WO2020183099A1 - Procédé de production de fluorooléfines - Google Patents

Procédé de production de fluorooléfines Download PDF

Info

Publication number
WO2020183099A1
WO2020183099A1 PCT/FR2020/050471 FR2020050471W WO2020183099A1 WO 2020183099 A1 WO2020183099 A1 WO 2020183099A1 FR 2020050471 W FR2020050471 W FR 2020050471W WO 2020183099 A1 WO2020183099 A1 WO 2020183099A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
hexafluoropropane
pentafluoropropene
tetrafluoropropene
dehydrofluorination
Prior art date
Application number
PCT/FR2020/050471
Other languages
English (en)
Inventor
Dominique Garrait
Pierre-Marie Sedat
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2020183099A1 publication Critical patent/WO2020183099A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a process for the production of hydrofluoroolefins.
  • the present invention relates to a process for the production of 2, 3,3,3-tetrafluoropropene and / or 1,2,3,3,3-pentafluoropropene.
  • Hydrofluorocarbons and in particular hydrofluoroolefins, such as 2, 3,3,3-tetrafluoro-1-propene (HFO 1234yf) are compounds known for their properties as refrigerants and heat transfer fluids, extinguishers, propellants, foaming agents , blowing agents, gaseous dielectrics, polymerization or monomer medium, carrier fluids, abrasive agents, drying agents and fluids for power generation unit.
  • HFCs hydrofluorocarbons
  • HFO 1234yf 2, 3,3,3-tetrafluoro-1-propene
  • WO 2011/010025 describes a process for the preparation of 2,3,3,3-tetrafluoro-1-propene comprising the following steps: (i) gas phase hydrogenation of hexafluoropropylene to 1,1,1,2,3,3- hexafluoropropane in the presence of a superstoichiometric amount of hydrogen and a catalyst in a reactor; (ii) dehydrofluorination of
  • Document CN103449963 describes a process for preparing 2,3,3,3-tetrafluoropropene comprising in particular a step of dehydrofluorination in the presence of an alkaline solution and of an organic solvent.
  • Document US 2010/0029997 describes a process for producing 2,3,3,3-tetrafluoropropene. Nevertheless, there is still a need for an efficient process for the preparation of 2,3,3,3-tetrafluoropropene with high selectivity and conversion.
  • the present invention provides a process for the production of 1, 2, 3,3,3-pentafluoropropene and / or 2,3,3,3-tetrafluoropropene comprising a step of dehydrofluorination of 1,1,1, 2,3,3-hexafluoropropane and / or 1,1,1,2,3-pentafluoropropane using a mixture containing water and an alkali hydroxide under conditions sufficient to produce a reaction medium comprising 1 , 2,3,3,3-pentafluoropropene and / or 2,3,3,3-tetrafluoropropene, characterized in that said dehydrofluorination step is carried out in the presence of a co-current of water vapor.
  • said co-stream of water vapor is injected into the reaction medium.
  • said process is carried out in the presence of a molar ratio between said stream of water vapor and 1,1,1,2,3,3-hexafluoropropane and / or
  • 1.1.1.2.3-pentafluoropropane is between 0.1 and 2.2.
  • said method is carried out continuously.
  • the present invention provides a process for producing 1,2,3,3,3-pentafluoropropene comprising the steps of:
  • the present invention provides a process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
  • step c) gas phase hydrogenation of 1,2,3,3,3-pentafluoropropene in the presence of hydrogen and a hydrogenation catalyst under conditions sufficient to form a stream comprising 1,1,1,2,3- pentafluoropropane; d) dehydrofluorination of said stream comprising 1,1,1,2,3-pentafluoropropane obtained in step c) according to the present invention to produce 2,3,3,3-tetrafluoropropene.
  • the present invention provides a process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
  • step d) dehydrofluorination of said stream comprising 1,1,1,2,3-pentafluoropropane obtained in step c) according to the present invention to produce 2,3,3,3-tetrafluoropropene.
  • the hydrogenation catalyst used in stages a) and / or c) comprises between 0.001 and 2.0% by weight of palladium supported on alumina, preferably in the alpha polymorphic form.
  • the present invention provides a storage device containing a closed container under pressure and a composition comprising at least 95% by weight of
  • composition being contained in said container under a test pressure of between 10 and 100 bar and said container comprises an interior surface at least partially covered by a coating comprising zinc.
  • a process for producing 1, 2, 3,3,3-pentafluoropropene and / or 2,3,3,3-tetrafluoropropene is provided.
  • the present invention provides a process for the production of 1,2,3,3,3-pentafluoropropene or a process for the production of 2,3,3,3-tetrafluoropropene or a process for the co-production of 1,2,3,3. , 3-pentafluoropropene and 2,3,3,3-tetrafluoropropene.
  • the operating conditions listed below apply to any of the production processes.
  • Said process for the production of 1,2,3,3,3-pentafluoropropene and / or 2,3,3,3-tetrafluoropropene comprises a step of dehydrofluorination of 1, 1,1, 2,3,3-hexafluoropropane and / or 1,1,1,2,3-pentafluoropropane using a mixture containing water and an alkali hydroxide under conditions sufficient to produce 1,2,3,3,3-pentafluoropropene and / or 2,3,3,3-tetrafluoropropene.
  • said method of producing comprises a step of dehydrofluorination of 1, 1,1, 2,3,3-hexafluoropropane and / or 1,1,1,2,3-pentafluoropropane using a mixture containing water and an alkali hydroxide under conditions sufficient to produce 1,2,3,3,3-pentafluoropropene and / or 2,3,3,3-tetrafluoropropene.
  • 1.2.3.3.3-pentafluoropropene comprises a step of dehydrofluorination of 1, 1,1, 2,3,3-hexafluoropropane using a mixture containing water and an alkali hydroxide under conditions sufficient to produce 1 , 2,3,3,3-pentafluoropropene.
  • Said process for the production of 2,3,3,3-tetrafluoropropene comprises a step of dehydrofluorination of the
  • 1.1.1.2.3-Pentafluoropropane using a mixture containing water and an alkali hydroxide under conditions sufficient to produce 2,3,3,3-tetrafluoropropene Said process for the production of 1,2,3,3,3-pentafluoropropene and 2,3,3,3-tetrafluoropropene comprises a step of dehydrofluorination of 1,1,1,2,3,3-hexafluoropropane and 1, 1,1,2,3-pentafluoropropane using a mixture containing water and an alkali hydroxide under conditions sufficient to produce 1,2,3,3,3-pentafluoropropene and 2,3,3, 3- tetrafluoropropene.
  • the step of dehydrofluorination of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,3-pentafluoropropane is carried out simultaneously.
  • said dehydrofluorination step is carried out in the presence of a co-current of water vapor.
  • a co-current of water vapor the applicant has surprisingly noticed that the implementation of the dehydrofluorination step in the presence of said co-current makes it possible to improve the conversion and the selectivity of the dehydrofluorination reaction.
  • said co-stream of water vapor is injected into the aqueous reaction medium formed by said mixture containing water and an alkali hydroxide.
  • the present process is carried out in the presence of a molar ratio between said co-stream of water vapor and 1,1,1,2,3,3-hexafluoropropane and / or 1,1,1. , 2, 3- pentafluoropropane between 0.1 and 2.2, advantageously between 0.2 and 1.8, preferably between 0.3 and 1.5, more preferably between 0.4 and 1.0, in particular between 0.4 and 0.8.
  • the present process for the production of 1,2,3,3,3-pentafluoropropene is preferably carried out in the presence of a molar ratio between said co-stream of water vapor and 1, 1,1, 2 , 3,3-hexafluoropropane between 0.1 and 2.2, advantageously between 0.2 and 1.8, preferably between 0.3 and 1.5, more preferably between 0.4 and 1.0, in particular between 0.4 and 0.8.
  • the present process for the production of 2,3,3,3-tetrafluoropropene is preferably carried out in the presence of a molar ratio between said co-stream of water vapor and 1,1, 1,2,3-pentafluoropropane.
  • the present process for the production of 1,2,3,3,3-pentafluoropropene and 2,3,3,3-tetrafluoropropene is preferably carried out in the presence of a molar ratio between on the one hand said co-current of water vapor and on the other hand 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,3-pentafluoropropane between 0.1 and 2.2, advantageously between 0.2 and 1.8, preferably between 0.3 and 1.5, more preferably between 0.4 and 1.0, in particular between 0.4 and 0.8.
  • said co-stream of water vapor is introduced into said reaction medium simultaneously with the stream of 1,1,1,2,3,3-hexafluoropropane and / or 1,1,1,2,3-pentafluoropropane. .
  • said co-stream of water vapor is mixed with a stream of 1,1,1,2,3,3-hexafluoropropane and / or 1,1,1,2,3-pentafluoropropane prior to its introduction. in the reaction medium.
  • the mixture between said co-stream of water vapor and said stream of 1,1,1,2,3,3-hexafluoropropane and / or 1,1,1,2,3-pentafluoropropane can be carried out at using a static mixer or directly in line.
  • the introduction of the mixture obtained into the reaction medium can be carried out using a gas diffuser.
  • the alkali hydroxide used for the dehydrofluorination step is NaOH or KOH.
  • the alkali hydroxide used for the dehydrofluorination step is KOH.
  • the dehydrofluorination step is preferably carried out using a mixture containing water and potassium hydroxide and advantageously carried out in a stirred reactor.
  • the potassium hydroxide is preferably present in the reaction medium in an amount of between 20 and 75% by weight and advantageously between 55 and 70% by weight relative to the weight of the water and KOH mixture.
  • the aqueous reaction medium of the dehydrofluorination step, comprising KOH is preferably maintained at a temperature between 80 and 180 ° C, advantageously between 125 and 180 ° C.
  • a temperature of the particularly preferred reaction medium is between 145 and 165 ° C.
  • the dehydrofluorination step using KOH can be carried out at a pressure of 0.5 to 20 bara but it is preferred to work at a pressure of between 0.5 and 5 bara and more advantageously between 1.1 and 2 , 5 bara.
  • potassium fluoride is formed.
  • the process according to the present invention may comprise a treatment step during which the potassium fluoride coproduced in the dehydrofluorination step is contacted with calcium hydroxide in an aqueous reaction medium at a temperature preferably between 50 and 150 ° C and advantageously between 70 and 120 ° C and more preferably between 70 and 100 ° C.
  • the method is carried out continuously.
  • the present invention relates to a process for the production of 1, 2, 3,3,3-pentafluoropropene comprising the steps of:
  • a ' optionally drying said stream comprising 1,1,1,2,3,3-hexafluoropropane; a ") optionally purification, preferably distillation, of said stream comprising 1,1,1,2,3,3-hexafluoropropane resulting from step a) or a ′);
  • the hydrogenation step a) is carried out in the presence of a catalyst.
  • a catalyst mention may in particular be made of metals such as Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te, optionally supported.
  • metals such as Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te, optionally supported.
  • support there may be mentioned in particular carbon, alumina, fluorinated alumina, AIF3, oxides, oxyfluorides and fluorides of Cr, Ti, Zr, Mg, Zn, silica and silicon carbide.
  • the support can be carbon, alumina, fluorinated alumina or AIF3.
  • the term carbon encompasses all activated charcoals such as, for example, activated charcoals prepared from wood, charcoal, fruit shells, coconut shells, peat or lignite.
  • the quantity of metals present in the catalyst, when the latter is supported, can be between 0.001 and 10% by weight, preferably between 0.001 and 1.0% by weight, in particular from 0.01 to 0.2 % in weight.
  • the hydrogenation step is advantageously carried out in the presence of Pd supported on alumina, preferably in the polymorphic form. alpha.
  • said hydrogenation catalyst may comprise Pd supported on alumina in the alpha polymorphic form; the palladium representing between 0.001 and 1.0% by weight, preferably from 0.01 to 0.2% based on the total weight of the catalyst.
  • the hydrogenation step can be carried out both in the liquid phase and in the gas phase. The gas phase is however preferred.
  • the hydrogenation step a) is carried out in the presence of hydrogen, advantageously with a hydrogen / hexafluoropropene molar ratio of between 1 and 50, and very particularly between 2 and 15.
  • the hydrogenation step c) is carried out in the presence of hydrogen, advantageously with a hydrogen / 1, 2, 3,3,3-pentafluoropropene molar ratio of between 1 and 50, and very particularly between 2 and 15.
  • the hydrogenation step a) is preferably carried out at a temperature between 50 and 200 ° C, preferably between 80 and 120 ° C.
  • the temperature at the inlet of the reactor of the hydrogenation step a) is between 30 and 100 ° C, advantageously between 40 and 80 ° C.
  • the contact time of the hydrogenation step a defined as the ratio of the volume of the catalytic bed to the volume flow rate of the total flow under normal temperature and pressure conditions, is preferably between 0.1 s and 20 s and advantageously between 0.5 and 5 s.
  • the hydrogenation step a) is preferably carried out at an absolute pressure of between 0.5 and 20 bara and advantageously between 1 and 5 bara.
  • the hydrogenation step a) is carried out in the presence of a diluent which can be co-introduced with the reagents into the reaction medium.
  • the diluent is an inert gas which does not react under the conditions of the hydrogenation step.
  • diluent mention may be made of nitrogen, helium or argon.
  • the molar ratio of the diluent / reactants at the inlet to the reactor of the hydrogenation step a) can be between 100: 1 and 1: 1, preferably between 10: 1 and 1: 1, advantageously between 5: 1 and 1: 1.
  • the diluent can be the hydrogenation product which is HFC-236ea.
  • the gaseous effluent from the reactor comprising HFC-236ea, unreacted hydrogen and optionally unreacted hexafluoropropene, 1,1,1,2,3-pentafluoropropane (HFC- 245eb) and 1,1,2-tetrafluoropropane (HFC-254eb) is recycled and the other part of the gas effluent from the reactor is subjected to a separation and / or purification step.
  • the gas stream comprising the recycling loop and the reactants can be preheated before introduction into the reactor.
  • the part of the gaseous effluent recycled to the reactor preferably represents at least 90% by volume of the total effluent at the outlet of the reactor, advantageously at least 93% by volume.
  • the part of the effluent recycled to the reactor represents between 94 and 98% by volume of the total effluent at the outlet of the reactor.
