WO2023221601A1 - 天线及电子设备 - Google Patents

天线及电子设备 Download PDF

Info

Publication number
WO2023221601A1
WO2023221601A1 PCT/CN2023/079356 CN2023079356W WO2023221601A1 WO 2023221601 A1 WO2023221601 A1 WO 2023221601A1 CN 2023079356 W CN2023079356 W CN 2023079356W WO 2023221601 A1 WO2023221601 A1 WO 2023221601A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
antenna
substrate
radiation patch
holes
Prior art date
Application number
PCT/CN2023/079356
Other languages
English (en)
French (fr)
Inventor
董元旦
许艺珍
王政
吴涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023221601A1 publication Critical patent/WO2023221601A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present application relates to the field of antenna technology, and in particular, to an antenna and an electronic device.
  • D-band 110GHz-170GHz
  • 5G ultra-fifth generation mobile communication technology
  • 6G sixth generation mobile communication technology
  • candidate frequency band Using D-band (terahertz band) communication can achieve data rates of more than 10Gbps (gigabits per second) and latency of less than 0.1 milliseconds.
  • the traditional patch antenna has a narrow impedance bandwidth in the D-band. There are many challenges in applying it directly to the D-band, and it is difficult to meet the current communication requirements. Therefore, how to improve the impedance bandwidth of the patch antenna is an urgent need for those skilled in the field to solve. One of the questions.
  • This application provides an antenna and electronic equipment that can improve the impedance bandwidth of the antenna.
  • the present application provides an antenna, which includes a top substrate and a first metal ground layer that are stacked in sequence.
  • the antenna also includes at least one antenna unit; the antenna unit includes: a radiation patch and at least two metal disks. Wherein, the radiation patch and at least two metal disks are arranged on the surface of the top substrate away from the first metal layer; at least two metal disks are arranged around the radiation patch, and at least two metal disks are arranged symmetrically with respect to the radiation patch; the top layer
  • the substrate is provided with at least one first metal through hole at a position corresponding to each metal disk, and two ends of the first metal through hole are respectively connected to the metal disk and the first metal ground layer.
  • a “mushroom structure” is formed by arranging multiple metal disks symmetrically around the radiation patch, and providing first metal through holes in the top substrate corresponding to the bottom of each metal disk; the first metal through holes Connect the metal disk to the first metal ground layer under the top substrate; in this case, the metal disk can form a mutual capacitance (coupling capacitance) between the metal disk and the radiation patch, that is, capacitive coupling is generated, which can reduce the input of the antenna Return loss increases the impedance bandwidth of the antenna.
  • the above-mentioned at least two metal disks include at least two first metal disks; the at least two first metal disks are arranged symmetrically with respect to the radiation patch along a first direction, and the first direction is the radiation patch. direction of the coupled electric field.
  • the first metal disk is symmetrically arranged in the coupling electric field direction of the radiating patch (ie, the first direction).
  • the "mushroom structure" symmetrically arranged along the first direction and the radiation The surface where the patch is located forms a ring loop, thereby introducing the radiation mode of the magnetic dipole along the second direction, thereby increasing the resonance point of the antenna, that is, increasing the resonance mode of the antenna to expand the bandwidth of the antenna.
  • the above-mentioned at least two metal disks include at least two second metal disks; the at least two second metal disks are symmetrically arranged with respect to the radiation patch in a second direction, and the second direction is different from the first direction. vertical.
  • the antenna unit through the "mushroom structure" symmetrically arranged along the second direction, the coupling path from the feed slot to the radiation patch can be increased, so that the coupling strength between the feed slot and the radiation patch can be adjusted. Can improve the in-band matching of the antenna.
  • the radiation patch is provided with a gap at a position opposite to the metal disk to increase the capacitive coupling area between the metal disk and the radiation patch, further reduce the input return loss of the antenna, and improve the antenna's performance. Impedance bandwidth.
  • the concave shape of the notch matches the shape of the metal disk, thereby increasing the capacitive coupling area between the metal disk and the radiation patch to a greater extent.
  • the antenna unit further includes a metal ring; the metal ring is located on the surface of the top substrate away from the first metal layer, and the radiation patch and at least two metal disks arranged around the radiation patch are located around the metal ring.
  • the top substrate has a plurality of second metal through holes at positions corresponding to the metal ring, the plurality of second metal through holes are arranged along the circumferential direction of the metal ring, and the two ends of the plurality of second metal through holes are respectively Connected to metal ring and first metal ground layer.
  • the metal ring and the plurality of second metal through holes can form a cavity around the radiation patch, and the cavity can form a wave limiting structure, through which the electric field can be restrained around the radiation patch.
  • the energy input to the radiation patch can be prevented from propagating along the top substrate, and it can also prevent the antenna from being affected by surface waves, thereby reducing the input return loss of the antenna and improving The impedance bandwidth of the antenna.
  • the cavity can also expand the antenna radiation diameter.
  • the antenna further includes: at least two intermediate substrates stacked in sequence; at least two intermediate substrates are located on a side of the first metal ground layer away from the top substrate; and a plurality of second intermediate substrates are provided on each intermediate substrate.
  • Metal through holes to form at least one power splitter among the two adjacent intermediate substrates, one power splitter in the intermediate substrate far away from the top substrate is coupled to multiple power splitters in the intermediate substrate close to the top substrate .
  • the power splitter on the top intermediate substrate (that is, the intermediate substrate closest to the top substrate) is coupled to the antenna unit; by arranging multiple power splitters longitudinally distributed on multiple intermediate substrates, the lateral size of the antenna can be reduced .
  • the antenna further includes at least two intermediate metal layers, each intermediate substrate is provided with an intermediate metal layer on a surface close to the top substrate, and the intermediate metal layer is provided with an output end of the corresponding power divider.
  • Feed port; the power splitter is provided with multiple (at least two) first matching metal through holes in the area corresponding to the feed port. Compared with the large inductance component caused by only one matching metal through hole in the prior art, multiple first matching metal through holes are provided, and the inclination angles between the multiple matching metal through holes are adjusted, thereby improving the The flexibility of antenna matching optimization is more conducive to adjusting the matching status of the antenna.
  • the power splitter includes a main road and multiple branch roads connected to the main road; the power splitter is provided with multiple (at least two) thirds at the corners from the main road to the multiple branch roads.
  • Two matching metal through holes by adjusting the inclination angle between the plurality of second matching metal through holes and the main path, the energy distribution of the power splitter to the coupled power splitters is more balanced and balanced, further making the antenna
  • the radiation direction is more symmetrical and the directional radiation effect is better.
  • the antenna includes 16 antenna units and two intermediate substrates; the two intermediate substrates are respectively a first intermediate substrate and a second intermediate substrate, and the first intermediate substrate is located away from the second intermediate substrate and the top substrate.
  • One side of the first intermediate substrate is provided with a first power divider; the second intermediate substrate is provided with four second power dividers; both the first power divider and the second power divider divide one power into four splitter; the four output terminals of the first power splitter are respectively coupled to four second power splitters, and the four second power splitters are respectively coupled to 16 antenna units through 16 output terminals.
  • the antenna further includes a bottom substrate; the bottom substrate is located far away from at least two intermediate substrates. One side away from the top substrate; a plurality of third metal through holes are opened on the bottom substrate to form a substrate integrated waveguide (SIW) transmission line; the SIW transmission line includes a first transmission section, a second transmission section, and a transfer section.
  • SIW substrate integrated waveguide
  • the first end of the first transmission section is connected to the adapter section, and the second end of the first transmission section is connected to the second transmission section; a plurality of fourth metal through holes are also provided on the underlying substrate; a plurality of fourth The metal through holes are distributed along the extension direction of the SIW transmission line, and the plurality of fourth metal through holes are located at the plurality of third metal through holes forming the first transmission section, and/or the second transmission section, and/or the transfer part. outside; the SIW transmission line is coupled to the power splitter in the bottom intermediate substrate at the end of the second transmission section; the bottom intermediate substrate is an intermediate substrate adjacent to the bottom substrate among at least two intermediate substrates.
  • the width of the second transmission section is different along the length direction of the SIW transmission line.
  • the distance between the radiation patch and the first metal layer is one-quarter of the dielectric wavelength.
  • a metal ground layer is provided on the upper surface of each intermediate substrate and the bottom substrate, and a grid structure is provided in the metal ground layer; through the arrangement of the grid structure, the LTCC substrate and the metal layer can be improved.
  • the process errors caused by different shrinkage rates during the sintering process can also effectively improve the unfavorable phenomenon of antenna warping.
  • the grid structures in two adjacent metal ground layers can be arranged in a staggered manner to ensure the overall flatness of the antenna.
  • the bottom substrate, middle substrate, and top substrate all use low temperature co-fired ceramic (LTCC) substrates; the accuracy that can be achieved using LTCC technology is higher, which is more conducive to a larger Flexible design of the antenna in a small space frame can also obtain better high-frequency electrical characteristics, thereby reducing the input return loss of the antenna and improving the impedance bandwidth of the antenna.
  • LTCC low temperature co-fired ceramic
  • This application also provides an electronic device, which includes a circuit board and an antenna provided in any of the aforementioned possible implementation methods; the antenna is disposed on the surface of the circuit board and is electrically connected to the circuit board.
  • Figure 1 is an inter-layer schematic diagram of an antenna provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an antenna unit part of an antenna provided by an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view along the OO' position in Figure 2;
  • Figure 4 is a schematic diagram of an antenna unit in an antenna provided by an embodiment of the present application.
  • Figure 5a is a schematic diagram of an antenna unit in an antenna provided by an embodiment of the present application.
  • Figure 5b is a schematic diagram of the first direction and the second direction in the antenna unit
  • Figure 6 is a schematic diagram of an antenna unit in an antenna provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of five antenna units in an antenna provided by an embodiment of the present application.
  • Figure 8 shows the reflection coefficient curves of the five antenna units in Figure 7;
  • Figure 9 shows the gain curves of the five antenna units in Figure 7;
  • Figure 10 is a schematic diagram of an antenna using an antenna array provided by an embodiment of the present application.
