WO2023218853A1 - 撮像素子及び撮像装置 - Google Patents

撮像素子及び撮像装置 Download PDF

Info

Publication number
WO2023218853A1
WO2023218853A1 PCT/JP2023/015006 JP2023015006W WO2023218853A1 WO 2023218853 A1 WO2023218853 A1 WO 2023218853A1 JP 2023015006 W JP2023015006 W JP 2023015006W WO 2023218853 A1 WO2023218853 A1 WO 2023218853A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion units
signal
image sensor
pixel
Prior art date
Application number
PCT/JP2023/015006
Other languages
English (en)
French (fr)
Inventor
康平 岡本
駿一 若嶋
浩一 福田
友美 高尾
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023218853A1 publication Critical patent/WO2023218853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals

Definitions

  • the present invention relates to an imaging device in which a pixel section having a plurality of photoelectric conversion sections is two-dimensionally arranged, and an imaging device equipped with the imaging device.
  • a so-called imaging plane is used to acquire a pair of pupil division signals using focus detection pixels formed on an image sensor and perform focus detection using a phase difference method.
  • a phase difference method is known.
  • Patent Document 1 discloses a configuration in which the saturation resistance of the pixel is increased by arranging a plurality of types of pixels having different heights of separation barriers between photoelectric conversion parts in the pixel.
  • Patent Document 2 discloses a technique for improving focus detection accuracy by providing two types of arrangement directions of photoelectric conversion units for each microlens and two types of pupil division directions. Further, Patent Document 2 describes a structure that separates vertically adjacent photoelectric conversion units and a structure that separates horizontally adjacent photoelectric conversion units, and has a structure that allows electric charges to leak to adjacent photoelectric conversion units. It is disclosed that the With this structure, supersaturated charges received in excess of the amount of charge that can be accumulated by one photoelectric conversion section leak and accumulate in different photoelectric conversion sections arranged in a predetermined direction. Even in the case of saturation, horizontal or vertical phase difference focus detection is possible.
  • JP2017-212351A Japanese Patent Application Publication No. 2014-107835
  • Patent Document 1 and Patent Document 2 describe a method to deal with the case where the photoelectric conversion unit is saturated, they do not solve the problem that focus detection accuracy decreases due to the difference in readout timing mentioned above. I can't.
  • the present invention has been made in view of the above-mentioned problems, and in focus detection using an image plane phase difference method that utilizes a phase difference signal output from an image sensor in which pixels are arranged in a matrix,
  • the purpose is to make the performance of focus detection similar to that in the scanning direction.
  • an image sensor of the present invention includes a plurality of microlenses arranged in a matrix in a first direction and a second direction orthogonal to the first direction, and a plurality of microlenses arranged in a matrix in a first direction and a second direction orthogonal to the first direction.
  • a plurality of photoelectric conversion units configured to photoelectrically convert light incident through each of the microlenses; readout means for sequentially reading out signals from the plurality of photoelectric conversion units, with the second direction as the sub-scanning direction, and the plurality of photoelectric conversion units are configured to read signals in the first direction for each of the plurality of photoelectric conversion units. and arranged in at least one of the second directions, and the charge crosstalk rate in the first direction between the plurality of photoelectric conversion units is higher than the charge crosstalk rate in the second direction. It is characterized by
  • focus detection performance is improved in the main scanning direction and the sub-scanning direction. You can get close.
  • FIG. 1 is a block diagram showing a schematic configuration of an imaging device according to a first embodiment.
  • FIG. 1 is a diagram schematically showing an example of the overall configuration of an image sensor according to a first embodiment.
  • FIG. 3 is an equivalent circuit diagram of a pixel according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of pixels having a first arrangement according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of pixels having a first arrangement according to the first embodiment.
  • FIG. 3 is a schematic diagram showing the configuration of pixels having a second arrangement according to the first embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of an imaging device according to a first embodiment.
  • FIG. 1 is a diagram schematically showing an example of the overall configuration of an image sensor according to a first embodiment.
  • FIG. 3 is an equivalent circuit diagram of a pixel according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of pixels having a first arrangement according to the first embodiment.
  • FIG. 3 is a schematic diagram showing the configuration of pixels having a second arrangement according to the first embodiment.
  • FIG. 3 is a diagram showing a relationship between pixels having a first arrangement and partial pupil regions according to the first embodiment.
  • FIG. 3 is a schematic diagram showing an example of a pupil intensity distribution of pixels having a first arrangement according to the first embodiment.
  • FIG. 2 is a diagram schematically explaining a sensor entrance pupil of an image sensor according to the first embodiment.
  • FIG. 3 is a diagram showing a schematic relationship between the amount of image shift and the amount of defocus between parallax images according to the first embodiment.
  • FIG. 3 is a schematic diagram showing the relationship between charge crosstalk rate and pupil intensity distribution in the first embodiment.
  • FIG. 3 is an explanatory diagram showing an example of the order of reading out pixels in the first embodiment.
  • FIG. 7 is a schematic diagram showing the configuration of pixels having a third arrangement according to the second embodiment.
  • FIG. 7 is a schematic diagram showing the configuration of pixels having a third arrangement according to the second
  • FIG. 1 is a block diagram showing a schematic configuration of an imaging device according to a first embodiment of the present invention.
  • the imaging device of this embodiment includes an imaging element 1, an overall control/calculation section 2, an instruction section 3, a timing generation section 4, a photographing lens unit 5, a lens drive section 6, a signal processing section 7, It includes a display section 8 and a recording section 9.
  • the photographic lens unit 5 forms an optical image of the subject on the image sensor 1. Although shown as one lens in the figure, the photographing lens unit 5 includes a plurality of lenses including a focus lens, a zoom lens, etc., and an aperture. Further, the photographing lens unit 5 may be removable from the main body of the imaging device, or may be configured integrally with the main body.
  • the image sensor 1 converts the light incident through the photographic lens unit 5 into an electrical signal and outputs the electrical signal.
  • Each pixel of the image sensor 1 generates a pupil-divided signal (hereinafter referred to as a "phase difference signal") that can be used for focus detection using a phase difference method, and an image signal that is a signal for each pixel. The signal is read out so that it can be obtained.
  • the signal processing unit 7 performs predetermined signal processing such as correction processing on the signal output from the image sensor 1, and outputs a phase difference signal used for focus detection and an image signal used for recording.
  • the overall control/calculation unit 2 performs overall driving and control of the entire imaging device. It also performs calculations for focus detection using the phase difference signal processed by the signal processing unit 7, performs calculation processing for exposure control on image signals, and generates images for recording and playback. Performs predetermined signal processing such as development and compression.
  • the lens drive section 6 drives the photographic lens unit 5, and performs focus control, zoom control, aperture control, etc. on the photographic lens unit 5 according to control signals from the overall control/calculation section 2.
  • the instruction unit 3 accepts inputs inputted from the outside through operations such as a user, such as an instruction to perform imaging, drive mode settings for the imaging device, and various other settings and selections, and transmits them to the overall control/calculation unit 2.
  • the timing generation section 4 generates a timing signal for driving the image sensor 1 and the signal processing section 7 according to the control signal from the overall control/calculation section 2 .
  • the display unit 8 displays information such as preview images, playback images, and drive mode settings of the imaging device.
  • the recording unit 9 is equipped with a recording medium (not shown), on which a recording image signal is recorded.
  • Examples of the recording medium include semiconductor memories such as flash memories.
  • the recording medium may be removable from the recording unit 9, or may be built-in.
  • FIG. 2 is a diagram schematically showing an example of the overall configuration of the image sensor 1 shown in FIG. 1.
  • the image sensor 1 includes a pixel array section 201, a vertical selection circuit 202, a column circuit 203, and a horizontal selection circuit 204.
  • a plurality of pixels 205 are arranged in a matrix.
  • the pixel signals of the pixels 205 in the row selected by the vertical selection circuit 202 are transmitted row by row through the output signal line 206.
  • the data is then read out to the column circuit 203.
  • One output signal line 206 can be provided for each pixel column or a plurality of pixel columns, or a plurality of output signal lines 206 can be provided for each pixel column.
  • the column circuit 203 receives signals read out in parallel via a plurality of output signal lines 206, performs processing such as signal amplification, noise removal, and A/D conversion, and holds the processed signals.
  • the horizontal selection circuit 204 selects the signals held in the column circuit 203 sequentially, randomly, or simultaneously, so that the selected signals are output from the image sensor 1 via a horizontal output line and an output section (not shown). is output to.
  • FIG. 3 is an equivalent circuit diagram of the pixel 205 of this embodiment.
  • Each pixel 205 has two photodiodes 301 (PDA) and 302 (PDB), which are photoelectric conversion units.
  • the accumulated signal charge is photoelectrically converted by the PDA 301 according to the amount of incident light, and is transferred via a transfer switch (TXA) 303 to a floating diffusion section (FD) 305 that constitutes a charge accumulation section.
  • TXA transfer switch
  • FD floating diffusion section
  • TXB transfer switch
  • the reset switch (RES) 306 When the reset switch (RES) 306 is turned on, it resets the FD 305 to the voltage of the constant voltage source VDD.
  • the PDA 301 and PDB 302 can be reset.
  • the amplification transistor (SF) 308 converts the signal charge accumulated in the FD 305 into a voltage, and the converted signal voltage is transferred from the pixel to the output signal line 206. is output to. Furthermore, the gates of TXA 303 , TXB 304 , RES 306 , and SEL 307 are each connected to a pixel drive wiring group 207 and controlled by a vertical selection circuit 202 .
  • the signal charges accumulated in the photoelectric conversion section are assumed to be electrons
  • the photoelectric conversion section is formed of an N-type semiconductor, and separated using a P-type semiconductor.
  • the photoelectric conversion section may be formed of a P-type semiconductor and separated by an N-type semiconductor.
  • the system waits until the output signal line 206 that has received the voltage fluctuation of the FD 305 stabilizes, and the column circuit 203 takes in the voltage of the output signal line 206 that has been stabilized as the signal voltage N, performs signal processing, and holds it.
  • the TXA 303 is turned on/off, and the signal charges accumulated in the PDA 301 are transferred to the FD 305.
  • the voltage of the FD 305 decreases by an amount corresponding to the amount of signal charge accumulated in the PDA 301.
