WO2023210437A1 - プリズムシート及びプリズムシート用活性エネルギー線硬化性組成物 - Google Patents

プリズムシート及びプリズムシート用活性エネルギー線硬化性組成物 Download PDF

Info

Publication number
WO2023210437A1
WO2023210437A1 PCT/JP2023/015447 JP2023015447W WO2023210437A1 WO 2023210437 A1 WO2023210437 A1 WO 2023210437A1 JP 2023015447 W JP2023015447 W JP 2023015447W WO 2023210437 A1 WO2023210437 A1 WO 2023210437A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism sheet
meth
active energy
energy ray
acrylate
Prior art date
Application number
PCT/JP2023/015447
Other languages
English (en)
French (fr)
Inventor
祐紀 木下
裕二郎 原
正和 吉澤
東美 申
裕太郎 上田
泰廣 高田
義信 出口
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023546467A priority Critical patent/JP7401035B1/ja
Publication of WO2023210437A1 publication Critical patent/WO2023210437A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a prism sheet used in displays such as liquid crystal display devices, and an active energy ray-curable composition for the prism sheet.
  • optical sheets having functions such as improving brightness and widening viewing angles have been used in displays such as liquid crystal display devices.
  • Such an optical sheet usually has a base material and an optical functional layer having a fine uneven structure on the base material, and modulates light in the uneven shape by a geometrical optical effect such as refraction. Express the desired function. Since such uneven shapes are mainly manufactured by shaping resin materials using molds, the materials used for the optical functional layer are required to be solvent-free and have low viscosity. .
  • a prism sheet has a sharp convex shape, so it is likely to be chipped due to friction with an adjacent member. Especially in the case of such a prism sheet, wear resistance is required.
  • the present invention was made to solve the above problems, and when the mechanical properties of the convex portions of the prism sheet were evaluated using a flat indenter, it was found that the material had good wear resistance and had certain parameters.
  • the aim is to achieve both high refractive index.
  • a prism sheet comprising a fine uneven structure layer that is a cured product of an active energy ray-curable composition and a transparent base layer,
  • the active energy ray-curable composition contains 40% by mass or more of inorganic nanoparticles
  • the fine relief structure layer has a fine relief structure with a period of 10 to 100 ⁇ m on the surface
  • the fine uneven structure layer is a prism sheet in which the indentation depth (hmax) at the maximum test force is 8 ⁇ m or more and the elastic deformation power (nIT) is 50% or more.
  • the indentation depth (hmax) and elastic deformation power (nIT) at the maximum test force were obtained under the following measurement conditions.
  • An active energy ray-curable composition for a prism sheet comprising inorganic nanoparticles and a (meth)acrylate compound
  • the active energy ray-curable composition for a prism sheet contains 40% by mass or more of the inorganic nanoparticles
  • the standard prism sheet made from the cured product of the active energy ray-curable composition for prism sheets has an indentation depth (hmax) of 8 ⁇ m or more at the maximum test force, and an elastic deformation power (nIT) of 50% or more.
  • the standard prism sheet has a transparent base material layer and a fine uneven structure layer
  • the transparent base material layer is polyethylene terephthalate with a thickness of 125 ⁇ m
  • the fine relief structure layer has a fine relief structure with a period of 50 ⁇ m on the surface of the transparent base material layer
  • the unit structure of the fine relief structure constitutes a unit prism
  • the unit prism shape has a cross section in the thickness direction.
  • the shape is an isosceles triangular prism shape with a height of 25 ⁇ m, a base of 50 ⁇ m, and an apex angle of 90°C
  • the unit prisms include a plurality of unit prisms arranged adjacent to each other in a direction perpendicular to the ridge lines at an array pitch of 50 ⁇ m so that the ridge lines of each unit prism are in equilibrium with each other when the prism sheet is viewed from above.
  • the indentation depth (hmax) and elastic deformation power (nIT) at the maximum test force were obtained under the following measurement conditions.
  • Shape of the test piece Right angle tear test piece according to JIS-K-7128-3 Thickness of the test piece: 200 ⁇ 50 ⁇ m (value measured for each test piece) Preparation of the test piece: Produced by punching. Distance between grips: 56mm Test environment: 23°C x 50%RH Test speed: 500mm/min.
  • FIG. 2 is a schematic perspective view of an example of a prism sheet according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of an example of a prism sheet according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of the surface of an example of a prism sheet according to the present embodiment.
  • FIG. 3 is a cross-sectional view of a flat indenter used in the indentation test method according to the present embodiment.
  • FIG. 2 is a mock diagram showing an indentation test method using a flat indenter according to the present embodiment.
  • FIG. 3 is a mock diagram illustrating the measurement position of a flat indenter in the indentation test according to the present embodiment.
  • means a value greater than or equal to the value before the description " ⁇ ” and less than or equal to the value after the description " ⁇ ".
  • (Meth)acrylic is a generic term for acrylic and methacrylic
  • (meth)acrylate compound” is a generic term for acrylic resin and methacrylic resin.
  • FIG. 1 is a schematic perspective view showing an example of the prism sheet 10 of this embodiment.
  • FIG. 2 is a schematic cross-sectional view of an example of the prism sheet 10 according to this embodiment.
  • the prism sheet 10 of this embodiment includes a fine uneven structure layer that is a cured product of an active energy ray-curable composition and a transparent base material layer.
  • the active energy ray-curable composition contains 40% by mass or more of inorganic nanoparticles.
  • the fine concavo-convex structure layer has a fine concavo-convex structure 2a with a period P of 10 to 100 ⁇ m on its surface.
  • the indentation depth (hmax) at the maximum test force is 8 ⁇ m or more, and 8.5 ⁇ m or more and 15 ⁇ m or less. is preferable, and more preferably 9 ⁇ m or more and 12 ⁇ m or less.
  • the elastic deformation power (nIT) is 50% or more, preferably 51% or more, and more preferably 55% or more.
  • the upper limit of the elastic deformation power (nIT) is not particularly limited, and the higher the value, the more preferable. Specifically, from the viewpoint of balance with the refractive index, it is preferably 51% or more and 70% or less, and more preferably 55% or more and 65% or less.
  • indentation depth (hmax) and elastic deformation power (nIT) at the maximum test force were obtained under the following measurement conditions.
  • Indenter 100 ⁇ m x 100 ⁇ m flat indenter Compression force per second of flat indenter: 20 to 60 mN Maximum compression force: 500mN Stopping time at maximum compression force: 5 to 10 seconds The indentation test will be explained in detail in Examples.
  • the prism sheet 10 has a fine uneven structure layer 2 and a transparent base material layer 4.
  • a plurality of triangular pyramidal unit relief structures 2a are two-dimensionally arranged on the surface of the transparent base layer 4.
  • a plurality of unit uneven structures 2a such as a cone, a truncated cone, a pyramid such as a triangle, a square, a pentagon, or a hexagon, or a truncated pyramid are formed two-dimensionally on the surface of the transparent base material layer.
  • An example is an array.
  • the cross-sectional shape of the unit prism in the normal direction to the plane of the transparent base material layer may be an isosceles triangle as shown in FIG. 3, or a scalene triangle (not shown). Also good.
  • the value of the apex angle 24a of the triangular unit prism in the cross section in the thickness direction may be 90° as shown in FIG. 3, or may be any other angle, and can be adjusted within the range of 40 to 120°. can.
  • the value of the bottom angle 24b may be 90° as shown in FIG. 3, or may be any other angle, and can be adjusted within the range of 40 to 120°.
  • the thickness of the finely textured structure layer 2 of this embodiment is preferably 5 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 60 ⁇ m, and even more preferably 10 ⁇ m to 40 ⁇ m.
  • the maximum point displacement is preferably 2.1% or more, more preferably 2.5% or more. , more preferably 3.1% or more. Moreover, it is preferable that it is 20% or less. When the maximum point displacement is 2.1% or more, the wear resistance is excellent. When it is 20% or less, a sufficient effect can be obtained for practical use.
  • the tear test is conducted in accordance with JIS-K-7128-3 under the following measurement conditions.
  • Shape of the test piece Right angle tear test piece according to JIS-K-7128-3
  • Thickness of the test piece 200 ⁇ 50 ⁇ m (value measured for each test piece)
  • Preparation of the test piece Produced by punching.
  • Distance between grips 56mm
  • Test environment 23°C x
  • 50%RH Test speed 500mm/min The test will be explained in detail in Examples.
  • the active energy ray-curable composition according to this embodiment preferably contains a (meth)acrylate compound.
  • the inorganic nanoparticles contained in the active energy ray-curable composition according to the present embodiment are more preferably zirconia fine particles (hereinafter simply referred to as zirconia).
  • the active energy ray-curable composition containing the zirconia and the (meth)acrylate compound is referred to as an "active energy ray-curable composition for a prism sheet.”
  • the standard prism sheet made from the cured product of the active energy ray-curable composition for prism sheets shall have an indentation depth (hmax) of 8 ⁇ m or more and 8.5 ⁇ m or more and 15 ⁇ m or less at the maximum test force. is preferable, and more preferably 9 ⁇ m or more and 12 ⁇ m or less.
  • the elastic deformation power (nIT) is 50% or more, preferably 51% or more and 70% or less, and more preferably 55% or more and 65% or less.
  • the standard prism sheet for evaluating the indentation depth has a transparent base material layer and a fine uneven structure layer
  • the transparent base material layer is polyethylene terephthalate with a thickness of 125 ⁇ m
  • the fine relief structure layer has a fine relief structure with a period of 50 ⁇ m on the surface of the transparent base layer portion
  • the unit structure of the fine uneven structure constitutes a unit prism
  • the unit prism shape is an isosceles triangular prism shape in a cross section in the thickness direction having a height of 25 ⁇ m, a base of 50 ⁇ m, and an apex angle of 90° C.
  • the unit prisms include a plurality of unit prisms arranged adjacent to each other in a direction perpendicular to the ridge lines at an arrangement pitch of 50 ⁇ m so that the ridge lines of each unit prism are in equilibrium with each other.
  • the measurement conditions for the indentation depth (hmax) and elastic deformation power (nIT) at the maximum test force are the same as the measurement conditions described for the prism sheet of this embodiment.
  • Example 1 the method for manufacturing a standard prism sheet by curing the active energy ray curable composition for a prism sheet is described in Example 1 described below, in which the active energy ray curable composition P1 obtained in the preparation example is manufactured. This is the same method as above.
  • active energy rays includes not only visible light and electromagnetic waves with wavelengths in the non-visible range such as ultraviolet rays and X-rays, but also radiation, which collectively refers to particle beams such as electron beams and alpha rays. .
