WO2023210167A1 - ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法 - Google Patents

ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法 Download PDF

Info

Publication number
WO2023210167A1
WO2023210167A1 PCT/JP2023/008214 JP2023008214W WO2023210167A1 WO 2023210167 A1 WO2023210167 A1 WO 2023210167A1 JP 2023008214 W JP2023008214 W JP 2023008214W WO 2023210167 A1 WO2023210167 A1 WO 2023210167A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond film
niobium carbide
layer
carbide layer
niobium
Prior art date
Application number
PCT/JP2023/008214
Other languages
English (en)
French (fr)
Inventor
直宏 西川
俊章 守田
香 栗原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2023561231A priority Critical patent/JP7421018B1/ja
Publication of WO2023210167A1 publication Critical patent/WO2023210167A1/ja
Priority to JP2024002365A priority patent/JP2024036357A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Definitions

  • the present invention relates to a diamond film deposited substrate and a method for manufacturing a diamond film deposited substrate.
  • Conductive diamond has a wide potential window in aqueous and non-aqueous systems and low background current, so it is known as an electrode material that enables highly sensitive electrochemical detection over a wide potential range.
  • Patent Document 1 discloses that at least the surface of an electrode base material comprising a valve metal selected from the group consisting of niobium, tantalum, titanium, and zirconium and a material selected from metal-based alloys thereof is plastically worked. and then heat-treating the electrode base material in a vacuum or an inert atmosphere to form a conductive diamond film on the surface of the heat-treated electrode base material.
  • a manufacturing method is disclosed.
  • An object of the present invention is to provide a diamond film deposited substrate that can improve the durability of a diamond electrode.
  • a method of manufacturing a diamond film deposited substrate comprising the step of depositing a conductive diamond film on the niobium carbide layer.
  • FIG. 1 is a schematic diagram showing a cross section of a diamond film deposited substrate 10 according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing the diamond film deposited substrate 10 according to the first embodiment of the present invention.
  • FIG. 3(a) is a schematic diagram illustrating the processing damage layer forming step S102 of the first embodiment of the present invention
  • FIG. 3(b) is a schematic diagram illustrating the carbon source embedding step S103 of the first embodiment of the present invention. It is a schematic diagram for explaining.
  • FIG. 4 is a schematic diagram showing a cross section of a diamond film deposited substrate 10 according to a modification of the first embodiment of the present invention.
  • FIG. 5(a) is a surface photograph of sample 1 of the example of the present invention
  • FIG. 5(b) is a surface photograph of sample 2 of the example of the present invention
  • FIG. 5(c) is a photograph of the surface of sample 2 of the example of the present invention
  • FIG. 5(d) is a surface photograph of Sample 3 of Example of the present invention
  • FIG. 5(d) is a surface photograph of Sample 4 of Example of the present invention.
  • Diamond electrodes that are made conductive by containing boron or the like can be used to generate oxidizing agents such as ozone. Durability is a major issue in such diamond electrodes. Although the adhesion and peel strength between the substrate and the diamond film have been improved by the techniques described in Patent Document 1 and the like, it has been found that it is difficult to obtain a practical level of durability.
  • the inventor of the present application has conducted extensive research on the carbide layer described above.
  • the carbide layer impedes the durability of the diamond electrode only when a strongly acidic liquid comes into contact with the carbide layer, and pinholes that reach the base material or the carbide layer exist on the surface of the diamond film.
  • the problem lies in the fact that It has also been found that by daring to form a continuous carbide layer as an intermediate layer, the occurrence of the above-mentioned pinholes can be suppressed.
  • a processing damage layer with micro-cracks is formed, and a carbon source is embedded inside the processing damage layer and heat treatment is performed. It was found that it is effective to apply
  • the diamond film deposited substrate 10 of this embodiment is preferably used, for example, to manufacture a diamond electrode for electrochemical reactions (for example, for ozone generation). Thereby, it is possible to suppress deterioration of the diamond electrode due to electrical conduction and improve durability.
  • FIG. 1 is a schematic diagram showing a cross section of a diamond film deposited substrate 10 of this embodiment.
  • a diamond film deposition substrate 10 includes, for example, a substrate 20, a niobium carbide layer 30, and a conductive diamond film 40.
  • the substrate 20 is, for example, a flat metal niobium plate material on which the conductive diamond film 40 is deposited and for supporting the conductive diamond film 40.
  • the size and thickness of the main surface of the substrate 20 are not particularly limited, for example, the main surface has a rectangular shape with one side of 20 mm or more and 500 mm or less, and the thickness is 0.5 mm or more and 5 mm or less.
  • the niobium carbide layer 30 is formed, for example, on at least one main surface of the substrate 20, and is a layer formed by a reaction between a part of the metal niobium of the substrate 20 and a carbon source 22, which will be described later.
  • the niobium carbide layer 30 functions, for example, as an intermediate layer for increasing the nucleation density of diamond crystals.
  • the thickness of the niobium carbide layer 30 is preferably, for example, 0.5 ⁇ m or more and 5 ⁇ m or less (more preferably 0.8 ⁇ m or more and 2.5 ⁇ m or less). That is, it is preferable that the maximum thickness and minimum thickness of the niobium carbide layer 30 fall within the range of 0.5 ⁇ m or more and 5 ⁇ m or less (more preferably 0.8 ⁇ m or more and 2.5 ⁇ m or less). If the thickness of the niobium carbide layer 30 is less than 0.5 ⁇ m, the nucleation density of diamond crystals for forming the conductive diamond film 40 may be insufficient.
  • the thickness of the niobium carbide layer 30 by setting the thickness of the niobium carbide layer 30 to 0.5 ⁇ m or more, the density of diamond crystal nucleation for forming the conductive diamond film 40 can be sufficiently increased.
  • the thickness of the niobium carbide layer 30 exceeds 5 ⁇ m, internal stress becomes large and the diamond film deposited substrate 10 may warp.
  • the thickness of the niobium carbide layer 30 by setting the thickness of the niobium carbide layer 30 to 5 ⁇ m or less, internal stress can be reduced and warpage of the diamond film deposited substrate 10 can be reduced.
  • the conductive diamond film 40 is, for example, a conductive polycrystalline film formed on the niobium carbide layer 30.
  • the conductive diamond film 40 may be either a polycrystalline diamond film or a diamond-like carbon (DLC) film.
  • the conductive diamond film 40 preferably contains boron at a concentration of, for example, 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 22 cm ⁇ 3 or less.
  • the thickness of the conductive diamond film 40 is, for example, 0.5 ⁇ m or more and 10 ⁇ m or less, and preferably 1 ⁇ m or more and 5 ⁇ m or less from the viewpoint of maintaining a balance between durability and cost. In this embodiment, a case will be described in which the conductive diamond film 40 has a single layer structure.
  • the surface of the conductive diamond film 40 is observed using, for example, a scanning electron microscope (for example, 5000x magnification), there are pinholes that reach the substrate 20 or the niobium carbide layer 30 within a field of view of 20 ⁇ m x 20 ⁇ m. do not. Thereby, for example, even if the diamond electrode is used in a strongly acidic liquid, the risk of the strongly acidic liquid coming into contact with the niobium carbide layer 30 can be reduced, so it is possible to improve the durability of the diamond electrode.
  • a scanning electron microscope for example, 5000x magnification
  • the substrate 2 when the cross section (vertical section or cross section) of the conductive diamond film 40 is observed using, for example, a scanning electron microscope (for example, 5000x magnification), the substrate 2 Alternatively, it is preferable that there be no pinholes that reach the niobium carbide layer 30. In other words, in the conductive diamond film 40, not only pinholes observable from the surface but also internal pinholes are reduced. This makes it possible to further improve the durability of the diamond electrode. In addition, in the cross section (vertical cross section or cross section) of the conductive diamond film 40, it is more preferable that there is no pinhole that reaches the substrate 20 or the niobium carbide layer 30 within a field of view of 1 mm x 1 mm. It is particularly preferable that no pinholes exist over the entire cross section.
  • a width of 20 ⁇ m or more (length in the direction parallel to the main surface of the substrate 20) is observed.
  • a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more is formed. This makes it possible to sufficiently increase the nucleation density of diamond crystals for forming the conductive diamond film 40 and to suppress the generation of pinholes. Note that from the viewpoint of further suppressing the generation of pinholes, it is more preferable that a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more is formed over a width of 1 mm or more. It is particularly preferable that a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more is formed over the entire surface.
  • the main component of the niobium carbide layer 30 is preferably niobium carbide having the chemical formula NbC, for example. Thereby, the density of diamond crystal nucleation for forming the conductive diamond film 40 can be increased.
  • the main components of the niobium carbide layer 30 can be confirmed by, for example, X-ray diffraction (XRD).
  • the crystallite diameter of niobium carbide contained in the niobium carbide layer 30 is preferably, for example, 1 nm or more and 60 nm or less. If the crystallite diameter is outside the above range, it may be difficult to form a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more. On the other hand, by setting the crystallite diameter within the above range, it becomes easier to form a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more, and as a result, it becomes easier to suppress the generation of pinholes. Note that each crystallite diameter in this specification can be measured, for example, by the Scherrer method of XRD.
  • the crystallite diameter of the metal niobium (particularly the metal niobium present near the interface with the niobium carbide layer 30) contained in the substrate 20 is preferably, for example, 30 nm or more and 90 nm or less. If the crystallite diameter of metallic niobium is less than 30 nm, it may be difficult to form a continuous niobium carbide layer 30. On the other hand, by setting the crystallite diameter of metal niobium to 30 nm or more, continuous niobium carbide layer 30 is easily formed.
  • the crystallite diameter of niobium metal exceeds 90 nm, the difference in crystallite diameter between niobium carbide and niobium carbide contained in the niobium carbide layer 30 becomes large, and cracks and the like may occur.
  • the crystallite diameter of metallic niobium is distributed so that it gradually becomes smaller from the substrate 20 to the niobium carbide layer 30, so it is possible to suppress the occurrence of cracks, etc. can.
  • the diamond film deposited substrate 10 of this embodiment can be used to manufacture a diamond electrode for electrochemical reactions (for example, for ozone generation), and therefore the present invention provides a method for manufacturing a diamond electrode. It is also applicable as
  • FIG. 2 is a flowchart showing an example of a method for manufacturing the diamond film deposited substrate 10 of this embodiment.
  • the method for manufacturing the diamond film deposited substrate 10 of this embodiment includes, for example, an unevenness forming step S101, a processing damage layer forming step S102, a carbon source embedding step S103, a seeding step S104, It includes a niobium carbide layer forming step S105 and a diamond film depositing step S106.
  • a diamond film deposited substrate 10 is manufactured from a substrate 20 made of metal niobium.
  • the unevenness forming step S101 is, for example, a process of forming unevenness on at least one main surface of the substrate 20. Thereby, peeling due to the difference in thermal expansion coefficient between the substrate 20 and the conductive diamond film 40 can be suppressed. In other words, the peel strength of the diamond film deposited substrate 10 can be further improved.
  • the unevenness forming step S101 it is preferable to form the unevenness so that the arithmetic mean roughness Ra (see JIS B0601-2001) of the main surface is, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • known methods such as grinding, blasting, wet etching, dry etching, etc. can be used as a process for forming irregularities.
  • the unevenness forming step S101 is performed, for example, before the processing damage layer forming step S102. If the surface on which the processing damage layer 21 is formed is processed to create irregularities, there is a possibility that the processing damage layer 21 will be removed. On the other hand, by performing the unevenness forming step S101 before the processing damaged layer forming step S102, work hardening occurs in the substrate 20, so that microcracks are easily formed in the processing damaged layer forming step S102. In addition, in the unevenness forming step S101, machining such as punching or groove processing may be further performed in order to further cause work hardening of the substrate 20.
  • the unevenness forming step S101 may be omitted.
  • the niobium carbide layer forming step S105 can be performed by performing the processing damage layer forming step S102 and the carbon source embedding step S103, which will be described later.
  • a niobium carbide layer 30 that continuously covers the main surface of the substrate 20 can be formed. That is, the generation of pinholes in the conductive diamond film 40 can be suppressed.
  • FIG. 3A is a schematic diagram illustrating the processing damage layer forming step S102.
  • the processing damage layer forming step S102 is performed by introducing processing damage onto at least one main surface of the substrate 20 (the surface with the unevenness formed in the unevenness forming step S101). This is a step of forming a process-damaged layer 21 having a large number of microcracks.
  • heating exceeding 2,300 degrees is normally required, but by forming the processing damage layer 21, heating at a low temperature (for example, around 800 degrees) is required.
  • the method of introducing processing damage is not particularly limited as long as it is a method that can form microcracks.
  • processing damage can be introduced by grinding, imprinting, blasting, pressing, etc. to form the processing damage layer 21 having microcracks.
  • microcracks are not only cracks with a length of 0.1 ⁇ m or more and 2 ⁇ m or less and a width of 5 nm or more and 200 nm or less (hereinafter also referred to as microcracks with voids), but also cracks with a high density of crystal defects.
  • microcracks without voids
  • the main surface of the substrate 20 may be observed using a scanning electron microscope.
  • the processing damage layer forming step S102 it is preferable to form the processing damage layer 21 with a thickness of, for example, 0.5 ⁇ m or more and 5 ⁇ m or less (more preferably 0.8 ⁇ m or more and 2.5 ⁇ m or less).
