WO2023213893A1 - Procédé de production du trifluoroéthylène - Google Patents

Procédé de production du trifluoroéthylène Download PDF

Info

Publication number
WO2023213893A1
WO2023213893A1 PCT/EP2023/061695 EP2023061695W WO2023213893A1 WO 2023213893 A1 WO2023213893 A1 WO 2023213893A1 EP 2023061695 W EP2023061695 W EP 2023061695W WO 2023213893 A1 WO2023213893 A1 WO 2023213893A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
temperature
less
ppm
total weight
Prior art date
Application number
PCT/EP2023/061695
Other languages
English (en)
Inventor
Cédric LAVY
Kevin HISLER
Alexandre CAMBRODON
Thierry Lannuzel
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2023213893A1 publication Critical patent/WO2023213893A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Definitions

  • the present invention relates to a process for producing hydrofluoroolefins.
  • the present invention relates to a process for producing trifluoroethylene (HFO-1123 or VF 3 ) by hydrogenolysis of chlorotrifluoroethylene.
  • the present invention also relates to a composition comprising chlorotrifluoroethylene.
  • Fluorinated olefins such as VF 3
  • VF 3 Fluorinated olefins
  • Trifluoroethylene is a gas under normal conditions of pressure and temperature.
  • the main risks associated with the use of this product concern its flammability, its propensity for self-polymerization when not stabilized, its explosiveness due to its chemical instability and its supposed sensitivity to peroxidation, by analogy with other halogenated olefins.
  • Trifluoroethylene has the particularity of being extremely flammable, with a lower explosion limit (LEL) of approximately 10% and an upper explosion limit (UEL) of approximately 30%.
  • LEL lower explosion limit
  • UEL upper explosion limit
  • a known route for preparing trifluoroethylene uses chlorotrifluoroethylene (CTFE) and hydrogen as starting products in the presence of a catalyst and in the gas phase.
  • CFE chlorotrifluoroethylene
  • the present invention provides a process for producing trifluoroethylene in a reactor provided with a fixed catalytic bed comprising a catalyst, said process comprising a step a) of reacting a composition A comprising chlorotrifluoroethylene with hydrogen in the presence of a catalyst and in the gas phase to produce a stream B comprising trifluoroethylene, characterized in that said composition A also comprises at least one of the additional compounds Cl chosen from the group consisting of 1,1,1- trifluoroethane, 1,1,1,2-tetrafluoroethane, hexafluorocyclobutene, fluoroethane, 2-chloro-l,l,l-trifluoroethane, 1,2-dichloro-hexafluorocyclobutane.
  • the total mass content of said at least one of the additional compounds Cl is less than 15% based on the total weight of said composition A, preferably less than 10% based on the total weight of said composition A, in particular less than 5% based on the total weight of said composition A.
  • said composition A comprises at least 80% by weight of chlorotrifluoroethylene based on the total weight of said composition A, preferably at least 95% by weight of chlorotrifluoroethylene based on the total weight of said composition A, in in particular at least 90% by weight of chlorotrifluoroethylene based on the total weight of said composition A.
  • said composition A also comprises trifluoroethylene, preferably in a mass content of less than 5% based on the total weight of said composition A.
  • said composition A also comprises at least one of the additional compounds C2 selected from the group consisting of 1,1,2-trifluoroethane, l-chloro-l,l,2-trifluoroethane, l-chloro -2,2-difluoroethylene, E/Z-l-chloro-1,2-difluoroethylene, l-chloro-l,2,2-trifluoroethane.
  • the mass content of said at least one of the additional compounds C2 is less than 5% based on the total weight of said composition A.
  • the catalyst comprises palladium supported on alpha alumina.
  • the chlorotrifluoroethylene and the hydrogen are in anhydrous form.
  • said method comprises a step i') of activating the catalyst, implemented prior to step a), by bringing it into contact with a gas flow comprising a reducing agent, a inert gas or a mixture thereof.
  • the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 greater than Tl with a temperature gradient less than 0.5°C/min; or the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 greater than Tl in steps.
  • the present invention provides a composition
  • a composition comprising at least 80% by weight of chlorotrifluoroethylene and at least one of the additional compounds chosen from the group consisting of 1,1,1-trifluoroethane, 1,1,1,2 -tetrafluoroethane, hexafluorocyclobutene, fluoroethane, 2-chloro-1,1,1-trifluoroethane, 1,2-dichloro-hexafluorocyclobutane; the total mass content of said at least one of the additional compounds is less than 15% based on the total weight of said composition.
  • the present invention relates to a process for producing trifluoroethylene comprising a hydrogenolysis reaction step of chlorotrifluoroethylene (CTFE) with hydrogen in the gas phase and preferably in the presence of a catalyst.
  • CTFE chlorotrifluoroethylene
  • the process according to the invention described in the present application is carried out continuously.
  • the hydrogen is in anhydrous form.
  • the chlorotrifluoroethylene is in anhydrous form.
  • anhydrous refers to a mass water content of less than 1000 ppm, advantageously 500 ppm, preferably less than 200 ppm, in particular less than 100 ppm based on the total weight of the compound considered.
  • the catalyst is based on a metal from columns 8 to 10 of the periodic table of elements.
  • the catalyst is based on a metal selected from the group consisting of Pd, Pt, Rh, and Ru; preferably palladium.
  • the catalyst is supported.
  • the support is preferably selected from the group consisting of activated carbon, an aluminum-based support, calcium carbonate, and graphite.
  • the support is based on aluminum.
  • the support is alumina.
  • the alumina may be alpha alumina.
  • the alumina comprises at least 90% alpha alumina. It was observed that the conversion of the hydrogenolysis reaction was enhanced when the alumina is alpha alumina.
  • the catalyst is more particularly palladium supported on alumina, advantageously palladium supported on an alumina comprising at least 90% alpha alumina, preferably palladium supported on alpha alumina.
  • palladium represents from 0.01% to 5% by weight based on the total weight of the catalyst, preferably from 0.1% to 2% by weight based on the total weight of the catalyst.
  • said catalyst comprises from 0.01% to 5% by weight of palladium supported on alumina, preferably the alumina comprises at least 90% alpha alumina, more preferably the alumina is alpha alumina.
  • Catalyst activation Said catalyst is preferably activated before its use in step a).
  • the activation of the catalyst is carried out at high temperature and in the presence of a reducing agent, an inert gas or a mixture thereof.
  • the reducing agent is chosen from the group consisting of hydrogen, carbon monoxide, nitrogen monoxide, formaldehyde, Ci-Cg alkanes and Ci-Cio hydrohalocarbons, or a mixture of these; preferably hydrogen or a Ci-Cio hydrohalocarbon, or a mixture thereof; in particular hydrogen, chlorotrifluoroethylene, trifluoroethylene, chlorotrifluoroethane, trifluoroethane or difluoroethane or a mixture thereof.
  • the inert gas can be nitrogen or argon; preferably nitrogen.
  • the activation of the catalyst is carried out at a temperature between 100°C and 400°C, in particular at a temperature between 150°C and 350°C.
  • the activation of the catalyst is carried out at a temperature between 100°C and 400°C, in particular at a temperature between 150°C and 350°C, in the presence of hydrogen as reducing agent.
  • the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2.
  • the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 greater than Tl with a temperature gradient less than 0.5°C/min.
  • the temperature gradient implemented makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction.
  • the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30° C/min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less at 0.05°C/min.
  • the temperature Tl represents the initial temperature of the activation step. This temperature Tl can be the ambient temperature.
  • the temperature Tl can be between 0°C and 150°C, advantageously between 0°C and 120°C, preferably between 0°C and 100°C, more preferably between 10°C and 100°C, in particularly between 20°C and 100°C, more particularly between 20°C and 75°C, preferably between 20°C and 50°C.
  • the temperature T2 represents the temperature to be reached during the activation phase.
  • the temperature T2 is advantageously between 150°C and 400°C, preferably between 155°C and 375°C, more preferably between 160°C and 350°C, in particular between 165°C and 325°C, more particularly between 170°C and 320°C, preferably between 175°C and 310°C, preferably most preferred between 180°C and 300°C.
  • the temperature T2 is advantageously between 185°C and 290°C, preferably between 190°C and 280°C, more preferably between 195°C and 270°C, in particular between 200°C and 260°C.
  • the temperature T2 can be maintained from 5 min to 200 h, preferably from 10 min to 100 h, in particular from 15 min to 75 h, more particularly from 30 min to 50 h, preferably from 1 h to 25 h.
  • the temperature T2 can be maintained from 5 min to 24 h, preferably from 10 min to 8 p.m., in particular from 15 min to 3 p.m., more particularly from 30 min to 1 Oh, preferably from 1 h to 1 Oh.
  • step i') can be carried out with a quantity of reducing agent greater than 0.01 mol per gram of catalyst, preferably greater than 0.05 per gram of catalyst.
  • step i') can be carried out with a quantity of reducing agent of between 0.01 and 10 mol per gram of catalyst, preferably between 0.05 and 5 mol per gram of catalyst.
  • the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 in steps.
  • Activating the catalyst in stages makes the catalyst more efficient.
  • the implementation of bearings makes it possible to avoid degradation of the catalyst.
  • the properties of the catalyst were further improved if the rise in temperature between the levels is progressive and relatively slow compared to the usual conditions for activating a catalyst.
  • the temperature is increased with a temperature gradient of less than 0.5°C/min. The temperature gradient implemented between two levels makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction.
  • the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30°C /min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less than 0.05°C/min.
  • the temperature Tl represents the initial temperature of the activation step. This temperature Tl can be the ambient temperature.
  • the temperature Tl can be between 0°C and 150°C, advantageously between 0°C and 120°C, preferably between 0°C and 100°C, more preferably between 10°C and 100°C, in particularly between 20°C and 100°C, more particularly between 20°C and 75°C, preferably between 20°C and 50°C.
  • the temperature T2 represents the temperature to be reached when the activation phase.
  • the temperature T2 is advantageously between 150°C and 400°C, preferably between 155°C and 375°C, more preferably between 160°C and 350°C, in particular between 165°C and 325°C, more particularly between 170°C and 320°C, preferably between 175°C and 310°C, more preferably between 180°C and 300°C.
  • the temperature T2 is advantageously between 185°C and 290°C, preferably between 190°C and 280°C, more preferably between 195°C and 270°C, in particular between 200°C and 260°C.
  • the temperature T2 can be maintained from 5 min to 200 h, preferably from 10 min to 100 h, in particular from 15 min to 75 h, more particularly from 30 min to 50 h, preferably from 1 h to 25 h.
  • the temperature T2 can be maintained from 5 min to 24 h, preferably from 10 min to 8 p.m., in particular from 15 min to 3 p.m., more particularly from 30 min to 1 Oh, preferably from 1 h to 1 Oh.
  • Step i') of activating the catalyst contains at least one stage between temperature Tl and temperature T2.
  • Step i') of activating the catalyst may include several stages between temperature Tl and temperature T2.
  • step i') comprises at least one stage at a temperature Tla of between 90 and 120°C.
  • Step i') may also include one or more stages between temperature Tl and Tla and/or between temperature Tla and T2.
