WO2023210558A1 - エネルギー貯蔵デバイス電極用薄膜形成組成物 - Google Patents

エネルギー貯蔵デバイス電極用薄膜形成組成物 Download PDF

Info

Publication number
WO2023210558A1
WO2023210558A1 PCT/JP2023/016043 JP2023016043W WO2023210558A1 WO 2023210558 A1 WO2023210558 A1 WO 2023210558A1 JP 2023016043 W JP2023016043 W JP 2023016043W WO 2023210558 A1 WO2023210558 A1 WO 2023210558A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
group
storage device
electrode
thin film
Prior art date
Application number
PCT/JP2023/016043
Other languages
English (en)
French (fr)
Inventor
宅磨 長▲濱▼
博史 太田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023210558A1 publication Critical patent/WO2023210558A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a thin film forming composition for energy storage device electrodes.
  • a lithium ion secondary battery houses a positive electrode and a negative electrode that can absorb and release lithium, and a separator interposed between them in a container, and contains an electrolyte (in the case of a lithium ion polymer secondary battery, a liquid). It has a structure filled with gel-like electrolyte (instead of electrolyte).
  • the positive and negative electrodes are generally made by coating a composition containing an active material that can absorb and release lithium, a conductive material mainly made of carbon material, and a polymer binder on a current collecting substrate such as copper foil or aluminum foil. It is manufactured by This binder is used to bond active materials and conductive materials, as well as these and metal foils, and is made of fluorine-based resins soluble in N-methylpyrrolidone (NMP) such as polyvinylidene fluoride (PVdF), and olefin-based polymers. Aqueous dispersions of the combination are commercially available.
  • NMP N-methylpyrrolidone
  • PVdF polyvinylidene fluoride
  • Aqueous dispersions of the combination are commercially available.
  • the adhesive strength of the above-mentioned binder to the current collector substrate is not sufficient, and some of the active material and conductive material may peel off or fall off from the current collector substrate during manufacturing processes such as cutting and winding the electrode. , causing micro short circuits and variations in battery capacity.
  • the contact resistance between the electrode mixture and the current collecting substrate increases due to volume changes in the electrode mixture due to swelling of the binder due to the electrolyte and changes in volume due to lithium absorption and release from the active material.
  • Patent Document 1 discloses a technique in which a conductive layer containing carbon as a conductive filler is disposed as an undercoat layer between a current collector substrate and an electrode mixture layer.
  • a composite current collector with an undercoat layer it is possible to reduce the contact resistance between the current collecting substrate and the electrode composite layer, and also suppress capacity loss during high-speed discharge, which also prevents battery deterioration. It has been shown that it can be suppressed.
  • Patent Document 4 and Patent Document 5 disclose an undercoat layer using carbon nanotubes as a conductive filler.
  • the undercoat layer disclosed in each of these patent documents is a wet method in which a slurry-like composition for forming an electrode composite layer is applied onto the undercoat layer and dried to form an electrode composite layer.
  • the composition for forming an electrode composite layer is once formed into a sheet shape, and this is laminated on an undercoat layer by heat compression bonding, etc., or on the electrode composite layer formed on a base material.
  • Dry methods such as methods that involve transferring an electrode composite layer by forming an undercoat layer on the surface, laminating a current collector substrate on top of the current collector substrate, and then peeling off the base material, may lack adhesion or make transfer difficult. There are problems such as.
  • the present invention has been made in view of the above circumstances, and it is possible to transfer the electrode composite material layer, and the present invention provides an energy source that provides a primer layer that has both practical adhesion and excellent adhesion retention after transfer.
  • An object of the present invention is to provide a thin film forming composition for storage device electrodes.
  • a conductive carbon material a polymer having an oxazoline group in the side chain, a hydroxyl group-containing polymer having a weight average molecular weight within a specific range, and a solvent. It has been discovered that a composition containing the above is capable of transferring an electrode mixture layer and provides a thin film (primer layer) that has both practical adhesion and excellent adhesion retention after transfer, and has achieved the present invention. completed.
  • the present invention provides an energy storage device electrode.
  • a thin film forming composition for an energy storage device electrode comprising a conductive carbon material, a polymer having an oxazoline group in a side chain, a hydroxyl group-containing polymer having a weight average molecular weight of 50,000 to 5,000,000, and a solvent.
  • 2. 1. The thin film forming composition for an energy storage device electrode according to 1, wherein the mass proportion of hydroxyl groups in the molecule of the hydroxyl group-containing polymer is 1 ⁇ 10 ⁇ 5 to 100 ⁇ 10 ⁇ 5 . 3.
  • the thin film forming composition for an energy storage device electrode according to 2 wherein the mass proportion of hydroxyl groups in the molecule of the hydroxyl group-containing polymer is 1 ⁇ 10 ⁇ 5 to 50 ⁇ 10 ⁇ 5 . 4.
  • the polymer having an oxazoline group in the side chain comprises an oxazoline monomer represented by formula (1) having a polymerizable carbon-carbon double bond-containing group at the 2-position, and a (meth)acrylic monomer having a hydrophilic functional group.
  • the thin film forming composition for an electrode of an energy storage device according to any one of 1 to 3, which is a polymer obtained by radically polymerizing.
  • X represents a chain hydrocarbon group containing a polymerizable carbon-carbon double bond; represents an alkyl group, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, which may have the following structure.
  • the conductive carbon material is one or more selected from acetylene black, carbon black, Ketjen black, furnace black, channel black, and lamp black. Composition. 10.
  • R a and R b are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon atom which may have a substituent
  • X a is N or CH.
  • Thin film forming composition for an energy storage device electrode wherein the substituent is at least one selected from the group consisting of a carboxy group, a hydroxy group, a thiol group, an amino group, a sulfonic acid group, and an epoxy group. 12. 10. A thin film forming composition for an energy storage device electrode, wherein the heterocyclic compound is represented by the following formula (n2). (In the formula, Y a represents a hydrogen atom, a carboxy group, a hydroxy group, a thiol group, an amino group, a sulfonic acid group, or an epoxy group. X a is the same as above.) 13.
  • compositions for energy storage device electrodes wherein the heterocyclic compound is represented by the following formula (n3).
  • a primer layer consisting of a thin film obtained from the composition for forming a thin film for an electrode of an energy storage device according to any one of 1 to 3.
  • a composite current collector for an electrode of an energy storage device comprising a current collecting substrate and fourteen primer layers formed on the current collecting substrate. 16.
  • a composite current collector for an electrode of an energy storage device wherein the current collecting substrate is a copper foil or an aluminum foil.
  • An electrode for an energy storage device comprising a composite current collector for an electrode of an energy storage device of 16. 18.
  • An energy storage device comprising 17 energy storage device electrodes. 20.
  • the composition for forming a thin film for an electrode of an energy storage device of the present invention allows transfer of an electrode mixture layer and provides a primer layer having both practical adhesion and excellent adhesion retention. Therefore, by using the composition for forming a thin film for energy storage device electrodes of the present invention, it becomes possible to apply a dry process for transferring the electrode composite layer composition or electrode composite layer sheet adhered to the base material. In addition, an electrode including an electrode composite material layer with excellent thickness accuracy can be produced.
  • composition for energy storage device electrodes of the present invention
  • composition comprises a conductive carbon material, a polymer having an oxazoline group in its side chain, a hydroxyl group-containing polymer, and a solvent. It is characterized by including.
  • Conductive carbon material Specific examples of the conductive carbon material used in the composition of the present invention include acetylene black, carbon black, Ketjen black, furnace black, channel black, lamp black, carbon nanotubes, carbon whiskers, It is possible to appropriately select and use known conductive carbon materials such as carbon fiber, natural graphite, and artificial graphite, but from the viewpoint of conductivity, dispersibility, adhesion, transferability, etc., acetylene black, carbon black, etc. , Ketjen black, furnace black, channel black, and lamp black are preferred, acetylene black, carbon black, and Ketjen black are more preferred, and acetylene black is even more preferred.
  • the said electroconductive carbon material may be used individually, or may use 2 or more types together.
  • Commercially available conductive carbon materials can be used, and specific examples include Denka Black (Li-100, Li-250, Li-400, Li-435, etc.), which is acetylene black manufactured by Denka Corporation. , NH Carbon manufactured by Nippon Chemi-Con Co., Ltd., and the like.
  • polymer having an oxazoline group in its side chain acts as a dispersant and a binder polymer for the conductive carbon material. It is.
  • This polymer is not particularly limited as long as it is a polymer in which an oxazoline group is bonded directly to the repeating unit constituting the main chain or via a spacer group such as an alkylene group.
  • X represents a polymerizable carbon-carbon double bond-containing group
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, or a branched structure having 1 to 5 carbon atoms.
  • the polymerizable carbon-carbon double bond-containing group possessed by the oxazoline monomer is not particularly limited as long as it contains a polymerizable carbon-carbon double bond;
  • a hydrocarbon group such as a vinyl group, an allyl group, an isopropenyl group, or an alkenyl group having 2 to 8 carbon atoms is preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • alkyl group which may have a branched structure having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group. group, n-pentyl group, etc.
  • aryl group having 6 to 20 carbon atoms include phenyl group, xylyl group, tolyl group, biphenyl group, and naphthyl group.
  • aralkyl group having 7 to 20 carbon atoms include benzyl group, phenylethyl group, phenylcyclohexyl group, and the like.
  • oxazoline monomer having a polymerizable carbon-carbon double bond-containing group at the 2-position represented by formula (1) include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-4-ethyl-2-oxazoline, 2-vinyl-4-propyl-2-oxazoline, 2-vinyl-4-butyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2- Vinyl-5-ethyl-2-oxazoline, 2-vinyl-5-propyl-2-oxazoline, 2-vinyl-5-butyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4- Methyl-2-oxazoline, 2-isopropenyl-4-ethyl-2-oxazoline, 2-isopropenyl-4-propyl-2-oxazoline, 2-isopropenyl-4-butyl
  • the oxazoline polymer is water-soluble.
  • a water-soluble oxazoline polymer may be a homopolymer of the oxazoline monomer represented by the above formula (1), but in order to further increase the solubility in water, it may be a homopolymer of the oxazoline monomer and the above oxazoline monomer having a hydrophilic functional group (meth). ) It is preferably obtained by radical polymerizing at least two types of monomers with an acrylic acid ester monomer.
  • (meth)acrylic monomers having hydrophilic functional groups include (meth)acrylic acid, 2-hydroxyethyl acrylate, methoxypolyethylene glycol acrylate, monoesters of acrylic acid and polyethylene glycol, and acrylic acid.
  • oxazoline monomer and (meth)acrylic monomer having a hydrophilic functional group are used in combination within a range that does not adversely affect the conductive carbon material dispersion ability of the obtained oxazoline polymer. be able to.
  • specific examples of other monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, and (meth)acrylate.
  • (meth)acrylic acid ester monomers such as perfluoroethyl acid and phenyl (meth)acrylate; ⁇ -olefin monomers such as ethylene, propylene, butene, and pentene; haloolefins such as vinyl chloride, vinylidene chloride, and vinyl fluoride Monomers: Styrenic monomers such as styrene and ⁇ -methylstyrene; Carboxylic acid vinyl ester monomers such as vinyl acetate and vinyl propionate; Vinyl ether monomers such as methyl vinyl ether and ethyl vinyl ether; each of these may be used alone. However, two or more types may be used in combination.
  • the content of the polymer having an oxazoline group in the side chain in the composition of the present invention is not particularly limited as long as it can disperse the conductive carbon material, but it can sufficiently disperse the conductive carbon material and function as a binder. In consideration of exhibiting this, the content is preferably 20 to 60 parts by weight, more preferably 30 to 60 parts by weight, and even more preferably 40 to 60 parts by weight, based on 100 parts by weight of the conductive carbon material.
  • the hydroxyl group-containing polymer has a mass proportion of hydroxyl groups in the molecule of the hydroxyl group-containing polymer of 1 ⁇ 10 ⁇ 5 to 100 ⁇ 10 -5 is preferable, and 1 ⁇ 10 ⁇ 5 to 50 ⁇ 10 ⁇ 5 is more preferable.
  • the weight average molecular weight of the hydroxyl group-containing polymer is 50,000 to 5,000,000, preferably 50,000 to 2,500,000, and more preferably 100,000 to 1,000,000.
  • Polyalkylene glycols and/or polyvinyl alcohols are used. Note that polyalkylene glycol in the present invention also includes polyalkylene oxide.
  • the weight average molecular weight is a polystyrene equivalent value determined by gel permeation chromatography.
  • the lower limit of the melting point of the hydroxyl group-containing polymer is preferably 25°C or higher, and the upper limit is preferably 100°C or lower, more preferably 70°C or lower.
  • polyalkylene glycol examples include polyethylene glycol (polyethylene oxide), polypropylene glycol (polypropylene oxide), polytetramethylene ether glycol, and the like.
  • the hydroxyl group-containing polymer may be a copolymer containing multiple types of repeating units, such as a copolymer of alkylene oxide and allyl glycidyl ether.
  • copolymers include copolymers of ethylene oxide and allyl glycidyl ether, copolymers of propylene oxide and allyl glycidyl ether, copolymers of ethylene oxide, propylene oxide, and allyl glycidyl ether, and the like.
  • the above copolymer may be a random copolymer, a block copolymer, or a graft copolymer, but a random copolymer is preferable.
  • hydroxyl group-containing polymer such as Alcox E-240, E-160, E-100, E-75, E-60, E-45, and E- manufactured by Meisei Chemical Industry Co., Ltd. 30, R-1000, R-400, R-150 (PEG), Alcox CP-A1H, CP-A2H (random copolymer of ethylene oxide, propylene oxide, allyl glycidyl ether), etc.; Fujifilm Wako Pure Chemical ( Polyethylene glycol 2,000, 3,000, 4,000, 6,000, 8,000, 10,000, 12,000, 20,000, 500,000, etc. manufactured by Nippon Ace Vine & Poval Co., Ltd.
  • the content of the hydroxyl group-containing polymer in the composition of the present invention is preferably 10 to 200 parts by mass based on 100 parts by mass of the conductive carbon material, and in consideration of further increasing the adhesion of the primer layer, the content is 30 to 150 parts by mass. Parts by weight are more preferable, and 40 to 120 parts by weight are even more preferable.
  • the present invention in addition to the adhesion between the current collecting substrate and the primer layer, in order to improve the scratch resistance of the primer layer, it is preferable to further include a nitrogen-containing heterocyclic compound containing two or more nitrogen atoms.
  • the nitrogen-containing heterocyclic compound is not particularly limited as long as it contains two or more nitrogen atoms constituting a ring, and can be appropriately selected from conventionally known compounds, but in the present invention , imidazole derivatives, pyrazole derivatives and triazole derivatives are preferred, imidazole derivatives and triazole derivatives are more preferred, and triazole derivatives are even more preferred. Specific examples of these that can be used are listed below.
  • imidazole derivatives include imidazole, benzimidazole, 5-carboxybenzimidazole, 4-carboxybenzimidazole, and the like.
  • pyrazole derivatives include pyrazole, 1,2-benzopyrazole, 4-pyrazolecarboxylic acid, 3-pyrazolecarboxylic acid, adenine, and the like.
  • benzotriazole compounds are preferred, and specific examples thereof include benzotriazole, carboxybenzotriazole, 5-carboxybenzotriazole, 4-carboxybenzotriazole, 5-hydroxybenzotriazole, 5-aminobenzotriazole, and benzotriazole.
