WO2023221763A1 - 一种电机输出转矩的控制方法、装置及电子设备 - Google Patents

一种电机输出转矩的控制方法、装置及电子设备 Download PDF

Info

Publication number
WO2023221763A1
WO2023221763A1 PCT/CN2023/091328 CN2023091328W WO2023221763A1 WO 2023221763 A1 WO2023221763 A1 WO 2023221763A1 CN 2023091328 W CN2023091328 W CN 2023091328W WO 2023221763 A1 WO2023221763 A1 WO 2023221763A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
axis voltage
control value
control
Prior art date
Application number
PCT/CN2023/091328
Other languages
English (en)
French (fr)
Inventor
潘忠亮
董力嘉
冉再庆
李帅
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023221763A1 publication Critical patent/WO2023221763A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the technical field of motor control, and specifically to a method, device and electronic equipment for controlling the output torque of a motor.
  • This application requests priority for a patent application submitted to the State Intellectual Property Office of China on May 19, 2022, with the application number 202210560387.0 and the invention title "A control method, device and electronic equipment for motor output torque”.
  • Electromagnetic torque is an important external characteristic variable of the motor. In most automotive applications, it needs to be controlled quickly and accurately to meet people's performance requirements for the car. However, due to the winding distribution form, cogging effect, magnetic pole arrangement and other factors used in the motor, the air gap magnetic field of the motor is distorted, generating flux linkage harmonics, and further causing the motor's back electromotive force to generate harmonics; at the same time, due to the frequency converter
  • the nonlinear characteristics of the power electronic devices used such as the tube voltage drop of the switching tube, dead time, etc., cause the motor to generate current harmonics.
  • the interaction between back electromotive force harmonics and current harmonics causes torque fluctuations in permanent magnet synchronous motors, which seriously affects the control accuracy and operation stability of the motor system. Therefore, it has become one of the key problems in motor design and control.
  • the purpose of the present disclosure is to provide a method, device and electronic equipment for controlling the output torque of a motor, so as to solve the technical problem in the prior art that the torque fluctuation of the motor cannot be effectively reduced.
  • the present disclosure provides a method for controlling the output torque of a motor, including: obtaining the dq-axis voltage control value of the motor; and determining the rotation angle of the motor based on the dq-axis voltage control value. Compensation value; determine the rotor resolver position control value based on the current rotor resolver position collection value and the resolver angle compensation value; adjust the output torque of the motor based on the rotor resolver position control value.
  • obtaining the dq-axis voltage control value of the motor includes: collecting all The three-phase current value of the motor is calculated; the three-phase current value is subjected to coordinate transformation to obtain the dq-axis current control value under the rotating coordinate system; the dq-axis voltage control value is obtained based on the dq-axis current control value.
  • determining the resolver angle compensation value of the motor based on the dq-axis voltage control value includes: performing average filtering based on the dq-axis voltage control value to obtain a dq-axis voltage command value; The dq-axis voltage control value and the dq-axis voltage command value are subjected to PID control to obtain a PID control output value; the resolver angle compensation value is determined based on the PID control output value.
  • performing PID control based on the dq-axis voltage control value and the dq-axis voltage command value to obtain a PID control output value includes: based on the dq-axis voltage control value and the dq-axis voltage The command value is used to obtain the difference; the difference is input into the PID controller to obtain the PID control output value.
  • determining the resolver angle compensation value based on the PID control output value further includes: performing a limiting operation on the PID control output value.
  • adjusting the output torque of the motor based on the rotor resolver position control value includes: determining a d-axis current reference based on the rotor resolver position control value and the three-phase current value. value and the q-axis current reference value; perform PID control based on the d-axis current control value and the d-axis current reference value, and obtain the compensated d-axis voltage control value and the q-axis current control value and the q-axis current reference value. Perform PID control to obtain a compensated q-axis voltage control value; adjust the output torque of the motor based on the compensated d-axis voltage control value and the compensated q-axis voltage control value.
  • the electric machine is a permanent magnet synchronous machine.
  • control device for motor output torque including:
  • the acquisition module is used to obtain the dq-axis voltage control value of the motor; the first determination module is used to determine the resolver angle compensation value of the motor based on the dq-axis voltage control value; the second determination module is used to determine the resolution angle compensation value of the motor based on the current.
  • the rotor rotation position collection value and the rotation angle compensation value determine the rotor rotation position control value; an adjustment module is used to adjust the output torque of the motor based on the rotor rotation position control value.
  • the present disclosure also provides a storage medium that stores a computer program.
  • the computer program is executed by a processor, the steps of the method described in any of the above technical solutions are implemented.
  • the present disclosure also provides an electronic device, including at least a memory and a processor, A computer program is stored on the memory, and the processor implements the steps of the method in any of the above technical solutions when executing the computer program on the memory.
  • the embodiment of the present disclosure uses the dq-axis voltage as a control variable, determines the rotation angle compensation value of the motor by controlling the dq-axis voltage, and determines the rotor based on the current rotor rotation position acquisition value and the rotation angle compensation value.
  • the resolver position control value ultimately adjusts the output torque of the motor based on the rotor resolver position control value; starting from reducing the fluctuation of the motor resolver position, the suppression of the motor torque fluctuation is achieved.
  • the control method described in this disclosure is implemented through pure software at zero cost.
  • Figure 1 is a schematic diagram of the steps of a method for controlling motor output torque provided by the present disclosure
  • Figure 2 is a schematic diagram of the steps for obtaining the dq-axis voltage control value of the motor provided by the present disclosure
  • Figure 3 is a control block diagram of the angle correction module provided by the present disclosure.