  • a thickness of, for example, 0.5 ⁇ m or more and 5 ⁇ m or less more preferably 0.8 ⁇ m or more and 2.5 ⁇ m or less.
  • the niobium carbide layer forming step S105 which will be described later, at least a part of the processing damage layer 21 becomes the niobium carbide layer 30, so by setting the thickness of the processing damage layer 21 within the above range, niobium of an appropriate thickness can be formed. It becomes easier to form the carbide layer 30.
  • the thickness of the process-damaged layer 21 for example, a region where the crystallite diameter is 10% or more smaller than the crystallite diameter of metal niobium before forming the process-damaged layer 21 is defined as the process-damaged layer. It may also be layer 21.
  • the process damage layer forming step S102 it is preferable to introduce process damage such that, for example, the crystallite diameter of metal niobium in the process damage layer 21 is 1 nm or more and 25 nm or less. If the crystallite diameter of the metal niobium in the process-damaged layer 21 exceeds 25 nm, it may be difficult for the carbon source 22 to diffuse into the process-damage layer 21, making it difficult to form a continuous niobium carbide layer 30. On the other hand, by setting the crystallite diameter of the metal niobium in the processing damage layer 21 to 25 nm or less, the surface area of the metal niobium becomes sufficiently large, so that it becomes easier to form the continuous niobium carbide layer 30.
  • the crystallite diameter of the niobium metal in the processing damage layer 21 is less than 1 nm, it is possible to form a continuous niobium carbide layer 30; is technically difficult and increases the cost significantly, so from the viewpoint of cost reduction, it is preferable that the crystallite diameter of the metal niobium in the processing damage layer 21 is 1 nm or more.
  • FIG. 3(b) is a schematic diagram illustrating the carbon source embedding step S103.
  • the carbon source embedding step S103 is a step of embedding a carbon source 22 made of solid carbon or a carbon compound inside the processing damaged layer 21 (for example, inside a micro crack with a void). It is. Since the processing damage layer 21 has many microcracks, the carbon source 22 can be easily embedded therein. Specifically, for example, by sprinkling the carbon source 22 on the surface of the substrate 20 and rubbing the surface with the substrate 20 etc. of the same size, the carbon source 22 is cracked to the same size as the micro cracks (for example, an average particle diameter of 200 nm).
  • the carbon source 22 for example, graphite, boron carbide, diamond powder, etc. can be used.
  • diamond powder is used as the carbon source 22
  • sp 2 carbon amorphous layer
  • the average particle size of the carbon source 22 is preferably 200 nm or less. This makes it easier to embed the carbon source 22 inside the process-damaged layer 21. Moreover, the surface area of the carbon source 22 becomes large, and the reactivity with metal niobium can be improved. Note that the lower limit of the average particle size of the carbon source 22 is not particularly limited, but is, for example, 5 nm or more.
  • the carbon source 22 when graphite (average particle size 5 to 200 nm) is embedded into the processing damage layer 21 as the carbon source 22, for example, the carbon source 22 of 0.1 ⁇ g/cm 2 or more and 10 ⁇ g/cm 2 or less is used. Preferably, it is embedded. If the amount of the embedded carbon source 22 is less than 0.1 ⁇ g/cm 2 , the carbonization of metal niobium will be insufficient, and it may be difficult to form a continuous niobium carbide layer 30 .
  • the amount of the embedded carbon source 22 is set to 0.1 ⁇ g/cm 2 or more, the metal niobium can be sufficiently carbonized and the continuous niobium carbide layer 30 can be easily formed.
  • the amount of the embedded carbon source 22 exceeds 10 ⁇ g/cm 2 , a large amount of the carbon source 22 may remain after the niobium carbide layer 30 is formed, which may adversely affect the deposition of the conductive diamond film 40. There is.
  • the amount of embedded carbon source 22 is set to 10 ⁇ g/cm 2 or less, the remaining carbon source 22 can be reduced.
  • the carbon source 22 is embedded within a depth of 1 ⁇ m or less.
  • the seeding step S104 is, for example, a step of seeding diamond particles onto the main surface of the substrate 20 (the main surface on which the processing damage layer 21 is formed, that is, the surface of the processing damage layer 21).
  • the energy barrier required for initial nucleation to form the conductive diamond film 40 can be lowered.
  • known methods such as blasting and dipping can be used.
  • the seeding step S104 is preferably performed, for example, before forming the niobium carbide layer 30 (that is, before the niobium carbide layer forming step S105).
  • the niobium carbide layer forming step S105 and the diamond film depositing step S106 which will be described later, can be performed continuously in the same apparatus.
  • the seeding step S104 may be performed simultaneously with the above-mentioned carbon source embedding step S103.
  • the same diamond particles can serve as the carbon source 22 used in the carbon source embedding step S103 and the diamond particles used in the seeding step S104.
  • the carbon source 22 preferably includes sp 2 carbon.
  • a diamond particle for example, a nanodiamond particle obtained by a detonation method in which the periphery of the core portion of the diamond structure (sp 3 structure) is covered with an amorphous layer (sp 2 carbon) is This is preferable because the 2 carbon is exhausted and the core of the sp 3 structure can remain as a seeded diamond particle.
  • the seeding step S104 may be omitted.
  • the above-mentioned processing damage layer forming step S102 and carbon source embedding step S103 are performed, so that the niobium carbide layer forming step S105 is performed.
  • a niobium carbide layer 30 that continuously covers the main surface of the substrate 20 can be formed. That is, the generation of pinholes in the conductive diamond film 40 can be suppressed.
  • the niobium carbide layer forming step S105 is a step of forming a niobium carbide layer 30 that continuously covers the main surface of the substrate 20 by subjecting the processing damaged layer 21 to a heat treatment and reacting the metal niobium and the carbon source 22. Thereby, the generation of pinholes on the surface of the conductive diamond film 40 can be suppressed.
  • the structure is reconstructed simultaneously with the formation of the niobium carbide layer 30, and most of the microcracks formed in the processing damage layer forming step S102 disappear.
  • defects are eliminated and reduced by solid-phase diffusion at grain boundaries, so that the machining damage is recovered to some extent and the strength is increased.
  • the niobium carbide layer 30 can be formed using, for example, a hot filament CVD apparatus described below as a heating furnace for heat treatment.
  • Examples of the conditions for the heat treatment in the niobium carbide layer forming step S105 are as follows. Heat treatment temperature (substrate temperature): 550 to 850 degrees Pressure: 10 to 50 Torr Heat treatment time: 30-120 minutes
  • the niobium carbide layer forming step S105 it is preferable to form the niobium carbide layer 30 having a thickness of, for example, 10% or more and 100% or less (more preferably 30% or more and 100% or less) of the processing damage layer 21. In other words, it is preferable that a depth range from the surface to 10% or more of the thickness of the processing damage layer 21 is reacted with the carbon source 22 to form the niobium carbide layer 30. If the thickness of the niobium carbide layer 30 is less than 10% of the thickness of the machining damage layer 21, the nucleation density of diamond crystals will be insufficient, which may cause pinholes.
  • the thickness of the niobium carbide layer 30 is set to 10% or more of the thickness of the processing damage layer 21, the density of diamond crystal nucleation can be sufficiently increased. Note that when all of the process-damaged layer 21 is reacted with the carbon source 22, the thickness of the niobium carbide layer 30 becomes equal to the thickness of the process-damage layer 21.
  • the niobium carbide layer forming step S105 it is preferable to form the niobium carbide layer 30 whose main component is, for example, niobium carbide having the chemical formula NbC. Thereby, the density of diamond crystal nucleation for forming the conductive diamond film 40 can be increased.
  • the niobium carbide layer forming step S105 it is preferable to form the niobium carbide layer 30 so that, for example, the crystallite diameter of niobium carbide contained in the niobium carbide layer 30 is 1 nm or more and 60 nm or less. This makes it easier to suppress the occurrence of pinholes.
  • the diamond film deposition step S106 is, for example, a step of depositing a conductive diamond film 40 on the niobium carbide layer 30.
  • the conductive diamond film 40 can be deposited using, for example, a hot filament CVD apparatus.
  • the hot filament CVD apparatus is configured to be able to supply various gases such as hydrogen gas, carbon-containing gas, and boron-containing gas to the growth chamber.
  • Methane gas or ethane gas can be used as the carbon-containing gas.
  • boron-containing gas trimethyl boron (TMB) gas, trimethyl borate gas, triethyl borate gas, or diborane gas can be used.
  • TMB trimethyl boron
  • the hot filament CVD apparatus includes a temperature sensor, a tungsten filament, an electrode (for example, a molybdenum electrode), etc. in an airtight container configured inside the growth chamber.
  • the diamond film deposited substrate 10 can be manufactured.
  • the diamond film deposited substrate 10 may be divided into predetermined sizes to manufacture a plurality of diamond electrodes.
  • the thickness is 0.5 ⁇ m or more over a width of 20 ⁇ m or more.
  • a continuous niobium carbide layer 30 is formed. This makes it possible to sufficiently increase the nucleation density of diamond crystals for forming the conductive diamond film 40 and to suppress the generation of pinholes. Note that from the viewpoint of further suppressing the generation of pinholes, it is more preferable that a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more is formed over a width of 1 mm or more. It is particularly preferable that a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more is formed over the entire surface.
  • the thickness of the niobium carbide layer 30 is preferably, for example, 0.5 ⁇ m or more and 5 ⁇ m or less (more preferably 0.8 ⁇ m or more and 2.5 ⁇ m or less). . That is, it is preferable that the maximum thickness and minimum thickness of the niobium carbide layer 30 fall within the range of 0.5 ⁇ m or more and 5 ⁇ m or less (more preferably 0.8 ⁇ m or more and 2.5 ⁇ m or less). If the thickness of the niobium carbide layer 30 is less than 0.5 ⁇ m, the nucleation density of diamond crystals for forming the conductive diamond film 40 may be insufficient.
  • the thickness of the niobium carbide layer 30 by setting the thickness of the niobium carbide layer 30 to 0.5 ⁇ m or more, the density of diamond crystal nucleation for forming the conductive diamond film 40 can be sufficiently increased.
  • the thickness of the niobium carbide layer 30 exceeds 5 ⁇ m, internal stress becomes large and the diamond film deposited substrate 10 may warp.
  • the thickness of the niobium carbide layer 30 by setting the thickness of the niobium carbide layer 30 to 5 ⁇ m or less, internal stress can be reduced and warpage of the diamond film deposited substrate 10 can be reduced.
  • the main component of the niobium carbide layer 30 is preferably niobium carbide with the chemical formula NbC, for example. Thereby, the density of diamond crystal nucleation for forming the conductive diamond film 40 can be increased.
  • the crystallite diameter of niobium carbide contained in the niobium carbide layer 30 is preferably, for example, 1 nm or more and 60 nm or less. If the crystallite diameter is outside the above range, it may be difficult to form a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more. On the other hand, by setting the crystallite diameter within the above range, it becomes easier to form a continuous niobium carbide layer 30 with a thickness of 0.5 ⁇ m or more, and as a result, it becomes easier to suppress the generation of pinholes.
  • the crystallite diameter of the metal niobium (particularly the metal niobium present near the interface with the niobium carbide layer 30) contained in the substrate 20 is, for example, 30 nm or more and 90 nm or less. It is preferable that If the crystallite diameter of niobium metal is less than 30 nm, it may be difficult to form a continuous niobium carbide layer 30. On the other hand, by setting the crystallite diameter of metal niobium to 30 nm or more, continuous niobium carbide layer 30 is easily formed.
  • the crystallite diameter of niobium metal exceeds 90 nm, the difference in crystallite diameter between niobium carbide and niobium carbide contained in the niobium carbide layer 30 becomes large, and cracks and the like may occur.
  • the crystallite diameter of metallic niobium is distributed so that it gradually becomes smaller from the substrate 20 to the niobium carbide layer 30, so it is possible to suppress the occurrence of cracks, etc. can.
  • the method for manufacturing the diamond film deposited substrate 10 of this embodiment includes, for example, a processing damage layer forming step S102, a carbon source embedding step S103, a niobium carbide layer forming step S105, and a diamond film depositing step S106. have.
  • a continuous niobium carbide layer 30 can be formed, making it possible to suppress the generation of pinholes on the surface of the conductive diamond film 40.
  • the niobium carbide layer forming step S105 at least a part of the processing damage layer 21 becomes the niobium carbide layer 30, so by setting the thickness of the processing damage layer 21 within the above range, the niobium carbide layer has an appropriate thickness. 30 becomes easier to form.
  • the niobium carbide layer forming step S105 for example, 10% or more and 100% or less (more preferably 30% or more and 100% or less) of the processing damage layer 21.
  • the niobium carbide layer 30 is formed to have a thickness of .
  • a depth range from the surface to 10% or more of the thickness of the processing damage layer 21 is reacted with the carbon source 22 to form the niobium carbide layer 30. If the thickness of the niobium carbide layer 30 is less than 10% of the thickness of the machining damage layer 21, the nucleation density of diamond crystals will be insufficient, which may cause pinholes.
  • the thickness of the niobium carbide layer 30 by setting the thickness of the niobium carbide layer 30 to 10% or more of the thickness of the processing damage layer 21, the density of diamond crystal nucleation can be sufficiently increased.
  • the process damage is removed such that the crystallite diameter of metal niobium in the process damage layer 21 is 1 nm or more and 25 nm or less. It is preferable to introduce If the crystallite diameter of the metal niobium in the process-damaged layer 21 exceeds 25 nm, it may be difficult for the carbon source 22 to diffuse into the process-damage layer 21, making it difficult to form a continuous niobium carbide layer 30.
  • the crystallite diameter of the metal niobium in the processing damage layer 21 is 1 nm or more.
  • the method for manufacturing the diamond film deposited substrate 10 of this embodiment includes a seeding step S104. By interposing diamond particles at the interface between the niobium carbide layer 30 and the conductive diamond film 40, the energy barrier required for initial nucleation to form the conductive diamond film 40 can be lowered.
