WO2023216431A1 - 储能装置 - Google Patents

储能装置 Download PDF

Info

Publication number
WO2023216431A1
WO2023216431A1 PCT/CN2022/108957 CN2022108957W WO2023216431A1 WO 2023216431 A1 WO2023216431 A1 WO 2023216431A1 CN 2022108957 W CN2022108957 W CN 2022108957W WO 2023216431 A1 WO2023216431 A1 WO 2023216431A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
control
battery cluster
battery
control circuit
Prior art date
Application number
PCT/CN2022/108957
Other languages
English (en)
French (fr)
Inventor
陈新伟
李向涛
颜昱
但志敏
娄其栋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22926335.5A priority Critical patent/EP4304045A1/en
Priority to US18/384,605 priority patent/US20240072549A1/en
Publication of WO2023216431A1 publication Critical patent/WO2023216431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of energy storage technology, and in particular to an energy storage device.
  • this application provides an energy storage device that can avoid the problem of damaging the battery due to excessive voltage or current when applying high voltage to the battery cluster.
  • the energy storage device includes a control circuit, multiple parallel battery clusters, and a switch circuit corresponding to each battery cluster.
  • the switch circuit includes a parallel first switch and a protection circuit; the control circuit is connected to each battery cluster respectively.
  • the first switch is connected to each protection circuit; each battery cluster is connected to the corresponding first switch and protection circuit; the control circuit is used to control the protection circuit to be turned on and to control the first switch to turn off according to the upper high voltage signal.
  • the protection circuit regulates the high-voltage voltage or current on the battery cluster to avoid the problem of excessive voltage or current damaging the battery.
  • the protection circuit includes at least one resistor and a second switch; one end of the resistor is connected to the corresponding battery cluster, and the other end of the resistor is connected to the second switch; the second switch is connected to the control circuit; and the control circuit is used to The second switch is controlled to close according to the upper high voltage signal.
  • the embodiment of the present application adjusts the voltage or current of the high voltage on the battery cluster through the resistor in the protection circuit, which can avoid the problem of excessive voltage or current in the battery cluster that damages the battery during the process of applying high voltage.
  • control circuit is also used to control the first switch to close at a preset time after the second switch is closed, and then control the second switch to open.
  • the control circuit is also used to control the first switch to close at a preset time after the second switch is closed, and then control the second switch to open.
  • the battery cluster is precharged for a period of time, it is converted into a normal high-voltage state, which can take into account the efficiency of protecting the battery cluster and high-voltage supply.
  • the energy storage device further includes a third switch corresponding to each battery cluster; one end of each battery cluster is connected to the corresponding first switch, and the other end of each battery cluster is connected to the corresponding third switch; the third switch and the control Circuit connection; control circuit, also used to control the third switch to close according to the upper high voltage signal.
  • the battery cluster can be protected by connecting switches to both ends of the battery cluster and controlling the switch to close when high voltage is applied.
  • the energy storage device further includes parallel regulating devices and bypass switches corresponding to each battery cluster; the control circuit is connected to each regulating device and each bypass switch.
  • the embodiment of the present application uses a regulating device to prevent internal circulation from causing damage to the battery, and uses a bypass switch to reduce the loss caused by the regulating device.
  • the output end of the adjustment device is connected to the positive electrode of the battery cluster; or the output end of the adjustment device is connected to the negative electrode of the battery cluster; or the output end of the adjustment device is connected to any of the battery clusters. between two batteries.
  • the embodiment of the present application can flexibly set the position of the adjustment device, so that the adjustment device can achieve better adjustment effects.
  • the first input end of the adjustment device is connected to the positive electrode of the corresponding battery cluster, and the second input end of the adjustment device is connected to the negative electrode of the corresponding battery cluster.
  • the above connection method can ensure the normal operation of the regulating device.
  • both the first input terminal and the second input terminal of the regulating device are connected to the power source.
  • the above connection method can ensure the normal operation of the regulating device.
  • the conditioning device includes a DCDC converter.
  • a DCDC converter for voltage or current regulation can avoid damage to the battery caused by internal circulation.
  • the bypass switch is an H-bridge in a DCDC converter.
  • the control circuit includes a master controller and a plurality of slave controllers.
  • the master controller is respectively connected to a plurality of slave controllers; each slave controller is connected to a corresponding battery cluster, a first switch and a protection circuit.
  • the embodiment of this application uses a master controller and a slave controller for control, which can make the control more detailed and accurate.
  • the energy storage device further includes a collection circuit; the collection circuit includes at least one voltage sensor and/or at least one current sensor; the collection circuit is respectively connected to the control circuit and multiple battery clusters.
  • the embodiment of the present application collects cluster voltage and/or cluster current through the collection circuit, and the control circuit controls according to the collected cluster voltage and/or cluster current, which can more accurately control the regulating device to adjust the voltage and/or current. It is more conducive to preventing internal circulation from causing damage to the battery.
  • This application also provides a control method for an energy storage device, wherein the method is applied to the above energy storage device, and the method includes:
  • the control circuit controls the protection circuit to turn on and the first switch to turn off according to the upper high voltage signal.
  • control circuit controls the protection circuit to turn on according to the upper high voltage signal, including:
  • the control circuit controls the second switch to close according to the upper high voltage signal.
  • the embodiment of the present application adjusts the voltage or current of the high voltage on the battery cluster through the resistor in the protection circuit, which can avoid the problem of excessive voltage or current in the battery cluster that damages the battery during the process of applying high voltage.
  • the method further includes:
  • the control circuit controls the third switch to close based on the upper high voltage signal.
  • the battery cluster can be protected by connecting switches to both ends of the battery cluster and controlling the switch to close when high voltage is applied.
  • This application also provides a control device for an energy storage device, wherein the control device is applied to the above energy storage device, and the control device includes:
  • the first control unit is used to control the protection circuit to turn on and the first switch to turn off according to the upper high voltage signal.
  • the protection circuit regulates the voltage or current of the high voltage on the battery cluster to avoid the problem of damaging the battery due to excessive voltage or current.
  • the first control unit is used to control the second switch to close according to the upper high voltage signal.