  • Figure 11 is a schematic plan view of an antenna array provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the distribution of metal through holes on the top substrate below the antenna array of Figure 11;
  • Figure 13 is a schematic structural diagram of multiple substrates in an antenna provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a substrate of an antenna provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a substrate of an antenna provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a metal layer of an antenna provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a metal layer of an antenna provided by an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a metal layer of an antenna provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a metal layer of an antenna provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of a first power divider provided by an embodiment of the present application.
  • Figure 21 is a schematic diagram of a second power splitter provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of a transmission line provided by an embodiment of the present application.
  • it can be a fixed connection or an integral connection; it can be a direct connection, an indirect connection through an intermediary, or an internal connection between two elements.
  • the terms “including” and “having” and any variations thereof are intended to cover a non-exclusive inclusion, for example, the inclusion of a series of steps or units. Methods, systems, products or devices are not necessarily limited to those steps or elements expressly listed, but may include other steps or elements not expressly listed or inherent to such processes, methods, products or devices. "Up”, “down”, “left”, “right”, “top”, “bottom”, etc. are only used relative to the orientation of the components in the drawings. These directional terms are relative concepts. Relative descriptions and clarifications are used, which may vary accordingly depending on changes in the orientation in which components in the drawings are placed.
  • Embodiments of the present application provide an electronic device, which includes a printed circuit board (PCB; also called a printed circuit board) and an antenna (also called a patch antenna); wherein, the antenna is disposed on the circuit The surface of the board and is electrically connected to the circuit board.
  • PCB printed circuit board
  • antenna also called a patch antenna
  • the electronic device can be a base station, radar, sensor, mobile phone, computer, etc.
  • a new type of patch antenna (hereinafter referred to as the antenna) is used in the electronic device of the present application.
  • the antenna By introducing metal devices around the radiation patch, the capacitive coupling area between the radiation patch and the metal device is increased, thereby increasing the capacitive coupling area between the radiation patch and the metal device.
  • the input return loss of the antenna is reduced and the impedance bandwidth of the antenna is improved.
  • Figure 1 is an inter-layer schematic diagram of an antenna provided by an embodiment of the present application.
  • the antenna includes a plurality of substrates (S1, S2, S3, S4) and a plurality of metal layers (M1, M2, M3, M4, M5) that are stacked and alternately arranged.
  • the plurality of substrates (S1, S2, S3, S4) include a top substrate S1, a bottom substrate S4, and two intermediate substrates (S2, S3) located between the top substrate S1 and the bottom substrate S4.
  • two intermediate substrates S2, S3 located between the top substrate S1 and the bottom substrate S4.
  • three or more intermediate substrates may also be included.
  • the following embodiments of the present application only take two intermediate substrates (S2, S3) as an example for schematic description.
  • the metal materials used in the above-mentioned multiple metal layers can be copper, copper alloy, silver and other metal materials.
  • the above-mentioned plurality of metal layers may all adopt silver plating layers. The following embodiments are all taken as examples in order to illustrate.
  • the multiple substrates may use silicon substrates; for another example, in some possible implementations, the multiple substrates (S1, S2, S3, S4) Low temperature co-fired ceramic (LTCC) substrates can also be used.
  • LTCC Low temperature co-fired ceramic
  • the use of silicon-based technology and LTCC technology can achieve higher precision, which is more conducive to a smaller space frame for flexible antenna design.
  • the use of LTCC technology can obtain better high-frequency electrical characteristics, thereby reducing the input return loss of the antenna and improving the impedance bandwidth of the antenna.
  • the following embodiments take the LTCC substrate as an example for multiple substrates (S1, S2, S3, S4).
  • the antenna structure (metal structure) can be first made on a green porcelain tape, and then multiple LTCC substrates are stacked and sintered through a high-temperature multi-layer structure. Complete the production of the antenna.
  • this application does not limit the thickness of multiple metal layers and multiple LTCC substrates.
  • the thickness of the plurality of metal layers may be approximately 8 ⁇ m and the thickness of the LTCC substrate may be 192 ⁇ m.
  • structures such as metal through-holes and through-holes can be provided in each of the above-mentioned substrates as needed, and pattern structures such as radiation patches, metal disks, and metal layers can be formed in each metal layer as needed to meet the actual functional requirements of the antenna. .
  • the antenna provided in the embodiment of the present application will be further described below in conjunction with the arrangement of each substrate and each metal layer.
  • the antenna provided in the embodiment of the present application includes at least one antenna unit 1.
  • the antenna unit 1 includes a radiation patch 11 disposed on the upper surface of the top substrate S1 and a plurality of metal disks 12 (that is, at least two metal disks).
  • a plurality of metal disks 12 are arranged around the radiation patch 11, and the plurality of metal disks 12 are arranged symmetrically with respect to the radiation patch 11 to ensure the balance of radiation signals.
  • the top substrate S1 is provided with at least one first metal through hole 13 at a position corresponding to each metal disk 11 (that is, directly below the metal disk 11).
  • the second metal layer M2 located on the lower surface of the top substrate S1 is provided with The first metal ground layer 100 and the two ends of the first metal through hole 13 are connected to the metal disk 11 and the first metal ground layer 100 respectively.
  • the first metal ground layer 100 serves as a ground layer (ie, reference layer) and can be electrically connected to the ground terminal to provide a reference potential. This is similar to the metal bottom layer mentioned below, which will not be described again below.
  • the distance between the radiation patch 11 and the first metal layer 100 is a quarter of the dielectric wavelength.
  • a first metal through hole 13 is provided below a metal disk 12 as an example for schematic explanation.
  • the entire metal through hole 13 will be described below.
  • the metal plate 12 and a first metal through hole 13 located below it can be formed below.
  • the overall structure is called "mushroom structure”.
  • a plurality of metal disks 12 are symmetrically arranged around the radiation patch 11, and a first metal through hole 13 is provided under each metal disk 12 in the top substrate S1.
  • the hole 13 connects the metal disk 12 to the first metal ground layer 100 under the top substrate S1; in this case, the metal disk 12 can form a mutual capacitance (coupling capacitance) with the radiation patch 11, that is, capacitive coupling is generated. , which can reduce the input return loss of the antenna and improve the impedance bandwidth of the antenna.
  • a gap a can be set at a position opposite the radiation patch 11 and the metal disk 12 to increase the capacity between the metal disk 12 and the radiation patch 11 .
  • the linear coupling area further reduces the input return loss of the antenna and improves the impedance bandwidth of the antenna.
  • the concave shape of the notch a and the concave shape of the metal disk 12 can be set. Shape to match.
  • the notch a can be set to have a concave arc structure, and then the edge of the metal plate 12 at the corresponding position has a matching convex arc structure; for another example, in some embodiments, the notch a can be set to be a concave arc structure. If there is a concave triangular structure, the edge of the metal plate 12 at the corresponding position will have a matching protruding triangular structure.
  • the radiation patch 11 may be provided with multiple arc-shaped notches on the edge of a circular structure, and the metal disk 12 may adopt a circular structure.
  • the plurality of metal disks 12 may include: along the first direction YY' A plurality of first metal disks b1 are arranged symmetrically with respect to the radiation patch 11, and the first metal disks b1 are connected to the first metal ground layer 100 through the first metal through holes 131 located below; that is, along the first direction YY' with respect to The radiation patch 11 is symmetrically arranged with multiple "mushroom structures".
  • the first direction YY' is the coupling electric field direction of the radiation patch 11.
  • the relevant description below are the relevant description below.
  • the coupling electric field direction (ie, the first direction) of the radiation patch 11 is related to the feeding mode of the radiation patch 11.
  • a rectangular The feed slot R is used to feed power.
  • the following embodiments take the radiation patch 11 using the feed slot R as an example for schematic explanation.
  • the coupling electric field direction of the radiation patch 11 i.e., the first direction YY'
  • the feed slot R is located in the first metal ground layer 100 directly below the radiation patch 11 (can be combined with FIG. 3 and FIG. 5 ).
  • the vertical direction of the first direction YY' in the plane where the radiation patch 11 is located is defined as the second direction XX'.
  • the first metal disk b1 is symmetrically arranged in the coupling electric field direction of the radiation patch 11 (ie, the first direction YY').
  • the first metal disk b1 is symmetrically arranged along the first direction YY'.
  • the "mushroom structure" forms a loop with the surface of the radiation patch 11, thereby introducing the radiation mode of the magnetic dipole along the second direction XX', thus increasing the resonance point of the antenna, that is, increasing the resonance mode of the antenna. , to expand the bandwidth of the antenna.
  • FIG. 5a only illustrates schematically an example of arranging a "mushroom structure" on both sides of the radiation patch 11 along the first direction YY'; in other possible implementation methods, Two or more “mushroom structures” may be provided on both sides of the radiation patch 11 along the first direction YY'.
  • the following embodiments all take the example of arranging a "mushroom structure" on both sides of the radiation patch 11 along the first direction YY'.
  • the plurality of metal disks 12 may also include: along the first A plurality of second metal disks b2 are arranged symmetrically with respect to the radiation patch 11 in the two directions XX'.
  • the second metal disks b2 are connected to the first metal ground layer 100 through the first metal through holes 132 located below; that is, along the second direction
  • Multiple "mushroom structures" are symmetrically arranged on XX' with respect to the radiation patch 11.
  • the coupling path from the feed slot R to the radiation patch 11 can be increased, thereby adjusting the relationship between the feed slot R and the radiation.
  • the coupling between patches 11 is strong or weak, thereby improving the in-band matching of the antenna.
  • the size, shape, etc. of the second metal disk b2 and the first metal disk b1 may be the same or different. In practice, they may be set as needed.
  • FIG. 5 is only schematically illustrated by taking the example of arranging a "mushroom structure" on both sides of the radiation patch 11 along the second direction XX'; in other possible implementation methods, the radiation patch 11 is provided along the Two or more "mushroom structures" may be provided on both sides of the second direction XX'.
  • the following embodiments take as an example that the antenna unit 1 is provided with a "mushroom structure" on both sides of the radiation patch 11 along the second direction XX'.
  • the following embodiments all take the example of arranging a "mushroom structure" on both sides of the radiation patch 11 along the second direction XX'.
  • the “mushroom structure” is provided simultaneously along the first direction YY′ and the second direction XX′ on the radiation patch 11 as an example for schematic illustration, but the application is not limited thereto.