  • Figure 4 is a schematic diagram of the steps for determining the resolver angle compensation value of the motor provided by the present disclosure
  • Figure 5 is a schematic diagram of the steps for obtaining a PID control output value provided by the present disclosure
  • Figure 6 is a schematic diagram of the steps of adjusting the output torque of the motor based on the rotor rotation position control value provided by the present disclosure
  • Figure 7 is a torque ripple control block diagram of a permanent magnet synchronous motor provided by the present disclosure.
  • Figure 8 is a structural block diagram of a motor output torque control device provided by the present disclosure.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by the present disclosure.
  • the first embodiment of the present disclosure relates to the field of permanent magnet synchronous motors, and specifically to a method of controlling the output torque of the motor.
  • the motor here is a permanent magnet synchronous motor, which is used in new energy vehicles.
  • Embodiments of the present disclosure can start from reducing the fluctuation of the motor's resolver position and adjust the output torque of the motor based on the rotor resolver position control value, thus suppressing the motor's torque ripple.
  • the motor output torque control method includes the following steps:
  • the motor includes an axial flux permanent magnet synchronous motor.
  • the magnetic flux direction of AFPMSM is axial, which has the advantages of simple structure, small size, flexible control and high efficiency.
  • the motor usually adopts the rotor magnetic field oriented vector control method. Suitable for pure electric vehicles.
  • the motor is a three-phase motor, and the method for obtaining the dq-axis voltage control value is shown in Figure 2, including the following steps:
  • step S201 After completing the above step S201, in this step, coordinate transformation is performed on the three-phase current values to obtain the dq-axis current control value in the rotating coordinate system.
  • the collected three-phase current values i a , ib and ic are obtained through Clarke transformation to obtain the current in the two-phase stationary coordinate system, and then the current in the two-phase stationary coordinate system is subjected to Park transformation to obtain two The dq-axis current control value in the phase rotation coordinate system.
  • the dq-axis voltage control value is obtained based on the dq-axis current control value. According to the motor voltage equation, after obtaining the dq-axis current control, the dq-axis voltage control value is obtained through the current controller.
  • S102 Determine the resolver angle compensation value of the motor based on the dq-axis voltage control value.
  • the mold is corrected through the angle as shown in Figure 3 Block, determine the resolver angle compensation value of the motor based on the dq-axis voltage control value.
  • the specific steps for determining the resolver angle compensation value of the motor are as shown in Figure 4, including:
  • S301 Perform average filtering based on the dq-axis voltage control value to obtain the dq-axis voltage command value.
  • PID control is performed based on the dq-axis voltage control value and the dq-axis voltage command value to obtain a PID control output value.
  • a corresponding control output value can be obtained through a corresponding control algorithm, such as a proportional integral differential control algorithm or a linear quadratic Gaussian control algorithm.
  • the PID algorithm is used to obtain the PID control output value. As shown in Figure 5, it includes the following steps:
  • S401 Obtain a difference based on the dq-axis voltage control value and the dq-axis voltage command value.
  • the dq-axis voltage control value and the dq-axis voltage command value are subtracted to obtain the difference between the dq-axis voltage control value and the dq-axis voltage command value.
  • S402 Input the difference value into the PID controller to obtain the PID control output value.
  • the difference value is input into the PID controller to obtain the PID control output value.
  • the resolver angle compensation value is determined based on the PID control output value. Specifically, the PID control output value is subjected to a limiting operation to obtain the resolver angle compensation value, which can prevent the output angle from exceeding the preset limit.
  • the rotor resolver position control value is determined based on the current rotor resolver position collection value and the resolver angle compensation value; the obtained resolver angle is The degree compensation value is subtracted from the current resolver position acquisition value to obtain the rotor resolver position control value.
  • adjusting the output torque of the motor based on the control value includes the following steps:
  • S501 Determine the d-axis current reference value and the q-axis current reference value based on the rotor resolver position control value and the three-phase current value.
  • Figure 7 is a block diagram of the motor torque ripple control.
  • the d-axis current reference value and the q-axis current reference value are determined based on the rotor resolver position control value and the three-phase current value.
  • the three-phase current of the target motor is transformed into Clark coordinates under the new included angle value to obtain the d-axis current reference value and q-axis current reference value under the rotating coordinate system.
  • the determined d-axis current reference value and d-axis current control value are subjected to PID control to obtain a compensated d-axis voltage control value; the q-axis current The control value and the q-axis current reference value are subjected to PID control to obtain a compensated q-axis voltage control value.
  • the d-axis current control value and the q-axis current control value are obtained based on the current torque of the motor and the maximum torque-to-current ratio MTPA.
  • S503 Adjust the output torque of the motor based on the compensated d-axis voltage control value and the compensated q-axis voltage control value.
  • the output torque of the motor is adjusted based on the compensated d-axis voltage control value and the compensated q-axis voltage control value.
  • a three-phase control pulse signal can be obtained by using the compensated d-axis voltage control value and the compensated q-axis voltage control value through sinusoidal pulse width modulation, and the three-phase control pulse signal is used as a three-phase control pulse signal.
  • the control signal of the phase inverter according to the control signal and the input voltage Udc of the three-phase inverter, is inverted through the three-phase inverter to finally obtain the converted three-phase voltage value.
  • the dq-axis voltage is used as the control variable
  • the resolver angle compensation value of the motor is determined by controlling the dq-axis voltage, and is collected based on the current rotor resolver position.
  • the value and the resolver angle compensation value determine the rotor resolver position control value, and finally the output rotation of the motor is adjusted based on the rotor resolver position control value.