  • the stream at the end of the hydrogenation step a) can be subjected to a condensation step under conditions such that the unreacted hydrogen is not condensed and that a part of HFC-236ea formed at step a) is condensed.
  • the condensation step is carried out at a temperature between 0 and 50 ° C and at a pressure between 0.5 and 20 bar absolute, advantageously between 1 and 5 bar absolute.
  • the condensation step is carried out under conditions such that between 1 and 30% of HFC-236ea at the outlet of the reactor is condensed and advantageously between 2 and 10% is condensed.
  • the non-condensed fraction is then recycled to the hydrogenation stage a) after optional heating.
  • the condensed fraction is then evaporated before being sent to step b). Before carrying out step b), the condensed fraction can be purified and / or dried.
  • step a ′) of drying said stream comprising 1, 1,1, 2,3,3-hexafluoropropane can be carried out by contacting said stream with a solid absorbent.
  • Said solid absorbent may comprise an agent which absorbs acid molecules and / or a water absorbent.
  • Said water-absorbing agent may be an inorganic salt such as magnesium sulfate, calcium sulfate, calcium chloride or may be a molecular sieve type 3A, 4A, 5A, AW500, XH-7, XH-9 or 13X, silica gel, activated carbon or a mixture thereof.
  • Said agent absorbing acid molecules may be a metal oxide such as aluminum oxide, the oxide of an alkaline earth metal, the oxide of an alkali metal or the hydroxide of a metal such as aluminum hydroxide, alkaline earth metal hydroxide, alkali metal hydroxide, aluminosilicates such as andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate or silica or a mixture of these this.
  • the drying step is carried out in the presence of an agent which absorbs water and an agent which absorbs acid molecules, said stream is preferably brought into contact with the agent which absorbs acid molecules and then with the absorbing agent. 'water.
  • the agent absorbing the acid molecules preferably absorbs hydrofluoric acid.
  • step a ") of purification, preferably distillation, of said stream comprising 1,1,1,2,3,3-hexafluoropropane resulting from step a) or a ′) makes it possible to removing by-products formed during step a) to recover a stream comprising purified 1,1,1,2,3,3-hexafluoropropane, that is to say in which the content of by-products is diminished.
  • Step b) of dehydrofluorination of 1,1,1,2,3,3-hexafluoropropane is carried out under the conditions as detailed above in relation to step iii) of the present process.
  • Step b) of the present process makes it possible to obtain a stream comprising 1, 2, 3,3,3-pentafluoropropene.
  • the latter can optionally be purified or not before carrying out the hydrogenation step c) described below.
  • one or more adiabatic reactor (s) is preferably used.
  • the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of:
  • step c) dehydrofluorination of said stream comprising 1,1,1,2,3-pentafluoropropane obtained in step c) according to the present invention.
  • the 1,2,3,3,3-pentafluoropropene used in step c) is obtained by step b) according to the second aspect of the present invention.
  • the hydrogenation step c) is carried out in the presence of a catalyst.
  • a catalyst mention may in particular be made of metals such as Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te, optionally supported.
  • metals such as Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te, optionally supported.
  • support there may be mentioned in particular carbon, alumina, fluorinated alumina, AIF3, oxides, oxyfluorides and fluorides of Cr, Ti, Zr, Mg, Zn, silica and silicon carbide.
  • the quantity of metals present in the catalyst, when the latter is supported can be between 0.001 and 10% by weight, preferably between 0.001 and 1.0% by weight, in particular from 0.01 to 0.2 % in weight.
  • the hydrogenation step is advantageously carried out in the presence of Pd supported on alumina, preferably in the alpha polymorphic form.
  • said hydrogenation catalyst may comprise Pd supported on alumina in the alpha polymorphic form; the palladium representing between 0.001 and 1.0% by weight, preferably from 0.01 to 0.2% based on the total weight of the catalyst.
  • the hydrogenation step can be carried out both in the liquid phase and in the gas phase.
  • the gas phase is however preferred.
  • the hydrogenation step c) is carried out in the presence of hydrogen, advantageously with a hydrogen / hexafluoropropene molar ratio of between 1 and 50, and very particularly between 2 and 15.
  • the hydrogenation step c) is implemented in presence of hydrogen, advantageously with a hydrogen / 1, 2, 3,3,3-pentafluoropropene molar ratio of between 1 and 50, and very particularly between 2 and 15.
  • the hydrogenation step c) is preferably carried out carried out at a temperature between 50 and 200 ° C, preferably between 80 and 120 ° C.
  • the temperature at the inlet of the reactor of the hydrogenation step c) is between 30 and 100 ° C, advantageously between 40 and 80 ° C.
  • the contact time of the hydrogenation step c defined as the ratio of the volume of the catalytic bed to the volume flow rate of the total flow under normal temperature and pressure conditions, is preferably between 0.1 s and 20 s and advantageously between 0.5 and 5 s.
  • the hydrogenation step c) is preferably carried out at an absolute pressure of between 0.5 and 20 bara and advantageously between 1 and 5 bara.
  • the hydrogenation step c) is carried out in the presence of a diluent which can be co-introduced with the reagents into the reaction medium.
  • the diluent is an inert gas which does not react under the conditions of the hydrogenation step.
  • diluent mention may be made of
  • the diluent is 1.1.1.2.3-pentafluoropropane, nitrogen, helium or argon.
  • the diluent is
  • the molar ratio of diluent / reactants at the inlet of the reactor of hydrogenation step c) can be between 100: 1 and 1: 1, preferably between 10: 1 and 1: 1, advantageously between 5: 1 and 1: 1.
  • the 1,1,1,2,3-pentafluoropropane stream obtained in step c) can be purified before carrying out step d).
  • the purification can include a drying step and / or one or more distillation steps.
  • drying can be carried out by contacting said stream comprising
  • Said solid absorbent may comprise an agent which absorbs acid molecules and / or a water absorbent.
  • Said water-absorbing agent may be an inorganic salt such as magnesium sulfate, calcium sulfate, calcium chloride or may be a molecular sieve type 3A, 4A, 5A, AW500, XH-7, XH-9 or 13X, silica gel, activated carbon or a mixture thereof.
  • Said agent absorbing acid molecules may be a metal oxide such as aluminum oxide, the oxide of an alkaline earth metal, the oxide of an alkali metal or the hydroxide of a metal such as aluminum hydroxide, alkaline earth metal hydroxide, alkali metal hydroxide, aluminosilicates such as andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate or silica or a mixture of these this.
  • a water-absorbing agent and an agent absorbing acid molecules said stream comprising 1,1,1,2,3-pentafluoropropane is preferably brought into contact with the agent absorbing acid molecules and then with the 'water absorbent agent.
  • the agent absorbing the acid molecules preferably absorbs hydrofluoric acid.
  • the purification by one or more distillation steps can be carried out in a single step implementing a distillation column with a separation wall (i.e. Dividing Wall Column).
  • the purification can be carried out by carrying out two successive distillation steps, for example by using two distillation columns.
  • a first distillation can be carried out at a pressure between 1 and 20 bar, advantageously between 1 and 15 bar absolute, preferably between 5 and 10 bar absolute and the temperature at the top of the distillation column is between 20 ° C and 100 ° C, preferably between 45 and 75 ° C.
  • a stream comprising 1,1,1,2,3-pentafluoropropane is then recovered at the bottom of the distillation column.
  • a current comprising
  • 1.1.1.2.3-Pentafluoropropane is then recovered at the top of the distillation column. Said stream comprising 1,1,1,2,3-pentafluoropropane, resulting from this second distillation, can be used for the implementation of step d) described above.
  • one or more adiabatic reactor (s) is preferably used.
  • the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of:
  • a ' optionally drying said stream comprising 1,1,1,2,3,3-hexafluoropropane; a ") optionally purification, preferably distillation, of said stream comprising
  • step b) dehydrofluorination of said stream comprising 1,1,1,2,3,3-hexafluoropropane obtained in step a) or a ') or a ") according to the present invention to produce 1, 2, 3,3,3- pentafluoropropene; b ') optionally drying said stream comprising 1,2,3,3,3-pentafluoropropene; b ") optionally purification, preferably distillation, of said stream comprising 1,2,3,3,3-pentafluoropropene resulting from step b) or b ′);
  • step c) gas phase hydrogenation of 1,2,3,3,3-pentafluoropropene obtained in step b) or b ') or b ") in the presence of hydrogen and a hydrogenation catalyst under sufficient conditions to form a stream comprising 1,1,1,2,3-pentafluoropropane; d) dehydrofluorination of said stream comprising 1,1,1,2,3-pentafluoropropane obtained in step c) according to the present invention to produce 2,3 , 3,3-tetrafluoropropene.
  • the 2,3,3,3-tetrafluoropropene produced in step d) can be purified by one or more steps including, for example, condensation, evaporation, decantation, absorption, washing, liquid extraction. liquid, photochlorination, distillation, for example extractive distillation, azeotropic distillation, adsorption on solid and more particularly adsorption on molecular sieve, alumina or activated carbon and membrane separation.
  • the purification of 2,3,3,3-tetrafluoropropene can comprise at least one adsorption step, preferably on activated alumina and / or molecular sieve, and at least one distillation step.
  • the purification of 2,3,3,3-tetrafluoropropene may subsequently comprise one or more distillation steps, preferably two distillation steps.
  • the first distillation can be carried out at a pressure of 2 to 20 bar, advantageously 11 to 15 bar absolute, and the temperature at the top of the distillation column is preferably from 35 ° C to 50 ° C.
  • the second distillation can be carried out at a pressure of 2 to 20 bar, advantageously 9 to 13 bar absolute, and preferably, the temperature at the top of the distillation column is from 36 ° C to 51 ° C.
  • a stream comprising 2,3,3,3-tetrafluoropropene is thus obtained after these various purification steps.
  • Said stream preferably comprises a mass content of 2,3,3,3-tetrafluoropropene greater than 99.5%, preferably greater than 99.8%.
  • Embodiments of the present invention can be used in combination with known processes for the production of hydrofluoroolefins, including, without limitation, the processes described in US 8,710,282; US 8,853,472; US 9,884,796; US 8,835,699; US 2006/0043053, US 2018/0327340, US 8,389,779, US 8,779,217, US 8,809,601, US 8,946493, US 8,912,370, US 9,018,429, US 9,255,047, US 9,758,451, US 8,536,386.
  • the disclosures relating to the production processes of the hydrofluoroolefins are incorporated by reference.
  • a storage device contains a closed container under pressure and a composition comprising at least 95% by weight of 2,3,3,3-tetrafluoropropene and less than 3000 ppm of potassium or sodium; said composition being contained in said container under a test pressure of between 10 and 100 bar and said container comprises an interior surface at least partially covered by a coating comprising zinc.
  • said composition comprises less than 2000 ppm, advantageously less than 1500 ppm, preferably less than 1000 ppm, in particular less than 500 ppm, more particularly less than 250 ppm of potassium or sodium.
  • Said container is preferably made of metal. Said container comprises an interior surface in contact with said composition.
  • said interior surface is at least partially covered with a coating comprising zinc.
  • at least 90% of said interior surface in contact with said composition is covered with a coating comprising zinc, advantageously at least 95% of said interior surface in contact with said composition is covered with a coating comprising zinc, preferably at least 98% of said interior surface in contact with said composition is covered with a coating comprising zinc, in particular at least 99% of said interior surface in contact with said composition is covered with a coating comprising zinc.
  • the entire interior surface of the container in contact with said composition can be covered with a coating comprising zinc.
  • said container is made of steel, in particular, said container is made of carbon steel.
  • the coating comprises at least 50% by weight of zinc based on the total weight of the coating, advantageously at least 70% by weight of zinc based on the total weight of the coating, preferably at least 90% by weight of the coating.
  • weight of zinc based on the total weight of the coating more preferably at least 95% by weight of zinc based on the total weight of the coating, in particular at least 99% zinc based on the total weight of the coating, more particularly at least 99 , 9% zinc based on the total weight of the coating.
  • said container is closed and withstands a test pressure of between 10 and 100 bar, advantageously between 15 and 70 bar, preferably between 20 and 60 bar, in particular 40 to 50 bar.
  • said inner surface is made of stainless steel, for example SS316L.
  • said container is closed and withstands a test pressure of between 10 and 100 bar, advantageously between 15 and 70 bar, preferably between 20 and 60 bar, in particular 40 to 50 bar.
  • a test pressure of between 10 and 100 bar, advantageously between 15 and 70 bar, preferably between 20 and 60 bar, in particular 40 to 50 bar.
  • a quantity of 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) or 1,1,1,2,3-pentafluoropropane (HFC-245eb) is introduced into the reaction medium.
  • HFC-236ea 1,1,1,2,3-pentafluoropropane
  • HFC-245eb 1,1,1,2,3-pentafluoropropane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de production de 1,2,3,3,3-pentafluoropropène et/ou de 2,3,3,3-tétrafluoropropène comprenant une étape de déhydrofluoration du,1,1,2,3,3-hexafluoropropane et/ou du 1,1,1,2,3-pentafluoropropane à l'aide d'un mélange contenant de l'eau et un hydroxyde alcalin dans des conditions suffisantes pour produire un milieu réactionnel comprenant 1,2,3,3,3-pentafluoropropène et/ou 2,3,3,3-tétrafluoropropène, caractérisé en ce que ladite étape de déhydrofluoration est mise en œuvre en présence d'un co- courant de vapeur d'eau.