  • the embodiment of the present application adjusts the voltage or current of the high voltage on the battery cluster through the resistor in the protection circuit, which can avoid the problem of excessive voltage or current in the battery cluster that damages the battery during the process of applying high voltage.
  • control device further includes:
  • the second control unit is used to control the third switch to close according to the upper high voltage signal.
  • the battery cluster can be protected by connecting switches to both ends of the battery cluster and controlling the switch to close when high voltage is applied.
  • Figure 1 is one of the structural schematic diagrams of an energy storage device according to some embodiments of the present application.
  • FIG. 2 is the second structural schematic diagram of an energy storage device according to some embodiments of the present application.
  • Figure 3 is the third structural schematic diagram of an energy storage device according to some embodiments of the present application.
  • Figure 4 is the fourth structural schematic diagram of an energy storage device according to some embodiments of the present application.
  • Figure 5 is one of the schematic diagrams of the connection positions of the adjusting devices in some embodiments of the present application.
  • Figure 6 is the second schematic diagram of the connection position of the adjusting device in some embodiments of the present application.
  • Figure 7 is the third schematic diagram of the connection position of the adjusting device in some embodiments of the present application.
  • Figure 8 is a schematic diagram of the input terminal connection method of the adjusting device in some embodiments of the present application.
  • Figure 9 is a fifth structural schematic diagram of an energy storage device according to some embodiments of the present application.
  • Control circuit 10 battery cluster 20, switch circuit 30, first switch K1, protection circuit 301; resistor R, second switch K2, third switch K3, regulating device 40, bypass switch K4; master controller 101, slave control Device 102.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the energy storage device includes a control circuit and multiple parallel-connected battery clusters, and the energy storage device is provided with a corresponding switch circuit for each battery cluster.
  • the switch circuit includes a parallel-connected first switch and a protection circuit.
  • the control circuit controls the protection circuit to turn on according to the high-voltage signal, and the first switch is turned off.
  • the protection circuit can adjust the voltage or current of the high-voltage battery cluster to avoid the problem of excessive voltage or current damaging the battery.
  • the batteries and energy storage devices disclosed in the embodiments of the present application can be, but are not limited to, used in electrical devices such as vehicles, ships, or aircrafts, nor are they limited to being used in charging equipment for various electrical devices.
  • FIG. 1 is a schematic structural diagram of an energy storage device provided by some embodiments of the present application.
  • the energy storage device includes a control circuit 10, a plurality of parallel battery clusters 20, and a switch circuit 30 corresponding to each battery cluster 20.
  • the switch circuit 30 includes a parallel first switch K1 and a protection circuit 301; the control circuit 10 is respectively connected to each first switch K1 and each protection circuit 301; each battery cluster 20 is connected to the corresponding first switch K1 and protection circuit 301; control The circuit 10 is used to control the protection circuit 301 to turn on and control the first switch K1 to turn off according to the upper high voltage signal.
  • the energy storage device includes a control circuit 10 and a plurality of parallel battery clusters 20, and each battery cluster 20 in the energy storage device is provided with a corresponding switch circuit 30.
  • Each switch circuit 30 includes a first switch K1 and a protection circuit 301 connected in parallel.
  • the control circuit 10 is connected to each first switch K1 and each protection circuit 301 , and each battery cluster 20 is also connected to the corresponding first switch K1 and protection circuit 301 .
  • the control circuit 10 controls each protection circuit 301 to be turned on according to the high voltage signal, and at the same time, controls each first switch K1 to be turned off. In this way, each battery cluster 20 is supplied with high voltage through the protection circuit 301 . Since the protection circuit 301 can adjust the voltage or current of the high voltage on the battery cluster 20 so that the battery cluster 20 enters a precharge state instead of directly supplying the high voltage, the problem of damaging the battery due to excessive voltage or current is avoided.
  • the energy storage device includes a control circuit, multiple parallel battery clusters, and a switch circuit corresponding to each battery cluster.
  • the switch circuit includes a parallel first switch and a protection circuit; the control circuit is connected to each first switch and each battery cluster respectively.
  • a protection circuit is connected; each battery cluster is connected to a corresponding first switch and protection circuit; the control circuit controls the protection circuit to turn on and the first switch to turn off according to the upper high voltage signal.
  • the protection circuit regulates the high-voltage voltage or current on the battery cluster to avoid the problem of battery damage caused by excessive voltage or current.
  • the protection circuit 301 includes at least one resistor R and a second switch K2; one end of the resistor R is connected to the corresponding battery cluster 20, and the other end of the resistor R is connected to the second switch K2;
  • the second switch K2 is connected to the control circuit 10; the control circuit 10 is used to control the second switch K2 to close according to the upper high voltage signal.
  • the protection circuit 301 may include at least one resistor R and a second switch K2, wherein the resistor R is connected between the battery cluster 20 and the second switch K2, and the second switch K2 is connected to the control circuit 10.
  • the control circuit 10 controls the second switch K2 to close according to the high-voltage signal. In this way, each battery cluster 20 receives high voltage through the second switch K2 and the resistor R.
  • the voltage or current of the battery cluster 20 can be adjusted by adjusting the number and resistance value of the resistors.
  • the embodiments of this application do not limit the number and resistance values of the resistors, and they can be set according to actual conditions.
  • the protection circuit includes at least one resistor and a second switch; one end of the resistor is connected to the corresponding battery cluster, and the other end of the resistor is connected to the second switch; the second switch is connected to the control circuit; the control circuit is configured to operate according to the The high-voltage signal controls the second switch to close.
  • the embodiment of the present application adjusts the voltage or current of the high voltage on the battery cluster through the resistor in the protection circuit, which can avoid the problem of excessive voltage or current in the battery cluster that damages the battery during the process of applying high voltage.
  • control circuit 10 is also used to control the first switch K1 to close at a preset time after the second switch K2 is closed, and then control the second switch K2 to open.
  • the battery cluster 20 After the control circuit 10 controls the second switch K2 to close, the battery cluster 20 enters the precharge state. After a period of time, that is, at a preset time after the second switch K2 is closed, the first switch K1 is controlled to close, and then the second switch K2 is controlled to open. In this way, the battery cluster 20 continues to supply high voltage through the first switch K1.
  • the control circuit 10 controls the first switch K1 to close, and then controls the second switch K2 to open.
  • the embodiment of the present application does not limit the preset time, and it can be set according to the time and efficiency of high voltage application.