  • it waits until the output signal line 206 that has received the voltage fluctuation of the FD 305 stabilizes, and the column circuit 203 takes in the voltage of the output signal line 206 that has been stabilized as the signal voltage A, performs signal processing, and holds it.
  • the TXB 304 is turned on/off, and the signal charges accumulated in the PDB 302 are transferred to the FD 305.
  • the voltage of the FD 305 decreases by an amount corresponding to the amount of signal charge accumulated in the PDB 302. After that, it waits until the output signal line 206 that has received the voltage fluctuation of the FD 305 stabilizes, and the column circuit 203 takes in the voltage of the output signal line 206 that has been stabilized as a signal voltage (A+B), performs signal processing, and holds it. .
  • a signal A corresponding to the amount of signal charge accumulated in the PDA 301 can be obtained. Further, from the difference between the signal voltage A and the signal voltage (A+B), a signal B corresponding to the amount of signal charge accumulated in the PDB 302 can be obtained.
  • This difference calculation may be performed in the column circuit 203, or may be performed after output from the image sensor 1.
  • a phase difference signal can be obtained by using signal A and signal B, and an imaging signal can be obtained by adding signal A and signal B together.
  • the image signal may be obtained by taking the difference between the signal voltage N and the signal voltage (A+B).
  • the same driving as the driving to read out the signal voltage N and the signal voltage A may be performed on the PDB 302 instead of the PDA 301 to read out the signal voltage N, the signal voltage A, and the signal voltage B, respectively.
  • signal A and signal B obtained from signal voltage A and signal voltage B, respectively can be used as phase difference signals as they are, and signal voltage A and signal voltage B, or signal A and signal B can be added together.
  • An imaging signal can be obtained.
  • FIGS. 4A and 4B are schematic diagrams showing a first arrangement of semiconductor regions that constitute the pixel 205 according to this embodiment
  • FIG. 4A is a perspective schematic diagram
  • FIG. 2 is a schematic plan view showing the positional relationship in plan view.
  • “planar view” refers to viewing from the z direction or ⁇ z direction with respect to a plane (xy plane) parallel to the side of the semiconductor substrate where the gate of the transistor is disposed.
  • the "row” direction refers to the x direction
  • the “column” direction refers to the y direction
  • the “depth” direction refers to the z direction.
  • the pixel 205 having the first arrangement includes a microlens (ML) 401, a PDA 301, a PDB 302, a TXA 303, a TXB 304, and an FD 305.
  • the PDA 301 and the PDB 302 are arranged in the x direction and formed in a Si substrate, which is a semiconductor substrate, with the side where the ML 401 is placed on the back side of the substrate, and the side where the TXA 303, 304 and FD 305 are placed.
  • the side facing the board is the front side of the board.
  • an isolation region 400 having a higher p-type impurity concentration than the PDA 301 and the PDB 302 is formed between the PDA 301 and the PDB 302 so that a potential barrier is formed.
  • the PDA 301 and the PDB 302 are electrically separated so that the generated charges are difficult to move between the PDA 301 and the PDB 302. Therefore, in this embodiment, the dividing direction of the PDA 301 and PDB 302 in the first arrangement is the x direction (first direction).
  • FIGS. 5A and 5B are schematic diagrams showing a second arrangement of semiconductor regions that constitute the pixel 205 according to this embodiment
  • FIG. 5A is a perspective schematic diagram
  • FIG. 2 is a schematic plan view showing the positional relationship in plan view. Note that the definitions of "planar view" and x, y, and z are the same as those in FIGS. 4A and 4B, and therefore description thereof will be omitted.
  • the pixel 205 having the second arrangement includes ML401, PDA301, PDB302, TXA303, TXB304, and FD305.
  • the basic configuration of the pixel 205 having the second arrangement is the same as the first arrangement shown in FIG. 4A, but the PDA 301 and the PDB 302 are arranged in the y direction, and the separation direction of the photoelectric conversion unit is is the y direction (second direction).
  • a potential gradient is created in the PDA 301 and PDB 302 so that the potential received by electrons in the depth direction decreases so that charges generated in the PDA 301 and PDB 302 can easily move to the TXA 303 and TXB 304. It is formed. Furthermore, in the second arrangement, as in the first arrangement, an isolation region 500 having a higher p-type impurity concentration than the PDA 301 and the PDB 302 is formed between the PDA 301 and the PDB 302. Thereby, the generated charges are electrically divided between the PDA 301 and the PDB 302 so that they are difficult to move.
  • charge crosstalk rate distribution Most of the charges generated in the PDA 301 and PDB 302 are accumulated within each PDA 301 and PDB 302, but may be transferred from the PDA 301 to the PDB 302 or from the PDB 302 to the PDA 301 and accumulated therein. This phenomenon in which charges move from the PDA 301 to the PDB 302 or from the PDB 302 to the PDA 301 is called “charge crosstalk.”
  • charge crosstalk rate The rate at which charge crosstalk occurs (hereinafter referred to as “charge crosstalk rate”) is higher as it approaches the separation regions 400 and 500 in plan view.
  • a potential gradient is provided in the depth direction so that charges move easily toward TXA303 and TXB304, so the shorter the moving distance to TXA303 and TXB304, the lower the charge crosstalk rate.
  • the charge crosstalk rate is smaller at a position closer to the TXA 303 and TXB 304 than at a position closer to the ML 401.
  • charge crosstalk rate distribution the crosstalk rate distribution within the PDA 301 and PDB 302 will be referred to as "charge crosstalk rate distribution.” This charge crosstalk rate distribution becomes smaller over the entire PDA 301 and PDB 302 as the potential gradient in the depth direction within the PDA 301 and PDB 302 becomes steeper.
  • charge crosstalk can also occur between adjacent pixels. Charge crosstalk that occurs between adjacent pixels is a factor that reduces resolution in image signals. Therefore, it is desirable that the charge crosstalk rate between adjacent pixels be lower than the charge crosstalk rate from the PDA 301 to the PDB 302 or from the PDB 302 to the PDA 301. Specifically, for example, the charge crosstalk rate can be kept low by separating adjacent pixels with an insulator or by increasing the height of a potential barrier.
  • focus detection using the phase difference detection method in the x direction in this embodiment will be described with reference to FIGS. 6 to 9.
  • the amount of image shift in the x direction is calculated from the phase difference signal obtained from the pixel 205 having the first arrangement, and the amount of image shift in the x direction is converted into the amount of defocus using a conversion coefficient. Convert.
  • FIG. 6 shows an AA′ cross-sectional view of the pixel 205 having the first arrangement shown in FIG. ing.
  • x, y, and z indicate coordinate axes on the imaging plane 600
  • xp, yp, and zp indicate coordinate axes on the pupil plane.
  • the pupil plane and the light receiving surface of the image sensor 1 have a substantially conjugate relationship. Therefore, the light beam passing through the partial pupil area 601 is received by the PDA 301. Further, the light beam passing through the partial pupil area 602 is received by the PDB 302. In this way, when the pupil plane is divided in the x direction, the pupil division direction is the x direction. Therefore, the position dependence of the pupil intensity distribution in the dividing direction has a shape as illustrated in FIG. 7 . In FIG. 7, the pupil intensity distribution corresponding to the PDA 301 is 701, and the pupil intensity distribution corresponding to the PDB 302 is 702.
  • each ML 401 of each pixel 205 is continuously shifted toward the center of the image sensor 1 according to the image height coordinate on a two-dimensional plane. That is, each ML 401 is arranged so as to be eccentric toward the center of the image sensor 1 as the image height increases. Note that the center of the image sensor 1 and the optical axis of the image sensor 1 are substantially coincident, although they are changed by a mechanism that reduces the influence of blur due to camera shake or the like by driving the image sensor 1 or the image sensor 1.
  • the first pupil intensity distribution 701 and the second pupil intensity distribution of each pixel arranged at each image high coordinate of the image sensor 1 are obtained in the pupil plane located at a distance Ds (entrance pupil distance) from the image sensor 1.
  • 702 are configured to generally match.
  • the first pupil intensity distribution 701 and the second pupil intensity distribution 702 of all pixels of the image sensor 1 are configured to approximately match.
  • the first pupil intensity distribution 701 and the second pupil intensity distribution 702 are referred to as the "sensor entrance pupil" of the image sensor 1.
  • pixels may be configured to have different entrance pupil distances.
  • FIG. 9 shows a schematic relationship diagram between the amount of image shift and the amount of defocus between parallax images.
  • the image sensor 1 (not shown) of the present embodiment is arranged on an imaging surface 600, and the exit pupil of the photographic lens unit 5 is divided into two parts, a partial pupil region 601 and a partial pupil region 602, as in FIG.
  • the defocus amount d is defined as the distance from the subject's imaging position to the imaging plane.
  • a rear focus state in which the imaging position is on the opposite side of the subject from the imaging plane is defined as positive (d>0).
  • the front focus state (d ⁇ 0) and the back focus state (d>0) are combined to form a defocus state (
  • the light fluxes that have passed through the partial pupil area 601 (602) are once condensed and then moved to the center of gravity position G1 (G2).
  • the image spreads to a width ⁇ 1 ( ⁇ 2) with the center at the center, resulting in a blurred image on the imaging surface 600.
  • the blurred image is received by the PDA 301 and the PDB 302, and a parallax image is generated. Therefore, in the generated parallax image, the image of the subject located on the object plane 902 at the center of gravity position G1 (G2) becomes a blurred subject image with a width ⁇ 1 ( ⁇ 2).
  • the blur width ⁇ 1 ( ⁇ 2) of the subject image generally increases in proportion as the magnitude
  • the amount of image shift p ( G2-G1) between the parallax images
  • also increases in proportion to the amount of defocus d
  • the rear focus state (d>0)
  • the direction of image shift of the subject image between the parallax images is opposite to that in the front focus state.
  • the positions of the centers of gravity of the subject images between the parallax images match (p 0), and no image shift occurs.
  • this conversion coefficient is large, compared to a case where the conversion coefficient is small, a large amount of defocus is calculated from a small amount of image shift, so it is more likely to be affected by noise in the phase difference signal, and the phase difference detection performance may deteriorate. There is sex.
  • phase difference detection method in the y direction (second direction) in this embodiment uses the signal from the pixel 205 having the first arrangement described above. ) can be used. That is, instead of the pixel 205 having the first arrangement, a signal from the pixel 205 having the second arrangement is used to perform phase difference detection in the y direction (second direction).
  • FIG. 10 is a diagram showing the pupil intensity distribution in the pupil plane corresponding to the pixel 205 having the first arrangement.
  • the pupil intensity distributions of the PDA 301 and the PDB 302 when the charge crosstalk rate between the PDA 301 and the PDB 302 is low (small) are defined as a first pupil intensity distribution 701 and a second pupil intensity distribution 702.
  • the distance between the peaks of the pupil intensity distributions corresponding to the PDA 301 and the PDB 302 is the acceptance angle tolerance range for light incident on the pixel, and the slope on the graph in the region 1004 where the pupil intensity distributions intersect is , is roughly related to the basic accuracy of phase difference detection. That is, in FIG. 10, when the charge crosstalk rate is low, the basic accuracy is high because the slopes of the first pupil intensity distribution 701 and the second pupil intensity distribution 702 in the region 1004 are high; Since the distance 703 between the peaks of the pupil intensity distribution 702 is small, the permissible light receiving angle range is narrow.
