a broken line. That is, the refrigerant flowing in from the refrigerant path inlet 21 passes through each of the communicating refrigerant paths 24 and the three individual refrigerant paths 23 in order, and reaches the refrigerant path outlet 22 .
  • Each individual refrigerant passage 23 includes an opening 29 and an outer peripheral edge 27 surrounding the opening 29 .
  • the individual refrigerant path 23 will also be referred to as a "refrigerant flow path space.”
  • Each semiconductor module 3 is inserted into the opening 29 of one of the individual refrigerant paths 23. That is, the power conversion device 1 includes three sets of semiconductor modules 3 and individual refrigerant paths 23.
  • a bottom sealing material 25 is disposed at the bottom of each individual refrigerant passage 23, and a peripheral sealing material 26 is disposed around each individual refrigerant passage 23.
  • the reference numerals 23 and 25 refer to the same part, but the individual refrigerant passage 23 is a rectangular parallelepiped space in FIG. It is a sheet-like member.
  • the bottom sealing material 25 and the peripheral sealing material 26 are liquid gaskets having electrical insulation properties, such as FIPG (Foamed In Place Gasket).
  • FIG. 3 is a cross-sectional view of the power conversion device 1. However, in FIG. 3, one set of semiconductor modules 3 and individual refrigerant passages 23 are shown.
  • the semiconductor module 3 includes two semiconductor elements 31 that are power conversion elements, two heat radiators 32, and a connection electrode 33 that electrically connects the surface of the semiconductor element 31 opposite to the surface connected to the heat radiator 32. It includes a molded resin part 34 and input/output electrode terminals 35.
  • Each of the two semiconductor elements 31 is a power semiconductor element, and corresponds to, for example, an upper arm and a lower arm of an inverter.
  • the heat sink 32 transfers the heat generated by the semiconductor element 31 to the coolant.
  • the heat sink 32 is a conductor and has the same potential as the semiconductor element 31.
  • the heat radiating body 32 includes a plurality of heat radiating fins that protrude toward the individual refrigerant path 23 side. Since the heat radiator 32 includes a plurality of heat radiating fins, its surface area increases, and the contact area with the refrigerant increases, thereby improving cooling performance.
  • a bottom sealing material 25 is disposed on the inner surface 28, which is the bottom of the individual refrigerant passage 23.
  • the tips of all the radiation fins are in contact with the bottom sealing material 25. This prevents the refrigerant from passing between the radiation fins and the bottom seal material 25, and the flow of refrigerant hits the radiation fins in the individual refrigerant passages 23, creating a complicated flow, improving cooling performance.
  • the heat radiator 32 is in contact with the peripheral sealing material 26 over the entire circumference, and prevents the refrigerant from leaking outside the peripheral sealing material 26. Note that, as described above, the bottom sealing material 25 and the peripheral sealing material 26 are made of the same material.
  • FIG. 4 is a diagram showing the relationship between the length of the radiation fins of the heat radiation body 32 and the thickness of the bottom sealing material 25.
  • the lengths of the radiation fins of the heat radiator 32 vary, and the difference in length between the longest radiation fin and the shortest radiation fin is defined as the amount of fin height variation dp.
  • the thickness t of the bottom sealing material 25 is larger than the fin height variation amount dp. Therefore, a configuration is possible in which the tips of all the radiation fins are housed inside the bottom sealing material 25 and no gaps are created between the tips of all the radiation fins and the bottom sealing material 25.
  • the variation in the length of the radiation fins in the heat sink 32 is allowed, so that the heat sink 32 manufactured by a low-cost manufacturing method such as casting can be used. Can be used.
  • FIG. 5 is a cross-sectional view of a comparative example power converter 1Z, which is a comparative example of the power converter 1.
  • Comparative example power converter 1Z differs from power converter 1 mainly in that it includes an insulating substrate 90 and that it does not include bottom sealing material 25.
  • an insulating substrate 90 is arranged between the two connection electrodes 33 and the heat sink 32.
  • the heat generated by the connection electrode 33 is transferred to the heat sink 32 via the insulating substrate 90, so the thermal resistance is large.
  • the insulating substrate 90 with high thermal resistance is not present between the connection electrode 33 and the heat sink 32, heat can be smoothly transferred from the connection electrode 33 to the heat sink 32. Furthermore, since the tips of the heat radiating fins of the heat radiating body 32 are in contact with the bottom sealing material 25 and the refrigerant flows between the heat radiating fins, sufficient heat exchange is performed between the heat radiating body 32 and the refrigerant.
  • the power conversion device 1 includes a semiconductor module 3 having a conductive heat sink 32 on which a plurality of heat sink fins are formed, a semiconductor element 31 electrically connected to the heat sink 32, and a refrigerant.
  • a flow path forming body 2 has an individual refrigerant path 23 which is a refrigerant flow path space for circulation, and an opening 29 connected to the individual refrigerant path 23 is blocked by a semiconductor module 3, and
  • the peripheral sealing material 26, which is a sealing member, is made of the same material as the bottom sealing material 25. Therefore, the bottom sealing material 25 and the peripheral sealing material 26 can be disposed continuously in the manufacturing process of the power converting device 1, and the productivity of the power converting device 1 is high.
  • the semiconductor module 3 has a molded resin part 34 that seals the semiconductor element 31 and the heat sink 32 with the heat sink fins of the heat sink 32 exposed.
  • the peripheral sealing material 26, which is a sealing member, is arranged between the molded resin part 34 of the semiconductor module 3 and the outer peripheral edge part 27 of the flow path forming body 2. Therefore, moisture and dust can be prevented from entering the semiconductor module 3.
  • the thickness of the peripheral sealing material 26, which is a filling member, is thicker than the thickness of the peripheral sealing material 26, which is a sealing member. Therefore, the tips of the radiation fins can be brought into close contact with the bottom sealing material 25.
  • the heat sink 32 is formed by casting. Therefore, the power conversion device 1 can be manufactured at low cost.
  • the thickness t of the bottom sealing material 25, which is a filling member, is the difference in height between the tip of the radiating fin with the maximum height and the tip of the radiating fin with the minimum height among the plurality of radiating fins provided in the radiating body 32. It is thicker than the fin height variation amount dp. Therefore, high processing accuracy is not required for the heat sink 32, and the power converter 1 can be manufactured at low cost.
  • FIG. 6 is a cross-sectional view of the power conversion device 1 in Modification 1.
  • at least one of the plurality of heat radiating fins included in the heat radiating body 32 does not reach the bottom sealing material 25, as shown by reference numeral 32f.
  • This modification is useful when all the heat radiation fins reach the bottom sealing material 25 and the flow resistance of the refrigerant is too large.
  • FIG. 7 is a cross-sectional view of the power conversion device 1 in Modification 2.
  • FIG. 7 is a cross-sectional view of the power conversion device 1 in Modification 2.
  • the bottom sealing material 25 is removed from between the heat sinks 32 where no heat sink fins are present. Therefore, as a result, two bottom seal members 25 are provided.
  • FIG. 8 is a cross-sectional view of the power conversion device 1 in Modification 3.
  • a portion of the bottom sealing material 25 is cut out, as indicated by the reference numeral 25L, so that the tip of at least one radiation fin does not come into contact with the bottom sealing material 25.
  • This modification is useful when all the heat radiation fins reach the bottom sealing material 25 and the flow resistance of the refrigerant is too large.
  • the power conversion device 1 included two semiconductor elements 31.
  • the number of semiconductor elements 31 included in the power conversion device 1 is not limited to "2", and it is sufficient that at least one semiconductor element 31 is included.
  • the semiconductor included in the power conversion device 1 is not limited to a power module, but may be any semiconductor module.
  • Power conversion device 2 Channel forming body 3 : Semiconductor module 23 : Individual refrigerant path 25 : Bottom sealing material 26 : Peripheral sealing material 27 : Outer periphery 28 : Inner surface 29 : Opening 31 : Semiconductor element 32 : Heat sink