  • a “mushroom structure” may be symmetrically provided only on both sides of the radiation patch 11 along the first direction YY’.
  • a “mushroom structure” may be symmetrically provided only on both sides of the radiation patch 11 along the second direction XX'.
  • the antenna unit 1 may also include a metal ring 14 , which is disposed on the upper surface of the top substrate S1 (ie, the surface away from the first metal ground layer 100 ), and the radiation patch 11 and at least two metal disks 12 arranged around the radiation patch 11 are located in the area surrounded by the metal ring 14 .
  • the top substrate S1 is provided with a plurality of second metal through holes 15 at a position corresponding to the metal ring 14 (that is, directly below the metal ring 14).
  • the plurality of second metal through holes 15 are dispersed along the circumferential direction of the metal ring 14, and Two ends of the plurality of second metal through holes 15 are respectively connected to the metal ring 14 and the first metal ground layer 100 .
  • the metal ring 14 and the plurality of second metal through holes 15 can form a cavity around the radiation patch 11, and the cavity can form a wave limiting structure, through which the electric field can be restrained on the radiation patch.
  • the energy input to the radiation patch 11 can be prevented from propagating along the top substrate S1, and the antenna can also be prevented from being affected by surface waves, thereby reducing the input return loss of the antenna.
  • the impedance bandwidth of the antenna is improved.
  • the cavity can also expand the antenna radiation diameter.
  • the plurality of second metal through holes 15 may be evenly distributed along the circumferential direction of the metal ring 14 .
  • the metal ring 14 can be rectangular, circular, elliptical, etc. In practice, it can be configured as needed.
  • the radiation patch 11, the plurality of two metal disks 12, the metal rings 14, etc. located on the upper surface of the top substrate S1 can be made of the same metal material or different metal materials. This application does not Make restrictions.
  • the radiation patch 11 , the plurality of two metal disks 12 , and the metal rings 14 are made of the same metal material; in this case, the radiation patch 11 , the plurality of two metal disks 12
  • the metal ring 14 can be made of the same metal layer (such as a silver plating layer) to simplify the manufacturing process.
  • the metal plate 12 can cover On the surface of the first metal via 13 , that is, the first metal via 13 is made first, and then the metal disk 12 is made; of course, in other alternative implementations, the first metal via 13 can penetrate the metal disk 12 , that is, the metal disk 12 is made first, and then the first metal via 13 is made. Similar is the arrangement of the second metal through hole 15 .
  • the antenna unit provided in the embodiment of the present application will be further described below based on the reflection coefficients and gains of five antenna units (A, B, C, D, and E) with different structures in the frequency band of 148 GHz to 172 GHz.
  • a in Figure 7 is a schematic structural diagram of an antenna unit with a first metal disk b1, a second metal disk b2, and a metal ring 14 around the radiation patch 11;
  • B in Figure 7 is an antenna with only the radiation patch 11.
  • C in Figure 7 is a schematic structural diagram of the antenna unit with only a metal ring 14 provided around the radiation patch 11;
  • D in Figure 7 is a structure diagram with only the first metal disk b1 provided around the radiation patch 11 Schematic structural diagram of the antenna unit;
  • E in Figure 7 is a schematic structural diagram of the antenna unit with only the second metal disk b2 provided around the radiation patch 11.
  • Figure 8 shows the curves of the reflection coefficients of the five antenna units (A, B, C, D, E) in Figure 7 in the frequency band of 148 GHz to 172 GHz.
  • the impedance bandwidth of antenna unit A, antenna unit C, antenna unit D and patch antenna unit E (usually refers to the frequency range with a reflection coefficient less than -10dB) is significantly larger than the impedance bandwidth of antenna unit B.
  • Figure 9 shows the gain curves of the five antenna units (A, B, C, D, E) in Figure 7 in the frequency band of 148 GHz to 172 GHz. It can be seen from Figure 9 that the gain of antenna unit A, antenna unit C, antenna unit D and patch antenna unit E is significantly greater than the gain of antenna unit B.
  • the antenna provided by the embodiment of the present application has introduced the first metal disk b1 and the second metal disk b2 structure, which increases the impedance bandwidth of the antenna and improves the The gain of the high-frequency part is increased, especially the gain of the high-frequency part is improved; at the same time, a cavity is introduced around the periphery of the radiation patch 11 through the metal ring 14 so that the antenna is not affected by surface waves.
  • the impedance bandwidth of the antenna includes the basic indicators 150GHz to 170GHz, the gain is flat within the working frequency band, and the peak gain reaches 8.87dBi.
  • multiple antenna units 1 can be used in the antenna to form an antenna array 10, Thereby combating the attenuation of space propagation.
  • the antenna unit 1 in the antenna array 10 may adopt any antenna unit provided in the previous embodiments.
  • the embodiment of the present application does not limit the number of antenna units 1 in the above-mentioned antenna array 10.
  • the antenna array 10 may be a 4 ⁇ 4 array composed of 16 antenna units 1 array.
  • the following embodiments of the present application are all schematically illustrated using this example.
  • multiple radiation patches 11 can be isolated and coupled can be reduced by arranging the metal ring 14 in the antenna unit 1 .
  • two adjacent antenna units 1 can be configured to share the same section of metal ring 14 at adjacent positions.
  • the metal rings 14 of the plurality of antenna units 1 can adopt a grid structure, and each antenna unit 1 is located in a mesh area of the grid structure.
  • the metal rings 14 have a rectangular structure, two metal rings 14 adjacent in the transverse direction share a longitudinal edge, and two metal rings 14 adjacent in the longitudinal direction share a transverse edge.
  • the spacing between two adjacent radiation patches 11 can be determined according to the antenna.
  • the bandwidth range is determined, and the antenna gain and side lobes can be improved by adjusting the spacing between the radiation patches 11 .
  • the center frequency point of the bandwidth range is the free space wavelength.
  • the bandwidth range of the radiation patch 11 is 150GHz to 170GHz, then the center frequency point of the bandwidth range of the radiation patch 11 is 160GHz, and ⁇ 0 is the free space wavelength based on 160GHz.
  • multiple mechanical through holes that penetrate all the substrates can be provided on the side of the antenna array 100. P to fix the antenna through multiple mechanical through holes P.
  • a feed network is provided below the antenna array 10, and a feed source is provided below the feed network; the energy emitted by the feed source is fed through the feed network. into the antenna unit 1 and radiated through the antenna unit 1.
  • the feed network may include a transmission line 30 and a power division network 20 .
  • the energy emitted by the feed source (located below the base substrate S4 , not shown in the figure) is fed to the power division network 20 through the transmission line 30 , and then fed to each antenna unit 1 in the antenna array 10 through the power division network 20 .
  • multiple power splitters in the power splitting network 20 can be distributed on multiple intermediate substrates (such as S2, S3 ), wherein the power splitter is formed by using a plurality of metal through holes (second metal through holes) opened on the intermediate substrate.
  • a power splitter located on the lower intermediate substrate is coupled to multiple (that is, at least two) power splitters located on the upper intermediate substrate, that is, the power splitter located on the lower layer
  • the number of power dividers is smaller than the number of power dividers located on the upper layer.
  • the energy is fed into multiple power dividers located on the upper layer through one power divider located on the lower layer. This is more conducive to the miniaturization of the antenna and avoids the use of existing technologies.
  • the single-layer power splitter design is limited by the processing accuracy requirements, which leads to the problem of large lateral size of the antenna.
  • a power splitter may include a main circuit and multiple branch circuits, and the multiple branch circuits are connected to the main circuit, and the power splitter can distribute the energy received by the main circuit to the multiple branch circuits.
  • the transmission line 30 can be a substrate integrated waveguide (SIW) transmission line.
  • the transmission line 30 is formed by opening a plurality of metal through holes on the underlying substrate S4. , one end of the transmission line 30 is coupled to the feed source, and the other end is coupled to the power divider located at the bottom of the power division network 20 .
  • the power splitter located on the bottom intermediate substrate (i.e., the intermediate substrate closest to the bottom substrate S4) in the power dividing network 20 is coupled to the transmission line 30, and the power splitter located on the top intermediate substrate (i.e., the intermediate substrate closest to the top substrate S4) is coupled to the transmission line 30. ) is coupled to the antenna unit 1, and the power dividers on two adjacent intermediate substrates are coupled to each other, so that the feed source located under the bottom substrate S4 transmits energy through the multi-layer intermediate substrate through the transmission line 30 The power splitter is transmitted to the antenna unit 1.
  • multiple power dividers in the power dividing network 20 may be distributed in the first intermediate substrate S3 and the second intermediate substrate S2; wherein the first intermediate substrate S3 is located in the first intermediate substrate S3. Below the two intermediate substrates S2 (that is, the side away from the top substrate S1). As shown in Figure 14, the first intermediate substrate S3 is provided with a first functional Splitter 201, the first power splitter 201 may be a one-to-four power splitter. As shown in FIG. 15 , four second power dividers 202 are symmetrically arranged in the second intermediate substrate S2 , and the second power dividers 202 are one-to-four power dividers.
  • the four output terminals of the first power divider 201 are respectively coupled to the four second power dividers 202, and the four second power dividers 202 are respectively connected to 16 of the antenna array 100 through 16 output terminals.
  • An antenna unit 1 is coupled.
  • This application does not limit the coupling method between the transmission line 30, the power division network 20, and the antenna unit 1; for example, the coupling can be performed through a feed slot to achieve energy transmission.
  • FIG. 16 is a schematic diagram of the fifth metal layer M5 located on the lower surface of the underlying substrate S4. As shown in FIGS. 1 , 13 , and 16 , the fifth metal layer M5 is provided with a feed slot R1 at a position corresponding to the input end of the transmission line 30 .
  • the feed source located under the underlying substrate S4 is coupled to the transmission line 30 through the feed slot R1 , and feed energy to the transmission line 30 through the feed slot R1.
  • FIG. 17 is a schematic diagram of the fourth metal layer M4 located on the upper surface of the underlying substrate S4.
  • the fourth metal layer M4 is provided with a feed slot R2 at a position corresponding to the end (output end) of the transmission line 30 , and the feed slot R2 is located in the center of the first power splitter 201 Directly below, the transmission line 30 is coupled to the first power splitter 201 through the feed slot R2, and feeds energy into the first power splitter 201 through the feed slot R2.