  • each stage between temperature Tl and temperature T2 can last between 5 min and 200 h, preferably between 10 min and 100 h, in particular between 15 min and 75 h, more particularly between 30 min and 50 h.
  • each level between temperature Tl and temperature T2 can last between 5 min and 24 hours, preferably between 10 min and 20 hours, in particular between 15 min and 15 hours, more particularly between 30 min and 1 Oh.
  • the plateau at temperature Tla can last between 5 min and 200 h, preferably between 10 min and 100 h, in particular between 15 min and 75 h, more particularly between 30 min and 50 h.
  • the plateau at temperature Tla can last between 5 min and 24 hours, preferably between 10 min and 20 hours, in particular between 15 min and 15 hours, more particularly between 30 min and 1 Oh.
  • the gas flow used during step i') may be different over time.
  • the gas flow may comprise an inert gas between two bearings and for example comprise a reducing agent between two other bearings.
  • the gas flow comprises an inert gas when step i') is carried out between the temperature Tl and Tla and the gas flow comprises a reducing agent, preferably hydrogen or Ci-Cio hydrohalocarbons such as defined above, when step i') is carried out between temperature Tla and T2.
  • the gas flow used during step i') is modified during the stage implemented at the temperature Tla.
  • the gas flow may comprise a reducing agent such as hydrogen or Ci-Cio hydrohalocarbons as defined above throughout step i'), optionally in mixture with an inert gas such as l 'nitrogen.
  • a reducing agent such as hydrogen or Ci-Cio hydrohalocarbons as defined above, optionally in mixture with an inert gas such as nitrogen, during the rise in temperature between the temperature Tla of said bearing and the temperature T2 represents an additional advantage in terms of productivity.
  • the temperature T2 is maintained for a certain period of time. During this level at temperature T2, the gas flow can be modified.
  • the gas flow during the stage at temperature T2 may comprise hydrogen or a Ci-Cio hydrohalocarbon as defined above; in particular the gas flow during the stage at temperature T2 may comprise hydrogen, chlorotrifluoroethylene, trifluoroethane, trifluoroethylene, chlorotrifluoroethane or difluoroethane.
  • step i') can be carried out with a quantity of reducing agent greater than 0.01 per gram of catalyst, preferably greater than 0.05 per gram of catalyst.
  • step i') can be carried out with a quantity of reducing agent of between 0.01 and 10 mol per gram of catalyst, preferably between 0.05 and 5 mol per gram of catalyst.
  • the step of activating the catalyst i') comprises bringing said catalyst into contact with a gas flow which comprises chlorotrifluoroethylene, and optionally hydrogen.
  • a gas flow which comprises chlorotrifluoroethylene, and optionally hydrogen.
  • chlorotrifluoroethylene CFE
  • Activation in the presence of CTFE makes it possible to activate the catalyst at a lower temperature and therefore provides a process that consumes less energy.
  • the process is further simplified since the reducing agent during activation is also one of the reactants for the subsequent reaction.
  • step i') is carried out at a temperature T2' lower than 100°C.
  • This temperature T2' can be reached from a temperature Tl' using a low temperature gradient.
  • the temperature of the catalytic bed is increased from a temperature Tl' to a temperature T2' greater than Tl', preferably the temperature of the catalytic bed is increased from a temperature Tl' to a temperature T2' greater than Tl' with a temperature gradient less than 0.5°C/min.
  • the temperature gradient implemented makes it possible to avoid premature degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction.
  • the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30°C /min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less than 0.05°C/min.
  • the temperature of the catalytic bed is increased by increasing the contact time calculated as the ratio between the volume, in liters, of catalyst and the total flow rate of said gas flow, in normal liters per second, at the inlet. of the reactor.
  • the contact time is between 1 and 60 seconds, preferably between 5 and 45 seconds, in particular between 10 and 30 seconds, more particularly between 15 and 25 seconds.
  • the temperature Tl' can be between 0°C and 50°C, advantageously between 10°C and 50°C, preferably between 20°C and 50°C.
  • the temperature T2' is lower than the temperature T3 for carrying out step a).
  • the temperature T3 is preferably between 100°C and 180°C, more preferably between 100°C and 160°C, in particular between 120°C and 160°C.
  • Said catalyst used in the present process can be regenerated.
  • This regeneration step can be carried out in a temperature range of the catalytic bed between 90°C and 450°C.
  • the regeneration step is carried out in the presence of hydrogen.
  • the implementation of the regeneration step makes it possible to improve the yield of the reaction compared to the initial yield before regeneration.
  • the regeneration step can be carried out at a catalytic bed temperature of 90°C to 300°C, preferably at a catalytic bed temperature of 90°C to 250°C, more preferably from 90°C to 200°C, in particular from 90°C to 175°C, more particularly at a temperature of the catalytic bed of 90°C to 150°C.
  • carrying out the regeneration step at a low temperature for example from 90°C to 200°C or from 90°C to 175°C or from 90°C to 150°C, allows the desorption of compounds harmful to the activity of the catalyst and/or to limit phase transitions modifying the structure of the catalyst.
  • the regeneration step can be carried out at a temperature of the catalytic bed greater than 200°C, advantageously greater than 230°C, preferably greater than 250°C, in particular greater than 300°C. °C.
  • the regeneration step can be implemented periodically depending on the productivity or the conversion obtained in step a).
  • the regeneration step can be advantageously implemented at a temperature of the catalytic bed between 200°C and 300°C, preferably between 205°C and 295°C, more preferably between 210°C and 290°C, in particular between 215°C and 290°C, more particularly between 220°C and 285°C, preferably between 225°C and 280°C, more preferably between 230°C and 280°C.
  • the regeneration step can be carried out at a temperature between 300°C and 450°C, preferably between 300°C and 400°C.
  • the regenerated catalyst can be reused in step a) of the present process.
  • the present invention comprises, as mentioned above, a reaction step of hydrogenolysis of a composition A comprising chlorotrifluoroethylene with hydrogen to produce a stream comprising trifluoroethylene.
  • the hydrogenolysis step is carried out in the presence of a catalyst and in the gas phase.
  • the hydrogenolysis step is carried out in the presence of a catalyst previously activated and in the gas phase.
  • the hydrogenolysis step consists of simultaneously introducing hydrogen, CTFE and optionally an inert gas, such as nitrogen, in the gas phase and in the presence of said catalyst, preferably activated.
  • said step a) is carried out at a fixed catalytic bed temperature of between 50°C and 250°C.
  • Said step a) can be carried out at a temperature of the fixed catalytic bed of between 50°C and 240°C, advantageously between 50°C and 230°C, preferably between 50°C and 220°C, more preferably between 50°C and 210°C, in particular between 50°C and 200°C.
  • Said step a) can also be carried out at a temperature of the fixed catalytic bed of between 60°C and 250°C, advantageously between 70°C and 250°C, preferably between 80°C and 250°C, more preferably between 90°C and 250°C, in particular between 100°C and 250°C, more particularly between 120°C and 250°C.
  • Said step a) can also be carried out at a temperature of the fixed catalytic bed of between 60°C and 240°C, advantageously between 70°C and 230°C, preferably between 80°C and 220°C, more preferably between 90°C and 210°C, in particular between 100°C and 200°C, more particularly between 100°C and 180°C, preferably between 100°C and 160°C, particularly preferably between 120°C C and 160°C.
  • the H 2 /CTFE molar ratio is between 0.5/1 to 2/1 and preferably between 1/1 to 1.2/1. If an inert gas such as nitrogen is present in step a), the nitrogen/H 2 molar ratio is between 0/1 to 2/1 and preferably between 0/1 to 1/1.
  • Step a) is preferably carried out at a pressure of 0.05 MPa to 1.1 MPa, more preferably from 0.05 MPa to 0.5 MPa, in particular at atmospheric pressure.
  • the contact time calculated as the ratio between the volume, in liters, of catalyst and the total flow rate of the gas mixture, in normal liters per second, at the reactor inlet, is between 1 and 60 seconds, preferably between 5 and 45 seconds, particularly between 10 and 30 seconds, more particularly between 15 and 25 seconds.
  • said composition A also comprises at least one of the additional compounds Cl chosen from the group consisting of 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, hexafluorocyclobutene, fluoroethane, 2-chloro -l,l,l-trifluoroethane, 1,2-dichlorohexafluorocyclobutane.
  • Said composition A may comprise one or more of the additional Cl compounds.
  • Said composition A may comprise one, two, three, four, five or all of the additional Cl compounds.
  • the total mass content of said at least one of the additional compounds Cl is less than 15% based on the total weight of said composition A.
  • the total mass content of said at least one of the additional compounds Cl is less than 10%, more preferably less than 5%, in particular less than 2%, more particularly less than 1%.
  • the total mass content of said at least one of the additional compounds Cl is greater than 1 ppm based on the total weight of said composition A.
  • the total mass content of said at least one of the additional compounds Cl is greater than 5 ppm, more preferably greater than 10 ppm, in particular greater than 20 ppm, more particularly greater than 50 ppm, preferably greater than 100 ppm based on the total weight of said composition A.
  • composition A comprises 1,1,1-trifluoroethane and the total mass content of 1,1,1-trifluoroethane is less than 5000 ppm, advantageously less than 2500 ppm, preferably less than 1000 ppm , more preferably less than 750 ppm based on the total weight of said composition A.
  • the total mass content of 1,1,1-trifluoroethane is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 ppm, in particular greater than 50 ppm, more particularly greater than 100 ppm based on the total weight of said composition A.
  • composition A comprises 1,1,1,2-tetrafluoroethane and the total mass content of 1,1,1,2-tetrafluoroethane is less than 1000 ppm, advantageously less than 750 ppm, preferably less than 500 ppm, more preferably less than 250 ppm, in particular less than 100 ppm based on the total weight of said composition A.
  • the total mass content of 1,1,1,2- tetrafluoroethane is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 ppm based on the total weight of said composition A.
  • composition A comprises hexafluorocyclobutene and the total mass content of hexafluorocyclobutene is less than 1%, advantageously less than 7500 ppm, preferably less than 5000 ppm, more preferably less than 2500 ppm, in particular less than 1000 ppm based on the total weight of said composition A.
  • the total mass content of hexafluorocyclobutene is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 pm, in particular greater than 50 ppm, more particularly greater than 100 ppm based on the total weight of said composition A.
  • composition A comprises fluoroethane and the total mass content of fluoroethane is less than 100 ppm, advantageously less than 75 ppm, preferably less than 50 ppm, more preferably less than 25 ppm, in particular less than 10 ppm based on the total weight of said composition A.
  • the total mass content of fluoroethane is greater than 0.1 ppm, advantageously greater than 0.5 ppm, preferably greater than 1 ppm on based on the total weight of said composition A.
  • composition A comprises 2-chloro-l,l,l-trifluoroethane and the total mass content of 2-chloro-l,l,l-trifluoroethane is less than 1%, advantageously less than 7500 ppm, preferably less than 5000 ppm, more preferably less than 2500 ppm, in particular less than 1000 ppm based on the total weight of said composition A.
  • composition A comprises 1,2-dichlorohexafluorocyclobutane.
  • 1,2-Dichlorohexafluorocyclobutane can exist as two diastereoisomers.
  • the term "1,2-dichlorohexafluorocyclobutane" refers to both diastereoisomers.