  • torque starting from reducing the fluctuation of the motor resolver position, the suppression of the motor torque fluctuation is achieved.
  • the control method described in this disclosure is implemented through pure software at zero cost.
  • the dq axes in this embodiment are the d direct axis and q quadrature axis of the motor respectively.
  • the second aspect of the present disclosure also provides a control device for motor output torque, and the control device can be integrated on an electronic device.
  • control device 200 may include: an acquisition module 210, a first determination module 220, a second determination module 230 and a mediation module 240, specifically as follows:
  • the acquisition module 210 is used to acquire the dq-axis voltage control value of the motor.
  • the acquisition module 210 may include a collection unit, a conversion unit and an acquisition unit, wherein the collection unit collects the three-phase current values of the motor, and the conversion unit performs coordinate transformation on the three-phase current values to obtain rotation coordinates.
  • the acquisition unit acquires the dq-axis voltage control value based on the dq-axis current control value.
  • the first determination module 220 is used to determine the resolver angle compensation value of the motor based on the dq-axis voltage control value.
  • the first determination module 220 may include an instruction value obtaining unit, an output value obtaining unit and a compensation value determining unit, wherein the instruction value obtaining unit performs average filtering based on the dq axis voltage control value to obtain the dq axis voltage instruction value. , the output value obtaining unit performs PID control based on the dq axis voltage control value and the dq axis voltage command value to obtain a PID control output value, and the compensation value determining unit determines the resolver angle compensation value based on the PID control output value.
  • the second determination module 230 is used to determine the rotor rotation position control value based on the current rotor rotation position acquisition value and the rotation angle compensation value.
  • the adjustment module 240 is used to adjust the output torque of the motor based on the rotor rotation position control value.
  • the adjustment module 240 may include a reference value determination unit, a voltage control value acquisition unit and an adjustment unit.
  • the reference value determination unit determines the d-axis current reference value and the q-axis current reference value based on the rotor resolver position control value and the three-phase current value
  • the voltage control value acquisition unit determines the d-axis current reference value based on the d-axis current control value.
  • the PID control is performed based on the value and the d-axis current reference value to obtain the compensated d-axis voltage control value.
  • the PID control is performed based on the q-axis current control value and the q-axis current reference value to obtain the compensated q-axis voltage control value.
  • the adjustment sheet The output torque of the motor is adjusted based on the compensated d-axis voltage control value and the compensated q-axis voltage control value.
  • the dq-axis voltage is used as a control variable
  • the resolver angle compensation value of the motor is determined by controlling the dq-axis voltage, and is collected based on the current rotor resolver position.
  • the value and the resolver angle compensation value determine the rotor resolver position control value, and finally adjust the output torque of the motor based on the rotor resolver position control value; starting from reducing the motor resolver position fluctuation, the motor rotation is realized Suppression of moment fluctuations.
  • the control method described in this disclosure is implemented through pure software at zero cost.
  • the third embodiment of the present disclosure provides a storage medium.
  • the storage medium is a computer-readable medium and stores a computer program.
  • the method provided by the embodiment of the present disclosure is implemented, including the following: Steps S11 to S14:
  • the dq-axis voltage is used as the control variable
  • the resolver angle compensation value of the motor is determined by controlling the dq-axis voltage, and is collected based on the current rotor resolver position.
  • the value and the resolver angle compensation value determine the rotor resolver position control value, and finally adjust the output torque of the motor based on the rotor resolver position control value; starting from reducing the motor resolver position fluctuation, the motor rotation is realized Suppression of moment fluctuations.
  • the control method described in this disclosure is implemented through pure software at zero cost.
  • the fourth embodiment of the present disclosure provides an electronic device.
  • the electronic device at least includes a processor 401 and a memory 402.
  • a computer program is stored on the memory 402.
  • the processor 401 executes the computer program on the memory 402.
  • the program implements the method provided by any embodiment of the present disclosure. Exemplarily, the method for executing the computer program of the electronic device is as follows:
  • the above-mentioned acquisition module 210, the first determination module 220, the second determination module 230 and the mediation module 240 are all stored in the memory 402 as program units, and are implemented by the processor 401 executing the above program units stored in the memory 402. Corresponding functions.
  • the dq-axis voltage is used as the control variable
  • the resolver angle compensation value of the motor is determined by controlling the dq-axis voltage, and is collected based on the current rotor resolver position.
  • the value and the resolver angle compensation value determine the rotor resolver position control value, and finally adjust the output torque of the motor based on the rotor resolver position control value; starting from reducing the motor resolver position fluctuation, the motor rotation is realized Suppression of moment fluctuations.
  • the control method described in this disclosure is implemented through pure software at zero cost.
  • the above-mentioned storage medium may be included in the above-mentioned electronic device; it may also exist separately without being assembled into the electronic device.
  • the above-mentioned storage medium carries one or more programs.
  • the electronic device obtains at least two Internet Protocol addresses; sends at least two Internet Protocol addresses to the node evaluation device.
  • a node evaluation request wherein the node evaluation device selects an Internet Protocol address from at least two Internet Protocol addresses and returns it; receives the Internet Protocol address returned by the node evaluation device; wherein the obtained Internet Protocol address indicates an IP address in the content distribution network edge node.
  • the storage medium carries one or more programs.