  • Triazole-4-sulfonic acid 4-methylbenzotriazole, 5-methyl-1H-benzotriazole, 1-carboxybenzotriazole, 1-hydroxybenzotriazole, 1-aminobenzotriazole, 4-methylbenzotriazole, 5-methyl- 1H-benzotriazole, benzotriazole-1-methylamine, 4-methylbenzotriazole-1-methylamine, 5-methylbenzotriazole-1-methylamine, N-methylbenzotriazole-1-methylamine, N-ethylbenzo Triazole-1-methylamine, N,N-dimethylbenzotriazole-1-methylamine, N,N-diethylbenzotriazole-1-methylamine, N,N-dipropylbenzotriazole-1-methylamine, N,N -dibutylbenzotriazole-1-methylamine, N,N-dihexylbenzotriazole-1-methylamine, N,N-dioctylbenzotriazole-1-methylamine
  • R a and R b each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, and a carbon number 2 to 6 which may have a substituent.
  • X a is N or CH.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • the alkyl group having 1 to 6 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, Straight or branched alkyl groups having 1 to 6 carbon atoms such as isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group Examples include cyclic alkyl groups having 3 to 6 carbon atoms such as groups.
  • alkenyl groups having 2 to 6 carbon atoms include ethenyl, n-1-propenyl, n-2-propenyl, 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2-methyl -1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl and the like.
  • aryl group having 6 to 12 carbon atoms examples include phenyl, tolyl, 1-naphthyl, 2-naphthyl, and the like.
  • substituents examples include carboxy groups, hydroxy groups, thiol groups, amino groups, sulfonic acid groups, and epoxy groups.
  • Examples of the ring having 4 to 6 carbon atoms formed by bonding R a and R b to each other include a cyclopentane ring, a cyclohexane ring, and a benzene ring.
  • the above X a is preferably N.
  • n2 a compound represented by the following formula (n2) in which R a and R b combine with each other to form a benzene ring.
  • the above Y a represents a hydrogen atom, a carboxyl group, a hydroxy group, a thiol group, an amino group, a sulfonic acid group, or an epoxy group, which ensures the migration suppressing effect and the adhesion between the current collector and the undercoat layer. From the viewpoint of improving performance, carboxy groups, hydroxy groups, thiol groups, amino groups, sulfonic acid groups and epoxy groups are preferred, and carboxy groups are more preferred.
  • the above X a is the same as the above (n1), but N is preferable.
  • heterocyclic compound represented by the above formula (n2) include those represented by the following formula (n3).
  • heterocyclic compound represented by the above formula (n3) include carboxybenzotriazole, 5-carboxybenzotriazole, and 4-carboxybenzotriazole, with carboxybenzotriazole and 5-carboxybenzotriazole being preferred.
  • its content is preferably 0.05 to 200 parts by mass, more preferably 0.1 to 150 parts by mass, and even more preferably The amount is 5 to 130 parts by weight, more preferably 10 to 110 parts by weight, and most preferably 10 to 100 parts by weight.
  • the above nitrogen-containing heterocyclic compounds may be used alone or in combination of two or more.
  • Hydrophilic solvents are organic solvents that mix arbitrarily with water, such as ethers such as tetrahydrofuran (THF); N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl Amides such as -2-pyrrolidone (NMP); Ketones such as acetone; Alcohols such as methanol, ethanol, n-propanol, 2-propanol; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, etc. glycol ethers; organic solvents such as glycols such as ethylene glycol and propylene glycol; These solvents may be used alone or in combination of two or more.
  • ethers such as tetrahydrofuran (THF); N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl Amides such as -2-pyrroli
  • the solvent contains water, and it is more preferable that the solvent contains 70% by mass or more of water (30% by mass or less of organic solvent).
  • the method for preparing the composition of the present invention is not particularly limited, and the conductive carbon material, the polymer having an oxazoline group in the side chain, the hydroxyl group-containing polymer, and the solvent are prepared in any order.
  • the first liquid can be prepared by mixing a conductive carbon material, a polymer having an oxazoline group in a side chain, and a solvent
  • the second liquid is prepared by mixing a hydroxyl group-containing polymer and a solvent.
  • a method of mixing with a liquid is suitable.
  • dispersion processing examples include mechanical processing, such as wet processing using a ball mill, bead mill, jet mill, etc., and ultrasonic processing using a bath-type or probe-type sonicator, but in particular, wet processing using a jet mill. or ultrasonic treatment are suitable.
  • the time for the dispersion treatment is arbitrary, but is preferably about 1 minute to 10 hours, more preferably about 5 minutes to 5 hours. Note that heat treatment or cooling treatment may be performed as necessary.
  • the solid content concentration of the composition is not particularly limited, but in consideration of forming a primer layer with a desired basis weight and film thickness, it is preferably 20% by mass or less, and 15% by mass or less. is more preferable, 10% by mass or less is even more preferable, and even more preferably 5% by weight or less. Further, the lower limit is arbitrary, but from a practical standpoint, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and even more preferably 1% by mass or more. Note that the solid content refers to components other than the solvent that constitute the composition.
  • Primer layer and energy storage device electrode The composition described above is applied to at least one surface of the current collector or the surface of the electrode mixture layer, and the resulting thin film is dried naturally or by heating. can be suitably used as a primer layer of an energy storage device electrode.
  • energy storage devices include various energy storage devices such as electric double layer capacitors, lithium secondary batteries, lithium ion secondary batteries, proton polymer batteries, nickel metal hydride batteries, aluminum solid capacitors, electrolytic capacitors, and lead acid batteries.
  • the composition of the present invention can be particularly suitably used in electric double layer capacitors and lithium ion secondary batteries.
  • the current collector those conventionally used as current collectors for electrodes for energy storage devices can be used.
  • copper, aluminum, titanium, stainless steel, nickel, gold, silver, and alloys thereof, carbon materials, metal oxides, conductive polymers, etc. can be used;
  • the metal foil is preferred.
  • the thickness of the current collector is not particularly limited, but in the present invention, it is preferably 1 to 100 ⁇ m.
  • the electrode composite layer is formed by applying an electrode slurry (composition for forming an electrode composite layer) prepared by combining an active material, a binder polymer, and a solvent as necessary onto a base material, and drying it naturally or by heating. can.
  • an electrode slurry composition for forming an electrode composite layer
  • the active material various active materials conventionally used in electrodes for energy storage devices can be used.
  • chalcogen compounds capable of adsorbing and desorbing lithium ions, chalcogen compounds containing lithium ions, polyanionic compounds, elemental sulfur, and compounds thereof can be used as positive electrode active materials. can.
  • Examples of chalcogen compounds capable of adsorbing and desorbing lithium ions include FeS 2 , TiS 2 , MoS 2 , V 2 O 6 , V 6 O 13 , MnO 2 and the like.
  • Examples of lithium ion-containing chalcogen compounds include LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiMo 2 O 4 , LiV 3 O 8 , LiNiO 2 , Li x Ni y M 1-y O 2 (where M is Represents at least one metal element selected from Co, Mn, Ti, Cr, V, Al, Sn, Pb, and Zn, 0.05 ⁇ x ⁇ 1.10, 0.5 ⁇ y ⁇ 1.0 ) etc.
  • Examples of the polyanionic compound include LiFePO 4 and the like.
  • Examples of the sulfur compound include Li 2 S and rubeanic acid.
  • the negative electrode active material constituting the negative electrode at least one element, oxide, sulfide, or nitride selected from alkali metals, alkali alloys, and elements of groups 4 to 15 of the periodic table that occlude and release lithium ions is used.
  • a carbon material that can reversibly absorb and release lithium ions can be used.
  • Examples of the alkali metal include Li, Na, and K, and examples of the alkali metal alloy include Li-Al, Li-Mg, Li-Al-Ni, Na-Hg, and Na-Zn.
  • Examples of the simple substance of at least one element selected from the elements of groups 4 to 15 of the periodic table that absorb and release lithium ions include silicon, tin, aluminum, zinc, arsenic, and the like.
  • oxides include silicon monoxide (SiO), silicon dioxide (SiO 2 ), tin silicon oxide (SnSiO 3 ), lithium bismuth oxide (Li 3 BiO 4 ), lithium zinc oxide (Li 2 ZnO 2 ), and lithium.
  • Examples include titanium oxide (Li 4 Ti 5 O 12 ) and titanium oxide.
  • examples of the sulfide include lithium iron sulfide (Li x FeS 2 (0 ⁇ x ⁇ 3)), lithium copper sulfide (Li x CuS (0 ⁇ x ⁇ 3)), and the like.
  • Examples of carbon materials capable of reversibly occluding and releasing lithium ions include graphite, carbon black, coke, glassy carbon, carbon fibers, carbon nanotubes, and sintered bodies thereof.
  • a carbonaceous material can be used as the active material.
  • this carbonaceous material include activated carbon, and for example, activated carbon obtained by carbonizing a phenol resin and then performing an activation treatment.
  • the binder polymer can be appropriately selected from known materials, such as polyvinylidene fluoride (PVdF), polyvinylpyrrolidone, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and vinylidene fluoride.
  • PVdF polyvinylidene fluoride
  • polyvinylpyrrolidone polyvinylpyrrolidone
  • polytetrafluoroethylene polytetrafluoroethylene-hexafluoropropylene copolymer
  • vinylidene fluoride vinylidene fluoride
  • Hexafluoropropylene copolymer [P(VDF-HFP)], vinylidene fluoride-trifluoroethylene chloride copolymer [P(VDF-CTFE)], polyvinyl alcohol, polyimide, ethylene-propylene-diene ternary copolymer
  • examples include rubber, styrene-butadiene rubber, carboxymethylcellulose (CMC), polyacrylic acid (PAA), ammonium polyacrylate, polyaniline, polyimide, and polyamide.
  • the amount of the binder polymer added is preferably 0.1 to 40 parts by weight, particularly 1 to 30 parts by weight, based on 100 parts by weight of the active material.
  • the solvent examples include the solvents exemplified as solvents for the composition, and may be appropriately selected from among them depending on the type of binder. However, in the case of a water-insoluble binder such as PVdF, NMP is preferable. In the case of a water-soluble binder such as PAA, water is suitable.
  • the electrode slurry may contain a conductive material.
  • the conductive material include carbon black, Ketjenblack, acetylene black, carbon whiskers, carbon fibers, natural graphite, artificial graphite, titanium oxide, ruthenium oxide, aluminum, and nickel.
  • Examples of methods for applying the electrode slurry include spin coating, dip coating, flow coating, inkjet, casting, spray coating, bar coating, gravure coating, slit coating, roll coating, and flexographic printing.
  • method transfer printing method, brush coating method, blade coating method, air knife coating method, die coating method, etc.; however, from the point of view of work efficiency, inkjet method, casting method, dip coating method, bar coating method, blade coating method, etc. , a roll coating method, a gravure coating method, a flexographic printing method, a spray coating method, and a die coating method are suitable.
  • the temperature for heating and drying is also arbitrary, but is preferably about 50 to 400°C, more preferably about 80 to 150°C.
  • the temperature for heating and drying is also arbitrary, but is preferably about 50 to 200°C, more preferably about 80 to 150°C.
  • the thickness of the primer layer is preferably 1 nm to 10 ⁇ m, more preferably 1 nm to 5 ⁇ m, and even more preferably 1 nm to 3 ⁇ m, in consideration of reducing the internal resistance of the resulting device.
  • the thickness can be determined, for example, by cutting a test piece of an appropriate size from the laminate on which the primer layer has been formed, exposing the cross section by tearing it by hand, and observing the cross section with a microscope such as a scanning electron microscope (SEM). It can be determined from the parts where the primer layer is exposed.
  • the basis weight of the primer layer per surface of the current collector or electrode composite layer is not particularly limited as long as it satisfies the above film thickness, but it is preferably 3,000 mg/m 2 or less, and 2,500 mg/m 2 The following is more preferable, and 2,000 mg/m 2 or less is even more preferable.
  • the basis weight of the primer layer per surface is preferably 500 mg/m 2 or more, more preferably 750 mg/m 2 or more, More preferably 1,000 mg/m 2 or more.
  • the basis weight of the primer layer is the ratio of the mass (mg) of the primer layer to the area (m 2 ) of the primer layer, and if the primer layer is formed in a pattern, the area is the area of only the primer layer. This does not include the area of the lower layer such as the current collector exposed between the patterned primer layers.
  • the above-mentioned basis weight may be an assumed basis weight. Assumed basis weight means the expected basis weight when a composition with a predetermined solid content concentration is coated on a base layer using a predetermined wire bar coater. For example, if the composition has a solid content concentration of 5% by mass The composition can be expressed as the expected basis weight when coated using OSP-30 with a wire bar coater.
  • the mass of the primer layer can be determined by, for example, cutting out a test piece of an appropriate size from the laminate on which the primer layer has been formed, measuring its mass W0, and then peeling off the primer layer from the laminate.
  • the subsequent mass W1 is measured and calculated from the difference (W0-W1), or the mass W2 of the current collector is measured in advance, and then the mass W3 of the laminate on which the primer layer is formed is measured, It can be calculated from the difference (W3-W2).
  • Examples of the method for peeling off the primer layer include a method of immersing the primer layer in a solvent that dissolves or swells the primer layer, and wiping off the primer layer with a cloth or the like.
  • the basis weight and film thickness can be adjusted using known methods. For example, when forming a primer layer by coating, the solid content concentration of the coating liquid (primer layer forming composition) for forming the primer layer, the number of coatings, the clearance of the coating liquid inlet of the coating machine, etc. You can adjust it by changing it. If you want to increase the basis weight or film thickness, increase the solid content concentration, increase the number of applications, or increase the clearance. If you want to reduce the basis weight or film thickness, lower the solid content concentration, reduce the number of applications, or reduce the clearance.
  • the electrode slurry is applied to the surface of the primer layer and dried naturally or by heating to form an electrode composite layer to produce an energy storage device electrode.
  • the primer layer of the present invention can also be applied to a dry method, so an electrode composite sheet can be laminated on the primer layer and bonded under heat and pressure to produce an energy storage device electrode.
  • the electrode composite sheet may be one obtained by applying the above-mentioned electrode slurry onto a base layer and drying it naturally or by heating to form a sheet.
  • the electrode slurry described above is applied onto the base material and dried to form an electrode composite material layer, and then the composition of the present invention is applied onto this electrode composite material layer and dried to form a primer layer.
  • An energy storage device electrode can be produced by forming a current collecting substrate, further laminating a current collecting substrate thereon, heat-pressing the current collecting substrate, and then peeling off the base material and transferring the electrode composite material layer.
  • the primer layer of the present invention can exhibit high adhesion.
  • the base material is arbitrary, but a base material made of the same material as the current collector can be used, and copper foil is preferable.
  • the temperature during thermocompression bonding is not particularly limited, but in consideration of further increasing the adhesion of the primer layer, it is preferably a temperature equal to or higher than the melting point of the hydroxyl group-containing polymer.
  • the above temperature varies depending on the type of hydroxyl group-containing polymer, but is preferably less than 115°C, more preferably 110°C or less, and even more preferably 105°C or less. Further, the lower limit thereof is preferably 50°C or higher, more preferably 55°C or higher, and even more preferably 60°C or higher.
  • the pressure during heat compression bonding is also not particularly limited, but the linear pressure is preferably 1 kN/cm or more, more preferably 5 kN/cm or more, and even more preferably 10 kN/cm or more.
  • any commonly used method can be used, but a mold press method or a roll press method is particularly preferred.
  • the energy storage device is equipped with the above-mentioned electrode for an energy storage device, and more specifically, at least a pair of positive and negative electrodes and a separator interposed between each of these electrodes. and an electrolyte, and at least one of the positive and negative electrodes is comprised of the above-mentioned electrode for an energy storage device.