  • the total mass content of 1,2-dichlorohexafluorocyclobutane is less than 15%, advantageously less than 10%, preferably less than 5%, in particular less than 1% based on the total weight of said composition A.
  • the total mass content of 1,2-dichlorohexafluorocyclobutane is less than 5000 ppm, advantageously less than 1000 ppm, preferably less than 500 ppm, more preferably less than 250 ppm, in particular less than 100 ppm based on the total weight of said composition A.
  • the total mass content of 1,2-dichlorohexafluorocyclobutane is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 ppm based on the total weight of said composition A.
  • said composition A comprises at least 80% by weight of chlorotrifluoroethylene based on the total weight of said composition A, advantageously at least 82% by weight, preferably at least 84% by weight, more preferably at least 86% by weight, in particular at least 88% by weight, more particularly at least 90%, preferably at least 92% by weight of chlorotrifluoroethylene based on the total weight of said composition A.
  • Said composition A may also comprise trifluoroethylene, preferably in a mass content of less than 5%, preferably less than 4.5%, in particular less than 4% based on the total weight of said composition A.
  • Said composition A may optionally comprise at least one of the additional compounds C2 selected from the group consisting of 1,1,2-trifluoroethane, l-chloro-1,1,2-trifluoroethane, l-chloro-2,2-difluoroethylene , E/Z-1-chloro-1,2-difluoroethylene, 1-chloro-1,2,2-trifluoroethane.
  • the mass content of said at least one of the additional compounds C2 may be less than 5% based on the total weight of said composition A, advantageously less than 4%, preferably less than 3%, more preferably less than 2%, in particular less than 1% based on the total weight of said composition A.
  • Reaction flow processing Stream B from step a) can be treated to recover a stream of purified trifluoroethylene (HFO-1123).
  • Said current B may comprise, in addition to trifluoroethylene, HF, HCl, unreacted hydrogen, unreacted chlorotrifluoroethylene, optionally one or more of the additional compounds Cl or C2.
  • Said stream B can be treated according to the following steps: i) Elimination of HF and/or HCl from said product stream obtained in step a) to form a gas mixture; ii) Drying of the gas mixture resulting from step i); iii) Treatment of the dried gas mixture in step ii) to eliminate hydrogen and optionally inert gases; iv) Distillation of the mixture from step iii).
  • Stream B from step a) is recovered at the reactor outlet in gaseous form.
  • the product stream is first treated to eliminate HCl and HF.
  • the product stream is passed through water in a wash column followed by washing with a dilute base such as NaOH or KOH.
  • the remainder of the gas mixture consisting of the unconverted reagents (H2 and CTFE), the dilution nitrogen (if present), the trifluoroethylene and the additional compounds mentioned above is directed to a dryer in order to eliminate traces of washing water. Drying can be carried out using products such as calcium sodium or magnesium sulfate, calcium chloride, potassium carbonate, silica gel (silica gel) or zeolites.
  • a molecular sieve such as siliporite is used for drying.
  • the gas mixture thus dried is subjected to a step of separation of hydrogen and inerts from the rest of the other products present in the gas mixture by absorption/desorption in the presence of an alcohol comprising 1 to 4 carbon atoms and preferably ethanol, at atmospheric pressure and at a temperature below room temperature, preferably below 10°C and even more preferably at a temperature of -25°C, for absorption.
  • the absorption of organics is carried out in a counter-current column with ethanol cooled to -25°C. The ethanol flow rate is adjusted according to the flow rate of organics to be absorbed.
  • step iii) can be implemented by a membrane separation process. According to step iv), the organics thus obtained are distilled to form and recover a stream DI comprising trifluoroethylene and a stream D2 comprising chlorotrifluoroethylene and optionally one or more of the additional compounds Cl or C2. Current D2 can be recycled in step a).
  • step iv) of distillation is carried out at a pressure of less than 3 bara, preferably at a pressure of between 0.5 and 3 bara, in particular at a pressure of between 0.9 and 2 bars.
  • a pressure of less than 3 bara preferably at a pressure of between 0.5 and 3 bara, in particular at a pressure of between 0.9 and 2 bars.
  • Carrying out distillation at a pressure lower than 3 bara makes the process safer given the explosive nature of trifluoroethylene above 3 bara.
  • distillation step iv) is carried out in a distillation column comprising structured packing. It was observed that structured packing made it possible to obtain a more efficient distillation step.
  • Said structured filling can be made of a metallic material.
  • Said DI stream is preferably recovered at the top of the distillation column. Before being recovered, the DI stream can possibly be partially condensed at the top of the distillation column.
  • Said current DI may comprise at least 95% trifluoroethylene, advantageously at least 96%, preferably at least 97%, in particular at least 98%, more particularly at least 99% by weight based on the total weight of said current B.
  • the present invention provides compositions comprising chlorotrifluoroethylene.
  • Said composition comprises at least 80% by weight of chlorotrifluoroethylene and at least one of the additional compounds chosen from the group consisting of 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, hexafluorocyclobutene, fluoroethane, 2- chloro-1,1,l-trifluoroethane, 1,2-dichlorohexafluorocyclobutane; the total mass content of said at least one of the additional compounds is less than 15% based on the total weight of said composition.
  • the composition comprises 1,1,1-trifluoroethane and the total mass content of 1,1,1-trifluoroethane is less than 5000 ppm, advantageously less than 2500 ppm, preferably less than 1000 ppm, more preferably lower at 750 ppm based on the total weight of said composition.
  • the total mass content of 1,1,1-trifluoroethane is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 ppm, in particular greater at 50 ppm, more particularly greater than 100 ppm based on the total weight of said composition.
  • the composition comprises 1,1,1,2-tetrafluoroethane and the total mass content of 1,1,1,2-tetrafluoroethane is less than 1000 ppm, advantageously less than 750 ppm, preferably less at 500 ppm, more preferably less than 250 ppm, in particular less than 100 ppm based on the total weight of said composition.
  • the total mass content of 1,1,1,2-tetrafluoroethane is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 ppm on a basis of the total weight of said composition.
  • the composition comprises hexafluorocyclobutene and the total mass content of hexafluorocyclobutene is less than 1%, advantageously less than 7500 ppm, preferably less than 5000 ppm, more preferably less than 2500 ppm, in particular less than 1000 ppm based on the total weight of said composition.
  • the total mass content of hexafluorocyclobutene is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 pm, in particular greater than 50 ppm, more particularly greater than 100 ppm based on the total weight of said composition.
  • the composition comprises fluoroethane and the total mass content of fluoroethane is less than 100 ppm, advantageously less than 75 ppm, preferably less than 50 ppm, more preferably less than 25 ppm, in particular less than 10 ppm based on the total weight of said composition.
  • the total mass content of fluoroethane is greater than 0.1 ppm, advantageously greater than 0.5 ppm, preferably greater than 1 ppm based on the total weight of said composition.
  • the composition comprises 2-chloro-l,l,l-trifluoroethane and the total mass content of 2-chloro-l,l,l-trifluoroethane is less than 1%, advantageously less than 7500 ppm , preferably less than 5000 ppm, more preferably less than 2500 ppm, in particular less than 1000 ppm based on the total weight of said composition.
  • the mass content total 2-chloro-l,l,l-trifluoroethane is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 ppm, in particular greater than 50 ppm, more particularly greater than 100 ppm based on the total weight of said composition.
  • the composition comprises 1,2-dichloro-hexafluorocyclobutane and the total mass content of 1,2-dichlorohexafluorocyclobutane is less than 15%, advantageously less than 10%, preferably less than 5%, in particular less than 1% based on the total weight of said composition.
  • the total mass content of 1,2-dichlorohexafluorocyclobutane is less than 5000 ppm, advantageously less than 1000 ppm, preferably less than 500 ppm, more preferably less than 250 ppm, in particular less than 100 ppm on based on the total weight of said composition.
  • the total mass content of 1,2-dichlorohexafluorocyclobutane is greater than 1 ppm, advantageously greater than 5 ppm, preferably greater than 10 ppm, more preferably greater than 20 ppm based on the total weight of said composition.
  • test benches are used in parallel, each comprising a reactor prepared as described above.
  • the four benches were supplied with 1 mol/h of starting composition and 1 mol/h of hydrogen in anhydrous form.
  • the temperature of the reactor jacket is 25°C.
  • the contact time calculated as the ratio between the volume in liters of catalyst and the sum of the flow rates of the reagents in normal liters per second, was of the order of 22 seconds. Tests are carried out using different starting compositions. Comparative Example 1 was used using chlorotrifluoroethylene.
  • Example 2 according to the invention was implemented from chlorotrifluoroethylene used in the comparative example in which the following compounds were added to obtain a composition A with the proportions mentioned for each of the constituents: 1,1,1-trifluoroethane (519 ppm), 1,1, 1,2-tetrafluoroethane (39 ppm), hexafluorocyclobutene (880 ppm) , fluoroethane (5 ppm), 2-chloro-1,1,1-trifluoroethane (600 ppm), 1,2-dichlorohexafluorocyclobutane (68 ppm) and trifluoroethylene (2.9%) and the complement in chlorotrifluoroethylene.
  • 1,1,1-trifluoroethane 519 ppm
  • 1,1, 1,2-tetrafluoroethane 39 ppm
  • hexafluorocyclobutene 880 ppm
  • fluoroethane 5 ppm
  • Example 3 according to the invention was implemented from the chlorotrifluoroethylene used in the comparative example to which the following compounds were added to obtain a composition A with the proportions mentioned for each of the constituents: 1,1,1- trifluoroethane (453 ppm), 1,1,1,2-tetrafluoroethane (56 ppm), hexafluorocyclobutene (754 ppm), 2-chloro-l,l,l-trifluoroethane (455 ppm) and 1,2-dichlorohexafluorocyclobutane (54 ppm ) and the complement in chlorotrifluoroethylene.
  • Example 4 according to the invention was implemented from the chlorotrifluoroethylene used in the comparative example to which the following compounds were added to obtain a composition A with the proportions mentioned for each of the constituents: 1,1,1- trifluoroethane (450 ppm), 1,1,1,2-tetrafluoroethane (52 ppm) and 2-chloro-l,l,l-trifluoroethane (467 ppm) and the balance in chlorotrifluoroethylene.
  • 1,1,1- trifluoroethane 450 ppm
  • 1,1,1,2-tetrafluoroethane 52 ppm
  • 2-chloro-l,l,l-trifluoroethane 467 ppm
  • the productivity mentioned corresponds to the sum of the productivities obtained for all four hydrogenolysis benches.
  • the trifluoroethylene productivity is significantly improved starting from the composition according to the invention compared to a chlorotrifluoroethylene composition without the additional compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de production du trifluoroéthylène dans un réacteur muni d'un lit catalytique fixe comprenant un catalyseur, ledit procédé comprenant une étape a) de réaction d'une composition A comprenant du chlorotrifluoroéthylène avec de l'hydrogène en présence d'un catalyseur et en phase gazeuse pour produire un courant B comprenant du trifluoroéthylène, caractérisé en ce que ladite composition A comprend également au moins l'un des composés additionnels C1 choisi parmi le groupe consistant en 1,1,1-trifluoroéthane, 1,1,1,2-tétrafluoroéthane, hexafluorocyclobutène, fluoroéthane, 2-chloro-1,1,1- trifluoroéthane, 1,2-dichlorohexafluorocyclobutane. La présente invention concerne également une composition de chlorotrifluoroéthylène.