  • the electronic device When the one or more programs are executed by the electronic device, the electronic device: receives a node evaluation request including at least two Internet Protocol addresses; receives a node evaluation request from at least two Internet Protocol addresses; Among the protocol addresses, an Internet Protocol address is selected; the selected Internet Protocol address is returned; wherein the received Internet Protocol address indicates an edge node in the content distribution network.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, including but not limited to object-oriented programming languages—such as Java, Smalltalk, C++, and Includes conventional procedural programming languages—such as "C” or similar programming languages.
  • the program code may execute entirely on the passenger computer, partly on the passenger computer, as a stand-alone software package, partly on the passenger computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the passenger computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., using an Internet service provider). Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., using an Internet service provider
  • the above-mentioned storage medium of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any storage medium other than computer-readable storage media that can transmit, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the program code contained on the storage medium can be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • each box in the flowchart or block diagram may represent a module, segment, or portion of code that A module, program segment, or portion of code contains one or more executable instructions for implementing a specified logical function.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the units involved in the embodiments of the present disclosure can be implemented in software or hardware. Among them, the name of a unit does not constitute a limitation on the unit itself under certain circumstances.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLD Complex Programmable Logical device
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, laptop disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请公开了一种电机输出转矩的控制方法、装置及电子设备,所述控制方法包括:获取电机的dq轴电压控制值;基于所述dq轴电压控制值确定所述电机的旋变角度补偿值;基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;基于所述转子旋变位置控制值调节所述电机的输出转矩。本申请采用dq轴电压作为控制变量,通过对dq轴电压进行控制,从降低电机旋变位置波动出发,实现了对电机转矩波动的抑制。

Description

一种电机输出转矩的控制方法、装置及电子设备 技术领域
本公开涉及电机控制技术领域,具体而言,涉及一种电机输出转矩的控制方法、装置及电子设备。本申请要求于2022年5月19日提交至中国国家知识产权局、申请号为202210560387.0、发明名称为“一种电机输出转矩的控制方法、装置及电子设备”的专利申请的优先权。
背景技术
由于能量密度大和效率高,永磁同步电机在新能源汽车领域获得了广泛的应用。电磁转矩是电机的一个重要外特性变量,在大部分汽车应用场合,它需要得到快速、准确的控制,以满足人们对汽车的性能要求。然而,由于电机本身所采用绕组的分布形式、齿槽效应、磁极布置等因素,使得电机气隙磁场发生畸变,产生磁链谐波,并进一步导致电机反电动势产生谐波;同时,由于变频器所采用的电力电子器件的非线性特性,如开关管的管压降、死区时间等,导致电机产生电流谐波。反电动势谐波与电流谐波相互作用,导致永磁同步电机产生转矩波动,严重影响电机***的控制精度和运行平稳性,因而成为电机设计和控制重点解决问题之一。
申请内容
有鉴于此,本公开的目的在于提供一种电机输出转矩的控制方法、装置及电子设备,以解决现有技术中无法有效降低电机转矩波动的技术问题。
为了实现上述目的,第一方面,本公开提供了一种电机输出转矩的控制方法,包括:获取电机的dq轴电压控制值;基于所述dq轴电压控制值确定所述电机的旋变角度补偿值;基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;基于所述转子旋变位置控制值调节所述电机的输出转矩。
在一些实施例中,所述获取电机的dq轴电压控制值,包括:采集所 述电机的三相电流值;将所述三相电流值进行坐标变换得到旋转坐标系下的dq轴电流控制值;基于所述dq轴电流控制值获取所述dq轴电压控制值。