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

According to the present invention, a heat dissipation structure for a semiconductor device comprises a semiconductor module, a channel formation body, and a filler member. The semiconductor module includes a conductive heat dissipation body at which a plurality of heat dissipation fins are formed and a semiconductor element that is electrically connected on the heat dissipation body. The channel formation body has a refrigerant channel space for circulating a refrigerant and an opening that communicates with the refrigerant channel space and is closed by the semiconductor module. The filler member has electrical insulation properties, is arranged between the plurality of heat dissipation fins and an inner surface of the channel formation body that faces the refrigerant channel space side, and contacts tip ends of the plurality of heat dissipation fins.

Description

半導体装置の放熱構造Heat dissipation structure of semiconductor devices
 本発明は、半導体装置の放熱構造に関する。 The present invention relates to a heat dissipation structure for a semiconductor device.
 半導体は様々な産業分野で利用されている。多くの半導体は、正常に動作させるために放熱機構を必要としている。特許文献1には、半導体素子を含む発熱部品と、前記発熱部品を冷却するために前記発熱部品に接続された冷却フィンと、前記冷却フィンのうち前記発熱部品とは反対側の面である露出面を露出させつつ、前記発熱部品および前記冷却フィンを封止し、且つ、冷媒が流される冷媒流路の一部を構成するモールド樹脂部と、を有し、前記発熱部品および前記冷却フィンを前記モールド樹脂部にてモールド化したものを1つのユニットとして、当該ユニットが複数個積層されることで積層体が構成されており、当該積層体において前記冷媒流路が構成されるとともに、前記冷媒流路においては隣り合う前記ユニット間に前記冷媒が流れるようになっており、隣り合う前記ユニット間にて一方のユニットにおける前記冷却フィンの前記露出面と、他方のユニットにおける前記冷却フィンの前記露出面とは、対向して配置されつつ、前記冷媒に接触するようになっている半導体モジュールであって、前記発熱部品と前記冷却フィンとは金属接合により機械的および電気的に接合されており、前記一方のユニットにおける前記冷却フィンの前記露出面と前記他方のユニットにおける前記冷却フィンの前記露出面との対向間には、電気絶縁性の絶縁板が設けられており、前記冷媒は、電気絶縁性を有するものであることを特徴とする半導体モジュールが開示されている。 Semiconductors are used in various industrial fields. Many semiconductors require heat dissipation mechanisms for proper operation. Patent Document 1 describes a heat generating component including a semiconductor element, a cooling fin connected to the heat generating component to cool the heat generating component, and an exposed surface of the cooling fin on the opposite side to the heat generating component. a molded resin part that seals the heat generating component and the cooling fin while exposing a surface thereof and forming a part of a refrigerant flow path through which a refrigerant flows; A laminate is constructed by stacking a plurality of units molded with the molded resin part as one unit, and the refrigerant flow path is configured in the laminate, and the refrigerant is In the flow path, the refrigerant flows between the adjacent units, and between the adjacent units, the exposed surface of the cooling fin in one unit and the exposed surface of the cooling fin in the other unit are arranged. The surfaces are semiconductor modules that are arranged to face each other and come into contact with the refrigerant, and the heat generating component and the cooling fin are mechanically and electrically connected by metal bonding, An electrically insulating insulating plate is provided between the exposed surface of the cooling fin in the one unit and the exposed surface of the cooling fin in the other unit, and the refrigerant is electrically insulated. A semiconductor module is disclosed which is characterized in that it has the following characteristics.
特開2016-31983号公報JP2016-31983A
 特許文献1に記載されている発明では、放熱性能に改善の余地がある。 In the invention described in Patent Document 1, there is room for improvement in heat dissipation performance.
 本発明の第1の態様による半導体装置の放熱構造は、複数の放熱フィンが形成された導電性の放熱体と、前記放熱体上に電気的に接続された半導体素子と、を有する半導体モジュールと、冷媒を流通するための冷媒流路空間を有するとともに、前記冷媒流路空間と繋がる開口部が前記半導体モジュールによって塞がれている流路形成体と、前記冷媒流路空間側に面する前記流路形成体の内面と前記複数の放熱フィンの間に配置されるとともに前記複数の放熱フィンの先端と接触する電気絶縁性の充填部材と、を備える。 A heat dissipation structure for a semiconductor device according to a first aspect of the present invention includes a semiconductor module having a conductive heat dissipation body in which a plurality of heat dissipation fins are formed, and a semiconductor element electrically connected to the heat dissipation body. , a flow path forming body having a refrigerant flow path space for circulating a refrigerant and having an opening connected to the refrigerant flow path space blocked by the semiconductor module; An electrically insulating filling member is provided between the inner surface of the flow path forming body and the plurality of radiation fins and in contact with the tips of the plurality of radiation fins.