  • this energy storage device is characterized by using the above-mentioned electrode for energy storage devices as an electrode, other device components such as a separator and an electrolyte can be appropriately selected from known materials.
  • the separator include cellulose separators, polyolefin separators, and the like.
  • the electrolyte may be either a liquid electrolyte made by dissolving an electrolyte salt in a solvent or a solid electrolyte, and may be either an aqueous or non-aqueous electrolyte. It is particularly preferable to apply the present invention to all-solid-state batteries (for example, all-solid lithium ion batteries).
  • electrolyte salt examples include LiPF 6 , LiBF 4 , LiN(SO 2 F) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiAsF 6 , LiSbF 6 , LiAlF 4 , LiGaF 4 , LiInF 4 , LiClO 4 , Lithium salts such as LiN(CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSiF 6 , LiN(CF 3 SO 2 ), (C 4 F 9 SO 2 ), LiI, NaI, KI, CsI, CaI 2 etc.
  • Examples include metal iodides, iodide salts of quaternary imidazolium compounds, iodide salts and perchlorates of tetraalkylammonium compounds, and metal bromides such as LiBr, NaBr, KBr, CsBr, and CaBr2 . These electrolyte salts may be used alone or in combination of two or more.
  • the electrolyte solvent is not particularly limited as long as it does not cause corrosion or decomposition of the materials constituting the battery and degrade its performance, and it dissolves the electrolyte salt.
  • non-aqueous solvents include cyclic esters such as ethylene carbonate, propylene carbonate, butylene carbonate, and ⁇ -butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, and chains such as methyl acetate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. esters, nitriles such as acetonitrile, etc. are used. These solvents may be used alone or in combination of two or more.
  • solid electrolyte inorganic solid electrolytes such as sulfide-based solid electrolytes and oxide-based solid electrolytes, and organic solid electrolytes such as polymer-based electrolytes can be suitably used. By using these solid electrolytes, it is possible to obtain an all-solid-state battery that does not use an electrolyte.
  • Sulfide-based solid electrolytes include Li 2 S--SiS 2 -lithium compounds (here, the lithium compound is at least one selected from the group consisting of Li 3 PO 4 , LiI and Li 4 SiO 4 ), Li 2 Thiolisicone materials such as SP 2 S 5 , Li 2 SP 2 O 5 , Li 2 SB 2 S 5 , Li 2 SP 2 S 5 -GeS 2 and the like can be mentioned.
  • examples include oxyacid compounds based on a PO 4 structure, perovskite type, Li 3.3 PO 3.8 N 0.22 collectively referred to as LIPON, and sodium/alumina.
  • Polymeric solid electrolytes include polyethylene oxide materials, hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile, vinylidene chloride, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, Examples include polymer compounds obtained by polymerizing or copolymerizing monomers such as styrene and vinylidene fluoride.
  • the polymer solid electrolyte may contain a supporting salt and a plasticizer.
  • the supporting salt include lithium (fluorosulfonylimide), and examples of the plasticizer include succinonitrile.
  • the apparatus used in the examples is as follows. (1) Probe type ultrasonic irradiation device (dispersion of conductive carbon) Manufactured by Hielscher Ultrasonics, UIP1000 (2) Wire bar coater (primer layer formation) Manufactured by SMT Co., Ltd., PM-9050MC (3) Roll press machine (compression of electrodes) Manufactured by Takumi Giken Co., Ltd., SA-602 (4) Adhesion/film peeling analysis device (adhesion force measurement) VPA-3 manufactured by Kyowa Interface Science Co., Ltd.
  • the raw materials used are as follows.
  • AB Acetylene black, manufactured by Denka Corporation, Denka Black Li435 WS-700: Nippon Shokubai Co., Ltd., aqueous solution containing oxazoline polymer, Epocross (registered trademark) WS-700, weight average molecular weight: 4.0 ⁇ 10 4 , solid content concentration: 25.0% by mass WS-300: Nippon Shokubai Co., Ltd., aqueous solution containing oxazoline polymer, Epocross (registered trademark) WS-300, weight average molecular weight: 1.2 x 10 5 , solid content concentration: 10.0% by mass Polyvinylpyrrolidone: manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Pitzcor (registered trademark) K90, weight average molecular weight 1,200,000 E-45: manufactured by Meisei Chemical Industry Co., Ltd., polyethylene oxide, Alcox (registered trademark) E-45,
  • PEG10k manufactured by Sanyo Kasei Co., Ltd., polyethylene glycol, PEG10,000, weight average molecular weight: 10,000, mass proportion of hydroxyl groups in molecule: 3.4 ⁇ 10 -3 , melting point: 62 ° C.
  • PEG6k manufactured by Sanyo Kasei Co., Ltd., polyethylene glycol, PEG6,000, weight average molecular weight: 6,000, mass proportion of hydroxyl groups in molecule: 5.67 ⁇ 10 -3 , melting point: 61°C 2-Propanol: Manufactured by Junsei Kagaku Co., Ltd.
  • CBT-1 Manufactured by Johoku Chemical Co., Ltd., carboxybenzotriazole (CAS RN: 60932-58-3) A-30: Toagosei Co., Ltd., ammonium polyacrylate, Aron (registered trademark) A-30, weight average molecular weight 100,000, solid content concentration 31.6% by mass
  • Dispersion B 1.5 g (100 parts by mass) of AB, which is a conductive carbon material, 7.5 g (50 parts by mass as solid content) of WS-300, which is an aqueous solution containing an oxazoline polymer, and pure 33.86 g of water and 2.14 g of 2-propanol were mixed. The obtained mixture was subjected to ultrasonic treatment for 15 minutes using a probe-type ultrasonic irradiation device to prepare a dispersion liquid B in which the conductive carbon material was uniformly dispersed.
  • Dispersion C 1.4 g (100 parts by mass) of AB which is a conductive carbon material, 0.7 g (50 parts by mass) of polyvinylpyrrolidone K90, 37.90 g of pure water, and 2-propanol 2 .00g was mixed. The obtained mixture was subjected to ultrasonic treatment for 15 minutes using a probe-type ultrasonic irradiation device to prepare a dispersion liquid C in which the conductive carbon material was uniformly dispersed.
  • Example 1-1 Preparation of thin film forming composition for energy storage device electrode
  • Example 1-1 Preparation of thin film forming composition A 0.5 g of E-45, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water, and E-45 was dissolved in 9.5 g of water. A 5% by mass aqueous solution of No. 45 was prepared. 6.0 g of the dispersion A prepared in Production Example 1 and 2.0 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition A with a solid content concentration of 5% by mass.
  • Thin film forming composition A was a black ink in which AB was uniformly dispersed.
  • Example 1-2 Preparation of thin film forming composition B 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of dispersion A prepared in Production Example 1 and 1.2 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition B with a solid content concentration of 5% by mass. Thin film forming composition B was a black ink in which AB was uniformly dispersed.
  • Example 1-3 Preparation of Thin Film Forming Composition C 0.5 g of E-45, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of dispersion A prepared in Production Example 1 and 1.6 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition C with a solid content concentration of 5% by mass. Thin film forming composition C was a black ink in which AB was uniformly dispersed.
  • Example 1-4 Preparation of Thin Film Forming Composition D 0.5 g of E-45, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of dispersion A prepared in Production Example 1 and 2.4 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition D having a solid content concentration of 5% by mass. Thin film forming composition D was a black ink in which AB was uniformly dispersed.
  • Example 1-5 Preparation of thin film forming composition E 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of the dispersion A prepared in Production Example 1 and 2.8 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition E with a solid content concentration of 5% by mass. Thin film forming composition E was a black ink in which AB was uniformly dispersed.
  • Example 1-6 Preparation of thin film forming composition F 0.5 g of E-45, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of dispersion A prepared in Production Example 1 and 4.0 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition F with a solid content concentration of 5% by mass. Thin film forming composition F was a black ink in which AB was uniformly dispersed.
  • Example 1-7 Preparation of thin film forming composition G 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 3.0 g of the dispersion A prepared in Production Example 1 and 4.0 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition G with a solid content concentration of 5% by mass. Thin film forming composition G was a black ink in which AB was uniformly dispersed.
  • Example 1-8 Preparation of Thin Film Forming Composition H 0.5 g of R-150, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of R-150. 6.0 g of the dispersion liquid A prepared in Production Example 1 and 4.0 g of a 5% by mass aqueous solution of R-150 were mixed to prepare a thin film-forming composition H having a solid content concentration of 5% by mass. Thin film forming composition H was a black ink in which AB was uniformly dispersed.
  • Example 1-9 Preparation of Thin Film Forming Composition I 0.5 g of E-45, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of the dispersion B prepared in Production Example 2 and 2.0 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition I with a solid content concentration of 5% by mass. Thin film forming composition I was a black ink in which AB was uniformly dispersed.
  • Example 1-10 Preparation of Thin Film Forming Composition J 0.5 g of E-45, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of dispersion B prepared in Production Example 2 and 4.0 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition J having a solid content concentration of 5% by mass. Thin film forming composition J was a black ink in which AB was uniformly dispersed.
  • Example 1-11 Preparation of thin film forming composition K 0.5 g of E-45, a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of CP-A2H. 6.0 g of the dispersion A prepared in Production Example 1 and 2.0 g of a 5% by mass aqueous solution of CP-A2H were mixed to prepare a thin film-forming composition K with a solid content concentration of 5% by mass. Thin film forming composition K was a black ink in which AB was uniformly dispersed.
  • Example 1-12 Preparation of thin film forming composition L 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 6.0 g of the dispersion A prepared in Production Example 1 and 0.8 g of a 5% by mass aqueous solution of E-45 were mixed to prepare a thin film-forming composition L having a solid content concentration of 5% by mass. Thin film forming composition L was a black ink in which AB was uniformly dispersed.
  • Example 1-13 Preparation of thin film forming composition M 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 0.5 g of CBT-1, a heterocyclic compound, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of CBT-1. Furthermore, 1.6 g of A-30 was dissolved in 8.4 g of water to prepare a 5% by mass solution of A-30.
  • Example 1-14 Preparation of thin film forming composition N 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 0.5 g of CBT-1, a heterocyclic compound, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of CBT-1. Furthermore, 1.6 g of A-30 was dissolved in 8.4 g of water to prepare a 5% by mass solution of A-30.
  • a thin film forming composition N having a solid content concentration of 5% by mass was prepared by mixing 25g of the above.
  • Thin film forming composition N was a black ink in which AB was uniformly dispersed.
  • Example 1-15 Preparation of thin film forming composition O 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. 0.5 g of CBT-1, a heterocyclic compound, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of CBT-1. Furthermore, 1.6 g of A-30 was dissolved in 8.4 g of water to prepare a 5% by mass solution of A-30.
  • dispersion A prepared in Production Example 1 2.5 g of a 5% by mass aqueous solution of E-45, 1.0 g of a 5% by mass aqueous solution of CBT-1, and 1.0 g of a 5% by mass aqueous solution of A-30.
  • a thin film forming composition M having a solid content concentration of 5% by mass was prepared by mixing 25g of the above.
  • Thin film forming composition O was a black ink in which AB was uniformly dispersed.
  • Example 1-16 Preparation of thin film forming composition P 0.5 g of E-45, which is a hydroxyl group-containing polymer, was dissolved in 9.5 g of water to prepare a 5% by mass aqueous solution of E-45. A 5% by mass solution of A-30 was prepared by dissolving 1.6 g of A-30 in 8.4 g of water. 7.5 g of dispersion A prepared in Production Example 1, 2.5 g of a 5% by mass aqueous solution of E-45, and 1.25 g of a 5% by mass aqueous solution of A-30 were mixed, and the solid concentration was adjusted to 5% by mass. A thin film forming composition P was prepared. Thin film forming composition P was a black ink in which AB was uniformly dispersed.
  • Example 2-1 Composition A prepared in Example 1-1 was uniformly spread on a copper foil (thickness 10 ⁇ m) as a current collector using a wire bar coater using OSP-30, and then dried at 120 ° C. for 20 minutes. A thin film (primer layer) was formed, and a laminate of copper foil and the primer layer was produced. In the obtained laminate, the surface of the copper foil was uniformly covered with the conductive carbon material (estimated basis weight: 1,200 mg/m 2 ).
  • the assumed basis weight means the estimated basis weight when a thin film-forming composition having a predetermined solid content concentration is coated on a current collector using a predetermined wire bar coater.
  • the assumed basis weight when using a thin film forming composition having a solid content concentration of 5% by mass is as follows. OSP-30: 1,200mg/ m2
  • Example 2-2 to 2-16, Comparative Examples 2-1 to 2-7 Same as Example 2-1 except that Composition A was changed to Compositions B to P and a to g prepared in Examples 1-2 to 1-16 and Comparative Examples 1-1 to 1-7. A thin film (primer layer) was formed to produce a laminate.
  • compositions A to P of Examples 2-1 to 2-16 were used, a uniform thin film (primer layer) could be formed.
  • a uniform thin film (primer layer) was formed similarly to compositions A to P except for compositions c and d. did it.
  • Composition c was a non-uniform dispersion containing aggregates, so a uniform thin film (primer layer) could not be formed.
  • AB was uniformly dispersed in composition d, but the ink was highly viscous and viscous, and coating defects occurred in streaks during film formation, resulting in uneven conductivity on the surface of the copper foil. This resulted in a thin film (primer layer) covered with carbon material.
  • Example 3-1 Fabrication of transfer electrode
  • the laminate of copper foil and primer layer produced in Example 2-1 was transferred to a dry booth (temperature 22°C, dew point -50°C) within 1 hour after film formation. Thereafter, the laminate was cut into a size of 30 mm x 100 mm and processed.
  • Electrode composite material layer composite A in which an electrode composite material layer was formed on copper foil, was similarly cut out and processed into a size of 25 mm x 70 mm.
  • Laminate and electrode composite layer composite A in which the primer layer and electrode composite layer coated surfaces are stacked facing each other and pressed together at a linear pressure of 10 kN/cm using a roll press heated to 60°C to form a primer layer. were integrated.
  • the transfer electrode was prepared in the same manner as above, except that the laminate of the copper foil and the primer layer was left standing for 72 hours in an air-conditioned room (temperature 22°C, dew point 10-15°C). (after storage in an air-conditioned room).
  • Examples 3-2 to 3-16, Comparative Examples 3-1 to 3-6 The procedure was the same as in Example 3-1, except that the laminate was changed to the laminates produced in Examples 2-2 to 2-16, Comparative Examples 2-1, 2-2, and 2-4 to 2-7. Thus, a transfer electrode (immediately after film formation) and a transfer electrode (after storage in an air-conditioned room) were produced.
  • Adhesion force (N/m) Measured value * (N) / (Sample measurement width (mm) x 10 -3 ) * The measured value was the average value of the peeling distance from 10 mm to 35 mm.
  • compositions A to P of Examples 3-1 to 3-16 were used, the initial adhesion was high and a thin film (primer layer) with practical adhesion was obtained. Met. There was little change in adhesion before and after storage in an air-conditioned room, showing a high adhesion maintenance rate. It was confirmed that the composition of the present invention had a practical adhesion force and adhesion maintenance rate.
  • composition a of Comparative Example 3-1 when composition a of Comparative Example 3-1 was used, the initial adhesion was high and the thin film (primer layer) had a practical adhesion, but after storage in an air-conditioned room, the adhesive strength was 12.8N/ The adhesion force decreased in m, and the adhesion force maintenance rate was as low as 21.2%.
  • compositions b to g of Comparative Examples 3-2 to 3-6 had low initial adhesion and did not form a thin film (primer layer) with practical adhesion. Measurement was omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極合材層の転写が可能であり、かつ、転写後に実用的な密着力と優れた密着力維持率を兼ね備えたプライマー層を与えるエネルギー貯蔵デバイス電極用薄膜形成組成物として、導電性炭素材料と、側鎖にオキサゾリン基を有するポリマーと、重量平均分子量が50,000~5,000,000である水酸基含有ポリマーと、溶媒とを含むエネルギー貯蔵デバイス電極用薄膜形成組成物を提供する。