Description

Figure imgf000002_0001
du tri
Figure imgf000002_0002
Domaine technique de l'invention
La présente invention concerne un procédé de production d'hydrofluorooléfines. En particulier, la présente invention concerne un procédé de production du trifluoroéthylène (HFO-1123 ou VF3) par hydrogénolyse du chlorotrifluoroéthylène. La présente invention concerne également une composition comprenant du chlorotrifluoroéthylène.
Arrière-plan technologique de l'invention
Les oléfines fluorées, comme le VF3, sont connues et sont utilisées comme monomères ou comonomères pour la fabrication de polymères fluorocarbonés présentant des caractéristiques remarquables, en particulier une excellente tenue chimique et une bonne résistance thermique. Le trifluoroéthylène est un gaz dans les conditions normales de pression et de température. Les principaux risques liés à l'utilisation de ce produit concernent son inflammabilité, sa propension à l'auto-polymérisation lorsqu'il n'est pas stabilisé, son explosivité due à son instabilité chimique et sa supposée sensibilité à la peroxydation, par analogie avec d'autres oléfines halogénées. Le trifluoroéthylène présente la particularité d'être extrêmement inflammable, avec une limite inférieure d'explosivité (LIE) d'environ 10% et une limite supérieure d'explosivité (LSE) d'environ 30%. Le danger majeur est cependant associé à la propension du VF3 à se décomposer violemment et de façon explosive dans certaines conditions de pression en présence d'une source d'énergie, même en l'absence d'oxygène.
Compte tenu des principaux risques ci-dessus, la synthèse ainsi que le stockage du VF3 posent des problèmes particuliers et imposent tout au long de ces processus des règles strictes de sécurité. Une voie connue de préparation du trifluoroéthylène utilise comme produits de départ le chlorotrifluoroéthylène (CTFE) et l'hydrogène en présence d'un catalyseur et en phase gazeuse.
On connaît par WO 2013/128102 un procédé de production du trifluoroéthylène par hydrogénolyse du CTFE en phase gazeuse et en présence d'un catalyseur à base d'un métal du groupe VIII à pression atmosphérique et à des températures peu élevées.
On connaît par EP 2 993 213 un procédé de production du trifluoroéthylène. Celui-ci peut être obtenu par hydrogénolyse du chlorotrifluoroéthylène ou par décomposition thermique du chlorodifluorométhane et du chlorofluorométhane. Le procédé de production implique la mise en œuvre d'une étape de distillation à une pression de 10 barg et par laquelle le trifluoroéthylène est récupéré par soutirage latérale. La mise en œuvre d'une distillation à haute pression nécessite la mise en place de conditions opératoires particulières compte tenu du caractère explosif du trifluoroéthylène au-delà de 3 bara.
Il existe donc un besoin pour fournir un procédé plus simple et plus sûr de production du trifluoroéthylène tout en maintenant des rendements et des sélectivités élevées.
Résumé de l'invention
Selon un premier aspect, la présente invention fournit un procédé de production du trifluoroéthylène dans un réacteur muni d'un lit catalytique fixe comprenant un catalyseur, ledit procédé comprenant une étape a) de réaction d'une composition A comprenant du chlorotrifluoroéthylène avec de l'hydrogène en présence d'un catalyseur et en phase gazeuse pour produire un courant B comprenant du trifluoroéthylène, caractérisé en ce que ladite composition A comprend également au moins l'un des composés additionnels Cl choisi parmi le groupe consistant en 1,1,1-trifluoroéthane, 1,1,1,2-tétrafluoroéthane, hexafluorocyclobutène, fluoroéthane, 2-chloro-l,l,l-trifluoroéthane, 1,2-dichloro- hexafluorocyclobutane.
De manière surprenante, il a été observé que la productivité en trifluoroéthylène était augmentée en présence des composés additionnels Cl. La présence de ces composés en faible quantité en sus du chlorotrifluoroéthylène permet d'améliorer le procédé de production du trifluoroéthylène. La présente invention démontre qu'il n'est pas nécessaire d'avoir du chlorotrifluoroéthylène de haute pureté pour aboutir à des productivités importantes. Cela permet de simplifier le procédé de production et d'en limiter le coût global.
Selon un mode de réalisation préféré, la teneur massique totale en ledit au moins l'un des composés additionnels Cl est inférieure à 15% sur base du poids total de ladite composition A, de préférence inférieure à 10% sur base du poids total de ladite composition A, en particulier inférieure à 5% sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, ladite composition A comprend au moins 80% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A, de préférence au moins 95% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A, en particulier au moins 90% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A. Selon un mode de réalisation préféré, ladite composition A comprend également du trifluoroéthylène, de préférence dans une teneur massique inférieure à 5% sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, ladite composition A comprend également au moins l'un des composés additionnels C2 sélectionné parmi le groupe consistant en 1,1,2-trifluoroéthane, l-chloro-l,l,2-trifluoroéthane, l-chloro-2,2-difluoroéthylène, E/Z-l-chloro-1,2- difluoroéthylène, l-chloro-l,2,2-trifluoroéthane.
Selon un mode de réalisation préféré, la teneur massique en ledit au moins l'un des composés additionnels C2 est inférieure à 5% sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, le catalyseur comprend du palladium supporté sur de l'alumine alpha.
Selon un mode de réalisation préféré, le chlorotrifluoroéthylène et l'hydrogène sont sous forme anhydre.
Selon un mode de réalisation préféré, ledit procédé comprend une étape i') d'activation du catalyseur, mise en oeuvre préalablement à l'étape a), par mise en contact de celui-ci avec un flux gazeux comprenant un agent réducteur, un gaz inerte ou un mélange de ceux-ci.
Selon un mode de réalisation préféré, au cours de ladite étape i') : la température du lit catalytique est augmentée d'une température Tl à une température T2 supérieure à Tl avec un gradient de température inférieure à 0,5°C/min ; ou la température du lit catalytique est augmentée d'une température Tl à une température T2 supérieure à Tl par paliers.
Selon un second aspect, la présente invention fournit une composition comprenant au moins 80% en poids de chlorotrifluoroéthylène et au moins l'un des composés additionnels choisi parmi le groupe consistant en 1,1,1-trifluoroéthane, 1,1,1,2-tétrafluoroéthane, hexafluorocyclobutène, fluoroéthane, 2-chloro-l,l,l-trifluoroéthane, 1,2-dichloro- hexafluorocyclobutane ; la teneur massique totale en ledit au moins l'un des composés additionnels est inférieur à 15% sur base du poids total de ladite composition.
Description détaillée de l'invention
La présente invention se rapporte à un procédé de production du trifluoroéthylène comprenant une étape de réaction d'hydrogénolyse du chlorotrifluoroéthylène (CTFE) avec de l'hydrogène en phase gazeuse et de préférence en présence d'un catalyseur. Selon un mode de réalisation préféré, le procédé selon l'invention décrit dans la présente demande est mis en oeuvre en continu.
Selon un mode de réalisation préféré, dans le procédé décrit dans la présente demande, l'hydrogène est sous forme anhydre.
Selon un mode de réalisation préféré, dans le procédé décrit dans la présente demande, le chlorotrifluoroéthylène est sous forme anhydre.
La mise en oeuvre des procédés selon l'invention en présence d'hydrogène et/ou du chlorotrifluoroéthylène anhydre permet d'augmenter efficacement la durée de vie du catalyseur et ainsi la productivité globale du procédé. Le terme anhydre se réfère à une teneur massique en eau inférieure à 1000 ppm, avantageusement 500 ppm, de préférence inférieure à 200 ppm, en particulier inférieure à 100 ppm sur base du poids total du composé considéré.
Catalyseur
De préférence, le catalyseur est à base d'un métal des colonnes 8 à 10 du tableau périodique des éléments. En particulier, le catalyseur est à base d'un métal sélectionné parmi le groupe consistant en Pd, Pt, Rh, et Ru ; de préférence palladium.
De préférence, le catalyseur est supporté. Le support est de préférence sélectionné parmi le groupe consistant en le charbon actif, un support à base d'aluminium, le carbonate de calcium, et le graphite. De préférence, le support est à base d'aluminium. En particulier, le support est de l'alumine. L'alumine peut être de l'alumine alpha. De préférence, l'alumine comprend au moins 90% d'alumine alpha. Il a été observé que la conversion de la réaction d'hydrogénolyse était améliorée lorsque l'alumine est une alumine alpha. Ainsi, le catalyseur est plus particulièrement du palladium supporté sur alumine, avantageusement du palladium supporté sur une alumine comprenant au moins 90% d'alumine alpha, de préférence du palladium supporté sur une alumine alpha.
De préférence, le palladium représente de 0,01% à 5% en poids sur base du poids total du catalyseur, de préférence de 0,1% à 2% en poids sur base du poids total du catalyseur.
En particulier, ledit catalyseur comprend de 0,01% à 5% en poids de palladium supporté sur alumine, de préférence l'alumine comprend au moins 90% d'alumine alpha, plus préférentiellement l'alumine est une alumine alpha.
Activation du catalyseur Ledit catalyseur est de préférence activé avant son utilisation à l'étape a). De préférence, l'activation du catalyseur est mise en oeuvre à haute température et en présence d'un agent réducteur, un gaz inerte ou un mélange de ceux-ci.
Selon un mode de réalisation particulier, l'agent réducteur est choisi dans le groupe constitué par l'hydrogène, le monoxyde de carbone, le monoxyde d'azote, le formaldéhyde, les alcanes en Ci-Cg et les hydrohalocarbures en Ci-Cio, ou un mélange de ceux-ci ; de préférence l'hydrogène ou un hydrohalocarbure en Ci-Cio, ou un mélange de ceux-ci ; en particulier l'hydrogène, chlorotrifluoroéthylène, trifluoroéthylène, chlorotrifluoroéthane, trifluoroéthane ou difluoroéthane ou un mélange de ceux-ci.
Le gaz inerte peut être de l'azote ou de l'argon ; de préférence de l'azote.
De préférence, l'activation du catalyseur est mise en oeuvre à une température comprise entre 100°C et 400°C, en particulier à une température comprise entre 150°C et 350°C. En particulier, l'activation du catalyseur est mise en oeuvre à une température comprise entre 100°C et 400°C, en particulier à une température comprise entre 150°C et 350°C, en présence d'hydrogène comme agent réducteur.