 本発明によれば、放熱性能を向上できる。 According to the present invention, heat dissipation performance can be improved.
電力変換装置の外観斜視図External perspective view of power converter 電力変換装置の分解斜視図Exploded perspective view of power converter 電力変換装置の断面図Cross-sectional view of power converter 放熱体のフィンの長さと底部シール材の厚みの関係を示す図Diagram showing the relationship between the length of the fins of the heat sink and the thickness of the bottom sealing material 比較例電力変換装置の断面図Cross-sectional view of comparative example power converter 変形例1における電力変換装置の断面図Cross-sectional view of the power converter device in Modification 1 変形例2における電力変換装置の断面図Cross-sectional view of a power converter device in modification 2 変形例3における電力変換装置の断面図Cross-sectional view of the power converter device in modification 3
―第1の実施の形態―
 以下、図1~図5を参照して、本発明にかかる半導体装置の放熱構造の第1の実施の形態を説明する。
-First embodiment-
Hereinafter, a first embodiment of a heat dissipation structure for a semiconductor device according to the present invention will be described with reference to FIGS. 1 to 5.
 図1は、電力変換装置1の外観斜視図である。電力変換装置1は、流路形成体2と、3つの半導体モジュール3とを備える。電力変換装置1は、直流電力と交流電力とを相互に変換する。流路形成体2は、冷媒路入口21および冷媒路出口22を備える。流路形成体2には、外部から冷媒路入口21に冷却水が流入し、冷媒路出口22から冷却水が外部に排出される。半導体モジュール3のそれぞれは、UVWの各相の電力を処理する。3つの半導体モジュール3の構成は同一である。流路形成体2の内部を流れる冷媒は、電気絶縁性を有する油、たとえばATF(Automatic Transmission Fluid)である。 FIG. 1 is an external perspective view of the power conversion device 1. The power conversion device 1 includes a flow path forming body 2 and three semiconductor modules 3. The power converter 1 mutually converts DC power and AC power. The flow path forming body 2 includes a refrigerant path inlet 21 and a refrigerant path outlet 22. In the flow path forming body 2, cooling water flows into the refrigerant path inlet 21 from the outside, and is discharged to the outside from the refrigerant path outlet 22. Each of the semiconductor modules 3 processes power of each phase of UVW. The configurations of the three semiconductor modules 3 are the same. The refrigerant flowing inside the flow path forming body 2 is oil having electrical insulation properties, such as ATF (Automatic Transmission Fluid).
 図2は、電力変換装置1の分解斜視図である。ただし図2では、半導体モジュール3は2つのみ記載しており、1つは裏返しに記載している。図2の右下に示す裏返しの半導体モジュール3は、後述する放熱フィンが多数並んでいる様子が確認できる。流路形成体2は、3つの個別冷媒路23を備える。3つの個別冷媒路23は、破線で示す連絡冷媒路24により連結される。すなわち冷媒路入口21から流入した冷媒は、それぞれの連絡冷媒路24および3つの個別冷媒路23を順番に通過して冷媒路出口22に達する。それぞれの個別冷媒路23は開口部29を備え、開口部29を囲むように外周縁部27が配される。なお以下では、個別冷媒路23を「冷媒流路空間」とも呼ぶ。 FIG. 2 is an exploded perspective view of the power conversion device 1. However, in FIG. 2, only two semiconductor modules 3 are shown, and one is shown upside down. In the upside-down semiconductor module 3 shown in the lower right corner of FIG. 2, it can be seen that a large number of heat dissipation fins, which will be described later, are lined up. The flow path forming body 2 includes three individual refrigerant paths 23. The three individual refrigerant passages 23 are connected by a connecting refrigerant passage 24 shown by a broken line. That is, the refrigerant flowing in from the refrigerant path inlet 21 passes through each of the communicating refrigerant paths 24 and the three individual refrigerant paths 23 in order, and reaches the refrigerant path outlet 22 . Each individual refrigerant passage 23 includes an opening 29 and an outer peripheral edge 27 surrounding the opening 29 . In addition, below, the individual refrigerant path 23 will also be referred to as a "refrigerant flow path space."
 それぞれの半導体モジュール3は、いずれかの個別冷媒路23の開口部29に挿入される。すなわち電力変換装置1は、3組の半導体モジュール3および個別冷媒路23を備える。それぞれの個別冷媒路23の底部には底部シール材25が配され、それぞれの個別冷媒路23の周辺には周辺シール材26が配される。なお作図の都合により符号23と符号25が同一の箇所を指しているが、個別冷媒路23は図2における直方体の空間であり、底部シール材25は個別冷媒路23の底部に配される薄いシート状の部材である。底部シール材25および周辺シール材26は、電気絶縁性を有する液状ガスケット、たとえばFIPG(Foamed In Place Gasket)である。 Each semiconductor module 3 is inserted into the opening 29 of one of the individual refrigerant paths 23. That is, the power conversion device 1 includes three sets of semiconductor modules 3 and individual refrigerant paths 23. A bottom sealing material 25 is disposed at the bottom of each individual refrigerant passage 23, and a peripheral sealing material 26 is disposed around each individual refrigerant passage 23. Note that for convenience of drawing, the reference numerals 23 and 25 refer to the same part, but the individual refrigerant passage 23 is a rectangular parallelepiped space in FIG. It is a sheet-like member. The bottom sealing material 25 and the peripheral sealing material 26 are liquid gaskets having electrical insulation properties, such as FIPG (Foamed In Place Gasket).