Description

エネルギー貯蔵デバイス電極用薄膜形成組成物
 本発明は、エネルギー貯蔵デバイス電極用薄膜形成組成物に関する。
 スマートフォン、デジタルカメラ、携帯ゲーム機等の携帯電子機器の小型軽量化や高機能化の要求に伴い、近年、高性能電池の開発が積極的に進められており、充電により繰り返し使用できる二次電池の需要が大きく伸びている。中でも、リチウムイオン二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果が無いこと等から、現在最も精力的に開発が進められている二次電池である。また、近年の環境問題への取り組みから、電気自動車の開発も活発に進められており、その動力源としての二次電池には、より高い性能が求められるようになってきている。
 ところで、リチウムイオン二次電池は、リチウムを吸蔵、放出できる正極と負極と、これらの間に介在するセパレータを容器内に収容し、その中に電解液(リチウムイオンポリマー二次電池の場合は液状電解液の代わりにゲル状の電解質)を満たした構造を有する。
 正極および負極は、一般的に、リチウムを吸蔵、放出できる活物質と、主に炭素材料からなる導電材、さらにポリマーバインダーを含む組成物を、銅箔やアルミニウム箔等の集電基板上に塗布することで製造される。このバインダーは、活物質と導電材、さらにこれらと金属箔を接着するために用いられ、ポリフッ化ビニリデン(PVdF)等のN-メチルピロリドン(NMP)に可溶なフッ素系樹脂や、オレフィン系重合体の水分散体等が市販されている。
 しかし、上述したバインダーの集電基板に対する接着力は十分とは言えず、電極の裁断工程や巻回工程等の製造工程時に、活物質や導電材の一部が集電基板から剥離、脱落し、微小短絡や電池容量のばらつきを生じる原因となる。さらに、長期間の使用により、電解液によるバインダーの膨潤や、活物質のリチウム吸蔵、放出による体積変化に伴う電極合材の体積変化により、電極合材と集電基板間の接触抵抗が増大したり、活物質や導電材の一部が集電基板から剥離、脱落したりすることによる電池容量の劣化が起こるという問題や、安全性の点で問題もある。
 上記課題を解決する試みとして、集電基板と電極合材層との間の密着性を高め、接触抵抗を低下させることで電池を低抵抗化する技術として、集電基板と電極合材層との間に導電性のアンダーコート層を介在させる方法が開発されている。例えば、特許文献1では、炭素を導電性フィラーとする導電層をアンダーコート層として、集電基板と電極合材層との間に配設する技術が開示されている。アンダーコート層を備えた複合集電体を用いることで、集電基板と電極合材層の間の接触抵抗を低減でき、かつ、高速放電時の容量減少も抑制でき、さらに電池の劣化をも抑制できることが示されている。また、特許文献2や特許文献3でも同様の技術が開示されている。特許文献4や特許文献5では、カーボンナノチューブを導電性フィラーとしたアンダーコート層が開示されている。
 しかし、これら各特許文献で開示されているアンダーコート層は、アンダーコート層上に、スラリー状の電極合材層形成用組成物を塗布し、乾燥して電極合材層を形成する湿式法には好適に適用できる一方、電極合材層形成用組成物を一旦シート状に成形し、これをアンダーコート層上に加熱圧着等によって積層する方法や、基材上に形成した電極合材層上にアンダーコート層を形成し、さらにその上に集電基板を積層した後、基材を剥離する電極合材層の転写を伴う方法等の乾式法では、密着力が不足したり、転写が困難であったりする等の問題がある。また、生産スケジュール等の都合により、アンダーコート(プライマー)層を形成した後、電極合材層と密着させるまでにタイムラグを生じることがあることから、一定時間保管された後でもその密着力が維持されていることが求められている。
特開平9-097625号公報 特開2000-011991号公報 特開平11-149916号公報 国際公開第2014/042080号 国際公開第2015/029949号
 本発明は、上記事情に鑑みてなされたものであり、電極合材層の転写が可能であり、かつ、転写後に実用的な密着力と優れた密着力維持率を兼ね備えたプライマー層を与えるエネルギー貯蔵デバイス電極用薄膜形成組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、導電性炭素材料と、側鎖にオキサゾリン基を有するポリマーと、特定範囲の重量平均分子量を有する水酸基含有ポリマーと、溶媒とを含む組成物が、電極合材層の転写が可能であり、かつ、転写後に実用的な密着力と優れた密着力維持率を兼ね備えた薄膜(プライマー層)を与えることを見出し、本発明を完成させた。
 すなわち、本発明は、エネルギー貯蔵デバイス電極を提供する。
1. 導電性炭素材料と、側鎖にオキサゾリン基を有するポリマーと、重量平均分子量が50,000~5,000,000である水酸基含有ポリマーと、溶媒とを含むエネルギー貯蔵デバイス電極用薄膜形成組成物。
2. 上記水酸基含有ポリマーの分子中に占める水酸基の質量割合が、1×10-5~100×10-5である1のエネルギー貯蔵デバイス電極用薄膜形成組成物。
3. 上記水酸基含有ポリマーの分子中に占める水酸基の質量割合が、1×10-5~50×10-5である2のエネルギー貯蔵デバイス電極用薄膜形成組成物。
4. 上記水酸基含有ポリマーの含有量が、上記導電性炭素材料100質量部に対して25~200質量部である1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成組成物。
5. 上記水酸基含有ポリマーが、ポリアルキレングリコールである1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成組成物。
6. 上記ポリアルキレングリコールが、ポリエチレングリコールである5のエネルギー貯蔵デバイス電極用薄膜形成組成物。
7. 上記側鎖にオキサゾリン基を有するポリマーが、2位に重合性炭素-炭素二重結合含有基を有する式(1)で示されるオキサゾリンモノマーと、親水性官能基を有する(メタ)アクリル系モノマーとをラジカル重合したポリマーである1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、Xは、重合性炭素-炭素二重結合を含む鎖状炭化水素基を表し、R1~R4は、互いに独立して、水素原子、ハロゲン原子、炭素数1~5の分岐構造を有していてもよいアルキル基、炭素数6~20のアリール基、または炭素数7~20のアラルキル基を表す。)
8. 上記側鎖にオキサゾリン基を有するポリマーの含有量が、上記導電性炭素材料100質量部に対して20~60質量部である1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成組成物。
9. 上記導電性炭素材料が、アセチレンブラック、カーボンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラックおよびランプブラックから選ばれる1種または2種以上である1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成組成物。
10. さらに、下記式(n1)で表される複素環式化合物を含む1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、RaおよびRbは、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、または置換基を有していてもよい炭素数6~12のアリール基を表し、RaおよびRbが互いに結合して炭素数4~6の環を形成していてもよく、Xaは、NまたはCHである。)
11. 上記置換基が、カルボキシ基、ヒドロキシ基、チオール基、アミノ基、スルホン酸基およびエポキシ基からなる群より選ばれる少なくとも1種である10のエネルギー貯蔵デバイス電極用薄膜形成組成物。
12. 上記複素環式化合物が、下記式(n2)で表される10のエネルギー貯蔵デバイス電極用薄膜形成組成物。
Figure JPOXMLDOC01-appb-C000007
(式中、Yaは、水素原子、カルボキシ基、ヒドロキシ基、チオール基、アミノ基、スルホン酸基またはエポキシ基を表す。Xaは、上記と同じである。)
13. 上記複素環式化合物が、下記式(n3)で表される12のエネルギー貯蔵デバイス電極用薄膜形成組成物。
Figure JPOXMLDOC01-appb-C000008
14. 1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成用組成物から得られる薄膜からなるプライマー層。
15. 集電基板と、この集電基板の上に形成された14のプライマー層とを備えるエネルギー貯蔵デバイスの電極用複合集電体。
16. 集電基板が、銅箔またはアルミニウム箔である15のエネルギー貯蔵デバイスの電極用複合集電体。
17. 16のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極。
18. アノード電極用である17のエネルギー貯蔵デバイス用電極。
19. 17のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス。
20. リチウムイオン電池である19のエネルギー貯蔵デバイス。
21. 全固体リチウムイオン電池である20のエネルギー貯蔵デバイス。
22. 集電基板の上に、1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成用組成物を塗布し、乾燥してプライマー層を形成した後、このプライマー層の上に電極合材シートを積層し、加熱圧着するエネルギー貯蔵デバイス電極の製造方法。
23. 基材上に、電極合材層形成用組成物を塗布し、乾燥して電極合材層を形成する工程と、
 この電極合材層の上に、1~3のいずれかのエネルギー貯蔵デバイス電極用薄膜形成用組成物を塗布し、乾燥してプライマー層を形成する工程と、
 このプライマー層の上に、集電基板を積層して加熱圧着した後、上記基材を剥離する工程を備えるエネルギー貯蔵デバイス電極の製造方法。
 本発明のエネルギー貯蔵デバイス電極用薄膜形成用組成物は、電極合材層の転写が可能であり、かつ、実用的な密着力と優れた密着力維持率を兼ね備えたプライマー層を与える。
 したがって、本発明のエネルギー貯蔵デバイス電極用薄膜形成用組成物を用いることで、基材付着電極合材層組成物や電極合材層シートの転写を行う乾式プロセスが適用可能になるため、高厚み、かつ、厚み精度に優れる電極合材層を備える電極を作製することができる。
 以下、本発明についてさらに詳しく説明する。
 本発明のエネルギー貯蔵デバイス電極用薄膜形成組成物(以下、単に「組成物」ということもある)は、導電性炭素材料と、側鎖にオキサゾリン基を有するポリマーと、水酸基含有ポリマーと、溶媒とを含むことを特徴とする。
[1]導電性炭素材料
 本発明の組成物に用いられる導電性炭素材料の具体例としては、アセチレンブラック、カーボンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、ランプブラック、カーボンナノチューブ、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛等の公知の導電性炭素材料から適宜選択して用いることができるが、特に、導電性、分散性、密着性、転写性等の観点から、アセチレンブラック、カーボンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、ランプブラックが好ましく、アセチレンブラック、カーボンブラック、ケッチェンブラックがより好ましく、アセチレンブラックがより一層好ましい。なお、上記導電性炭素材料は、単独で用いても、2種以上併用してもよい。
 導電性炭素材料は、市販品を用いることができ、その具体例としては、デンカ(株)製のアセチレンブラックであるデンカブラック(Li-100、Li-250、Li-400、Li-435等)、日本ケミコン(株)製NHカーボン等が挙げられる。
[2]側鎖にオキサゾリン基を有するポリマー
 本発明の組成物において、側鎖にオキサゾリン基を有するポリマー(以下、オキサゾリンポリマーという)は、上記導電性炭素材料の分散剤およびバインダーポリマーとして作用するものである。
 このポリマーとしては、主鎖を構成する繰り返し単位に直接またはアルキレン基等のスペーサー基を介してオキサゾリン基が結合した重合体であれば特に限定されるものではないが、具体的には、式(1)に示されるような2位に重合性炭素-炭素二重結合含有基を有するオキサゾリンモノマーをラジカル重合して得られる、オキサゾリン環の2位でポリマー主鎖またはスペーサー基に結合した繰り返し単位を有するポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中、Xは、重合性炭素-炭素二重結合含有基を表し、R1~R4は、互いに独立して、水素原子、ハロゲン原子、炭素数1~5の分岐構造を有していてもよいアルキル基、炭素数6~20のアリール基、または炭素数7~20のアラルキル基を表す。
 オキサゾリンモノマーが有する重合性炭素-炭素二重結合含有基としては、重合性炭素-炭素二重結合を含んでいれば特に限定されるものではないが、重合性炭素-炭素二重結合を含む鎖状炭化水素基が好ましく、例えば、ビニル基、アリル基、イソプロペニル基などの炭素数2~8のアルケニル基等が好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~5の分岐構造を有していてもよいアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 炭素数6~20のアリール基の具体例としては、フェニル基、キシリル基、トリル基、ビフェニル基、ナフチル基等が挙げられる。
 炭素数7~20のアラルキル基の具体例としては、ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等が挙げられる。
 式(1)で示される2位に重合性炭素-炭素二重結合含有基を有するオキサゾリンモノマーの具体例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-4-エチル-2-オキサゾリン、2-ビニル-4-プロピル-2-オキサゾリン、2-ビニル-4-ブチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-ビニル-5-エチル-2-オキサゾリン、2-ビニル-5-プロピル-2-オキサゾリン、2-ビニル-5-ブチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-4-エチル-2-オキサゾリン、2-イソプロペニル-4-プロピル-2-オキサゾリン、2-イソプロペニル-4-ブチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2-イソプロペニル-5-プロピル-2-オキサゾリン、2-イソプロペニル-5-ブチル-2-オキサゾリン等が挙げられるが、入手容易性などの点から、2-イソプロペニル-2-オキサゾリンが好ましい。
 また、導電性炭素材料分散液を、水系溶媒を用いて調製することを考慮すると、オキサゾリンポリマーは水溶性であることが好ましい。
 このような水溶性のオキサゾリンポリマーは、上記式(1)で表されるオキサゾリンモノマーのホモポリマーでもよいが、水への溶解性をより高めるため、上記オキサゾリンモノマーと親水性官能基を有する(メタ)アクリル酸エステル系モノマーとの少なくとも2種のモノマーをラジカル重合させて得られたものであることが好ましい。
 親水性官能基を有する(メタ)アクリル系モノマーの具体例としては、(メタ)アクリル酸、アクリル酸2-ヒドロキシエチル、アクリル酸メトキシポリエチレングリコール、アクリル酸とポリエチレングリコールとのモノエステル化物、アクリル酸2-アミノエチルおよびその塩、メタクリル酸2-ヒドロキシエチル、メタクリル酸メトキシポリエチレングリコール、メタクリル酸とポリエチレングリコールとのモノエステル化物、メタクリル酸2-アミノエチルおよびその塩、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸アンモニウム、(メタ)アクリルニトリル、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、スチレンスルホン酸ナトリウム等が挙げられ、これらは、単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸とポリエチレングリコールとのモノエステル化物が好適である。
 また、本発明においては、得られるオキサゾリンポリマーの導電性炭素材料分散能に悪影響を及ぼさない範囲で、上記オキサゾリンモノマーおよび親水性官能基を有する(メタ)アクリル系モノマー以外のその他のモノマーを併用することができる。