  • the charge crosstalk rate is high, the basic accuracy is low because the slopes of the pupil intensity distributions 1001 and 1002 in the region 1004 are small, and the acceptance angle is acceptable because the distance 1003 between the peaks of the pupil intensity distributions 1001 and 1002 is large. This means that the range is wide.
  • phase difference detection since the image shift of the subject image is detected based on the phase difference signals obtained from multiple PDAs 301 and PDBs 302, it is necessary to obtain the phase difference signal in the phase difference detection direction in the shortest possible time. is desirable. Further, by adding signals across several pixels in the phase difference detection direction, the S/N ratio of the signal can be improved. By improving the signal amount and S/N ratio in this way, signal variations can be suppressed and the shape of the pupil intensity distribution can be brought closer to the ideal one. That is, by speeding up the readout of pixels in the phase difference detection direction, phase difference detection accuracy can be improved.
  • arrows 1200 explicitly represent the order in which signals are read from the image sensor 100, and in this case, the x direction is the main scanning direction and the y direction is the sub scanning direction. In the main scanning direction, the time difference between the timing of reading signals from the PDA 301 and PDB 302 of the pixel 205 arranged at the right end of each row and the timing of reading signals from the PDA 301 and PDB 302 of the pixel 205 arranged at the left end is short.
  • the time difference between the timing of reading out signals from the PDA 301 and PDB 302 of the pixel 205 arranged at the top end of each column and the timing of reading out the signal from the PDA 301 and PDB 302 of the pixel 205 arranged at the bottom end is mainly It is longer compared to the scanning direction. Therefore, the focus detection performance based on the phase difference signal obtained from the pixels 205 arranged in the first arrangement in the main scanning direction is better than that obtained from the pixels 205 arranged in the second arrangement in the sub-scanning direction. The focus detection performance is higher than the focus detection performance based on the phase difference signal.
  • the pixel 205 has the first arrangement in which the PDA 301 and the PDB 302 are arranged in the main scanning direction, and the pixel 205 has the second arrangement in which the PDA 301 and the PDB 302 are arranged in the sub-scanning direction.
  • the charge crosstalk rate in the photoelectric conversion section 205 is set as follows. That is, the magnitude relationship between the charge crosstalk rate of the pixel 205 having the first arrangement and the charge crosstalk rate of the pixel 205 having the second arrangement is the magnitude relationship of the readout time difference in the main scanning direction and the readout time difference in the sub-scanning direction. (long and short) are arranged in reverse order.
  • Phase difference detection performance in the scanning direction can be made more suitable within the possible range.
  • the p-type impurity concentration in the separation regions 400 and 500 of the PDA 301 and the PDB 302 is made different. Carry out the injection process. Thereby, the image sensor 1 of this embodiment can be realized.
  • the impurity concentration of the isolation region 400 of the pixel 205 having the first arrangement is reduced, and the impurity concentration of the isolation region 500 of the pixel having the second arrangement is increased.
  • the magnitude relationship between the impurity concentration of the isolation region 400 of the pixel 205 having the first arrangement and the impurity concentration of the isolation region 500 of the pixel 205 having the second arrangement is the same as the magnitude relation of the readout time difference. Make it.
  • Such adjustment of the charge crosstalk rate may be performed by varying the width of the separation region of the photoelectric conversion section.
  • the width of the isolation region 400 of the pixel 205 having the first arrangement is narrow, and the width of the isolation region 500 of the pixel 205 having the second arrangement is made wide. That is, the magnitude relationship between the width of the isolation region 400 of the pixel having the first arrangement and the width of the isolation region 500 of the pixel 205 having the second arrangement is made to be the same as the magnitude relation of the readout time difference.
  • the first The charge crosstalk rate of the pixel 205 having the arrangement and the pixel 205 having the second arrangement may be adjusted.
  • the potential gradient of the pixel 205 having the first arrangement is made gentler than the potential gradient of the pixel 205 having the second arrangement, that is, the magnitude relationship of this steepness is the same as the magnitude relationship of the readout time difference. Make it.
  • the main scanning direction is the x direction and the sub-scanning direction is the y direction.
  • the pixels having the first arrangement 205 and the pixel 205 having the second arrangement are opposite to each other.
  • the charge crosstalk rate in the first direction may be adjusted to be higher than the charge crosstalk rate in the second direction by combining the above-mentioned impurity concentration and width of the separation region and the electrolytic gradient. good.
  • the charge crosstalk rate of the pixel 205 having the first arrangement and the pixel 205 having the second arrangement is adjusted during manufacturing of the image sensor 1.
  • the configuration is not limited to this, and may be a configuration that can be adjusted after manufacturing.
  • the charge crosstalk rate may be adjusted by arranging electrode portions in the separation regions 400 and 500 of the PDA 301 and the PDB 302 and controlling the potentials of the separation regions 400 and 500.
  • the potential applied to the separation region 400 of the pixel 205 having the first arrangement is set lower than the potential applied to the separation region 500 of the pixel 205 having the second arrangement. make sure that the size relationship of the V is opposite to that of the V.
  • DTI deep trench isolation
  • all the pixels 205 are explained as having the first arrangement or the second arrangement, but the present invention is not limited to this, and some of the pixels 205 are arranged in the first arrangement. Alternatively, as a second arrangement, they may be arranged discretely.
  • the main scanning direction and the sub-scanning direction are The performance of focus detection can be improved by
  • 12A and 12B show the configuration of a pixel 205 having the third arrangement of the image sensor 1 in this embodiment.
  • the pixel 205 is composed of four photodiodes (PD) 1101 to 1104.
  • PD photodiodes
  • FIG. 12A is a perspective view of the pixel of this embodiment
  • FIG. 12B is a schematic plan view showing the positional relationship in plan view when viewed from the ML401 side (back side of the substrate), and transfer switches and the like are omitted in this embodiment. ing. Note that the definitions of "planar view" and x, y, and z are the same as those in FIGS. 4A and 4B, and therefore description thereof will be omitted.
  • the first direction as the main scanning direction and the second direction as the sub-scanning direction, it is possible to perform phase difference detection in two orthogonal directions using pixels with the same configuration.
  • the phase difference in the x direction can be calculated by using the sum of the signals of PDA1101 and PDC1103 (signal A) and the sum of the signals of PDB1102 and PDD1104 (signal B). Detection can be performed using the sum of the signals of the PDA 1101 and PDB 1102 (signal C) and the sum of the signals of the PDC 1103 and PDD 1104 (signal) to detect the phase difference in the y direction. Similar to the first embodiment, when the pixels 205 having the third arrangement shown in FIGS.
  • the preferential reading direction is the row direction, so that the magnitude relationship between the charge crosstalk rate between the photoelectric conversion units governing signal A and signal B and the charge crosstalk rate between the photoelectric conversion units governing signal C and signal D is opposite to the magnitude relationship of the readout time difference.
  • adjustment of the charge crosstalk rate as in the first embodiment, adjustment of the impurity concentration and width of the separation region 1105 and the separation region 1106, adjustment of the potential gradient in the photoelectric conversion section, This is done by controlling the potential using electrodes.
  • the combination of the PDA 1101 to PDD 1104 may be reversed to the above-mentioned combination.
  • the same effects as the first embodiment can be obtained even when each pixel has a plurality of photoelectric conversion units divided in two directions.
  • (Configuration 1) a plurality of microlenses arranged in a matrix in a first direction and a second direction perpendicular to the first direction; a plurality of photoelectric conversion units configured to photoelectrically convert light incident on at least some of the plurality of microlenses through each of the microlenses; a readout unit that sequentially reads out signals from the plurality of photoelectric conversion units with the first direction as a main scanning direction and the second direction as a sub-scanning direction;
  • the plurality of photoelectric conversion units are arranged in at least one of the first direction and the second direction for each of the plurality of photoelectric conversion units,
  • An image sensor characterized in that a charge crosstalk rate in the first direction between the plurality of photoelectric conversion units is higher than a charge crosstalk rate in the second direction.
  • (Configuration 2) The image sensor according to configuration 1, wherein the plurality of photoelectric conversion units are two photoelectric conversion units arranged in the first direction or the second direction for each of the plurality of photoelectric conversion units. .
  • (Configuration 3) The image sensor according to configuration 1, wherein the plurality of photoelectric conversion units are four photoelectric conversion units arranged in the first direction and the second direction.
  • (Configuration 4) The impurity concentration of the separation region that separates the plurality of photoelectric conversion units arranged in the first direction is set to the impurity concentration of the separation region that separates the plurality of photoelectric conversion units arranged in the second direction. 4.
  • the width of the separation region that separates the plurality of photoelectric conversion units arranged in the first direction is the width of the separation region that separates the plurality of photoelectric conversion units arranged in the second direction. 5.
  • Configuration 6) In the plurality of photoelectric conversion units arranged in the first direction, a potential gradient from a light incident side to a region where charges obtained by photoelectric conversion are accumulated is set in the second direction. 6.
  • (Configuration 7) further comprising an electrode that controls the potential of a separation region that separates the plurality of photoelectric conversion units, A potential of a separation region that separates the plurality of photoelectric conversion units arranged in the first direction and a potential of a separation region that separates the plurality of photoelectric conversion units arranged in the second direction. 7.
  • the image pickup device according to any one of configurations 1 to 6, characterized in that the image sensor is lower than .
  • the imaging device according to any one of the above. (Configuration 9) 9.
  • An image sensor according to any one of configurations 1 to 9 An imaging device comprising: processing means for processing a signal output from the imaging device.
  • (Configuration 11) 11 The imaging apparatus according to configuration 10, wherein the processing means performs focus detection using an image plane phase difference method based on the signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Focusing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