  • the radiation has an energy quantum sufficient to cause a crosslinking reaction or a polymerization reaction in a molecule having an active energy ray-curable group.
  • the active energy ray ultraviolet rays are preferred.
  • zirconia As the zirconia according to this embodiment, commonly known zirconia can be used, and the shape of the particles is not particularly limited, but examples include spherical, hollow, porous, rod-like, and fibrous shapes. Among these, spherical shapes are preferred. Furthermore, the average primary particle diameter of the zirconia according to this embodiment is preferably 1 to 50 nm, more preferably 1 to 30 nm. Furthermore, although the crystal structure is not particularly limited, a monoclinic system is preferred. In addition, the average primary particle diameter in the present invention can be measured by a method of directly measuring the size of the primary particles from an electron micrograph using a TEM (transmission electron microscope).
  • TEM transmission electron microscope
  • Examples of the measurement method include a method of measuring the minor axis diameter and major axis diameter of the primary particles of each inorganic fine particle, and taking the average as the average primary particle diameter of the primary particles.
  • Specific examples of zirconia according to this embodiment include UEP-100 (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd., average primary particle diameter: 11 nm) and PCS (manufactured by Nippon Denko Corporation, average primary particle diameter: 20 nm). Can be mentioned.
  • the zirconia content according to this embodiment in the active energy ray-curable composition is preferably 40% by mass to 90% by mass, more preferably 40% to 80% by mass, and 40% to 70% by mass. More preferably, it is expressed in mass %.
  • a monofunctional (meth)acrylate or polyfunctional (meth)acrylate having a (meth)acryloyl group or (meth)acryloyloxy group for forming a conventionally known prism sheet is used. be able to. Oligomers, prepolymers, etc. can be used as necessary.
  • monofunctional (meth)acrylates include vinyl monomers, (meth)acrylic acid ester monomers, and (meth)acrylamide derivatives described in patent documents (JP-A-2009-37204).
  • polyfunctional (meth)acrylates include bifunctional (meth)acrylates and trifunctional (meth)acrylates.
  • Examples include ethylene glycol di(meth)acrylate, bisphenol A polyethoxydiol di(meth)acrylate, and pentaerythritol tri(meth)acrylate described in patent documents (Japanese Unexamined Patent Publication No. 2009-37204).
  • Examples of the reactive prepolymer include epoxy (meth)acrylate, urethane (meth)acrylate, and polyester (meth)acrylate described in patent documents (Japanese Patent Laid-Open No. 2009-37204).
  • the (meth)acrylate compound is a monofunctional (meth)acrylate having one (A) active energy ray-curable group (hereinafter simply referred to as “component (A)”).
  • component (A) active energy ray-curable group
  • component (B) bifunctional (meth)acrylate and/or trifunctional (meth)acrylate having two active energy ray-curable groups
  • component (C) initiator
  • component (A), the component (B), the component (C), and a surface conditioner (D) (hereinafter sometimes simply referred to as "component (D)").
  • the total mass of (A) and (B) is preferably 50% by mass or less based on the total solid mass of the active energy ray-curable resin composition. In this case, this is because the fine relief structure layer can have a high refractive index while exhibiting the indentation depth in the specific range described above and the specific restorability. Below, these components (A) to (D) will be explained in order.
  • Component (A) is a monofunctional (meth)acrylate having one active energy ray-curable group.
  • the monofunctional (meth)acrylate may contain a heteroatom such as a halogen atom, a sulfur atom, an oxygen atom, or a nitrogen atom.
  • the monofunctional (meth)acrylate may be a chain aliphatic (meth)acrylate, a cyclic alicyclic (meth)acrylate, or an aromatic (meth)acrylate.
  • the monofunctional (meth)acrylate described in Patent Document 1 mentioned above can be used.
  • Component (A) includes n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, n-octyl ( meth)acrylate, isooctyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, benzyl(meth)acrylate, phenylbenzyl(meth)acrylate, phenylphenol (EO)n(meth)acrylate, phenol(EO)n(meth) Acrylate, phenoxybenzyl (meth)acrylate, biphenylmethyl (meth)acrylate, phenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, morpholine (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl
  • component (A) include the following monofunctional (meth)acrylates-1 to monofunctional (meth)acrylate-6 used in Examples.
  • Monofunctional (meth)acrylate-1 KOMERATE A011 (manufactured by Green Chemical Co., Ltd.) Structural formula or compound name: Ortho-phenylphenol (EO) acrylate Monofunctional (meth)acrylate-2: Photomer 4035 (manufactured by IGM Resins Inc.) Structural formula or compound name: Phenol (EO) acrylate Monofunctional (meth)acrylate-3: KOMERATE A008 (manufactured by Green Chemical Co., Ltd.) Structural formula or compound name: 3-phenoxybenzyl acrylate Monofunctional (meth)acrylate-4: MIRAMER M1192 (manufactured by MIWON SPECIALTY CHEMICAL CO., LTD.) Structural formula or compound name: Biphenyl methyl acrylate Monofunctional (meth)acrylate-5: MIRAMER
  • Component (A) may be used alone or in combination of two or more.
  • the content of component (A) is preferably 20 to 50% by mass based on the total solid mass of the composition.
  • the aromatic ring-containing acrylate is preferably 15 to 30% by mass, more preferably 22 to 27% by mass, based on the total solid mass of the composition.
  • the content of the compound represented by the above general formula (2) based on the total solid mass of the composition is preferably 5 to 20% by mass, more preferably 5 to 15% by mass.
  • the total mass ((A) + (B)) of the component (A) above and the component (B) described below is preferably 50% by mass or less based on the total solid mass of the composition, and 10 to 40% by mass. It is more preferable that it is mass %.
  • the fine relief structure layer can exhibit a high refractive index while exhibiting the indentation depth in the specific range and the specific restorability described above. It can be done.
  • Component (B) is a polyfunctional (meth)acrylate having two or more active energy ray-curable groups. It may be a chain aliphatic or cyclic alicyclic or aromatic (meth)acrylic acrylate containing a hetero atom such as a halogen atom, sulfur atom, oxygen atom or nitrogen atom, for example, Patent Document 1 mentioned above.
  • the polyfunctional (meth)acrylate described in can be used.
  • Component (B) includes, for example, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, di Propylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, tetrabutylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6- Hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, dicyclopentanyl di(meth)acrylate, glycerol di(meth)acrylate, neopentyl glycol hydroxy Pivalic acid ester di(meth)acrylate,
  • component (B) include bifunctional (meth)acrylate, trifunctional (meth)acrylate-1, and trifunctional (meth)acrylate-2 used in Examples.
  • Bifunctional (meth)acrylate MIRAMER M2100 (manufactured by MIWON SPECIALTY CHEMICAL CO., LTD.) Structural formula or compound name: Bisphenol A (EO) 10 diacrylate
  • Trifunctional (meth)acrylate-1 MIRAMER M3130 (manufactured by MIWON SPECIALTY CHEMICAL CO., LTD.)
  • the content of component (B) is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, particularly 3 to 15% by mass, based on the total solid mass of the composition. It is preferable that there be.
  • the content of component (B) is determined based on the total solid mass of the composition from the viewpoint of sufficiently expressing the indentation depth (hmax) and elastic deformation power (nIT) at the specified maximum test force. It is preferably 0 to 20% by weight, more preferably 3 to 15% by weight.
  • ((C) component) Component (C) is an initiator.
  • it is a photopolymerization initiator.
  • the photopolymerization initiator include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl(2,4,6-trimethoxybenzoyl)phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1- and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl
  • component (C) include initiator-1 to initiator-3.
  • Initiator-1 Runtecure 1108 (manufactured by Runtec Chemical Co., Ltd.) Structural formula or compound name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • Initiator-2 Runtecure 1104 (manufactured by Runtec Chemical Co., Ltd.) Structural formula or compound name: 1-hydroxycyclohexylphenyl ketone
  • Initiator-3 Benzophenone (manufactured by IGM Resins Inc.) Structural formula or compound name: Benzophenone
  • the content of component (C) is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, based on the total solid mass of the composition.
  • Component (D) is a surface conditioner. Preferably, it is a silicon-based surface conditioner. Component (D) has the function of imparting slip properties. Specific examples of component (D) include silicone surface conditioners: BYK series such as BYK-333 (manufactured by BYK Chemie Japan Co., Ltd.).
  • the content of component (D) is preferably 0.01 to 3% by mass, more preferably 0.2 to 1.5% by mass based on the total solid mass of the composition. Mass%.
  • composition of this embodiment may optionally include a phosphate ester, a silane coupling agent, a plasticizer, an antioxidant, a polymerization inhibitor, a thickener, a mold release agent, an antistatic agent, Ultraviolet stabilizers, antifoaming agents, solvents, non-reactive urethane resins such as non-reactive urethane polymers, non-reactive acrylic resins, non-reactive polyester resins, pigments, dyes, or diffusing agents can also be used in combination.
  • a phosphate ester such as non-reactive urethane polymers, non-reactive acrylic resins, non-reactive polyester resins, pigments, dyes, or diffusing agents.
  • the total amount of the above-mentioned essential components contained in the composition and components other than the essential components that will form the matrix of the prism sheet after curing is usually the same as the total mass of the composition. On the other hand, it is usually adjusted appropriately so that it is 90% by mass or more.
  • the phosphoric acid ester according to the present embodiment is not particularly limited, but includes, for example, those having a polyester chain, those having a (meth)acryloyl group, and the like.
  • Examples of those having a polyester chain include DISPERBYK-110 and DISPERBYK-111 (manufactured by BYK Chemie Japan Co., Ltd.).
  • examples of those having a (meth)acryloyl group include those represented by the following structural formula (1).
  • the resulting inorganic fine particle dispersion has excellent dispersion stability, and the curable composition containing it has a low viscosity and a high refractive index.
  • a cured coating film with high performance and excellent bleed-out resistance can be formed.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene chain having 2 to 4 carbon atoms
  • x is an integer of 4 to 10
  • y is an integer of 1 or more.
  • n is an integer from 1 to 3.
  • x in the formula is preferably 4 or 5
  • y is preferably an integer of 2 to 7.
  • n in the formula may be a mixture of 1, 2 and/or 3.
  • the content of the phosphoric acid ester compound in the active energy ray-curable composition is more preferably in the range of 5 to 40 parts by mass, and more preferably in the range of 10 to 25 parts by mass, based on 100 parts by mass of zirconia. It is even more preferable that there be.