  • the method for manufacturing the diamond film deposited substrate 10 of this embodiment includes an unevenness forming step S101. Thereby, peeling due to the difference in thermal expansion coefficient between the substrate 20 and the conductive diamond film 40 can be suppressed. In other words, the peel strength of the diamond film deposited substrate 10 can be improved.
  • FIG. 4 is a schematic diagram showing a cross section of the diamond film deposited substrate 10 of this modification.
  • the diamond film deposition substrate 10 of this modification includes, for example, a substrate 20, a niobium carbide layer 30, and a conductive diamond film 40, and the niobium carbide layer 30 has an upper part. 31 and a lower part 32.
  • the main component of the upper part 31 of the niobium carbide layer 30 is niobium carbide with the chemical formula NbC
  • the lower part 32 of the niobium carbide layer 30 includes niobium carbide with the chemical formula Nb 2 C. Since the niobium carbide layer 30 is carbonized from the surface side, Nb 2 C with a large Nb component is likely to be formed in the lower part 32 where there is less carbon source 22 diffusing from the surface side. Even when the lower part 32 of the niobium carbide layer 30 contains Nb 2 C as in this modification, the formation of the continuous niobium carbide layer 30 makes it easier to form the conductive diamond film 40. Since the nucleation density of diamond crystals can be sufficiently increased and the generation of pinholes can be suppressed, the durability of the diamond electrode can be improved as a result.
  • the ratio of the thickness of the upper part 31 and the lower part 32 of the niobium carbide layer 30 is not particularly limited, but for example, the thickness of the lower part 32 of the niobium carbide layer 30 is 50% or more and 150% or less of the thickness of the upper part 31.
  • the crystallite diameter of niobium carbide contained in the upper part 31 of the niobium carbide layer 30 is smaller than the crystallite diameter of niobium carbide contained in the lower part 32.
  • the crystallite diameter of niobium carbide contained in the upper part 31 is 1 nm or more and 25 nm or less
  • the crystallite diameter of niobium carbide contained in the lower part 32 is, for example, 20 nm or more and 60 nm or less.
  • the crystallite diameter of niobium carbide contained in the upper part 31 is calculated from the peak of NbC (111) in XRD, and the crystallite diameter of niobium carbide contained in the lower part 32 is calculated from the peak of Nb 2 C (211) in XRD. Calculated from.
  • the main component of the upper part 31 of the niobium carbide layer 30 is niobium carbide having the chemical formula NbC, and the lower part 32 of the niobium carbide layer 30 contains niobium carbide having the chemical formula Nb 2 C. Then, a niobium carbide layer 30 is formed.
  • the process damage layer 21 is Processing damage may be introduced so that the crystallite diameter of the niobium metal in the upper part is smaller than the crystallite diameter of the niobium metal in the lower part.
  • each process included in the method for manufacturing the diamond film deposited substrate 10 has been described, but it is not necessary to perform all the processes described above. Specifically, for example, one (or both) of the unevenness forming step S101 and the seeding step S104 may be omitted. In this case, as in the first embodiment, a continuous niobium carbide layer 30 can be formed to suppress pinholes in the conductive diamond film 40.
  • the carbon source 22 is embedded, for example, inside the micro-cracks with voids, but the carbon source 22 is not necessarily formed inside the micro-cracks with voids. It is not necessary to embed the carbon source 22 therein.
  • the crystallite diameter of metal niobium in the processing damage layer 21 sufficiently small (for example, 20 nm or less)
  • many grain boundaries (microcracks without voids) where crystal defects are densely aggregated and arranged are formed. be able to.
  • a sufficient diffusion path for the carbon source 22 can be secured, and the surface area of the metal niobium contributing to the carbonization reaction can be sufficiently increased.
  • the niobium carbide layer 30 is introduced so as to be in contact with the surface of the niobium carbide 21, it is possible to form the niobium carbide layer 30. Even if the carbon source 22 is not embedded inside the microcracks with voids, it diffuses into the interior from the grain boundaries of metallic niobium (microcracks without voids), so the thickness is adjusted according to the diffusion length. It is possible to obtain a niobium carbide layer 30 of. However, from the viewpoint of making it easier to form a continuous niobium carbide layer 30 with a sufficient thickness (for example, 0.5 ⁇ m or more), it is necessary to use carbon inside microcracks with voids, as in the above embodiment. Preferably, the source 22 is implanted.
  • the conductive diamond film 40 may have a laminated structure in which a plurality of conductive diamond layers are laminated.
  • the conductive diamond film 40 even when the conductive diamond film 40 has a single layer structure as in the above embodiment, it is possible to suppress the generation of pinholes.
  • a substrate 20 made of niobium metal was prepared and subjected to grinding.
  • a vertical axis round table type device was used, and the grindstone was cubic boron carbide (grain size #600 or more). It was confirmed using a scanning electron microscope that a processing damage layer 21 having microcracks was formed on the main surface of the substrate 20 after the grinding process.
  • the main surface of the substrate 20 after grinding was sprinkled with 7.5 mg/cm 2 of graphite (particle size 1 to 2 ⁇ m) as a carbon source 22, and the surface was rubbed against a substrate 20 of the same size.
  • the amount of embedded graphite was measured before and after embedding, and it was found that 2.1 ⁇ g/cm 2 of graphite (particle size 5 to 45 nm) was embedded inside the processed damage layer 21 after rubbing together. confirmed.
  • the main surface of the substrate 20 was measured by XRD, the crystallite diameter of the metal niobium in the processing damage layer 21 was 12.3 nm.
  • each crystallite diameter in this example was calculated from the results of wide-angle X-ray diffraction measurement using an X-ray diffraction device (RINT2500HLB) manufactured by Rigaku Corporation.
  • the measurement conditions were as follows. Measurement wavelength: CuK ⁇ (0.15418nm) X-ray output: 50kV-250mA
  • Optical system Parallel beam with monochromator Diverging slit (DS): 0.5° + 10mmH Scattering slit (SS): 0.5°
  • the substrate 20 with graphite embedded therein was placed in a hot filament CVD apparatus, and the formation of the niobium carbide layer 30 and the deposition of the conductive diamond film 40 were performed continuously. Specifically, hydrogen gas, methane gas, and TMB gas were introduced, and the pressure was set at 20 to 50 Torr. Thereafter, a voltage (120 to 150 V) was applied to the 40 cm filament and maintained until the filament was carbonized and the resistance became constant. Further, the voltage of the filament was increased to 175V, and the filament temperature was maintained at 2200 to 2400°C and the substrate temperature was 700 to 800°C for 180 minutes.
  • the diamond film deposited substrate 10 was taken out from the hot filament CVD apparatus, and it was confirmed that a conductive diamond film 40 with a thickness of 3.32 ⁇ m was deposited. Further, when the diamond film deposited substrate 10 was measured by XRD from the conductive diamond film 40 side, the crystallite diameter of niobium metal was 85.6 nm, and the crystallite diameter of niobium carbide was 1.9 nm.
  • Sample 2 Further, a diamond film deposited substrate 10 of Sample 2 was manufactured according to the following procedure.
  • a substrate 20 made of niobium metal was prepared and subjected to the same grinding process as Sample 1. It was confirmed using a scanning electron microscope that a processing damage layer 21 having microcracks was formed on the main surface of the substrate 20 after the grinding process.
  • sample 2 the carbon source 22 was not embedded, and the substrate 20 after grinding was placed in a hot filament CVD apparatus, and a niobium carbide layer 30 was formed and a conductive diamond film was formed under the same conditions as sample 1. 40 depositions were performed in succession.
  • the diamond film deposited substrate 10 was taken out from the hot filament CVD apparatus, and it was confirmed that a conductive diamond film 40 with a thickness of 2.72 ⁇ m was deposited. Further, when the diamond film deposited substrate 10 was measured by XRD from the conductive diamond film 40 side, the crystallite diameter of metal niobium was 33.0 nm, and the crystallite diameter of niobium carbide was 6.9 nm.
  • the processing damage layer 21 was not formed, and graphite (particle size 1 to 2 ⁇ m) as the carbon source 22 was sprinkled on the main surface of the substrate 20 made of niobium metal in an amount of 7.5 mg/cm 2 . , the surface was rubbed against a substrate 20 of the same size. It was confirmed that 1.2 ⁇ g/cm 2 of graphite was attached to the surface of the substrate 20 after rubbing together.
  • the principal surface of the substrate 20 was measured by XRD, the crystallite diameter of metallic niobium was 26.1 nm.
  • the rubbed substrate 20 was placed in a hot filament CVD apparatus, and under the same conditions as Sample 1, the formation of the niobium carbide layer 30 and the deposition of the conductive diamond film 40 were performed continuously.
  • the diamond film deposited substrate 10 was taken out from the hot filament CVD apparatus, and it was confirmed that a conductive diamond film 40 with a thickness of 2.94 ⁇ m was deposited. Further, when the diamond film deposited substrate 10 was measured by XRD from the conductive diamond film 40 side, the crystallite diameter of metal niobium was 58.1 nm, and the crystallite diameter of niobium carbide was 25.7 nm.
  • a substrate 20 made of metal niobium was prepared and blasted.
  • a blasting material of silicon carbide (particle size #100) was used for the blasting process. It was confirmed using a scanning electron microscope that a processing damage layer 21 having microcracks was formed on the main surface of the substrate 20 after the grinding process.
  • the main surface of the blasted substrate 20 was sprinkled with 7.5 mg/cm 2 of graphite (particle size 1 to 2 ⁇ m) as a carbon source 22, and the surface was rubbed against a substrate 20 of the same size.
  • the amount of embedded graphite was measured before and after embedding, and it was found that 5.3 ⁇ g/cm 2 of graphite (particle size 5 to 70 nm) was embedded inside the processed damage layer 21 after rubbing together. confirmed.
  • the main surface of the substrate 20 was measured by XRD, the crystallite diameter of the metal niobium in the processing damage layer 21 was 6.9 nm.
  • the substrate 20 with embedded graphite was placed in a hot filament CVD apparatus, and under the same conditions as Sample 1, the formation of the niobium carbide layer 30 and the deposition of the conductive diamond film 40 were performed continuously.
  • the diamond film deposited substrate 10 was taken out from the hot filament CVD apparatus, and it was confirmed that a conductive diamond film 40 with a thickness of 3.21 ⁇ m was deposited. Further, when the diamond film deposited substrate 10 was measured by XRD from the conductive diamond film 40 side, the crystallite diameter of metallic niobium was 63.1 nm, and the crystallite diameter of niobium carbide was 12.8 nm.
  • a continuous niobium carbide layer 30 by forming a process-damaged layer 21 having microcracks on the main surface of the substrate 20 and embedding the carbon source 22 inside the process-damage layer 21. confirmed. Furthermore, it has been confirmed that by forming the continuous niobium carbide layer 30, the generation of pinholes on the surface of the conductive diamond film 40 can be suppressed.
  • a diamond film deposited substrate in which, when the surface of the conductive diamond film is observed using a scanning electron microscope, there are no pinholes that reach the substrate or the niobium carbide layer within a field of view of 20 ⁇ m x 20 ⁇ m.
  • Ru Preferably, there are no pinholes that reach the substrate or the niobium carbide layer within a field of view of 1 mm x 1 mm. Particularly preferably, there are no pinholes that reach the substrate or the niobium carbide layer over the entire surface of the conductive diamond film.
  • the continuous niobium carbide layer with a thickness of 0.5 ⁇ m or more was formed over a width of 20 ⁇ m or more. More preferably, the continuous niobium carbide layer with a thickness of 0.5 ⁇ m or more is formed over a width of 1 mm or more. Particularly preferably, the continuous niobium carbide layer with a thickness of 0.5 ⁇ m or more is formed over the entire main surface.
  • the diamond film deposited substrate according to supplementary note 1 or supplementary note 2 The thickness of the niobium carbide layer is 0.5 ⁇ m or more and 5 ⁇ m or less. More preferably, the thickness of the niobium carbide layer is 0.8 ⁇ m or more and 2.5 ⁇ m or less.
  • the main component of the upper part of the niobium carbide layer is niobium carbide with the chemical formula NbC, and the lower part of the niobium carbide layer includes niobium carbide with the chemical formula Nb2C .
  • a method of manufacturing a diamond film deposited substrate comprising the step of depositing a conductive diamond film on the niobium carbide layer.
  • Appendix 9 A method for manufacturing a diamond film deposited substrate according to appendix 8, comprising: In the step of forming the process damage layer, the process damage layer is formed with a thickness of 0.5 ⁇ m or more and 5 ⁇ m or less. More preferably, a process-damaged layer with a thickness of 0.8 ⁇ m or more and 2.5 ⁇ m or less is formed.
  • Appendix 11 A method for manufacturing a diamond film deposited substrate according to any one of appendices 8 to 10, comprising: In the process of forming the process damage layer, process damage is introduced so that the crystallite diameter of metal niobium in the process damage layer is 1 nm or more and 25 nm or less.
  • Appendix 12 A method for manufacturing a diamond film deposited substrate according to any one of appendices 8 to 11, comprising: The method further includes the step of seeding the main surface with diamond particles before forming the niobium carbide layer.
  • Appendix 13 A method for manufacturing a diamond film deposited substrate according to any one of appendices 8 to 12, comprising: The method further includes the step of processing the main surface to form irregularities before forming the processing damage layer.
  • Appendix 14 A method for manufacturing a diamond film deposited substrate according to any one of appendices 8 to 13, comprising: In the step of forming the niobium carbide layer, a niobium carbide layer whose main component is niobium carbide having the chemical formula NbC is formed.
  • Appendix 16 A method for manufacturing a diamond film deposited substrate according to any one of appendices 8 to 15, comprising: In the step of forming the niobium carbide layer, the niobium carbide layer is formed so that the crystal grain size of niobium carbide contained in the niobium carbide layer is 1 nm or more and 60 nm or less.
  • Diamond film deposition substrate 20 Substrate 21 Processing damage layer 22 Carbon source 30 Niobium carbide layer 31 Upper part 32 Lower part 40 Conductive diamond film S101 Unevenness forming step S102 Processing damage layer forming step S103 Carbon source embedding step S104 Seeding step S105 Niobium carbide layer Formation step S106 Diamond film deposition step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laminated Bodies (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