第1の方向と第2の方向に行列状に配置された複数のマイクロレンズと、複数のマイクロレンズの少なくとも一部の各マイクロレンズに対して、各マイクロレンズを介して入射した光を光電変換するように構成された複数の光電変換部と、第1の方向を主走査方向、第2の方向を副走査方向として、複数の光電変換部から順次、信号を読み出す読み出し手段と、を有し、複数の光電変換部は、複数の光電変換部ごとに第1および第2の方向の少なくともいずれかの方向に配置され、複数の光電変換部の間の第1の方向の電荷クロストーク率が、第2の方向の電荷クロストーク率よりも高いことを特徴とする。

Description

撮像素子及び撮像装置
 本発明は、複数の光電変換部を有する画素部が2次元配列された撮像素子及び当該撮像素子を搭載した撮像装置に関する。
 従来より、撮像装置で行われる焦点検出方法の1つとして、撮像素子に形成された焦点検出用画素を用いて一対の瞳分割信号を取得し、位相差方式の焦点検出を行う、いわゆる撮像面位相差方式が知られている。
 このような撮像面位相差方式の例として、1つの画素に対して、1つのマイクロレンズと複数に分割された光電変換部が形成された2次元撮像素子を用いた撮像装置が、特許文献1に開示されている。複数の光電変換部は、1つのマイクロレンズを介して撮像レンズの射出瞳の異なる領域を透過した光を受光するように構成され、瞳分割を行う。そして、個々の光電変換部の信号である位相差信号から像ずれ量を算出することで、位相差方式の焦点検出を行うことができる。また、画素毎に個々の光電変換部の信号を足し合わせることで、通常の画像信号を取得することができる。また、特許文献1には、画素における光電変換部間の分離障壁の高さが異なる複数種類の画素を配列することで、画素の飽和耐性を高めた構成が開示されている。
 このようなイメージセンサでは、複数の光電変換部が画素内で横方向に並び、瞳分割方向が横方向である構成では、例えば、被写体が横方向のストライプ模様等の場合、視差が表れにくく、焦点検出精度が低下することがある。
 これに対し、特許文献2には、各マイクロレンズに対する光電変換部の配置方向を2種類にし、瞳分割方向を2種類とすることで、焦点検出精度を向上させる技術が開示されている。また、特許文献2には、縦方向に隣接する光電変換部間を分離する構造と、横方向に隣接する光電変換部間を分離する構造とで、電荷を隣接する光電変換部に漏出させる強度を異ならせることが開示されている。この構造により、1つの光電変換部が蓄積できる電荷量を超えて受光した過飽和電荷を予め決められた方向に配置された異なる光電変換部へ漏出させて蓄積することで、1つの光電変換部が飽和した場合にも、横方向、もしくは縦方向の位相差方式の焦点検出が可能となる。
特開2017-212351号公報 特開2014-107835号公報
 従来の多くの撮像素子は、行方向または列方向のどちらか一方の信号の読み出しを優先して行い、次の行または次の列の読み出しへと移行する。例えば、行単位で読み出しを行い、順次読み出しを行う行をシフトしていく場合、各行の画素の読み出しは同じタイミングで行われるが、異なる行の読み出しタイミングは、行が離れれば離れるほど、差が大きくなる。
 このため、1つのマイクロレンズに対する複数の光電変換部が行方向に配列された画素と、列方向に配列された画素が混在する場合、次のような課題があった。すなわち、時間的に近いタイミングで複数の光電変換部から信号を読み出すことのできる行方向(主走査方向)と、信号を読み出すタイミングが時間的に離れる列方向(副走査方向)とでは、列方向の方が焦点検出精度が低下してしまう。
 しかしながら、特許文献1及び特許文献2には、光電変換部が飽和している場合の対処の方法については記載されているが、上述した読み出しタイミングの違いにより焦点検出精度が低下するという課題を解決することはできない。
 本発明は上記問題点を鑑みてなされたものであり、画素が行列状に配列された撮像素子から出力される位相差信号を利用した像面位相差方式による焦点検出において、主走査方向と副走査方向とで焦点検出の性能を近づけることを目的とする。
 上記課題を解決するために、本発明の撮像素子は、第1の方向と前記第1の方向に直交する第2の方向に行列状に配置された複数のマイクロレンズと、前記複数のマイクロレンズの少なくとも一部の各マイクロレンズに対して、前記各マイクロレンズを介して入射した光を光電変換するように構成された複数の光電変換部と、前記第1の方向を主走査方向、前記第2の方向を副走査方向として、前記複数の光電変換部から順次、信号を読み出す読み出し手段と、を有し、前記複数の光電変換部は、前記複数の光電変換部ごとに前記第1の方向および前記第2の方向の少なくともいずれかの方向に配置され、前記複数の光電変換部の間の前記第1の方向の電荷クロストーク率が、前記第2の方向の電荷クロストーク率よりも高いことを特徴とする。
 本発明によれば、画素が行列状に配列された撮像素子から出力される位相差信号を利用した像面位相差方式による焦点検出において、主走査方向と副走査方向とで焦点検出の性能を近づけることができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
第1の実施形態に係る撮像装置の概略構成を示すブロック図。 第1の実施形態に係る撮像素子の全体構成の一例を概略的に示す図。 第1の実施形態に係る画素の等価回路図。 第1の実施形態に係る第1の配置を有する画素の構成を示す概略図。 第1の実施形態に係る第1の配置を有する画素の構成を示す概略図。 第1の実施形態に係る第2の配置を有する画素の構成を示す概略図。 第1の実施形態に係る第2の配置を有する画素の構成を示す概略図。 第1の実施形態に係る第1の配置を有する画素と部分瞳領域との関係を示す図。 第1の実施形態に係る第1の配置を有する画素の瞳強度分布の一例を示す概略図。 第1の実施形態に係る撮像素子のセンサー入射瞳を概略的に説明する図。 第1の実施形態に係る視差画像間の像ずれ量とデフォーカス量の概略関係を示す図。 第1の実施形態における電荷クロストーク率と瞳強度分布との関係を示す概略図。 第1の実施形態における画素の読み出し順の一例を示す説明図。 第2の実施形態に係る第3の配置を有する画素の構成を示す概略図。 第2の実施形態に係る第3の配置を有する画素の構成を示す概略図。
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
<第1の実施形態>
[全体構成]
 図1は、本発明の第1の実施形態に係る撮像装置の概略構成を示すブロック図である。本実施形態の撮像装置は、撮像素子1と、全体制御・演算部2と、指示部3と、タイミング発生部4と、撮影レンズユニット5と、レンズ駆動部6と、信号処理部7と、表示部8と、記録部9と、を備えている。
 撮影レンズユニット5は、被写体の光学像を撮像素子1に結像させる。図では1枚のレンズで表されているが、撮影レンズユニット5は、フォーカスレンズ、ズームレンズ等を含む複数のレンズと、絞りを含む。また、撮影レンズユニット5は、撮像装置の本体から着脱可能であってもよいし、本体に一体的に構成されていてもよい。
 撮像素子1は、撮影レンズユニット5を介して入射する光を電気信号に変換して出力する。撮像素子1の各画素からは、位相差方式の焦点検出に用いることのできる瞳分割された瞳分割信号(以下、「位相差信号」と呼ぶ。)と、画素ごとの信号である画像信号とを取得可能に信号が読み出される。
 信号処理部7は、撮像素子1から出力される信号に対して、補正処理等の所定の信号処理を行い、焦点検出に用いる位相差信号及び記録に用いる画像信号を出力する。
 全体制御・演算部2は、撮像装置全体の統括的な駆動及び制御を行う。また、信号処理部7により処理された位相差信号を用いて焦点検出のための演算を行ったり、画像信号に対して、露出制御のための演算処理や、記録・再生用画像を生成するための現像、圧縮等の所定の信号処理を行ったりする。
 レンズ駆動部6は、撮影レンズユニット5を駆動するものであり、全体制御・演算部2からの制御信号に従って、撮影レンズユニット5に対してフォーカス制御や、ズーム制御、絞り制御等を行う。
 指示部3は、ユーザー等の操作により外部から入力される、撮影の実行指示、撮像装置の駆動モード設定、その他各種設定や選択等の入力を受け付け、全体制御・演算部2へ送信する。
 タイミング発生部4は、全体制御・演算部2からの制御信号に従って、撮像素子1及び信号処理部7を駆動するためのタイミング信号を生成する。
 表示部8は、プレビュー画像や再生画像、撮像装置の駆動モード設定等の情報を表示する。
 記録部9には不図示の記録媒体が備えられ、記録用画像信号が記録される。記録媒体としては、例えばフラッシュメモリ等の半導体メモリ等が挙げられる。記録媒体は記録部9から着脱可能であってもよいし、内蔵されたものであってもよい。
[撮像素子]
 図2は、図1に示す撮像素子1の全体構成の一例を概略的に示す図である。撮像素子1は、画素アレイ部201、垂直選択回路202、列回路203、水平選択回路204を含む。
 画素アレイ部201には、複数の画素205が行列状に配置されている。垂直選択回路202の出力が画素駆動配線群207を介して画素205に入力されることにより、垂直選択回路202により選択された行の画素205の画素信号が、行単位で出力信号線206を介して列回路203に読み出される。出力信号線206は、各画素列毎もしくは複数の画素列毎に1つ、または各画素列毎に複数設けることが可能である。列回路203には複数の出力信号線206を介して並列に読み出された信号が入力され、信号の増幅やノイズ除去、A/D変換等の処理を行い、処理した信号を保持する。水平選択回路204が、列回路203に保持された信号を、順次、ランダム、または同時に選択することで、選択された信号が、不図示の水平出力線と出力部を介して撮像素子1の外に出力される。
 このように垂直選択回路202により選択した行の画素信号を撮像素子1の外に出力する動作を、垂直選択回路202で選択する行を変更しながら順次行うことで、撮像素子1から、2次元の撮像信号または位相差信号を読み出すことができる。
[画素回路・信号読み出し]
 図3は、本実施形態の画素205の等価回路図である。
 各画素205は、光電変換部である2つのフォトダイオード301(PDA)及び302(PDB)を有する。入射した光量に応じてPDA301により光電変換され、蓄積された信号電荷は、転送スイッチ(TXA)303を介して、電荷蓄積部を構成するフローティングディフュージョン部(FD)305に転送される。また、PDB302により光電変換され、蓄積された信号電荷は、転送スイッチ(TXB)304を介してFD305に転送される。リセットスイッチ(RES)306は、オンとなることで、FD305を定電圧源VDDの電圧にリセットする。また、RES306とTXA303及びTXB304を同時にオンとすることで、PDA301及びPDB302をリセットすることができる。
 画素を選択する選択スイッチ(SEL)307がONとなることで、増幅トランジスタ(SF)308は、FD305に蓄積された信号電荷を電圧に変換し、変換された信号電圧は画素から出力信号線206に出力される。また、TXA303、TXB304、RES306、SEL307のゲートは、それぞれ画素駆動配線群207と接続され、垂直選択回路202により制御される。
 なお、以下の説明において本実施形態では、光電変換部で蓄積する信号電荷を電子とし、光電変換部をN型半導体で形成し、P型半導体で分離するものとしているが、信号電荷を正孔とし、光電変換部をP型半導体で形成し、N型半導体で分離しても良い。
 続いて、上述した構成を有する画素において、PDA301及びPDB302をリセット後、所定の電荷蓄積時間が経過した後にPDA301及びPDB302から信号電荷を読み出す動作について説明する。まず、垂直選択回路202により選択された行のSEL307がオンとなり、SF308のソースと出力信号線206が接続されると、出力信号線206はFD305の電圧に対応する電圧が読み出される状態となる。続いて、RES306がオン/オフされ、FD305の電位がリセットされる。その後、FD305の電圧変動を受けた出力信号線206が静定するまで待機し、静定した出力信号線206の電圧を信号電圧Nとして列回路203で取り込み、信号処理を行って保持する。
 その後、TXA303がオン/オフされ、PDA301に蓄積されている信号電荷がFD305に転送される。FD305の電圧は、PDA301に蓄積していた信号電荷量に対応した分だけ低下する。その後、FD305の電圧変動を受けた出力信号線206が静定するまで待機し、静定した出力信号線206の電圧を信号電圧Aとして列回路203で取り込み、信号処理を行って保持する。
