WO2023207346A1 - 应用于铁路轨道的检测方法及装置、检测设备 - Google Patents

应用于铁路轨道的检测方法及装置、检测设备 Download PDF

Info

Publication number
WO2023207346A1
WO2023207346A1 PCT/CN2023/080157 CN2023080157W WO2023207346A1 WO 2023207346 A1 WO2023207346 A1 WO 2023207346A1 CN 2023080157 W CN2023080157 W CN 2023080157W WO 2023207346 A1 WO2023207346 A1 WO 2023207346A1
Authority
WO
WIPO (PCT)
Prior art keywords
railway track
curve
damage
difference
amplitude
Prior art date
Application number
PCT/CN2023/080157
Other languages
English (en)
French (fr)
Inventor
赵猛
曹永杰
牛盛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023207346A1 publication Critical patent/WO2023207346A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/12Measuring or surveying wheel-rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/045Rail wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Definitions

  • the present disclosure relates to the technical field of track detection, and in particular to a detection method, device and detection equipment applied to railway tracks.
  • railway track and wheel condition detection has mainly been carried out through periodic detection methods such as status safety determination before train operation, regular condition detection, and comprehensive inspection vehicle detection, resulting in low timeliness of railway track and wheel condition detection.
  • the present disclosure provides a detection method, device, and detection equipment applied to railway tracks to solve the problem that in the prior art, railway track and wheel status detection is only performed before the train is running, which results in relatively slow timeliness of railway track and wheel status detection. low question.
  • the present disclosure provides a detection method applied to a railway track with optical fibers laid on both sides of the railway track.
  • the method includes: obtaining a first signal generated by the optical fiber laid on one side of the railway track. Measure the signal and generate a first curve based on the first measurement signal; obtain a second measurement signal generated by the optical fiber laid on the other side of the railway track, and generate a second curve based on the second measurement signal; wherein, the first measurement signal and The second measurement signal is used to represent the signal generated by the vibration of the corresponding position of the railway track or the wheels running on the railway track.
  • the first curve and the second curve are used to represent the time distance amplitude state curve; obtain the first curve and the second curve
  • the amplitude difference of the same distance is detected, and the railway track or the wheels running on the railway track are detected based on the amplitude difference.
  • the present disclosure provides a detection device applied to a railway track.
  • Optical fibers are laid on both sides of the railway track.
  • the device includes: a first processing module for acquiring optical fibers laid on one side of the railway track. The generated first measurement signal, and generate a first curve based on the first measurement signal; the second processing module is used to obtain the second measurement signal generated by the optical fiber laid on the other side of the railway track, and generate the first curve based on the second measurement signal Generate a second curve; wherein, the first measurement signal and the second measurement signal are used to represent the signal generated by the vibration of the corresponding position of the railway track or the wheel running on the railway track, and the first curve and the second curve are used to represent the time distance amplitude. State curve; the third processing module is used to obtain the first song The amplitude difference between the line and the second curve is the same distance, and based on the amplitude difference, the railway track or the wheels running on the railway track are detected.
  • a detection device including a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface and the memory complete communication with each other through the communication bus; the memory is used to store computer programs; processing The processor is used to implement the steps of the detection method applied to railway tracks as described in any embodiment of the first aspect when executing the program stored in the memory.
  • a fourth aspect provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the method for detecting railway tracks as described in any embodiment of the first aspect is implemented. A step of.
  • Figure 1 is a schematic flow chart of a detection method applied to railway tracks provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of railway track optical fiber laying provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the wheel damage side time distance amplitude curve provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of the time distance amplitude curve of the undamaged side of the wheel provided by an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of the time distance amplitude curve of the track damage side provided by an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of the time distance amplitude curve on the undamaged side of the track provided by an embodiment of the present disclosure
  • Figure 7 is a schematic diagram of the damage degree status provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of exhaustively designing a training set in the process of determining the calculation model provided by an embodiment of the present disclosure
  • Figure 9 is a schematic structural diagram of a detection device applied to railway tracks provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a detection device provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a detection method applied to railway tracks. As shown in Figure 1, the method includes the following steps:
  • Step 102 Obtain the first measurement signal generated by the optical fiber laid on one side of the railway track, and generate a first curve based on the first measurement signal;
  • Step 104 Obtain the second measurement signal generated by the optical fiber laid on the other side of the railway track, and generate a second curve based on the second measurement signal; wherein the first measurement signal and the second measurement signal are used to characterize the railway track or passage.
  • the signal generated by the vibration at the corresponding position of the wheel on the railway track, the first curve and the second curve are used to represent the time distance amplitude state curve Wire;
  • the optical fibers laid on both sides of the track can be vibrating optical fibers.
  • the detection equipment sends measurement signals based on the vibrating optical fibers. That is, the detection equipment simultaneously collects data based on the optical fibers laid on both sides of the track. , draw the time distance amplitude state curve based on the measurement signals on both sides of the track.
  • Step 106 Obtain the amplitude difference between the first curve and the second curve at the same distance, and detect the railway track or the wheels running on the railway track based on the amplitude difference.
  • the same distance may refer to the same position on the distance axis in the time distance amplitude state curve, that is, the railway track