  • control circuit is also used to control the preset time after the second switch is closed, control the first switch to close, and then control the second switch to open.
  • control circuit after precharging the battery cluster for a period of time, it is converted to a normal high-voltage state, which can take into account the efficiency of protecting the battery cluster and high-voltage supply.
  • the energy storage device also includes a third switch K3 corresponding to each battery cluster 20; one end of each battery cluster 20 is connected to the corresponding first switch K1, and the other end of each battery cluster 20 is connected to The corresponding third switch K3 is connected to the control circuit 10; the control circuit 10 is also used to control the closing of the third switch K3 according to the upper high voltage signal.
  • the energy storage device may also include a third switch K3 corresponding to each battery cluster 20, and the control circuit 10 is connected to each third switch K3. Furthermore, the first switch K1 is connected to one end of the battery cluster 20 , and the third switch K3 is connected to the other end of the battery cluster 20 . For example, the first switch K1 is connected to the positive terminal of the battery cluster 20, and the third switch K3 is connected to the negative terminal of the battery cluster 20; or, the first switch K1 is connected to the negative terminal of the battery cluster 20, and the third switch K3 is connected to the negative terminal of the battery cluster 20. The positive terminal of cluster 20.
  • the embodiments of this application do not limit the connection method.
  • the control circuit 10 may first control the third switch K3 to close according to the high voltage signal, and then control the second switch K2 to close and the first switch K1 to open. Then, at a preset time after the first switch K1 is closed, the control circuit 10 controls the first switch K1 to close and the second switch K2 to open. In this way, while the third switch K3 and the second switch K2 are closed, a high voltage can be applied to the battery cluster 20 through the third switch K3, the resistor R and the second switch K2. At this time, the battery cluster 20 is adjusted by the number and resistance of the resistor. Apply high-voltage voltage or current to avoid damage to the battery cluster 20 due to excessive voltage or current. While the third switch K3 and the first switch K1 are closed, high voltage is applied to the battery cluster 20 through the third switch K3 and the first switch K1. Compared with precharging, the speed and efficiency of high voltage application can be improved at this time.
  • the first switch K1, the second switch K2, and the third switch K3 may be implemented using relays or transistors, which are not limited in the embodiments of the present application.
  • the energy storage device further includes a third switch corresponding to each battery cluster; one end of each battery cluster is connected to the corresponding first switch, and the other end of each battery cluster is connected to the corresponding third switch; the third switch and the control circuit Connection; control circuit, also used to control the third switch to close according to the upper high voltage signal.
  • the battery cluster can be protected by connecting switches to both ends of the battery cluster and controlling the switch to close when high voltage is applied.
  • the energy storage device also includes a parallel regulating device 40 and a bypass switch K4 corresponding to each battery cluster 20; the control circuit 10 is connected with each regulating device 40 and each bypass switch K4. connect.
  • each battery cluster 20 has a corresponding regulating device 40 , that is, the battery cluster 20 and the regulating device 40 are connected in a one-to-one correspondence, and the control circuit 10 is connected to each regulating device 40 . It should be noted that the connection between the control circuit and the regulating device is not marked in Figure 4.
  • the control circuit 10 After determining that there are voltage differences between the plurality of battery clusters 20 , the control circuit 10 determines the target battery cluster 20 to be adjusted based on the voltage difference, and determines the adjustment information of the adjustment device 40 corresponding to the target battery cluster 20 . Then, the control circuit 10 sends the adjustment information to the adjustment device 40 corresponding to the target battery cluster 20. After receiving the adjustment information, the adjustment device 40 adjusts the voltage or current of the target battery cluster 20 according to the adjustment information, thereby reducing the distance between the target battery cluster 20 and other devices. The voltage difference between the battery clusters 20 prevents internal circulation from damaging the batteries.
  • the adjustment device 40 adjusts the voltage or current of the target battery cluster 20 according to the adjustment information, so that the voltage of the target battery cluster 20 that is not suitable for discharging is lower than the voltage of other battery clusters 20 , to prevent the target battery cluster 20 from being discharged, and to make the target battery cluster 20 that is not suitable for charging have a lower voltage.
  • the voltage of the target battery cluster 20 is higher than the voltage of other battery clusters 20 to prevent the target battery cluster 20 from being charged. In this way, battery damage can also be avoided.
  • Providing the regulating device 40 in the energy storage device can prevent voltage differences between multiple battery clusters 20 from causing damage to the batteries.
  • the regulating device 40 also increases losses. Therefore, in the energy storage device, a bypass switch K4 is connected in parallel to each regulating device 40, and the control circuit 10 is connected to each bypass switch K4. It should be noted that the connection between the control circuit and the bypass switch is not marked in Figure 4 .
  • the bypass switch K4 connected in parallel with the regulating device 40 is controlled to be turned off; when it is determined that the regulating device 40 is not used for voltage or current regulation, the bypass switch K4 connected in parallel with the regulating device 40 is controlled.
  • the circuit switch K4 is closed, so that the regulating device 40 is in a bypass state.
  • the energy storage device also includes parallel regulating devices and bypass switches corresponding to each battery cluster; the control circuit is connected to each regulating device and each bypass switch.
  • the embodiment of the present application uses a regulating device to prevent internal circulation from causing damage to the battery, and uses a bypass switch to reduce the loss caused by the regulating device.
  • the output end of the adjustment device 40 is connected to the positive electrode of the battery cluster 20 ; or, the output end of the adjustment device 40 is connected to the negative electrode of the battery cluster 20 ; or, the adjustment device 40 is connected to the negative electrode of the battery cluster 20 .
  • the output terminal is connected between any two batteries in the battery cluster 20 .
  • the output end of the regulating device 40 is connected to the positive electrode of the battery cluster 20 ;
  • the output end of the regulating device 40 is connected to the negative pole of the battery cluster 20 ;
  • the output end of the regulating device 40 is connected to the battery cluster 20 20 right between the two batteries.
  • the output end of the regulating device 40 can be connected at any position in the battery cluster 20, which is not limited in the embodiment of the present application. It should be noted that the connections between the control circuit, the regulating device and the bypass switch are not marked in Figures 5 to 7.
  • the output end of the adjustment device is connected to the positive electrode of the battery cluster; or the output end of the adjustment device is connected to the negative electrode of the battery cluster; or the output end of the adjustment device is connected to any two of the battery clusters. between batteries.
  • the embodiment of the present application can flexibly set the position of the adjustment device, so that the adjustment device can achieve better adjustment effects.