 その他のモノマーの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸エステルモノマー;エチレン、プロピレン、ブテン、ペンテン等のα-オレフィン系モノマー;塩化ビニル、塩化ビニリデン、フッ化ビニル等のハロオレフィン系モノマー;スチレン、α-メチルスチレン等のスチレン系モノマー;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル系モノマー;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系モノマー等が挙げられ、これらはそれぞれ単独で用いても、2種以上組み合わせて用いてもよい。
 本発明の組成物中における、側鎖にオキサゾリン基を有するポリマーの含有量は、導電性炭素材料を分散し得る限り特に制限はないが、導電性炭素材料を十分に分散させるとともにバインダーとしての機能を発揮させることを考慮すると、その含有量は、導電性炭素材料100質量部に対して20~60質量部が好ましく、30~60質量部がより好ましく、40~60質量部がより一層好ましい。
[3]水酸基含有ポリマー
 本発明の組成物において、水酸基含有ポリマーは、密着力を向上させる点から、当該水酸基含有ポリマーの分子中に占める水酸基の質量割合が、1×10-5~100×10-5であることが好ましく、1×10-5~50×10-5であることがより好ましい。
 上記水酸基含有ポリマーの重量平均分子量は、50,000~5,000,000であり、好ましくは50,000~2,500,000、より好ましくは100,000~1,000,000である。ポリアルキレングリコールおよび/またはポリビニルアルコールが用いられる。なお、本発明におけるポリアルキレングリコールにはポリアルキレンオキシドも含まれる。重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算値である。
 また、プライマー層の密着力を考慮すると、上記水酸基含有ポリマーの融点の下限は25℃以上であり、上限は100℃以下であることが好ましく、70℃以下であることがより好ましい。
 ポルアルキレングリコール(ポリアルキレンオキシド)の具体例としては、ポリエチレングリコール(ポリエチレンオキシド)、ポリプロピレングリコール(ポリプロピレンオキシド)、ポリテトラメチレンエーテルグリコール等が挙げられる。また、水酸基含有ポリマーとしては、複数種の繰り返し単位を含む共重合体であってもよく、例えば、アルキレンオキサイドとアリルグリシジルエーテルの共重合体が挙げられる。上記共重合体の具体例としては、エチレンオキサイドとアリルグリシジルエーテルの共重合体、プロピレンオキサイドとアリルグリシジルエーテルの共重合体、エチレンオキサイドとプロピレンオキサイド、アリルグリシジルエーテルの共重合体等が挙げられる。上記共重合体は、ランダム共重合体、ブロック共重合体およびグラフト共重合体のいずれであってもよいが、ランダム共重合体が好ましい。
 水酸基含有ポリマーは市販品を用いることができ、例えば、明成化学工業(株)製のアルコックスE-240、E-160、E-100、E-75、E-60、E-45、E-30、R-1000、R-400、R-150(PEG)、アルコックスCP-A1H、CP-A2H(エチレンオキサイドとプロピレンオキサイド、アリルグリシジルエーテルのランダム共重合体)等;富士フイルム和光純薬(株)製のポリエチレングリコール2,000、3,000、4,000、6,000、8,000、10,000、12,000、20,000、500,000等;日本酢ビ・ポバール(株)製のポリビニルアルコールVC-10、13、20、VF-1720等;三洋化成(株)製のPEG-2,000、4,000、6,000、10,000、20,000(PEG)、ニューボールPP-2000,4000(PPG)等;Alfa Aesar製のPEG-2,000、4,000、6,000、10,000、20,000(PEG)等;小宗化学薬品(株)製のPEG-6,000(PEG)等が挙げられるが、これらに限定されるものではない。
 本発明の組成物中における水酸基含有ポリマーの含有量は、上記導電性炭素材料100質量部に対して10~200質量部が好ましく、プライマー層の密着力をより高めることを考慮すると、30~150質量部がより好ましく、40~120質量部がより一層好ましい。
 本発明では、集電基板とプライマー層との密着性に加え、プライマー層のスクラッチ耐性を高めるために、さらに、窒素原子を2個以上含む含窒素複素環式化合物を含むことが好ましい。含窒素複素環式化合物としては、環を構成する窒素原子を2個以上含むものであれば特に限定されるものではなく、従来公知の化合物から適宜選択して用いることができるが、本発明では、イミダゾール誘導体、ピラゾール誘導体およびトリアゾール誘導体が好ましく、イミダゾール誘導体およびトリアゾール誘導体がより好ましく、トリアゾール誘導体がより一層好ましい。これらの使用可能な具体例を以下に列記する。
 イミダゾール誘導体の具体例としては、イミダゾール、ベンゾイミダゾール、5-カルボキシベンゾイミダゾール、4-カルボキシベンゾイミダゾール等が挙げられる。
 ピラゾール誘導体の具体例としては、ピラゾール、1,2-ベンゾピラゾール、4-ピラゾールカルボン酸、3-ピラゾールカルボン酸、アデニン等が挙げられる。
 トリアゾール誘導体としては、ベンゾトリアゾール系化合物が好ましく、その具体例としては、ベンゾトリアゾール、カルボキシベンゾトリアゾール、5-カルボキシベンゾトリアゾール、4-カルボキシベンゾトリアゾール、5-ヒドロキシベンゾトリアゾール、5-アミノベンゾトリアゾール、ベンゾトリアゾール-4-スルホン酸、4-メチルベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、1-カルボキシベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール、1-アミノベンゾトリアゾール、4-メチルベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、ベンゾトリアゾール-1-メチルアミン、4-メチルベンゾトリアゾール-1-メチルアミン、5-メチルベンゾトリアゾール-1-メチルアミン、N-メチルベンゾトリアゾール-1-メチルアミン、N-エチルベンゾトリアゾール-1-メチルアミン、N,N-ジメチルベンゾトリアゾール-1-メチルアミン、N,N-ジエチルベンゾトリアゾール-1-メチルアミン、N,N-ジプロピルベンゾトリアゾール-1-メチルアミン、N,N-ジブチルベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシルベンゾトリアゾール-1-メチルアミン、N,N-ジオクチルベンゾトリアゾール-1-メチルアミン、N,N-ビス(2-エチルヘキシル)-ベンゾトリアゾール-1-メチルアミン、N,N-ジメチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジメチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジエチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジエチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジプロピル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジプロピル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジブチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジブチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ビス(2-エチルヘキシル)-4-メチルベンゾトリアゾール-1-メチルアミン、N,N-ビス(2-エチルヘキシル)-5-メチルベンゾトリアゾール-1-メチルアミン、N,N-ジオレイル-4-メチルベンゾトリアゾール-1-メチルアミン、N,N-ジオレイル-5-メチルベンゾトリアゾール-1-メチルアミン、N,N-ジステアリル-4-メチルベンゾトリアゾール-1-メチルアミン、N,N-ジステアリル-5-メチルベンゾトリアゾール-1-メチルアミン、1-ヒドロキシメチルベンゾトリアゾール、1-(2-エチルヘキシルアミノ)メチル)ベンゾトリアゾール、1-(2,3-ジヒドロキシプロピル)ベンゾトリアゾール等が挙げられる。
 特に、本発明では、下記式(n1)で表される化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記RaおよびRbは、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、または置換基を有していてもよい炭素数6~12のアリール基を表し、RaおよびRbが互いに結合して炭素数4~6の環を形成していてもよく、Xaは、NまたはCHである。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~6のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等の炭素数1~6の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の炭素数3~6の環状アルキル基が挙げられる。
 炭素数2~6のアルケニル基としては、エテニル、n-1-プロペニル、n-2-プロペニル、1-メチルエテニル、n-1-ブテニル、n-2-ブテニル、n-3-ブテニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、1-エチルエテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、n-1-ペンテニル等が挙げられる。
 炭素数6~12のアリール基としては、フェニル、トリル、1-ナフチル、2-ナフチル基等が挙げられる。
 上記置換基としては、カルボキシ基、ヒドロキシ基、チオール基、アミノ基、スルホン酸基、エポキシ基等が挙げられる。
 RaおよびRbが互いに結合して形成される炭素数4~6の環としては、シクロペンタン環、シクロヘキサン環、ベンゼン環等が挙げられる。
 上記Xaとしては、Nが好ましい。
 特に、RaおよびRbが互いに結合してベンゼン環を形成した下記式(n2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記Yaは、水素原子、カルボキシ基、ヒドロキシ基、チオール基、アミノ基、スルホン酸基またはエポキシ基を表すが、マイグレーション抑制効果を確保するとともに、集電体とアンダーコート層間との密着性を向上させる点から、カルボキシ基、ヒドロキシ基、チオール基、アミノ基、スルホン酸基およびエポキシ基が好ましく、カルボキシ基がより好ましい。
 上記Xaは、上記(n1)と同じであるが、Nが好ましい。
 したがって、上記式(n2)で表される複素環式化合物のより好適な態様としては、下記式(n3)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式(n3)で表される複素環式化合物の具体例としては、カルボキシベンゾトリアゾール、5-カルボキシベンゾトリアゾール、4-カルボキシベンゾトリアゾールが挙げられるが、カルボキシベンゾトリアゾールおよび5-カルボキシベンゾトリアゾールが好ましい。
 含窒素複素環式化合物を含む場合、その含有量は、導電性炭素材料100質量部に対し、好ましくは0.05~200質量部、より好ましくは0.1~150質量部、より一層好ましくは5~130質量部、さらに好ましくは10~110質量部、最も好ましくは10~100質量部である。なお、上記の含窒素複素環式化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
[4]溶媒
 本発明の組成物の調製に用いる溶媒としては、特に限定されるものではないが、水および/または親水性溶媒が好ましい。
 親水性溶媒とは水と任意に混合する有機溶媒であり、例えば、テトラヒドロフラン(THF)等のエーテル類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド類;アセトン等のケトン類;メタノール、エタノール、n-プロパノール、2-プロパノール等のアルコール類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;エチレングリコール、プロピレングリコール等のグリコール類等の有機溶媒が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 これらの中でも、導電性炭素材料の分散性を高めるという点から、水、NMP、DMF、THF、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、t-ブタノールを含むことが好ましい。また、組成物の塗工性を向上させ得るという点から、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、t-ブタノール、エチレングリコールモノブチルエーテルを含むことが好ましい。
 特に、コストを下げ得るという点からは、水を含むことが好ましく、溶媒中に水を70質量%以上(有機溶媒が30質量%以下)含むことがより好ましい。
[5]組成物の調製法
 本発明の組成物の調製法は、特に限定されるものではなく、導電性炭素材料、側鎖にオキサゾリン基を有するポリマー、水酸基含有ポリマーおよび溶媒を任意の順序で混合して調製することができるが、導電性炭素材料、側鎖にオキサゾリン基を有するポリマーおよび溶媒を混合して調製した第1液と、水酸基含有ポリマーと溶媒とを混合して調製した第2液とを混合する手法が好適である。
 この際、組成物を分散処理することが好ましく、この処理により、導電性炭素材料の分散割合をより向上させることができる。分散処理としては、機械的処理である、ボールミル、ビーズミル、ジェットミル等を用いる湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられるが、特に、ジェットミルを用いた湿式処理や超音波処理が好適である。
 分散処理の時間は任意であるが、1分から10時間程度が好ましく、5分から5時間程度がより好ましい。なお、必要に応じて加熱処理または冷却処理を施しても構わない。
 本発明において、組成物の固形分濃度は、特に限定されるものではないが、所望の目付量や膜厚でプライマー層を形成することを考慮すると、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がより一層好ましく、5質量%以下が更に好ましい。また、その下限は、任意であるが、実用的な観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がより一層好ましい。
 なお、固形分とは、組成物を構成する溶媒以外の成分を意味する。
[6]プライマー層およびエネルギー貯蔵デバイス電極
 以上で説明した組成物を、集電体の少なくとも一方の面や、電極合材層の表面に塗布し、これを自然または加熱乾燥して得られた薄膜は、エネルギー貯蔵デバイス電極のプライマー層として好適に利用できる。
 エネルギー貯蔵デバイスとしては、例えば、電気二重層キャパシタ、リチウム二次電池、リチウムイオン二次電池、プロトンポリマー電池、ニッケル水素電池、アルミ固体コンデンサ、電解コンデンサ、鉛蓄電池等の各種エネルギー貯蔵デバイスが挙げられるが、本発明の組成物は、特に、電気二重層キャパシタ、リチウムイオン二次電池に好適に用いることができる。
 集電体としては、従来、エネルギー貯蔵デバイス用電極の集電体として用いられているものを使用することができる。例えば、銅、アルミニウム、チタン、ステンレス、ニッケル、金、銀およびこれらの合金や、カーボン材料、金属酸化物、導電性高分子等を用いることができるが、銅、アルミニウム、ニッケルまたはこれらの合金からなる金属箔が好ましい。
 集電体の厚みは、特に限定されるものではないが、本発明においては、1~100μmが好ましい。
 電極合材層は、活物質、バインダーポリマーおよび必要に応じて溶媒を合わせて作製した電極スラリー(電極合材層形成用組成物)を、基材上に塗布し、自然または加熱乾燥して形成できる。
 活物質としては、従来、エネルギー貯蔵デバイス用電極に用いられている各種活物質を用いることができる。例えば、リチウム二次電池やリチウムイオン二次電池の場合、正極活物質としてリチウムイオンを吸着・離脱可能なカルコゲン化合物またはリチウムイオン含有カルコゲン化合物、ポリアニオン系化合物、硫黄単体およびその化合物等を用いることができる。
 このようなリチウムイオンを吸着離脱可能なカルコゲン化合物としては、例えば、FeS2、TiS2、MoS2、V26、V613、MnO2等が挙げられる。
 リチウムイオン含有カルコゲン化合物としては、例えば、LiCoO2、LiMnO2、LiMn24、LiMo24、LiV38、LiNiO2、LixNiy1-y2(ただし、Mは、Co、Mn、Ti、Cr、V、Al、Sn、Pb、およびZnから選ばれる少なくとも1種以上の金属元素を表し、0.05≦x≦1.10、0.5≦y≦1.0)等が挙げられる。
 ポリアニオン系化合物としては、例えば、LiFePO4等が挙げられる。