金属ニオブからなる基板と、基板の少なくとも一方の主面上に形成されたニオブ炭化物層と、ニオブ炭化物層上に形成された導電性ダイヤモンド膜と、を有し、導電性ダイヤモンド膜の表面を、走査型電子顕微鏡を用いて観察した際、20μm×20μmの視野内に、基板またはニオブ炭化物層まで達するピンホールが存在しない、ダイヤモンド膜堆積基板。

Description

ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法
 本発明は、ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法に関する。
 導電性ダイヤモンドは、水系・非水系における電位窓が広く、バックグラウンド電流も小さいため、広い電位範囲で高感度な電気化学検出が可能な電極材料として知られている。
 例えば、特許文献1には、ニオブ、タンタル、チタン及びジルコニウムから成る群から選択されるバルブメタル及びこれらの金属基合金から選択される材料を含んで成る電極基材の少なくともその表面を塑性加工し、次いで前記電極基材を真空中又は不活性雰囲気中で加熱処理し、該加熱処理した電極基材表面に導電性ダイヤモンド膜を形成することを含んで成ることを特徴とする導電性ダイヤモンド電極の製造方法が開示されている。
特許第4456378号公報
 本発明の目的は、ダイヤモンド電極の耐久性を向上させることができるダイヤモンド膜堆積基板を提供することである。
 本発明の一態様によれば、
 金属ニオブからなる基板と、
 前記基板の少なくとも一方の主面上に形成されたニオブ炭化物層と、
 前記ニオブ炭化物層上に形成された導電性ダイヤモンド膜と、を有し、
 前記導電性ダイヤモンド膜の表面を、走査型電子顕微鏡を用いて観察した際、20μm×20μmの視野内に、前記基板または前記ニオブ炭化物層まで達するピンホールが存在しない、ダイヤモンド膜堆積基板が提供される。
 本発明の他の態様によれば、
 金属ニオブからなる基板の少なくとも一方の主面上に、加工ダメージを導入することで、マイクロクラックを有する加工ダメージ層を形成する工程と、
 前記加工ダメージ層の内部に、炭素または炭素化合物の固体からなる炭素源を埋め込む工程と、
 前記加工ダメージ層に熱処理を施し、前記金属ニオブおよび前記炭素源を反応させることで、前記主面を連続的に覆うニオブ炭化物層を形成する工程と、
 前記ニオブ炭化物層上に、導電性ダイヤモンド膜を堆積する工程と、を有する、ダイヤモンド膜堆積基板の製造方法が提供される。
 本発明によれば、ダイヤモンド電極の耐久性を向上させることができるダイヤモンド膜堆積基板を提供できる。
図1は、本発明の第1実施形態のダイヤモンド膜堆積基板10の断面を示す模式図である。 図2は、本発明の第1実施形態のダイヤモンド膜堆積基板10の製造方法の一例を示すフローチャートである。 図3(a)は、本発明の第1実施形態の加工ダメージ層形成工程S102を説明する模式図であり、図3(b)は、本発明の第1実施形態の炭素源埋め込み工程S103を説明する模式図である。 図4は、本発明の第1実施形態の変形例のダイヤモンド膜堆積基板10の断面を示す模式図である。 図5(a)は、本発明の実施例のサンプル1の表面写真であり、図5(b)は、本発明の実施例のサンプル2の表面写真であり、図5(c)は、本発明の実施例のサンプル3の表面写真であり、図5(d)は、本発明の実施例のサンプル4の表面写真である。
<発明者の得た知見>
 まず、発明者が得た知見について説明する。
 ホウ素等を含有させることで導電性を付与したダイヤモンド電極は、オゾン等の酸化剤の生成に用いることができる。このようなダイヤモンド電極においては、耐久性が大きな課題である。特許文献1等に記載されている技術により、基板とダイヤモンド膜との密着性、剥離強度は改善されたものの、実用的なレベルの耐久性を得ることは困難であることがわかった。
 例えば、特許文献1の段落0009には、「中間層を基材由来の炭化物にすれば、基材とその基材から成長する炭化物、炭化物とその炭化物を核として発生するダイヤモンドという関係から、ダイヤモンド膜の密着性が高まることが期待されるが、実際には炭化物は強酸性中における陽極として電位が印加されたときには酸化物に比べて耐食性に劣る場合が多い。高温中で炭化水素ラジカルやダイヤモンドと接触する基材には炭化物が生成しやすいので、陽極として用いる場合には注意が必要である。」と記載されており、耐久性を向上させる観点からは、基板とダイヤモンド膜との中間層に、炭化物を出来るだけ生成させないようにするのが好ましいと考えられていた。
 本願発明者は、上述のような炭化物層に対して鋭意研究を行った。その結果、炭化物層がダイヤモンド電極の耐久性を阻害するのは、強酸性の液が炭化物層と接した場合だけであり、ダイヤモンド膜の表面に、基材または炭化物層まで達するピンホールが存在していることが問題の本質であることがわかった。そして、敢えて中間層として、連続的な炭化物層を形成することで、上述のピンホールの発生を抑制できることがわかった。また、連続的な炭化物層を形成するためには、例えば、基板に加工ダメージを導入することで、マイクロクラックを有する加工ダメージ層を形成し、加工ダメージ層の内部に、炭素源を埋め込んで熱処理を施すのが有効であることがわかった。
[本発明の実施形態の詳細]
 次に、本発明の一実施形態を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<本発明の第1実施形態>
(1)ダイヤモンド膜堆積基板10の構成
 まず、本実施形態のダイヤモンド膜堆積基板10の構成について説明する。本実施形態のダイヤモンド膜堆積基板10は、例えば、電気化学反応用(例えば、オゾン生成用)のダイヤモンド電極を製造するために用いることが好ましい。これにより、ダイヤモンド電極の通電劣化を抑制し、耐久性を向上させることができる。
 図1は、本実施形態のダイヤモンド膜堆積基板10の断面を示す模式図である。図1に示すように、ダイヤモンド膜堆積基板10は、例えば、基板20と、ニオブ炭化物層30と、導電性ダイヤモンド膜40と、を有している。
 基板20は、例えば、導電性ダイヤモンド膜40を堆積させるため、および、導電性ダイヤモンド膜40を支持するための平板状の金属ニオブ板材である。基板20の主面の大きさ、および厚さは特に限定されないが、例えば、主面は一辺が20mm以上500mm以下の角形状であり、厚さは0.5mm以上5mm以下である。
 ニオブ炭化物層30は、例えば、基板20の少なくとも一方の主面上に形成されており、基板20の金属ニオブの一部と、後述する炭素源22とが反応して形成された層である。ニオブ炭化物層30は、例えば、ダイヤモンド結晶の核発生密度を高めるための中間層として機能する。
 ニオブ炭化物層30の厚さは、例えば、0.5μm以上5μm以下(より好ましくは、0.8μm以上2.5μm以下)であることが好ましい。つまり、ニオブ炭化物層30の最大厚みおよび最小厚みが、0.5μm以上5μm以下(より好ましくは、0.8μm以上2.5μm以下)の範囲に収まっていることが好ましい。ニオブ炭化物層30の厚さが0.5μm未満では、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度が不充分となる可能性がある。これに対し、ニオブ炭化物層30の厚さを0.5μm以上とすることで、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を充分高めることができる。一方、ニオブ炭化物層30の厚さが5μmを超えると、内部応力が大きくなり、ダイヤモンド膜堆積基板10が反ってしまう可能性がある。これに対し、ニオブ炭化物層30の厚さを5μm以下とすることで、内部応力を低減し、ダイヤモンド膜堆積基板10の反りを低減することができる。
 導電性ダイヤモンド膜40は、例えば、ニオブ炭化物層30上に形成されている、導電性を有する多結晶膜である。導電性ダイヤモンド膜40は、多結晶ダイヤモンド膜、または、ダイヤモンド・ライク・カーボン(DLC)膜のいずれかであってもよい。導電性ダイヤモンド膜40は、例えば、ホウ素を1×1019cm-3以上1×1022cm-3以下の濃度で含むことが好ましい。導電性ダイヤモンド膜40の厚さは、例えば、0.5μm以上10μm以下であり、耐久性とコストとのバランスを保つ観点からは、1μm以上5μm以下であることが好ましい。なお、本実施形態では、導電性ダイヤモンド膜40が単層構造である場合について説明する。
 導電性ダイヤモンド膜40の表面を、例えば、走査型電子顕微鏡(例えば、倍率5000倍)を用いて観察した際、20μm×20μmの視野内に、基板20またはニオブ炭化物層30まで達するピンホールは存在しない。これにより、例えば、強酸性の液中でダイヤモンド電極を使用したとしても、強酸性の液がニオブ炭化物層30と接するリスクを低減できるため、ダイヤモンド電極の耐久性を向上させることが可能となる。なお、ダイヤモンド電極の耐久性をさらに向上させる観点からは、1mm×1mmの視野内に、基板20またはニオブ炭化物層30まで達するピンホールが存在しないことが好ましく、導電性ダイヤモンド膜40の全面において、ピンホールが存在しないことが特に好ましい。
 また、導電性ダイヤモンド膜40の断面(縦断面または横断面)を、例えば、走査型電子顕微鏡(例えば、倍率5000倍)を用いて観察した場合にも、20μm×20μmの視野内に、基板20またはニオブ炭化物層30まで達するピンホールが存在しないことが好ましい。つまり、導電性ダイヤモンド膜40は、表面から観察できるピンホールだけではなく、内部のピンホールも低減されている。これにより、ダイヤモンド電極の耐久性をさらに向上させることが可能となる。なお、導電性ダイヤモンド膜40の断面(縦断面または横断面)において、1mm×1mmの視野内に、基板20またはニオブ炭化物層30まで達するピンホールが存在しないことがより好ましく、導電性ダイヤモンド膜40の断面全面において、ピンホールが存在しないことが特に好ましい。
 ダイヤモンド膜堆積基板10の断面を、例えば、走査型電子顕微鏡(例えば、倍率5000倍)を用いて観察した際、20μm以上の幅(基板20の主面に平行な方向の長さ)に渡って、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成されていることが好ましい。これにより、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を充分高め、ピンホールの発生を抑制することができる。なお、ピンホールの発生をさらに抑制する観点からは、1mm以上の幅に渡って、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成されていることがより好ましく、基板20の主面の全面に、連続的な厚さ0.5μm以上のニオブ炭化物層30が形成されていることが特に好ましい。
 ニオブ炭化物層30の主成分は、例えば、化学式NbCの炭化ニオブであることが好ましい。これにより、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を高めることができる。ニオブ炭化物層30の主成分は、例えば、X線回折(XRD)により確認することができる。
 ニオブ炭化物層30に含まれる炭化ニオブの結晶子径は、例えば、1nm以上60nm以下であることが好ましい。結晶子径が上記範囲外では、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成され難い可能性がある。これに対し、結晶子径を上記範囲内とすることで、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成されやすくなり、その結果、ピンホールの発生を抑制しやすくなる。なお、本明細書における、各結晶子径は、例えば、XRDのScherrer法により測定することができる。ダイヤモンド膜堆積基板10をXRDで測定すると、NbC(111)、NbC(200)、NbC(222)、NbC(400)等のピークが観察されるが、NbC(111)のピークが最も強いため、本明細書においては、特に断りのない限り、NbC(111)のピークから炭化ニオブの結晶子径を算出した。
 基板20に含まれる金属ニオブ(特に、ニオブ炭化物層30との界面近傍に存在する金属ニオブ)の結晶子径は、例えば、30nm以上90nm以下であることが好ましい。金属ニオブの結晶子径が30nm未満では、連続的なニオブ炭化物層30が形成され難い可能性がある。これに対し、金属ニオブの結晶子径を30nm以上とすることで、連続的なニオブ炭化物層30が形成されやすくなる。一方、金属ニオブの結晶子径が90nmを超えると、ニオブ炭化物層30に含まれる炭化ニオブとの結晶子径の差が大きくなり、クラック等が発生する可能性がある。これに対し、金属ニオブの結晶子径を90nm以下とすることで、基板20からニオブ炭化物層30にかけて、徐々に結晶子径が小さくなるように分布するため、クラック等の発生を抑制することができる。なお、ダイヤモンド膜堆積基板10を(導電性ダイヤモンド膜40側から)XRDで測定すると、Nb(110)、Nb(200)、Nb(211)等のピークが観察されるが、Nb(110)のピークが最も強いため、本明細書においては、特に断りのない限り、Nb(110)のピークから金属ニオブの結晶子径を算出した。
(2)ダイヤモンド膜堆積基板10の製造方法
 次に、本実施形態のダイヤモンド膜堆積基板10の製造方法について説明する。上述のように、本実施形態のダイヤモンド膜堆積基板10は、電気化学反応用(例えば、オゾン生成用)のダイヤモンド電極を製造するために用いることができるため、本発明は、ダイヤモンド電極の製造方法としても適用可能である。
 図2は、本実施形態のダイヤモンド膜堆積基板10の製造方法の一例を示すフローチャートである。図2に示すように、本実施形態のダイヤモンド膜堆積基板10の製造方法は、例えば、凹凸形成工程S101と、加工ダメージ層形成工程S102と、炭素源埋め込み工程S103と、シーディング工程S104と、ニオブ炭化物層形成工程S105と、ダイヤモンド膜堆積工程S106と、を有している。本実施形態では、金属ニオブからなる基板20から、ダイヤモンド膜堆積基板10を製造する場合について説明する。