在一些实施例中,所述基于所述dq轴电压控制值确定所述电机的旋变角度补偿值,包括:基于所述dq轴电压控制值进行平均值滤波获得dq轴电压指令值;基于所述dq轴电压控制值和所述dq轴电压指令值进行PID控制,获得PID控制输出值;基于所述PID控制输出值确定所述旋变角度补偿值。
在一些实施例中,所述基于所述dq轴电压控制值和所述dq轴电压指令值进行PID控制,获得PID控制输出值,包括:基于所述dq轴电压控制值和所述dq轴电压指令值获得差值;将所述差值输入PID控制器获得PID控制输出值。
在一些实施例中,所述基于所述PID控制输出值确定所述旋变角度补偿值,还包括:对所述PID控制输出值进行限幅操作。
在一些实施例中,所述基于所述转子旋变位置控制值调节所述电机的输出转矩,包括:基于所述转子旋变位置控制值和所述三相电流值,确定d轴电流参考值和q轴电流参考值;基于d轴电流控制值和所述d轴电流参考值进行PID控制,获得经过补偿的d轴电压控制值以及基于q轴电流控制值和所述q轴电流参考值进行PID控制,获得经过补偿的q轴电压控制值;基于经过补偿的所述d轴电压控制值和经过补偿的所述q轴电压控制值调节所述电机的输出转矩。
在一些实施例中,所述电机是永磁同步电机。
第二方面,本公开还提供了一种电机输出转矩的控制装置,包括:
获取模块,用于获取电机的dq轴电压控制值;第一确定模块,用于基于所述dq轴电压控制值确定所述电机的旋变角度补偿值;第二确定模块,用于基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;调节模块,用于基于所述转子旋变位置控制值调节所述电机的输出转矩。
第三方面,本公开还提供一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项技术方案中所述方法的步骤。
第四方面,本公开还提供一种电子设备,至少包括存储器、处理器, 所述存储器上存储有计算机程序,所述处理器在执行所述存储器上的计算机程序时实现上述任一项技术方案中所述方法的步骤。
本公开实施例采用dq轴电压作为控制变量,通过对dq轴电压进行控制确定所述电机的旋变角度补偿值,并基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值,最终基于所述转子旋变位置控制值调节所述电机的输出转矩;从降低电机旋变位置波动出发,实现了对电机转矩波动的抑制。本公开所述的控制方法通过纯软件实现,零成本。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开所提供的电机输出转矩的控制方法的步骤示意图;
图2是本公开所提供的获取所述电机的dq轴电压控制值的步骤示意图;
图3是本公开所提供的角度修正模块控制框图;
图4是本公开所提供的确定所述电机的旋变角度补偿值的步骤示意图;
图5是本公开所提供的获得PID控制输出值的步骤示意图;
图6是本公开所提供的基于所述转子旋变位置控制值调节所述电机的输出转矩的步骤示意图;
图7是本公开所提供的永磁同步电机转矩波动控制框图;
图8是本公开所提供的电机输出转矩的控制装置的结构框图
图9是本公开所提供的电子设备的结构示意图。
具体实施方式
下面,结合附图对本公开的具体实施例进行详细的描述,但不作为本公开的限定。
应理解的是,可以对此处公开的实施例做出各种修改。因此,上述说明书不应该视为限制,而仅是作为实施例的范例。本领域的技术人员将想到在本公开的范围和精神内的其他修改。
包含在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且与上面给出的对本公开的大致描述以及下面给出的对实施例的详细描述一起用于解释本公开的原理。
通过下面参照附图对给定为非限制性实例的实施例的优选形式的描述,本公开的这些和其它特性将会变得显而易见。
还应当理解,尽管已经参照一些具体实例对本公开进行了描述,但本领域技术人员能够确定地实现本公开的很多其它等效形式,它们具有如权利要求所述的特征并因此都位于借此所限定的保护范围内。
当结合附图时,鉴于以下详细说明,本公开的上述和其他方面、特征和优势将变得更为显而易见。
此后参照附图描述本公开的具体实施例;然而,应当理解,所公开的实施例仅仅是本公开的实例,其可采用多种方式实施。熟知和/或重复的功能和结构并未详细描述以避免不必要或多余的细节使得本公开模糊不清。因此,本文所公开的具体的结构性和功能性细节并非意在限定,而是仅仅作为权利要求的基础和代表性基础用于教导本领域技术人员以实质上任意合适的详细结构多样地使用本公开。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本说明书可使用词组“在一种实施例中”、“在另一个实施例中”、 “在又一实施例中”或“在其他实施例中”,其均可指代根据本公开的相同或不同实施例中的一个或多个。
下面结合附图和具体实施例对本公开作进一步的说明。
实施例1
本公开的第一实施例涉及永磁同步电机领域,具体地涉及一种电机输出转矩的控制方法。这里的电机是永磁同步电机,应用于新能源汽车中。
本公开实施例能够从降低电机旋变位置波动出发,基于所述转子旋变位置控制值调节所述电机的输出转矩,实现了对电机转矩波动的抑制。
如图1所示,所述电机输出转矩的控制方法包括以下步骤:
S101,获取电机的dq轴电压控制值。
在本步骤中,获取电机的dq轴电压控制值。其中,所述电机包括轴向磁通永磁同步电机,AFPMSM的磁通方向为轴向,具有结构简单、体积小、控制灵活以及高效率等优点,该电机通常采用转子磁场定向矢量控制方法,适用于纯电动汽车中。所述电机为三相电机,其dq轴电压控制值的获取方法如图2所示,包括以下步骤:
S201,采集所述电机的三相电流值。
首先,采集所述电机的三相电流值,通过电流传感器采集所述电机的三相电流值,即ia、ib和ic。
S202,将所述三相电流值进行坐标变换得到旋转坐标系下的dq轴电流控制值。
在完成上述步骤S201后,在本步骤中,将所述三相电流值进行坐标变换得到旋转坐标系下的dq轴电流控制值。
具体地,将所采集的三相电流值ia、ib和ic值通过Clarke变换得到两相静止坐标系下的电流,再将两相静止坐标系下的电流通过Park变换,能够得到两相旋转坐标系下的dq轴电流控制值。
S203,基于所述dq轴电流控制值获取所述dq轴电压控制值。
在获得所述dq轴电流控制值后,在本步骤中,基于所述dq轴电流控制值获取所述dq轴电压控制值。根据电机电压方程,在获得所述dq轴电流控制后,经过电流控制器得到dq轴电压控制值。
S102,基于所述dq轴电压控制值确定所述电机的旋变角度补偿值。
在完成上述步骤S101后,本步骤中,通过如图3所示的角度修正模 块,基于所述dq轴电压控制值确定所述电机的旋变角度补偿值。所述确定所述电机的旋变角度补偿值的具体步骤,如图4所示,包括:
S301,基于所述dq轴电压控制值进行平均值滤波获得dq轴电压指令值。
首先,基于所述dq轴电压控制值进行平均值滤波获得dq轴电压指令值。由于所述dq轴电压控制值是基于dq轴电流获得的,由于dq轴电流具有波动,因此所述dq轴电压同样存在波动,也就是说所述dq轴电压控制值在一定范围内进行波动。为避免波动的影响,在角度修正过程中,可以将所述dq轴电压波动值通过平均值滤波器进行滤波,得到对应的dq轴电压指令值。
S302,基于所述dq轴电压控制值和所述dq轴电压指令值进行PID控制,获得PID控制输出值。
在完成上述步骤S301后,在本步骤中,基于所述dq轴电压控制值和所述dq轴电压指令值进行PID控制,获得PID控制输出值。
根据所述dq轴电压控制值和所述dq轴电压指令值通过相应的控制算法,例如比例积分微分控制算法或者线性二次高斯控制算法等,能够得到相应的控制输出值。例如,本实施例中采用PID算法获得PID控制输出值。如图5所示,包括以下步骤:
S401,基于所述dq轴电压控制值和所述dq轴电压指令值获得差值。
首先,将所述dq轴电压控制值和所述dq轴电压指令值相减,得到所述dq轴电压控制值和所述dq轴电压指令值的差值。
S402,将所述差值输入PID控制器获得PID控制输出值。
在获得所述差值后,将所述差值输入PID控制器获得PID控制输出值。
S303,基于所述PID控制输出值确定所述旋变角度补偿值。
在获得所述PID控制输出值,本步骤中,基于所述PID控制输出值确定所述旋变角度补偿值。具体地,将所述PID控制输出值进行限幅操作获得所述旋变角度补偿值,这样能够避免输出角度的大小超过预设限制。
S103,基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值。
在完成上述步骤S102后,在本步骤中,基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;将所获得的旋变角 度补偿值与当前的旋变位置采集值相减,获得转子旋变位置控制值。
S104,基于所述转子旋变位置控制值调节所述电机的输出转矩。
在获得所述转子旋变位置控制值后,如图6所示,基于该控制值调节所述电机的输出转矩,包括以下步骤:
S501,基于所述转子旋变位置控制值和所述三相电流值,确定d轴电流参考值和q轴电流参考值。
图7为所述电机转矩波动控制框图。如图所示,在一些实施例中,首先,基于所述转子旋变位置控制值和所述三相电流值,确定d轴电流参考值和q轴电流参考值。具体地,将目标电机的三相电流在新的夹角值下进行克拉克坐标变换得到旋转坐标系下d轴电流参考值和q轴电流参考值。
S502,基于d轴电流控制值和所述d轴电流参考值进行PID控制,获得经过补偿的d轴电压控制值以及基于q轴电流控制值和所述q轴电流参考值进行PID控制,获得经过补偿的q轴电压控制值。
在确定d轴电流参考值和q轴电流参考值后,将所述确定d轴电流参考值和d轴电流控制值进行PID控制,获得经过补偿的d轴电压控制值;将所述q轴电流控制值和所述q轴电流参考值进行PID控制,获得经过补偿的q轴电压控制值。其中,所述d轴电流控制值和q轴电流控制值基于所述电机的当前转矩和最大转矩电流比MTPA获得。
S503,基于经过补偿的所述d轴电压控制值和经过补偿的所述q轴电压控制值调节所述电机的输出转矩。
在完成上述步骤S502后,在本步骤中,基于经过补偿的所述d轴电压控制值和经过补偿的所述q轴电压控制值调节所述电机的输出转矩。具体地,将所述经过补偿的所述d轴电压控制值和经过补偿的所述q轴电压控制值通过正弦脉冲宽度调制方式能够得到三相控制脉冲信号,将该三相控制脉冲信号作为三相逆变器的控制信号,根据该控制信号以及三相逆变器的输入电压Udc通过三相逆变器进行逆变最终能够得到变换后的三相电压值。
根据本公开实施例提供的电机输出转矩的控制方法,采用dq轴电压作为控制变量,通过对dq轴电压进行控制确定所述电机的旋变角度补偿值,并基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值,最终基于所述转子旋变位置控制值调节所述电机的输出转 矩;从降低电机旋变位置波动出发,实现了对电机转矩波动的抑制。本公开所述的控制方法通过纯软件实现,零成本。本实施例中的dq轴分别是电机的d直轴和q交轴。
实施例2
为了更好地实施以上方法,本公开的第二方面还提供一种电机输出转矩的控制装置,该控制装置可以集成在电子设备上。
例如,如图8所示,所述控制装置200可以包括:获取模块210,第一确定模块220,第二确定模块230和调解模块240,具体如下:
(1)获取模块210,用于获取电机的dq轴电压控制值。
具体地,所述获取模块210可以包括采集单元、转换单元和获取单元,其中所述采集单元采集所述电机的三相电流值,所转换单元将所述三相电流值进行坐标变换得到旋转坐标系下的dq轴电流控制值,所述获取单元基于所述dq轴电流控制值获取所述dq轴电压控制值。
(2)第一确定模块220,用于基于所述dq轴电压控制值确定所述电机的旋变角度补偿值。
具体地,所述第一确定模块220可以包括指令值获得单元,输出值获得单元和补偿值确定单元,其中指令值获得单元基于所述dq轴电压控制值进行平均值滤波获得dq轴电压指令值,输出值获得单元基于所述dq轴电压控制值和所述dq轴电压指令值进行PID控制获得PID控制输出值,补偿值确定单元基于所述PID控制输出值确定所述旋变角度补偿值。
(3)第二确定模块230,用于基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值。
(4)调节模块240,用于基于所述转子旋变位置控制值调节所述电机的输出转矩。
具体地,所述调节模块240可以包括参考值确定单元、电压控制值获取单元和调节单元。其中,所述参考值确定单元基于所述转子旋变位置控制值和所述三相电流值,确定d轴电流参考值和q轴电流参考值;所述电压控制值获取单元基于d轴电流控制值和所述d轴电流参考值进行PID控制,获得经过补偿的d轴电压控制值以及基于q轴电流控制值和所述q轴电流参考值进行PID控制,获得经过补偿的q轴电压控制值;所述调节单 元基于经过补偿的所述d轴电压控制值和经过补偿的所述q轴电压控制值调节所述电机的输出转矩。
根据本公开实施例提供的电机输出转矩的控制装置,采用dq轴电压作为控制变量,通过对dq轴电压进行控制确定所述电机的旋变角度补偿值,并基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值,最终基于所述转子旋变位置控制值调节所述电机的输出转矩;从降低电机旋变位置波动出发,实现了对电机转矩波动的抑制。本公开所述的控制方法通过纯软件实现,零成本。
实施例3
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本公开的第三实施例提供了一种存储介质,该存储介质为计算机可读介质,存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的方法,包括如下步骤S11至S14:
S11,获取电机的dq轴电压控制值;
S12,基于所述dq轴电压控制值确定所述电机的旋变角度补偿值;
S13,基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;
S14,基于所述转子旋变位置控制值调节所述电机的输出转矩。
进一步地,该计算机程序被处理器执行时实现本公开上述任一项实施例提供的其他方法。
根据本公开实施例提供的电机输出转矩的控制方法,采用dq轴电压作为控制变量,通过对dq轴电压进行控制确定所述电机的旋变角度补偿值,并基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值,最终基于所述转子旋变位置控制值调节所述电机的输出转矩;从降低电机旋变位置波动出发,实现了对电机转矩波动的抑制。本公开所述的控制方法通过纯软件实现,零成本。
实施例4
本公开的第四实施例提供了一种电子设备,如图9所示,该电子设备至少包括处理器401和存储器402,存储器402上存储有计算机程序,处理器401在执行存储器402上的计算机程序时实现本公开任意实施例提供的方法。示例性的,电子设备计算机程序执行的方法如下:
S21,获取电机的dq轴电压控制值;
S22,基于所述dq轴电压控制值确定所述电机的旋变角度补偿值;
S23,基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;