Description

Procédé de production de fluorooléfines
Domaine technique de l'invention
La présente invention se rapporte à un procédé de production d'hydrofluorooléfines. En particulier, la présente invention se rapporte à un procédé de production de 2, 3,3,3- tétrafluoropropène et/ou de 1,2,3,3,3-pentafluoropropène.
Arrière-plan technologique de l'invention
Les hydrofluorocarbones (HFC) et en particulier les hydrofluorooléfines, telles que le 2, 3,3,3- tétrafluoro-l-propène (HFO 1234yf) sont des composés connus pour leurs propriétés de réfrigérants et fluides caloporteurs, extinctrices, propulseurs, agents moussants, agents gonflants, diélectriques gazeux, milieu de polymérisation ou monomère, fluides supports, agents pour abrasifs, agents de séchage et fluides pour unité de production d’énergie. A la différence des CFC et des HCFC, qui sont potentiellement dangereux pour la couche d’ozone, les HFOs ne posent pas de problème pour la couche d’ozone.
On connaît plusieurs procédés de fabrication du HFO-1234yf mettant en oeuvre des étapes de déhydrofluoration. WO 2011/010025 décrit un procédé de préparation de 2,3,3,3-tétrafluoro- 1-propène comprenant les étapes suivantes: (i) hydrogénation en phase gazeuse de hexafluoropropylène en 1,1,1,2,3,3-hexafluoropropane en présence d'une quantité surstoechiométrique d'hydrogène et d'un catalyseur dans un réacteur; (ii) déhydrofluoration du
1.1.1.2.3.3-hexafluoropropane obtenu à l’étape précédente en 1,2,3,3,3-pentafluoropropène-l en présence d'un catalyseur de déhydrofluoration ou à l'aide d'un mélange eau et hydroxyde de potassium; (iii) hydrogénation en phase gazeuse du 1,2,3,3,3-pentafluoropropène-l obtenu à l’étape précédente en 1,1,1,2,3-pentafluoropropane en présence d'une quantité surstoechiométrique d'hydrogène et d'un catalyseur dans un réacteur ; (iv) purification du
1.1.1.2.3-pentafluoropropane obtenu à l’étape précédente ; (v) déhydrofluoration du 1,1,1,2,3- pentafluoropropane purifié en 2,3,3,3-tétrafluoro-l-propène en présence d'un catalyseur de déhydrofluoration ou à l'aide d'un mélange eau et hydroxyde de potassium; (vi) purification du
2.3.3.3-tétrafluoro-l-propène obtenu à l’étape précédente. Le document CN103449963 décrit un procédé de préparation du 2,3,3,3-tétrafluoropropène comprenant notamment une étape de déhydrofluoration en présence d'une solution alcaline et d'un solvant organique. Le document US 2010/0029997 décrit un procédé de production du 2,3,3,3-tétrafluoropropène. Néanmoins, il existe toujours un besoin pour un procédé efficace de préparation de 2, 3,3,3- tétrafluoropropène avec une sélectivité et une conversion élevées.
Résumé de l'invention
Selon un premier aspect, la présente invention fournit un procédé de production de 1, 2, 3,3,3- pentafluoropropène et/ou de 2,3,3,3-tétrafluoropropène comprenant une étape de déhydrofluoration du 1,1,1,2,3,3-hexafluoropropane et/ou du 1,1,1,2,3-pentafluoropropane à l'aide d'un mélange contenant de l'eau et un hydroxyde alcalin dans des conditions suffisantes pour produire un milieu réactionnel comprenant 1,2,3,3,3-pentafluoropropène et/ou 2,3,3,3- tétrafluoropropène, caractérisé en ce que ladite étape de déhydrofluoration est mise en oeuvre en présence d'un co-courant de vapeur d'eau.
Selon un mode de réalisation préféré, ledit co-courant de vapeur d'eau est injecté dans le milieu réactionnel.
Selon un mode de réalisation préféré, ledit procédé est mis en oeuvre en présence d'un ratio molaire entre ledit courant de vapeur d'eau et 1,1,1,2,3,3-hexafluoropropane et/ou du
1.1.1.2.3-pentafluoropropane est compris entre 0,1 et 2,2.
Selon un mode de réalisation préféré, ledit procédé est mis en oeuvre en continu.
Selon un second aspect, la présente invention fournit un procédé de production du 1,2,3,3,3- pentafluoropropène comprenant les étapes de :
a) hydrogénation en phase gazeuse de hexafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation pour former un courant comprenant 1,1,1,2,3,3- hexafluoropropane ;
a') optionnellement séchage dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane ;
a") optionnellement purification, de préférence distillation, dudit courant comprenant
1.1.1.2.3.3-hexafluoropropane issu de l'étape a) ou a') ;
b) déshydrofluoration dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane obtenu à l'étape a) ou a') ou a") selon la présente invention pour produire 1,2,3,3,3-pentafluoropropène. Selon un troisième aspect, la présente invention fournit un procédé de production du 2,3,3,3- tétrafluoropropène comprenant les étapes de :
c) hydrogénation en phase gazeuse du 1,2,3,3,3-pentafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation dans des conditions suffisantes pour former un courant comprenant 1,1,1,2,3-pentafluoropropane ; d) déshydrofluoration dudit courant comprenant 1,1,1,2,3-pentafluoropropane obtenu à l'étape c) selon la présente invention pour produire 2,3,3,3-tétrafluoropropène.
Selon un quatrième aspect, la présente invention fournit un procédé de production du 2,3,3,3- tétrafluoropropène comprenant les étapes de :
a) hydrogénation en phase gazeuse de hexafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation pour former un courant comprenant 1, 1,1, 2,3,3- hexafluoropropane ;
a') optionnellement séchage dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane ;
a") optionnellement purification, de préférence distillation, dudit courant comprenant
1.1.1.2.3.3-hexafluoropropane issu de l'étape a) ou a') ;
b) déshydrofluoration dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane obtenu à l'étape a) ou a') ou a") selon la présente invention pour produire 1,2,3,3,3-pentafluoropropène b') optionnellement séchage dudit courant comprenant 1,2,3,3,3-pentafluoropropène ;
b") optionnellement purification, de préférence distillation, dudit courant comprenant
1.2.3.3.3-pentafluoropropène issu de l'étape b) ou b') ;
c) hydrogénation en phase gazeuse du 1,2,3,3,3-pentafluoropropène obtenu à l'étape b) ou b') ou b") en présence d'hydrogène et d'un catalyseur d'hydrogénation dans des conditions suffisantes pour former un courant comprenant 1,1,1,2,3-pentafluoropropane ;
d) déshydrofluoration dudit courant comprenant 1,1,1,2,3-pentafluoropropane obtenu à l'étape c) selon la présente invention pour produire 2,3,3,3-tétrafluoropropène.
Selon un mode de réalisation préféré, le catalyseur d'hydrogénation utilisé aux étapes a) et/ou c) comprend entre 0,001 et 2,0 % en poids de palladium supporté sur alumine, de préférence sous la forme polymorphique alpha.
Selon un cinquième aspect, la présente invention fournit un dispositif de stockage contenant un container fermé sous pression et une composition comprenant au moins 95% en poids de
2.3.3.3-tétrafluoropropène et moins de 3000 ppm de potassium ou de sodium ; ladite composition étant contenue dans ledit container sous une pression d'épreuve comprise entre 10 et 100 bar et ledit container comprend une surface intérieure au moins partiellement recouverte par un revêtement comprenant du zinc.
Description détaillée de l'invention Selon un premier aspect de la présente invention, un procédé de production de 1, 2, 3,3,3- pentafluoropropène et/ou de 2,3,3,3-tétrafluoropropène est fourni. Ainsi, la présente invention fournit un procédé de production de 1,2,3,3,3-pentafluoropropène ou un procédé de production de 2,3,3,3-tétrafluoropropène ou un procédé de coproduction de 1,2,3,3,3- pentafluoropropène et de 2,3,3,3-tétrafluoropropène. Sauf mention contraire, les conditions opératoires reprises ci-dessous s'appliquent à l'un quelconque des procédés de production. Ledit procédé de production de 1,2,3,3,3-pentafluoropropène et/ou de 2,3,3,3- tétrafluoropropène comprend une étape de déhydrofluoration du 1, 1,1, 2,3,3- hexafluoropropane et/ou du 1,1,1,2,3-pentafluoropropane à l'aide d'un mélange contenant de l'eau et un hydroxyde alcalin dans des conditions suffisantes pour produire 1,2,3,3,3- pentafluoropropène et/ou 2,3,3,3-tétrafluoropropène. Ainsi, ledit procédé de production de
1.2.3.3.3-pentafluoropropène comprend une étape de déhydrofluoration du 1, 1,1, 2,3,3- hexafluoropropane à l'aide d'un mélange contenant de l'eau et un hydroxyde alcalin dans des conditions suffisantes pour produire 1,2,3,3,3-pentafluoropropène. Ledit procédé de production de 2,3,3,3-tétrafluoropropène comprend une étape de déhydrofluoration du
1.1.1.2.3-pentafluoropropane à l'aide d'un mélange contenant de l'eau et un hydroxyde alcalin dans des conditions suffisantes pour produire 2,3,3,3-tétrafluoropropène. Ledit procédé de production de 1,2,3,3,3-pentafluoropropène et de 2,3,3,3-tétrafluoropropène comprend une étape de déhydrofluoration du 1,1,1,2,3,3-hexafluoropropane et du 1,1,1,2,3- pentafluoropropane à l'aide d'un mélange contenant de l'eau et un hydroxyde alcalin dans des conditions suffisantes pour produire 1,2,3,3,3-pentafluoropropène et 2,3,3,3- tétrafluoropropène. Dans ce dernier cas, l'étape de déhydrofluoration du 1,1,1,2,3,3- hexafluoropropane et du 1,1,1,2,3-pentafluoropropane est mise en oeuvre de manière simultanée.