 (凹凸形成工程S101)
 凹凸形成工程S101は、例えば、基板20の少なくとも一方の主面に凹凸をつける加工を行う工程である。これにより、基板20と、導電性ダイヤモンド膜40との熱膨張係数差に起因する剥離を抑制することができる。つまり、ダイヤモンド膜堆積基板10の剥離強度をより向上させることができる。凹凸形成工程S101では、例えば、主面の算術平均粗さRa(JIS B0601-2001参照)が0.5μm以上10μm以下となるように、凹凸をつけることが好ましい。なお、凹凸をつける加工としては、例えば、研削、ブラスト、ウェットエッチング、ドライエッチング等、公知の方法を用いることができる。
 凹凸形成工程S101は、例えば、加工ダメージ層形成工程S102の前に行うことが好ましい。加工ダメージ層21を形成した面に、凹凸をつける加工を行った場合、加工ダメージ層21が除去されてしまう可能性がある。これに対し、加工ダメージ層形成工程S102の前に、凹凸形成工程S101を行うことで、基板20に加工硬化が生じるため、加工ダメージ層形成工程S102において、マイクロクラックを形成しやすくなる。また、凹凸形成工程S101では、基板20に加工硬化をさらに生じさせる目的で、パンチングや溝加工等の機械加工をさらに行ってもよい。
 なお、凹凸形成工程S101は省略してもよい。本実施形態のダイヤモンド膜堆積基板10の製造方法は、凹凸形成工程S101を省略した場合でも、後述の加工ダメージ層形成工程S102および炭素源埋め込み工程S103を行うことで、ニオブ炭化物層形成工程S105において、基板20の主面を連続的に覆うニオブ炭化物層30を形成することができる。すなわち、導電性ダイヤモンド膜40のピンホールの発生を抑制することができる。
 (加工ダメージ層形成工程S102)
 図3(a)は、加工ダメージ層形成工程S102を説明する模式図である。図3(a)に示すように、加工ダメージ層形成工程S102は、例えば、基板20の少なくとも一方の主面上(凹凸形成工程S101で凹凸をつけた面)に、加工ダメージを導入することで、多数のマイクロクラックを有する加工ダメージ層21を形成する工程である。金属ニオブ中へ炭素を固溶させ、炭化ニオブを形成するためには、通常、2300度を超える加熱が必要であるが、加工ダメージ層21を形成することで、低温(例えば、800度程度)であっても、炭素原子の金属ニオブ中への拡散が促進され、ニオブ炭化物層30を形成しやすくなる。加工ダメージを導入する方法は、マイクロクラックを形成できる方法であれば特に限定されない。具体的には、研削、インプリント、ブラスト、プレス等により、加工ダメージを導入し、マイクロクラックを有する加工ダメージ層21を形成することができる。なお、本明細書において、マイクロクラックとは、長さ0.1μm以上2μm以下、かつ、幅5nm以上200nm以下の亀裂(以下、空隙を伴うマイクロクラックともいう)だけではなく、結晶欠陥が高密度に集合、配列した粒界(以下、空隙を伴わないマイクロクラックともいう)を含むものとする。つまり、本明細書におけるマイクロクラックとは、必ずしも空隙を伴うものではない。マイクロクラックを確認するには、例えば、走査型電子顕微鏡で基板20の主面を観察すればよい。また、加工ダメージ層形成工程S102では、例えば、深さ0.5μm以上5μm以下のマイクロクラックを、10本/cm以上10本/cm以下の密度で形成することが好ましい。これにより、後述の炭素源埋め込み工程S103において、マイクロクラックの内部に炭素源22を埋め込みやすくなる。
 加工ダメージ層形成工程S102では、例えば、厚さ0.5μm以上5μm以下(より好ましくは、0.8μm以上2.5μm以下)の加工ダメージ層21を形成することが好ましい。後述するニオブ炭化物層形成工程S105では、加工ダメージ層21の少なくとも一部が、ニオブ炭化物層30となるため、加工ダメージ層21の厚さを上記範囲内とすることで、適切な厚さのニオブ炭化物層30を形成しやすくなる。なお、加工ダメージ層21の厚さを規定する際は、例えば、加工ダメージ層21形成前の金属ニオブの結晶子径に対して、10%以上結晶子径が小さくなっている領域を、加工ダメージ層21としてもよい。
 加工ダメージ層形成工程S102では、例えば、加工ダメージ層21における金属ニオブの結晶子径が1nm以上25nm以下になるように、加工ダメージを導入することが好ましい。加工ダメージ層21における金属ニオブの結晶子径が25nmを超えると、加工ダメージ層21中に炭素源22が拡散し難く、連続的なニオブ炭化物層30を形成するのが困難となる場合がある。これに対し、加工ダメージ層21における金属ニオブの結晶子径を25nm以下とすることで、金属ニオブの表面積が充分大きくなるため、連続的なニオブ炭化物層30を形成しやすくなる。また、加工ダメージ層21における金属ニオブの結晶子径を1nm未満とした場合でも、連続的なニオブ炭化物層30を形成することは可能であるが、金属ニオブの結晶子径を1nm未満にするのは技術的に困難であり、コストが大きく増大するため、コスト削減の観点から、加工ダメージ層21における金属ニオブの結晶子径は、1nm以上とすることが好ましい。
 (炭素源埋め込み工程S103)
 図3(b)は、炭素源埋め込み工程S103を説明する模式図である。図3(b)に示すように、炭素源埋め込み工程S103は、加工ダメージ層21の内部(例えば、空隙を伴うマイクロクラックの内部)に、炭素または炭素化合物の固体からなる炭素源22を埋め込む工程である。加工ダメージ層21は、多数のマイクロクラックを有するため、炭素源22を容易に埋め込むことができる。具体的には、例えば、基板20の表面に炭素源22をまぶし、同サイズの基板20等と表面を擦り合わせることにより、炭素源22をマイクロクラックと同程度のサイズ(例えば、平均粒径200nm以下)になるまで粉砕しながら炭素源22を埋め込めばよい。また、炭素源22は、固体であるため、炭化水素ガス等と比べて、炭素原子をより高濃度に加工ダメージ層21の内部に導入することが可能である。これにより、加工ダメージ層21の金属ニオブ中に、炭素原子が拡散されやすくなり、連続的なニオブ炭化物層30を形成しやすくなる。
 炭素源22としては、例えば、グラファイト、炭化ホウ素、ダイヤモンドパウダー等を用いることができる。炭素源22として、ダイヤモンドパウダーを用いる場合、金属ニオブとの反応性を高めるため、少なくとも外周部がアモルファス層(sp炭素)で覆われたダイヤモンドパウダーを用いることが好ましい。金属ニオブとの反応性を高め、かつ、コストを低減する観点からは、炭素源22として、グラファイトを用いることが好ましい。
 炭素源22の平均粒径は、200nm以下であることが好ましい。これにより、加工ダメージ層21の内部に炭素源22を埋め込みやすくなる。また、炭素源22の表面積が大きくなり、金属ニオブとの反応性を向上させることができる。なお、炭素源22の平均粒径の下限値は、特に限定されないが、例えば、5nm以上である。
 炭素源埋め込み工程S103において、炭素源22としてグラファイト(平均粒径5~200nm)を加工ダメージ層21の内部に埋め込む場合、例えば、0.1μg/cm以上10μg/cm以下の炭素源22を埋め込むことが好ましい。埋め込まれている炭素源22の量が0.1μg/cm未満では、金属ニオブの炭化が不充分となり、連続的なニオブ炭化物層30が形成され難い可能性がある。これに対し、埋め込まれている炭素源22の量を0.1μg/cm以上とすることで、金属ニオブを充分に炭化し、連続的なニオブ炭化物層30を形成しやすくなる。一方、埋め込まれている炭素源22の量が10μg/cmを超えると、ニオブ炭化物層30の形成後に、多量の炭素源22が残留し、導電性ダイヤモンド膜40の堆積に悪影響を及ぼす可能性がある。これに対し、埋め込まれている炭素源22の量を10μg/cm以下とすることで、残留する炭素源22を低減することができる。また、炭素源22を埋め込むためのエネルギー(コスト)を低減する観点から、炭素源22は、深さ1μm以下の範囲に埋め込むことが好ましい。なお、加工ダメージ層21の内部における、炭素源22を確認する際は、例えば、透過型電子顕微鏡を用いて、加工ダメージ層21の断面観察(例えば、深さ1μm付近)を行えばよい。
 (シーディング工程S104)
 シーディング工程S104は、例えば、基板20の主面(加工ダメージ層21を形成した方の主面、つまり加工ダメージ層21の表面)に、ダイヤモンド粒子を種付け処理する工程である。ニオブ炭化物層30と導電性ダイヤモンド膜40との界面に、ダイヤモンド粒子が介在することで、導電性ダイヤモンド膜40を形成するための初期核生成に必要なエネルギー障壁を下げることができる。なお、ダイヤモンド粒子を種付けする方法としては、ブラスト、浸漬等、公知の方法を用いることができる。
 シーディング工程S104は、例えば、ニオブ炭化物層30を形成する前(つまり、ニオブ炭化物層形成工程S105より前)に、行うことが好ましい。これにより、後述のニオブ炭化物層形成工程S105およびダイヤモンド膜堆積工程S106を、同一装置内で連続的に行うことができる。また、この場合、シーディング工程S104は、上述の炭素源埋め込み工程S103と同時に行ってもよい。つまり、炭素源埋め込み工程S103において用いる炭素源22と、シーディング工程S104において用いるダイヤモンド粒子とを、同一のダイヤモンド粒子で兼ねさせることが可能である。上述のように、炭素源22としては、sp炭素を含むことが好ましい。したがって、ダイヤモンド構造(sp構造)のコア部の周囲がアモルファス層(sp炭素)で覆われたダイヤモンド粒子(例えば、爆轟法により得られるナノダイヤ粒子)は、ニオブ炭化物層30の形成時にsp炭素が消尽され、sp構造のコア部を種付けしたダイヤモンド粒子として残すことができるため好適である。
 なお、シーディング工程S104は省略してもよい。本実施形態のダイヤモンド膜堆積基板10の製造方法は、シーディング工程S104を省略した場合でも、上述の加工ダメージ層形成工程S102および炭素源埋め込み工程S103を行うことで、ニオブ炭化物層形成工程S105において、基板20の主面を連続的に覆うニオブ炭化物層30を形成することができる。すなわち、導電性ダイヤモンド膜40のピンホールの発生を抑制することができる。
 (ニオブ炭化物層形成工程S105)
 ニオブ炭化物層形成工程S105は、加工ダメージ層21に熱処理を施し、金属ニオブおよび炭素源22を反応させることで、基板20の主面を連続的に覆うニオブ炭化物層30を形成する工程である。これにより、導電性ダイヤモンド膜40の表面のピンホール発生を抑制することができる。ニオブ炭化物層形成工程S105では、ニオブ炭化物層30の形成と同時に組織の再構成が起き、加工ダメージ層形成工程S102にて形成したマイクロクラックはその多くが消失する。また、炭素源22と反応せずに残った加工ダメージ層21は、粒界の固相拡散で欠陥が消滅して減少するため、加工ダメージはある程度回復し、強度が上昇する。
 ニオブ炭化物層形成工程S105では、例えば、後述する熱フィラメントCVD装置を熱処理用の加熱炉として用いて、ニオブ炭化物層30を形成することができる。
 ニオブ炭化物層形成工程S105における熱処理の条件としては、以下が例示される。
 熱処理温度(基板温度):550~850度
 圧力:10~50Torr
 熱処理時間:30~120分
 ニオブ炭化物層形成工程S105では、例えば、加工ダメージ層21の10%以上100%以下(より好ましくは、30%以上100%以下)の厚さを有するニオブ炭化物層30を形成することが好ましい。言い換えると、表面から、加工ダメージ層21の厚さの10%以上までの深さ範囲を、炭素源22と反応させ、ニオブ炭化物層30とすることが好ましい。ニオブ炭化物層30の厚さが加工ダメージ層21の厚さの10%未満では、ダイヤモンド結晶の核発生密度が不充分となり、ピンホールの原因となる可能性がある。これに対し、ニオブ炭化物層30の厚さを加工ダメージ層21の厚さの10%以上とすることで、ダイヤモンド結晶の核発生密度を充分高めることができる。なお、加工ダメージ層21のすべてを炭素源22と反応させた場合、ニオブ炭化物層30の厚さは、加工ダメージ層21の厚さと等しくなる。
 ニオブ炭化物層形成工程S105では、例えば、化学式NbCの炭化ニオブが主成分であるニオブ炭化物層30を形成することが好ましい。これにより、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を高めることができる。
 ニオブ炭化物層形成工程S105では、例えば、ニオブ炭化物層30に含まれる炭化ニオブの結晶子径が1nm以上60nm以下になるように、ニオブ炭化物層30を形成することが好ましい。これにより、ピンホールの発生を抑制しやすくなる。
 (ダイヤモンド膜堆積工程S106)
 ダイヤモンド膜堆積工程S106は、例えば、ニオブ炭化物層30上に、導電性ダイヤモンド膜40を堆積する工程である。本実施形態では、上述のニオブ炭化物層形成工程S105において、連続的なニオブ炭化物層30を形成しているため、導電性ダイヤモンド膜40の表面のピンホール発生を抑制することができる。なお、ダイヤモンド膜堆積工程S106では、例えば、熱フィラメントCVD装置を用いて、導電性ダイヤモンド膜40を堆積することができる。熱フィラメントCVD装置は、水素ガス、炭素含有ガス、ホウ素含有ガス等の各種ガスを成長室に供給可能なように構成されている。炭素含有ガスとしては、メタンガスまたはエタンガスを用いることができる。ホウ素含有ガスとしては、トリメチルボロン(TMB)ガス、トリメチルボレートガス、トリエチルボレートガス、またはジボランガスを用いることができる。また、熱フィラメントCVD装置は、成長室の内部に構成された気密容器に、温度センサ、タングステンフィラメント、電極(例えば、モリブデン電極)等を有する。
 ダイヤモンド膜堆積工程S106におけるダイヤモンド結晶の成長条件としては、以下が例示される。
 熱処理温度(基板温度):700~1000度
 圧力:5~50Torr
 熱処理時間:1~10時間
 以上の工程により、ダイヤモンド膜堆積基板10を製造することができる。また、ダイヤモンド膜堆積基板10を所定のサイズに分割し、複数のダイヤモンド電極を製造してもよい。