  • the amplitude difference produced by the vibration signals generated at the same position on the tracks on both sides; if it is a wheel traveling on the railway track, the same distance can be the position at the same distance in the time-distance amplitude state curve, that is, if it is a wheel If damage occurs at a certain position on the wheel, when the wheel is running on the railway track, the vibration signal on the curve at the damaged position appears periodically and at the same distance.
  • the curve will change periodically on the distance axis. Comparing the first curve and the second curve corresponding to both sides of the track, the amplitude of the two curves at the same distance will change. There is an amplitude difference; or, when the train is traveling, if damage occurs somewhere on one side of the track and there is no damage at the corresponding position of the other side of the track, compare the first curve and the second curve on both sides of the track, and if the corresponding position If there is damage, there will be an amplitude difference.
  • the first measurement signal is generated by the optical fiber laid on one side of the railway track, and the first curve is generated based on the first measurement signal, and the first curve is generated by the optical fiber laid on the other side of the railway track.
  • the second measurement signal is a second measurement signal, and a second curve is generated based on the second measurement signal; because during the movement of the train, if damage occurs somewhere on the wheel or damage occurs somewhere on the track, it will result in the same distance in the first curve and the second curve.
  • the railway track or the wheels on the railway track can be detected based on the amplitude difference; it can be seen that by laying optical fibers on both sides of the track in the embodiment of the present disclosure, and drawing the time based on the measurement signal generated by the optical fiber
  • the distance amplitude state curve can detect the railway track or the wheels on the railway track in real time, which improves the effectiveness of railway track and wheel monitoring, thus solving the problem in the existing technology that the railway track and wheel state detection is only performed before the train is running. , leading to the problem of low timeliness of railway track and wheel status detection.
  • the railway track or the wheels on the railway track are The detection methods may further include:
  • Step 11 Difference the amplitudes at the same distance between the first curve and the second curve to obtain the amplitude difference at the same position between the first curve and the second curve;
  • the same distance can refer to the same position on the distance axis in the time distance amplitude state curve, that is, The amplitude difference caused by the vibration signals generated at the same position on both sides of the railway track. For example, if there is damage to one side of the track at a distance of 20KM from the beginning of the railway track, then the measurement signal on both sides is measured at this distance.
  • the same distance can be the position at the same distance in the time-distance amplitude state curve, that is, if it is a wheel on a certain If the wheel is damaged at the location, when the wheel is running on the railway track, the vibration signal on the curve at the damaged location is spaced at the same distance and appears periodically.
  • the circumference of the wheel is 1.4m. If there is a wheel on one side Damage, then every 1.4m, the first curve and the second curve are the same A replication fork exists at a distance. Amplitudes corresponding to the same distance.
  • Step 12 Determine the difference greater than the preset threshold from the amplitude difference corresponding to the all-fiber sampling point, and determine the damage location on the railway track or the wheel passing on the railway track based on the difference greater than the preset threshold. The location of the injury;
  • the preset threshold can be set accordingly for different actual situations.
  • the specific implementation includes the following two methods:
  • the detection equipment simultaneously collects data from the optical fibers laid on both sides of the track.
  • the signal amplitude will change significantly, indicating that there is damage at the corresponding position.
  • the measurement signal at this position will appear periodically in space (on the distance axis).
  • the time distance amplitude curve (first curve) of the wheel damage side is drawn as shown in Figure 3, where A represents the amplitude and T represents Time and L represent distance, which have the same meaning in Figures 4 to 6 below; the undamaged side state curve (second curve) is shown in Figure 4, and wheel damage can be located in real time based on the first curve and the second curve. s position.
  • the detection equipment simultaneously collects data from the optical fibers laid on both sides of the track.
  • the train is moving, if damage occurs somewhere on one side of the track (corresponding to the first curve ), when there is no damage to the corresponding position of the track on the other side (corresponding to the second curve), comparing the signal amplitudes of the status curves on both sides will produce a more obvious difference, indicating that there is damage to the corresponding position.
  • the position of the damage signal is fixed. That is, during the train's movement, the signal will appear once when the wheels and the damaged area act, and there is a periodicity in time.
  • the track damage location can be located in real time. .
  • Step 13 based on the preset calculation model and the difference greater than the preset threshold, determine the damage degree state at the location where the damage occurs on the railway track or the wheel on the railway track, where the calculation model is used to represent the damage degree state and the difference. Functional relationship between values.
  • Step 1 Determine the damage extent status at the location where the damage occurs.
  • step 13 involves determining the degree of damage corresponding to the damage location on the railway track based on the preset calculation model and the difference greater than the preset threshold, or determining the damage on the wheel.
  • the method in the embodiment of the present disclosure may further include:
  • Step 31 Obtain the degree of damage to the railway track or the wheel on the railway track under various circumstances, and the measurement signal generated by the optical fiber at the damaged location, where the degree of damage includes the depth value of the damaged location and the width value of the damaged location;
  • Step 32 Establish a calculation model based on the degree of damage and the measurement signal.
  • the signals A 1 and A 2 synchronously measured by optical fibers laid on both sides of the track are differenced to obtain the relative signal difference ⁇ A as the input data source for subsequent algorithm processing, and then Assess the extent of damage.
  • the damage degree state ⁇ of the track or wheel can be measured by the depth h and width w.