De préférence, au cours de l'étape i'), la température du lit catalytique est augmentée d'une température Tl à une température T2. En particulier, au cours de ladite étape i'), la température du lit catalytique est augmentée d'une température Tl à une température T2 supérieure à Tl avec un gradient de température inférieure à 0,5°C/min. Le gradient de température mis en oeuvre permet d'éviter une dégradation précoce du catalyseur et ainsi de permettre un meilleur rendement ou une meilleure productivité de la réaction d'hydrogénolyse. En particulier, la température est augmentée avec un gradient de température inférieur à 0,45°C/min ou inférieur à 0,40°C/min, ou inférieur à 0,35°C/min, ou inférieur à 0,30°C/min, ou inférieur à 0,25°C/min, ou inférieur à 0,20°C/min, ou inférieur à 0,15°C/min, ou inférieur à 0,10°C/min, ou inférieur à 0,05°C/min. La température Tl représente la température initiale de l'étape d'activation. Cette température Tl peut être la température ambiante. Alternativement, la température Tl peut être comprise entre 0°C et 150°C, avantageusement entre 0°C et 120°C, de préférence entre 0°C et 100°C, plus préférentiellement entre 10°C et 100°C, en particulier entre 20°C et 100°C, plus particulièrement entre 20°C et 75°C, de manière privilégiée entre 20°C et 50°C. La température T2 représente la température à atteindre lors de la phase d'activation. La température T2 est avantageusement comprise entre 150°C et 400°C, de préférence entre 155°C et 375°C, plus préférentiellement entre 160°C et 350°C, en particulier entre 165°C et 325°C, plus particulièrement entre 170°C et 320°C, de manière privilégiée entre 175°C et 310°C, de manière plus privilégiée entre 180°C et 300°C. Selon un mode de réalisation préféré, le température T2 est avantageusement comprise entre 185°C et 290°C, de préférence entre 190°C et 280°C, plus préférentiellement entre 195°C et 270°C, en particulier entre 200°C et 260°C. La température T2 peut être maintenue de 5 min à 200h, de préférence de 10 min à lOOh, en particulier de 15 min à 75h, plus particulièrement de 30 min à 50h, de manière privilégiée de lh à 25h. La température T2 peut être maintenue de 5 min à 24h, de préférence de 10 min à 20h, en particulier de 15 min à 15h, plus particulièrement de 30 min à lOh, de manière privilégiée de lh à lOh.
De préférence, le flux gazeux utilisé au cours de l'étape i') ne comprend pas d'oxygène. De préférence, l'étape i') peut être mise en oeuvre avec une quantité d'agent réducteur supérieure à 0,01 mol par gramme de catalyseur, de préférence supérieure à 0,05 par gramme de catalyseur. En particulier, l'étape i') peut être mise en oeuvre avec une quantité d'agent réducteur comprise entre 0,01 et 10 mol par gramme de catalyseur, de préférence entre 0,05 et 5 mol par gramme de catalyseur.
Selon un autre mode de réalisation, au cours de l'étape i'), la température du lit catalytique est augmentée d'une température Tl à une température T2 par paliers. L'activation du catalyseur par paliers permet de rendre le catalyseur plus performant. La mise en oeuvre de paliers permet d'éviter une dégradation du catalyseur. Il a également été observé que les propriétés du catalyseur étaient en outre d'autant plus améliorées si la montée en température entre les paliers est progressive et relativement lente par rapport aux conditions usuelles d'activation d'un catalyseur. Ainsi, de préférence, à l'étape i'), entre deux paliers, la température est augmentée avec un gradient de température inférieur à 0,5°C/min. Le gradient de température mis en oeuvre entre deux paliers permet d'éviter une dégradation précoce du catalyseur et ainsi de permettre un meilleur rendement ou une meilleure productivité de la réaction d'hydrogénolyse. En particulier, la température est augmentée avec un gradient de température inférieur 0,45°C/min ou inférieur à 0,40°C/min, ou inférieur à 0,35°C/min, ou inférieur à 0,30°C/min, ou inférieur à 0,25°C/min, ou inférieur à 0,20°C/min, ou inférieur à 0,15°C/min, ou inférieur à 0,10°C/min, ou inférieur à 0,05°C/min. La température Tl représente la température initiale de l'étape d'activation. Cette température Tl peut être la température ambiante. Alternativement, la température Tl peut être comprise entre 0°C et 150°C, avantageusement entre 0°C et 120°C, de préférence entre 0°C et 100°C, plus préférentiellement entre 10°C et 100°C, en particulier entre 20°C et 100°C, plus particulièrement entre 20°C et 75°C, de manière privilégiée entre 20°C et 50°C. La température T2 représente la température à atteindre lors de la phase d'activation. La température T2 est avantageusement comprise entre 150°C et 400°C, de préférence entre 155°C et 375°C, plus préférentiellement entre 160°C et 350°C, en particulier entre 165°C et 325°C, plus particulièrement entre 170°C et 320°C, de manière privilégiée entre 175°C et 310°C, de manière plus privilégiée entre 180°C et 300°C. Selon un mode de réalisation préféré, le température T2 est avantageusement comprise entre 185°C et 290°C, de préférence entre 190°C et 280°C, plus préférentiellement entre 195°C et 270°C, en particulier entre 200°C et 260°C. La température T2 peut être maintenue de 5min à 200h, de préférence de 10 min à lOOh, en particulier de 15 min à 75h, plus particulièrement de 30 min à 50h, de manière privilégiée de lh à 25h. La température T2 peut être maintenue de 5 min à 24h, de préférence de 10 min à 20h, en particulier de 15 min à 15h, plus particulièrement de 30 min à lOh, de manière privilégiée de lh à lOh. L'étape i') d'activation du catalyseur contient au moins un palier entre la température Tl et la température T2. L'étape i') d'activation du catalyseur peut comprendre plusieurs paliers entre la température Tl et la température T2. De préférence, l'étape i') comprend au moins un palier à une température Tla comprise entre 90 et 120°C. La présence d'un palier entre 90°C et 120°C est à privilégier pour augmenter la durée de vie du catalyseur. L'étape i') peut également comprendre un ou plusieurs paliers entre la température Tl et Tla et/ou entre la température Tla et T2. De préférence, chaque palier entre la température Tl et la température T2 peut durer entre 5 min et 200 h, de préférence entre 10 min et 100 h, en particulier entre 15 min et 75h, plus particulièrement entre 30 min et 50h. En particulier, chaque palier entre la température Tl et la température T2 peut durer entre 5 min et 24h, de préférence entre 10 min et 20h, en particulier entre 15 min et 15h, plus particulièrement entre 30 min et lOh. En particulier, le palier à la température Tla peut durer entre 5 min et 200 h, de préférence entre 10 min et 100 h, en particulier entre 15 min et 75h, plus particulièrement entre 30 min et 50h. De manière privilégiée, le palier à la température Tla peut durer entre 5 min et 24h, de préférence entre 10 min et 20h, en particulier entre 15 min et 15h, plus particulièrement entre 30 min et lOh.
Le flux gazeux utilisé au cours de l'étape i') peut être différent au cours du temps. Par exemple, le flux gazeux peut comprendre un gaz inerte entre deux paliers et par exemple comprendre un agent réducteur entre deux autres paliers. En particulier, le flux gazeux comprend un gaz inerte lorsque l'étape i') est mise en oeuvre entre la température Tl et Tla et le flux gazeux comprend un agent réducteur, de préférence l'hydrogène ou des hydrohalocarbures en Ci-Cio tels que définis ci-dessus, lorsque l'étape i') est mise en oeuvre entre la température Tla et T2. Ainsi, le flux gazeux utilisé pendant l'étape i') est modifié pendant le palier mis en oeuvre à la température Tla. Alternativement, le flux gazeux peut comprendre un agent réducteur tel que l'hydrogène ou des hydrohalocarbures en Ci-Cio tels que définis ci-dessus tout au long de l'étape i'), optionnellement en mélange avec un gaz inerte tel que de l'azote. Il a été observé que l'utilisation d'un agent réducteur tel que l'hydrogène ou des hydrohalocarbures en Ci-Cio tels que définis ci-dessus, optionnellement en mélange avec un gaz inerte tel que de l'azote, lors de la montée en température entre la température Tla dudit palier et la température T2 représente un avantage supplémentaire en terme de productivité. Comme mentionné ci-dessus, la température T2 est maintenue pendant une certaine durée. Au cours de ce palier à la température T2, le flux gazeux peut être modifié. Ainsi, le flux gazeux au cours du palier à la température T2 peut comprendre de l'hydrogène ou un hydrohalocarbure en Ci-Cio tels que définis ci-dessus ; en particulier le flux gazeux au cours du palier à la température T2 peut comprendre de l'hydrogène, du chlorotrifluoroéthylène, trifluoroéthane, trifluoroéthylène, chlorotrifluoroéthane ou du difluoroéthane. De préférence, l'étape i') peut être mise en oeuvre avec une quantité d'agent réducteur supérieure à 0,01 par gramme de catalyseur, de préférence supérieure à 0,05 par gramme de catalyseur. En particulier, l'étape i') peut être mise en oeuvre avec une quantité d'agent réducteur comprise entre 0,01 et 10 mol par gramme de catalyseur, de préférence entre 0,05 et 5 mol par gramme de catalyseur.
Selon un autre mode de réalisation, l'étape d'activation du catalyseur i') comprend la mise en contact dudit catalyseur avec un flux gazeux qui comprend du chlorotrifluoroéthylène, et optionnellement de l'hydrogène. Il a été remarqué que le chlorotrifluoroéthylène (CTFE) permettait d'activer le catalyseur, en particulier lorsque que de l'hydrogène est également présent. Ceci permet une amélioration du procédé de production du trifluoroéthylène. L'activation en présence de CTFE permet d'activer le catalyseur à plus basse température et fournit donc un procédé moins consommateur en énergie. Le procédé est en outre simplifié puisque l'agent réducteur pendant l'activation est aussi un des réactifs pour la réaction ultérieure. De préférence, dans ce mode de réalisation, l'étape i') est mise en oeuvre à une température T2' inférieure à 100°C. Cette température T2' peut être atteinte à partir d'une température Tl' en utilisant un gradient de température faible. Ainsi, au cours de ladite étape i'), la température du lit catalytique est augmentée d'une température Tl' à une température T2' supérieure à Tl', de préférence la température du lit catalytique est augmentée d'une température Tl' à une température T2' supérieure à Tl' avec un gradient de température inférieure à 0,5°C/min. Le gradient de température mis en oeuvre permet d'éviter une dégradation précoce du catalyseur et ainsi de permettre un meilleur rendement ou une meilleure productivité de la réaction d'hydrogénolyse. En particulier, la température est augmentée avec un gradient de température inférieur 0,45°C/min ou inférieur à 0,40°C/min, ou inférieur à 0,35°C/min, ou inférieur à 0,30°C/min, ou inférieur à 0,25°C/min, ou inférieur à 0,20°C/min, ou inférieur à 0,15°C/min, ou inférieur à 0,10°C/min, ou inférieur à 0,05°C/min.
De préférence, la température du lit catalytique est augmentée par l'augmentation du temps de contact calculé comme étant le rapport entre le volume, en litre, de catalyseur et le débit total dudit flux gazeux, en normaux litres par seconde, à l'entrée du réacteur. Le temps de contact est compris entre 1 et 60 secondes, de préférence entre 5 et 45 secondes, en particulier entre 10 et 30 secondes, plus particulièrement entre 15 et 25 secondes. La température Tl' peut être comprise entre 0°C et 50°C, avantageusement entre 10°C et 50°C, de préférence entre 20°C et 50°C. De préférence, la température T2' est inférieure à la température T3 de mise en oeuvre de l'étape a). La température T3 est de préférence comprise entre 100°C et 180°C, plus préférentiellement entre 100°C et 160°C, en particulier entre 120°C et 160°C.
Régénération du catalyseur
Ledit catalyseur utilisé dans le présent procédé peut être régénéré. Cette étape de régénération peut être mise en oeuvre dans une gamme de température du lit catalytique comprise entre 90°C et 450°C. De préférence, l'étape de régénération est mise en oeuvre en présence d'hydrogène. La mise en oeuvre de l'étape de régénération permet d'améliorer le rendement de la réaction par rapport au rendement initial avant régénération.