 その後、TXB304がオン/オフされ、PDB302に蓄積されている信号電荷がFD305に転送される。FD305の電圧は、PDB302に蓄積していた信号電荷量に対応した分だけ低下する。その後、FD305の電圧変動を受けた出力信号線206が静定するまで待機し、静定した出力信号線206の電圧を信号電圧(A+B)として列回路203で取り込み、信号処理を行って保持する。
 このようにして取り込んだ信号電圧Nと信号電圧Aとの差分から、PDA301に蓄積されていた信号電荷量に応じた信号Aを得ることができる。また、信号電圧Aと信号電圧(A+B)との差分から、PDB302に蓄積していた信号電荷量に応じた信号Bを得ることができる。この差分計算は、列回路203で行っても良いし、撮像素子1から出力した後に行っても良い。信号Aと信号Bをそれぞれ用いることで位相差信号を得ることができ、信号Aと信号Bを足し合わせることで撮像信号を得ることができる。または、差分計算を撮像素子1から出力した後に行う場合、信号電圧Nと信号電圧(A+B)との差分を取ることで、撮像信号を得るようにしてもよい。
 また、信号電圧Nと信号電圧Aとを読み出す駆動と同様の駆動を、PDA301の代わりにPDB302に対して行うことで、信号電圧N、信号電圧A、信号電圧Bをそれぞれ読み出すようにしても良い。その場合、信号電圧Aと信号電圧Bからそれぞれ得られた信号Aと信号Bをそのまま位相差信号として用いることができると共に、信号電圧Aと信号電圧B、または信号Aと信号Bを足し合わせることで、撮像信号を得ることができる。
 [光電変換領域の構成] 
・x方向の位相差検出画素構造
 図4A及び図4Bは、本実施形態に係る画素205を構成する半導体領域の第1の配置を示す模式図であり、図4Aは、斜視模式図、図4Bは平面視における位置関係を示す平面模式図である。なお、「平面視」とは、半導体基板のトランジスタのゲートが配されている側の面と平行な面(xy平面)に対して、z方向または-z方向から視ることを指す。また、「行」方向はx方向を指し、「列」方向はy方向を指し、「深さ」方向はz方向をさす。
 図4Aに示すように、第1の配置を有する画素205は、マイクロレンズ(ML)401、PDA301、PDB302、TXA303、TXB304、FD305を含む。第1の配置において、PDA301とPDB302は、x方向に並べて、半導体基板であるSi基板内に形成されており、ML401が配置されている側を基板の裏面側、TXA303,304及びFD305が配置されている側を基板の表面側とする。
 ML401を介して入射した光の大部分はPDA301及びPDB302の基板裏面側において光電変換される。ここで、PDA301及びPDB302内で発生した電荷が、TXA303、TXB304に移動し易くなるように、PDA301及びPDB302内において、深さ方向に電子が受けるポテンシャルが減少するように、電位勾配が形成されている。
 また、PDA301とPDB302との間には、ポテンシャル障壁が形成されるように、p型不純物濃度がPDA301及びPDB302よりも高い分離領域400が形成されている。これにより、発生した電荷が、PDA301とPDB302との間で移動しにくいように電気的に分離されている。従って、本実施形態において、第1の配置におけるPDA301とPDB302の分割方向は、x方向(第1の方向)である。
・y方向の位相差検出画素構造
 図5A及び図5Bは、本実施形態に係る画素205を構成する半導体領域の第2の配置を示す模式図であり、図5Aは、斜視模式図、図5Bは平面視における位置関係を示す平面模式図である。なお、「平面視」及びx、y、zの定義は、図4A及び図4Bと同様であるため、説明を省略する。
 図5Aに示すように、第2の配置を有する画素205は、ML401、PDA301、PDB302、TXA303、TXB304、FD305を含む。第2の配置を有する画素205の基本的構成は、図4Aに示した第1の配置と同様であるが、PDA301とPDB302がy方向に並ぶように配置されており、光電変換部の分離方向は、y方向(第2の方向)である。
 第2の配置においても、PDA301及びPDB302内で発生した電荷がTXA303、TXB304へ移動し易くするように、PDA301及びPDB302内において、深さ方向に電子が受けるポテンシャルが減少するように、電位勾配が形成されている。また、第2の配置においても、第1の配置と同様に、PDA301とPDB302との間に、p型不純物濃度がPDA301及びPDB302より高い分離領域500が形成されている。これにより、発生した電荷が、PDA301とPDB302との間で移動しにくいように電気的に分割されている。
・電荷クロストーク率分布
 PDA301及びPDB302で発生した電荷の大部分は、各PDA301及びPDB302内で蓄積されるが、PDA301からPDB302に、または、PDB302からPDA301に移動し、蓄積されることがある。このようなPDA301からPDB302へ、もしくはPDB302からPDA301へ電荷が移動する現象のことを、「電荷クロストーク」と呼ぶ。電荷クロストークが起きる割合(以下、「電荷クロストーク率」と呼ぶ。)は、平面視において、分離領域400及び500に近い程高い。また、PDA301及びPDB302では、TXA303、TXB304に向けて電荷が移動し易くなるように深さ方向に電位勾配を付けているため、TXA303、TXB304までの移動距離が短い程、電荷クロストーク率は小さくなる。すなわち、PDA301及びPDB302内において、同一のx座標、y座標では、TXA303、TXB304までの距離が近い位置の方が、ML401に近い位置よりも、電荷クロストーク率が小さくなる。以下の説明において、PDA301及びPDB302内におけるクロストーク率の分布のことを「電荷クロストーク率分布」と呼ぶ。この電荷クロストーク率分布は、PDA301及びPDB302内の深さ方向の電位勾配が急峻であるほど、PDA301及びPDB302全体に亘って小さくなる。
 また、電荷クロストークは、隣接画素間に対しても起こり得る。隣接画素間で発生する電荷クロストークは、撮像信号における解像度低下等の要因である。そのため、隣接画素間の電荷クロストーク率は、PDA301からPDB302へもしくはPDB302からPDA301への電荷クロストーク率より低くすることが望ましい。具体的には、例えば、隣接画素間を絶縁体で分離したり、ポテンシャル障壁の高さを高くすることで、電荷クロストーク率を低く抑えたりすることができる。
・x方向の位相差検出方法
 続いて、全体制御・演算部2において、位相差信号からデフォーカス量を算出する演算について説明する。
 まず、図6から図9を参照して、本実施形態におけるx方向の位相差検出方式の焦点検出について説明する。本実施形態におけるx方向の位相差検出方式の焦点検出では、第1の配置を有する画素205から得られる位相差信号からx方向の像ずれ量を算出し、変換係数を用いてデフォーカス量に変換する。
 図6は、第1の配置を有する画素205の図4Bに示すA-A’断面図、及び、撮像素子1の撮像面600からz軸負方向に距離Dsだけ離れた位置の瞳面を示している。なお、x、y、zは、撮像面600における座標軸を示し、xp、yp、zpは、瞳面における座標軸を示している。
 ML401を介して、瞳面と撮像素子1の受光面は略共役関係となっている。そのため、部分瞳領域601を通過した光束はPDA301で受光される。また、部分瞳領域602を通過した光束はPDB302で受光される。このように、瞳面をx方向に分割している場合の瞳分割方向はx方向である。そのため、瞳強度分布の分割方向位置依存性は、図7に例示したような形状となる。図7において、PDA301に対応する瞳強度分布が701であり、PDB302に対応する瞳強度分布が702である。
 次に、図8を参照して、撮像素子1のセンサー入射瞳について説明する。本実施形態の撮像素子1では、2次元の平面上の像高座標に応じて、各画素205のML401は、撮像素子1の中心方向へ連続的にシフトされて配置されている。つまり、各ML401は、像高が高くになるにつれ、撮像素子1の中心方向へ偏心するように配置されている。なお、撮像素子1の中心と撮像光学系の光軸は、撮像光学系または撮像素子1を駆動することで手振れ等によるブレの影響を低減する機構によって変化するが、略一致する。これにより、撮像素子1から距離Ds(入射瞳距離)だけ離れた位置の瞳面において、撮像素子1の各像高座標に配置された各画素の第1瞳強度分布701及び第2瞳強度分布702が、概ね、一致するように構成される。つまり、撮像素子1から距離Dsだけ離れた位置の瞳面において、撮像素子1の全ての画素の第1瞳強度分布701と第2瞳強度分布702が、概ね、一致するように構成されている。本実施形態では、第1瞳強度分布701及び第2瞳強度分布702を、撮像素子1の「センサー入射瞳」と呼ぶ。
 なお、全ての画素が単一の入射瞳距離を有する構成とする必要はなく、例えば像高8割までの画素の入射瞳距離を略一致させる構成としてもよいし、あえて行ごとまたは検出領域毎に異なる入射瞳距離を有するように画素を構成してもよい。
 図9に、視差画像間の像ずれ量とデフォーカス量の概略関係図を示す。撮像面600に本実施形態の撮像素子1(不図示)が配置され、図6と同様に、撮影レンズユニット5の射出瞳が、部分瞳領域601と部分瞳領域602に2分割される。
 デフォーカス量dは、被写体の結像位置から撮像面までの距離を大きさ|d|とし、被写体の結像位置が撮像面より被写体側にある前ピン状態を負(d<0)、被写体の結像位置が撮像面より被写体の反対側にある後ピン状態を正(d>0)として定義する。被写体の結像位置が撮像面にある合焦状態はd=0である。図9では、物体面901にある被写体が合焦状態(d=0)となり、物体面902にある被写体が前ピン状態(d<0)となる例を示している。前ピン状態(d<0)と後ピン状態(d>0)を合わせて、デフォーカス状態(|d|>0)とする。
 前ピン状態(d<0)では、物体面902にある被写体からの光束のうち、部分瞳領域601(602)を通過した光束は、一度、集光した後、光束の重心位置G1(G2)を中心として幅Γ1(Γ2)に広がり、撮像面600でボケた像となる。ボケた像は、PDA301及びPDB302により受光され、視差画像が生成される。よって、生成される視差画像には、重心位置G1(G2)に、物体面902にある被写体の像が幅Γ1(Γ2)にボケた被写体像となる。
 被写体像のボケ幅Γ1(Γ2)は、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。同様に、視差画像間の被写体像の像ずれ量p(=G2-G1)の大きさ|p|も、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。後ピン状態(d>0)でも、視差画像間の被写体像の像ずれ方向が前ピン状態と反対となるが、同様である。合焦状態(d=0)では、視差画像間の被写体像の重心位置が一致(p=0)し、像ずれは生じない。
 したがって、PDA301及びPDB302の信号を用いて得られる2つの位相差信号において、視差画像のデフォーカス量の大きさが増加するのに伴い、2つの位相差信号間のx方向の像ずれ量の大きさが増加する。この関係性から、視差画像をx方向にずらしながら相関演算することにより算出した像ずれ量をデフォーカス量に変換することで、位相差検出方式の焦点検出を行う。像ずれ量からデフォーカス量に変換する際に乗算する係数を変換係数と呼ぶ。この変換係数が大きいと、変換係数が小さい場合と比較して、小さい像ずれ量から大きいデフォーカス量を算出するため、位相差信号のノイズの影響を受けやすく、位相差検出性能が低下する可能性がある。
・y方向の位相差検出方法
 本実施形態におけるy方向(第2の方向)の位相差検出方法は、上述した第1の配置を有する画素205からの信号を用いたx方向(第1の方向)の位相差検出方法と同様の方法を用いることができる。すなわち、第1の配置を有する画素205の代わりに、第2の配置を有する画素205からの信号を用いて、y方向(第2の方向)の位相差検出を行う。
[電荷クロストーク率]
・瞳強度分布における電荷クロストーク率と位相差検出性能との関係
 図10は、第1の配置を有する画素205に対応する瞳面における瞳強度分布を示す図である。以下、図10を参照して、PDA301とPDB302における電荷クロストーク率の大小と、位相差検出性能との関係について説明する。PDA301とPDB302の間での電荷クロストーク率が低い(小さい)場合のPDA301とPDB302それぞれの瞳強度分布を、第1瞳強度分布701及び第2瞳強度分布702とする。これに対して、PDA301とPDB302の間での電荷クロストーク率が高い(大きい)場合、PDA301とPDB302それぞれで得られる信号電荷は増減するため、破線で示す瞳強度分布1001及び一点鎖線で示す瞳強度分布1002となる。