(3)本実施形態に係る効果
 本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
 (a)本実施形態のダイヤモンド膜堆積基板10において、導電性ダイヤモンド膜40の表面を、例えば、走査型電子顕微鏡を用いて観察した際、20μm×20μmの視野内に、基板20またはニオブ炭化物層30まで達するピンホールは存在しない。これにより、例えば、強酸性の液中でダイヤモンド電極を使用したとしても、強酸性の液がニオブ炭化物層30と接するリスクを低減できるため、ダイヤモンド電極の耐久性を向上させることが可能となる。なお、ダイヤモンド電極の耐久性をさらに向上させる観点からは、1mm×1mmの視野内に、基板20またはニオブ炭化物層30まで達するピンホールが存在しないことが好ましく、導電性ダイヤモンド膜40の全面において、ピンホールが存在しないことが特に好ましい。
 具体的には、例えば、本実施形態のダイヤモンド膜堆積基板10を用いて、オゾン水生成用のダイヤモンド電極を作製した場合、ダイヤモンド電極の通電劣化を抑制し、導電性ダイヤモンド膜40の剥離を防止することができる。すなわち、ダイヤモンド電極の耐久性を向上させることが可能となる。
 (b)本実施形態のダイヤモンド膜堆積基板10において、ダイヤモンド膜堆積基板10の断面を、例えば、走査型電子顕微鏡を用いて観察した際、20μm以上の幅に渡って、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成されていることが好ましい。これにより、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を充分高め、ピンホールの発生を抑制することができる。なお、ピンホールの発生をさらに抑制する観点からは、1mm以上の幅に渡って、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成されていることがより好ましく、基板20の主面の全面に、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成されていることが特に好ましい。
 (c)本実施形態のダイヤモンド膜堆積基板10において、ニオブ炭化物層30の厚さは、例えば、0.5μm以上5μm以下(より好ましくは、0.8μm以上2.5μm以下)であることが好ましい。つまり、ニオブ炭化物層30の最大厚みおよび最小厚みが、0.5μm以上5μm以下(より好ましくは、0.8μm以上2.5μm以下)の範囲に収まっていることが好ましい。ニオブ炭化物層30の厚さが0.5μm未満では、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度が不充分となる可能性がある。これに対し、ニオブ炭化物層30の厚さを0.5μm以上とすることで、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を充分高めることができる。一方、ニオブ炭化物層30の厚さが5μmを超えると、内部応力が大きくなり、ダイヤモンド膜堆積基板10が反ってしまう可能性がある。これに対し、ニオブ炭化物層30の厚さを5μm以下とすることで、内部応力を低減し、ダイヤモンド膜堆積基板10の反りを低減することができる。
 (d)本実施形態のダイヤモンド膜堆積基板10において、ニオブ炭化物層30の主成分は、例えば、化学式NbCの炭化ニオブであることが好ましい。これにより、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を高めることができる。
 (e)本実施形態のダイヤモンド膜堆積基板10において、ニオブ炭化物層30に含まれる炭化ニオブの結晶子径は、例えば、1nm以上60nm以下であることが好ましい。結晶子径が上記範囲外では、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成され難い可能性がある。これに対し、結晶子径を上記範囲内とすることで、厚さ0.5μm以上の連続的なニオブ炭化物層30が形成されやすくなり、その結果、ピンホールの発生を抑制しやすくなる。
 (f)本実施形態のダイヤモンド膜堆積基板10において、基板20に含まれる金属ニオブ(特に、ニオブ炭化物層30との界面近傍に存在する金属ニオブ)の結晶子径は、例えば、30nm以上90nm以下であることが好ましい。金属ニオブの結晶子径が30nm未満では、連続的なニオブ炭化物層30が形成され難い可能性がある。これに対し、金属ニオブの結晶子径を30nm以上とすることで、連続的なニオブ炭化物層30が形成されやすくなる。一方、金属ニオブの結晶子径が90nmを超えると、ニオブ炭化物層30に含まれる炭化ニオブとの結晶子径の差が大きくなり、クラック等が発生する可能性がある。これに対し、金属ニオブの結晶子径を90nm以下とすることで、基板20からニオブ炭化物層30にかけて、徐々に結晶子径が小さくなるように分布するため、クラック等の発生を抑制することができる。
 (g)本実施形態のダイヤモンド膜堆積基板10の製造方法は、例えば、加工ダメージ層形成工程S102と、炭素源埋め込み工程S103と、ニオブ炭化物層形成工程S105と、ダイヤモンド膜堆積工程S106と、を有している。これにより、連続的なニオブ炭化物層30を形成できるため、導電性ダイヤモンド膜40の表面のピンホール発生を抑制することが可能となる。
 (h)本実施形態のダイヤモンド膜堆積基板10の製造方法において、加工ダメージ層形成工程S102では、例えば、厚さ0.5μm以上5μm以下(より好ましくは、0.8μm以上2.5μm以下)の加工ダメージ層21を形成することが好ましい。ニオブ炭化物層形成工程S105では、加工ダメージ層21の少なくとも一部が、ニオブ炭化物層30となるため、加工ダメージ層21の厚さを上記範囲内とすることで、適切な厚さのニオブ炭化物層30を形成しやすくなる。
 (i)本実施形態のダイヤモンド膜堆積基板10の製造方法において、ニオブ炭化物層形成工程S105では、例えば、加工ダメージ層21の10%以上100%以下(より好ましくは、30%以上100%以下)の厚さを有するニオブ炭化物層30を形成することが好ましい。言い換えると、表面から、加工ダメージ層21の厚さの10%以上までの深さ範囲を、炭素源22と反応させ、ニオブ炭化物層30とすることが好ましい。ニオブ炭化物層30の厚さが加工ダメージ層21の厚さの10%未満では、ダイヤモンド結晶の核発生密度が不充分となり、ピンホールの原因となる可能性がある。これに対し、ニオブ炭化物層30の厚さを加工ダメージ層21の厚さの10%以上とすることで、ダイヤモンド結晶の核発生密度を充分高めることができる。
 (j)本実施形態のダイヤモンド膜堆積基板10の製造方法において、加工ダメージ層形成工程S102では、例えば、加工ダメージ層21における金属ニオブの結晶子径が1nm以上25nm以下になるように、加工ダメージを導入することが好ましい。加工ダメージ層21における金属ニオブの結晶子径が25nmを超えると、加工ダメージ層21中に炭素源22が拡散し難く、連続的なニオブ炭化物層30を形成するのが困難となる場合がある。これに対し、加工ダメージ層21における金属ニオブの結晶子径を25nm以下とすることで、金属ニオブの表面積が充分大きくなるため、連続的なニオブ炭化物層30を形成しやすくなる。また、加工ダメージ層21における金属ニオブの結晶子径を1nm未満とした場合でも、連続的なニオブ炭化物層30を形成することは可能であるが、金属ニオブの結晶子径を1nm未満にするのは技術的に困難であり、コストが大きく増大するため、コスト削減の観点から、加工ダメージ層21における金属ニオブの結晶子径は、1nm以上とすることが好ましい。
 (k)本実施形態のダイヤモンド膜堆積基板10の製造方法は、シーディング工程S104を有している。ニオブ炭化物層30と導電性ダイヤモンド膜40との界面に、ダイヤモンド粒子が介在することで、導電性ダイヤモンド膜40を形成するための初期核生成に必要なエネルギー障壁を下げることができる。
 (l)本実施形態のダイヤモンド膜堆積基板10の製造方法は、凹凸形成工程S101を有している。これにより、基板20と、導電性ダイヤモンド膜40との熱膨張係数差に起因する剥離を抑制することができる。つまり、ダイヤモンド膜堆積基板10の剥離強度を向上させることができる。
(4)第1実施形態の変形例
 上述の実施形態は、必要に応じて、以下に示す変形例のように変更することができる。以下、上述の実施形態と異なる要素についてのみ説明し、上述の実施形態で説明した要素と実質的に同一の要素には、同一の符号を付してその説明を省略する。
 図4は、本変形例のダイヤモンド膜堆積基板10の断面を示す模式図である。図4に示すように、本変形例のダイヤモンド膜堆積基板10は、例えば、基板20と、ニオブ炭化物層30と、導電性ダイヤモンド膜40と、を有しており、ニオブ炭化物層30は、上部31と、下部32とに区別することができる。
 ニオブ炭化物層30の上部31の主成分は、化学式NbCの炭化ニオブであり、ニオブ炭化物層30の下部32は、化学式NbCの炭化ニオブを含んでいる。ニオブ炭化物層30は表面側から炭化されるため、表面側から拡散してくる炭素源22が少ない下部32では、Nb成分が多いNbCが形成されやすい。本変形例のように、ニオブ炭化物層30の下部32がNbCを含んでいる場合でも、連続的なニオブ炭化物層30が形成されていることで、導電性ダイヤモンド膜40を形成するためのダイヤモンド結晶の核発生密度を充分高め、ピンホールの発生を抑制することができるため、結果としてダイヤモンド電極の耐久性を向上させることが可能となる。
 ニオブ炭化物層30の上部31と下部32の厚さの割合は特に限定されないが、例えば、ニオブ炭化物層30の下部32の厚さは、上部31の厚さの50%以上150%以下である。
 ニオブ炭化物層30の上部31に含まれる炭化ニオブの結晶子径は、下部32に含まれる炭化ニオブの結晶子径より小さい。具体的には、例えば、上部31に含まれる炭化ニオブの結晶子径は、1nm以上25nm以下であり、下部32に含まれる炭化ニオブの結晶子径は、例えば、20nm以上60nm以下である。なお、上部31に含まれる炭化ニオブの結晶子径は、XRDのNbC(111)のピークから算出し、下部32に含まれる炭化ニオブの結晶子径は、XRDのNbC(211)のピークから算出した。
 本変形例のニオブ炭化物層形成工程S105では、ニオブ炭化物層30の上部31の主成分は、化学式NbCの炭化ニオブとなり、ニオブ炭化物層30の下部32は、化学式NbCの炭化ニオブを含むように、ニオブ炭化物層30を形成する。金属ニオブの結晶子径が小さいほど炭化しやすく、NbCが形成されやすいため、本変形例のようなニオブ炭化物層30を形成する場合、例えば、加工ダメージ層形成工程S102において、加工ダメージ層21の上部における金属ニオブの結晶子径が、下部における金属ニオブの結晶子径より小さくなるように、加工ダメージを導入すればよい。
<本発明の他の実施形態>
 以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の実施形態では、ダイヤモンド膜堆積基板10の製造方法が有する各工程について説明したが、必ずしも上述したすべての工程を行わなくてもよい。具体的には、例えば、凹凸形成工程S101およびシーディング工程S104の一方(または両方)は、省略してもよい。この場合も、第1実施形態と同様に、連続的なニオブ炭化物層30を形成し、導電性ダイヤモンド膜40のピンホールを抑制することができる。
 また、上述の実施形態において、炭素源埋め込み工程S103では、例えば、空隙を伴うマイクロクラックの内部に、炭素源22を埋め込むと説明したが、必ずしも空隙を伴うマイクロクラックを形成し、マイクロクラックの内部に炭素源22を埋め込まなくてもよい。例えば、加工ダメージ層21における金属ニオブの結晶子径を充分小さく(例えば、20nm以下)することで、結晶欠陥が高密度に集合、配列した粒界(空隙を伴わないマイクロクラック)を多数形成することができる。これにより、炭素源22の拡散経路を充分確保し、かつ、炭化反応に寄与する金属ニオブの表面積を充分大きくできるため、マイクロクラックの内部に炭素源22を埋め込まず、炭素源22が加工ダメージ層21の表面に接するように導入されている場合でも、ニオブ炭化物層30を形成することは可能である。炭素源22は、空隙を伴うマイクロクラックの内部に埋め込まれている状態でなくとも、金属ニオブの粒界(空隙を伴わないマイクロクラック)等から内部へ拡散するため、拡散長に応じた厚さのニオブ炭化物層30を得ることは可能である。しかしながら、充分な厚さ(例えば、0.5μm以上)の連続的なニオブ炭化物層30を形成しやすくする観点からは、上述の実施形態のように、空隙を伴なうマイクロクラックの内部に炭素源22を埋め込むことが好ましい。
 また、上述の実施形態では、導電性ダイヤモンド膜40が単層構造である場合について説明したが、導電性ダイヤモンド膜40は、複数の導電性ダイヤモンド層が積層された積層構造であってもよい。しかしながら、本発明によれば、上述の実施形態のように、導電性ダイヤモンド膜40が単層構造である場合でも、ピンホールの発生を抑制することが可能である。
 次に、本発明に係る実施例を説明する。これらの実施例は本発明の一例であって、本発明はこれらの実施例により限定されない。
(1)ダイヤモンド膜堆積基板10の製造
 (サンプル1)
 まず、以下の手順により、サンプル1のダイヤモンド膜堆積基板10を製造した。
 金属ニオブからなる基板20を準備し、研削加工を行った。研削加工には、縦軸丸テーブル型の装置を用い、砥石は、立方晶炭化ホウ素(粒度#600以上)を用いた。研削加工後の基板20の主面には、マイクロクラックを有する加工ダメージ層21が形成されていることを、走査型電子顕微鏡により確認した。
 研削加工後の基板20の主面に、炭素源22としてのグラファイト(粒径1~2μm)を7.5mg/cmの量をまぶし、同サイズの基板20と表面を擦り合わせた。埋め込まれているグラファイトの量を埋め込み前後で測定し、擦り合わせた後の加工ダメージ層21の内部には、2.1μg/cmのグラファイト(粒径5~45nm)が埋め込まれていることを確認した。基板20の主面をXRDで測定したところ、加工ダメージ層21における金属ニオブの結晶子径は12.3nmであった。