 図3は、電力変換装置1の断面図である。ただし図3では、1組の半導体モジュール3および個別冷媒路23を示している。半導体モジュール3は、電力変換素子である2つの半導体素子31と、2つの放熱体32と、半導体素子31の放熱体32と接続された面と反対面を電気的に接続する接続電極33と、モールド樹脂部34と、入出力電極端子35と、を備える。2つの半導体素子31のそれぞれはパワー半導体素子であり、たとえばインバータの上アームおよび下アームに相当する。 FIG. 3 is a cross-sectional view of the power conversion device 1. However, in FIG. 3, one set of semiconductor modules 3 and individual refrigerant passages 23 are shown. The semiconductor module 3 includes two semiconductor elements 31 that are power conversion elements, two heat radiators 32, and a connection electrode 33 that electrically connects the surface of the semiconductor element 31 opposite to the surface connected to the heat radiator 32. It includes a molded resin part 34 and input/output electrode terminals 35. Each of the two semiconductor elements 31 is a power semiconductor element, and corresponds to, for example, an upper arm and a lower arm of an inverter.
 放熱体32は、半導体素子31が発する熱を冷媒に伝える。放熱体32は導体であり、半導体素子31と電位が等しい。放熱体32は、個別冷媒路23の側に突出する複数の放熱フィンを備える。放熱体32は、複数の放熱フィンを備えるので表面積が増加し、冷媒との接触面積が増加することで冷却性能を向上させている。 The heat sink 32 transfers the heat generated by the semiconductor element 31 to the coolant. The heat sink 32 is a conductor and has the same potential as the semiconductor element 31. The heat radiating body 32 includes a plurality of heat radiating fins that protrude toward the individual refrigerant path 23 side. Since the heat radiator 32 includes a plurality of heat radiating fins, its surface area increases, and the contact area with the refrigerant increases, thereby improving cooling performance.
 個別冷媒路23の底である内面28には、底部シール材25が配される。ただしいずれの放熱フィンも先端が底部シール材25に接触している。これにより、冷媒が放熱フィンと底部シール材25との間を通り抜けることが阻害され、個別冷媒路23において冷媒の流れが放熱フィンに当たって複雑な流れを生じさせ、冷却性能を向上させている。また放熱体32は、全周にわたって周辺シール材26と接触しており、冷媒が周辺シール材26の外部に漏れ出ることを防止している。なお、前述したように底部シール材25と周辺シール材26の材質は同一である。 A bottom sealing material 25 is disposed on the inner surface 28, which is the bottom of the individual refrigerant passage 23. However, the tips of all the radiation fins are in contact with the bottom sealing material 25. This prevents the refrigerant from passing between the radiation fins and the bottom seal material 25, and the flow of refrigerant hits the radiation fins in the individual refrigerant passages 23, creating a complicated flow, improving cooling performance. Further, the heat radiator 32 is in contact with the peripheral sealing material 26 over the entire circumference, and prevents the refrigerant from leaking outside the peripheral sealing material 26. Note that, as described above, the bottom sealing material 25 and the peripheral sealing material 26 are made of the same material.
 図4は、放熱体32の放熱フィンの長さと底部シール材25の厚みの関係を示す図である。放熱体32が有する放熱フィンの長さにはばらつきがあり、最も長い放熱フィンと最も短い放熱フィンの長さの差をフィン高さばらつき量dpと定義する。この場合に、底部シール材25の厚さtはフィン高さばらつき量dpよりも大きい。そのため、全ての放熱フィンの先端を底部シール材25の内部に収め、全ての放熱フィンについて先端部と底部シール材25との間に隙間を生じさせない構成が可能となっている。換言すると、底部シール材25の厚さtを厚くすることで放熱体32における放熱フィンの長さのばらつきの大きさが許容されるので、鋳造など低コストの製造方法で製造した放熱体32を使用できる。 FIG. 4 is a diagram showing the relationship between the length of the radiation fins of the heat radiation body 32 and the thickness of the bottom sealing material 25. The lengths of the radiation fins of the heat radiator 32 vary, and the difference in length between the longest radiation fin and the shortest radiation fin is defined as the amount of fin height variation dp. In this case, the thickness t of the bottom sealing material 25 is larger than the fin height variation amount dp. Therefore, a configuration is possible in which the tips of all the radiation fins are housed inside the bottom sealing material 25 and no gaps are created between the tips of all the radiation fins and the bottom sealing material 25. In other words, by increasing the thickness t of the bottom sealing material 25, the variation in the length of the radiation fins in the heat sink 32 is allowed, so that the heat sink 32 manufactured by a low-cost manufacturing method such as casting can be used. Can be used.
(比較例)
 図5は、電力変換装置1の比較例である比較例電力変換装置1Zの断面図である。比較例電力変換装置1Zは主に、絶縁基板90を備える点と、底部シール材25を備えない点が電力変換装置1と異なる。比較例電力変換装置1Zは、2つの接続電極33と放熱体32との間に絶縁基板90が配される。比較例電力変換装置1Zでは、接続電極33が発する熱は絶縁基板90を介して放熱体32に伝達されるので、熱抵抗が大きい。また、放熱体32が備える放熱フィンの先端と内面28との間に隙間があるので、冷媒がその隙間を通過することが想定され、放熱体32の冷却が不十分となる可能性がある。
(Comparative example)