 ここで、PDA301とPDB302に対応する瞳強度分布のピーク間の距離が、画素に入射する光に対する受光角度許容範囲と、また、瞳強度分布が交差している領域1004におけるグラフ上での傾きが、位相差検出の基本精度と、おおよそ関連している。すなわち、図10においては、電荷クロストーク率が低い場合、領域1004における第1瞳強度分布701と第2瞳強度分布702の傾きが大きいため基本精度が高く、第1瞳強度分布701と第2瞳強度分布702のピーク間の距離703が小さいため受光角度許容範囲が狭い。一方、電荷クロストーク率が高い場合、領域1004における瞳強度分布1001及び1002の傾きが小さいため基本精度が低く、瞳強度分布1001と瞳強度分布1002のピーク間の距離1003が大きいため受光角度許容範囲が広いということになる。
 また、像面位相差検出においては、複数のPDA301及びPDB302から得られた位相差信号に基づいて被写体像の像ずれを検出するため、できるだけ短時間に位相差検出方向の位相差信号を得ることが望ましい。また、位相差検出方向の数画素にわたって信号を加算することにより信号のS/N比を向上することができる。このように、信号量やS/N比を向上することにより、信号のばらつきが抑えられ、瞳強度分布の形状もより理想的なものに近づけることができる。すなわち、位相差検出方向の画素の読み出しを早くすることにより、位相差検出精度を向上することができる。
 図11において、矢印1200は、撮像素子100からの信号の読み出し順序を明示的に表しているものであり、この場合、x方向が主走査方向、y方向が副走査方向である。主走査方向では、各行の右端に配置された画素205のPDA301とPDB302から信号を読み出すタイミングと、左端に配置された画素205のPDA301とPDB302から信号を読み出すタイミングとの時間差は短い。一方、副走査方向では、各列の上端に配置された画素205のPDA301とPDB302から信号を読み出すタイミングと、下端に配置された画素205のPDA301とPDB302から信号を読み出すタイミングとの時間差は、主走査方向と比較して長くなる。このため、主走査方向に並べられた第1の配置を有する画素205から得られる位相差信号に基づく焦点検出性能の方が、副走査方向に並べられた第2の配置を有する画素205から得られる位相差信号に基づく焦点検出性能よりも高くなる。
 従って、本実施形態の撮像素子1では、主走査方向にPDA301とPDB302が並べられた第1の配置を有する画素205と、副走査方向にPDA301とPDB302が並べられた第2の配置を有する画素205における光電変換部での電荷クロストーク率を次のように設定する。すなわち、第1の配置を有する画素205の電荷クロストーク率と第2の配置を有する画素205の電荷クロストーク率との大小関係が、主走査方向の読み出し時間差と副走査方向の読み出し時間差の大小(長短)と逆になるように構成する。例えば、瞳強度分布のピーク位置における電荷クロストーク率を、第1の配置を有する画素205において10%前後、第2の配置を有する画素205において8%前後とすることにより、主走査方向及び副走査方向における位相差検出性能を可能な範囲でより適したものとすることができる。
 第1の配置を有する画素205と第2の配置を有する画素205とで電荷クロストーク率を異ならせるために、PDA301とPDB302の分離領域400及び500における例えばp型不純物濃度が異なるように、イオン注入プロセスを行う。これにより、本実施形態の撮像素子1を実現することができる。本実施形態の場合、第1の配置を有する画素205の分離領域400の不純物濃度を薄く、第2の配置を有する画素の分離領域500の不純物濃度を濃くする。つまり、第1の配置を有する画素205の分離領域400の不純物濃度と、第2の配置を有する画素205の分離領域500の不純物濃度との大小関係が、読み出し時間差の大小関係と同じになるようにする。
 このような電荷クロストーク率の調整は、光電変換部の分離領域の幅を異ならせることにより行ってもよい。本実施形態の場合、第1の配置を有する画素205の分離領域400の幅を狭く、第2の配置を有する画素205の分離領域500の幅を広くする。つまり、第1の配置を有する画素の分離領域400の幅と、第2の配置を有する画素205の分離領域500の幅の大小関係が、読み出し時間差の大小関係と同じになるようにする。
 さらに、基板裏面側から基板表面側への光電変換部内での電荷収集のための電位勾配を、第1の配置を有する画素205と第2の配置を有する画素205で異ならせることにより、第1の配置を有する画素205と第2の配置を有する画素205の電荷クロストーク率を調整しても良い。この場合、第1の配置を有する画素205の電位勾配を第2の配置を有する画素205の電位勾配よりも緩やかに、つまりこの急峻さの大小関係が、読み出し時間差の大小関係と同じになるようにする。
 なお、上述した例では、主走査方向をx方向、副走査方向をy方向として説明したが、主走査方向をy方向、副走査方向をx方向とした場合は、第1の配置を有する画素205と第2の配置を有する画素205の電荷クロストーク率の大小関係と、読み出し時間差との大小関係は逆になる。
 また、上述した、分離領域の不純物濃度及び幅、更に、電解勾配を組み合わせて、第1の方向の電荷クロストーク率が第2の方向の電荷クロストーク率よりも高くなるように調整しても良い。
 また、上述した例では、撮像素子1の製造時に、第1の配置を有する画素205と第2の配置を有する画素205の電荷クロストーク率を調整する場合について説明したが、本発明はこれに限られるものでは無く、製造後に調整できる構成としても良い。その場合、例えば、PDA301とPDB302の分離領域400,500に電極部を配置し、分離領域400,500の電位を制御することで、電荷クロストーク率を調整してもよい。その場合、第1の配置を有する画素205の分離領域400にかける電位を第2の配置を有する画素205の分離領域500にかける電位よりも低くする、つまり電位の大小関係が、幅Hと高さVの大小関係と逆になるようにする。なお、電極部としては制御配線に連結されたDeep Trench Isolation(DTI)を用いることができる。
 また、上述した例では、全ての画素205が第1の配置または第2の配置を有するものとして説明したが、本発明はこれに限られるものではなく、画素205の一部を第1の配置または第2の配置として、離散的に配置してもよい。
 上記の通り第1の実施形態によれば、画素が行列状に配列された撮像素子から得られる信号を用いて像面位相差方式の焦点検出を行う場合に、主走査方向と副走査方向とで焦点検出の性能を近づけることができる。
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。図12A及び図12Bは、本実施形態における撮像素子1の第3の配置を有する画素205の構成を示す。
 第3の配置では、図12A及び図12Bに示すように、画素205を4つのフォトダイオード(PD)1101~1104により構成する。以下、PDA1101、PDB1102、PDC1103、PDD1104と記す。図12Aは、本実施形態の画素の斜視図、図12Bは、ML401側(基板裏面側)から見た平面視における位置関係を示す平面模式図であり、本実施形態では転送スイッチ等は省略している。なお、「平面視」及びx、y、zの定義は、図4A及び図4Bと同様であるため、説明を省略する。
 本実施形態において、第1の方向を主走査方向、第2の方向を副走査方向とすることにより、直交する2つの方向における位相差検出を、同一構成の画素で行うことが可能となる。
 主走査方向をx方向、副走査方向をy方向とした場合、PDA1101とPDC1103の信号の和(信号A)と、PDB1102とPDD1104の信号の和(信号B)を用いることでx方向の位相差検出を、PDA1101とPDB1102の信号の和(信号C)と、PDC1103とPDD1104の信号の和(信号を用いることでy方向の位相差検出を行うことができる。つまり、本実施形態においても、第1の実施形態と同様に、撮像素子全面に亘り、図12A及び図12Bに示す第3の配置を有する画素205が2次元配列されており、優先的に読みだす方向を行方向とした場合、信号Aと信号Bに司る光電変換部間の電荷クロストーク率と信号Cと信号Dに司る光電変換部間の電荷クロストーク率の大小関係が、読み出し時間差の大小関係と逆になるように、画素が構成されている。電荷クロストーク率の調整に関しては、第1の実施形態と同様に、分離領域1105及び分離領域1106の不純物濃度、幅の調整や、光電変換部内の電位勾配の調整、電極による電位制御により行う。
 なお、主走査方向をy方向、副走査方向をx方向とする場合は、PDA1101~PDD1104の組み合わせを上述した組み合わせと逆にすればよい。
 上記の通り第2の実施形態によれば、各画素が2方向に分割された複数の光電変換部を有する場合にも、第1の実施形態と同様の効果を得ることができる。
<まとめ>
 本実施形態の開示は、以下の構成を含む。
(構成1)
 第1の方向と前記第1の方向に直交する第2の方向に行列状に配置された複数のマイクロレンズと、
 前記複数のマイクロレンズの少なくとも一部の各マイクロレンズに対して、前記各マイクロレンズを介して入射した光を光電変換するように構成された複数の光電変換部と、
 前記第1の方向を主走査方向、前記第2の方向を副走査方向として、前記複数の光電変換部から順次、信号を読み出す読み出し手段と、を有し、
 前記複数の光電変換部は、前記複数の光電変換部ごとに前記第1の方向および前記第2の方向の少なくともいずれかの方向に配置され、
 前記複数の光電変換部の間の前記第1の方向の電荷クロストーク率が、前記第2の方向の電荷クロストーク率よりも高いことを特徴とする撮像素子。
(構成2)
 前記複数の光電変換部は、前記複数の光電変換部ごとに前記第1の方向または前記第2の方向に配置された2つの光電変換部であることを特徴とする構成1に記載の撮像素子。
(構成3)
 前記複数の光電変換部は、前記第1の方向及び前記第2の方向に配置された4つの光電変換部であることを特徴とする構成1に記載の撮像素子。
(構成4)
 前記第1の方向に配置された前記複数の光電変換部の間を分離する分離領域の不純物濃度を、前記第2の方向に配置された前記複数の光電変換部の間を分離する分離領域の不純物濃度よりも低くしたことを特徴とする構成1乃至3のいずれかに記載の撮像素子。
(構成5)
 前記第1の方向に配置された前記複数の光電変換部の間を分離する分離領域の幅を、前記第2の方向に配置された前記複数の光電変換部の間を分離する分離領域の幅よりも短くしたことを特徴とする構成1乃至4のいずれかに記載の撮像素子。
(構成6)
 前記第1の方向に配置された前記複数の光電変換部において、光が入射する側から、光電変換して得られた電荷を蓄積する領域までの電位勾配を、前記第2の方向に配置された前記複数の光電変換部における電位勾配よりも緩やかにしたことを特徴とする構成1乃至5のいずれかに記載の撮像素子。
(構成7)
 前記複数の光電変換部の間を分離する分離領域の電位を制御する電極を更に有し、
 前記第1の方向に配置された前記複数の光電変換部の間を分離する分離領域の電位を、前記第2の方向に配置された前記複数の光電変換部の間を分離する分離領域の電位よりも低くしたことを特徴とする構成1乃至6のいずれかに記載の撮像素子。
(構成8)
 前記複数の光電変換部の間の前記第1の方向の電荷クロストーク率を10%前後、前記第2の方向の電荷クロストーク率を8%前後としたことを特徴とする構成1乃至7のいずれかに記載の撮像素子。
(構成9)
 前記複数の光電変換部により光電変換された電荷を信号に変換して出力する出力手段を更に有することを特徴とする構成1乃至8のいずれかに記載の撮像素子。
(構成10)
 構成1乃至9のいずれかに記載の撮像素子と、
 前記撮像素子から出力された信号を処理する処理手段と
 を有することを特徴とする撮像装置。
(構成11)
 前記処理手段は、前記信号に基づいて、像面位相差方式の焦点検出を行うことを特徴とする構成10に記載の撮像装置。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2022年5月12日提出の日本国特許出願特願2022-078955を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (11)