  • FIG. 18 is a schematic diagram of the third metal layer M3 located on the upper surface of the first intermediate substrate S3.
  • the third metal layer M3 is provided with four feed slots R3 at positions corresponding to the four output terminals of the first power splitter 201 , and the four feed slots R3 are respectively located at four Directly below the center of the second power splitter 202, the four output terminals of the first power splitter 201 are respectively coupled to the four second power splitters 202 through four feed slots R3, and through the four feed slots R3 feeds energy to four second power splitters 202 .
  • FIG. 19 is a schematic diagram of the second metal layer M2 located on the upper surface of the second intermediate substrate S2. As shown in FIG. 1 , FIG. 13 and FIG. 19 , the second metal layer M2 is provided with four feed slots R4 at positions corresponding to the four output terminals of each second power splitter 202 , that is, 16 feed slots are provided. Slot R4, and feed energy to 16 antenna units 1 through 16 feed slots R4.
  • this application does not limit the specific settings of the first power splitter 201, the second power splitter 202, and the transmission line 30. In practice, they can be set as needed.
  • Figure 20 is a schematic diagram of a first power divider 201 provided by an embodiment of the present application.
  • the first power divider 201 uses a plurality of metal through holes c1 to surround the outer contour of the divider, and matching metal through holes can be provided inside the power divider as needed.
  • multiple matching metal through holes c2 can be provided on the sides of the four output terminals of the first power splitter 201 corresponding to the four feed slots R3 (refer to FIG.
  • multiple matching metal through holes c2 are provided, and the inclination angle between the multiple matching metal through holes c2 is adjusted to improve the antenna matching optimization. Flexibility is more conducive to adjusting the matching state of the antenna.
  • multiple matching metal through holes c3 can be provided at the corner from the main path to the branch path of the first power splitter 201, by adjusting the inclination between the multiple matching metal through holes c3 and the main path.
  • matching metal through holes c4 can be provided at both ends of the main path of the first power splitter 201 to adjust the matching state of the antenna.
  • each metal through hole (c1, c2, c3, c4) in the first power splitter 201 can be arranged symmetrically along the main path.
  • FIG. 21 is a schematic diagram of a second power splitter 202 provided by an embodiment of the present application.
  • the second power splitter 202 uses a plurality of metal through holes d1 to surround the outer contour of the power splitter, and can be configured as needed inside the power splitter. Set to match metal through holes.
  • multiple matching metal through holes d2 can be provided on the sides of the four output terminals of the second power splitter 202 corresponding to the position of the feed slot R4 (refer to FIG. 18 ).
  • the tilt angle is more conducive to adjusting the matching state of the antenna.
  • matching metal through holes d3 can be provided at both ends of the main path of the second power splitter 202 to adjust the matching state of the antenna.
  • each metal through hole (d1, d2, d3) in the second power splitter 202 can be arranged symmetrically along the main path.
  • the above-mentioned feed slots may have a rectangular structure or other shapes, which is not limited in this application.
  • FIG. 22 is a schematic diagram of a transmission line 30 provided by an embodiment of the present application.
  • the transmission line 30 is formed by opening a plurality of third metal through holes e1 on the underlying substrate S4 , and the transmission line 30 includes an adapter portion 31 (that is, an input end), a first transmission section 32 , and a third metal through hole e1 .
  • Second transmission section 33 One end of the first transmission section 32 is connected to the adapter part 31 , and the other end is connected to the second transmission section 33 .
  • the feed source located under the base substrate S4 is coupled to the adapter portion 31 through the feed slot R1, so that energy can flow from the adapter portion 31 to the second transmission section 33, and upward through the second transmission section 33.
  • the first power divider 201 and the second power divider 202 are transmitted to the antenna unit 1 .
  • a plurality of fourth metal through holes e2 may be opened on the underlying substrate S4, and the plurality of fourth metal through holes e2 may extend along the transmission line 30 direction, distributed on the outside of some or all of the third metal through holes e1, thereby forming a double row of metal through holes, thereby reducing the leakage loss of long-term transmission.
  • a plurality of fourth metal through holes e2 may be distributed outside the plurality of third metal through holes e1 forming the first transmission section 32 , so that the transmission line 30 forms a double row of metal through holes on the side of the first transmission section 32 .