De préférence, dans l'un quelconque des procédés, ladite étape de déhydrofluoration est mise en oeuvre en présence d'un co-courant de vapeur d'eau. Le demandeur a de manière surprenante remarqué que la mise en oeuvre de l'étape de déhydrofluoration en présence dudit co-courant permet d'améliorer la conversion et la sélectivité de la réaction de déhydrofluoration.
Selon un mode de réalisation préféré, ledit co-courant de vapeur d'eau est injecté dans le milieu réactionnel aqueux formé par ledit mélange contenant de l'eau et un hydroxyde alcalin.
De préférence, le présent procédé est mis en oeuvre en présence d'un ratio molaire entre ledit co-courant de vapeur d'eau et 1,1,1,2,3,3-hexafluoropropane et/ou du 1,1, 1,2, 3- pentafluoropropane compris entre 0,1 et 2,2, avantageusement entre 0,2 et 1,8, de préférence entre 0,3 et 1,5, plus préférentiellement entre 0,4 et 1,0, en particulier entre 0,4 et 0,8.
Ainsi, le présent procédé de production de 1,2,3,3,3-pentafluoropropène est de préférence mis en oeuvre en présence d'un ratio molaire entre ledit co-courant de vapeur d'eau et 1, 1,1, 2,3,3- hexafluoropropane compris entre 0,1 et 2,2, avantageusement entre 0,2 et 1,8, de préférence entre 0,3 et 1,5, plus préférentiellement entre 0,4 et 1,0, en particulier entre 0,4 et 0,8. Le présent procédé de production de 2,3,3,3-tétrafluoropropène est de préférence mis en oeuvre en présence d'un ratio molaire entre ledit co-courant de vapeur d'eau et 1,1, 1,2,3- pentafluoropropane compris entre 0,1 et 2,2, avantageusement entre 0,2 et 1,8, de préférence entre 0,3 et 1,5, plus préférentiellement entre 0,4 et 1,0, en particulier entre 0,4 et 0,8. Le présent procédé de production de 1,2,3,3,3-pentafluoropropène et 2,3,3,3-tétrafluoropropène est de préférence mis en oeuvre en présence d'un ratio molaire entre d'une part ledit co-courant de vapeur d'eau et d'autre part 1,1,1,2,3,3-hexafluoropropane et 1,1,1,2,3-pentafluoropropane compris entre 0,1 et 2,2, avantageusement entre 0,2 et 1,8, de préférence entre 0,3 et 1,5, plus préférentiellement entre 0,4 et 1,0, en particulier entre 0,4 et 0,8.
De préférence, ledit co-courant de vapeur d'eau est introduit dans ledit milieu réactionnel simultanément au courant de 1,1,1,2,3,3-hexafluoropropane et/ou de 1,1,1,2,3- pentafluoropropane.
En particulier, ledit co-courant de vapeur d'eau est mélangé avec un courant de 1,1,1,2,3,3- hexafluoropropane et/ou de 1,1,1,2,3-pentafluoropropane préalablement à son introduction dans le milieu réactionnel. Le mélange entre ledit co-courant de vapeur d'eau et ledit courant de 1,1,1,2,3,3-hexafluoropropane et/ou de 1,1,1,2,3-pentafluoropropane peut être mis en oeuvre à l'aide d'un mélangeur statique ou directement en ligne. L'introduction du mélange obtenu dans le milieu réactionnel peut être mise en oeuvre à l'aide d'un diffuseur de gaz.
De préférence, l'hydroxyde alcalin utilisé pour l'étape de déhydrofluoration est NaOH ou KOH. En particulier, l'hydroxyde alcalin utilisé pour l'étape de déhydrofluoration est KOH.
De préférence, l'étape de déhydrofluoration est mise en oeuvre préférence à l'aide d'un mélange contenant de l'eau et de l'hydroxyde de potassium et avantageusement mise en oeuvre dans un réacteur agité. L'hydroxyde de potassium est, de préférence présent dans le milieu réactionnel en quantité comprise entre 20 et 75% en poids et avantageusement comprise entre 55 et 70% en poids par rapport au poids du mélange eau et KOH. Le milieu réactionnel aqueux de l'étape de déhydrofluoration, comprenant du KOH, est de préférence maintenu à une température comprise entre 80 et 180°C, avantageusement comprise entre 125 et 180°C. Une température du milieu réactionnel particulièrement préférée est comprise entre 145 et 165°C. L'étape de déhydrofluoration à l'aide du KOH peut être mise en oeuvre à une pression de 0,5 à 20 bara mais on préfère travailler à une pression comprise entre 0,5 et 5 bara et plus avantageusement entre 1,1 et 2,5 bara. Au cours de l'étape de déhydrofluoration à l'aide de KOH, il se forme du fluorure de potassium. Le procédé selon la présente invention peut comprendre une étape de traitement au cours de laquelle le fluorure de potassium coproduit à l'étape de déhydrofluoration est mis en contact avec de l'hydroxyde de calcium dans un milieu réactionnel aqueux à une température de préférence comprise entre 50 et 150 °C et avantageusement comprise entre 70 et 120°C et plus avantageusement entre 70 et 100°C.
Selon un mode de réalisation préféré, le procédé est mis en oeuvre en continu.
Selon un second aspect, la présente invention concerne un procédé de production du 1, 2, 3,3,3- pentafluoropropène comprenant les étapes de :
a) hydrogénation en phase gazeuse de hexafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation pour former un courant comprenant 1,1,1, 2,3,3- hexafluoropropane ;
a') optionnellement séchage dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane ; a") optionnellement purification, de préférence distillation, dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane issu de l'étape a) ou a') ;
b) déshydrofluoration dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane obtenu à l'étape a) ou a') ou a") selon la présente invention pour produire 1, 2, 3,3,3- pentafluoropropène.
De préférence, l'étape d'hydrogénation a) est mise en oeuvre en présence d'un catalyseur. Comme catalyseur, on peut citer notamment des métaux tels que Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te éventuellement supporté. Comme support, on peut citer notamment le carbone, l’alumine, l'alumine fluoré, AIF3, les oxydes, les oxyfluorures et les fluorures de Cr, Ti, Zr, Mg, Zn, la silice et le carbure de silicium. De préférence, le support peut être le carbone, l'alumine, l'alumine fluoré ou AIF3. Le terme carbone englobe tous les charbons actifs tels que par exemple les charbons actifs préparés à partir du bois, charbon, coques de fruits, coques de noix de coco, tourbe ou de lignite.
La quantité de métaux présents dans le catalyseur, lorsque celui-ci est supporté, peut être comprise entre 0,001 et 10 % en poids, de préférence comprise entre 0,001 et 1,0 % en poids, en particulier de 0,01 à 0,2% en poids. L'étape d'hydrogénation est avantageusement mise en oeuvre en présence du Pd supporté sur alumine, de préférence sous la forme polymorphique alpha. En particulier, ledit catalyseur d'hydrogénation peut comprendre du Pd supporté sur alumine sous la forme polymorphique alpha ; le palladium représentant entre 0,001 et 1,0% en poids, de préférence de 0,01 à 0,2% sur base du poids total du catalyseur. L'étape d'hydrogénation peut être mise en oeuvre aussi bien en phase liquide qu'en phase gaz. La phase gaz est toutefois préférée.
L'étape d'hydrogénation a) est mise en oeuvre en présence d'hydrogène, avantageusement avec un rapport molaire hydrogène / hexafluoropropène compris entre 1 et 50, et tout particulièrement compris entre 2 et 15. L'étape d'hydrogénation c) est mise en oeuvre en présence d'hydrogène, avantageusement avec un rapport molaire hydrogène / 1, 2, 3,3,3- pentafluoropropène compris entre 1 et 50, et tout particulièrement compris entre 2 et 15. L'étape d'hydrogénation a) est de préférence mise en oeuvre à une température comprise entre 50 et 200°C, de préférence comprise entre 80 et 120°C. De préférence, la température à l'entrée du réacteur de l'étape d'hydrogénation a) est comprise entre 30 et 100° C, avantageusement comprise entre 40 et 80° C.
Le temps de contact de l'étape d'hydrogénation a), défini comme le rapport du volume du lit catalytique sur le débit volumique du flux total dans les conditions normales de température et de pression, est de préférence comprise entre 0,1 s et 20 s et avantageusement comprise entre 0,5 et 5 s.
L'étape d'hydrogénation a) est de préférence mise en oeuvre à une pression absolue comprise entre 0,5 et 20 bara et avantageusement comprise entre 1 et 5 bara.
De préférence, l'étape d'hydrogénation a) est mise en oeuvre en présence d'un diluant qui peut être co-introduit avec les réactifs dans le milieu réactionnel. Le diluant est un gaz inerte qui ne réagit pas dans les conditions de l'étape d'hydrogénation. Comme diluant, on peut citer l'azote, l'hélium ou l'argon. Le rapport molaire du diluant/réactifs à l'entrée du réacteur de l'étape d'hydrogénation a) peut être compris entre 100 :1 et 1 :1, de préférence entre 10 :1 et 1 :1, avantageusement entre 5 :1 et 1 :1.