FIG. 5 is a cross-sectional view of a comparative example power converter 1Z, which is a comparative example of the power converter 1. Comparative example power converter 1Z differs from power converter 1 mainly in that it includes an insulating substrate 90 and that it does not include bottom sealing material 25. In the comparative example power conversion device 1Z, an insulating substrate 90 is arranged between the two connection electrodes 33 and the heat sink 32. In the comparative example power converter 1Z, the heat generated by the connection electrode 33 is transferred to the heat sink 32 via the insulating substrate 90, so the thermal resistance is large. Further, since there is a gap between the tip of the heat dissipation fin provided in the heat dissipation body 32 and the inner surface 28, it is assumed that the refrigerant passes through the gap, and there is a possibility that cooling of the heat dissipation body 32 becomes insufficient.
 その一方で、上述した電力変換装置1は接続電極33と放熱体32との間に熱抵抗が大きい絶縁基板90は存在しないのでスムーズに接続電極33から放熱体32に熱が伝達できる。さらに、放熱体32の放熱フィンの先端は底部シール材25に接しており冷媒が放熱フィン同士の間を流れるので、放熱体32と冷媒との間で十分に熱交換が行われる。 On the other hand, in the power conversion device 1 described above, since the insulating substrate 90 with high thermal resistance is not present between the connection electrode 33 and the heat sink 32, heat can be smoothly transferred from the connection electrode 33 to the heat sink 32. Furthermore, since the tips of the heat radiating fins of the heat radiating body 32 are in contact with the bottom sealing material 25 and the refrigerant flows between the heat radiating fins, sufficient heat exchange is performed between the heat radiating body 32 and the refrigerant.
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)電力変換装置1は、複数の放熱フィンが形成された導電性の放熱体32と、放熱体32上に電気的に接続された半導体素子31と、を有する半導体モジュール3と、冷媒を流通するための冷媒流路空間である個別冷媒路23を有するとともに、個別冷媒路23と繋がる開口部29が半導体モジュール3によって塞がれている流路形成体2と、冷媒流路空間側に面する流路形成体2の内面28と複数の放熱フィンの間に配置されるとともに複数の放熱フィンの先端と接触する電気絶縁性の充填部材である底部シール材25と、を備える。そのため、図5に示した比較例とは異なり、半導体素子31から放熱体32へ絶縁基板90を介することなく熱を伝達でき、かつ、放熱フィンが底部シール材25と接触することで冷媒が放熱フィンと接触する機会が増えることで、放熱性能を向上できる。
According to the first embodiment described above, the following effects can be obtained.
(1) The power conversion device 1 includes a semiconductor module 3 having a conductive heat sink 32 on which a plurality of heat sink fins are formed, a semiconductor element 31 electrically connected to the heat sink 32, and a refrigerant. A flow path forming body 2 has an individual refrigerant path 23 which is a refrigerant flow path space for circulation, and an opening 29 connected to the individual refrigerant path 23 is blocked by a semiconductor module 3, and A bottom sealing material 25, which is an electrically insulating filling member, is provided between the facing inner surface 28 of the flow path forming body 2 and the plurality of radiation fins, and is in contact with the tips of the plurality of radiation fins. Therefore, unlike the comparative example shown in FIG. By increasing the chances of contact with the fins, heat dissipation performance can be improved.
(2)流路形成体2の開口部29を囲む外周縁部27と半導体モジュール3との間には、冷媒をシールするためのシール部材である周辺シール材26が配置されている。そのため、冷媒が流路形成体2の外部に流出することを防止できる。 (2) A peripheral sealing material 26, which is a sealing member for sealing the refrigerant, is arranged between the outer peripheral edge 27 surrounding the opening 29 of the flow path forming body 2 and the semiconductor module 3. Therefore, the refrigerant can be prevented from flowing out of the flow path forming body 2.
(3)シール部材である周辺シール材26は、底部シール材25と同じ材料で形成される。そのため、電力変換装置1の製造工程において底部シール材25および周辺シール材26を連続して配することができ、電力変換装置1の生産性が高い。 (3) The peripheral sealing material 26, which is a sealing member, is made of the same material as the bottom sealing material 25. Therefore, the bottom sealing material 25 and the peripheral sealing material 26 can be disposed continuously in the manufacturing process of the power converting device 1, and the productivity of the power converting device 1 is high.
(4)半導体モジュール3は、放熱体32の放熱フィンが露出した状態で、半導体素子31および放熱体32を封止するモールド樹脂部34を有する。シール部材である周辺シール材26は、半導体モジュール3のモールド樹脂部34と流路形成体2の外周縁部27との間に配置される。そのため、半導体モジュール3に水分や埃が侵入することを防ぐことができる。 (4) The semiconductor module 3 has a molded resin part 34 that seals the semiconductor element 31 and the heat sink 32 with the heat sink fins of the heat sink 32 exposed. The peripheral sealing material 26, which is a sealing member, is arranged between the molded resin part 34 of the semiconductor module 3 and the outer peripheral edge part 27 of the flow path forming body 2. Therefore, moisture and dust can be prevented from entering the semiconductor module 3.