  • the first input end of the adjustment device 40 is connected to the positive electrode of the corresponding battery cluster 20
  • the second input end of the adjustment device 40 is connected to the negative electrode of the corresponding battery cluster 20 .
  • the input end of the adjustment device 40 can be connected in parallel with the corresponding battery cluster 20 , that is, the first input end of the adjustment device 40 is connected to the positive electrode of the corresponding battery cluster 20 , and the second input end of the adjustment device 40 is connected to the negative electrode of the battery cluster 20 .
  • both the first input terminal and the second input terminal of the regulating device 40 are connected to the power source.
  • the input end of the adjustment device 40 can also be connected to a power source, that is, both the first input end and the second input end of the adjustment device 40 are connected to the power source.
  • the power source includes at least one of a preset battery, a supercapacitor, and a DC bus.
  • the adjustment device 40 is powered by a preset power source, or is powered by a corresponding battery cluster 20 .
  • the first input terminal of the regulating device is connected to the positive electrode of the corresponding battery cluster, and the second input terminal of the regulating device is connected to the negative pole of the corresponding battery cluster, or the first input terminal and the second input terminal of the regulating device are connected to each other.
  • the terminals are all connected to the power source. The above connection method can ensure the normal operation of the regulating device.
  • the regulating device 40 includes a DCDC converter.
  • a DCDC converter can convert a DC voltage into another DC voltage. After the control circuit 10 sends the adjustment information to the DCDC converter, the DCDC converter outputs a corresponding voltage according to the adjustment information, so that the voltage or current of the battery cluster 20 can be adjusted.
  • the bypass switch K4 is an H-bridge in the DCDC converter.
  • the DCDC converter is equipped with a circuit with an H-bridge structure, and the H-bridge can be used as a switch of the DCDC converter. When the upper and lower arms of the H-bridge are short-circuited at the same time, the DCDC converter can be converted into a bypass state.
  • the regulating device includes a DCDC converter.
  • Using the DCDC converter for voltage or current regulation can avoid damage to the battery caused by internal circulating current.
  • the control circuit 10 includes a main controller 101 and multiple slave controllers 102.
  • the main controller 101 is connected to a plurality of slave controllers 102 respectively; each slave controller 102 is connected to a corresponding The battery cluster 20, the first switch K1 and the protection circuit 301 are connected.
  • the control circuit 10 may include a master controller 101 and multiple slave controllers 102.
  • the master controller 101 is connected to the multiple slave controllers 102 respectively.
  • Each slave controller 102 corresponds to a battery cluster 20 and is connected to the battery cluster 20 , the first switch K1 and the protection circuit 301 corresponding to the battery cluster 20 .
  • each slave controller 102 is connected to the second switch K2 in the corresponding protection circuit 301 .
  • each slave controller 102 is also connected to the corresponding third switch K3, the regulating device 40 and the bypass switch K4.
  • the master controller 101 After acquiring the high-voltage signal, the master controller 101 sends a control signal to the slave controller 102.
  • the slave controller controls the corresponding first switch K1, second switch K2, third switch K3, regulating device 40 and bypass according to the control signal.
  • Switch K4 switches the corresponding first switch K1, second switch K2, third switch K3, regulating device 40 and bypass according to the control signal.
  • the above-mentioned master controller 101 may include an MBMU (Master Battery Management System), and the above-mentioned slave controller 102 may include an SBMU (Slave Battery Management System).
  • MBMU Master Battery Management System
  • SBMU Small Battery Management System
  • control circuit includes a master controller and multiple slave controllers.
  • the master controller is connected to multiple slave controllers respectively; each slave controller is connected to the corresponding battery cluster, the first switch and the protection circuit.
  • the embodiment of this application uses a master controller and a slave controller for control, which can make the control more detailed and accurate.
  • the energy storage device further includes a collection circuit; the collection circuit includes at least one voltage sensor and/or at least one current sensor; the collection circuit is connected to the control circuit 10 and the plurality of battery clusters 20 respectively.
  • the energy storage device also includes a collection circuit, which is composed of at least one voltage sensor and/or at least one current sensor.
  • the voltage sensors are connected to the control circuit 10 and the plurality of battery clusters 20 respectively, and can collect the cluster voltage of each battery cluster 20 and feed the cluster voltage back to the control circuit 10 .
  • the current sensors are connected to the control circuit 10 and the plurality of battery clusters 20 respectively, and can collect the cluster current of each battery cluster 20 and feed back the cluster current to the control circuit 10 .
  • the control circuit 10 may control the first switch K1, the second switch K2, the third switch K3, the regulating device 40 and the bypass switch K4 according to the cluster voltage and/or the cluster current.
  • the energy storage device further includes a collection circuit; the collection circuit includes at least one voltage sensor and/or at least one current sensor; the collection circuit is respectively connected to the control circuit and multiple battery clusters.
  • the embodiment of the present application collects cluster voltage and/or cluster current through the collection circuit, and the control circuit controls according to the collected cluster voltage and/or cluster current, which can more accurately control the regulating device to adjust the voltage and/or current. It is more conducive to preventing internal circulation from causing damage to the battery.
  • a method for controlling an energy storage device is also provided.
  • the method is applied to the energy storage device provided in the above embodiments of the present application.
  • the method includes:
  • the control circuit controls the protection circuit to turn on and the first switch to turn off according to the upper high voltage signal.
  • control circuit controls the protection circuit to conduct according to the upper high voltage signal, including:
  • the control circuit controls the second switch to close according to the upper high voltage signal.
  • the method further includes:
  • the control circuit controls the third switch to close based on the upper high voltage signal.
  • a control device for an energy storage device is also provided, wherein the control device is applied to the energy storage device provided in the above embodiments of this application, and the control device includes:
  • the first control unit is used to control the protection circuit to turn on and the first switch to turn off according to the upper high voltage signal.
  • the first control unit is used to control the second switch to close according to the upper high voltage signal.
  • control device further includes:
  • the second control unit is used to control the third switch to close according to the upper high voltage signal.
  • control device of the energy storage device please refer to the relevant content in the above-mentioned embodiments of the energy storage device in this application, and will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请涉及一种储能装置。所述储能装置包括控制电路、多个并联的电池簇、各所述电池簇对应的开关电路,所述开关电路包括并联的第一开关和保护电路;所述控制电路分别与每个所述第一开关和每个所述保护电路连接;各所述电池簇与对应的所述第一开关和所述保护电路连接;所述控制电路,用于根据上高压信号控制所述保护电路导通,以及控制所述第一开关断开。本申请实施例的储能装置,能够在对电池簇上高压时,避免电压或电流过大而损伤电池的问题。