 硫黄化合物としては、例えば、Li2S、ルベアン酸等が挙げられる。
 一方、上記負極を構成する負極活物質としては、アルカリ金属、アルカリ合金、リチウムイオンを吸蔵・放出する周期表4~15族の元素から選ばれる少なくとも1種の単体、酸化物、硫化物、窒化物、またはリチウムイオンを可逆的に吸蔵・放出可能な炭素材料を使用することができる。
 アルカリ金属としては、Li、Na、K等が挙げられ、アルカリ金属合金としては、例えば、Li-Al、Li-Mg、Li-Al-Ni、Na-Hg、Na-Zn等が挙げられる。
 リチウムイオンを吸蔵放出する周期表4~15族の元素から選ばれる少なくとも1種の元素の単体としては、例えば、ケイ素やスズ、アルミニウム、亜鉛、砒素等が挙げられる。
 同じく酸化物としては、一酸化ケイ素(SiO)、二酸化ケイ素(SiO2)、スズケイ素酸化物(SnSiO3)、リチウム酸化ビスマス(Li3BiO4)、リチウム酸化亜鉛(Li2ZnO2)、リチウム酸化チタン(Li4Ti512)、酸化チタン等が挙げられる。
 同じく硫化物としては、リチウム硫化鉄(LixFeS2(0≦x≦3))、リチウム硫化銅(LixCuS(0≦x≦3))等が挙げられる。
 同じく窒化物としては、リチウム含有遷移金属窒化物が挙げられ、具体的には、LixyN(M=Co、Ni、Cu、0≦x≦3、0≦y≦0.5)、リチウム鉄窒化物(Li3FeN4)等が挙げられる。
 リチウムイオンを可逆的に吸蔵・放出可能な炭素材料としては、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、カーボンナノチューブ、またはこれらの焼結体等が挙げられる。
 また、電気二重層キャパシタの場合、活物質として炭素質材料を用いることができる。
 この炭素質材料としては、活性炭等が挙げられ、例えば、フェノール樹脂を炭化後、賦活処理して得られた活性炭が挙げられる。
 バインダーポリマーとしては、公知の材料から適宜選択して用いることができ、例えば、ポリフッ化ビニリデン(PVdF)、ポリビニルピロリドン、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕、ポリビニルアルコール、ポリイミド、エチレン-プロピレン-ジエン三元共重合体、スチレン-ブタジエンゴム、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)、ポリアクリル酸アンモニウム、ポリアニリン、ポリイミド、ポリアミドが挙げられる。なお、バインダーポリマーの添加量は、活物質100質量部に対して、0.1~40質量部、特に1~30質量部が好ましい。
 溶媒としては、上記組成物用の溶媒で例示した溶媒が挙げられ、それらの中からバインダーの種類に応じて適宜選択すればよいが、PVdF等の非水溶性のバインダーの場合はNMPが好適であり、PAA等の水溶性のバインダーの場合は水が好適である。
 なお、上記電極スラリーは、導電材を含んでいてもよい。導電材としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル等が挙げられる。
 電極スラリーの塗布方法としては、例えば、スピンコート法、ディップコート法、フローコート法、インクジェット法、キャスティング法、スプレーコート法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、フレキソ印刷法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法、ダイコート法等が挙げられるが、作業効率等の点から、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ダイコート法が好適である。
 また、加熱乾燥する場合の温度も任意であるが、50~400℃程度が好ましく、80~150℃程度がより好ましい。
 集電基板や電極合材層の表面に本発明の組成物を塗布する手法としては、上記電極スラリーの塗布方法と同様の方法が挙げられる。
 また、加熱乾燥する場合の温度も任意であるが、50~200℃程度が好ましく、80~150℃程度がより好ましい。
 プライマー層の厚みは、得られるデバイスの内部抵抗を低減することを考慮すると、1nm~10μmが好ましく、1nm~5μmがより好ましく、1nm~3μmがより一層好ましい。
 厚みは、例えば、プライマー層を形成した積層体から適当な大きさの試験片を切り出し、それを手で裂く等の手法により断面を露出させ、走査電子顕微鏡(SEM)等の顕微鏡観察により、断面部分でプライマー層が露出した部分から求めることができる。
 集電体や電極合材層の一面あたりのプライマー層の目付量は、上記膜厚を満たす限り特に限定されるものではないが、3,000mg/m2以下が好ましく、2,500mg/m2以下がより好ましく、2,000mg/m2以下がより一層好ましい。一方、プライマー層の機能を担保して優れた特性の電池を再現性よく得るため、上記一面あたりのプライマー層の目付量は、500mg/m2以上が好ましく、750mg/m2以上がより好ましく、1,000mg/m2以上がより好ましい。
 なお、プライマー層の目付量は、プライマー層の面積(m2)に対するプライマー層の質量(mg)の割合であり、プライマー層がパターン状に形成されている場合、当該面積はプライマー層のみの面積であり、パターン状に形成されたプライマー層の間に露出する集電体等の下層の面積を含まない。
 また、上記目付量は、想定目付量であってもよい。想定目付量とは、所定の固形分濃度の組成物を所定のワイヤーバーコーターを用いて下地層上に塗工した際に想定される目付量を意味し、例えば、固形分濃度5質量%の組成物を、ワイヤーバーコーターでOSP-30を用いて塗工した場合の想定目付量として表すことができる。
 プライマー層の質量は、例えば、プライマー層を形成した積層体から適当な大きさの試験片を切り出し、その質量W0を測定し、その後、当該積層体からプライマー層を剥離し、プライマー層を剥離した後の質量W1を測定し、その差(W0-W1)から算出する、あるいは、予め集電体の質量W2を測定しておき、その後、プライマー層を形成した積層体の質量W3を測定し、その差(W3-W2)から算出することができる。プライマー層を剥離する方法としては、例えばプライマー層が溶解、もしくは膨潤する溶剤に、プライマー層を浸漬させ、布等でプライマー層をふき取るなどの方法が挙げられる。
 目付量や膜厚は、公知の方法で調整することができる。例えば、塗布によりプライマー層を形成する場合、プライマー層を形成するための塗工液(プライマー層形成用組成物)の固形分濃度、塗布回数、塗工機の塗工液投入口のクリアランス等を変えることで調整できる。目付量や膜厚を多くしたい場合は、固形分濃度を高くしたり、塗布回数を増やしたり、クリアランスを大きくしたりする。目付量や膜厚を少なくしたい場合は、固形分濃度を低くしたり、塗布回数を減らしたり、クリアランスを小さくしたりする。
 集電基板上に、上記プライマー層を形成した後、このプライマー層の表面に上記電極スラリーを塗布し、自然または加熱乾燥して電極合材層を形成してエネルギー貯蔵デバイス電極を作製することができるが、上述したとおり、本発明のプライマー層は、乾式法にも適用できるため、プライマー層上に、電極合材シートを積層し、加熱圧着してエネルギー貯蔵デバイス電極を作製することもできる。
 この場合、電極合材シートは、上述した電極スラリーを下地層上に塗布し、これを自然または加熱乾燥してシート化したものを用いることができる。
 また、基材上に、上述した電極スラリーを塗布し、乾燥して電極合材層を形成した後、この電極合材層の上に、本発明の組成物を塗布し、乾燥してプライマー層を形成し、さらにこの上に集電基板を積層して加熱圧着した後、基材を剥離して電極合材層を転写することでエネルギー貯蔵デバイス電極を作製することができる。このように、転写により電極を作製した場合であっても、本発明のプライマー層は高い密着力を発揮し得る。
 この場合、基材は任意であるが、集電体と同様の材料からなる基材を用いることができ、銅箔が好ましい。
 加熱圧着時の温度は、特に限定されるものではないが、プライマー層の密着力をより高めることを考慮すると、上記水酸基含有ポリマーの融点以上の温度とすることが好ましい。上記温度は、水酸基含有ポリマーの種類によって異なるが、概ね115℃未満が好ましく、110℃以下がより好ましく、105℃以下がより一層好ましい。また、その下限は、50℃以上が好ましく、55℃以上がより好ましく、60℃以上がより一層好ましい。
 加熱圧着時の圧力も特に限定されるものではないが、線圧1kN/cm以上が好ましく、5kN/cm以上がより好ましく、10kN/cm以上がより一層好ましい。
 圧着は、一般に採用されている方法を用いることができるが、特に金型プレス法やロールプレス法が好ましい。
[7]エネルギー貯蔵デバイス
 本発明に係るエネルギー貯蔵デバイスは、上述したエネルギー貯蔵デバイス用電極を備えたものであり、より具体的には、少なくとも一対の正負極と、これら各極間に介在するセパレータと、電解質とを備えて構成され、正負極の少なくとも一方が、上述したエネルギー貯蔵デバイス用電極から構成される。
 このエネルギー貯蔵デバイスは、電極として上述したエネルギー貯蔵デバイス用電極を用いることにその特徴があるため、その他のデバイス構成部材であるセパレータや、電解質などは、公知の材料から適宜選択して用いることができる。セパレータとしては、例えば、セルロース系セパレータ、ポリオレフィン系セパレータ等が挙げられる。
 電解質としては、電解質塩を溶媒に溶かしてなる液体電解質、固体電解質のいずれでもよく、また水系、非水系のいずれでもよいが、本発明のエネルギー貯蔵デバイス用電極は、固体電解質を用いた電池、特に全固体電池(例えば、全固体リチウムイオン電池)に適用することが好ましい。
 電解質塩としては、例えば、LiPF6、LiBF4、LiN(SO2F)2、LiN(C25SO22、LiAsF6、LiSbF6、LiAlF4、LiGaF4、LiInF4、LiClO4、LiN(CF3SO22、LiCF3SO3、LiSiF6、LiN(CF3SO2)、(C49SO2)等のリチウム塩、LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、4級イミダゾリウム化合物のヨウ化物塩、テトラアルキルアンモニウム化合物のヨウ化物塩および過塩素酸塩、LiBr、NaBr、KBr、CsBr、CaBr2等の金属臭化物等が挙げられる。これらの電解質塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 電解質用溶媒としては、電池を構成する物質に対して腐食や分解を生じさせて性能を劣化させるものでなく、上記電解質塩を溶解するものであれば特に限定されない。例えば、非水系の溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン等の環状エステル類、テトラヒドロフラン、ジメトキシエタン等のエーテル類、酢酸メチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類、アセトニトリル等のニトリル類等が用いられる。これらの溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 また、固体電解質としては、硫化物系固体電解質および酸化物系固体電解質等の無機固体電解質や、高分子系電解質等の有機固体電解質を好適に用いることができる。これらの固体電解質を用いることで電解液を使用しない全固体電池を得ることができる。
 硫化物系固体電解質としては、Li2S-SiS2-リチウム化合物(ここで、リチウム化合物はLi3PO4、LiIおよびLi4SiO4からなる群より選ばれる少なくとも1種である)、Li2S-P25、Li2S-P25、Li2S-B25、Li2S-P25-GeS2等のチオリシコン系材料等を挙げることができる。
 酸化物系固体電解質としては、ガーネット型構造の酸化物であるLi5La3212(M=Nb,Ta)やLi7La3Zr212、LISICONと総称されるγ-Li3PO4構造を基本とする酸素酸塩化合物、ペロブスカイト型、LIPONと総称されるLi3.3PO3.80.22、ナトリウム/アルミナ等を挙げることができる。
 高分子系固体電解質としては、ポリエチレンオキシド系材料や、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、エチレン、プロピレン、アクリロニトリル、塩化ビニリデン、アクリル酸、メタクリル酸、メチルアクリレート、エチルアクリレート、メチルメタクリレート、スチレンおよびフッ化ビニリデン等のモノマーを重合または共重合して得られる高分子化合物等が挙げられる。
 なお、高分子系固体電解質は、支持塩および可塑剤を含んでいてもよい。
 支持塩の具体例としては、リチウム(フルオロスルホニルイミド)等を挙げることができ、可塑剤としては、スクシノニトリル等が挙げられる。
 以下、製造例、実施例、比較例および参考例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例で用いた装置は下記のとおりである。
(1)プローブ型超音波照射装置(導電性炭素の分散)
 Hielscher Ultrasonics社製、UIP1000
(2)ワイヤーバーコーター(プライマー層形成)
 (株)エスエムテー製、PM-9050MC
(3)ロールプレス機(電極の圧縮)
 有限会社タクミ技研製、SA-602
(4)粘着・皮膜剥離解析装置(密着力測定)
 協和界面科学(株)製、VPA-3
(5)示差走査熱量計(DSC)(融点の測定)
 装置:株式会社日立ハイテクサイエンス社製、示差走査熱量計DSC7020
 サンプル量:5-10mg
 測定パン:Al(密閉)
 測定条件:30℃から200℃まで10℃/minで昇温し、1min保持した。200℃から30℃まで10℃/minで降温し1min保持した。その後、30℃から200℃まで10℃/minで昇温し、吸熱ピークの温度を融点とした。
(6)トライポギア TYPE30S(スクラッチ試験)
 新東科学(株)製、トライポギア TYPE30S
 荷重:500g
 また、使用した原料等は以下のとおりである。
AB:アセチレンブラック、デンカ(株)製、デンカブラックLi435
WS-700:(株)日本触媒製、オキサゾリンポリマーを含む水溶液、エポクロス(登録商標)WS-700、重量平均分子量:4.0×104、固形分濃度:25.0質量%
WS-300:(株)日本触媒製、オキサゾリンポリマーを含む水溶液、エポクロス(登録商標)WS-300、重量平均分子量:1.2×105、固形分濃度:10.0質量%
ポリビニルピロリドン:第一工業製薬(株)製、ピッツコール(登録商標)K90、重量平均分子量1,200,000
E-45:明成化学工業(株)製、ポリエチレンオキサイド、アルコックス(登録商標)E-45、重量平均分子量:600,000、分子中に占める水酸基の質量割合:5.7×10-5、融点:61℃
R-150:明成化学工業(株)製、ポリエチレンオキサイド、アルコックス(登録商標)R-150、重量平均分子量:100,000、分子中に占める水酸基の質量割合:3.4×10-4、融点:61℃
CP-A2H:明成化学工業(株)製、エチレンオキサイドとプロピレンオキサイド、アリルグリシジルエーテルのランダム共重合体、アルコックス(登録商標)CP-A2H、重量平均分子量:80,000、分子中に占める水酸基の質量割合:4.3×10-4、融点:45℃
E-300:明成化学工業(株)製、ポリエチレンオキサイド、アルコックス(登録商標)E-300、重量平均分子量:7,000,000、分子中に占める水酸基の質量割合:4.9×10-6、融点:70℃
PEG20k:三洋化成(株)製、ポリエチレングリコール、PEG20,000、重量平均分子量:20,000、分子中に占める水酸基の質量割合:1.7×10-3、融点:63℃
PEG10k:三洋化成(株)製、ポリエチレングリコール、PEG10,000、重量平均分子量:10,000、分子中に占める水酸基の質量割合:3.4×10-3、融点:62℃
PEG6k:三洋化成(株)製、ポリエチレングリコール、PEG6,000、重量平均分子量:6,000、分子中に占める水酸基の質量割合:5.67×10-3、融点:61℃
2-プロパノール:純正化学(株)製
CBT-1:城北化学工業(株)製、カルボキシベンゾトリアゾール(CAS RN:60932-58-3)
A-30:東亜合成(株)製、ポリアクリル酸アンモニウム、アロン(登録商標)A-30、重量平均分子量100,000、固形分濃度31.6質量%
〈水酸基含有ポリマーの分子中に占める水酸基の質量割合の計算〉
 上記の水酸基含有ポリマーの分子中に占める水酸基の質量割合は下記式により算出した。
 水酸基の割合=(17×水酸基の数)/ポリマーの重量平均分子量
[1]分散液の調製
[製造例1]分散液Aの調製
 導電性炭素材料であるアセチレンブラック(以下、ABと略す。)1.5g(100質量部)と、オキサゾリンポリマーを含む水溶液であるWS-700 3.0g(固形分として50質量部)と、純水38.36gと、2-プロパノール2.14gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて15分超音波処理を行い、均一に導電性炭素材料が分散した分散液Aを調製した。