(5)充填部材である周辺シール材26の厚さは、シール部材である周辺シール材26の厚さよりも厚い。そのため、放熱フィンの先端を底部シール材25と密着させることができる。 (5) The thickness of the peripheral sealing material 26, which is a filling member, is thicker than the thickness of the peripheral sealing material 26, which is a sealing member. Therefore, the tips of the radiation fins can be brought into close contact with the bottom sealing material 25.
(6)放熱体32は、鋳造によって形成される。そのため、電力変換装置1を安価に製造できる。 (6) The heat sink 32 is formed by casting. Therefore, the power conversion device 1 can be manufactured at low cost.
(7)充填部材である底部シール材25の厚さtは、放熱体32に備えられる複数の放熱フィンのうち最大高さの放熱フィン先端と最小高さの放熱フィン先端との高さの差であるフィン高さばらつき量dpよりも厚い。そのため、放熱体32に高い加工精度が要求されず、電力変換装置1を安価に製造できる。 (7) The thickness t of the bottom sealing material 25, which is a filling member, is the difference in height between the tip of the radiating fin with the maximum height and the tip of the radiating fin with the minimum height among the plurality of radiating fins provided in the radiating body 32. It is thicker than the fin height variation amount dp. Therefore, high processing accuracy is not required for the heat sink 32, and the power converter 1 can be manufactured at low cost.
(変形例1)
 図6は、変形例1における電力変換装置1の断面図である。本変形例では、符号32fに示すように、放熱体32が備える複数の放熱フィンのうち、少なくとも1つが底部シール材25まで達していない。本変形例は、全ての放熱フィンが底部シール材25まで達していると冷媒の流路抵抗が大きすぎる場合などに有用である。
(Modification 1)
FIG. 6 is a cross-sectional view of the power conversion device 1 in Modification 1. In this modification, at least one of the plurality of heat radiating fins included in the heat radiating body 32 does not reach the bottom sealing material 25, as shown by reference numeral 32f. This modification is useful when all the heat radiation fins reach the bottom sealing material 25 and the flow resistance of the refrigerant is too large.
(変形例2)
 図7は、変形例2における電力変換装置1の断面図である。本変形例では、放熱フィンが存在しない放熱体32と放熱体32の間からは底部シール材25が取り除かれている。そのため、結果的に2つの底部シール材25を備える。
(Modification 2)
FIG. 7 is a cross-sectional view of the power conversion device 1 in Modification 2. FIG. In this modification, the bottom sealing material 25 is removed from between the heat sinks 32 where no heat sink fins are present. Therefore, as a result, two bottom seal members 25 are provided.
(変形例3)
 図8は、変形例3における電力変換装置1の断面図である。本変形例では、符号25Lで示すように底部シール材25の一部が切り欠かかれており、少なくとも1つの放熱フィンの先端が底部シール材25と接しない。本変形例は、全ての放熱フィンが底部シール材25まで達していると冷媒の流路抵抗が大きすぎる場合などに有用である。
(Modification 3)
FIG. 8 is a cross-sectional view of the power conversion device 1 in Modification 3. In this modification, a portion of the bottom sealing material 25 is cut out, as indicated by the reference numeral 25L, so that the tip of at least one radiation fin does not come into contact with the bottom sealing material 25. This modification is useful when all the heat radiation fins reach the bottom sealing material 25 and the flow resistance of the refrigerant is too large.
(変形例4)
 上述した実施の形態では、電力変換装置1には2つの半導体素子31が含まれた。しかし電力変換装置1に含まれる半導体素子31の数は「2」に限定されず、少なくとも1つの半導体素子31が含まれればよい。さらに、電力変換装置1に含まれる半導体はパワーモジュールに限定されず、半導体モジュールであればよい。
(Modification 4)
In the embodiment described above, the power conversion device 1 included two semiconductor elements 31. However, the number of semiconductor elements 31 included in the power conversion device 1 is not limited to "2", and it is sufficient that at least one semiconductor element 31 is included. Furthermore, the semiconductor included in the power conversion device 1 is not limited to a power module, but may be any semiconductor module.
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Each of the embodiments and modifications described above may be combined. Although various embodiments and modifications have been described above, the present invention is not limited to these. Other embodiments considered within the technical spirit of the present invention are also included within the scope of the present invention.
1  :電力変換装置
2  :流路形成体
3  :半導体モジュール
23 :個別冷媒路
25 :底部シール材
26 :周辺シール材
27 :外周縁部
28 :内面
29 :開口部
31 :半導体素子
32 :放熱体
1 : Power conversion device 2 : Channel forming body 3 : Semiconductor module 23 : Individual refrigerant path 25 : Bottom sealing material 26 : Peripheral sealing material 27 : Outer periphery 28 : Inner surface 29 : Opening 31 : Semiconductor element 32 : Heat sink