Description

储能装置
本申请引用于2022年05月09日递交的名称为“储能装置”的第202221088144.3号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及储能技术领域,特别是涉及一种储能装置。
背景技术
随着新能源技术的飞速发展,储能装置成为了新能源领域中比较重要的研究方向之一。
目前,单电池已不能满足充电需求,因此,出现了包含多个电池的储能装置。其中,多个电池先串联组成电池簇,多个电池簇再并联构成储能装置中的储能部分。在对电池簇上高压时,会出现电压或电流过大而损伤电池的现象。
发明内容
基于上述问题,本申请提供一种储能装置,能够在对电池簇上高压时,避免电压或电流过大而损伤电池的问题。
本申请提供了一种储能装置,储能装置包括控制电路、多个并联的电池簇、各电池簇对应的开关电路,开关电路包括并联的第一开关和保护电路;控制电路分别与每个第一开关和每个保护电路连接;各电池簇与对应的第一开关和保护电路连接;控制电路,用于根据上高压信号控制保护电路导通,以及控制第一开关断开。
本申请实施例的技术方案中,通过保护电路调节电池簇上高压的电 压或电流,可以避免出现电压或电流过大而损伤电池的问题。
在一些实施例中,保护电路包括至少一个电阻和第二开关;电阻的一端与对应的电池簇连接,电阻的另一端与第二开关连接;第二开关与控制电路连接;控制电路,用于根据上高压信号控制第二开关闭合。本申请实施例通过保护电路中的电阻调节电池簇上高压的电压或电流,可以避免上高压过程中电池簇中出现电压或电流过大而损伤电池的问题。
在一些实施例中,控制电路,还用于控制第二开关闭合后的预设时刻,控制第一开关闭合,再控制第二开关断开。本申请实施例在对电池簇预充一段时间后,转换为正常上高压状态,可以兼顾保护电池簇和上高压的效率。
在一些实施例中,储能装置还包括各电池簇对应的第三开关;各电池簇的一端连接对应的第一开关,各电池簇的另一端连接对应的第三开关;第三开关与控制电路连接;控制电路,还用于根据上高压信号控制第三开关闭合。本申请实施例通过在电池簇两端均连接开关,在上高压时再控制开关闭合,可以保护电池簇。
在一些实施例中,储能装置还包括各电池簇对应的并联的调节器件和旁路开关;控制电路与每个调节器件和每个旁路开关连接。本申请实施例采用调节器件避免内部环流对电池造成损伤,采用旁路开关减少调节器件带来的损耗。
在一些实施例中,对于各电池簇,调节器件的输出端与电池簇的正极连接;或者,调节器件的输出端与电池簇的负极连接;或者,调节器件的输出端连接在电池簇中任意两个电池之间。本申请实施例可以灵活设置调节 器件的位置,从而使调节器件可以达到更好的调节效果。
在一些实施例中,调节器件的第一输入端与对应的电池簇的正极连接,调节器件的第二输入端与对应的电池簇的负极连接。上述连接方式可以保证调节器件正常工作。
在一些实施例中,调节器件的第一输入端和第二输入端均与功率源连接。上述连接方式可以保证调节器件正常工作。
在一些实施例中,调节器件包括DCDC变换器。采用DCDC变换器进行电压或电流调节,可以避免内部环流对电池造成损伤。
在一些实施例中,旁路开关为DCDC变换器中的H桥。
在一些实施例中,控制电路包括主控制器和多个从控制器,主控制器分别与多个从控制器连接;每个从控制器与对应的电池簇、第一开关和保护电路连接。本申请实施例采用主控制器和从控制器进行控制,可以使控制更细致准确。
在一些实施例中,储能装置还包括采集电路;采集电路包括至少一个电压传感器和/或至少一个电流传感器;采集电路分别与控制电路和多个电池簇连接。本申请实施例通过采集电路进行簇电压和/或簇电流的采集,控制电路根据采集到的簇电压和/或簇电流进行控制,可以更加准确的控制调节器件进行电压和/或电流的调节,更利于避免内部环流对电池造成损伤。
本申请还提供了一种储能装置的控制方法,其中,方法应用于上述储能装置,方法包括:
控制电路根据上高压信号控制保护电路导通,以及控制第一开关断开。本申请实施例的技术方案中,通过控制保护电路调节电池簇上高压的电 压或电流,可以避免出现电压或电流过大而损伤电池的问题。
在一些实施例中,控制电路根据上高压信号控制保护电路导通,包括:
控制电路根据上高压信号控制第二开关闭合。本申请实施例通过保护电路中的电阻调节电池簇上高压的电压或电流,可以避免上高压过程中电池簇中出现电压或电流过大而损伤电池的问题。
在一些实施例中,方法还包括:
控制电路根据上高压信号控制第三开关闭合。本申请实施例通过在电池簇两端均连接开关,在上高压时再控制开关闭合,可以保护电池簇。
本申请还提供了一种储能装置的控制装置,其中,控制装置应用于上述储能装置,控制装置包括:
第一控制单元,用于根据上高压信号控制保护电路导通,以及控制第一开关断开。本申请实施例的技术方案中,通过保护电路调节电池簇上高压的电压或电流,可以避免出现电压或电流过大而损伤电池的问题。
在一些实施例中,第一控制单元用于根据上高压信号控制第二开关闭合。本申请实施例通过保护电路中的电阻调节电池簇上高压的电压或电流,可以避免上高压过程中电池簇中出现电压或电流过大而损伤电池的问题。
在一些实施例中,控制装置还包括:
第二控制单元,用于根据上高压信号控制第三开关闭合。本申请实施例通过在电池簇两端均连接开关,在上高压时再控制开关闭合,可以保护电池簇。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请 的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的储能装置的结构示意图之一;
图2是本申请一些实施例的储能装置的结构示意图之二;
图3是本申请一些实施例的储能装置的结构示意图之三;
图4是本申请一些实施例的储能装置的结构示意图之四;
图5是本申请一些实施例调节器件的连接位置示意图之一;
图6是本申请一些实施例调节器件的连接位置示意图之二;
图7是本申请一些实施例调节器件的连接位置示意图之三;
图8是本申请一些实施例调节器件的输入端连接方式示意图;
图9是本申请一些实施例的储能装置的结构示意图之五。
具体实施方式中的附图标号如下:
控制电路10,电池簇20,开关电路30,第一开关K1,保护电路301;电阻R,第二开关K2,第三开关K3,调节器件40,旁路开关K4;主控制器101,从控制器102。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下 实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上 (包括两片)。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,单电池已不能满足充电需求,因此,出现了包含多个电池的储能装置。其中,多个电池先串联组成电池簇,多个电池簇再并联构成储能装置中的储能部分。申请人发现,在对电池簇上高压时,会出现电压或电流过大而损伤电池的现象。