En particulier, lors de l'étape a) selon la présente invention, le diluant peut être le produit d'hydrogénation qui est le HFC-236ea. Dans ce cas, une partie de l'effluent gazeux issu du réacteur comprenant du HFC-236ea, de l'hydrogène non réagi et éventuellement de l'hexafluoropropène non réagi, du 1,1,1,2,3-pentafluoropropane (HFC-245eb) et du 1, 1,1,2- tetrafluoropropane (HFC-254eb) est recyclé et l'autre partie de l'effluent gazeux issu du réacteur est soumis à une étape de séparation et/ou purification. Le flux gazeux comprenant la boucle de recyclage et les réactifs peuvent être préchauffés avant introduction dans le réacteur. La partie de l'effluent gazeux recyclée au réacteur représente, de préférence au moins 90% en volume de la totalité de l'effluent à la sortie du réacteur, avantageusement au moins 93% en volume. De façon particulièrement préférée, la partie de l'effluent recyclée au réacteur représente entre 94 et 98% en volume de l'effluent total à la sortie du réacteur.
Le flux à l'issue de l'étape d'hydrogénation a) peut être soumis à une étape de condensation dans des conditions telles que l'hydrogène non réagi n'est pas condensé et qu'une partie d'HFC- 236ea formée à l'étape a) est condensée. De préférence, l'étape de condensation est mise en oeuvre à une température comprise entre 0 et 50°C et à une pression comprise entre 0,5 et 20 bar absolu, avantageusement entre 1 et 5 bars absolu. De préférence, l'étape de condensation est mise en oeuvre dans des conditions telles qu'entre 1 et 30 % d'HFC-236ea en sortie du réacteur est condensé et avantageusement entre 2 et 10 % est condensé. La fraction non condensée est ensuite recyclée à l'étape d'hydrogénation a) après un éventuel chauffage. La fraction condensée est ensuite évaporée avant d'être envoyée à l'étape b). Avant la mise en oeuvre de l'étape b), la fraction condensée peut être purifiée et/ou séchée.
Si elle est mise en oeuvre, l'étape a') de séchage dudit courant comprenant 1, 1,1, 2,3,3- hexafluoropropane peut être effectuée en mettant en contact ledit courant avec un agent absorbant solide. Ledit absorbant solide peut comprendre un agent absorbant les molécules acides et/ou un agent absorbant l'eau. Ledit agent absorbant l'eau peut être un sel inorganique tel que le sulfate de magnésium, le sulfate de calcium, le chlorure de calcium ou peut être un tamis moléculaire de type 3A, 4A, 5A, AW500, XH-7, XH-9 ou 13X, du gel de silice, du charbon actif ou un mélange de ceux-ci. Ledit agent absorbant les molécules acides peut être un oxyde de métal tel que l'oxyde d'aluminium, l'oxyde d'un métal alcalino-terreux, l'oxyde d'un métal alcalin ou l'hydroxyde d'un métal tel que l'hydroxyde d'aluminium, l'hydroxyde d'un métal alcalino-terreux, l'hydroxyde d'un métal alcalin, les aluminosilicates tel que andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate ou silice ou un mélange de ceux-ci. Lorsque l'étape de séchage est mise en oeuvre en présence d'un agent absorbant l'eau et un agent absorbant les molécules acides, ledit courant est préférentiellement mise en contact avec l'agent absorbant les molécules acides puis avec l'agent absorbant l'eau. L'agent absorbant les molécules acides absorbe de préférence l'acide fluorhydrique.
Si elle est mise en oeuvre, l'étape a") de purification, de préférence distillation, dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane issu de l'étape a) ou a') permet d'éliminer des sous- produits formés au cours de l'étape a) pour récupérer un courant comprenant 1,1,1,2,3,3- hexafluoropropane purifié, c'est-à-dire dans lequel la teneur en sous-produits est diminuée. L'étape b) de déshydrofluoration du 1,1,1,2,3,3-hexafluoropropane est effectuée dans les conditions telles que détaillées ci-dessus en relation avec l'étape iii) du présent procédé. L'étape b) du présent procédé permet d'obtenir un courant comprenant du 1, 2, 3,3,3- pentafluoropropène. Ce dernier peut éventuellement être purifié ou non avant la mise en oeuvre de l'étape d'hydrogénation c) décrite ci-dessous.
Selon le procédé de l'invention on utilise, de préférence un ou plusieurs réacteur(s) adiabatique(s).
Selon un troisième autre aspect, la présente invention concerne un procédé de production du 2,3,3,3-tétrafluoropropène comprenant les étapes de :
c) hydrogénation en phase gazeuse du 1,2,3,3,3-pentafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation dans des conditions suffisantes pour former un courant comprenant 1,1,1,2,3-pentafluoropropane ;
d) déshydrofluoration dudit courant comprenant 1,1,1,2,3-pentafluoropropane obtenu à l'étape c) selon la présente invention.
Selon un mode de réalisation préféré, le 1,2,3,3,3-pentafluoropropène mis en oeuvre à l'étape c) est obtenu par l'étape b) selon le second aspect de la présente invention.
De préférence, l'étape d'hydrogénation c) est mise en oeuvre en présence d'un catalyseur. Comme catalyseur, on peut citer notamment des métaux tels que Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te éventuellement supporté. Comme support, on peut citer notamment le carbone, l’alumine, l'alumine fluoré, AIF3, les oxydes, les oxyfluorures et les fluorures de Cr, Ti, Zr, Mg, Zn, la silice et le carbure de silicium. La quantité de métaux présents dans le catalyseur, lorsque celui-ci est supporté, peut être comprise entre 0,001 et 10 % en poids, de préférence comprise entre 0,001 et 1,0 % en poids, en particulier de 0,01 à 0,2% en poids. L'étape d'hydrogénation est avantageusement mise en oeuvre en présence du Pd supporté sur alumine, de préférence sous la forme polymorphique alpha. En particulier, ledit catalyseur d'hydrogénation peut comprendre du Pd supporté sur alumine sous la forme polymorphique alpha ; le palladium représentant entre 0,001 et 1,0% en poids, de préférence de 0,01 à 0,2% sur base du poids total du catalyseur. L'étape d'hydrogénation peut être mise en oeuvre aussi bien en phase liquide qu'en phase gaz. La phase gaz est toutefois préférée.
L'étape d'hydrogénation c) est mise en oeuvre en présence d'hydrogène, avantageusement avec un rapport molaire hydrogène / hexafluoropropène compris entre 1 et 50, et tout particulièrement compris entre 2 et 15. L'étape d'hydrogénation c) est mise en oeuvre en présence d'hydrogène, avantageusement avec un rapport molaire hydrogène / 1, 2, 3,3,3- pentafluoropropène compris entre 1 et 50, et tout particulièrement compris entre 2 et 15. L'étape d'hydrogénation c) est de préférence mise en oeuvre à une température comprise entre 50 et 200°C, de préférence comprise entre 80 et 120°C. De préférence, la température à l'entrée du réacteur de l'étape d'hydrogénation c) est comprise entre 30 et 100° C, avantageusement comprise entre 40 et 80° C.
Le temps de contact de l'étape d'hydrogénation c), défini comme le rapport du volume du lit catalytique sur le débit volumique du flux total dans les conditions normales de température et de pression, est de préférence comprise entre 0,1 s et 20 s et avantageusement comprise entre 0,5 et 5 s.
L'étape d'hydrogénation c) est de préférence mise en oeuvre à une pression absolue comprise entre 0,5 et 20 bara et avantageusement comprise entre 1 et 5 bara.
De préférence, l'étape d'hydrogénation c) est mise en oeuvre en présence d'un diluant qui peut être co-introduit avec les réactifs dans le milieu réactionnel. Le diluant est un gaz inerte qui ne réagit pas dans les conditions de l'étape d'hydrogénation. Comme diluant, on peut citer le
1.1.1.2.3-pentafluoropropane, l'azote, l'hélium ou l'argon. De préférence, le diluant est le
1.1.1.2.3-pentafluoropropane. Le rapport molaire du diluant/réactifs à l'entrée du réacteur de l'étape d'hydrogénation c) peut être compris entre 100 :1 et 1 :1, de préférence entre 10 :1 et 1 :1, avantageusement entre 5 :1 et 1 :1.
Le courant de 1,1,1,2,3-pentafluoropropane obtenu à l'étape c) peut être purifié avant la mise en oeuvre de l'étape d). La purification peut comprendre une étape de séchage et/ou une ou plusieurs étapes de distillation.
De préférence, ledit séchage peut être effectué en mettant en contact ledit courant comprenant
1.1.1.2.3-pentafluoropropane avec un agent absorbant solide. Ledit absorbant solide peut comprendre un agent absorbant les molécules acides et/ou un agent absorbant l'eau. Ledit agent absorbant l'eau peut être un sel inorganique tel que le sulfate de magnésium, le sulfate de calcium, le chlorure de calcium ou peut être un tamis moléculaire de type 3A, 4A, 5A, AW500, XH-7, XH-9 ou 13X, du gel de silice, du charbon actif ou un mélange de ceux-ci. Ledit agent absorbant les molécules acides peut être un oxyde de métal tel que l'oxyde d'aluminium, l'oxyde d'un métal alcalino-terreux, l'oxyde d'un métal alcalin ou l'hydroxyde d'un métal tel que l'hydroxyde d'aluminium, l'hydroxyde d'un métal alcalino-terreux, l'hydroxyde d'un métal alcalin, les aluminosilicates tel que andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate ou silice ou un mélange de ceux-ci. Lorsque l'étape de séchage est mise en œuvre en présence d'un agent absorbant l'eau et un agent absorbant les molécules acides, ledit courant comprenant 1,1,1,2,3-pentafluoropropane est préférentiellement mise en contact avec l'agent absorbant les molécules acides puis avec l'agent absorbant l'eau. L'agent absorbant les molécules acides absorbe de préférence l'acide fluorhydrique.