  • the content of the phosphoric acid ester compound is in the range of 5 to 40 parts by mass based on 100 parts by mass of zirconia, a cured coating film having high refractive index performance and excellent bleed-out resistance can be formed.
  • silane coupling agent examples include 3-(meth)acryloyloxypropyltrimethylsilane, 3-(meth)acryloyloxypropylmethyldimethoxysilane, 3-(meth)acryloyloxypropyltrimethoxysilane, - (meth)acryloyloxy-based silane coupling agents such as (meth)acryloyloxypropylmethyldiethoxysilane and 3-(meth)acryloyloxypropyltriethoxysilane; Vinyl silane cups such as allyltrichlorosilane, allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, trichlorovinylsilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, etc.
  • silane coupling agents can be used alone or in combination of two or more.
  • 3-(meth)acryloyloxypropyltrimethoxysilane is preferred because it has good compatibility with the (meth)acryloyl group-containing compound (C) described below.
  • the usage amount of the silane coupling agent according to this embodiment is determined so that the resulting active energy ray-curable composition has excellent dispersion stability, low viscosity, high refractive index performance, and excellent bleed-out resistance.
  • the amount is preferably in the range of 10 to 30 parts by mass per 100 parts by mass of zirconia, since a cured coating film with good properties can be formed.
  • the transparent base material layer 4 according to this embodiment is a base material of the prism sheet 10, and is not particularly limited, and transparent base materials used in conventionally known prism sheets can be used.
  • the transparent base material layer described in Patent Document 2 can be used.
  • the material and thickness of the transparent base layer 4 according to the present embodiment may be appropriately selected in consideration of required suitability such as desired transparency and mechanical strength.
  • the transparent base material layer 4 according to this embodiment may be a resin base material or a glass base material.
  • Resin materials for the transparent film include (meth)acrylate compounds, polycarbonate resins, vinyl chloride resins, polymethacrylimide resins, polyimide resins, polyester resins, cycloolefin polymer (COP) resins, cycloolefin copolymer (COC) resins, and cellulose triacetate. (TAC) resin etc. are preferred.
  • the transparent base material layer 4 according to this embodiment may have an elongated shape or may have a sheet shape having a predetermined size.
  • the thickness of the transparent base material layer 4 according to this embodiment is usually preferably 50 to 500 ⁇ m, but is not limited thereto.
  • the light transmittance of the transparent base material layer 4 according to this embodiment is ideally 100% for installation on the front of a display, and preferably 85% or more.
  • the transparent base material layer 4 according to the present embodiment has its surface subjected to a conventionally known matte treatment (formation of light-diffusing minute irregularities), antistatic treatment, antireflection treatment, etc., as necessary. It's okay.
  • matte treatment, antistatic treatment, antireflection treatment, or the like may be applied between the transparent resin and the base material, or any combination of these may be used.
  • the method for manufacturing the prism sheet 10 of this embodiment is not particularly limited as long as the above-mentioned specific indentation depth or the above-mentioned elastic deformation power can be obtained, and conventionally known methods can be used.
  • the above-mentioned composition is placed in a mold having a desired unit uneven shape, a transparent base material layer is overlaid thereon, and a transparent base material layer is layered using a laminator or the like.
  • the base material layer is pressure-bonded to the composition, and the composition is cured with ultraviolet rays or the like to form a unit uneven shape.
  • a prism sheet having an optical function expressing portion having a desired uneven shape on the transparent base layer is obtained.
  • the active energy ray-curable composition for a prism sheet of this embodiment includes zirconia and a (meth)acrylate compound, and is used for producing the prism sheet of this embodiment described above. It is a thing.
  • the standard prism sheet made from the cured product of the active energy ray-curable composition for prism sheets of this embodiment has an indentation depth (hmax) of 8 ⁇ m or more at the maximum test force, and an elastic deformation power (nIT) of 50 ⁇ m or more. % or more. Note that the standard prism sheet according to this embodiment is the same as the standard prism sheet described in the prism sheet of this embodiment.
  • the measurement conditions for the indentation depth (hmax) and elastic deformation power (nIT) at the maximum test force according to this embodiment are the same as the measurement conditions described for the prism sheet of this embodiment.
  • the maximum point displacement is preferably 2.1% or more.
  • the active energy ray-curable composition for a prism sheet of the present embodiment preferably contains a surface conditioner, more preferably in a range of 0.01 to 3 parts by mass, and more preferably in a range of 0.2 to 1.5 parts by mass. It is more preferable that the content be in the range of parts by mass.
  • the surface conditioning agent according to this embodiment is the same as the surface conditioning agent described in the prism sheet of this embodiment.
  • Monofunctional (meth)acrylate-3 KOMERATE A008, manufactured by Green Chemical Co. , Ltd.
  • Monofunctional (meth)acrylate-4 MIRAMER M1192, manufactured by MIWON SPECIALTY CHEMICAL CO. , LTD.
  • Monofunctional (meth)acrylate-5 MIRAMER M142, manufactured by MIWON SPECIALTY CHEMICAL CO. , LTD.
  • Monofunctional (meth)acrylate-6 MIRAMER M144, manufactured by MIWON SPECIALTY CHEMICAL CO. , LTD.
  • Bifunctional (meth)acrylate MIRAMER M2100, manufactured by MIWON SPECIALTY CHEMICAL CO. , LTD.
  • Trifunctional (meth)acrylate-1 MIRAMER M3130, manufactured by MIWON SPECIALTY CHEMICAL CO. , LTD.
  • Trifunctional (meth)acrylate-2 MIRAMER M3160, manufactured by MIWON SPECIALTY CHEMICAL CO. , LTD.
  • Phthalate ester plasticizer diethylene glycol dibenzoate, manufactured by Tokyo Chemical Co., Ltd.
  • Initiator-1 Runtecure 1108, Runtec Chemical Co. , Ltd.
  • Initiator-2 Runtecure 1104, manufactured by Runtec Chemical Co. , Ltd.
  • Initiator-3 Benzophenone, manufactured by IGM Resins Inc. Silicone surface conditioner: BYK-333, manufactured by BYK-Chemie Japan Co., Ltd. HALS: TINUVIN 292, manufactured by BASF Japan Co., Ltd.
  • FIG. 3 is a mock diagram showing the cross section of the flat indenter used in this embodiment (the top is the measurement surface).
  • a microhardness tester product name: HM2000 manufactured by Fisher Instruments Co., Ltd. was used in accordance with ISO 14577-1, except that a diamond flat indenter was used instead of a diamond square pyramid type indenter. Using this, the indentation depth (hmax) and elastic deformation power (nIT) at the maximum test force were measured.
  • Test condition Flat indenter Flat size 100 ⁇ m x 100 ⁇ m 20-60mN per second Maximum compression force 500mN Stop time at maximum compression force 5-10 seconds F 500mN/10s C 5.0s R 0.1mN/10s C2 10.0s.
  • Abrasion resistance was evaluated for each of the prism sheets of the Examples and Comparative Examples. Paste the prism sheet on a movable plate made by Imoto Seisakusho so that the top of the sheet faces the load side, and on the load side, as an abrasion element, attach a PET-based diffusion film to a holder with a diameter of 1 cm. The base material layer was placed so as to rub against the top of the prism sheet. The evaluation was conducted indoors at 23°C (humidity: 50%).
  • the liquid refractive index was evaluated by measuring the refractive index at a temperature of 25° C. and a wavelength of 589 nm using a multi-wavelength Abbe refractometer DR-M4 refractometer (manufactured by Atago Co., Ltd.).
  • ⁇ Viscosity> The viscosity was evaluated by measuring the viscosity at a temperature of 25° C. using an E-type rotational viscometer (“TVE-25H” manufactured by Toki Sangyo Co., Ltd.).
  • the test piece for the tear test is a cured product of the active energy ray-curable composition of this embodiment.
  • the curing conditions are the same as those of Example 1, which will be described later.
  • the tear test is conducted in accordance with JIS-K-7128-3 under the following measurement conditions. Shape of the test piece: Right angle tear test piece according to JIS-K-7128-3 Thickness of the test piece: 200 ⁇ 50 ⁇ m (value measured for each test piece) Preparation of the test piece: Produced by punching. Distance between grips: 56mm Test environment: 23°C x 50%RH Test speed: 500mm/min.
  • a dispersion treatment was performed for a residence time of 100 minutes while checking the particle size during the process, and an inorganic fine particle dispersion was obtained.
  • this inorganic fine particle dispersion 24.0 parts by mass of Photomer 4035 as a monofunctional (meth)acrylate and 10.0 parts by mass of MIRAMER M2100 as a bifunctional (meth)acrylate were added, and volatile components were removed under reduced pressure while heating with an evaporator. Removed. moreover, As an initiator, Runtecure 1108, 0.7 parts by mass, and Runtecure 1104, 0.7 parts by mass, 0.5 parts by mass of BYK-333 was added as a silicon-based surface conditioner to prepare active energy ray-curable composition P1 (composition P1) of the present embodiment. The liquid refractive index and viscosity of composition P1 were evaluated. In addition, a tear test was conducted on the cured product of composition P1. The results are shown in Table 1.
  • Example 1 Composition P1 prepared in Preparation Example 1 was dropped into a prism mold (not shown) capable of forming an uneven shape with a linear arrangement of unit prisms as shown in FIG. Thereafter, polyethylene terephthalate (PET) (trade name "A4300" manufactured by Toyobo Co., Ltd.) having a thickness of 125 ⁇ m was layered as a transparent base material layer, and the entire surface of the PET base material was pressure-bonded to composition P1 using a laminator. Next, the prism portion having a large number of unit prisms was cured under the following curing conditions and integrated with the PET base material.
  • PET polyethylene terephthalate
  • Irradiation light source Ultraviolet rays
  • Irradiation device High pressure mercury lamp (manufactured by GS Yuasa Lighting Service Co., Ltd.) Irradiation light amount: 780 mJ/cm 2 .
  • the prism mold was peeled off to obtain a prism sheet S1.
  • the shape of the unit prism was an isosceles triangular prism whose cross section in the thickness direction had a height of 25 ⁇ m, a base of 50 ⁇ m, and an apex angle of 90° C.
  • the fine concavo-convex structure layer had a plurality of unit prisms arranged adjacently in a direction perpendicular to the ridgelines at an arrangement period of 50 ⁇ m so that the ridgelines of each unit prism were in equilibrium with each other.
  • the prism sheet S1 was subjected to an indentation test and an abrasion resistance test. The results are shown in Table 2.
  • Example 1 was carried out in the same manner as in Example 1 except that composition P1 was replaced with compositions P2 to P6 and cP1 to cP11 as shown in Table 1, respectively, to obtain prism sheets S1 to S6 and cS1 to cS11. Ta. Each prism sheet was subjected to an indentation test and an abrasion resistance test. The results are shown in Table 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本発明によれば、平面圧子を用いて、プリズムシートの凸部の機械物性を評価したところ、一定のパラメータを有する材料で、良好な耐摩耗性と高屈折率の両立を達成することができる。本発明のプリズムシートは、無機ナノ粒子を40質量%以上含有する活性エネルギー線硬化性組成物の硬化物である微細凹凸構造層と、透明基材層と、を有する。前記微細凹凸構造層は、表面に20~100μmの周期の微細凹凸構造を有する。前記微細凹凸構造層は、最大試験力における押込み深さ(hmax)が8μm以上であり、弾性変形仕事率(nIT)が50%以上である。 なお、前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)は、平面圧子を用いて、本文記載の測定条件で得られたものである。