S24,基于所述转子旋变位置控制值调节所述电机的输出转矩。
具体实现时,上述获取模块210,第一确定模块220,第二确定模块230和调解模块240均作为程序单元存储在存储器402中,由处理器401执行存储在存储器402中的上述程序单元来实现相应的功能。
根据本公开实施例提供的电机输出转矩的控制方法,采用dq轴电压作为控制变量,通过对dq轴电压进行控制确定所述电机的旋变角度补偿值,并基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值,最终基于所述转子旋变位置控制值调节所述电机的输出转矩;从降低电机旋变位置波动出发,实现了对电机转矩波动的抑制。本公开所述的控制方法通过纯软件实现,零成本。
上述存储介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述存储介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取至少两个网际协议地址;向节点评价设备发送包括至少两个网际协议地址的节点评价请求,其中,节点评价设备从至少两个网际协议地址中,选取网际协议地址并返回;接收节点评价设备返回的网际协议地址;其中,所获取的网际协议地址指示内容分发网络中的边缘节点。
或者,上述存储介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:接收包括至少两个网际协议地址的节点评价请求;从至少两个网际协议地址中,选取网际协议地址;返回选取出的网际协议地址;其中,接收到的网际协议地址指示内容分发网络中的边缘节点。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在乘客计算机上执行、部分地在乘客计算机上执行、作为一个独立的软件包执行、部分在乘客计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到乘客计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
需要说明的是,本公开上述的存储介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何存储介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本公开各种实施例的***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该 模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上***(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行***、装置或设备使用或与指令执行***、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体***、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这 些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上对本公开多个实施例进行了详细说明,但本公开不限于这些具体的实施例,本领域技术人员在本公开构思的基础上,能够做出多种变型和修改实施例,这些变型和修改都应落入本公开所要求保护的范围。

Claims (10)

  1. 一种电机输出转矩的控制方法,其特征在于,包括:
    获取电机的dq轴电压控制值;
    基于所述dq轴电压控制值确定所述电机的旋变角度补偿值;
    基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;
    基于所述转子旋变位置控制值调节所述电机的输出转矩。
  2. 根据权利要求1所述的控制方法,其特征在于,所述获取电机的dq轴电压控制值,包括:
    采集所述电机的三相电流值;
    将所述三相电流值进行坐标变换得到旋转坐标系下的dq轴电流控制值;
    基于所述dq轴电流控制值获取所述dq轴电压控制值。
  3. 根据权利要求1所述的控制方法,其特征在于,所述基于所述dq轴电压控制值确定所述电机的旋变角度补偿值,包括:
    基于所述dq轴电压控制值进行平均值滤波获得dq轴电压指令值;
    基于所述dq轴电压控制值和所述dq轴电压指令值进行PID控制,获得PID控制输出值;
    基于所述PID控制输出值确定所述旋变角度补偿值。
  4. 根据权利要求3所述的控制方法,其特征在于,所述基于所述dq轴电压控制值和所述dq轴电压指令值进行PID控制,获得PID控制输出值,包括:
    基于所述dq轴电压控制值和所述dq轴电压指令值获得差值;
    将所述差值输入PID控制器获得PID控制输出值。
  5. 根据权利要求3所述的控制方法,其特征在于,所述基于所述PID控制输出值确定所述旋变角度补偿值,还包括:
    对所述PID控制输出值进行限幅操作。
  6. 根据权利要求2所述的控制方法,其特征在于,所述基于所述转子旋变位置控制值调节所述电机的输出转矩,包括:
    基于所述转子旋变位置控制值和所述三相电流值,确定d轴电流参考 值和q轴电流参考值;
    基于d轴电流控制值和所述d轴电流参考值进行PID控制,获得经过补偿的d轴电压控制值以及基于q轴电流控制值和所述q轴电流参考值进行PID控制,获得经过补偿的q轴电压控制值;
    基于经过补偿的所述d轴电压控制值和经过补偿的所述q轴电压控制值调节所述电机的输出转矩。
  7. 根据权利要求1所述的控制方法,其特征在于,所述电机是永磁同步电机。
  8. 一种电机输出转矩的控制装置,其特征在于,包括:
    获取模块,用于获取电机的dq轴电压控制值;
    第一确定模块,用于基于所述dq轴电压控制值确定所述电机的旋变角度补偿值;
    第二确定模块,用于基于当前的转子旋变位置采集值和所述旋变角度补偿值确定转子旋变位置控制值;
    调节模块,用于基于所述转子旋变位置控制值调节所述电机的输出转矩。
  9. 一种存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述方法的步骤。
  10. 一种电子设备,至少包括存储器、处理器,所述存储器上存储有计算机程序,其特征在于,所述处理器在执行所述存储器上的计算机程序时实现权利要求1至7中任一项所述方法的步骤。
PCT/CN2023/091328 2022-05-19 2023-04-27 一种电机输出转矩的控制方法、装置及电子设备 WO2023221763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210560387.0 2022-05-19
CN202210560387.0A CN114844422A (zh) 2022-05-19 2022-05-19 一种电机输出转矩的控制方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023221763A1 true WO2023221763A1 (zh) 2023-11-23

Family

ID=82571668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091328 WO2023221763A1 (zh) 2022-05-19 2023-04-27 一种电机输出转矩的控制方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN114844422A (zh)