Selon un mode de réalisation particulier, la purification par une ou plusieurs étapes de distillation peut être effectuée en une seule étape mettant en œuvre une colonne de distillation à paroi de séparation (i.e. Dividing Wall Column). Selon un autre mode de réalisation particulier, la purification peut être effectuée par la mise en œuvre de deux étapes de distillation successives, via l'utilisation par exemple de deux colonnes de distillation. Ainsi, une première distillation peut être mise en œuvre à une pression comprise entre 1 et 20 bars, avantageusement entre 1 et 15 bar absolu, de préférence entre 5 et 10 bar absolu et la température en tête de colonne de distillation est comprise entre 20°C et 100°C, de préférence entre 45 et 75°C. Un courant comprenant 1,1,1,2,3-pentafluoropropane est alors récupéré en pied de la colonne de distillation. Celui-ci est soumis à une seconde distillation mise en œuvre à une pression comprise entre 1 et 20 bars, avantageusement entre 1 et 10 bar absolu, de préférence entre 3 et 6 bar absolu et avec une température en tête de colonne de distillation est comprise entre 40 et 100°C, de préférence entre 50 et 80°C. Un courant comprenant
1.1.1.2.3-pentafluoropropane est alors récupéré en tête de la colonne de distillation. Ledit courant comprenant 1,1,1,2,3-pentafluoropropane, issu de cette seconde distillation, peut être utilisé pour la mise en œuvre de l'étape d) décrite ci-dessus.
Selon le procédé de l'invention on utilise, de préférence un ou plusieurs réacteur(s) adiabatique(s).
Selon un quatrième aspect, la présente invention concerne un procédé de production du 2, 3,3,3- tétrafluoropropène comprenant les étapes de :
a) hydrogénation en phase gazeuse de hexafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation pour former un courant comprenant 1, 1,1, 2,3,3- hexafluoropropane ;
a') optionnellement séchage dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane ; a") optionnellement purification, de préférence distillation, dudit courant comprenant
1.1.1.2.3.3-hexafluoropropane issu de l'étape a) ou a') ;
b) déshydrofluoration dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane obtenu à l'étape a) ou a') ou a") selon la présente invention pour produire 1, 2, 3,3,3- pentafluoropropène; b') optionnellement séchage dudit courant comprenant 1,2,3,3,3-pentafluoropropène ; b") optionnellement purification, de préférence distillation, dudit courant comprenant 1,2,3,3,3-pentafluoropropène issu de l'étape b) ou b') ;
c) hydrogénation en phase gazeuse du 1,2,3,3,3-pentafluoropropène obtenu à l'étape b) ou b') ou b") en présence d'hydrogène et d'un catalyseur d'hydrogénation dans des conditions suffisantes pour former un courant comprenant 1,1,1,2,3-pentafluoropropane ; d) déshydrofluoration dudit courant comprenant 1,1,1,2,3-pentafluoropropane obtenu à l'étape c) selon la présente invention pour produire 2,3,3,3-tétrafluoropropène.
Le 2,3,3,3-tétrafluoropropène produit à l'étape d) peut être purifié par une ou plusieurs étapes incluant par exemple la condensation, l'évaporation, la décantation, l'absorption, le lavage, l'extraction liquide-liquide, la photochloration, la distillation, par exemple la distillation extractive, la distillation azéotropique, l'adsorption sur solide et plus particulièrement adsorption sur tamis moléculaire, alumine ou charbon actif et la séparation membranaire. La purification du 2,3,3,3-tétrafluoropropène peut comprendre au moins une étape d'adsorption, de préférence sur alumine activée et/ou tamis moléculaire et au moins une étape de distillation. La purification du 2,3,3,3-tétrafluoropropène peut comprendre subséquemment une ou plusieurs étapes de distillation, de préférence deux étapes de distillation. La première distillation peut être mise en oeuvre à une pression de 2 à 20 bars, avantageusement de 11 à 15 bar absolu, et de préférence la température en tête de colonne de distillation est de 35°C à 50°C. La seconde distillation peut être mise en oeuvre à une pression de 2 à 20 bars, avantageusement de 9 à 13 bar absolu, et de préférence, la température en tête de colonne de distillation est de 36°C à 51°C. Un courant comprenant 2,3,3,3-tétrafluoropropène est ainsi obtenu après ces différentes étapes de purification. Ledit courant comprend, de préférence, une teneur massique en 2,3,3,3- tétrafluoropropène supérieure à 99,5%, de préférence supérieure à 99,8%.
Les modes de réalisation de la présente invention peuvent être utilisées en combinaison avec des procédés connus pour la production d'hydrofluorooléfines, incluant, sans limitation, les procédés décrits dans US 8,710,282; US 8,853,472; US 9,884,796; US 8,835,699; US 2006/0043053, US 2018/0327340, US 8,389,779, US 8,779,217, US 8,809,601, US 8,946493, US 8,912,370, US 9,018,429, US 9,255,047, US 9,758,451, US 8,536,386. Les divulgations concernant les procédés de production des hydrofluorooléfines sont incorporés par référence.
Selon un autre aspect de la présente invention, un dispositif de stockage est fourni. Ledit dispositif de stockage contient un container fermé sous pression et une composition comprenant au moins 95% en poids de 2,3,3,3-tétrafluoropropène et moins de 3000 ppm de potassium ou de sodium ; ladite composition étant contenue dans ledit container sous une pression d'épreuve comprise entre 10 et 100 bar et ledit container comprend une surface intérieure au moins partiellement recouverte par un revêtement comprenant du zinc. De préférence, ladite composition comprend moins de 2000 ppm, avantageusement moins de 1500 ppm, de préférence moins de 1000 ppm, en particulier moins de 500 ppm, plus particulièrement moins de 250 ppm de potassium ou de sodium. Ledit container est de préférence en métal. Ledit container comprend une surface intérieure en contact avec ladite composition. De préférence, ladite surface intérieure est au moins partiellement recouverte par un revêtement comprenant du zinc. Selon un mode de réalisation préféré, au moins 90% de ladite surface intérieure en contact avec ladite composition est recouverte par un revêtement comprenant du zinc, avantageusement au moins 95% de ladite surface intérieure en contact avec ladite composition est recouverte par un revêtement comprenant du zinc, de préférence au moins 98% de ladite surface intérieure en contact avec ladite composition est recouverte par un revêtement comprenant du zinc, en particulier au moins 99% de ladite surface intérieure en contact avec ladite composition est recouverte par un revêtement comprenant du zinc. Plus particulièrement, toute la surface intérieure du récipient en contact avec ladite composition peut être recouverte par un revêtement comprenant du zinc. De préférence, ledit container est en acier, en particulier, ledit container est en acier au carbone. Selon un mode de réalisation préféré, le revêtement comprend au moins 50 % en poids de zinc sur base du poids total du revêtement, avantageusement au moins 70% en poids de zinc sur base du poids total du revêtement, de préférence au moins 90% en poids de zinc sur base du poids total du revêtement, plus préférentiellement au moins 95% en poids de zinc sur base du poids total du revêtement, en particulier au moins 99% de zinc sur base du poids total du revêtement, plus particulièrement au moins 99,9% de zinc sur base du poids total du revêtement. De préférence, ledit container est fermé et résiste à une pression d'épreuve comprise entre 10 et 100 bar, avantageusement entre 15 et 70 bar, de préférence entre 20 et 60 bar, en particulier de 40 à 50 bar. Alternativement, ladite surface intérieure est en acier inoxydable, par exemple SS316L.
De préférence, ledit container est fermé et résiste à une pression d'épreuve comprise entre 10 et 100 bar, avantageusement entre 15 et 70 bar, de préférence entre 20 et 60 bar, en particulier de 40 à 50 bar. Une telle composition peut être obtenue par le présent procédé.
Exemples Dans un réacteur, une quantité de KOH a été introduite sous forme d'une solution aqueuse. Ladite solution est chauffée à 155°C (P = 1,5 bara) sous agitation. Une quantité de 1, 1,1, 2,3,3- hexafluoropropane (HFC-236ea) ou de 1,1,1,2,3-pentafluoropropane (HFC-245eb) est introduite dans le milieu réactionnel. Lorsque le procédé a été mis en oeuvre en présence d'un co-courant de vapeur d'eau, celui-ci a été introduit dans le milieu réactionnel simultanément au courant de HFC-236ea ou HFC-245eb. Les résultats sont présentés dans le tableau 1 et le tableau 2 ci- dessous.
Tableau 1
Figure imgf000015_0001
Tableau 2
Figure imgf000015_0002
Le demandeur a ainsi observé que la sélectivité en HFO (HFO-1234yf ou HFO-1225ye) était améliorée lorsqu'un co-courant de vapeur d'eau était introduit dans le réacteur lors d'une réaction de déhydrofluoration.