Description

プリズムシート及びプリズムシート用活性エネルギー線硬化性組成物
 本発明は、液晶表示装置等のディスプレイに用いられるプリズムシート及びプリズムシート用活性エネルギー線硬化性組成物に関する。
 本願は、2022年4月27日に、日本に出願された特願2022-073693号に基づき優先権を主張し、その内容をここに援用する。
 近年、液晶表示装置等のディスプレイにおいては、輝度の向上、視野角の拡大等の機能を有する光学シートが用いられている。このような光学シートは、通常、基材と、当該基材上に微細な凹凸構造を有する光学機能層を有し、その凹凸形状において光を屈折等の幾何光学的作用によって変調させることで、所望の機能を発現する。このような凹凸形状は主にモールドを用いて樹脂材料を賦形する方法により製造されることから、光学機能層に用いる材料には溶剤を含まず、かつ低粘度であることが求められている。
 また、上記光学シートの内、例えばプリズムシートは、とがった凸形状を持つことから、隣接する部材との摩擦等によって欠けが生じやすい。このようなプリズムシートの場合は特に、耐摩耗性が求められている。
 一方、ディスプレイの薄型化や消費電力の削減等に伴い、上記光学機能層に用いる材料には、高い屈折率が要求されている。これに対応するために、高屈折率の樹脂を使用したり、有機や無機の高屈折率微粒子を添加したりする方法が提案されている(例えば、特許文献1と2)。
国際公報第2020/250721号 特開2013-249439号公報
 しかしながら、屈折率の高い材料は一般に樹脂硬化物の柔軟性を低下させるため、凹凸形状の欠けが発生しやすくなる問題があった。したがって、耐摩耗性が良好でかつ高屈折率である材料が求められていた。
 本発明は、上記課題を解決するためになされたものであり、平面圧子を用いて、プリズムシートの凸部の機械物性を評価したところ、一定のパラメータを有する材料で、良好な耐摩耗性と高屈折率の両立を達成することを目的とする。
 本開示の内容は、以下の実施態様を含む。
[1] 活性エネルギー線硬化性組成物の硬化物である微細凹凸構造層と、透明基材層と、を有するプリズムシートであって、
 前記活性エネルギー線硬化性組成物は、無機ナノ粒子を40質量%以上含有し、
 前記微細凹凸構造層は、表面に10~100μmの周期の微細凹凸構造を有し、
 前記微細凹凸構造層は、最大試験力における押込み深さ(hmax)が8μm以上であり、弾性変形仕事率(nIT)が50%以上であるプリズムシート。
 なお、前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)は、以下の測定条件で得られたものである。
 圧子:100μmx100μmの平面圧子
 平面圧子1秒当たりの圧縮力:20~60mN
 最大圧縮力:500mN
 最大圧縮力における停止時間:5~10秒。
[2] 前記活性エネルギー線硬化性組成物の硬化物からなる試験片の引裂試験において、最大点変位が2.1%以上である、[1]に記載のプリズムシート。
 なお、前記引裂試験は、以下の測定条件でJIS-K-7128-3に準拠して行う。
  前記試験片形状:JIS-K-7128-3に記載の直角形引裂試験片
  前記試験片の厚さ:200±50μm(各試験片ごとに実測した値)
  前記試験片作製:打ち抜きにより作製した。
  掴み具間距離:56mm
  試験環境:23℃×50%RH
  試験速度:500mm/min。
[3] 前記無機ナノ粒子はジルコニアである[1]又は[2]に記載のプリズムシート。
[4] 前記活性エネルギー線硬化性組成物が、(メタ)アクリレート化合物を含有する[1]~[3]の何れかに記載のプリズムシート。
[5] 前記活性エネルギー線硬化性組成物が、表面調整剤を前記組成物中に0.1~1.5質量部の範囲で含有する[1]~[4]の何れかに記載のプリズムシート。
[6] 前記表面調整剤が、シリコンを含有する[5]に記載のプリズムシート。
[7] 無機ナノ粒子と(メタ)アクリレート化合物とを含む、プリズムシート用活性エネルギー線硬化性組成物であって、
 前記プリズムシート用活性エネルギー線硬化性組成物は、前記無機ナノ粒子を40質量%以上含有し、
 前記プリズムシート用活性エネルギー線硬化性組成物の硬化物で作成した標準プリズムシートは、最大試験力における押込み深さ(hmax)が8μm以上であり、弾性変形仕事率(nIT)が50%以上である、プリズムシート用活性エネルギー線硬化性組成物。 なお、前記標準プリズムシートは、透明基材層と微細凹凸構造層とを有し、
 前記透明基材層が厚さ125μmのポリエチレンテレフタレートであり、
 前記微細凹凸構造層が前記透明基材層の表面に50μmの周期の微細凹凸構造を有し、 前記微細凹凸構造の単位構造が単位プリズムを構成し、前記単位プリズム形状は、厚さ方向の断面における形状が高さ25μm、底辺50μm、頂角90℃となる二等辺三角形の三角柱形状とし、
 前記単位プリズムが、前記プリズムシートの平面視において、各単位プリズムの稜線が互いに平衡になるように複数の単位プリズムを配列周期50μmで当該稜線と直交する方向に多数隣接して配列している。
 前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)は、以下の測定条件で得られたものである。
 圧子:100μmx100μmの平面圧子
 平面圧子1秒当たりの圧縮力:20~60mN
 最大圧縮力:500mN
 最大圧縮力における停止時間:5~10秒。
[8] 前記プリズムシート用活性エネルギー線硬化性組成物の硬化物からなる試験片の引裂試験において、最大点変位が2.1%以上である、[7]に記載のプリズムシート用活性エネルギー線硬化性組成物。
 なお、前記引裂試験は、以下の測定条件でJIS-K-7128-3に準拠して行う。
  前記試験片形状:JIS-K-7128-3に記載の直角形引裂試験片
  前記試験片の厚さ:200±50μm(各試験片ごとに実測した値)
  前記試験片作製:打ち抜きにより作製した。
  掴み具間距離:56mm
  試験環境:23℃×50%RH
  試験速度:500mm/min。
[9] 前記無機ナノ粒子はジルコニアである[7]又[8]に記載の、プリズムシート用活性エネルギー線硬化性組成物。
[10] 表面調整剤を0.1~1.5質量部の範囲で含有する[7]~[9]の何れかに記載の、プリズムシート用活性エネルギー線硬化性組成物。
 本発明によれば、平面圧子を用いて、プリズムシートの凸部の機械物性を評価したところ、一定のパラメータを有する材料で、良好な耐摩耗性と高屈折率の両立を達成することができる。
本実施形態のプリズムシートの一例の模式的な斜視図である。 本実施形態に係るプリズムシートの一例の模式的断面図である。 本実施形態に係るプリズムシートの一例の表面の模式的断面図である。 本実施形態に係る押込み試験方法に用いた平面圧子の断面図である。 本実施形態に係る平面圧子を用いた押込み試験方法を示す模試図である。 本実施形態に係る押込み試験における平面圧子の測定位置を説明する模試図である。
 以下、本発明をさらに詳細に説明する。なお、本発明は以下に示す実施形態のみに限定されるものではない。
 「~」は「~」という記載の前の値以上、「~」という記載の後の値以下を意味する。「(メタ)アクリル」とはアクリルとメタクリルの総称であり、「(メタ)アクリレート化合物」とは、アクリル樹脂とメタクリル樹脂の総称である。
(プリズムシート)
 図1は、本実施形態のプリズムシート10の一例を示した模式的な斜視図である。図2は、本実施形態に係るプリズムシート10の一例の模式的断面図である。本実施形態のプリズムシート10は、活性エネルギー線硬化性組成物の硬化物である微細凹凸構造層と、透明基材層と、を有する。前記活性エネルギー線硬化性組成物は、無機ナノ粒子を40質量%以上含有する。また、前記微細凹凸構造層は、その表面に10~100μmの周期Pの微細凹凸構造2aを有する。
 本実施形態のプリズムシート10の微細凹凸構造2aを有する面に対する平面圧子を用いた押込み試験において、最大試験力における押込み深さ(hmax)が8μm以上であり、8.5μm以上15μm以下であることが好ましく、9μm以上12μm以下であることがより好ましい。また、弾性変形仕事率(nIT)が50%以上であり、51%以上であることが好ましく、55%以上であることがより好ましい。また、弾性変形仕事率(nIT)の上限値は特に限定されるものではなく値が高いほど好ましい。しいて言えば、屈折率とのバランスの観点から、51%以上70%以下であることが好ましく、55%以上65%以下であることがより好ましい。
 なお、前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)は、以下の測定条件で得られたものである。
  圧子:100μmx100μmの平面圧子
  平面圧子1秒当たりの圧縮力:20~60mN
  最大圧縮力:500mN
  最大圧縮力における停止時間:5~10秒
 押込み試験について、実施例で詳細に説明する。
 前記プリズムシート10が微細凹凸構造層2と透明基材層4とを有することが好ましい。
〔微細凹凸構造層〕
 本実施形態の微細凹凸構造層2は、一例として、図1と2に示すように、三角の角錐の単位凹凸構造2aを透明基材層4表面に二次元的に複数配列したものが挙げられたが、それに限定されない。例えば、本実施形態の微細凹凸構造層2としては、円錐、円錐台又は三角、四角、五角若しくは六角等の角錐又は角錐台等の単位凹凸構造2aを透明基材層表面に二次元的に複数配列したものが挙げられる。
 透明基材層の平面の法線方向(以下、単に「厚さ方向」という。)における単位プリズムの断面の形状は図3のように二等辺三角形としても良いし、図示しないが不等辺三角形としても良い。
 厚さ方向の断面における三角形の単位プリズムの頂角24aの値は、図3のように90°でも良いし、それ以外の角度であっても良く、40~120°の範囲で調節することができる。また、その底部角24bの値は、図3のように90°でも良いし、それ以外の角度であっても良く、40~120°の範囲で調節することができる。
 本実施形態の微細凹凸構造層2の厚さは、5μm~100μmであることが好ましく、5μm~60μmであることがより好ましく、10μm~40μmであることが更に好ましい。
<活性エネルギー線硬化性組成物>
 本実施形態に係る活性エネルギー線硬化性組成物の硬化物からなる試験片の引裂試験において、最大点変位が2.1%以上であることが好ましく、2.5%以上であることがより好ましく、3.1%以上であることがさらに好ましい。また、20%以下であることが好ましい。最大点変位が2.1%以上である場合、耐摩耗性に優れる。20%以下である場合、実用で十分な効果が得られる。
 なお、前記引裂試験は、以下の測定条件でJIS-K-7128-3に準拠して行う。
  前記試験片形状:JIS-K-7128-3に記載の直角形引裂試験片