WO (1) WO2023221763A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844422A (zh) * 2022-05-19 2022-08-02 中国第一汽车股份有限公司 一种电机输出转矩的控制方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032944A (ja) * 2002-06-27 2004-01-29 Okuma Corp 同期電動機の制御装置及び同期電動機
CN104011992A (zh) * 2011-10-21 2014-08-27 三菱重工业株式会社 电动机控制装置、电动机控制方法
CN107809194A (zh) * 2016-08-26 2018-03-16 比亚迪股份有限公司 电机的转子角度补偿控制方法和控制***
CN110557075A (zh) * 2019-10-08 2019-12-10 珠海格力电器股份有限公司 电机转矩的确定方法及装置、电机控制***
CN112865641A (zh) * 2021-04-13 2021-05-28 中国第一汽车股份有限公司 一种降低电机转矩波动的方法、装置、车辆及存储介质
CN113346822A (zh) * 2020-03-02 2021-09-03 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机***和存储介质
CN114844422A (zh) * 2022-05-19 2022-08-02 中国第一汽车股份有限公司 一种电机输出转矩的控制方法、装置及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032944A (ja) * 2002-06-27 2004-01-29 Okuma Corp 同期電動機の制御装置及び同期電動機
CN104011992A (zh) * 2011-10-21 2014-08-27 三菱重工业株式会社 电动机控制装置、电动机控制方法
CN107809194A (zh) * 2016-08-26 2018-03-16 比亚迪股份有限公司 电机的转子角度补偿控制方法和控制***
CN110557075A (zh) * 2019-10-08 2019-12-10 珠海格力电器股份有限公司 电机转矩的确定方法及装置、电机控制***
CN113346822A (zh) * 2020-03-02 2021-09-03 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机***和存储介质
CN112865641A (zh) * 2021-04-13 2021-05-28 中国第一汽车股份有限公司 一种降低电机转矩波动的方法、装置、车辆及存储介质
CN114844422A (zh) * 2022-05-19 2022-08-02 中国第一汽车股份有限公司 一种电机输出转矩的控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN114844422A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
JP5715777B2 (ja) 永久磁石同期モータの制御方法
EP2731260B1 (en) Inverter control device and inverter control method
US10396696B1 (en) Methods, systems and apparatus for controlling current supplied to control a machine
US20230081528A1 (en) Optimized regenerative braking control of electric motors using look-up tables
WO2023221763A1 (zh) 一种电机输出转矩的控制方法、装置及电子设备
JP2017163643A (ja) 回転電機駆動装置の制御装置
CN113241987B (zh) 一种电机的控制方法、控制***和存储介质
WO2022237829A1 (zh) 一种电机的控制方法、控制***和存储介质
CN110086383B (zh) 十二相驱动***的模型预测控制方法及装置
WO2022110555A1 (zh) 永磁同步电机抑制转矩脉动的方法和装置
Al-Kaf et al. Hybrid current controller for permanent-magnet synchronous motors using robust switching techniques
Kabalcı et al. Multilevel inverter applications for electric vehicle drives
CN112865641A (zh) 一种降低电机转矩波动的方法、装置、车辆及存储介质
Kakodia et al. A comparative study of DFOC and IFOC for IM drive
WO2023024029A1 (zh) 永磁同步电机的控制方法、装置及永磁同步电机控制***
CN113839595B (zh) 双三相永磁同步电机谐波和不平衡电流抑制方法
WO2022209794A1 (ja) 電力変換装置の制御装置
Abosh et al. Current control of permanent magnet synchronous machine with asymmetric phases
CN114785204A (zh) 一种永磁同步电机转矩脉动抑制方法及相关***
Su et al. Model predictive torque-vector control for four-switch three-phase inverter-fed PMSM with capacitor voltage offset suppression
Körpe et al. Modulated model predictive torque control for interior permanent magnet synchronous machines
Qin et al. Fast response deadbeat current control for PMSM
WO2020003770A1 (ja) モータ制御装置、モータ制御方法、およびモータシステム
Patil et al. Performance comparison of DTC and FOC induction motor drive in five level diode clamped inverter
Huang et al. Modeling and analysis of IPM synchronous motor under six step voltage control by Fourier series

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806715

Country of ref document: EP

Kind code of ref document: A1