  • a plurality of fourth metal through holes e2 may be distributed outside the plurality of third metal through holes e1 forming the second transmission section 33, so that the transmission line 30 forms a double row of metal through holes on the side of the second transmission section 33. hole.
  • a plurality of fourth metal through holes e2 may be distributed outside the plurality of third metal through holes e1 forming the adapter part 31 , so that the transmission line 30 forms a double row of metal through holes on the side of the adapter part 31 .
  • the width of the second transmission section 33 can be set to be different along the length direction of the transmission line 30 .
  • the width of the second transmission section 33 can be a gradient width;
  • the width of the second transmission section 33 may be greater than the width of the first transmission section 32 , or may be smaller than the width of the first transmission section 32 .
  • This application does not impose a limit on the width of the first transmission section 32, and it can be set as needed in practice.
  • the first transmission section 32 can be set to be different, or the first transmission section 32 can be set to have a fixed width.
  • the grid structure G can be provided in addition to the first metal layer M1 located on the upper surface of the top substrate S1 and the fifth metal layer M1 located on the lower surface of the bottom substrate S4
  • the grid structure G can be provided; that is, in the second metal layer M2, the third metal layer M3, and the fourth metal layer M4, in addition to functional structures
  • Grid ground structure G can be used in all areas other than the ground layer.
  • the second metal layer M2, the third metal layer M3, and the fourth metal layer M4 can be arranged, and the grid structures G located in the two adjacent metal layers can be arranged in a staggered manner, that is, The grid structures forming the grid structure G are staggered to ensure the overall flatness of the antenna.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请提供一种天线及电子设备,涉及天线技术领域,能够提升天线的阻抗带宽。该天线包括依次层叠设置的顶层基板和第一金属地层。该天线还包括至少一个天线单元;天线单元包括:辐射贴片和至少两个金属盘。其中,辐射贴片和至少两个金属盘设置于顶层基板远离第一金属地层一侧的表面;至少两个金属盘围绕辐射贴片设置,且至少两个金属盘关于辐射贴片对称设置;顶层基板在对应每一金属盘的位置开设有至少一个第一金属通孔,第一金属通孔的两端分别与金属盘和第一金属地层连接。

Description

天线及电子设备
本申请要求在2022年05月19日提交中国专利局、申请号为202210545673.X、发明名称为“天线及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种天线及电子设备。
背景技术
目前,D波段(110GHz-170GHz)已经确定为超第五代移动通信技术(5th generation mobile communication technology,5G)和第六代移动通信技术(6th generation mobile communication technology,6G)以及未来汽车雷达应用的候选频段。采用D波段(太赫兹频段)通信可以得到超过10Gbps(吉比特每秒)的数据速率和低于0.1毫秒的延迟。
传统的贴片天线在D波段阻抗带宽较窄,将其直接应用到D波段存在诸多挑战,很难满足目前的通信要求,因此,如何提升贴片天线的阻抗带宽是本领域技术人员亟需解决的问题之一。
发明内容
本申请提供一种天线及电子设备,能够提升天线的阻抗带宽。
本申请提供一种天线,包括依次层叠设置的顶层基板和第一金属地层。该天线还包括至少一个天线单元;天线单元包括:辐射贴片和至少两个金属盘。其中,辐射贴片和至少两个金属盘设置于顶层基板远离第一金属地层一侧的表面;至少两个金属盘围绕辐射贴片设置,且至少两个金属盘关于辐射贴片对称设置;顶层基板在对应每一金属盘的位置开设有至少一个第一金属通孔,第一金属通孔的两端分别与金属盘和第一金属地层连接。
在本申请提供的天线中,通过在辐射贴片的周围对称设置多个金属盘,并顶层基板中对应各金属盘下方设置第一金属通孔,形成“蘑菇结构”;该第一金属通孔将金属盘与顶层基板下方的第一金属地层进行连接;在此情况下,金属盘能够与辐射贴片之间形成互电容(耦合电容),也即产生容性耦合,进而能够减少天线的输入回波损耗,提升天线的阻抗带宽。
在一些可能实现的方式中,上述至少两个金属盘包括至少两个第一金属盘;该至少两个第一金属盘沿第一方向上关于辐射贴片对称设置,第一方向为辐射贴片的耦合电场方向。这样一来,在天线单元中,通过在辐射贴片的耦合电场方向(即第一方向)对称设置第一金属盘,在此情况下,沿第一方向上对称设置的“蘑菇结构”与辐射贴片所在面形成一个环形回路,从而引入沿第二方向的磁偶极子的辐射模式,进而增加了天线的谐振点,也即增加天线谐振模式,以拓展天线的带宽。
在一些可能实现的方式中,上述至少两个金属盘包括至少两个第二金属盘;该至少两个第二金属盘沿第二方向上关于辐射贴片对称设置,第二方向与第一方向垂直。这样一来, 在天线单元中,通过沿第二方向上对称设置的“蘑菇结构”,可以增加馈电槽到辐射贴片的耦合路径,从而能够调节馈电槽与辐射贴片之间的耦合强弱,从而能够改善天线的带内匹配。
在一些可能实现的方式中,辐射贴片在与金属盘相对的位置设置有缺口,以增加金属盘与辐射贴片之间的容性耦合面积,进一步减少天线的输入回波损耗,提升天线的阻抗带宽。
在一些可能实现的方式中,缺口的凹陷形状与金属盘的形状相匹配,更大程度的增加金属盘与辐射贴片之间的容性耦合面积。
在一些可能实现的方式中,天线单元还包括金属环;金属环位于顶层基板远离第一金属地层一侧的表面,且辐射贴片以及围绕辐射贴片设置的至少两个金属盘位于金属环围成的区域内;顶层基板在对应金属环的位置开设有多个第二金属通孔,多个第二金属通孔沿金属环的周向设置,且多个第二金属通孔的两端分别与金属环和第一金属地层连接。在此情况下,金属环与多个第二金属通孔能够在辐射贴片的周围形成腔体,该腔体可以形成限波结构,通过该腔体可以将电场束缚在辐射贴片的周围。这样一来,基于该腔体的设置,可以避免输入至辐射贴片的能量沿着顶层基板传播,同时还能够使得天线不受表面波的影响,从而降低了天线的输入回波损耗,提升了天线的阻抗带宽。另外,该腔体作为天线单元的一部分,还能够扩大天线辐射口径。
在一些可能实现的方式中,天线还包括:依次层叠设置的至少两个中间基板;至少两个中间基板位于第一金属地层远离顶层基板的一侧;各中间基板上均开设有多个第二金属通孔以形成至少一个功分器;在相邻的两个中间基板中,远离顶层基板的中间基板中的一个功分器,与靠近顶层基板的中间基板中的多个功分器耦接。顶层中间基板(即最邻近顶层基板的中间基板)上的功分器与天线单元耦接;通过设置多个功分器纵向分布在多个中间基板上,从而能够减小天线在横向上的尺寸。
在一些可能实现的方式中,天线还包括至少两个中间金属地层,各中间基板在靠近顶层基板一侧的表面均设置有中间金属地层,且中间金属地层在对应功分器的输出端设置有馈电口;功分器在对应馈电口的区域设置有多个(至少两个)第一匹配金属通孔。相比于现有技术中仅设置一个匹配金属通孔带来的大电感分量而言,设置多个第一匹配金属通孔,并通过调节多个匹配金属通孔之间的倾斜角度,从而提升天线匹配优化的灵活度,更有利于调节天线的匹配状态。
在一些可能实现的方式中,功分器包括主路以及与主路连接的多个支路;功分器在位于主路到多个支路的转角处设置有多个(至少两个)第二匹配金属通孔;通过调节多个第二匹配金属通孔与主路之间倾斜角度,以使得功分器向耦接的多个功分器的分配能量更加平衡、平衡,进一步的使得天线的辐射方向更加对称,定向辐射效果更好。
在一些可能实现的方式中,天线包括16个天线单元、两个中间基板;其中,两个中间基板分别为第一中间基板和第二中间基板,第一中间基板位于第二中间基板远离顶层基板的一侧;第一中间基板中设置有一个第一功分器;第二中间基板中设置有四个第二功分器;第一功分器与第二功分器均为一分四功分器;第一功分器的四个输出端分别与四个第二功分器耦接,四个第二功分器通过16个输出端分别与16个天线单元耦接。
在一些可能实现的方式中,天线还包括底层基板;底层基板位于至少两个中间基板远 离所述顶层基板的一侧;底层基板上开设有多个第三金属通孔以形成基片集成波导(substrate integrated waveguide,SIW)传输线;SIW传输线包括第一传输段、第二传输段、转接部;第一传输段的第一端与转接部连接,第一传输段的第二端与第二传输段连接;底层基板上还开设有多个第四金属通孔;多个第四金属通孔沿SIW传输线的延伸方向分布,且多个第四金属通孔位于形成第一传输段,和/或,第二传输段,和/或,转接部的多个第三金属通孔的外侧;SIW传输线在第二传输段的末端与底层中间基板中的功分器耦接;底层中间基板为至少两个中间基板中与底层基板相邻的中间基板。
在一些可能实现的方式中,在沿SIW传输线的长度方向上,第二传输段的宽度不同。通过设置第二传输段的宽度不同可以调节天线的匹配状态,也即更有利于调节天线的匹配状态。
在一些可能实现的方式中,辐射贴片到第一金属地层之间距离为四分之一介质波长。
在一些可能实现的方式中,每一中间基板以及底层基板的上表面均设置有金属地层,且金属地层中设置有栅格地结构;通过栅格地结构的设置,可以改善LTCC基板以及金属层在烧结过程中收缩率不同带来的工艺误差,同时还可以有效的改善天线出现翘曲的不利现象。
在一些可能实现的方式中,可以设置相邻两个金属地层中的栅格地结构交错设置,以确保天线整体的平整度。