  1.  第1の方向と前記第1の方向に直交する第2の方向に行列状に配置された複数のマイクロレンズと、
     前記複数のマイクロレンズの少なくとも一部の各マイクロレンズに対して、前記各マイクロレンズを介して入射した光を光電変換するように構成された複数の光電変換部と、
     前記第1の方向を主走査方向、前記第2の方向を副走査方向として、前記複数の光電変換部から順次、信号を読み出す読み出し手段と、を有し、
     前記複数の光電変換部は、前記複数の光電変換部ごとに前記第1の方向および前記第2の方向の少なくともいずれかの方向に配置され、
     前記複数の光電変換部の間の前記第1の方向の電荷クロストーク率が、前記第2の方向の電荷クロストーク率よりも高いことを特徴とする撮像素子。
  2.  前記複数の光電変換部は、前記複数の光電変換部ごとに前記第1の方向または前記第2の方向に配置された2つの光電変換部であることを特徴とする請求項1に記載の撮像素子。
  3.  前記複数の光電変換部は、前記第1の方向及び前記第2の方向に配置された4つの光電変換部であることを特徴とする請求項1に記載の撮像素子。
  4.  前記第1の方向に配置された前記複数の光電変換部の間を分離する分離領域の不純物濃度を、前記第2の方向に配置された前記複数の光電変換部の間を分離する分離領域の不純物濃度よりも低くしたことを特徴とする請求項1乃至3のいずれか1項に記載の撮像素子。
  5.  前記第1の方向に配置された前記複数の光電変換部の間を分離する分離領域の幅を、前記第2の方向に配置された前記複数の光電変換部の間を分離する分離領域の幅よりも短くしたことを特徴とする請求項1乃至4のいずれか1項に記載の撮像素子。
  6.  前記第1の方向に配置された前記複数の光電変換部において、光が入射する側から、光電変換して得られた電荷を蓄積する領域までの電位勾配を、前記第2の方向に配置された前記複数の光電変換部における電位勾配よりも緩やかにしたことを特徴とする請求項1乃至5のいずれか1項に記載の撮像素子。
  7.  前記複数の光電変換部の間を分離する分離領域の電位を制御する電極を更に有し、
     前記第1の方向に配置された前記複数の光電変換部の間を分離する分離領域の電位を、前記第2の方向に配置された前記複数の光電変換部の間を分離する分離領域の電位よりも低くしたことを特徴とする請求項1乃至6のいずれか1項に記載の撮像素子。
  8.  前記複数の光電変換部の間の前記第1の方向の電荷クロストーク率を10%前後、前記第2の方向の電荷クロストーク率を8%前後としたことを特徴とする請求項1乃至7のいずれか1項に記載の撮像素子。
  9.  前記複数の光電変換部により光電変換された電荷を信号に変換して出力する出力手段を更に有することを特徴とする請求項1乃至8のいずれか1項に記載の撮像素子。
  10.  請求項1乃至9のいずれか1項に記載の撮像素子と、
     前記撮像素子から出力された信号を処理する処理手段と
     を有することを特徴とする撮像装置。
  11.  前記処理手段は、前記信号に基づいて、像面位相差方式の焦点検出を行うことを特徴とする請求項10に記載の撮像装置。
PCT/JP2023/015006 2022-05-12 2023-04-13 撮像素子及び撮像装置 WO2023218853A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-078955 2022-05-12
JP2022078955A JP2023167634A (ja) 2022-05-12 2022-05-12 撮像素子及び撮像装置