  前記試験片の厚さ:200±50μm(各試験片ごとに実測した値)
  前記試験片作製:打ち抜きにより作製した。
  掴み具間距離:56mm
  試験環境:23℃×50%RH
  試験速度:500mm/min
 試験について、実施例で詳細に説明する。
 本実施形態に係る活性エネルギー線硬化性組成物は、(メタ)アクリレート化合物を含むことが好ましい。本実施形態に係る活性エネルギー線硬化性組成物に含まれている前記無機ナノ粒子は、ジルコニア微粒子(以下、単にジルコニアという。)であることがより好ましい。
 前記ジルコニアと、前記(メタ)アクリレート化合物と、を含む前記活性エネルギー線硬化性組成物を、「プリズムシート用活性エネルギー線硬化性組成物」とする。その場合、前記プリズムシート用活性エネルギー線硬化性組成物の硬化物で作成した標準プリズムシートは、最大試験力における押込み深さ(hmax)が8μm以上であり、8.5μm以上15μm以下であることが好ましく、9μm以上12μm以下であることがより好ましい。また、弾性変形仕事率(nIT)が50%以上であり、51%以上70%以下であることが好ましく、55%以上65%以下であることがより好ましい。
 なお、前記押込み深さを評価するための標準プリズムシートは、透明基材層と微細凹凸構造層とを有し、
 前記透明基材層が厚さ125μmのポリエチレンテレフタレートであり、
 前記微細凹凸構造層が前記透明基材層部の表面に50μmの周期の微細凹凸構造を有し、
 前記微細凹凸構造の単位構造が単位プリズムを構成し、前記単位プリズム形状は、厚さ方向の断面における形状が高さ25μm、底辺50μm、頂角90℃となる二等辺三角形の三角柱形状とする。
 前記単位プリズムが、前記プリズムシートの平面視において、各単位プリズムの稜線が互いに平衡になるように複数の単位プリズムを配列周期50μmで当該稜線と直交する方向に多数隣接して配列している。
 前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)測定条件は、本実施形態のプリズムシートで記載した測定条件と同じである。
 また、前記プリズムシート用活性エネルギー線硬化性組成物を硬化して、標準プリズムシートを製造する方法は、後述の実施例1において、調製例で得られた活性エネルギー線硬化性組成物P1を製造した方法と同じである。
 本実施形態において「活性エネルギー線」とは、可視光線並びに紫外線及びX線等の非可視領域の波長の電磁波だけでなく、電子線及びα線のような粒子線を総称する、放射線が含まれる。前記放射線が、活性エネルギー線硬化性基を有する分子に架橋反応乃至重合反応を生じせしめるに足るエネルギー量子を持つ。活性エネルギー線としては、紫外線が好ましい。
[ジルコニア]
 本実施形態に係るジルコニアとしては、通常公知のものを用いることができ、粒子の形状は、特に限定させるものではないが、例えば、球状、中空状、多孔質状、棒状、繊維状等が挙げられ、これらの中でも、球状が好ましい。
 また、本実施形態に係るジルコニアの平均一次粒子径は、1~50nmのものが好ましく、1~30nmのものがより好ましい。さらに、結晶構造も特に限定されるものではないが、単斜晶系が好ましい。
 なお、本発明における平均一次粒子径は、TEM(透過型電子顕微鏡)を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定することができる。測定方法としては、例えば、個々の無機微粒子の一次粒子の短軸径と長軸径を計測し、その平均を一次粒子の平均一次粒子径とする方法が挙げられる。
 本実施形態に係るジルコニアの具体例としては、UEP-100(第一稀元素化学工業株式会社製、平均一次粒子径:11nm)、PCS(日本電工株式会社製、平均一次粒子径:20nm)が挙げられる。
 活性エネルギー線硬化性組成物における本実施形態に係るジルコニア含有量は、40質量%~90質量%であることが好ましく、40質量%~80質量%であることがより好ましく、40質量%~70質量%であることがさらに好ましい。
[(メタ)アクリレート化合物]
 本実施形態に係る(メタ)アクリレート化合物としては、従来公知のプリズムシート形成用の(メタ)アクリロイル基、(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート若しくは多官能(メタ)アクリレートを用いることができる。必要に応じてオリゴマー又はプレポリマー等を用いることができる。
 単官能(メタ)アクリレートとしては、例えば、特許文献(特開2009-37204号公報)に記載のビニルモノマー、(メタ)アクリル酸エステルモノマー及び(メタ)アクリルアミド誘導体が挙げられる。
 多官能(メタ)アクリレートとしては、例えば、二官能(メタ)アクリレート若しくは三官能(メタ)アクリレート等が挙げられる。例えば、特許文献(特開2009-37204号公報)に記載のエチレングリコールジ(メタ)アクリレート、ビスフェノールAポリエトキシジオールジ(メタ)アクリレート及びペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。
 反応性プレポリマーとしては、例えば、特許文献(特開2009-37204号公報)に記載のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレート等が挙げられる。
 本実施形態に係るプリズムシートの好適な態様では、前記(メタ)アクリレート化合物が、(A)活性エネルギー線硬化性基を1個有する単官能(メタ)アクリレート(以下、単に「(A)成分」ということがある。)と、(B)活性エネルギー線硬化性基を2個有する二官能(メタ)アクリレート及び/又は三官能(メタ)アクリレート(以下、単に「(B)成分」ということがある。)とを含むことが好ましい。前記(A)成分と前記(B)成分と(C)開始剤(以下、単に「(C)成分」ということがある。)とを含むことがより好ましい。前記(A)成分と前記(B)成分と前記(C)成分と(D)表面調整剤(以下、単に「(D)成分」ということがある。)とを含むことが更に好ましい。当該(A)及び(B)の合計質量が当該活性エネルギー線硬化性樹脂組成物の全固形分質量に対して50質量%以下であることが好ましい。この場合、微細凹凸構造層が上述した特定範囲の押し込み深さ及び上記特定の復元性を発現しつつ、高い屈折率とすることができるためである。
 以下、これら(A)~(D)成分について順に説明する。
 ((A)成分)
 (A)成分は、活性エネルギー線硬化性基を1個有する単官能(メタ)アクリレートである。前記単官能(メタ)アクリレートが、ハロゲン原子、硫黄原子、酸素原子若しくは窒素原子等のヘテロ原子を含んでもよい。前記単官能(メタ)アクリレートが、鎖状の脂肪族の(メタ)アクリレート又は環状の脂環式の(メタ)アクリレート若しくは芳香族の(メタ)アクリレートであっても良い。例えば、上述した特許文献1に記載の単官能の(メタ)アクリレートを用いることができる。
 (A)成分しては、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェニルフェノール(EO)n(メタ)アクリレート、フェノール(EO)n(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ビフェニルメチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、モルホリン(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、シクロヘキシルメチル(メタ)アクリレート、シクロヘキシルエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニロキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、等の単官能(メタ)アクリレートが挙げられる。
 (A)成分の具体例としは、例えば、実施例で用いた以下の単官能(メタ)アクリレート-1~単官能(メタ)アクリレート-6が挙げられる。
 単官能(メタ)アクリレート-1:KOMERATE A011(Green Chemical Co.,Ltd.製)
  構造式あるいは化合物名:オルトフェニルフェノール(EO)アクリレート
 単官能(メタ)アクリレート-2:Photomer 4035(IGM Resins Inc.製)
 構造式あるいは化合物名:フェノール(EO)アクリレート
 単官能(メタ)アクリレート-3:KOMERATE A008(Green Chemical Co., Ltd.製)
 構造式あるいは化合物名:3-フェノキシベンジルアクリレート
 単官能(メタ)アクリレート-4:MIRAMER M1192(MIWON SPECIALTY CHEMICAL CO.,LTD.製)
 構造式あるいは化合物名:ビフェニルメチルアクリレート
 単官能(メタ)アクリレート-5:MIRAMER M142(MIWON SPECIALTY CHEMICAL CO.,LTD.製)
 構造式あるいは化合物名:フェノール(EO)アクリレート
 単官能(メタ)アクリレート-6:MIRAMER M144(MIWON SPECIALTY CHEMICAL CO.,LTD.製)
 構造式あるいは化合物名:フェノール(EO)アクリレート
 (A)成分は1種単独で用いても良いし、2種以上を組み合わせて用いても良い。
 (A)成分の含有量は組成物の全固形分質量に対して、20~50質量%が好ましい。 そして、組成物の全固形分質量に対して芳香環含有アクリレートが、15~30質量%であることが好ましく、22~27質量%であることがより好ましい。
 また、組成物の全固形分質量に対して上記一般式(2)で表わされる化合物の含有量が、5~20質量%であることが好ましく、5~15質量%であることがより好ましい。
 上記(A)成分と後述する(B)成分は、その合計質量((A)+(B))が組成物の全固形分質量に対して50質量%以下であることが好ましく、10~40質量%であることがより好ましい。当該合計質量を組成物の全固形分質量に対して50質量%以下とすることにより、微細凹凸構造層が上述した特定範囲の押し込み深さ及び上記特定の復元性を発現しつつ、高い屈折率とすることができる。
 ((B)成分)
 (B)成分は、活性エネルギー線硬化性基を2個以上有する多官能(メタ)アクリレートである。ハロゲン原子、硫黄原子、酸素原子若しくは窒素原子等のヘテロ原子を含む鎖状の脂肪族又は環状の脂環式若しくは芳香族の(メタ)アクリルアクリレートであっても良く、例えば、上述した特許文献1に記載の多官能型(メタ)アクリレートを用いることができる。