Claims (7)

  1.  複数の放熱フィンが形成された導電性の放熱体と、前記放熱体上に電気的に接続された半導体素子と、を有する半導体モジュールと、
     冷媒を流通するための冷媒流路空間を有するとともに、前記冷媒流路空間と繋がる開口部が前記半導体モジュールによって塞がれている流路形成体と、
     前記冷媒流路空間側に面する前記流路形成体の内面と前記複数の放熱フィンの間に配置されるとともに前記複数の放熱フィンの先端と接触する電気絶縁性の充填部材と、
     を備えた半導体装置の放熱構造。
    A semiconductor module having a conductive heat sink having a plurality of heat sinks formed thereon, and a semiconductor element electrically connected to the heat sink;
    a flow path forming body having a refrigerant flow path space for circulating a refrigerant, and an opening connected to the refrigerant flow path space is blocked by the semiconductor module;
    an electrically insulating filling member disposed between the inner surface of the flow path forming body facing the refrigerant flow path space and the plurality of radiation fins and in contact with the tips of the plurality of radiation fins;
    A heat dissipation structure for semiconductor devices.
  2.  請求項1に記載の半導体装置の放熱構造において、
     前記流路形成体の前記開口部を囲む外周縁部と前記半導体モジュールとの間には、前記冷媒をシールするためのシール部材が配置されている半導体装置の放熱構造。
    The heat dissipation structure for a semiconductor device according to claim 1,
    A heat dissipation structure for a semiconductor device, wherein a sealing member for sealing the coolant is disposed between an outer peripheral edge surrounding the opening of the flow path forming body and the semiconductor module.
  3.  請求項2に記載の半導体装置の放熱構造において、
     前記シール部材は、前記充填部材と同じ材料で形成される半導体装置の放熱構造。
    The heat dissipation structure for a semiconductor device according to claim 2,
    The sealing member is a heat dissipation structure for a semiconductor device, in which the sealing member is made of the same material as the filling member.
  4.  請求項2に記載の半導体装置の放熱構造において、
     前記半導体モジュールは、前記放熱体の前記放熱フィンが露出した状態で、前記半導体素子および前記放熱体を封止するモールド樹脂部を有し、
     前記シール部材は、前記半導体モジュールの前記モールド樹脂部と前記流路形成体の前記外周縁部との間に配置される半導体装置の放熱構造。
    The heat dissipation structure for a semiconductor device according to claim 2,
    The semiconductor module has a molded resin part that seals the semiconductor element and the heat sink with the heat sink fins of the heat sink exposed,
    The seal member is a heat dissipation structure of a semiconductor device that is disposed between the mold resin part of the semiconductor module and the outer peripheral edge part of the flow path forming body.
  5.  請求項2に記載の半導体装置の放熱構造において、
     前記充填部材の厚さは、前記シール部材の厚さよりも大きい半導体装置の放熱構造。
    The heat dissipation structure for a semiconductor device according to claim 2,
    The thickness of the filling member is greater than the thickness of the sealing member.
  6.  請求項1に記載の半導体装置の放熱構造において、
     前記放熱体は、鋳造によって形成される半導体装置の放熱構造。
    The heat dissipation structure for a semiconductor device according to claim 1,
    The heat dissipation body is a heat dissipation structure of a semiconductor device formed by casting.
  7.  請求項1から請求項6までのいずれか一項に記載された半導体装置の放熱構造において、
     前記充填部材の厚さは、前記複数の放熱フィンのうち最大高さのフィン先端と最小高さのフィン先端との高さの差であるフィン高さばらつき量よりも大きい厚さである半導体装置の放熱構造。
     