在一些可能实现的方式中,底层基板、中间基板、顶层基板均采用低温共烧陶瓷(low temperatrue co-fired ceramic,LTCC)基板;采用LTCC技术能够达到的精度更高,更有利于在一个较小的空间框架中对天线进行灵活的设计;还可以得到更好高频电气特性,从而降低天线的输入回波损耗,提升天线的阻抗带宽。
本申请还提供一种电子设备,该电子设备包括电路板以及前述任意一种可能实现的方式中提供的天线;天线设置在电路板的表面、且与电路板电连接。
附图说明
图1为本申请实施例提供的一种天线的层间示意图;
图2为本申请实施例提供的一种天线中的天线单元部分的示意图;
图3为图2沿OO’位置的剖面示意图;
图4为本申请实施例提供的一种天线中的天线单元的示意图;
图5a为本申请实施例提供的一种天线中的天线单元的示意图;
图5b为天线单元中第一方向和第二方向的示意图;
图6为本申请实施例提供的一种天线中的天线单元的示意图;
图7为本申请实施例提供的一种天线中的五种天线单元的示意图;
图8为图7中五种天线单元的反射系数曲线;
图9为图7中五种天线单元的增益曲线;
图10为本申请实施例提供的一种采用天线阵列的天线示意图;
图11为本申请实施例提供的一种天线阵列的平面示意图;
图12为图11的天线阵列下方的顶层基板上的金属通孔的分布示意图;
图13为本申请实施例提供的一种天线中的多个基板的结构示意图;
图14为本申请实施例提供的一种天线的一个基板的结构示意图;
图15为本申请实施例提供的一种天线的一个基板的结构示意图;
图16为本申请实施例提供的一种天线的一个金属层的结构示意图;
图17为本申请实施例提供的一种天线的一个金属层的结构示意图;
图18为本申请实施例提供的一种天线的一个金属层的结构示意图;
图19为本申请实施例提供的一种天线的一个金属层的结构示意图;
图20为本申请实施例提供的一种第一功分器的示意图;
图21为本申请实施例提供的一种第二功分器的示意图;
图22为本申请实施例提供的一种传输线的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“耦接”、“连接”等应做广义理解,例如可以是固定连接,也可以是一体地连接;可以是直接连接,也可以是通过中间媒介间接,也可以是两个元件内部的连通。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。“上”、“下”、“左”、“右”、“顶”、“底”等仅用于相对于附图中的部件的方位而言的,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中的部件所放置的方位的变化而相应地发生变化。
本申请实施例提供一种电子设备,该电子设备中包括电路板(printed circuit board,PCB;也可以称为印刷线路板)以及天线(也可以称为贴片天线);其中,天线设置在电路板的表面、且与电路板电连接。
本申请对于上述电子设备的具体设置形式不作具体限制。例如,该电子设备可以为基站、雷达、传感器、手机、电脑等。
本申请的电子设备中采用一种新型的贴片天线(下文可简称为天线),通过在辐射贴片的周围引入金属器件,增加了辐射贴片与金属器件之间的容性耦合面积,进而减少了天线的输入回波损耗,提升了天线的阻抗带宽。
以下对本申请实施例提供的天线的结构进行具体的说明。
图1为本申请实施例提供的一种天线的层间示意图。如图1所示,该天线中包括层叠、且交替设置的多个基板(S1、S2、S3、S4)和多个金属层(M1、M2、M3、M4、M5)。 其中,多个基板(S1、S2、S3、S4)中包括顶层基板S1、底层基板S4以及位于顶层基板S1和底层基板S4之间的两个中间基板(S2、S3)。当然,在另一些可能实现的中,也可以包括三个或三个以上的中间基板,本申请以下实施例仅是两个中间基板(S2、S3)为例进行示意说明的。
本申请对于上述多个金属层(M1、M2、M3、M4、M5)采用的金属材料不做限制,例如,多个金属层采用的金属材料可以是铜、铜合金、银等金属材质。示意的,在一些可能实现的方式中,上述多个金属层可以均采用镀银层,以下实施例均是依次为例进行说明的。
本申请对于上述多个基板(S1、S2、S3、S4)采用的材质不做作限制。例如,在一些可能实现的方式中,多个基板(S1、S2、S3、S4)可以采用硅基板;又例如,在一些可能实现的方式中,多个基板(S1、S2、S3、S4)也可以采用低温共烧陶瓷(low temperatrue co-fired ceramic,LTCC)基板。
可以理解的是,在太赫兹频段,相较于传统PCB技术在小型化和封装集上的劣势,采用硅基工艺和LTCC技术能达到的精度更高,更有利于在一个较小的空间框架中对天线进行灵活的设计。相较于硅基工艺制造存在损耗大、效率低、成本高等缺点而言,采用LTCC技术可以得到更好高频电气特性,从而降低天线的输入回波损耗,提升天线的阻抗带宽。以下实施例均是以多个基板(S1、S2、S3、S4)采用LTCC基板为例进行说明的。
对于采用LTCC基板的天线的制作而言,在制作过程中,可以先通过在生瓷带上制作天线结构(金属结构),然后将多个LTCC基板堆叠,并通过高温多层结构进行烧结,以完成天线的制作。
另外,本申请对于多个金属层、多个LTCC基板的厚度不做限制。例如,在一些实施例中,多个金属层的厚度可以约为8μm,LTCC基板的厚度可以为192μm。
可以理解的是,上述各基板中根据需要可以开设金属通孔、通孔等结构,各金属层中根据需要可以形成辐射贴片、金属盘、金属地层等图案结构,以满足天线的实际功能需求。
以下结合各基板及各金属层的设置,对本申请实施例提供的天线做进一步的说明。
参考图2和图3(图2沿OO’位置的剖面示意图)所示,在本申请实施例提供的天线中包括至少一个天线单元1。该天线单元1包括设置在顶层基板S1上表面的辐射贴片11和多个金属盘12(也即至少两个金属盘)。多个金属盘12围绕辐射贴片11设置,并且多个金属盘12关于辐射贴片11对称设置,以保证辐射信号的均衡。另外,顶层基板S1在对应每一金属盘11的位置(也即金属盘11的正下方)开设有至少一个第一金属通孔13,位于顶层基板S1下表面的第二金属层M2中设置有第一金属地层100,第一金属通孔13的两端分别与金属盘11和第一金属地层100连接。其中,第一金属地层100作为接地层(也即参考层)可以与接地端电连接,以提供参考电位;类似的如下文中所涉及的金属底层均是如此,下文不再赘述。
示意的,在一些可能实现的方式中,辐射贴片11到第一金属地层100之间距离为四分之一介质波长。
此处需要说明的是,本申请实施例中均是以一个金属盘12的下方设置一个第一金属通孔13为例进行示意的说明的,为了便于对金属盘12以及位于其下方的第一金属通孔13的整体进行说明,下文可以将金属盘12以及位于其下方的一个第一金属通孔13形成 的整体结构称为“蘑菇结构”。
在本申请实施例提供的天线中,通过在辐射贴片11的周围对称设置多个金属盘12,并顶层基板S1中对应各金属盘12下方设置第一金属通孔13,该第一金属通孔13将金属盘12与顶层基板S1下方的第一金属地层100进行连接;在此情况下,金属盘12能够与辐射贴片11之间形成互电容(耦合电容),也即产生容性耦合,进而能够减少天线的输入回波损耗,提升天线的阻抗带宽。
在此基础上,如图4所示,在一些可能实现的方式中,可以在辐射贴片11与金属盘12相对的位置设置缺口a,以增加金属盘12与辐射贴片11之间的容性耦合面积,进一步减少天线的输入回波损耗,提升天线的阻抗带宽。
当然,为了更大程度的增加金属盘12与辐射贴片11之间的容性耦合面积,如图4所示,在一些可能实现的方式中,可以设置缺口a的凹陷形状与金属盘12的形状相匹配。例如,在一些实施例中,可以设置缺口a为凹陷圆弧结构,则对应位置的金属盘12的边缘为匹配的凸出圆弧结构;又例如,在一些实施例中,可以设置缺口a为凹陷的三角结构,则对应位置的金属盘12的边缘为匹配的凸出三角结构。
本申请对于辐射贴片11、金属盘12以及缺口a的具体形状不做限制,实际中可以根据需要进行设置即可。例如,在一些实施例中,辐射贴片11可以是在圆形结构的边缘设置多个圆弧状的缺口,金属盘12采用圆形结构。
另外,对于围绕设置在辐射贴片11四周的多个金属盘12而言,在一些可能实现的方式中,如图5a所示,多个金属盘12中可以包括:沿第一方向YY’上关于辐射贴片11对称设置的多个第一金属盘b1,并且第一金属盘b1通过位于下方的第一金属通孔131与第一金属地层100连接;也即沿第一方向YY’上关于辐射贴片11对称设置多个“蘑菇结构”。其中,第一方向YY’为辐射贴片11的耦合电场方向,具体可以参考下文的相关说明。
本领域的技术人员应当理解的是,辐射贴片11的耦合电场方向(即第一方向)与辐射贴片11的馈电方式有关,参考图5b所示,在一些实施例中,采用矩形的馈电槽R进行馈电,以下实施例均是以辐射贴片11采用馈电槽R进行馈电为例进行示意说明的。在此情况下,辐射贴片11的耦合电场方向(即第一方向YY’)从馈电槽R的一个长边指向另一个长边的方向。其中,馈电槽R位于辐射贴片11正下方的第一金属地层100中(可结合图3和图5)。本申请中,将辐射贴片11所在的平面内,第一方向YY’的垂直方向定义为第二方向XX’。
这样一来,在天线单元中,通过在辐射贴片11的耦合电场方向(即第一方向YY’)对称设置第一金属盘b1,在此情况下,沿第一方向YY’上对称设置的“蘑菇结构”与辐射贴片11所在面形成一个环形(loop)回路,从而引入沿第二方向XX’的磁偶极子的辐射模式,进而增加了天线的谐振点,也即增加天线谐振模式,以拓展天线的带宽。
需要说明的是,图5a中仅是以在辐射贴片11沿第一方向YY’的两侧分别设置一个“蘑菇结构”为例进行示意的说明的;在另一些可能实现的方式中,在辐射贴片11沿第一方向YY’的两侧可以分别设置两个或两个以上的“蘑菇结构”。以下实施例均是以在辐射贴片11沿第一方向YY’的两侧分别设置一个“蘑菇结构”为例进行说明的。
另外,在一些可能实现的方式中,如图5a所示,多个金属盘12中还可以包括:沿第 二方向XX’上关于辐射贴片11对称设置的多个第二金属盘b2,第二金属盘b2通过位于下方的第一金属通孔132与第一金属地层100连接;也即沿第二方向XX’上关于辐射贴片11对称设置多个“蘑菇结构”。
这样一来,在天线单元1中,通过沿第二方向XX’上对称设置的“蘑菇结构”,可以增加馈电槽R到辐射贴片11的耦合路径,从而能够调节馈电槽R与辐射贴片11之间的耦合强弱,从而能够改善天线的带内匹配。
第二金属盘b2与第一金属盘b1的大小、形状等可以相同,也可以不同,实际中可以根据需要进行设置即可。
图5中仅是以在辐射贴片11沿第二方向XX’的两侧分别设置一个“蘑菇结构”为例进行示意的说明的;在另一些可能实现的方式中,在辐射贴片11沿第二方向XX’的两侧可以分别设置两个或两个以上的“蘑菇结构”。以下实施例均是以天线单元1在辐射贴片11沿第二方向XX’的两侧分别设置一个“蘑菇结构”为例进行说明的。以下实施例均是以在辐射贴片11沿第二方向XX’的两侧分别设置一个“蘑菇结构”为例进行说明的。
还需要说明的是,图5中仅是以在辐射贴片11沿第一方向YY’和第二方向XX’同时设置“蘑菇结构”为例进行示意说明的,但本申请并不限制于此。例如,在一些可能实现的方式中,可以仅在辐射贴片11沿第一方向YY’上的两侧对称设置“蘑菇结构”。又例如,在另一些可能实现的方式中,也可以仅在辐射贴片11沿第二方向XX’上的两侧对称设置“蘑菇结构”。
另外,在一些可能实现的方式中,如图6所示,天线单元1还可以包括金属环14,该金属环14设置在顶层基板S1的上表面(即远离第一金属地层100一侧的表面),并且辐射贴片11以及围绕辐射贴片11设置的至少两个金属盘12位于金属环14围成的区域内。顶层基板S1在对应金属环14的位置(也即金属环14的正下方)设置有多个第二金属通孔15,多个第二金属通孔15沿金属环14的周向分散设置,并且多个第二金属通孔15的两端分别与金属环14和第一金属地层100连接。在此情况下,金属环14与多个第二金属通孔15能够在辐射贴片11的周围形成腔体,该腔体可以形成限波结构,通过该腔体可以将电场束缚在辐射贴片11的周围。这样一来,基于该腔体的设置,可以避免输入至辐射贴片11的能量沿着顶层基板S1传播,同时还能够使得天线不受表面波的影响,从而降低了天线的输入回波损耗,提升了天线的阻抗带宽。另外,该腔体作为天线单元的一部分,还能够扩大天线辐射口径。
示意的,在一些可能实现的方式中,多个第二金属通孔15可以沿金属环14的周向均匀分散设置。
本申请对于金属环14的形状不做具体限制,示意的,金属环14可以矩形、圆形、椭圆形等,实际中可以根据需要进行设置。