  • the degree of damage can be further determined by the depth and width of the damage, as shown in Figure 7, the depth is h, the width is w, and ⁇ h and ⁇ w are used to divide the depth and width respectively; as shown in Figure 8
  • f( ⁇ A j ) is a machine learning algorithm whose input is ⁇ A j . That is to say, in real-time monitoring, the input difference is used
  • Signals and computational models can quantitatively assess the actual damage status.
  • An embodiment of the present disclosure also provides a detection device applied to a railway track.
  • optical fibers are laid on both sides of the railway track.
  • the device includes:
  • the first processing module 92 is used to obtain the first measurement signal generated by the optical fiber laid on one side of the railway track, and generate the first curve based on the first measurement signal;
  • the second processing module 94 is used to obtain the second measurement signal generated by the optical fiber laid on the other side of the railway track, and generate a second curve based on the second measurement signal; wherein the first measurement signal and the second measurement signal are used for Characterizes the signal generated by the vibration of the corresponding position of the railway track or the wheels running on the railway track.
  • the first curve and the second curve are used to represent the time distance amplitude state curve;
  • the third processing module 96 is used to obtain the amplitude difference between the first curve and the second curve at the same distance, and detect the railway track or the wheels running on the railway track based on the amplitude difference.
  • a first measurement signal is generated by the optical fiber laid on one side of the railway track, and a first curve is generated based on the first measurement signal, and a third curve is generated by the optical fiber laid on the other side of the railway track.
  • Second measurement signal and generate a second curve based on the second measurement signal; because during the movement of the train, if damage occurs somewhere on the wheel or damage occurs somewhere on the track, the same distance in the first curve and the second curve will exist.
  • the railway track or the wheels on the railway track can be detected based on the amplitude difference; it can be seen that by laying optical fibers on both sides of the track in the embodiment of the present disclosure, and drawing the time distance based on the measurement signal generated by the optical fiber Amplitude state curve, can be used for railway tracks or iron
  • the wheels on the railway tracks are detected in real time, which improves the effectiveness of railway track and wheel monitoring, thereby solving the problem in the existing technology that the railway track and wheel status detection is only performed before the train is running, resulting in the timeliness of railway track and wheel status detection. Lower sex issues.
  • the third processing module 96 in the embodiment of the present disclosure may further include: a first processing unit, configured to make a difference between the amplitudes of the first curve and the second curve at the same distance, to obtain the first curve and the second curve.
  • the amplitude difference at the same position in the curve ; the second processing unit is used to determine the difference greater than the preset threshold from the amplitude difference corresponding to the all-fiber sampling point, and determine the railway track based on the difference greater than the preset threshold
  • the damage location on the railway track or the damage location on the wheel running on the railway track; the determination unit is used to determine the damage degree state corresponding to the damage location on the railway track based on the preset calculation model and the difference greater than the preset threshold. , or determine the damage degree state corresponding to the damage position on the wheel, where the calculation model is used to characterize the functional relationship between the damage degree state and the difference.
  • the second processing unit in the embodiment of the present disclosure may further include: a first determination sub-unit, configured to determine whether the amplitude corresponding to the difference greater than the preset threshold occurs periodically in the distance.
  • the position corresponding to the difference reached by the wheel that is greater than the preset threshold is determined as the damage position on the wheel; the second determination subunit is used to detect when the amplitude corresponding to the difference greater than the preset threshold appears periodically in time.
  • the position corresponding to the difference value greater than the preset threshold is determined as the damage position of the railway track.
  • the device in the embodiment of the present disclosure may further include: an acquisition module, configured to determine the occurrence of damage on a railway track or a wheel on a railway track based on a preset calculation model and a difference greater than a preset threshold.
  • an acquisition module configured to determine the occurrence of damage on a railway track or a wheel on a railway track based on a preset calculation model and a difference greater than a preset threshold.
  • the fourth processing module obtains the corresponding difference based on the difference between the measurement signals at the damaged and healthy locations of the optical fiber, and establishes a calculation model based on the difference and the degree of damage.
  • the embodiment of the present disclosure also provides a detection device, as shown in Figure 10, including a processor 1001, a communication interface 1002, a memory 1003, and a communication bus 1004.
  • the processor 1001, the communication interface 1002, and the memory 1003 communicate through the communication bus 1004. complete mutual communication,
  • Memory 1003 used to store computer programs
  • the processor 1001 is used to implement the method steps in Figure 1 when executing the program stored in the memory 1003, and its function is the same as the method steps in Figure 1.
  • the communication bus mentioned in the above terminal can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the above terminal and other devices.
  • the memory may include Random Access Memory (RAM) or non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory non-volatile memory
  • the memory may also be at least one storage device located far away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; it can also be a digital signal processor (Digital Signal Processing, DSP). , Application Specific Integrated Circuit (Application Specific Integrated Circuit, referred to as ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • CPU central processing unit
  • NP network processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute any one of the above embodiments.
  • a computer program product containing instructions is also provided, which when run on a computer causes the computer to execute the detection method applied to railway tracks described in any of the above embodiments. .
  • the computer program product includes one or more computer instructions.
  • the computer E loads and executes the computer program instructions, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