 (B)成分としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、テトラブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、テトラブロモビスフェノールAジ(メタ)アクリレート、ヒドロピバルアルデヒド変性トリメチロールプロパンジ(メタ)アクリレート、ビスフェノールフルオレンジ(メタ)アクリレート、ビスフェノールフルオレン(EO)ジ(メタ)アクリレート、ビスフェノールA(EO)ジ(メタ)アクリレート、トリメチロールプロパン(EO)トリ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、アルキル変性したジペンタエリスリトールのトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレート等の多官能(メタ)アクリレートが挙げられる。
 (B)成分の具体例としては、例えば、実施例で用いた二官能(メタ)アクリレート、三官能(メタ)アクリレート-1、三官能(メタ)アクリレート-2が挙げられる。
 二官能(メタ)アクリレート:MIRAMER M2100(MIWON SPECIALTY CHEMICAL CO.,LTD.製)
  構造式あるいは化合物名:ビスフェノールA(EO)10ジアクリレート
 三官能(メタ)アクリレート-1:MIRAMER M3130(MIWON SPECIALTY CHEMICAL CO.,LTD.製)
  構造式あるいは化合物名:トリメチロールプロパン(EO)トリアクリレート
 三官能(メタ)アクリレート-2:MIRAMER M3160(MIWON SPECIALTY CHEMICAL CO.,LTD.製)
  構造式あるいは化合物名:トリメチロールプロパン(EO)トリアクリレート
 (B)成分の含有量は、組成物の全固形分質量に対して、0~30質量%であることが好ましく、さらに0~20質量%であることが好ましく、特に3~15質量%であることが好ましい。
 (B)成分の含有量は、上記特定の前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)を十分に発現する観点から、組成物の全固形分質量に対して、好ましくは0~20質量%であり、より好ましくは3~15質量%である。
 ((C)成分)
 (C)成分は、開始剤である。光重合開始剤であることが好ましい。
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等が挙げられる。
 (C)成分の具体例としては、例えば、開始剤-1~開始剤-3が挙げられる。
 開始剤-1:Runtecure 1108(Runtec Chemical Co., Ltd.製)
 構造式あるいは化合物名:2、4、6―トリメチルベンゾイルジフェニルホスフィンオキシド
 開始剤-2:Runtecure 1104(Runtec Chemical Co., Ltd.製)
 構造式あるいは化合物名:1-ヒドロキシシクロヘキシルフェニルケトン
 開始剤-3:ベンゾフェノン(IGM Resins Inc.製)
 構造式あるいは化合物名:ベンゾフェノン
 (C)成分の含有量は、組成物の全固形分質量に対して、好ましくは0.1~10質量%であり、より好ましくは0.5~5質量%である。
 ((D)成分)
 (D)成分は、表面調整剤である。シリコン系表面調整剤であることが好ましい。
 (D)成分は、スリップ性を付与する働きを有する。
 (D)成分の具体例としては、シリコン系表面調整剤:BYK-333等のBYKシリーズ(ビックケミー・ジャパン株式会社製)挙げられる。
 (D)成分の含有量は、耐ブリードアウト性の観点から、組成物の全固形分質量に対して、好ましくは0.01~3質量%であり、より好ましくは0.2~1.5質量%である。
 本実施形態の組成物には、上記成分以外に必要に応じて、リン酸エステル、シランカップリング剤、可塑剤、酸化防止剤、重合禁止剤、増粘剤、離型剤、帯電防止剤、紫外線安定剤、消泡剤、溶剤、非反応性ウレタンポリマー等の非反応性ウレタン樹脂、非反応性アクリル樹脂、非反応性ポリエステル樹脂、顔料、染料又は拡散剤等も併用することができる。
 なお、本実施形態の組成物は、通常、当該組成物中に含まれる上記必須成分と当該必須成分以外の硬化後にプリズムシートのマトリクスを形成する成分の合計量が、当該組成物の全質量に対して、通常、90質量%以上となるように適宜調製される。
<リン酸エステル>
 本実施形態に係るリン酸エステルとしては、特に制限されないが、例えば、ポリエステル鎖を有するもの、(メタ)アクリロイル基を有するものなどが挙げられる。
 ポリエステル鎖を有するものとしては、例えば、DISPERBYK-110、DISPERBYK-111(ビックケミー・ジャパン株式会社製)が挙げられる。
 また、(メタ)アクリロイル基を有するものとしては、例えば、下記構造式(1)で表されるものが挙げられる。下記構造式(1)で表されるものを用いる場合、得られる無機微粒子分散体が優れた分散安定性を有し、また、これを含有する硬化性組成物が低粘度であり、高い屈折率性能及び優れた耐ブリードアウト性を有する硬化塗膜を形成できる。
Figure JPOXMLDOC01-appb-C000001
(式中Rは、水素原子またはメチル基であり、Rは、炭素原子数2~4のアルキレン鎖である。また、xは、4~10の整数であり、yは、1以上の整数であり、nは、1~3の整数である。)
 上記構造式(1)で表されるリン酸エステル化合物は、式中のxは、4または5が好ましく、yは、2~7の整数が好ましい。このようなリン酸エステル化合物を用いる場合、得られる活性エネルギー線硬化性組成物が低粘度であり、高い屈折率性能及び優れた耐ブリードアウト性を有する硬化塗膜を形成できる。また、上記構造式(1)で表される分散剤は、式中のnが、1、2及び/または3の混合物であってもよい。
 前記活性エネルギー線硬化性組成物における、前記リン酸エステル化合物の含有量は、ジルコニアの100質量部に対して5~40質量部の範囲であることがより好ましく、10~25質量部の範囲であることがさらに好ましい。前記リン酸エステル化合物の含有量がジルコニアの100質量部に対して5~40質量部の範囲である場合、高い屈折率性能及び優れた耐ブリードアウト性を有する硬化塗膜を形成できる。
<シランカップリング剤>
 本実施形態に係るシランカップリング剤としては、例えば、3-(メタ)アクリロイルオキシプロピルトリメチルシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン等の(メタ)アクリロイルオキシ系シランカップリング剤;
アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等のビニル系シランカップリング剤;
ジエトキシ(グリシジルオキシプロピル)メチルシラン、2-(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ系シランカップリング剤;
p-スチリルトリメトキシシラン等のスチレン系シランカップリング剤;
N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1、3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ系シランカップリング剤;
3-ウレイドプロピルトリエトキシシラン等のウレイド系シランカップリング剤;
3-クロロプロピルトリメトキシシラン等のクロロプロピル系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト系シランカップリング剤;
ビス(トリエトキシシリルプロピル)テトラスルファイド等のスルフィド系シランカップリング剤;
3-イソシアネートプロピルトリエトキシシラン等のイソシアネート系シランカップリング剤;
アセトアルコキシアルミニウムジイソプロピレート等のアルミニウム系シランカップリング剤などが挙げられる。これらのシランカップリング剤は、単独で用いることも2種以上を併用することもできる。これらの中でも、後述する(メタ)アクリロイル基含有化合物(C)との相溶性が良いことから、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
 本実施形態に係るシランカップリング剤の使用量は、得られる活性エネルギー線硬化性組成物が優れた分散安定性を有すること、また、低粘度であり、高い屈折率性能及び優れた耐ブリードアウト性を有する硬化塗膜を形成できることから、ジルコニアの100質量部に対して10~30質量部の範囲が好ましい。
〔透明基材層〕
 本実施形態に係る透明基材層4は、プリズムシート10の基材であり、特に限定されず、従来公知のプリズムシートに用いられている透明基材を用いることができる。透明基材層は、例えば、特許文献2に記載のものを用いることができる。
 本実施形態に係る透明基材層4は、所望の透明性、機械的強度等の要求適性を勘案の上、材料及び厚さを適宜選択すればよい。
 本実施形態に係る透明基材層4は、樹脂基材であっても良いし、硝子基材であっても良い。
 透明フィルムの樹脂材料としては、(メタ)アクリレート化合物、ポリカーボネート樹脂、塩化ビニル樹脂、ポリメタクリルイミド樹脂、ポリイミド樹脂、ポリエステル樹脂、シクロオレフィンポリマー(COP)樹脂及びシクロオレフィンコポリマー(COC)樹脂、セルローストリアセテート(TAC)樹脂等が好ましい。
 本実施形態に係る透明基材層4は、長尺形状であっても良いし、所定の大きさからなる枚葉形状であっても良い。
 本実施形態に係る透明基材層4の厚さは、通常は50~500μmが好ましいが、これに限定されない。
 本実施形態に係る透明基材層4の光透過率としては、ディスプレイの前面設置用としては、100%が理想であり、透過率85%以上であることが好ましい。
 本実施形態に係る透明基材層4は、必要に応じて、その表面に従来公知のマット処理(光拡散性の微小凹凸の形成)、帯電防止処理又は反射防止処理等が施されたものであっても良い。また、透明樹脂と基材の間にマット処理、帯電防止処理又は反射防止処理等が施されたものであっても良いし、これらを自由に組合せて用いても良い。
〔プリズムシートの製造方法〕
 本実施形態のプリズムシート10の製造方法は、上記特定の押し込み深さ又は上記弾性変形仕事率が得られる方法であれば特に限定されず、従来公知の方法を用いることができる。
 例えば、特許文献(特開2009-37204号公報)の図2に示すように、所望の単位凹凸形状の型に上記組成物を入れ、そこに透明基材層を重ね、ラミネーター等を用いて透明基材層をその組成物に圧着し、紫外線等で組成物を硬化させ、単位凹凸形状を形成する。次いで、単位凹凸形状の型を剥離乃至除去することで、透明基材層上に所望の凹凸形状を有する光学機能発現部を備えるプリズムシートが得られる。
(プリズムシート用活性エネルギー線硬化性組成物)
 本実施形態のプリズムシート用活性エネルギー線硬化性組成物は、ジルコニアと、(メタ)アクリレート化合物と、を含み、前述の本実施形態のプリズムシートを製造するために用いる、活性エネルギー線硬化性組成物である。