此处需要说明的是,位于顶层基板S1上表面的辐射贴片11、多个两个金属盘12、金属环14等可以采用相同的金属材料,也可以采用不同金属材料,本申请对此不做限制。示意的,在一些可能实现的方式中,辐射贴片11、多个两个金属盘12、金属环14采用相同的金属材料;在此情况下,辐射贴片11、多个两个金属盘12、金属环14可以采用同一金属层(如镀银层)制作而成,以达到简化制作工艺的目的。
还需要说明的是,对于前述第一金属过孔13的设置方式而言,金属盘12可以覆盖在 第一金属过孔13的表面,也即先制作第一金属过孔13,然后再制作金属盘12;当然,在另一些可替代的实现方式中,第一金属过孔13可以贯穿金属盘12,也即先制作金属盘12,然后再制作第一金属过孔13。类似的,如第二金属通孔15的设置方式。
以下结合五种不同结构的天线单元(A、B、C、D、E)在148GHz~172GHz的频段内的反射系数及增益,对本申请实施例提供的天线单元进一步说明。
图7中A为在辐射贴片11的周围同时设置有第一金属盘b1、第二金属盘b2、金属环14的天线单元的结构示意图;图7中B为仅设置辐射贴片11的天线单元的结构示意图;图7中C为在辐射贴片11的周围仅设置金属环14的天线单元的结构示意图;图7中D为在辐射贴片11的周围仅设置有第一金属盘b1的天线单元的结构示意图;图7中E为在辐射贴片11的周围仅设置有第二金属盘b2的天线单元的结构示意图。
图8中示出了图7中的五种天线单元(A、B、C、D、E)在148GHz~172GHz的频段内的反射系数的曲线。从图8可以看出,采用天线单元A、天线单元C、天线单元D和贴天线单元E的阻抗带宽(通常指反射系数小于-10dB的频率范围)明显大于天线单元B的阻抗带宽。
图9中使出了图7中的五种天线单元(A、B、C、D、E)在148GHz~172GHz的频段内的增益的曲线。从图9可以看出,采用天线单元A、天线单元C、天线单元D和贴天线单元E的增益明显大于天线单元B的增益。
综上可知,相比于单个辐射贴片11的天线单元B,本申请实施例提供的天线,通过引入第一金属盘b1、第二金属盘b2结构,均增大了天线的阻抗带宽,提高了高频部分的增益,尤其是改善高频部分的增益;同时通过金属环14在辐射贴片11的***引入腔体使得天线不受表面波的影响。示意的,在一些可能实现的方式中,通过采用天线单元A,使得天线的阻抗带宽包含了基本指标150GHz~170GHz,工作频带内增益平坦,且峰值增益达到8.87dBi。
另外,为了使得天线获得更高的增益,尤其是在毫米波以及太赫兹频段,如图10所示,在一些可能实现的方式中,在天线中可以采用多个天线单元1形成天线阵列10,从而对抗空间传播的衰减。天线阵列10中的天线单元1可以采用前述实施例中提供的任一种天线单元。
本申请实施例对上述天线阵列10中天线单元1的个数不作限制。示意的,如图11和图12(图11中天线阵列10下方的金属通孔的分布示意图)所示,在一些实施例中,天线阵列10可以是由16个天线单元1构成的4×4阵列。本申请以下实施例均是以此为例进行示意说明的。
可以理解的是,在天线阵列10中,通过在天线单元1中设置金属环14能够对多个辐射贴片11进行隔离,减小耦合。
另外,为了减小天线阵列10的横向尺寸,在天线阵列10中,可以设置相邻两个天线单元1在相邻位置公用同一段金属环14。示意的,在一些实施例中,如图11所示,在天线阵列10中,多个天线单元1的金属环14可以采用网格结构,各天线单元1分别位于网格结构的网孔区域中。在此情况下,金属环14为矩形结构,沿横向上相邻的两个金属环14共用一个纵边,沿纵向上相邻的两个金属环14共用一个横边。
可以理解的是,在天线阵列10中,相邻两个辐射贴片11之间的间距可以根据天线的 带宽范围进行确定,并通过调节辐射贴片11之间的间距可以改善天线增益及副瓣。示意的,如图11所示,在一些可能实现的方式中,辐射贴片11的间距可以为(△x,△y)=(0.89λ0,0.89λ0),λ0为辐射贴片11的带宽范围的中心频点为准的自由空间波长。例如,辐射贴片11的带宽范围为150GHz~170GHz,则辐射贴片11的带宽范围的中心频点为160GHz,λ0则是以160GHz为准的自由空间波长。
当然,为了满足天线的固定安装,如图10所示,在一些可能实现的方式中,可以在位于天线阵列100的侧面设置贯穿所有基板(S1、S1、S3、S4)的多个机械通孔P,以通过多个机械通孔P对天线进行固定。
另外,本领域的技术人员应当理解的是,对于天线而言,在天线阵列10的下方设置有馈电网络,在馈电网络的下方设置有馈源;馈源发出的能量通过馈电网络馈入至天线单元1,并通过天线单元1进行辐射。
以下结合天线阵列10,对本申请实施例提供的天线中采用的馈电网络的具体设置进行说明。
示意的,在一些可能实现的方式中,参考图13所示,馈电网络可以包括传输线30和功分网络20。馈源(位于底层基板S4的下方,图中未示出)发出的能量通过传输线30馈入至功分网络20,然后通过功分网络20馈入至天线阵列10中的各天线单元1。
示意的,如图13所示,在一些可能实现的方式中,为了减小天线在横向上的尺寸,功分网络20中的多个功分器可以分布在多个中间基板(如S2、S3),其中,功分器采用开设在中间基板上的多个金属通孔(第二金属通孔)形成。其中,在相邻的两个中间基板中,位于下层的中间基板上的一个功分器与位于上层的中间基板的多个(也即至少两个)功分器耦接,也即位于下层的功分器数量小于位于上层的功分器数量,通过位于下层的一个功分器将能量馈入至位于上层的多个功分器;从而更利于天线的小型化,避免了现有技术中采用单层的功分器设计,受限于加工精度的要求,而导致天线的横向尺寸较大的问题。
可以理解的是,一个功分器可以包括一个主路和多个支路,且多个支路与主路相连接,功分器能够将主路接收的能量分配至多个支路。
示意的,如图13所示,在一些可能实现的方式中,传输线30可以基片集成波导(substrate integrated waveguide,SIW)传输线,该传输线30采用在底层基板S4上开设有多个金属通孔形成,该传输线30一端与馈源耦接,另一端与功分网络20中位于底层的功分器耦接。
在此情况下,上述功分网络20中位于底层中间基板(即最靠近底层基板S4的中间基板)上的功分器与传输线30耦接,位于顶层中间基板(即最靠近顶层基板的中间基板)上的功分器与天线单元1耦接,相邻的两个中间基板上的功分器之间耦接,从而使得位于底层基板S4下方的馈源通过传输线30将能量经多层中间基板上的功分器传输至天线单元1。
本申请中对于功分网络20的分布层数、功分网络20中设置的功分器的个数等,均不做限制。
例如,在一些实施例中,如图13所示,功分网络20中的多个功分器可以分布在第一中间基板S3和第二中间基板S2中;其中,第一中间基板S3位于第二中间基板S2的下方(也即远离顶层基板S1的一侧)。如图14所示,第一中间基板S3中设置有一个第一功 分器201,该第一功分器201可以为一分四功分器。如图15所示,第二中间基板S2中对称设置有四个第二功分器202,该第二功分器202为一分四功分器。在此情况下,第一功分器201的四个输出端分别与四个第二功分器202耦接,四个第二功分器202通过16个输出端分别与天线阵列100中的16个天线单元1耦接。
本申请对于传输线30、功分网络20、天线单元1之间的耦接方式均不做限制;例如,可以通过馈电槽的方式进行耦接,以实现能量的传输。
图16为位于底层基板S4下表面的第五金属层M5的示意图。结合图1、图13、图16所示,第五金属层M5在对应传输线30的输入端的位置设置有馈电槽R1,位于底层基板S4下方的馈源通过馈电槽R1与传输线30耦接,并通过馈电槽R1将能量馈入至传输线30。
图17为位于底层基板S4上表面的第四金属层M4的示意图。结合图1、图13、图17所示,第四金属层M4在对应传输线30末端(输出端)的位置设置一个馈电槽R2,且该馈电槽R2位于第一功分器201的中心正下方,传输线30通过该馈电槽R2与第一功分器201耦接,并通过馈电槽R2将能量馈入至第一功分器201。
图18为位于第一中间基板S3上表面的第三金属层M3的示意图。结合图1、图13和图18所示,第三金属层M3在对应第一功分器201的四个输出端的位置设置四个馈电槽R3,并且该四个馈电槽R3分别位于四个第二功分器202的中心正下方,第一功分器201的四个输出端分别通过四个馈电槽R3与四个第二功分器202耦接,并通过四个馈电槽R3将能量馈入至四个第二功分器202。
图19为位于第二中间基板S2上表面的第二金属层M2的示意图。结合图1、图13和图19所示,第二金属层M2在对应每一个第二功分器202的四个输出端的位置均设置四个馈电槽R4,也即设置有16个馈电槽R4,并通过16个馈电槽R4将能量馈入至16个天线单元1。
另外,本申请对于第一功分器201、第二功分器202、传输线30的具体设置不做限制,实际中可以根据需要进行设置即可。
图20为本申请实施例提供的一种第一功分器201的示意图。参考图20所示,该第一功分器201采用多个金属通孔c1围成功分器的外轮廓,并且在功分器内部可以根据需要设置匹配金属通孔。例如,在一些实施例中,可以在第一功分器201的四个输出端对应四个馈电槽R3(参考图18)的位置的侧面设置多个匹配金属通孔c2;相比于现有技术中仅设置一个匹配金属通孔带来的大电感分量而言,设置多个匹配金属通孔c2,并通过调节多个匹配金属通孔c2之间的倾斜角度,从而提升天线匹配优化的灵活度,更有利于调节天线的匹配状态。又例如,在一些实施例中,可以在第一功分器201的主路到支路的转角处设置多个匹配金属通孔c3,通过调节多个匹配金属通孔c3与主路之间倾斜角度,以使得第一功分器向四个第二功分器202的分配能量更加均匀、平衡,进一步的使得天线的辐射方向更加对称,定向辐射效果更好。再例如,在一些实施例中,可以在第一功分器201的主路的两端设置匹配金属通孔c4,来调节天线的匹配状态。示意的,第一功分器201中的各金属通孔(c1、c2、c3、c4)可以沿主路对称设置。
图21为本申请实施例提供的一种第二功分器202的示意图。参考图21所示,该第二功分器202采用多个金属通孔d1围成功分器的外轮廓,并且在功分器内部可以根据需要 设置匹配金属通孔。例如,可以在第二功分器202的四个输出端对应馈电槽R4(参考图18)的位置的侧面设置多个匹配金属通孔d2,通过调节多个匹配金属通孔d2之间的倾斜角度,更有利于调节天线的匹配状态。再例如,可以在第二功分器202的主路的两端设置匹配金属通孔d3,来调节天线的匹配状态。示意的,第二功分器202中的各金属通孔(d1、d2、d3)可以沿主路对称设置。
上述馈电槽(R1、R2、R3、R4)可以为矩形结构,也可以为其他形状,本申请对此不做限制。
图22为本申请实施例提供的一种传输线30的示意图。参考图22所示,该传输线30采用在底层基板S4上开设有多个第三金属通孔e1形成,并且该传输线30包括转接部31(也即输入端)、第一传输段32、第二传输段33。其中,第一传输段32的一端与转接部31连接,另一端与第二传输段33连接。在此情况下,位于底层基板S4下方的馈源通过馈电槽R1与转接部31耦接,能够能量从转接部31流向第二传输段33,并通过第二传输段33向上经第一功分器201、第二功分器202传输至天线单元1。
在此基础上,在一些可能实现的方式中,参考图22所示,可以在底层基板S4上还开设有多个第四金属通孔e2,多个第四金属通孔e2沿传输线30的延伸方向,分布在部分或全部的第三金属通孔e1的外侧,从而形成双排金属通孔,进而可以减小长线传输的泄露损耗。例如,可以在形成第一传输段32的多个第三金属通孔e1的外侧分布设置多个第四金属通孔e2,以使得传输线30在第一传输段32的侧面形成双排金属通孔。又例如,可以在形成第二传输段33的多个第三金属通孔e1的外侧分布设置多个第四金属通孔e2,以使得传输线30在第二传输段33的侧面形成双排金属通孔。再例如,可以在形成转接部31的多个第三金属通孔e1的外侧分布设置多个第四金属通孔e2,以使得传输线30在转接部31的侧面形成双排金属通孔。
另外,在一些可能实现的方式中,参考图22所示,在沿传输线30的长度方向上,可以设置第二传输段33的宽度不同,例如,第二传输段33的宽度可以为渐变宽度;当然,第二传输段33的宽度可以大于第一传输段32的宽度,也可以小于第一传输段32的宽度。通过设置第二传输段33的宽度不同可以调节天线的匹配状态,也即更有利于调节天线的匹配状态。