[製造例2]分散液Bの調製
 導電性炭素材料であるAB1.5g(100質量部)と、オキサゾリンポリマーを含む水溶液であるWS-300 7.5g(固形分として50質量部)と、純水33.86gと、2-プロパノール2.14gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて15分超音波処理を行い、均一に導電性炭素材料が分散した分散液Bを調製した。
[製造例3]分散液Cの調製
 導電性炭素材料であるAB1.4g(100質量部)と、ポリビニルピロリドンK90 0.7g(50質量部)と、純水37.90gと、2-プロパノール2.00gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて15分超音波処理を行い、均一に導電性炭素材料が分散した分散液Cを調製した。
[2]エネルギー貯蔵デバイス電極用薄膜形成組成物の調製
[実施例1-1]薄膜形成組成物Aの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-45の5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Aを調製した。薄膜形成組成物AはABが均一に分散した黒色のインクだった。
[実施例1-2]薄膜形成組成物Bの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-45の5質量%水溶液1.2gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Bを調製した。薄膜形成組成物BはABが均一に分散した黒色のインクだった。
[実施例1-3]薄膜形成組成物Cの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-45の5質量%水溶液1.6gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Cを調製した。薄膜形成組成物CはABが均一に分散した黒色のインクだった。
[実施例1-4]薄膜形成組成物Dの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-45の5質量%水溶液2.4gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Dを調製した。薄膜形成組成物DはABが均一に分散した黒色のインクだった。
[実施例1-5]薄膜形成組成物Eの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-45の5質量%水溶液2.8gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Eを調製した。薄膜形成組成物EはABが均一に分散した黒色のインクだった。
[実施例1-6]薄膜形成組成物Fの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-45の5質量%水溶液4.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Fを調製した。薄膜形成組成物FはABが均一に分散した黒色のインクだった。
[実施例1-7]薄膜形成組成物Gの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 3.0gと、E-45の5質量%水溶液4.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Gを調製した。薄膜形成組成物GはABが均一に分散した黒色のインクだった。
[実施例1-8]薄膜形成組成物Hの調製
 水9.5gに水酸基含有ポリマーであるR-150を0.5g溶解させ、R-150の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、R-150の5質量%水溶液4.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Hを調製した。薄膜形成組成物HはABが均一に分散した黒色のインクだった。
[実施例1-9]薄膜形成組成物Iの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例2で調製した分散液B 6.0gと、E-45の5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Iを調製した。薄膜形成組成物IはABが均一に分散した黒色のインクだった。
[実施例1-10]薄膜形成組成物Jの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例2で調製した分散液B 6.0gと、E-45の5質量%水溶液4.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Jを調製した。薄膜形成組成物JはABが均一に分散した黒色のインクだった。
[実施例1-11]薄膜形成組成物Kの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、CP-A2Hの5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、CP-A2Hの5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Kを調製した。薄膜形成組成物KはABが均一に分散した黒色のインクだった。
[実施例1-12]薄膜形成組成物Lの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-45の5質量%水溶液0.8gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Lを調製した。薄膜形成組成物LはABが均一に分散した黒色のインクだった。
 上記実施例のまとめを表1に示す。
Figure JPOXMLDOC01-appb-T000013
[実施例1-13]薄膜形成組成物Mの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。水9.5gに複素環式化合物であるCBT-1を0.5g溶解させ、CBT-1の5質量%水溶液を調製した。さらに、水8.4gにA-30を1.6g溶解させ、A-30の5質量%溶液を調製した。製造例1で調製した分散液A 7.5gと、E-45の5質量%水溶液2.5gと、CBT-1の5質量%水溶液1.0gと、A-30の5質量%水溶液1.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Mを調製した。薄膜形成組成物MはABが均一に分散した黒色のインクだった。
[実施例1-14]薄膜形成組成物Nの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。水9.5gに複素環式化合物であるCBT-1を0.5g溶解させ、CBT-1の5質量%水溶液を調製した。さらに、水8.4gにA-30を1.6g溶解させ、A-30の5質量%溶液を調製した。製造例1で調製した分散液A 7.5gと、E-45の5質量%水溶液2.5gと、CBT-1の5質量%水溶液0.5gと、A-30の5質量%水溶液1.25gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Nを調製した。薄膜形成組成物NはABが均一に分散した黒色のインクだった。
[実施例1-15]薄膜形成組成物Oの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。水9.5gに複素環式化合物であるCBT-1を0.5g溶解させ、CBT-1の5質量%水溶液を調製した。さらに、水8.4gにA-30を1.6g溶解させ、A-30の5質量%溶液を調製した。製造例1で調製した分散液A 7.5gと、E-45の5質量%水溶液2.5gと、CBT-1の5質量%水溶液1.0gと、A-30の5質量%水溶液1.25gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Mを調製した。薄膜形成組成物OはABが均一に分散した黒色のインクだった。
[実施例1-16]薄膜形成組成物Pの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。水8.4gにA-30を1.6g溶解させ、A-30の5質量%溶液を調製した。製造例1で調製した分散液A 7.5gと、E-45の5質量%水溶液2.5gと、A-30の5質量%水溶液1.25gとを混合し、固形分濃度を5質量%とした薄膜形成組成物Pを調製した。薄膜形成組成物PはABが均一に分散した黒色のインクだった。
 上記実施例のまとめを表2に示す。
Figure JPOXMLDOC01-appb-T000014
[比較例1-1]薄膜形成組成物aの調製
 水9.5gに水酸基含有ポリマーであるE-45を0.5g溶解させ、E-45の5質量%水溶液を調製した。製造例3で調製した分散液C 6.0gと、E-45の5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物aを調製した。薄膜形成組成物aはABが均一に分散した黒色のインクだった。
[比較例1-2]薄膜形成組成物b
 製造例1で調製した分散液Aをそのまま薄膜形成用組成物bとして用いた。
[比較例1-3]薄膜形成組成物cの調製
 AB1.4g(100質量部)と、水酸基含有ポリマーであるE-45 0.7g(50質量部)と、純水37.90gと、2-プロパノール2.00gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて15分超音波処理を行った。薄膜形成組成物cはペースト状に増粘し、凝集体が存在する不均一な分散液だった。
[比較例1-4]薄膜形成組成物dの調製
 水9.5gに水酸基含有ポリマーであるE-300を0.5g溶解させ、E-300の5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、E-300の5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物dを調製した。薄膜形成組成物dはABが均一に分散した黒色の粘稠なインクだった。
[比較例1-5]薄膜形成組成物eの調製
 水9.5gに水酸基含有ポリマーであるPEG20kを0.5g溶解させ、PEG20kの5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、PEG20k0の5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物eを調製した。薄膜形成組成物eはABが均一に分散した黒色のインクだった。
[比較例1-6]薄膜形成組成物fの調製
 水9.5gに水酸基含有ポリマーであるPEG10kを0.5g溶解させ、PEG10kの5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、PEG10k0の5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物fを調製した。薄膜形成組成物fはABが均一に分散した黒色のインクだった。
[比較例1-7]薄膜形成組成物gの調製
 水9.5gに水酸基含有ポリマーであるPEG6kを0.5g溶解させ、PEG6kの5質量%水溶液を調製した。製造例1で調製した分散液A 6.0gと、PEG6kの5質量%水溶液2.0gとを混合し、固形分濃度を5質量%とした薄膜形成組成物gを調製した。薄膜形成組成gはABが均一に分散した黒色のインクだった。
 上記比較例のまとめを表3に示す。
Figure JPOXMLDOC01-appb-T000015
[3]薄膜(プライマー層)の作製
[実施例2-1]
 実施例1-1で調製した組成物Aを、集電体である銅箔(厚さ10μm)にワイヤーバーコーターでOSP-30を用いて均一に展開した後、120℃で20分乾燥して薄膜(プライマー層)を形成し、銅箔とプライマー層との積層体を作製した。得られた積層体は、銅箔の表面が導電性炭素材料により均一に覆われていた(想定目付量:1,200mg/m2)。
 上述のとおり、想定目付量とは、所定の固形分濃度の薄膜形成用組成物を所定のワイヤーバーコーターを用いて集電体上に塗工した際に想定される目付量を意味する。本発明において、固形分濃度5質量%の薄膜形成用組成物を用いた場合の想定目付量は、以下のとおりである。
 OSP-30:1,200mg/m2
[実施例2-2~2-16,比較例2-1~2-7]
 組成物Aを、実施例1-2~1-16,比較例1-1~1-7で調製した組成物B~P、a~gに変更した以外は、実施例2-1と同様に薄膜(プライマー層)を形成し、積層体を作製した。
〔成膜性〕
 上記実施例2-1~2-16および比較例2-1~2-7で作製した薄膜を目視により観察し、その成膜性を以下の基準により評価した。結果を表4および表5に示す。
A:銅箔の表面が導電性炭素材料により均一に覆われた積層体。
B:筋状に塗工不良部分が発生し、銅箔の表面が不均一に導電性炭素材料により覆われた積層体。
-:分散性不良のため成膜不可。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表4および表5に示されるように、実施例2-1~2-16の組成物A~Pを用いた場合、均一な薄膜(プライマー層)が形成できた。
 これに対し、比較例2-1~2-7の組成物a~gを用いた場合、組成物cと組成物d以外は組成物A~Pと同様に均一な薄膜(プライマー層)が形成できた。組成物cは凝集体が存在する不均一な分散液であったため均一な薄膜(プライマー層)は形成できなかった。また、組成物dは均一にABが分散していたが、粘度が高く粘稠なインクであり、成膜時に筋状に塗工不良部分が発生し、銅箔の表面が不均一に導電性炭素材料により覆われた薄膜(プライマー層)となった。
 〔スクラッチ試験〕
 複素環式化合物の添加によるスクラッチ耐性を確かめるために、実施例2-13~2-15で作製した銅箔とプライマー層との積層体を、40mm×90mmに切り出して加工した。上記積層体をプライマー層が表面となるようにTRIBOGIEAR TYPE30Sに張り付けて固定した。TRIBOGIEAR TYPE30Sの擦る治具のプライマー層に接する部分(面積20mm×20mm)には、プロワイプマイクロソフトワイパーS220(大王製紙(株)製)を設けた。500gの荷重をかけ、プライマー層を摺動距離50mm往復させた後、プライマー層の状態を目視で観察し、剥離の有無を以下の基準により評価した。結果を表6に示す。
A:プライマー層のスクラッチ耐性が高く、傷や剥離が確認されなかった。
B:プライマー層のスクラッチ耐性が低く、傷や剥離している部分が確認された。
Figure JPOXMLDOC01-appb-T000018
[4]転写電極の作製
[実施例3-1]
 実施例2-1で作製した銅箔とプライマー層との積層体を、成膜後1時間以内にドライブース(温度22℃、露点-50℃)に移した。その後、上記積層体を30mm×100mmに切り出して加工した。銅箔上に電極合材層が形成された電極合材層複合体Aも同様に25mm×70mmに切り出して加工した。プライマー層と電極合材層塗工面を対向して重ね合わせ、60℃に加熱したロールプレス機で線圧10kN/cmで圧着して、プライマー層を形成した積層体と電極合材層複合体Aを一体化させた。その後、この一体化されたものから、電極合材層複合体Aの銅箔のみを剥離して、積層体上に電極合材層が転写された転写電極(成膜直後)を得た。
 なお、電極合材層複合体Aとしては、黒鉛/CMC/SBR(スチレン・ブタジエンゴム)=97.0/1.0/2.0(質量比)の組成物を、銅箔(厚み10μm)に塗工(塗工量16.1mg/cm2)し、乾燥したものを用いた。
 また、銅箔とプライマー層との積層体として、空調室(温度22℃、露点10-15℃)環境にて72時間静置したものを用いたこと以外は、上記と同様にして、転写電極(空調室保管後)を作製した。
[実施例3-2~3-16,比較例3-1~3-6]
 積層体を、実施例2-2~2-16,比較例2-1、2-2および2-4~2-7で作製した積層体に変更した以外は、実施例3-1と同様にして、転写電極(成膜直後)および転写電極(空調室保管後)を作製した。
〔転写電極の作製可否〕
 上記実施例3-1~3-16および比較例3-1~3-6で作製した転写電極を目視により観察し、転写電極の作製可否を以下の基準により評価した。結果を表7および表8に示す。
A:電極合材層が複合集電体上に固定化されている。
B:電極合材層が複合集電体上に固定化されていない。
〔密着力試験〕
 上記実施例3-1~3-16および比較例3-1~3-6で作製した転写電極を、それぞれ25mm幅で切り出し、電極合材層面に20mm幅の両面テープを貼り付けてガラス基板上に固定した。これを粘着・皮膜剥離解析装置に固定して剥離角度90°かつ剥離速度100mm/minで剥離試験を行い、下記の算出式により密着力および密着力維持率を算出した。結果を表7および表8に併せて示す。