 本実施形態のプリズムシート用活性エネルギー線硬化性組成物の硬化物で作成した標準プリズムシートは、最大試験力における押込み深さ(hmax)が8μm以上であり、弾性変形仕事率(nIT)が50%以上である。
 なお、本実施形態にかかる標準プリズムシートは、本実施形態のプリズムシートに記載した標準プリズムシートと同じである。
 本実施形態にかかる最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)の測定条件、本実施形態のプリズムシートに記載の測定条件と同じである。
 本実施形態のプリズムシート用活性エネルギー線硬化性組成物の硬化物からなる試験片の引裂試験において、最大点変位が2.1%以上であることが好ましい。
 なお、本実施形態に係る引裂試験の測定条件は、本実施形態のプリズムシートで記載した測定条件と同じである。
 本実施形態のプリズムシート用活性エネルギー線硬化性組成物は、表面調整剤を含有することが好ましく、0.01~3質量部の範囲で含有することがより好ましく、0.2~1.5質量部の範囲で含有することがさらに好ましい。本実施形態に係る表面調整剤が本実施形態のプリズムシートに記載の表面調整剤と同じである。
 以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。
(原料)
 ジルコニア:UEP-100、第一稀元素化学工業株式会社製
 チタニア:P25、日本エアロジル株式会社製
 リン酸エステル:DISPERBYK-111、ビックケミー・ジャパン株式会社製 シランカップリング剤:KBM-503、信越化学工業株式会社製
 単官能(メタ)アクリレート-1:KOMERATE A011、Green Chemical Co.,Ltd.製
 単官能(メタ)アクリレート-2:Photomer 4035、IGM Resins Inc.製
 単官能(メタ)アクリレート-3:KOMERATE A008、Green Chemical Co.,Ltd.製
 単官能(メタ)アクリレート-4:MIRAMER M1192、MIWON SPECIALTY CHEMICAL CO.,LTD.製
 単官能(メタ)アクリレート-5:MIRAMER M142、MIWON SPECIALTY CHEMICAL CO.,LTD.製
 単官能(メタ)アクリレート-6:MIRAMER M144、MIWON SPECIALTY CHEMICAL CO.,LTD.製
 二官能(メタ)アクリレート:MIRAMER M2100、MIWON SPECIALTY CHEMICAL CO.,LTD.製
 三官能(メタ)アクリレート-1:MIRAMER M3130、MIWON SPECIALTY CHEMICAL CO.,LTD.製
 三官能(メタ)アクリレート-2:MIRAMER M3160、MIWON SPECIALTY CHEMICAL CO.,LTD.製
 フタル酸エステル系可塑剤:ジエチレングリコールジベンゾアート、東京化成工業株式会社製
 開始剤-1:Runtecure 1108、Runtec Chemical Co., Ltd.製
 開始剤-2:Runtecure 1104、Runtec Chemical Co., Ltd.製
 開始剤-3:ベンゾフェノン、IGM Resins Inc.製
 シリコン系表面調整剤 :BYK-333、ビックケミー・ジャパン株式会社製
 HALS:TINUVIN 292、BASFジャパン株式会社製
<押し込み試験>
 押し込み試験の試験片は、後述の各実施例と各比較例で得られたプリズムシートであった。
 図3は、本実施形態に用いた平面圧子の断面を示す模試図である(上が測定面である)。圧子は、ダイヤモンド製の四角錐型の代わりに、ダイヤモンド製の平面圧子を用いた以外は、ISO 14577-1に準拠して株式会社フィッシャーインストルメンツ製の微小硬さ試験機(商品名HM2000)を用いて、最大試験力における押し込み深さ(hmax)、弾性変形仕事率(nIT)を測定した。
 試験条件:
  平面圧子 平面サイズ 100μmx100μm
  1秒当たり20~60mN
  最大圧縮力500mN
  最大圧縮力における停止時間5~10秒
  F 500mN/10s
  C 5.0s
  R 0.1mN/10s
 C2 10.0s。
<耐摩耗性>
 前記実施例および比較例の各プリズムシートに対して、耐摩耗性評価を行った。井元製作所製の可動盤の上に、プリズムシートの頂部が荷重部側を向くように貼り付け、荷重部側には摩耗子として、直径1cmのホルダーにPET系拡散フィルムを貼り付け、拡散フィルムの基材層がプリズムシートの頂部と擦り合わさるように設置した。評価は23℃(湿度:50%)の室内で実施した。荷重部に300gの荷重をかけて耐摩耗性試験機を動作させ、可動盤を一方向に(移動速度:4m/min、移動距離:10cm、往復回数:40回)で移動させた後の、帯状の傷の度合を目視によって評価した。その基準は次のとおりである。
 判断標準は以下に示す。
  A:目立った傷は確認できない。
  B:薄く、細い傷が見られる。
  C:中程度の傷が見られる。
  D:濃く、太い傷が見られる。
<液屈折率>
 液屈折率の評価は、多波長アッベ屈折計DR-M4屈折率計(株式会社アタゴ製)を用いて、温度25℃、波長589nmにおける屈折率を測定した。
<粘度>
 粘度の評価は、E型回転粘度計(東機産業株式会社製「TVE-25H」)を用いて、温度25℃における粘度を測定した。
(評価)
<引裂試験>
 引裂試験の試験片は、本実施形態の活性エネルギー線硬化性組成物の硬化物である。硬化条件は、後述の実施例1の硬化条件と同じである。
 引裂試験は、以下の測定条件でJIS-K-7128-3に準拠して行う。
  前記試験片形状:JIS-K-7128-3に記載の直角形引裂試験片
  前記試験片の厚さ:200±50μm(各試験片ごとに実測した値)
  前記試験片作製:打ち抜きにより作製した。
  掴み具間距離:56mm
  試験環境:23℃×50%RH
  試験速度:500mm/min。
(調製例1) 
 ジルコニアとして、UEP-100、51.2質量部と、
 リン酸エステルとして、DISPERBYK-111、7.7質量部と、
 シランカップリング剤として、KBM-503、5.1質量部と、
 メチルエチルケトン(以下、「MEK」と略記する。)110.1質量部と
を混合し、分散攪拌機で30分間攪拌し、粗分散を行った。次いで、得られた混合液を、メディア式湿式分散機(アシザワファインテック株式会社製「スターミルLMZ-015」)にて、粒子径100μmのジルコニアビーズを用いて分散処理した。途中の粒子径を確認しながら、滞留時間100分の分散処理を行い、無機微粒子分散体を得た。
 この無機微粒子分散体に、
単官能(メタ)アクリレートとして、Photomer 4035、24.0質量部と、二官能(メタ)アクリレートとして、MIRAMER M2100、10.0質量部と、を加え、エバポレーターにて加温しながら揮発成分を減圧除去した。さらに、
開始剤として、Runtecure 1108、0.7質量部、及びRuntecure 1104、0.7質量部、
シリコン系表面調整剤として、BYK-333、0.5質量部
を添加し、本実施形態の活性エネルギー線硬化性組成物P1(組成物P1)を調製した。組成物P1の液屈折率、粘度を評価した。また、組成物P1の硬化物の引裂試験を行った。それらの結果を表1に示す。
(調製例2~6、比較調製例1~11) 
 各調製例は、表1に示す成分及び組成比を用いた以外は、調製例1と同様な方法で、それぞれ、調製例2~6、比較調製例1~11の組成物P2~P6、cP1~cP11を調製した。各組成物の液屈折率、粘度を評価した。また、各組成物の硬化物の引裂試験を行った。それらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例1)
 図1に示すような単位プリズムの線状配列の凹凸形状を形成できるプリズム金型(図示なし)に上記調製例1で調製した組成物P1を滴下した。その後、透明基材層として厚さ125μmのポリエチレンテレフタレート(PET)(東洋紡株式会社製の商品名「A4300」)を重ね、ラミネーターで当該PET基材全面を組成物P1に圧着した。
 次いで、以下の硬化条件で多数の単位プリズムを有するプリズム部を硬化させ、PET基材と一体化させた。
 硬化条件:
  照射光源:紫外線
  照射装置:高圧水銀灯(株式会社GSユアサライティングサービス製)
  照射光量:780mJ/cm
 その後、上記プリズム型を剥離することによって、プリズムシートS1を得た。
 ここで、単位プリズムの形状は、厚さ方向の断面における形状が高さ25μm、底辺50μm、頂角90℃となる二等辺三角形の三角柱形状とした。そして、微細凹凸構造層は、各単位プリズムの稜線が互いに平衡になるように複数の単位プリズムを配列周期50μmで当該稜線と直交する方向に多数隣接して配列しているものであった。
 プリズムシートS1の押込み試験、耐摩耗性試験を行った。結果を表2に示す。
(実施例2~6及び比較例1~11)
 実施例1において、組成物P1をそれぞれ、表1に示すように組成物P2~P6、cP1~cP11に代えた以外は実施例1と同様に行い、プリズムシートS1~S6,cS1~cS11を得た。
 各プリズムシートの押込み試験、耐摩耗性試験を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
(考察)
 表1、2に示すように、無機ナノ粒子であるジルコニアを40質量%以上含有し、かつ50%以上のnIT、8μm以上のhmaxを有するプリズムシートは、高い屈折率と耐摩耗性を両立することができた。一般に無機ナノ粒子を添加すると、柔軟性が低下し、また樹脂の架橋密度が低下するため、耐摩耗性が悪くなる。しかし、nITを50%以上、hmaxを8μm以上とすることで、耐摩耗性が良好である結果が得られた。これは、hmaxが大きいプリズムシートでは耐摩耗試験時の荷重によってプリズム頂部が変形し、摩耗布との接触面積が大きくなることで荷重が分散されるためと考えらえる。また、nITが大きい組成物では塑性変形よりも弾性変形の仕事率が大きいため、荷重をかけて変形させても、除荷時にもとの形状に戻る。
 また、硬化物の引裂試験の最大点変位が2.1%以上である組成物から作成したプリズムシートは、良好な耐摩耗性を示した。これは、引裂試験の最大点変位が大きいと、耐摩耗試験時に摩擦力によりプリズム頂部が引き延ばされても、欠けや破断が生じずに変形するためと考えられる。
 これらのプリズムシートの耐摩耗性は、シリコン系表面調整剤を添加してスリップ性を付与することで、更に向上させることができた。
 2:微細凹凸構造層(プリズム層)
 2a:単位凹凸構造(単位プリズム)
 4:透明基材層
 10:プリズムシート
 24a:頂角
 24b:底部角
 24:凹部
 50:平面圧子
 52:測定面