为了避免出现上述现象,申请人研究发现,在上高压时对电池簇进行预充,即控制电池簇的电压或电流,即可避免损伤电池。具体地,储能装置包括控制电路和多个并联的电池簇,并且,储能装置为各电池簇设置对应的开关电路,开关电路包括并联的第一开关和保护电路。控制电路根据上高压信号控制保护电路导通,第一开关断开,保护电路可以调节电池簇上高压的电压或电流,从而避免出现电压或电流过大而损伤电池的问题。
本申请实施例公开的电池和储能装置可以但不限用于车辆、船舶或飞行器等用电装置中,也不限于用于各种用电装置的充电设备中。
请参照图1,图1为本申请一些实施例提供的储能装置的结构示意图,储能装置包括控制电路10、多个并联的电池簇20、各电池簇20对应的开关电路30,开关电路30包括并联的第一开关K1和保护电路301;控制电 路10分别与每个第一开关K1和每个保护电路301连接;各电池簇20与对应的第一开关K1和保护电路301连接;控制电路10,用于根据上高压信号控制保护电路301导通,以及控制第一开关K1断开。
储能装置包括控制电路10和多个并联的电池簇20,并且,储能装置中各电池簇20设置有对应的开关电路30。每个开关电路30均包括并联的第一开关K1和保护电路301。控制电路10与每个第一开关K1和每个保护电路301连接,各电池簇20也与对应的第一开关K1和保护电路301连接。
在上高压时,控制电路10根据上高压信号控制每个保护电路301导通,同时,控制每个第一开关K1关断。这样,各电池簇20是通过保护电路301上高压的。由于保护电路301可以调节电池簇20上高压的电压或电流,使电池簇20进入预充状态,而不是直接上高压,因此避免出现电压或电流过大而损伤电池的问题。
上述实施例中,储能装置包括控制电路、多个并联的电池簇、各电池簇对应的开关电路,开关电路包括并联的第一开关和保护电路;控制电路分别与每个第一开关和每个保护电路连接;各电池簇与对应的第一开关和保护电路连接;控制电路根据上高压信号控制保护电路导通,以及控制第一开关断开。本申请实施例通过保护电路调节电池簇上高压的电压或电流,可以避免出现电压或电流过大而损伤电池的问题。
根据本申请的一些实施例,参照图2,保护电路301包括至少一个电阻R和第二开关K2;电阻R的一端与对应的电池簇20连接,电阻R的另一端与第二开关K2连接;第二开关K2与控制电路10连接;控制电路10,用于根据上高压信号控制第二开关K2闭合。
保护电路301可以包括至少一个电阻R和第二开关K2,其中,电阻R连接在电池簇20和第二开关K2之间,第二开关K2与控制电路10连接。控制电路10根据上高压信号控制第二开关K2闭合,这样,各电池簇20通过第二开关K2和电阻R上高压。
在实际应用中,可以通过调节电阻的数量和阻值大小来调节电池簇20的电压或电流。本申请实施例对电阻的数量和阻值大小不做限定,可以根据实际情况进行设置。
上述实施例中,保护电路包括至少一个电阻和第二开关;电阻的一端与对应的电池簇连接,电阻的另一端与第二开关连接;第二开关与控制电路连接;控制电路,用于根据上高压信号控制第二开关闭合。本申请实施例通过保护电路中的电阻调节电池簇上高压的电压或电流,可以避免上高压过程中电池簇中出现电压或电流过大而损伤电池的问题。
根据本申请的一些实施例,控制电路10,还用于控制第二开关K2闭合后的预设时刻,控制第一开关K1闭合,再控制第二开关K2断开。
控制电路10在控制第二开关K2闭合后,电池簇20进入预充状态。经过一段时间,即在第二开关K2闭合后的预设时刻,控制第一开关K1闭合,再控制第二开关K2断开。这样,电池簇20通过第一开关K1继续上高压。
例如,第二开关K2闭合后的第5秒,控制电路10控制第一开关K1闭合,在控制第二开关K2断开。本申请实施例对预设时刻不做限定,可以根据上高压的时间和效率进行设置。
上述实施例中,控制电路还用于控制第二开关闭合后的预设时刻,控制第一开关闭合,再控制第二开关断开。本申请实施例在对电池簇预充一 段时间后,转换为正常上高压状态,可以兼顾保护电池簇和上高压的效率。
根据本申请的一些实施例,参照图3,储能装置还包括各电池簇20对应的第三开关K3;各电池簇20的一端连接对应的第一开关K1,各电池簇20的另一端连接对应的第三开关K3;第三开关K3与控制电路10连接;控制电路10,还用于根据上高压信号控制第三开关K3闭合。
储能装置还可以包括每个电池簇20对应的第三开关K3,控制电路10与每个第三开关K3连接。并且,第一开关K1连接在电池簇20的一端,第三开关K3连接在电池簇20的另一端。例如,第一开关K1连接在电池簇20的正极端,第三开关K3连接在电池簇20的负极端;或者,第一开关K1连接在电池簇20的负极端,第三开关K3连接在电池簇20的正极端。本申请实施例对连接方式不做限定。
在上高压时,控制电路10可以先根据上高压信号控制第三开关K3闭合,再控制第二开关K2闭合、第一开关K1断开。然后,在第一开关K1闭合后的预设时刻,控制电路10再控制第一开关K1闭合、第二开关K2断开。这样,在第三开关K3和第二开关K2闭合期间,可以通过第三开关K3、电阻R和第二开关K2对电池簇20上高压,此时通过电阻的数量和阻值大小调节电池簇20上高压的电压或电流,避免电压或电流过大对电池簇20造成损伤。而在第三开关K3和第一开关K1闭合期间,通过第三开关K3和第一开关K1对电池簇20上高压,与预充相比,此时可以提高上高压的速度和效率。
根据本申请的一些实施例,第一开关K1、第二开关K2和第三开关K3可以采用继电器实现,也可以采用晶体管等实现,本申请实施例对此 不做限定。
上述实施例中,储能装置还包括各电池簇对应的第三开关;各电池簇的一端连接对应的第一开关,各电池簇的另一端连接对应的第三开关;第三开关与控制电路连接;控制电路,还用于根据上高压信号控制第三开关闭合。本申请实施例通过在电池簇两端均连接开关,在上高压时再控制开关闭合,可以保护电池簇。
根据本申请的一些实施例,参照图4,储能装置还包括各电池簇20对应的并联的调节器件40和旁路开关K4;控制电路10与每个调节器件40和每个旁路开关K4连接。
储能装置中多个电池簇20之间可能出现电压差异,而电压差异会导致内部环流,进而对电池造成损坏。为了避免内部环流对电池造成损坏,在储能装置中设置调节器件40。在一实施例中,每个电池簇20具有对应的调节器件40,即电池簇20与调节器件40一一对应连接,并且,控制电路10与每个调节器件40连接。需要说明的是,图4中未标出控制电路与调节器件之间的连接。
控制电路10在确定多个电池簇20之间存在电压差异后,根据电压差异确定待调节的目标电池簇20,并确定目标电池簇20对应的调节器件40的调节信息。然后,控制电路10将调节信息发送到目标电池簇20对应的调节器件40,调节器件40接收到调节信息后,根据调节信息调节目标电池簇20的电压或者电流,从而缩小目标电池簇20与其他电池簇20之间的电压差异,避免内部环流出现损伤电池。或者,调节器件40根据调节信息调节目标电池簇20的电压或者电流,使不适适合放电的目标电池簇20的电压低于其 他电池簇20的电压,避免目标电池簇20放电,使不适合充电的目标电池簇20的电压高于其他电池簇20的电压,避免目标电池簇20充电,这样,也可以避免损伤电池。
在储能装置中设置调节器件40,可以避免多个电池簇20之间出现电压差异对电池造成损伤。但是,调节器件40也增加了损耗,因此,在储能装置中,对每个调节器件40并联一个旁路开关K4,控制电路10与每个旁路开关K4连接。需要说明的是,图4中未标出控制电路与旁路开关之间的连接。