Publications (1)

Publication Number Publication Date
WO2023218853A1 true WO2023218853A1 (ja) 2023-11-16

Family

ID=88730160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015006 WO2023218853A1 (ja) 2022-05-12 2023-04-13 撮像素子及び撮像装置

Country Status (2)

Country Link
JP (1) JP2023167634A (ja)
WO (1) WO2023218853A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193527A (ja) * 2007-02-06 2008-08-21 Nikon Corp 光電変換部の連結/分離構造、固体撮像素子及び撮像装置
JP2011221253A (ja) * 2010-04-08 2011-11-04 Sony Corp 撮像装置、固体撮像素子、撮像方法およびプログラム
JP2013258647A (ja) * 2012-06-14 2013-12-26 Canon Inc レンズ装置および撮像装置
JP2015148676A (ja) * 2014-02-05 2015-08-20 キヤノン株式会社 撮像装置及び撮像装置の制御方法
US20170104020A1 (en) * 2015-10-12 2017-04-13 Samsung Electronics Co., Ltd. Image sensors using different photoconversion region isolation structures for different types of pixel regions
WO2018078976A1 (ja) * 2016-10-28 2018-05-03 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法、及び電子機器
US20190131328A1 (en) * 2017-10-31 2019-05-02 Samsung Electronics Co., Ltd. Image Sensor
JP2020065026A (ja) * 2018-10-19 2020-04-23 キヤノン株式会社 光電変換装置
US20200243578A1 (en) * 2019-01-30 2020-07-30 Samsung Electronics Co., Ltd. Image sensor
US20220093665A1 (en) * 2020-09-18 2022-03-24 Samsung Electronics Co., Ltd. Image sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193527A (ja) * 2007-02-06 2008-08-21 Nikon Corp 光電変換部の連結/分離構造、固体撮像素子及び撮像装置
JP2011221253A (ja) * 2010-04-08 2011-11-04 Sony Corp 撮像装置、固体撮像素子、撮像方法およびプログラム
JP2013258647A (ja) * 2012-06-14 2013-12-26 Canon Inc レンズ装置および撮像装置
JP2015148676A (ja) * 2014-02-05 2015-08-20 キヤノン株式会社 撮像装置及び撮像装置の制御方法
US20170104020A1 (en) * 2015-10-12 2017-04-13 Samsung Electronics Co., Ltd. Image sensors using different photoconversion region isolation structures for different types of pixel regions
WO2018078976A1 (ja) * 2016-10-28 2018-05-03 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法、及び電子機器
US20190131328A1 (en) * 2017-10-31 2019-05-02 Samsung Electronics Co., Ltd. Image Sensor
JP2020065026A (ja) * 2018-10-19 2020-04-23 キヤノン株式会社 光電変換装置
US20200243578A1 (en) * 2019-01-30 2020-07-30 Samsung Electronics Co., Ltd. Image sensor
US20220093665A1 (en) * 2020-09-18 2022-03-24 Samsung Electronics Co., Ltd. Image sensor

Also Published As

Publication number Publication date
JP2023167634A (ja) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6965950B2 (ja) 撮像素子
JP5422889B2 (ja) 固体撮像素子及びこれを用いた撮像装置
US8159580B2 (en) Solid-state imaging device and imaging apparatus using the same
US8319874B2 (en) Connection/separation element in photoelectric converter portion, solid-state imaging device, and imaging apparatus
US20150358593A1 (en) Imaging apparatus and image sensor
JP5895355B2 (ja) 撮像装置
JP5566457B2 (ja) 固体撮像素子及びデジタルカメラ
JP5584679B2 (ja) 固体撮像素子および撮像装置
JPWO2013147199A1 (ja) 撮像素子、撮影方法、および撮像装置
JPWO2013108656A1 (ja) 固体撮像素子およびカメラシステム
JP2015207594A (ja) 固体撮像装置
JP2014107596A (ja) 撮像素子および撮像ユニット
JP5461343B2 (ja) 撮像素子及び撮像装置
JP2021141552A (ja) 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体
JP2015165280A (ja) 撮像装置およびその制御方法
JP2022189971A (ja) 撮像素子
WO2023218853A1 (ja) 撮像素子及び撮像装置
WO2023218760A1 (ja) 撮像素子及び撮像装置
JP2012165070A (ja) 固体撮像素子及びこれを用いた撮像装置
WO2023218852A1 (ja) 撮像素子及び撮像装置
US20230230990A1 (en) Image sensor and image capturing apparatus
JP7170100B2 (ja) 撮像素子及び撮像装置
JP5730419B2 (ja) 撮像装置
US20240171879A1 (en) Image sensor and image capturing apparatus
JP5961720B2 (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803335

Country of ref document: EP

Kind code of ref document: A1