 なお、本実施例における各結晶子径の測定は、リガク社製、X線回析装置(RINT2500HLB)を用いて、広角X線回析測定を行った結果から算出したものである。測定条件は以下の通りとした。
 測定波長:CuKα(0.15418nm)
 X線出力:50kV-250mA
 光学系:モノクロメータ付平行ビーム
 発散スリット(DS):0.5°+10mmH
 散乱スリット(SS):0.5°
 受光スリット(RS):0.15mm
 走査軸:2θ/θ
 走査法:連続走査
 走査範囲:5°≦2θ≦100°
 走査速度:0.5°/min
 サンプリング:0.01°
 グラファイトが埋め込まれた状態の基板20を、熱フィラメントCVD装置に投入し、ニオブ炭化物層30の形成と、導電性ダイヤモンド膜40の堆積とを連続的に行った。具体的には、水素ガス、メタンガス、TMBガスを導入し、圧力を20~50Torrに設定した。その後、40cmのフィラメントに電圧(120~150V)を印加し、フィラメントが炭化して抵抗が一定になるまで保持した。さらに、フィラメントの電圧を175Vまで上げ、フィラメント温度2200~2400℃、基板温度700~800℃で180分保持した。
 熱フィラメントCVD装置からダイヤモンド膜堆積基板10を取り出し、3.32μmの厚さの導電性ダイヤモンド膜40が堆積されていることを確認した。また、ダイヤモンド膜堆積基板10を導電性ダイヤモンド膜40側からXRDで測定したところ、金属ニオブの結晶子径は85.6nmであり、炭化ニオブの結晶子径は1.9nmであった。
 (サンプル2)
 また、以下の手順により、サンプル2のダイヤモンド膜堆積基板10を製造した。
 金属ニオブからなる基板20を準備し、サンプル1と同様の研削加工を行った。研削加工後の基板20の主面には、マイクロクラックを有する加工ダメージ層21が形成されていることを、走査型電子顕微鏡により確認した。
 サンプル2においては、炭素源22の埋め込みを行わず、研削加工後の基板20を、熱フィラメントCVD装置に投入し、サンプル1と同様の条件で、ニオブ炭化物層30の形成と、導電性ダイヤモンド膜40の堆積とを連続的に行った。
 熱フィラメントCVD装置からダイヤモンド膜堆積基板10を取り出し、2.72μmの厚さの導電性ダイヤモンド膜40が堆積されていることを確認した。また、ダイヤモンド膜堆積基板10を導電性ダイヤモンド膜40側からXRDで測定したところ、金属ニオブの結晶子径は33.0nmであり、炭化ニオブの結晶子径は6.9nmであった。
 (サンプル3)
 また、以下の手順により、サンプル3のダイヤモンド膜堆積基板10を製造した。
 サンプル3においては、加工ダメージ層21の形成を行わず、金属ニオブからなる基板20の主面に、炭素源22としてのグラファイト(粒径1~2μm)を7.5mg/cmの量をまぶし、同サイズの基板20と表面を擦り合わせた。擦り合わせた後の基板20の表面には、1.2μg/cmのグラファイトが付着していることを確認した。基板20の主面をXRDで測定したところ、金属ニオブの結晶子径は26.1nmであった。
 擦り合わせ後の基板20を、熱フィラメントCVD装置に投入し、サンプル1と同様の条件で、ニオブ炭化物層30の形成と、導電性ダイヤモンド膜40の堆積とを連続的に行った。
 熱フィラメントCVD装置からダイヤモンド膜堆積基板10を取り出し、2.94μmの厚さの導電性ダイヤモンド膜40が堆積されていることを確認した。また、ダイヤモンド膜堆積基板10を導電性ダイヤモンド膜40側からXRDで測定したところ、金属ニオブの結晶子径は58.1nmであり、炭化ニオブの結晶子径は25.7nmであった。
 (サンプル4)
 また、以下の手順により、サンプル4のダイヤモンド膜堆積基板10を製造した。
 金属ニオブからなる基板20を準備し、ブラスト加工を行った。ブラスト加工には、炭化ケイ素(粒度#100)の投射材を用いた。研削加工後の基板20の主面には、マイクロクラックを有する加工ダメージ層21が形成されていることを、走査型電子顕微鏡により確認した。
 ブラスト加工後の基板20の主面に、炭素源22としてのグラファイト(粒径1~2μm)を7.5mg/cmの量をまぶし、同サイズの基板20と表面を擦り合わせた。埋め込まれているグラファイトの量を埋め込み前後で測定し、擦り合わせた後の加工ダメージ層21の内部には、5.3μg/cmのグラファイト(粒径5~70nm)が埋め込まれていることを確認した。基板20の主面をXRDで測定したところ、加工ダメージ層21における金属ニオブの結晶子径は6.9nmであった。
 グラファイトが埋め込まれた状態の基板20を、熱フィラメントCVD装置に投入し、サンプル1と同様の条件で、ニオブ炭化物層30の形成と、導電性ダイヤモンド膜40の堆積とを連続的に行った。
 熱フィラメントCVD装置からダイヤモンド膜堆積基板10を取り出し、3.21μmの厚さの導電性ダイヤモンド膜40が堆積されていることを確認した。また、ダイヤモンド膜堆積基板10を導電性ダイヤモンド膜40側からXRDで測定したところ、金属ニオブの結晶子径は63.1nmであり、炭化ニオブの結晶子径は12.8nmであった。
(2)ダイヤモンド膜堆積基板10の評価
 サンプル1~4について、走査型電子顕微鏡を用いて、断面を観察した。炭素源22の埋め込みを行わなかったサンプル2、および、加工ダメージ層21を形成しなかったサンプル3においては、基板20と導電性ダイヤモンド膜40との界面に、島状に形成された炭化ニオブが観察され、連続的なニオブ炭化物層30は形成されていなかった。これに対し、加工ダメージ層21を形成し、加工ダメージ層21の内部に炭素源22の埋め込みを行ったサンプル1およびサンプル4においては、基板20と導電性ダイヤモンド膜40との界面に、連続的なニオブ炭化物層30が形成されていた。
 また、サンプル1~4について、走査型電子顕微鏡を用いて、導電性ダイヤモンド膜40の表面を観察した。サンプル1の表面写真を図5(a)に、サンプル2の表面写真を図5(b)に、サンプル3の表面写真を図5(c)に、サンプル4の表面写真を図5(d)に示す。
 図5(b)および図5(c)に示すように、炭素源22の埋め込みを行わなかったサンプル2、および、加工ダメージ層21を形成しなかったサンプル3においては、導電性ダイヤモンド膜40の表面にピンホールが観察された。これに対し、図5(a)および図5(d)に示すように、加工ダメージ層21を形成し、加工ダメージ層21の内部に炭素源22の埋め込みを行ったサンプル1およびサンプル4においては、導電性ダイヤモンド膜40の表面に、ピンホールは観察されなかった。
 以上より、基板20の主面上に、マイクロクラックを有する加工ダメージ層21を形成し、加工ダメージ層21の内部に、炭素源22を埋め込むことで、連続的なニオブ炭化物層30を形成できることを確認した。また、連続的なニオブ炭化物層30を形成することで、導電性ダイヤモンド膜40の表面のピンホールの発生を抑制できることを確認した。
(3)ダイヤモンド電極の耐久性試験
 サンプル1~4のダイヤモンド膜堆積基板10から作製したダイヤモンド電極をそれぞれ陽極と陰極とに用いて、オゾン水を生成する耐久性試験を行った。高分子電解膜としては、Nafion324(Du Pont社製)を用いた。原水として水道水(流量200mL/min)を用い、15Vの低電圧駆動で8分間駆動し、2分間休止するサイクルを1000回繰り返した。その後、ダイヤモンド電極を取り出し、導電性ダイヤモンド膜40の剥離の面積割合を確認した。その結果を表1に示す。
 表1に示すように、炭素源22の埋め込みを行わなかったサンプル2、および、加工ダメージ層21を形成しなかったサンプル3においては、初回サイクル時に比べて、1000サイクル時のオゾン水濃度が著しく低下しており、通電劣化が確認された。また、導電性ダイヤモンド膜40の剥離も確認された。これに対し、加工ダメージ層21を形成し、加工ダメージ層21の内部に炭素源22の埋め込みを行ったサンプル1およびサンプル4においては、1000サイクル時も、初回サイクル時と同程度(95%以上)のオゾン水濃度を得ることができた。また、導電性ダイヤモンド膜40の剥離は確認されなかった。
 以上より、連続的なニオブ炭化物層30を形成し、導電性ダイヤモンド膜40の表面のピンホールの発生を抑制することで、通電劣化を抑制し、導電性ダイヤモンド膜40の剥離を防止できることを確認した。すなわち、ダイヤモンド電極の耐久性の向上が可能であることを確認した。
<本発明の好ましい態様>
 以下、本発明の好ましい態様を付記する。
(付記1)
 本発明の一態様によれば、
 金属ニオブからなる基板と、
 前記基板の少なくとも一方の主面上に形成されたニオブ炭化物層と、
 前記ニオブ炭化物層上に形成された導電性ダイヤモンド膜と、を有し、
 前記導電性ダイヤモンド膜の表面を、走査型電子顕微鏡を用いて観察した際、20μm×20μmの視野内に、前記基板または前記ニオブ炭化物層まで達するピンホールが存在しない、ダイヤモンド膜堆積基板が提供される。
 好ましくは、1mm×1mmの視野内に、前記基板または前記ニオブ炭化物層まで達するピンホールが存在しない。
 特に好ましくは、前記導電性ダイヤモンド膜の全面において、前記基板または前記ニオブ炭化物層まで達するピンホールが存在しない。
(付記2)
 付記1に記載のダイヤモンド膜堆積基板であって、
 ダイヤモンド膜堆積基板の断面を、走査型電子顕微鏡を用いて観察した際、20μm以上の幅に渡って、厚さ0.5μm以上の連続的な前記ニオブ炭化物層が形成されている。
 より好ましくは、1mm以上の幅に渡って、厚さ0.5μm以上の連続的な前記ニオブ炭化物層が形成されている。
 特に好ましくは、前記主面の全面に、厚さ0.5μm以上の連続的な前記ニオブ炭化物層が形成されている。
(付記3)
 付記1または付記2に記載のダイヤモンド膜堆積基板であって、
 前記ニオブ炭化物層の厚さは、0.5μm以上5μm以下である。
 より好ましくは、前記ニオブ炭化物層の厚さは、0.8μm以上2.5μm以下である。
(付記4)
 付記1から付記3のいずれか1つに記載のダイヤモンド膜堆積基板であって、
 前記ニオブ炭化物層の主成分は、化学式NbCの炭化ニオブである。
(付記5)
 付記1から付記3のいずれか1つに記載のダイヤモンド膜堆積基板であって、
 前記ニオブ炭化物層の上部の主成分は、化学式NbCの炭化ニオブであり、前記ニオブ炭化物層の下部は、化学式NbCの炭化ニオブを含む。
(付記6)
 付記1から付記5のいずれか1つに記載のダイヤモンド膜堆積基板であって、
  前記ニオブ炭化物層に含まれる炭化ニオブの結晶子径は、1nm以上60nm以下である。
(付記7)
 付記1から付記6のいずれか1つに記載のダイヤモンド膜堆積基板であって、
 前記金属ニオブの結晶子径は、30nm以上90nm以下である。
(付記8)
 本発明の他の態様によれば、
 金属ニオブからなる基板の少なくとも一方の主面上に、加工ダメージを導入することで、マイクロクラックを有する加工ダメージ層を形成する工程と、
 前記加工ダメージ層の内部に、炭素または炭素化合物の固体からなる炭素源を埋め込む工程と、
 前記加工ダメージ層に熱処理を施し、前記金属ニオブおよび前記炭素源を反応させることで、前記主面を連続的に覆うニオブ炭化物層を形成する工程と、
 前記ニオブ炭化物層上に、導電性ダイヤモンド膜を堆積する工程と、を有する、ダイヤモンド膜堆積基板の製造方法が提供される。
(付記9)
 付記8に記載のダイヤモンド膜堆積基板の製造方法であって、
 前記加工ダメージ層を形成する工程では、厚さ0.5μm以上5μm以下の加工ダメージ層を形成する。
 より好ましくは、厚さ0.8μm以上2.5μm以下の加工ダメージ層を形成する。
(付記10)
 付記8または付記9に記載のダイヤモンド膜堆積基板の製造方法であって、
 前記ニオブ炭化物層を形成する工程では、前記加工ダメージ層の10%以上100%以下の厚さを有するニオブ炭化物層を形成する。
 より好ましくは、前記加工ダメージ層の30%以上100%以下の厚さを有するニオブ炭化物層を形成する。
(付記11)
 付記8から付記10のいずれか1つに記載のダイヤモンド膜堆積基板の製造方法であって、
 前記加工ダメージ層を形成する工程では、前記加工ダメージ層における金属ニオブの結晶子径が1nm以上25nm以下になるように、加工ダメージを導入する。
(付記12)
 付記8から付記11のいずれか1つに記載のダイヤモンド膜堆積基板の製造方法であって、
 前記ニオブ炭化物層を形成する前に、前記主面にダイヤモンド粒子を種付け処理する工程をさらに有する。
(付記13)
 付記8から付記12のいずれか1つに記載のダイヤモンド膜堆積基板の製造方法であって、
 前記加工ダメージ層を形成する前に、前記主面に凹凸をつける加工を行う工程をさらに有する。
(付記14)
 付記8から付記13のいずれか1つに記載のダイヤモンド膜堆積基板の製造方法であって、
 前記ニオブ炭化物層を形成する工程では、化学式NbCの炭化ニオブが主成分である、ニオブ炭化物層を形成する。
(付記15)
 付記8から付記13のいずれか1つに記載のダイヤモンド膜堆積基板の製造方法であって、
 前記ニオブ炭化物層を形成する工程では、前記ニオブ炭化物層の上部の主成分は、化学式NbCの炭化ニオブとなり、前記ニオブ炭化物層の下部は、化学式NbCの炭化ニオブを含むように、前記ニオブ炭化物層を形成する。
(付記16)
 付記8から付記15のいずれか1つに記載のダイヤモンド膜堆積基板の製造方法であって、
 前記ニオブ炭化物層を形成する工程では、前記ニオブ炭化物層に含まれる炭化ニオブの結晶粒径が1nm以上60nm以下になるように、前記ニオブ炭化物層を形成する。
10 ダイヤモンド膜堆積基板
20 基板
21 加工ダメージ層
22 炭素源
30 ニオブ炭化物層
31 上部
32 下部
40 導電性ダイヤモンド膜
S101 凹凸形成工程
S102 加工ダメージ層形成工程
S103 炭素源埋め込み工程
S104 シーディング工程
S105 ニオブ炭化物層形成工程
S106 ダイヤモンド膜堆積工程