 密着力(N/m)=測定値*(N)/(サンプル測定幅(mm)×10-3
*測定値は剥離距離10mmから35mmの平均値とした。

 密着力維持率(%)=空調室保管後の密着力(N/m)/成膜直後の密着力(N/m)×100
*成膜直後、空調室保管後ともに同様の方法で密着力を算出した。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表7および表8に示されるように、実施例3-1~3-16の組成物A~Pを用いた場合、初期密着力は高く、実用的な密着力を備えた薄膜(プライマー層)であった。空調室保管前後で密着力の変化が小さく、高い密着力維持率を示した。本発明の組成物を用いることで実用的な密着力と密着力維持率を有することが確認できた。
 一方で、比較例3-1の組成物aを用いた場合、初期密着力は高く、実用的な密着力を備えた薄膜(プライマー層)であったが、空調室保管後は12.8N/mに密着力が低下し、密着力維持率も21.2%と低い密着力維持率であった。
 また、比較例3-2~3-6の組成物b~gは初期密着力が小さく、実用的な密着力を備える薄膜(プライマー層)とはならかったため、空調室保管後の密着力の測定は割愛した。

Claims (23)

  1.  導電性炭素材料と、側鎖にオキサゾリン基を有するポリマーと、重量平均分子量が50,000~5,000,000である水酸基含有ポリマーと、溶媒とを含むエネルギー貯蔵デバイス電極用薄膜形成組成物。
  2.  上記水酸基含有ポリマーの分子中に占める水酸基の質量割合が、1×10-5~100×10-5である請求項1記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  3.  上記水酸基含有ポリマーの分子中に占める水酸基の質量割合が、1×10-5~50×10-5である請求項2記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  4.  上記水酸基含有ポリマーの含有量が、上記導電性炭素材料100質量部に対して25~200質量部である請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  5.  上記水酸基含有ポリマーが、ポリアルキレングリコールである請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  6.  上記ポリアルキレングリコールが、ポリエチレングリコールである請求項5記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  7.  上記側鎖にオキサゾリン基を有するポリマーが、2位に重合性炭素-炭素二重結合含有基を有する式(1)で示されるオキサゾリンモノマーと、親水性官能基を有する(メタ)アクリル系モノマーとをラジカル重合したポリマーである請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、重合性炭素-炭素二重結合を含む鎖状炭化水素基を表し、R1~R4は、互いに独立して、水素原子、ハロゲン原子、炭素数1~5の分岐構造を有していてもよいアルキル基、炭素数6~20のアリール基、または炭素数7~20のアラルキル基を表す。)
  8.  上記側鎖にオキサゾリン基を有するポリマーの含有量が、上記導電性炭素材料100質量部に対して20~60質量部である請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  9.  上記導電性炭素材料が、アセチレンブラック、カーボンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラックおよびランプブラックから選ばれる1種または2種以上である請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  10.  さらに、下記式(n1)で表される複素環式化合物を含む請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、RaおよびRbは、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、または置換基を有していてもよい炭素数6~12のアリール基を表し、RaおよびRbが互いに結合して炭素数4~6の環を形成していてもよく、Xaは、NまたはCHである。)
  11.  上記置換基が、カルボキシ基、ヒドロキシ基、チオール基、アミノ基、スルホン酸基およびエポキシ基からなる群より選ばれる少なくとも1種である請求項10記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
  12.  上記複素環式化合物が、下記式(n2)で表される請求項10記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Yaは、水素原子、カルボキシ基、ヒドロキシ基、チオール基、アミノ基、スルホン酸基またはエポキシ基を表す。Xaは、上記と同じである。)
  13.  上記複素環式化合物が、下記式(n3)で表される請求項12記載のエネルギー貯蔵デバイス電極用薄膜形成組成物。
    Figure JPOXMLDOC01-appb-C000004
  14.  請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物から得られる薄膜からなるプライマー層。
  15.  集電基板と、この集電基板の上に形成された請求項14記載のプライマー層とを備えるエネルギー貯蔵デバイスの電極用複合集電体。
  16.  集電基板が、銅箔またはアルミニウム箔である請求項15記載のエネルギー貯蔵デバイスの電極用複合集電体。
  17.  請求項16記載のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極。
  18.  アノード電極用である請求項17記載のエネルギー貯蔵デバイス用電極。
  19.  請求項17記載のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス。
  20.  リチウムイオン電池である請求項19記載のエネルギー貯蔵デバイス。
  21.  全固体リチウムイオン電池である請求項20記載のエネルギー貯蔵デバイス。
  22.  集電基板の上に、請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物を塗布し、乾燥してプライマー層を形成した後、このプライマー層の上に電極合材シートを積層し、加熱圧着するエネルギー貯蔵デバイス電極の製造方法。
  23.  基材上に、電極合材層形成用組成物を塗布し、乾燥して電極合材層を形成する工程と、
     この電極合材層の上に、請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物を塗布し、乾燥してプライマー層を形成する工程と、
     このプライマー層の上に、集電基板を積層して加熱圧着した後、上記基材を剥離する工程を備えるエネルギー貯蔵デバイス電極の製造方法。
PCT/JP2023/016043 2022-04-27 2023-04-24 エネルギー貯蔵デバイス電極用薄膜形成組成物 WO2023210558A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073218 2022-04-27
JP2022-073218 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210558A1 true WO2023210558A1 (ja) 2023-11-02

Family

ID=88518846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016043 WO2023210558A1 (ja) 2022-04-27 2023-04-24 エネルギー貯蔵デバイス電極用薄膜形成組成物

Country Status (1)

Country Link
WO (1) WO2023210558A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070089A (ja) * 2013-09-27 2015-04-13 東洋インキScホールディングス株式会社 キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ
WO2017119287A1 (ja) * 2016-01-07 2017-07-13 日産化学工業株式会社 エネルギー貯蔵デバイス用電極
WO2019188559A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070089A (ja) * 2013-09-27 2015-04-13 東洋インキScホールディングス株式会社 キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ
WO2017119287A1 (ja) * 2016-01-07 2017-07-13 日産化学工業株式会社 エネルギー貯蔵デバイス用電極
WO2019188559A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔

Similar Documents

Publication Publication Date Title
EP3401981B1 (en) Electrode for energy storage devices
JP5773097B1 (ja) 導電性結着層用組成物
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP4887653B2 (ja) 非水電解質二次電池電極用バインダー、バインダー組成物、電極用組成物、ならびに電極
CN1164000C (zh) 二次电池的制造方法
EP3401982B1 (en) Electrode for energy storage devices
JP2009544135A (ja) 電池、電池用電極、及びそれらの製造方法
JPWO2010016476A1 (ja) リチウムイオン二次電池用電極
JP2008300300A (ja) 非水リチウムイオン二次電池
US20180108913A1 (en) Crosslinked polymeric battery materials
JP2014063676A (ja) 二次電池正極用水系バインダー液、およびこれを用いてなる二次電池正極用水系ペースト、二次電池正極、二次電池
JP7110986B2 (ja) 導電性組成物
JP5195429B2 (ja) 非水電解質二次電池用電極、およびこれを用いた非水電解質二次電池
JP4531444B2 (ja) リチウムイオン二次電池用電極の製造方法
EP3550646B1 (en) Undercoat layer for energy storage device, and undercoat foil for energy storage device electrode
JP6654844B2 (ja) リチウム二次電池電極用組成物
WO2022230517A1 (ja) エネルギー貯蔵デバイス電極用薄膜形成用組成物
WO2023210558A1 (ja) エネルギー貯蔵デバイス電極用薄膜形成組成物
JPWO2020170960A1 (ja) エネルギー貯蔵デバイス電極用薄膜形成用組成物
JP2020198275A (ja) 全固体電池用集電体および全固体電池
WO2023095771A1 (ja) エネルギー貯蔵デバイス電極用薄膜形成組成物
JP7311059B2 (ja) 負極バインダー組成物、負極、及び二次電池
WO2024053362A1 (ja) 蓄電デバイス用導電性結着層形成用組成物
JP2021048014A (ja) 全固体電池
JP2003151631A (ja) リチウムイオンポリマー電池の製造方法、およびそれで得られたリチウムイオンポリマー電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796298

Country of ref document: EP

Kind code of ref document: A1