在确定采用调节器件40进行电压或电流调节时,则控制与调节器件40并联的旁路开关K4断开;在确定不采用调节器件40进行电压或电流调节,则控制与调节器件40并联的旁路开关K4闭合,使调节器件40处于旁路状态。
上述实施例中,储能装置还包括各电池簇对应的并联的调节器件和旁路开关;控制电路与每个调节器件和每个旁路开关连接。本申请实施例采用调节器件避免内部环流对电池造成损伤,采用旁路开关减少调节器件带来的损耗。
根据本申请的一些实施例,对于各电池簇20,调节器件40的输出端与电池簇20的正极连接;或者,调节器件40的输出端与电池簇20的负极连接;或者,调节器件40的输出端连接在电池簇20中任意两个电池之间。
参照图5,调节器件40的输出端与电池簇20的正极连接;参照图6,调节器件40的输出端与电池簇20的负极连接;参照图7,调节器件40的输出端连接在电池簇20正中间的两个电池之间。调节器件40的输出端可 以连接在电池簇20中的任意位置,本申请实施例对此不做限定。需要说明的是,图5至图7中未标出控制电路与调节器件和旁路开关之间的连接。
上述实施例中,对于各电池簇,调节器件的输出端与电池簇的正极连接;或者,调节器件的输出端与电池簇的负极连接;或者,调节器件的输出端连接在电池簇中任意两个电池之间。本申请实施例可以灵活设置调节器件的位置,从而使调节器件可以达到更好的调节效果。
根据本申请的一些实施例,参照图5至图7,调节器件40的第一输入端与对应的电池簇20的正极连接,调节器件40的第二输入端与对应的电池簇20的负极连接。
调节器件40的输入端可以与对应的电池簇20并联,即调节器件40的第一输入端与对应的电池簇20的正极连接,调节器件40的第二输入端与电池簇20的负极连接。
根据本申请的一些实施例,参照图8,调节器件40的第一输入端和第二输入端均与功率源连接。
调节器件40的输入端也可以连接功率源,即调节器件40的第一输入端和第二输入端均与功率源连接。其中,功率源包括预设电池、超级电容、直流母线中的至少一种。
根据本申请的一些实施例,调节器件40采用预设电源供电,或者采用对应的电池簇20供电。
上述实施例中,调节器件的第一输入端与对应的电池簇的正极连接,调节器件的第二输入端与对应的电池簇的负极连接,或者,调节器件的第一输入端和第二输入端均与功率源连接,上述连接方式可以保证调节器件 正常工作。
根据本申请的一些实施例,调节器件40包括DCDC变换器。
DCDC变换器可以将一直流电压转换为另一直流电压。控制电路10将调节信息发送到DCDC变换器后,DCDC变换器根据调节信息输出相应的电压,即可对电池簇20的电压或电流进行调节。
根据本申请的一些实施例,旁路开关K4为DCDC变换器中的H桥。
DCDC变换器内设置有H桥结构的电路,可以将H桥作为DCDC变换器的开关。在设置H桥的上下臂同时短路时,即可将DCDC变换器转换为旁路状态。
上述实施例中,调节器件包括DCDC变换器,采用DCDC变换器进行电压或电流调节,可以避免内部环流对电池造成损伤。
根据本申请的一些实施例,参照图9,控制电路10包括主控制器101和多个从控制器102,主控制器101分别与多个从控制器102连接;每个从控制器102与对应的电池簇20、第一开关K1和保护电路301连接。
在实际应用中,控制电路10可以包括主控制器101和多个从控制器102,主控制器101分别与多个从控制器102连接。每个从控制器102对应一个电池簇20,并与该电池簇20、该电池簇20对应的第一开关K1和保护电路301连接。具体地,每个从控制器102与对应的保护电路301中的第二开关K2连接。并且,每个从控制器102,还与对应的第三开关K3、调节器件40和旁路开关K4连接。
主控制器101获取到上高压信号后,向从控制器102发送控制信号, 从控制器根据控制信号控制对应的第一开关K1、第二开关K2、第三开关K3、调节器件40和旁路开关K4。
上述主控制器101可以包括MBMU(主电池管理***),上述从控制器102包括SBMU(从电池管理***)。本申请实施例对主控制器和从控制器不做限定,可以根据实际情况进行设置。
上述实施例中,控制电路包括主控制器和多个从控制器,主控制器分别与多个从控制器连接;每个从控制器与对应的电池簇、第一开关和保护电路连接。本申请实施例采用主控制器和从控制器进行控制,可以使控制更细致准确。
根据本申请的一些实施例,储能装置还包括采集电路;采集电路包括至少一个电压传感器和/或至少一个电流传感器;采集电路分别与控制电路10和多个电池簇20连接。
储能装置还包括采集电路,采集电路由至少一个电压传感器和/或至少一个电流传感器构成。电压传感器分别与控制电路10和多个电池簇20连接,可以采集各电池簇20的簇电压,并将簇电压反馈到控制电路10。电流传感器分别与控制电路10和多个电池簇20连接,可以采集各电池簇20的簇电流,并将簇电流反馈到控制电路10。控制电路10可以根据簇电压和/或簇电流控制第一开关K1、第二开关K2、第三开关K3、调节器件40和旁路开关K4。
上述实施例中,储能装置还包括采集电路;采集电路包括至少一个电压传感器和/或至少一个电流传感器;采集电路分别与控制电路和多个电池簇连接。本申请实施例通过采集电路进行簇电压和/或簇电流的采集,控制电 路根据采集到的簇电压和/或簇电流进行控制,可以更加准确的控制调节器件进行电压和/或电流的调节,更利于避免内部环流对电池造成损伤。
本申请一些实施例中,还提供了一种储能装置的控制方法,其中,方法应用于本申请上述实施例提供的储能装置,方法包括:
控制电路根据上高压信号控制保护电路导通,以及控制第一开关断开。
根据本申请的一些实施例,控制电路根据上高压信号控制保护电路导通,包括:
控制电路根据上高压信号控制第二开关闭合。
根据本申请的一些实施例,方法还包括:
控制电路根据上高压信号控制第三开关闭合。
关于储能装置的控制方法的具体限定可以参见本申请上述储能装置实施例中的相关内容,在此不再赘述。
本申请一些实施例中,还提供了一种储能装置的控制装置,其中,控制装置应用于本申请上述实施例提供的储能装置,控制装置包括:
第一控制单元,用于根据上高压信号控制保护电路导通,以及控制第一开关断开。
根据本申请的一些实施例,第一控制单元用于根据上高压信号控制第二开关闭合。
根据本申请的一些实施例,控制装置还包括:
第二控制单元,用于根据上高压信号控制第三开关闭合。
关于储能装置的控制装置的具体限定可以参见本申请上述储能装 置实施例中的相关内容,在此不再赘述。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,便于具体和详细地理解本申请的技术方案,但并不能因此而理解为对实用新型专利保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。应当理解,本领域技术人员在本申请提供的技术方案的基础上,通过合乎逻辑的分析、推理或者有限的试验得到的技术方案,均在本申请所述附权利要求的保护范围内。因此,本申请专利的保护范围应以所附权利要求的内容为准,说明书及附图可以用于解释权利要求的内容。