Selon un mode de réalisation préféré, l'étape de régénération peut être mise en oeuvre à une température du lit catalytique de 90°C à 300°C, de préférence à une température du lit catalytique de 90°C à 250°C, plus préférentiellement de 90°C à 200°C, en particulier de 90°C à 175°C, plus particulièrement à une température du lit catalytique de 90°C à 150°C. En particulier, la mise en oeuvre de l'étape de régénération à une température basse, par exemple de 90°C à 200°C ou de 90°C à 175°C ou de 90°C à 150°C permet la désorption de composés néfastes à l'activité du catalyseur et/ou de limiter des transitions de phase modifiant la structure du catalyseur.
Selon un autre mode de réalisation préféré, l'étape de régénération peut être mise en oeuvre à une température du lit catalytique supérieure à 200°C, avantageusement supérieure à 230°C, de préférence supérieure à 250°C, en particulier supérieure à 300°C. L'étape de régénération peut être mise en oeuvre périodiquement en fonction de la productivité ou de la conversion obtenue à l'étape a). L'étape de régénération peut être mise en oeuvre avantageusement à une température du lit catalytique comprise entre 200°C et 300°C, de préférence entre 205°C et 295°C, plus préférentiellement entre 210°C et 290°C, en particulier entre 215°C et 290°C, plus particulièrement entre 220°C et 285°C, de manière privilégiée entre 225°C et 280°C, de manière plus privilégiée entre 230°C et 280°C. Alternativement, l'étape de régénération peut être mise en oeuvre à une température comprise entre 300°C et 450°C, de préférence entre 300°C et 400°C. Le catalyseur régénéré peut être réutilisé à l'étape a) du présent procédé.
Réaction d'hydrogénolyse
La présente invention comprend, comme mentionné ci-dessus, une étape de réaction d'hydrogénolyse d'une composition A comprenant du chlorotrifluoroéthylène avec de l'hydrogène pour produire un courant comprenant du trifluoroéthylène. L'étape d'hydrogénolyse est mise en oeuvre en présence d'un catalyseur et en phase gazeuse. De préférence, l'étape d'hydrogénolyse est mise en oeuvre en présence d'un catalyseur préalablement activé et en phase gazeuse. L'étape d'hydrogénolyse consiste à introduire simultanément de l'hydrogène, le CTFE et optionnellement un gaz inerte, comme l'azote, en phase gazeuse et en présence dudit catalyseur, de préférence activé.
De préférence, ladite étape a) est mise en oeuvre à une température du lit catalytique fixe comprise entre 50°C et 250°C. Ladite étape a) peut être mise en oeuvre à une température du lit catalytique fixe comprise entre 50°C et 240°C, avantageusement entre 50°C et 230°C, de préférence entre 50°C et 220°C, plus préférentiellement entre 50°C et 210°C, en particulier entre 50°C et 200°C. Ladite étape a) peut également être mise en oeuvre à une température du lit catalytique fixe comprise entre 60°C et 250°C, avantageusement entre 70°C et 250°C, de préférence entre 80°C et 250°C, plus préférentiellement entre 90°C et 250°C, en particulier entre 100°C et 250°C, plus particulièrement entre 120°C et 250°C. Ladite étape a) peut également être mise en oeuvre à une température du lit catalytique fixe comprise entre 60°C et 240°C, avantageusement entre 70°C et 230°C, de préférence entre 80°C et 220°C, plus préférentiellement entre 90°C et 210°C, en particulier entre 100°C et 200°C, plus particulièrement entre 100°C et 180°C, de manière privilégiée entre 100°C et 160°C, de manière particulièrement préférée entre 120°C et 160°C.
Le rapport molaire H2/CTFE est compris entre 0,5/1 à 2/1 et de préférence compris entre 1/1 à 1,2/1. Si un gaz inerte comme de l'azote est présent à l'étape a), le rapport molaire azote/H2 est compris entre 0/1 à 2/1 et de préférence compris entre 0/1 à 1/1. L'étape a) est de préférence mise en œuvre à une pression de 0,05 MPa à 1,1 MPa, plus préférentiellement de 0,05 MPa à 0,5 MPa, en particulier à pression atmosphérique.
Le temps de contact calculé comme étant le rapport entre le volume, en litre, de catalyseur et le débit total du mélange gazeux, en normaux litres par seconde, à l'entrée du réacteur, est compris entre 1 et 60 secondes, de préférence entre 5 et 45 secondes, en particulier entre 10 et 30 secondes, plus particulièrement entre 15 et 25 secondes.
Selon la présente invention, ladite composition A comprend également au moins l'un des composés additionnels Cl choisi parmi le groupe consistant en 1,1,1-trifluoroéthane, 1, 1,1,2- tétrafluoroéthane, hexafluorocyclobutène, fluoroéthane, 2-chloro-l,l,l-trifluoroéthane, 1,2- dichlorohexafluorocyclobutane.
Ladite composition A peut comprendre un ou plusieurs des composés additionnels Cl. Ladite composition A peut comprendre un, deux, trois, quatre, cinq ou l'ensemble des composés additionnels Cl.
Avantageusement, la teneur massique totale en ledit au moins l'un des composés additionnels Cl est inférieure à 15% sur base du poids total de ladite composition A. De préférence, la teneur massique totale en ledit au moins l'un des composés additionnels Cl est inférieure à 10%, plus préférentiellement inférieure à 5%, en particulier inférieure à 2%, plus particulièrement inférieure à 1%.
Avantageusement, la teneur massique totale en ledit au moins l'un des composés additionnels Cl est supérieure à 1 ppm sur base du poids total de ladite composition A. De préférence, la teneur massique totale en ledit au moins l'un des composés additionnels Cl est supérieure à 5 ppm, plus préférentiellement supérieure à 10 ppm, en particulier supérieure à 20 ppm, plus particulièrement supérieure à 50 ppm, de manière privilégiée supérieure à 100 ppm sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, la composition A comprend le 1,1,1-trifluoroéthane et la teneur massique totale en 1,1,1-trifluoroéthane est inférieure à 5000 ppm, avantageusement inférieure à 2500 ppm, de préférence inférieure à 1000 ppm, plus préférentiellement inférieure à 750 ppm sur base du poids total de ladite composition A. Lorsqu'il est contenu dans la composition, la teneur massique totale en 1,1,1-trifluoroéthane est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm, en particulier supérieure à 50 ppm, plus particulièrement supérieure à 100 ppm sur base du poids total de ladite composition A. Selon un mode de réalisation préféré, la composition A comprend le 1,1,1,2-tétrafluoroéthane et la teneur massique totale en 1,1,1,2-tétrafluoroéthane est inférieure à 1000 ppm, avantageusement inférieure à 750 ppm, de préférence inférieure à 500 ppm, plus préférentiellement inférieure à 250 ppm, en particulier inférieure à 100 ppm sur base du poids total de ladite composition A. Lorsqu'il est contenu dans la composition, la teneur massique totale en 1,1,1,2-tétrafluoroéthane est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, la composition A comprend le hexafluorocyclobutène et la teneur massique totale en hexafluorocyclobutène est inférieure à 1%, avantageusement inférieure à 7500 ppm, de préférence inférieure à 5000 ppm, plus préférentiellement inférieure à 2500 ppm, en particulier inférieure à 1000 ppm sur base du poids total de ladite composition A. Lorsqu'il est contenu dans la composition, la teneur massique totale en hexafluorocyclobutène est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 pm, en particulier supérieure à 50 ppm, plus particulièrement supérieure à 100 ppm sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, la composition A comprend le fluoroéthane et la teneur massique totale en fluoroéthane est inférieure à 100 ppm, avantageusement inférieure à 75 ppm, de préférence inférieure à 50 ppm, plus préférentiellement inférieure à 25 ppm, en particulier inférieure à 10 ppm sur base du poids total de ladite composition A. Lorsqu'il est contenu dans la composition, la teneur massique totale en fluoroéthane est supérieure à 0,1 ppm, avantageusement supérieure à 0,5 ppm, de préférence supérieure à 1 ppm sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, la composition A comprend le 2-chloro-l,l,l- trifluoroéthane et la teneur massique totale en 2-chloro-l,l,l-trifluoroéthane est inférieure à 1%, avantageusement inférieure à 7500 ppm, de préférence inférieure à 5000 ppm, plus préférentiellement inférieure à 2500 ppm, en particulier inférieure à 1000 ppm sur base du poids total de ladite composition A. Lorsqu'il est contenu dans la composition, la teneur massique totale en 2-chloro-l,l,l-trifluoroéthane est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm, en particulier supérieure à 50 ppm, plus particulièrement supérieure à 100 ppm sur base du poids total de ladite composition A. Selon un mode de réalisation préféré, la composition A comprend le 1,2- dichlorohexafluorocyclobutane. Le 1,2-dichlorohexafluorocyclobutane peut exister sous la forme de deux diastéréoisomères. Le terme « 1,2-dichlorohexafluorocyclobutane » se réfère aux deux diastéréoisomères. De préférence, la teneur massique totale en 1,2- dichlorohexafluorocyclobutane est inférieure à 15%, avantageusement inférieure à 10%, de préférence inférieure à 5%, en particulier inférieure à 1% sur base du poids total de ladite composition A. Selon un mode de réalisation privilégié, la teneur massique totale en 1,2- dichlorohexafluorocyclobutane est inférieure à 5000 ppm, avantageusement inférieure à 1000 ppm, de préférence inférieure à 500 ppm, plus préférentiellement inférieure à 250 ppm, en particulier inférieure à 100 ppm sur base du poids total de ladite composition A. Lorsqu'il est contenu dans la composition, la teneur massique totale en 1,2-dichlorohexafluorocyclobutane est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm sur base du poids total de ladite composition A.
Selon un mode de réalisation préféré, ladite composition A comprend au moins 80% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A, avantageusement au moins 82% en poids, de préférence au moins 84% en poids, plus préférentiellement au moins 86% en poids, en particulier au moins 88% en poids, plus particulièrement au moins 90%, de manière privilégiée au moins 92% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A.
Ladite composition A peut également comprendre du trifluoroéthylène, de préférence dans une teneur massique inférieure à 5%, de préférence inférieure à 4,5%, en particulier inférieur à 4% sur base du poids total de ladite composition A.
Ladite composition A peut éventuellement comprendre au moins l'un des composés additionnels C2 sélectionné parmi le groupe consistant en 1,1,2-trifluoroéthane, l-chloro-1,1,2- trifluoroéthane, l-chloro-2,2-difluoroéthylène, E/Z-l-chloro-l,2-difluoroéthylène, 1-chloro- 1,2,2-trifluoroéthane. La teneur massique en ledit au moins l'un des composés additionnels C2 peut être inférieure à 5% sur base du poids total de ladite composition A, avantageusement inférieure à 4%, de préférence inférieure à 3%, plus préférentiellement inférieure à 2%, en particulier inférieure à 1% sur base du poids total de ladite composition A.
Traitement du flux de réaction Le courant B issu de l'étape a) peut être traité pour récupérer un courant le trifluoroéthylène (HFO-1123) purifié. Ledit courant B peut comprend, outre le trifluoroéthylène, HF, HCl, de l'hydrogène n'ayant pas réagi, du chlorotrifluoroéthylène n'ayant pas réagi, éventuellement un ou plusieurs des composés additionnels Cl ou C2.
Ledit courant B peut être traité selon les étapes suivantes : i) Elimination de HF et/ou HCl dudit flux de produit obtenu à l'étape a) pour former un mélange gazeux ; ii) Séchage du mélange gazeux issu de l'étape i) ; iii) Traitement du mélange gazeux séché à l'étape ii) pour éliminer l'hydrogène et optionnellement des gaz inertes ; iv) Distillation du mélange issu de l'étape iii).