Claims (13)

  1.  金属ニオブからなる基板と、
     前記基板の少なくとも一方の主面上に形成されたニオブ炭化物層と、
     前記ニオブ炭化物層上に形成された導電性ダイヤモンド膜と、を有し、
     前記導電性ダイヤモンド膜の表面を、走査型電子顕微鏡を用いて観察した際、20μm×20μmの視野内に、前記基板または前記ニオブ炭化物層まで達するピンホールが存在しない、ダイヤモンド膜堆積基板。
  2.  ダイヤモンド膜堆積基板の断面を、走査型電子顕微鏡を用いて観察した際、20μm以上の幅に渡って、厚さ0.5μm以上の連続的な前記ニオブ炭化物層が形成されている、請求項1に記載のダイヤモンド膜堆積基板。
  3.  前記ニオブ炭化物層の厚さは、0.5μm以上5μm以下である、請求項1に記載のダイヤモンド膜堆積基板。
  4.  前記ニオブ炭化物層の主成分は、化学式NbCの炭化ニオブである、請求項1に記載のダイヤモンド膜堆積基板。
  5.  前記ニオブ炭化物層の上部の主成分は、化学式NbCの炭化ニオブであり、前記ニオブ炭化物層の下部は、化学式NbCの炭化ニオブを含む、請求項1に記載のダイヤモンド膜堆積基板。
  6.  前記ニオブ炭化物層に含まれる炭化ニオブの結晶子径は、1nm以上60nm以下である、請求項1に記載のダイヤモンド膜堆積基板。
  7.  前記金属ニオブの結晶子径は、30nm以上90nm以下である、請求項1から請求項6のいずれか1項に記載のダイヤモンド膜堆積基板。
  8.  金属ニオブからなる基板の少なくとも一方の主面上に、加工ダメージを導入することで、マイクロクラックを有する加工ダメージ層を形成する工程と、
     前記加工ダメージ層の内部に、炭素または炭素化合物の固体からなる炭素源を埋め込む工程と、
     前記加工ダメージ層に熱処理を施し、前記金属ニオブおよび前記炭素源を反応させることで、前記主面を連続的に覆うニオブ炭化物層を形成する工程と、
     前記ニオブ炭化物層上に、導電性ダイヤモンド膜を堆積する工程と、を有する、ダイヤモンド膜堆積基板の製造方法。
  9.  前記加工ダメージ層を形成する工程では、厚さ0.5μm以上5μm以下の加工ダメージ層を形成する、請求項8に記載のダイヤモンド膜堆積基板の製造方法。
  10.  前記ニオブ炭化物層を形成する工程では、前記加工ダメージ層の10%以上100%以下の厚さを有するニオブ炭化物層を形成する、請求項8に記載のダイヤモンド膜堆積基板の製造方法。
  11.  前記加工ダメージ層を形成する工程では、前記加工ダメージ層における金属ニオブの結晶子径が1nm以上25nm以下になるように、加工ダメージを導入する、請求項8に記載のダイヤモンド膜堆積基板の製造方法。
  12.  前記ニオブ炭化物層を形成する前に、前記主面にダイヤモンド粒子を種付け処理する工程をさらに有する、請求項8に記載のダイヤモンド膜堆積基板の製造方法。
  13.  前記加工ダメージ層を形成する前に、前記主面に凹凸をつける加工を行う工程をさらに有する、請求項8から請求項12のいずれか1項に記載のダイヤモンド膜堆積基板の製造方法。
PCT/JP2023/008214 2022-04-26 2023-03-06 ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法 WO2023210167A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023561231A JP7421018B1 (ja) 2022-04-26 2023-03-06 ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法
JP2024002365A JP2024036357A (ja) 2022-04-26 2024-01-11 ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-072370 2022-04-26
JP2022072370 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210167A1 true WO2023210167A1 (ja) 2023-11-02

Family

ID=88518538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008214 WO2023210167A1 (ja) 2022-04-26 2023-03-06 ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法

Country Status (2)

Country Link
JP (2) JP7421018B1 (ja)
WO (1) WO2023210167A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157177A (ja) * 1990-10-17 1992-05-29 Fujitsu Ltd コーティング膜の製造方法およびコーティング膜の製造装置
US20150345011A1 (en) * 2014-05-29 2015-12-03 Avectech Co., Ltd. Diamond electrode and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157177B2 (ja) 1997-06-04 2008-09-24 大塚化学ホールディングス株式会社 3−アルケニルセフェム化合物の製造法
JP2002265296A (ja) 2001-03-09 2002-09-18 Kobe Steel Ltd ダイヤモンド薄膜及びその製造方法
JP4581998B2 (ja) 2003-05-26 2010-11-17 住友電気工業株式会社 ダイヤモンド被覆電極及びその製造方法
JP4851376B2 (ja) 2007-03-23 2012-01-11 東海旅客鉄道株式会社 ダイヤモンド膜の合成に用いる導電性基体の前処理方法及びダイヤモンド膜の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157177A (ja) * 1990-10-17 1992-05-29 Fujitsu Ltd コーティング膜の製造方法およびコーティング膜の製造装置
US20150345011A1 (en) * 2014-05-29 2015-12-03 Avectech Co., Ltd. Diamond electrode and method of manufacturing the same

Also Published As

Publication number Publication date
JP2024036357A (ja) 2024-03-15
JPWO2023210167A1 (ja) 2023-11-02
JP7421018B1 (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP5275567B2 (ja) 炭化タンタル被覆炭素材料およびその製造方法
JP4581998B2 (ja) ダイヤモンド被覆電極及びその製造方法
Dong et al. Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC
US20060127300A1 (en) Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries
US20230192514A1 (en) High-specific surface area and super-hydrophilic gradient boron-doped diamond electrode, method for preparing same and application thereof
JP5759534B2 (ja) 被覆黒鉛物品、ならびに反応性イオンエッチングによる黒鉛物品の製造および再生
EP2210968A1 (en) Carbonaceous substrate and electrode for electrolytic production of fluorine
KR101209791B1 (ko) 연료전지용 금속분리판 및 이의 표면처리방법
CN108486546B (zh) 一种bdd膜电极材料及其制备方法
KR101968604B1 (ko) 그래핀이 코팅된 스테인리스 스틸(sus) 지지체 및 이의 제조 방법
JP7421018B1 (ja) ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法
KR20190137763A (ko) 식각 특성이 향상된 화학기상증착 실리콘 카바이드 벌크
JP7348422B1 (ja) ダイヤモンド電極、およびダイヤモンド電極の製造方法
CN110453195B (zh) 用于金属表面腐蚀防护的氮化硼复合薄膜、其制法与应用
JP3929140B2 (ja) 耐蝕性部材およびその製造方法
TW200925108A (en) Carbon material and method for producing the same
JP4095764B2 (ja) 成膜装置用金属材料部材及びそれを用いた成膜装置
JP7322315B1 (ja) ダイヤモンド電極
CN1083813C (zh) 晶态α和β相氮化碳薄膜材料的制备方法
EP4394091A1 (en) Semiconductor heat treatment member
CN116590708B (zh) 一种带有碳化硅涂层的石墨材料及其制备方法和应用
JPH07335728A (ja) 熱処理治具とその製造方法
JP2006152338A (ja) ダイヤモンド被覆電極及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023561231

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795915

Country of ref document: EP

Kind code of ref document: A1