    The heat dissipation structure for a semiconductor device according to any one of claims 1 to 6,
    In the semiconductor device, the thickness of the filling member is greater than a fin height variation amount, which is a difference in height between a fin tip with a maximum height and a fin tip with a minimum height among the plurality of heat dissipating fins. heat dissipation structure.
PCT/JP2022/021789 2022-05-27 2022-05-27 Heat dissipation structure for semiconductor device WO2023228417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021789 WO2023228417A1 (en) 2022-05-27 2022-05-27 Heat dissipation structure for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021789 WO2023228417A1 (en) 2022-05-27 2022-05-27 Heat dissipation structure for semiconductor device

Publications (1)

Publication Number Publication Date
WO2023228417A1 true WO2023228417A1 (en) 2023-11-30

Family

ID=88918776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021789 WO2023228417A1 (en) 2022-05-27 2022-05-27 Heat dissipation structure for semiconductor device

Country Status (1)

Country Link
WO (1) WO2023228417A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166604A (en) * 2004-12-08 2006-06-22 Mitsubishi Electric Corp Power conversion apparatus
JP2007110025A (en) * 2005-10-17 2007-04-26 Mitsubishi Electric Corp Power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166604A (en) * 2004-12-08 2006-06-22 Mitsubishi Electric Corp Power conversion apparatus
JP2007110025A (en) * 2005-10-17 2007-04-26 Mitsubishi Electric Corp Power converter

Similar Documents

Publication Publication Date Title
US7190581B1 (en) Low thermal resistance power module assembly
JP6384609B2 (en) Power semiconductor module and cooler
JP6315091B2 (en) Cooler and fixing method of cooler
JP5664472B2 (en) Power converter
JP2003101277A (en) Structural body for cooling heating element and manufacturing method thereof
JP2007335663A (en) Semiconductor module
TW200810677A (en) Electronic element module
JP6710283B2 (en) Power converter
EP2061079B1 (en) Semiconductor package and semiconductor package assembly
US10957621B2 (en) Heat sink for a power semiconductor module
US20140291832A1 (en) Integrated cooling modules of power semiconductor device
JPWO2019106820A1 (en) Semiconductor device and manufacturing method thereof
US20220022328A1 (en) Electronic Component with Cooling Clearance, and Assembly Method
US20170084515A1 (en) Power-Module Device and Power Conversion Device
JP2004128099A (en) Water-cooled inverter
ES2906108T3 (en) Integrated Power Semiconductor Packaging Apparatus and Power Converter
US20130341782A1 (en) Semiconductor package module
WO2023228417A1 (en) Heat dissipation structure for semiconductor device
JP2012005191A (en) Power conversion apparatus
JP5402778B2 (en) Semiconductor device provided with semiconductor module
JP6555177B2 (en) Semiconductor module
JP5676154B2 (en) Power converter
US11195650B2 (en) Reactor
JP2006310506A (en) Thermoelectric conversion device
JP6953859B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943817

Country of ref document: EP

Kind code of ref document: A1