Claims

REVENDICATIONS
1. Procédé de production de 1,2,3,3,3-pentafluoropropène et/ou de 2, 3,3,3- tétrafluoropropène comprenant une étape de déhydrofluoration du 1, 1,1, 2,3,3- hexafluoropropane et/ou du 1,1,1,2,3-pentafluoropropane à l'aide d'un mélange contenant de l'eau et un hydroxyde alcalin dans des conditions suffisantes pour produire un milieu réactionnel comprenant 1,2,3,3,3-pentafluoropropène et/ou
2,3,3,3-tétrafluoropropène, caractérisé en ce que ladite étape de déhydrofluoration est mise en oeuvre en présence d'un co-courant de vapeur d'eau.
2. Procédé selon la revendication précédente caractérisé en ce que ledit co-courant de vapeur d'eau est injecté dans le milieu réactionnel.
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'il est mis en oeuvre en présence d'un ratio molaire entre ledit courant de vapeur d'eau et
1,1,1,2,3,3-hexafluoropropane et/ou du 1,1,1,2,3-pentafluoropropane est compris entre 0,1 et 2,2.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'il est mis en oeuvre en continu.
5. Procédé de production du 1,2,3,3,3-pentafluoropropène comprenant les étapes de : a) hydrogénation en phase gazeuse de hexafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation pour former un courant comprenant 1, 1,1, 2,3,3- hexafluoropropane ;
a') optionnellement séchage dudit courant comprenant 1,1,1,2,3,3- hexafluoropropane ;
a") optionnellement purification, de préférence distillation, dudit courant comprenant
1,1,1,2,3,3-hexafluoropropane issu de l'étape a) ou a') ;
b) déshydrofluoration dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane obtenu à l'étape a) ou a') ou a") selon l'une quelconque des revendications précédentes 1 à 4 pour produire 1,2,3,3,3-pentafluoropropène.
6. Procédé de production du 2,3,3,3-tétrafluoropropène comprenant les étapes de : c) hydrogénation en phase gazeuse du 1,2,3,3,3-pentafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation dans des conditions suffisantes pour former un courant comprenant 1,1,1,2,3-pentafluoropropane ;
d) déshydrofluoration dudit courant comprenant 1,1,1,2,3-pentafluoropropane obtenu à l'étape c) selon l'une quelconque des revendications précédentes 1 à 4 pour produire
2,3,3,3-tétrafluoropropène.
7. Procédé de production du 2,3,3,3-tétrafluoropropène comprenant les étapes de : a) hydrogénation en phase gazeuse de hexafluoropropène en présence d'hydrogène et d'un catalyseur d'hydrogénation pour former un courant comprenant 1, 1,1, 2,3,3- hexafluoropropane ;
a') optionnellement séchage dudit courant comprenant 1, 1,1, 2,3,3- hexafluoropropane ;
a") optionnellement purification, de préférence distillation, dudit courant comprenant
1.1.1.2.3.3-hexafluoropropane issu de l'étape a) ou a') ;
b) déshydrofluoration dudit courant comprenant 1,1,1,2,3,3-hexafluoropropane obtenu à l'étape a) ou a') ou a") selon l'une quelconque des revendications précédentes 1 à 4 pour produire 1,2,3,3,3-pentafluoropropène ;
b') optionnellement séchage dudit courant comprenant 1,2,3,3,3-pentafluoropropène ; b") optionnellement purification, de préférence distillation, dudit courant comprenant
1.2.3.3.3-pentafluoropropène issu de l'étape b) ou b') ;
c) hydrogénation en phase gazeuse du 1,2,3,3,3-pentafluoropropène obtenu à l'étape b) ou b') ou b") en présence d'hydrogène et d'un catalyseur d'hydrogénation dans des conditions suffisantes pour former un courant comprenant 1,1,1,2,3- pentafluoropropane ;
d) déshydrofluoration dudit courant comprenant 1,1,1,2,3-pentafluoropropane obtenu à l'étape c) selon l'une quelconque des revendications précédentes 1 à 4 pour produire
2.3.3.3-tétrafluoropropène.
8. Procédé selon l'une quelconque des revendications précédentes 5 à 7 caractérisé en ce que le catalyseur d'hydrogénation utilisé aux étapes a) et/ou c) comprend entre 0,001 et 2,0 % en poids de palladium supporté sur alumine, de préférence sous la forme polymorphique alpha.
9. Dispositif de stockage contenant un container fermé sous pression et une composition comprenant au moins 95% en poids de 2,3,3,3-tétrafluoropropène et moins de 3000 ppm de potassium ou de sodium ; ladite composition étant contenue dans ledit container sous une pression d'épreuve comprise entre 10 et 100 bar et ledit container comprend une surface intérieure au moins partiellement recouverte par un revêtement comprenant du zinc.
PCT/FR2020/050471 2019-03-12 2020-03-09 Procédé de production de fluorooléfines WO2020183099A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902502A FR3093721A1 (fr) 2019-03-12 2019-03-12 Procédé de production de fluorooléfines
FR1902502 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020183099A1 true WO2020183099A1 (fr) 2020-09-17