Le courant B issu de l'étape a) est récupéré en sortie de réacteur sous forme gazeuse. De préférence, en sortie du réacteur d'hydrogénolyse, le flux de produit est tout d'abord traité pour éliminer HCl et HF. Le flux de produit est passé dans de l'eau dans une colonne de lavage puis par un lavage avec une base diluée telle que NaOH ou KOH. Le reste du mélange gazeux, constitué des réactifs non convertis (H2 et CTFE), de l'azote de dilution (si présent), du trifluoroéthylène et des composés additionnels mentionnés ci-dessus est dirigé vers un sécheur afin d'éliminer les traces d'eau de lavage. Le séchage peut être réalisé à l'aide de produits tels que le sulfate de calcium de sodium ou de magnésium, le chlorure de calcium, le carbonate de potassium, le gel de silice (silicagel) ou les zéolites. Dans un mode de réalisation, on utilise pour le séchage un tamis moléculaire (zéolite) tel que la siliporite. Le mélange gazeux ainsi séché est soumis à une étape de séparation de l'hydrogène et des inertes du reste des autres produits présents dans le mélange gazeux par absorption/désorption en présence d'un alcool comportant de 1 à 4 atomes de carbone et de préférence l'éthanol, à pression atmosphérique et à une température inférieure à la température ambiante, de préférence inférieure à 10°C et de manière encore plus préférée à une température de -25°C, pour l'absorption. Dans un mode de réalisation, l'absorption des organiques est réalisée dans une colonne à contre-courant avec de l'éthanol refroidi à -25°C. Le débit d'éthanol est réglé en fonction du débit d'organiques à absorber. L'hydrogène et les gaz inertes, insolubles dans l'éthanol à cette température, sont éliminés en tête de colonne d'absorption. Les organiques sont ensuite récupérés par chauffage de l'éthanol à son point d'ébullition (désorption), pour être ensuite distillés. Alternativement, l'étape iii) peut être mise en oeuvre par un procédé de séparation membranaire. Selon l'étape iv), les organiques ainsi obtenus sont distillés pour former et récupérer un courant DI comprenant du trifluoroéthylène et un courant D2 comprenant le chlorotrifluoroéthylène et éventuellement un ou plusieurs des composés additionnels Cl ou C2. Le courant D2 peut être recyclé à l'étape a).
Selon un mode de réalisation préféré, l'étape iv) de distillation est mise en oeuvre à une pression inférieure à 3 bara, de préférence à une pression comprise entre 0,5 et 3 bara, en particulier à une pression comprise entre 0,9 et 2 bara. La mise en oeuvre d'une distillation à une pression inférieure à 3 bara permet de sécuriser le procédé compte tenu du caractère explosif du trifluoroéthylène au-delà de 3 bara. De préférence, l'étape iv) de distillation est mise en oeuvre dans une colonne de distillation comprend un garnissage structuré. Il a été observé qu'un garnissage structuré permettait d'obtenir une étape de distillation plus efficace. Ledit garnissage structuré peut être fait d'un matériau métallique. Ledit courant DI est de préférence récupéré en tête de la colonne de distillation. Avant d'être récupéré, le courant DI peut éventuellement être condensé partiellement en tête de la colonne de distillation. Lorsque la condensation partielle est mise en oeuvre, le flux DI est porté à une température de -50°C à -70°C. La température est ajustée en fonction de la pression appliquée. La condensation partielle permet d'améliorer l'efficacité de la distillation en limitant la teneur en composés additionnels dans le courant Dl. Ledit courant DI peut comprendre au moins 95% de trifluoroéthylène, avantageusement au moins 96%, de préférence au moins 97%, en particulier au moins 98%, plus particulièrement au moins 99% en poids sur base du poids total dudit courant B.
Selon un second aspect, la présente invention fournit des compositions comprenant du chlorotrifluoroéthylène.
Ladite composition comprend au moins 80% en poids de chlorotrifluoroéthylène et au moins l'un des composés additionnels choisi parmi le groupe consistant en 1,1,1-trifluoroéthane, 1,1,1,2-tétrafluoroéthane, hexafluorocyclobutène, fluoroéthane, 2-chloro-l,l,l- trifluoroéthane, 1,2-dichlorohexafluorocyclobutane ; la teneur massique totale en ledit au moins l'un des composés additionnels est inférieur à 15% sur base du poids total de ladite composition.
Selon un mode de réalisation préféré, la composition comprend le 1,1,1-trifluoroéthane et la teneur massique totale en 1,1,1-trifluoroéthane est inférieure à 5000 ppm, avantageusement inférieure à 2500 ppm, de préférence inférieure à 1000 ppm, plus préférentiellement inférieure à 750 ppm sur base du poids total de ladite composition. Lorsqu'il est contenu dans la composition, la teneur massique totale en 1,1,1-trifluoroéthane est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm, en particulier supérieure à 50 ppm, plus particulièrement supérieure à 100 ppm sur base du poids total de ladite composition.
Selon un mode de réalisation préféré, la composition comprend le 1,1,1,2-tétrafluoroéthane et la teneur massique totale en 1,1,1,2-tétrafluoroéthane est inférieure à 1000 ppm, avantageusement inférieure à 750 ppm, de préférence inférieure à 500 ppm, plus préférentiellement inférieure à 250 ppm, en particulier inférieure à 100 ppm sur base du poids total de ladite composition. Lorsqu'il est contenu dans la composition, la teneur massique totale en 1,1,1,2-tétrafluoroéthane est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm sur base du poids total de ladite composition.
Selon un mode de réalisation préféré, la composition comprend le hexafluorocyclobutène et la teneur massique totale en hexafluorocyclobutène est inférieure à 1%, avantageusement inférieure à 7500 ppm, de préférence inférieure à 5000 ppm, plus préférentiellement inférieure à 2500 ppm, en particulier inférieure à 1000 ppm sur base du poids total de ladite composition. Lorsqu'il est contenu dans la composition, la teneur massique totale en hexafluorocyclobutène est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 pm, en particulier supérieure à 50 ppm, plus particulièrement supérieure à 100 ppm sur base du poids total de ladite composition.
Selon un mode de réalisation préféré, la composition comprend le fluoroéthane et la teneur massique totale en fluoroéthane est inférieure à 100 ppm, avantageusement inférieure à 75 ppm, de préférence inférieure à 50 ppm, plus préférentiellement inférieure à 25 ppm, en particulier inférieure à 10 ppm sur base du poids total de ladite composition. Lorsqu'il est contenu dans la composition, la teneur massique totale en fluoroéthane est supérieure à 0,1 ppm, avantageusement supérieure à 0,5 ppm, de préférence supérieure à 1 ppm sur base du poids total de ladite composition.
Selon un mode de réalisation préféré, la composition comprend le 2-chloro-l,l,l- trifluoroéthane et la teneur massique totale en 2-chloro-l,l,l-trifluoroéthane est inférieure à 1%, avantageusement inférieure à 7500 ppm, de préférence inférieure à 5000 ppm, plus préférentiellement inférieure à 2500 ppm, en particulier inférieure à 1000 ppm sur base du poids total de ladite composition. Lorsqu'il est contenu dans la composition, la teneur massique totale en 2-chloro-l,l,l-trifluoroéthane est supérieure à 1 ppm, avantageusement supérieure à 5 pp , de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm, en particulier supérieure à 50 ppm, plus particulièrement supérieure à 100 ppm sur base du poids total de ladite composition.
Selon un mode de réalisation préféré, la composition comprend le 1,2-dichloro- hexafluorocyclobutane et la teneur massique totale en 1,2-dichlorohexafluorocyclobutane est inférieure à 15%, avantageusement inférieure à 10%, de préférence inférieure à 5%, en particulier inférieure à 1% sur base du poids total de ladite composition. Selon un mode de réalisation privilégié, la teneur massique totale en 1,2-dichlorohexafluorocyclobutane est inférieure à 5000 ppm, avantageusement inférieure à 1000 ppm, de préférence inférieure à 500 ppm, plus préférentiellement inférieure à 250 ppm, en particulier inférieure à 100 ppm sur base du poids total de ladite composition. Lorsqu'il est contenu dans la composition, la teneur massique totale en 1,2-dichlorohexafluorocyclobutane est supérieure à 1 ppm, avantageusement supérieure à 5 ppm, de préférence supérieure à 10 ppm, plus préférentiellement supérieure à 20 ppm sur base du poids total de ladite composition.
Dans un réacteur tubulaire constitué d'un tube inox d'une longueur de 1200 mm sur un diamètre de 25 mm, et équipé d'une double enveloppe, on a introduit 25 cm3 de catalyseur (0,2% de palladium supporté sur alumine alpha). Le catalyseur ainsi chargé a été ensuite activé de la manière suivante : le tube réactionnel a été placé dans un four tubulaire et a été alimenté par un flux d'hydrogène (de 0,05 à 0,1 moles par gramme de catalyseur). Le lit catalytique est chauffé à une température de 200°C à 250°C avec un gradient de température de 0,2°C/min. Après cette période d'activation, le tube a été refroidi à température ambiante puis a été isolé pour être ensuite installer sur un banc de test d'hydrogénolyse.
On utilise 4 bancs de test en parallèle comprenant chacun un réacteur préparé comme décrit ci- dessus. On a alimenté les quatre bancs avec 1 mol/h de composition de départ et 1 mol/h d'hydrogène sous forme anhydre. La température de la double enveloppe du réacteur est de 25°C. Le temps de contact, calculé comme étant le rapport entre le volume en litre de catalyseur et la somme des débits des réactifs en normaux litres par secondes, était de l'ordre de 22 secondes. Des essais sont réalisés à partir de différentes compositions de départ. L'exemple 1 comparatif a été mis en oeuvre à partir de chlorotrifluoroéthylène. L'exemple 2 selon l'invention a été mis en oeuvre à partir du chlorotrifluoroéthylène utilisé à l'exemple comparatif auquel a été ajouté les composés suivants pour obtenir une composition A avec les proportions mentionnées pour chacun des constituants : 1,1,1-trifluoroéthane (519 ppm), 1,1, 1,2- tétrafluoroéthane (39 ppm), hexafluorocyclobutène (880 ppm), fluoroéthane (5 ppm), 2-chloro- 1,1,1-trifluoroéthane (600 ppm), 1,2-dichlorohexafluorocyclobutane (68 ppm) et trifluoroéthylène (2,9%) et le complément en chlorotrifluoroéthylène.
L'exemple 3 selon l'invention a été mis en oeuvre à partir du chlorotrifluoroéthylène utilisé à l'exemple comparatif auquel a été ajouté les composés suivants pour obtenir une composition A avec les proportions mentionnées pour chacun des constituants : 1,1,1-trifluoroéthane (453 ppm), 1,1,1,2-tétrafluoroéthane (56 ppm), hexafluorocyclobutène (754 ppm), 2-chloro-l,l,l- trifluoroéthane (455 ppm) et 1,2-dichlorohexafluorocyclobutane (54 ppm) et le complément en chlorotrifluoroéthylène.
L'exemple 4 selon l'invention a été mis en oeuvre à partir du chlorotrifluoroéthylène utilisé à l'exemple comparatif auquel a été ajouté les composés suivants pour obtenir une composition A avec les proportions mentionnées pour chacun des constituants : 1,1,1-trifluoroéthane (450 ppm), 1,1,1,2-tétrafluoroéthane (52 ppm) et 2-chloro-l,l,l-trifluoroéthane (467 ppm) et le complément en chlorotrifluoroéthylène.
Les résultats sont repris dans le tableau 1 ci-dessous :
[Tableau 1]
Figure imgf000019_0001
La productivité mentionnée correspond à la somme des productivités obtenues pour l'ensemble des quatre bancs d'hydrogénolyse. Comme on peut le constater, la productivité en trifluoroéthylène est améliorée significativement en partant de la composition selon l'invention par rapport à une composition de chlorotrifluoroéthylène sans les composés additionnels.