Claims (10)

  1.  活性エネルギー線硬化性組成物の硬化物である微細凹凸構造層と、透明基材層と、を有するプリズムシートであって、
     前記活性エネルギー線硬化性組成物は、無機ナノ粒子を40質量%以上含有し、
     前記微細凹凸構造層は、表面に10~100μmの周期の微細凹凸構造を有し、
     前記微細凹凸構造層は、最大試験力における押込み深さ(hmax)が8μm以上であり、弾性変形仕事率(nIT)が50%以上であるプリズムシート。
     なお、前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)は、以下の測定条件で得られたものである。
     圧子:100μmx100μmの平面圧子
     平面圧子1秒当たりの圧縮力:20~60mN
     最大圧縮力:500mN
     最大圧縮力における停止時間:5~10秒。
  2.  前記活性エネルギー線硬化性組成物の硬化物からなる試験片の引裂試験において、最大点変位が2.1%以上である、請求項1記載のプリズムシート。
     なお、前記引裂試験は、以下の測定条件でJIS-K-7128-3に準拠して行う。
      前記試験片形状:JIS-K-7128-3に記載の直角形引裂試験片
      前記試験片の厚さ:200±50μm(各試験片ごとに実測した値)
      前記試験片作製:打ち抜きにより作製した。
      掴み具間距離:56mm
      試験環境:23℃×50%RH
      試験速度:500mm/min。
  3.  前記無機ナノ粒子はジルコニアである請求項1又は2に記載のプリズムシート。
  4.  前記活性エネルギー線硬化性組成物が、(メタ)アクリレート化合物を含有する請求項1又は2に記載のプリズムシート。
  5.  前記活性エネルギー線硬化性組成物が、表面調整剤を前記組成物中に0.1~1.5質量部の範囲で含有する請求項1又は2に記載のプリズムシート。
  6.  表面調整剤が、シリコンを含有する請求項5に記載のプリズムシート。
  7.  無機ナノ粒子と(メタ)アクリレート化合物とを含む、プリズムシート用活性エネルギー線硬化性組成物であって、
     前記プリズムシート用活性エネルギー線硬化性組成物は、前記無機ナノ粒子を40質量%以上含有し、
     前記プリズムシート用活性エネルギー線硬化性組成物の硬化物で作成した標準プリズムシートは、最大試験力における押込み深さ(hmax)が8μm以上であり、弾性変形仕事率(nIT)が50%以上である、プリズムシート用活性エネルギー線硬化性組成物。
     なお、前記標準プリズムシートは、透明基材層と微細凹凸構造層とを有し、
     前記透明基材層が厚さ125μmのポリエチレンテレフタレートであり、
     前記微細凹凸構造層が前記透明基材層の表面に50μmの周期の微細凹凸構造を有し、 前記微細凹凸構造の単位構造が単位プリズムを構成し、前記単位プリズム形状は、厚さ方向の断面における形状が高さ25μm、底辺50μm、頂角90℃となる二等辺三角形の三角柱形状とし、
     前記単位プリズムが、前記プリズムシートの平面視において、各単位プリズムの稜線が互いに平衡になるように複数の単位プリズムを配列周期50μmで当該稜線と直交する方向に多数隣接して配列している。
     前記最大試験力における押込み深さ(hmax)及び弾性変形仕事率(nIT)は、以下の測定条件で得られたものである。
     圧子:100μmx100μmの平面圧子
     平面圧子1秒当たりの圧縮力:20~60mN
     最大圧縮力:500mN
     最大圧縮力における停止時間:5~10秒。
  8.  前記プリズムシート用活性エネルギー線硬化性組成物の硬化物からなる試験片の引裂試験において、最大点変位が2.1%以上である、請求項7に記載のプリズムシート用活性エネルギー線硬化性組成物。
     なお、前記引裂試験は、以下の測定条件でJIS-K-7128-3に準拠して行う。
      前記試験片形状:JIS-K-7128-3に記載の直角形引裂試験片
      前記試験片の厚さ:200±50μm(各試験片ごとに実測した値)
      前記試験片作製:打ち抜きにより作製した。
      掴み具間距離:56mm
      試験環境:23℃×50%RH
      試験速度:500mm/min。
  9.  前記無機ナノ粒子はジルコニアである、請求項7又8に記載のプリズムシート用活性エネルギー線硬化性組成物。
  10.  表面調整剤を0.1~1.5質量部の範囲で含有する請求項7又8に記載の、プリズムシート用活性エネルギー線硬化性組成物。
PCT/JP2023/015447 2022-04-27 2023-04-18 プリズムシート及びプリズムシート用活性エネルギー線硬化性組成物 WO2023210437A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023546467A JP7401035B1 (ja) 2022-04-27 2023-04-18 プリズムシート及びプリズムシート用活性エネルギー線硬化性組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073693 2022-04-27
JP2022-073693 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210437A1 true WO2023210437A1 (ja) 2023-11-02

Family

ID=88518605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015447 WO2023210437A1 (ja) 2022-04-27 2023-04-18 プリズムシート及びプリズムシート用活性エネルギー線硬化性組成物

Country Status (3)

Country Link
JP (1) JP7401035B1 (ja)
TW (1) TW202403356A (ja)
WO (1) WO2023210437A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221492A (ja) * 2010-03-26 2011-11-04 Dainippon Printing Co Ltd プリズムシート、光学部材用活性エネルギー線硬化性樹脂組成物、面光源装置及び液晶表示装置
JP2012208376A (ja) * 2011-03-30 2012-10-25 Dainippon Printing Co Ltd 光学シート、面光源装置及び画像表示装置
JP2014071153A (ja) * 2012-09-27 2014-04-21 Dainippon Printing Co Ltd プリズムシート、面光源装置、及び、透過型画像表示装置
WO2019111697A1 (ja) * 2017-12-08 2019-06-13 Dic株式会社 無機微粒子分散体、硬化性組成物及び光学部材
WO2020250721A1 (ja) * 2019-06-11 2020-12-17 Dic株式会社 無機微粒子分散体、硬化性組成物及び光学部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221492A (ja) * 2010-03-26 2011-11-04 Dainippon Printing Co Ltd プリズムシート、光学部材用活性エネルギー線硬化性樹脂組成物、面光源装置及び液晶表示装置
JP2012208376A (ja) * 2011-03-30 2012-10-25 Dainippon Printing Co Ltd 光学シート、面光源装置及び画像表示装置
JP2014071153A (ja) * 2012-09-27 2014-04-21 Dainippon Printing Co Ltd プリズムシート、面光源装置、及び、透過型画像表示装置
WO2019111697A1 (ja) * 2017-12-08 2019-06-13 Dic株式会社 無機微粒子分散体、硬化性組成物及び光学部材
WO2020250721A1 (ja) * 2019-06-11 2020-12-17 Dic株式会社 無機微粒子分散体、硬化性組成物及び光学部材

Also Published As

Publication number Publication date
JPWO2023210437A1 (ja) 2023-11-02
JP7401035B1 (ja) 2023-12-19
TW202403356A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US7943206B2 (en) Brightness enhancement film comprising polymerized organic phase having low glass transition temperature
TW201815590A (zh) 聚胺甲酸酯丙烯酸酯保護顯示膜
TWI488910B (zh) 光硬化性樹脂組成物、使用其的光學膜的製造方法及含有其的光學膜
US9244193B2 (en) Microstructured optical films comprising fluorene-containing monomer
EP2419767A1 (en) Optical film
JP5789931B2 (ja) プリズムシート、面光源装置及び液晶表示装置
JP5468765B2 (ja) 防眩性ハードコートフィルム
US20170349780A1 (en) Curable composition, cured product thereof, and optical member
TWI752090B (zh) 光學物品用活性能量線硬化型樹脂組成物、硬化物及光學薄片
JPWO2014208429A1 (ja) 光学積層体及び面光源装置
JP5415742B2 (ja) 防眩性ハードコートフィルム
JP2015075711A (ja) シリカ粒子含有微細凹凸構造体
JPWO2019111697A1 (ja) 無機微粒子分散体、硬化性組成物及び光学部材
JP7401035B1 (ja) プリズムシート及びプリズムシート用活性エネルギー線硬化性組成物
WO2014189075A1 (ja) 積層体
TWI490194B (zh) 可聚合組合物及其用途
CN114479152B (zh) 一种高硬度防眩膜
WO2022064782A1 (ja) 光学積層体
JP6365917B1 (ja) インクジェットインク組成物
JP7409574B1 (ja) 光学フィルム、画像表示パネル及び画像表示装置
JP7380960B1 (ja) 光学フィルム、画像表示パネル及び画像表示装置
WO2024004861A1 (ja) 活性エネルギー線硬化性組成物およびその硬化物
JP7287170B2 (ja) 粘着シート
KR101819154B1 (ko) 내열성이 우수한 광학 시트 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023546467

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796180

Country of ref document: EP

Kind code of ref document: A1