本申请对于第一传输段32的宽度不做限制,实际中可以根据需要进行设置。例如,沿传输线30的长度方向上,可以设置第一传输段32的不同,也可以设置第一传输段32具有固定的宽度。
另外,结合图1、图17、图18、图19所示,在本申请实施例提供的天线中,除位于顶层基板S1上表面的第一金属层M1以及位于底层基板S4下表面的第五金属层M5以外的其他金属层(M2、M3、M4)中,均可以设置栅格地结构G;也即第二金属层M2、第三金属层M3、第四金属层M4中除了功能性结构之外的接地层区域均可以采用栅格地结构G,通过栅格地结构G的设置,可以改善LTCC基板以及金属层在烧结过程中收缩率不同带来的工艺误差,同时还可以有效的改善天线出现翘曲的不利现象。
在一些可能实现的方式中,可以设置第二金属层M2、第三金属层M3、第四金属层M4中,位于相邻的两个金属层中的栅格地结构G可以交错设置,也即形成栅格地结构G的栅格结构交错设置,以确保天线整体的平整度。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种天线,其特征在于,包括依次层叠设置的顶层基板和第一金属地层;
    所述天线还包括至少一个天线单元;
    所述天线单元包括:辐射贴片和至少两个金属盘;
    所述辐射贴片和所述至少两个金属盘设置于所述顶层基板远离所述第一金属地层一侧的表面;所述至少两个金属盘围绕所述辐射贴片设置,且所述至少两个金属盘关于所述辐射贴片对称设置;
    所述顶层基板在对应每一所述金属盘的位置开设有至少一个第一金属通孔,所述第一金属通孔的两端分别与所述金属盘和所述第一金属地层连接。
  2. 根据权利要求1所述的天线,其特征在于,
    所述至少两个金属盘包括至少两个第一金属盘;
    所述至少两个第一金属盘沿第一方向上关于所述辐射贴片对称设置,所述第一方向为所述辐射贴片的耦合电场方向。
  3. 根据权利要求1或2所述的天线,其特征在于,
    所述至少两个金属盘包括至少两个第二金属盘;
    所述至少两个第二金属盘沿第二方向上关于所述辐射贴片对称设置,所述第二方向与所述第一方向垂直。
  4. 根据权利要求1-3任一项所述的天线,其特征在于,
    所述辐射贴片在与所述金属盘相对的位置设置有缺口。
  5. 根据权利要求4所述的天线,其特征在于,
    所述缺口的凹陷形状与所述金属盘的形状相匹配。
  6. 根据权利要求1-5任一项所述的天线,其特征在于,
    所述天线单元还包括金属环;
    所述金属环位于所述顶层基板远离所述第一金属地层一侧的表面,且所述辐射贴片以及围绕所述辐射贴片设置的至少两个金属盘位于所述金属环围成的区域内;
    所述顶层基板在对应所述金属环的位置开设有多个第二金属通孔,所述多个第二金属通孔沿所述金属环的周向设置,且所述多个第二金属通孔的两端分别与所述金属环和所述第一金属地层连接。
  7. 根据权利要求1-6任一项所述的天线,其特征在于,
    所述天线还包括:依次层叠设置的至少两个中间基板;所述至少两个中间基板位于所述第一金属地层远离所述顶层基板的一侧;
    各所述中间基板上均开设有多个第二金属通孔以形成至少一个功分器;
    在相邻的两个所述中间基板中,远离所述顶层基板的中间基板中的一个功分器,与靠近所述顶层基板的中间基板中的至少两个功分器耦接;
    最邻近所述顶层基板的中间基板上的功分器与所述天线单元耦接。
  8. 根据权利要求7所述的天线,其特征在于,还包括至少两个中间金属地层;
    各所述中间基板在靠近所述顶层基板一侧的表面均设置有所述中间金属地层,且所述中间金属地层在对应所述功分器的输出端设置有馈电口;所述功分器在对应所述馈电口的 区域设置有多个第一匹配金属通孔。
  9. 根据权利要求7或8所述的天线,其特征在于,
    所述功分器包括主路以及与所述主路连接的多个支路;
    所述功分器在位于所述主路到多个所述支路的转角处设置有多个第二匹配金属通孔。
  10. 根据权利要求7-9任一项所述的天线,其特征在于,
    所述天线包括16个所述天线单元、两个所述中间基板;其中,两个所述中间基板分别为第一中间基板和第二中间基板,所述第一中间基板位于所述第二中间基板远离所述顶层基板的一侧;
    所述第一中间基板中设置有一个第一功分器;所述第二中间基板中设置有四个第二功分器;所述第一功分器与所述第二功分器均为一分四功分器;
    所述第一功分器的四个输出端分别与所述四个第二功分器耦接,所述四个第二功分器通过16个输出端分别与16个所述天线单元耦接。
  11. 根据权利要求7-10任一项所述的天线,其特征在于,还包括底层基板;
    所述底层基板位于所述至少两个中间基板远离所述顶层基板的一侧;
    所述底层基板上开设有多个第三金属通孔以形成SIW传输线;
    所述SIW传输线包括第一传输段、第二传输段、转接部;
    所述第一传输段的第一端与转接部连接,所述第一传输段的第二端与所述第二传输段连接;
    所述底层基板上还开设有多个第四金属通孔;
    所述多个第四金属通孔沿所述SIW传输线的延伸方向分布,且所述多个第四金属通孔位于形成所述第一传输段,和/或,所述第二传输段,和/或,所述转接部的多个所述第三金属通孔的外侧;
    所述SIW传输线在所述第二传输段与底层中间基板上的至少一个功分器耦接;所述底层中间基板为所述至少两个中间基板中与所述底层基板相邻的中间基板。
  12. 根据权利要求7-11任一项所述的天线,其特征在于,
    在沿所述SIW传输线的长度方向上,所述第二传输段的宽度不同。
  13. 根据权利要求1-12任一项所述的天线,其特征在于,
    所述辐射贴片到所述第一金属地层之间距离为四分之一介质波长。
  14. 根据权利要求11-13任一项所述的天线,其特征在于,
    每一所述中间基板以及所述底层基板的上表面均设置有金属地层,且所述金属地层中设置有栅格地结构;
    相邻两个所述金属地层中的所述栅格地结构交错设置。
  15. 根据权利要求11-14任一项所述的天线,其特征在于,
    所述底层基板、所述中间基板、所述顶层基板均采用低温共烧陶瓷基板。
  16. 一种电子设备,其特征在于,包括电路板以及如权利要求1-15任一项所述的天线;所述天线设置在所述电路板的表面、且与所述电路板电连接。
PCT/CN2023/079356 2022-05-19 2023-03-02 天线及电子设备 WO2023221601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210545673.XA CN117134105A (zh) 2022-05-19 2022-05-19 天线及电子设备
CN202210545673.X 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221601A1 true WO2023221601A1 (zh) 2023-11-23

Family

ID=88834552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079356 WO2023221601A1 (zh) 2022-05-19 2023-03-02 天线及电子设备

Country Status (2)

Country Link
CN (1) CN117134105A (zh)
WO (1) WO2023221601A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066437A1 (en) * 2003-01-24 2004-08-05 Fractus, S.A. Broadside high-directivity microstrip patch antennas
CN101834349A (zh) * 2010-05-05 2010-09-15 电子科技大学 一种方向图可重构微带贴片天线
CN109888485A (zh) * 2019-02-26 2019-06-14 山西大学 一种紧凑型低剖面多波束微带天线
CN112803165A (zh) * 2020-12-30 2021-05-14 无锡国芯微电子***有限公司 一种新型宽带单层贴片天线
CN213959125U (zh) * 2020-12-29 2021-08-13 中国人民解放军战略支援部队航天工程大学 一种加载蘑菇型结构的宽带高增益天线
CN215600567U (zh) * 2021-06-11 2022-01-21 中国人民解放军战略支援部队航天工程大学 一种加载寄生结构的宽带贴片天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066437A1 (en) * 2003-01-24 2004-08-05 Fractus, S.A. Broadside high-directivity microstrip patch antennas
CN101834349A (zh) * 2010-05-05 2010-09-15 电子科技大学 一种方向图可重构微带贴片天线
CN109888485A (zh) * 2019-02-26 2019-06-14 山西大学 一种紧凑型低剖面多波束微带天线
CN213959125U (zh) * 2020-12-29 2021-08-13 中国人民解放军战略支援部队航天工程大学 一种加载蘑菇型结构的宽带高增益天线
CN112803165A (zh) * 2020-12-30 2021-05-14 无锡国芯微电子***有限公司 一种新型宽带单层贴片天线
CN215600567U (zh) * 2021-06-11 2022-01-21 中国人民解放军战略支援部队航天工程大学 一种加载寄生结构的宽带贴片天线

Also Published As

Publication number Publication date
CN117134105A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
EP2979323B1 (en) A siw antenna arrangement
TWI482360B (zh) 行動裝置
JP4918594B2 (ja) メタマテリアル構造に基づくアンテナ
WO2020140580A1 (zh) 一种滤波天线
WO2015135153A1 (zh) 阵列天线
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
WO2020140578A1 (zh) 一种滤波天线
CN110808458A (zh) 一种双极化多层贴片滤波天线及通信设备
CN108155467A (zh) 一种基于f-p腔的mimo天线
CN113013642B (zh) 一种阵列天线及通信设备
CN109599646B (zh) 封装的平面集成双频带滤波器
CN112886234B (zh) 一种基于嵌入式结构的微波毫米波共面共口径天线
CN107196069B (zh) 紧凑型基片集成波导背腔缝隙天线
CN113659325B (zh) 集成基片间隙波导阵列天线
CN110581354B (zh) 双极化5g毫米波天线结构及移动设备
CN209169390U (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
WO2023221601A1 (zh) 天线及电子设备
US8604983B2 (en) CRLH antenna structures
CN210074169U (zh) 一种基于接地共面波导的矩形微带串馈天线
CN112242612A (zh) 贴片天线
WO2022068548A1 (zh) 后盖及终端
TWI600209B (zh) Antenna reset circuit
CN110880632B (zh) 一种基于基片集成波导腔的宽带宽角频率选择表面
KR102100630B1 (ko) 밀리미터파 안테나 어레이 시스템
CN111244619A (zh) 基于空气基片集成波导的贴片阵列天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806561

Country of ref document: EP

Kind code of ref document: A1