Family

ID=67742572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050471 WO2020183099A1 (fr) 2019-03-12 2020-03-09 Procédé de production de fluorooléfines

Country Status (2)

Country Link
FR (1) FR3093721A1 (fr)
WO (1) WO2020183099A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794787A (zh) * 2021-04-08 2021-05-14 北京宇极科技发展有限公司 气相连续制备3,3,3-三氟-2-(三氟甲基)-1-丙烯的方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992461A (en) * 1968-08-22 1976-11-16 Denki Kagaku Kogyo Kabushiki Kaisha Method of producing chloroprene
US20060043053A1 (en) 2004-08-31 2006-03-02 Coy Herald Tamper-evident plug seal closure
WO2009138764A1 (fr) * 2008-05-15 2009-11-19 Ineos Fluor Holdings Limited Procédé pour la fabrication de 2,3,3,3-trifluoropropène
US20100029997A1 (en) 2008-07-31 2010-02-04 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
FR2935702A1 (fr) * 2009-09-15 2010-03-12 Arkema France Procede de preparation de composes fluores olefiniques
WO2011010025A1 (fr) 2009-07-23 2011-01-27 Arkema France Procede de preparation de composes fluores
FR2961203A1 (fr) * 2010-06-15 2011-12-16 Arkema France Procede de preparation de trifluoroethylene
US8536386B2 (en) 2008-09-11 2013-09-17 Arkema France Process for the preparation of fluoroolefin compounds
CN103449963A (zh) 2013-08-06 2013-12-18 巨化集团技术中心 一种由六氟丙烯多步连续反应合成2,3,3,3-四氟丙烯的方法
US8710282B2 (en) 2008-03-14 2014-04-29 Honeywell International Inc. Integrated process for the manufacture of fluorinated olefins
US8779217B2 (en) 2009-07-23 2014-07-15 Arkema France Method for preparing fluorine compounds
US8809601B2 (en) 2009-07-23 2014-08-19 Arkema France Method for preparing olefin fluorine compounds
US8835699B2 (en) 2006-12-19 2014-09-16 Mexichem Amanco Holding S.A. De C.V Process for preparing R-1234yf by base mediated dehydrohalogenation
US8853472B2 (en) 2009-05-08 2014-10-07 E I Du Pont De Nemours And Company Processes for reducing the amount of monofluoroacetate in hydrofluoroolefin production
US8912370B2 (en) 2009-06-12 2014-12-16 Arkema France Method for producing hexafluoropropane
US8946493B2 (en) 2009-06-12 2015-02-03 Arkema France Method for producing pentafluoropropane
US9018429B2 (en) 2009-01-13 2015-04-28 Arkenna France Process for the preparation of fluoroolefin compounds
US9255047B2 (en) 2008-09-11 2016-02-09 Arkema France Process for the preparation of fluorinated compounds
US9884796B2 (en) 2010-04-29 2018-02-06 Honeywell International Inc. Process for dehydrohalogenation of halogenated alkanes

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992461A (en) * 1968-08-22 1976-11-16 Denki Kagaku Kogyo Kabushiki Kaisha Method of producing chloroprene
US20060043053A1 (en) 2004-08-31 2006-03-02 Coy Herald Tamper-evident plug seal closure
US8835699B2 (en) 2006-12-19 2014-09-16 Mexichem Amanco Holding S.A. De C.V Process for preparing R-1234yf by base mediated dehydrohalogenation
US8710282B2 (en) 2008-03-14 2014-04-29 Honeywell International Inc. Integrated process for the manufacture of fluorinated olefins
WO2009138764A1 (fr) * 2008-05-15 2009-11-19 Ineos Fluor Holdings Limited Procédé pour la fabrication de 2,3,3,3-trifluoropropène
US20100029997A1 (en) 2008-07-31 2010-02-04 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US9758451B2 (en) 2008-09-11 2017-09-12 Arkema France Process for the preparation of fluorinated compounds
US9255047B2 (en) 2008-09-11 2016-02-09 Arkema France Process for the preparation of fluorinated compounds
US8536386B2 (en) 2008-09-11 2013-09-17 Arkema France Process for the preparation of fluoroolefin compounds
US9018429B2 (en) 2009-01-13 2015-04-28 Arkenna France Process for the preparation of fluoroolefin compounds
US8853472B2 (en) 2009-05-08 2014-10-07 E I Du Pont De Nemours And Company Processes for reducing the amount of monofluoroacetate in hydrofluoroolefin production
US8912370B2 (en) 2009-06-12 2014-12-16 Arkema France Method for producing hexafluoropropane
US8946493B2 (en) 2009-06-12 2015-02-03 Arkema France Method for producing pentafluoropropane
US8809601B2 (en) 2009-07-23 2014-08-19 Arkema France Method for preparing olefin fluorine compounds
US8779217B2 (en) 2009-07-23 2014-07-15 Arkema France Method for preparing fluorine compounds
US8389779B2 (en) 2009-07-23 2013-03-05 Arkema France Process for the preparation of fluorinated compounds
WO2011010025A1 (fr) 2009-07-23 2011-01-27 Arkema France Procede de preparation de composes fluores
FR2935702A1 (fr) * 2009-09-15 2010-03-12 Arkema France Procede de preparation de composes fluores olefiniques
US9884796B2 (en) 2010-04-29 2018-02-06 Honeywell International Inc. Process for dehydrohalogenation of halogenated alkanes
US20180327340A1 (en) 2010-04-29 2018-11-15 Honeywell International Inc. Process for dehydrohalogenation of halogenated alkanes
FR2961203A1 (fr) * 2010-06-15 2011-12-16 Arkema France Procede de preparation de trifluoroethylene
CN103449963A (zh) 2013-08-06 2013-12-18 巨化集团技术中心 一种由六氟丙烯多步连续反应合成2,3,3,3-四氟丙烯的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794787A (zh) * 2021-04-08 2021-05-14 北京宇极科技发展有限公司 气相连续制备3,3,3-三氟-2-(三氟甲基)-1-丙烯的方法

Also Published As

Publication number Publication date
FR3093721A1 (fr) 2020-09-18

Similar Documents

Publication Publication Date Title
EP2271606B1 (fr) Procede pour la preparation du 1, 2, 3, 3, 3-pentafluoropropene-1
EP2303819B1 (fr) PROCEDE DE PURIFICATION DE 2,3,3,3-TETRAFLUORO-1-PROPENE (HF01234yf)
JP6082765B2 (ja) 1−クロロ−3,3,3−トリフルオロプロペンの異性化
EP2271604B1 (fr) Procede pour la preparation du 2,3,3,3-tetrafluoro-1-propene
WO2016189214A1 (fr) Compositions a base de 1,1,3,3-tetrachloropropène
CN1678552A (zh) 获得纯化氟代烷烃的方法
EP3208256A1 (fr) Procede de preparation de composes fluores
JP2022166103A (ja) 高純度の1,1,1,2,3,3-ヘキサフルオロプロパンと、その製造方法およびその使用
EP2271605B1 (fr) Procede de preparation de composes fluores
EP2321240B1 (fr) Procede de preparation de composes fluores olefiniques
WO2020183099A1 (fr) Procédé de production de fluorooléfines
EP2285762A1 (fr) Procede de preparation de composes fluores
JP5338240B2 (ja) フッ化水素の分離方法
FR2935702A1 (fr) Procede de preparation de composes fluores olefiniques
EP0742192B1 (fr) Purification du pentafluoroéthane
WO2019135057A1 (fr) Procédé de purification du 1,1,1,2,3-pentafluoropropane et utilisation de celui-ci pour l'obtention de 2,3,3,3-tétrafluoropropène de haute pureté
FR3077072A1 (fr) Procédé de purification du 1,1,1,2,3-pentafluoropropane et utilisation de celui-ci pour l’obtention de 2,3,3,3-tétrafluoropropène de haute pureté
FR2932798A1 (fr) Procede de preparation de composes fluores
TW202124344A (zh) 具有=cf或=chf構造的氟烯烴之精製方法,及高純度氟烯烴以及其製造方法
EP3713901A2 (fr) Procede de preparation du 1-chloro-3,3,3-trifluoropropene
FR3107272A1 (fr) Procédé de préparation de composés iodofluoroalcane
FR2826958A1 (fr) Procede d'obtention d'un hydrofluoroalcane epure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20725852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20725852

Country of ref document: EP

Kind code of ref document: A1