Claims (17)

  1. 一种储能装置,其中,所述储能装置包括控制电路、多个并联的电池簇、各所述电池簇对应的开关电路,所述开关电路包括并联的第一开关和保护电路;
    所述控制电路分别与每个所述第一开关和每个所述保护电路连接;各所述电池簇与对应的所述第一开关和所述保护电路连接;
    所述控制电路,用于根据上高压信号控制所述保护电路导通,以及控制所述第一开关断开。
  2. 根据权利要求1所述的装置,其中,所述保护电路包括至少一个电阻和第二开关;所述电阻的一端与对应的电池簇连接,所述电阻的另一端与所述第二开关连接;所述第二开关与所述控制电路连接;
    所述控制电路,用于根据所述上高压信号控制所述第二开关闭合。
  3. 根据权利要求1或2所述的装置,其中,所述储能装置还包括各所述电池簇对应的第三开关;各所述电池簇的一端连接对应的所述第一开关,各所述电池簇的另一端连接对应的所述第三开关;所述第三开关与所述控制电路连接;
    所述控制电路,还用于根据所述上高压信号控制所述第三开关闭合。
  4. 根据权利要求1或2所述的装置,其中,所述储能装置还包括各所述电池簇对应的并联的调节器件和旁路开关;所述控制电路与每个所述调节器件和每个所述旁路开关连接。
  5. 根据权利要求4所述的装置,其中,对于各所述电池簇,所述调节器件的输出端与所述电池簇的正极连接;或者,所述调节器件的输出端与所述 电池簇的负极连接;或者,所述调节器件的输出端连接在所述电池簇中任意两个电池之间。
  6. 根据权利要求4所述的装置,其中,所述调节器件的第一输入端与对应的电池簇的正极连接,所述调节器件的第二输入端与对应的电池簇的负极连接。
  7. 根据权利要求4所述的装置,其中,所述调节器件的第一输入端和第二输入端均与功率源连接。
  8. 根据权利要求4所述的装置,其中,所述调节器件包括DCDC变换器。
  9. 根据权利要求8所述的装置,其中,所述旁路开关为所述DCDC变换器中的H桥。
  10. 根据权利要求1所述的装置,其中,所述控制电路包括主控制器和多个从控制器,所述主控制器分别与多个所述从控制器连接;
    每个所述从控制器与对应的所述电池簇、所述第一开关和所述保护电路连接。
  11. 根据权利要求1所述的装置,其中,所述储能装置还包括采集电路;所述采集电路包括至少一个电压传感器和/或至少一个电流传感器;所述采集电路分别与所述控制电路和多个所述电池簇连接。
  12. 一种储能装置的控制方法,其中,所述方法应用于如权利要求1-11中任一项所述的储能装置,所述方法包括:
    所述控制电路根据上高压信号控制所述保护电路导通,以及控制所述第一开关断开。
  13. 根据权利要求12所述的方法,其中,所述控制电路根据上高压信号控制所述保护电路导通,包括:
    所述控制电路根据所述上高压信号控制第二开关闭合。
  14. 根据权利要求12或13所述的方法,其中,所述方法还包括:
    所述控制电路根据所述上高压信号控制第三开关闭合。
  15. 一种储能装置的控制装置,其中,所述控制装置应用于如权利要求1-11中任一项所述的储能装置,所述控制装置包括:
    第一控制单元,用于根据上高压信号控制所述保护电路导通,以及控制所述第一开关断开。
  16. 根据权利要求15所述的控制装置,其中,所述第一控制单元用于根据所述上高压信号控制第二开关闭合。
  17. 根据权利要求15或16所述的控制装置,其中,所述控制装置还包括:
    第二控制单元,用于根据所述上高压信号控制第三开关闭合。
PCT/CN2022/108957 2022-05-09 2022-07-29 储能装置 WO2023216431A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22926335.5A EP4304045A1 (en) 2022-05-09 2022-07-29 Energy storage apparatus
US18/384,605 US20240072549A1 (en) 2022-05-09 2023-10-27 Energy storage apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221088144.3 2022-05-09
CN202221088144.3U CN217335167U (zh) 2022-05-09 2022-05-09 储能装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/384,605 Continuation US20240072549A1 (en) 2022-05-09 2023-10-27 Energy storage apparatus

Publications (1)

Publication Number Publication Date
WO2023216431A1 true WO2023216431A1 (zh) 2023-11-16

Family

ID=82951168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108957 WO2023216431A1 (zh) 2022-05-09 2022-07-29 储能装置

Country Status (4)

Country Link
US (1) US20240072549A1 (zh)
EP (1) EP4304045A1 (zh)
CN (1) CN217335167U (zh)
WO (1) WO2023216431A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118235306A (zh) * 2022-10-20 2024-06-21 宁德时代新能源科技股份有限公司 储能***和储能***的控制方法
CN116031986B (zh) * 2023-03-27 2023-07-18 深圳市安仕新能源科技有限公司 电池管理***及电池管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336783A (zh) * 2018-02-05 2018-07-27 北京海博思创科技有限公司 储能***及电池簇间电压差的控制方法
CN112865262A (zh) * 2021-03-12 2021-05-28 傲普(上海)新能源有限公司 一种调频储能***电池的维护保养方法
EP3863141A1 (en) * 2020-02-06 2021-08-11 Samsung SDI Co., Ltd. Battery system
CN113949111A (zh) * 2020-07-15 2022-01-18 华为数字能源技术有限公司 储能***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336783A (zh) * 2018-02-05 2018-07-27 北京海博思创科技有限公司 储能***及电池簇间电压差的控制方法
EP3863141A1 (en) * 2020-02-06 2021-08-11 Samsung SDI Co., Ltd. Battery system
CN113949111A (zh) * 2020-07-15 2022-01-18 华为数字能源技术有限公司 储能***
CN112865262A (zh) * 2021-03-12 2021-05-28 傲普(上海)新能源有限公司 一种调频储能***电池的维护保养方法

Also Published As

Publication number Publication date
CN217335167U (zh) 2022-08-30
US20240072549A1 (en) 2024-02-29
EP4304045A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2023216431A1 (zh) 储能装置
CN105703447A (zh) 充电电池组的直接平衡充电装置及方法
WO2021104190A1 (zh) 多个电池的并联充放电管理***
WO2022002121A1 (zh) 充放电***
CN102664433A (zh) 基于双向dc/dc的电池均衡***
JP2014504140A (ja) 充電式バッテリシステム及びその作動方法
CN101976876A (zh) 实现在充电过程中对电池均衡的装置及方法
CN101917034A (zh) 一种基于继电器切换的锂电池组无损均衡装置
WO2023040448A1 (zh) 一种储能***、不间断电源及电池均衡的方法
CN105958570A (zh) 一种锂电池电压均衡电路拓扑
WO2021012219A1 (zh) 充放电电路、车载充放电***及充电、放电方法
CN107681733A (zh) 电池均衡模块及分布式电池储能均衡装置
WO2019042440A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
CN112636415B (zh) 一种单充电装置多电池组并联充电控制方法
TW201318310A (zh) 電池充電系統、電池管理裝置及充電之方法
CN102376979B (zh) 充放电自动均衡的锂离子动力电池串联电池组
CN110492555A (zh) 一种大容量电池的均衡***及其控制方法
WO2022166491A1 (zh) 高压充电***和高压充电***的充电方法
CN105871019A (zh) 被动均衡控制方法
WO2022092612A1 (ko) 충전 관리 장치, 충전 관리 방법, 및 전기 차량
CN112636417B (zh) 一种蓄电池组并联充电均流电路结构
CN109193863A (zh) 电池组电压均衡控制方法及电路
WO2023213120A1 (zh) 一种充电控制方法、控制装置、充电桩和充电***
WO2019042353A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
KR20190073925A (ko) 프리차지 장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022926335

Country of ref document: EP

Effective date: 20230824