Claims

Revendications
1. Procédé de production du trifluoroéthylène dans un réacteur muni d'un lit catalytique fixe comprenant un catalyseur, ledit procédé comprenant une étape a) de réaction d'une composition A comprenant du chlorotrifluoroéthylène avec de l'hydrogène en présence d'un catalyseur et en phase gazeuse pour produire un courant B comprenant du trifluoroéthylène, caractérisé en ce que ladite composition A comprend également au moins l'un des composés additionnels Cl choisi parmi le groupe consistant en 1,1,1-trifluoroéthane, 1,1,1,2-tétrafluoroéthane, hexafluorocyclobutène, fluoroéthane, 2-chloro-l,l,l- trifluoroéthane, 1,2-dichlorohexafluorocyclobutane.
2. Procédé selon la revendication précédente caractérisé en ce que la teneur massique totale en ledit au moins l'un des composés additionnels Cl est inférieure à 15% sur base du poids total de ladite composition A, de préférence inférieure à 10% sur base du poids total de ladite composition A, en particulier inférieure à 5% sur base du poids total de ladite composition A.
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ladite composition A comprend au moins 80% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A, de préférence au moins 85% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A, en particulier au moins 90% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition A.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ladite composition A comprend également du trifluoroéthylène, de préférence dans une teneur massique inférieure à 5% sur base du poids total de ladite composition A.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ladite composition A comprend également au moins l'un des composés additionnels C2 sélectionné parmi le groupe consistant en 1,1,2-trifluoroéthane, l-chloro-1,1,2- trifluoroéthane, l-chloro-2,2-difluoroéthylène, E/Z-l-chloro-l,2-difluoroéthylène, 1- chloro-l,2,2-trifluoroéthane. Procédé selon la revendication précédente caractérisé en ce que la teneur massique en ledit au moins l'un des composés additionnels C2 est inférieure à 5% sur base du poids total de ladite composition A. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le catalyseur comprend du palladium supporté sur de l'alumine alpha. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le chlorotrifluoroéthylène et l'hydrogène sont sous forme anhydre. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit procédé comprend une étape i') d'activation du catalyseur, mise en oeuvre préalablement à l'étape a), par mise en contact de celui-ci avec un flux gazeux comprenant un agent réducteur, un gaz inerte ou un mélange de ceux-ci. Procédé selon la revendication précédente caractérisé en ce que au cours de ladite étape i') : la température du lit catalytique est augmentée d'une température Tl à une température T2 supérieure à Tl avec un gradient de température inférieure à 0,5°C/min ; ou la température du lit catalytique est augmentée d'une température Tl à une température T2 supérieure à Tl par paliers. Composition comprenant au moins 80% en poids de chlorotrifluoroéthylène et au moins l'un des composés additionnels choisi parmi le groupe consistant en 1,1,1- trifluoroéthane, 1,1,1,2-tétrafluoroéthane, hexafluorocyclobutène, fluoroéthane, 2- chloro-l,l,l-trifluoroéthane, 1,2-dichloro-hexafluorocyclobutane ; la teneur massique totale en ledit au moins l'un des composés additionnels est inférieure à 15% sur base du poids total de ladite composition.
PCT/EP2023/061695 2022-05-03 2023-05-03 Procédé de production du trifluoroéthylène WO2023213893A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2204198 2022-05-03
FR2204198A FR3135266A1 (fr) 2022-05-03 2022-05-03 Procédé de production du trifluoroéthylène

Publications (1)

Publication Number Publication Date
WO2023213893A1 true WO2023213893A1 (fr) 2023-11-09

Family

ID=82196777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/061695 WO2023213893A1 (fr) 2022-05-03 2023-05-03 Procédé de production du trifluoroéthylène

Country Status (2)

Country Link
FR (1) FR3135266A1 (fr)
WO (1) WO2023213893A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1284241A (fr) * 1960-03-22 1962-02-09 Allied Chem Procédé de production de 1-chloro-1, 2, 2-trifluoroéthylène par réaction du 1, 1, 2-trichloro-1, 2, 2-trifluoroéthane sur de l'hydrogène en présence d'oxyde de chrome
EP0053657A1 (fr) * 1980-12-09 1982-06-16 Allied Corporation Préparation de chlorotrifluoroéthylène et de trifluroéthylène
US5243103A (en) * 1988-05-24 1993-09-07 Solvay S.A. Process for obtaining catalytic compositions and process for hydrogenation of chlorofluoroalkenes by means of these compositions
WO2005108331A1 (fr) * 2004-05-01 2005-11-17 Honeywell International, Inc. Preparation d'une halo-olefine
WO2012000853A1 (fr) * 2010-07-01 2012-01-05 Solvay Solexis S.P.A. Procédé de synthèse de trifluoroéthylène
WO2013128102A1 (fr) 2012-02-28 2013-09-06 Arkema France Procede de synthese du trifluoroethylene a partir du chlorotrifluoroethylene
EP2993213A1 (fr) 2013-04-30 2016-03-09 Asahi Glass Company, Limited Composition contenant du trifluoroéthylène

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1284241A (fr) * 1960-03-22 1962-02-09 Allied Chem Procédé de production de 1-chloro-1, 2, 2-trifluoroéthylène par réaction du 1, 1, 2-trichloro-1, 2, 2-trifluoroéthane sur de l'hydrogène en présence d'oxyde de chrome
EP0053657A1 (fr) * 1980-12-09 1982-06-16 Allied Corporation Préparation de chlorotrifluoroéthylène et de trifluroéthylène
US5243103A (en) * 1988-05-24 1993-09-07 Solvay S.A. Process for obtaining catalytic compositions and process for hydrogenation of chlorofluoroalkenes by means of these compositions
WO2005108331A1 (fr) * 2004-05-01 2005-11-17 Honeywell International, Inc. Preparation d'une halo-olefine
WO2012000853A1 (fr) * 2010-07-01 2012-01-05 Solvay Solexis S.P.A. Procédé de synthèse de trifluoroéthylène
WO2013128102A1 (fr) 2012-02-28 2013-09-06 Arkema France Procede de synthese du trifluoroethylene a partir du chlorotrifluoroethylene
EP2993213A1 (fr) 2013-04-30 2016-03-09 Asahi Glass Company, Limited Composition contenant du trifluoroéthylène

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CABOT P L ET AL: "Palladium-Assisted Electrodehalogenation of 1,1,2-Trichloro-1,2,2-trifluoroethane on Lead Cathodes Combined with Hydrogen Diffusion Anodes", J. ELECTROCHEM. SOC, 144 (11), 1 January 1997 (1997-01-01), pages 3749 - 3757, XP093000597, Retrieved from the Internet <URL:https://iopscience.iop.org/article/10.1149/1.1838086> [retrieved on 20221122] *

Also Published As

Publication number Publication date
FR3135266A1 (fr) 2023-11-10

Similar Documents

Publication Publication Date Title
EP2819979B1 (fr) Procédé de synthèse du trifluoroéthylène à partir du chlorotrifluoroéthylène
WO2016189214A1 (fr) Compositions a base de 1,1,3,3-tetrachloropropène
EP2349960B9 (fr) Procede de preparation de composes fluores
WO2011010025A1 (fr) Procede de preparation de composes fluores
WO2023213893A1 (fr) Procédé de production du trifluoroéthylène
WO2023047056A1 (fr) Procédé de production et de purification du trifluoroéthylène et composition obtenue à partir de celui-ci
WO2022258916A1 (fr) Procédé de production du trifluoroéthylène et recyclage du flux de chlorotrifluoroéthylène
FR2733227A1 (fr) Procede pour la preparation de 1,1-difluoroethane
EP4240714A1 (fr) Procédé de production du trifluoroéthylène
EP4240713A1 (fr) Procédé de production du trifluoroéthylène
CH498792A (fr) Procédé d&#39;oxychloruration de l&#39;éthylène
WO2020183099A1 (fr) Procédé de production de fluorooléfines
EP0805136A1 (fr) Procédé de fabrication du difluorométhane
FR3056210A1 (fr) Procede de separation du 2-chloro-1,1,1,2-tetrafluoropropane et du 2-chloro-3,3,3-trifluoropropene.
WO2023118694A1 (fr) Procede de production et de purification du trifluoroethylene
WO2023118697A1 (fr) Procédé de production et de purification du trifluoroéthylène
WO2023118695A1 (fr) Procédé de production et de purification du trifluoroéthylène
WO2024110731A1 (fr) Procédé de purification du chlorotrifluoroéthylène par distillation extractive
FR3131302A1 (fr) Procédé de production et de purification du trifluoroéthylène
WO2001062693A1 (fr) Procede de conversion selectif du perfluoroisobutene contenu dans un courant d&#39;hydrocarbures halogenes
FR2883872A1 (fr) Procede de fabrication de 1,2-dichloroethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23724275

Country of ref document: EP

Kind code of ref document: A1