提供一种应用于铁路轨道的检测方法及装置、检测设备。铁路轨道的轨道两侧均铺设有光纤。该检测装置包括:第一处理模块(92)、第二处理模块(94)和第三处理模块(96)。该检测方法包括:用第一处理模块(92)获取铺设在铁路轨道一侧的光纤所产生的第一测量信号,并基于第一测量信号生成第一曲线;用第二处理模块(94)获取铺设在铁路轨道另一侧的光纤所产生的第二测量信号,并基于第二测量信号生成第二曲线;用第三处理模块(96)获取第一曲线与第二曲线中相同距离的幅值差,并基于幅值差对铁路轨道或行经在铁路轨道上的车轮进行检测。

Description

应用于铁路轨道的检测方法及装置、检测设备
相关申请的交叉引用
本公开基于2022年4月28日提交的发明名称为“应用于铁路轨道的检测方法及装置、检测设备”的中国专利申请CN202210470767.5,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开涉及轨道检测技术领域,尤其涉及一种应用于铁路轨道的检测方法及装置、检测设备。
背景技术
铁路作为国家重要基础设施、国民经济大动脉和大众化运输方式,对社会经济发展起着不可替代的支撑作用。铁路在运营过程中不间断地受到较大的车辆振动与冲击,其轨道结构稳定性是列车安全稳定运行的保障。火车车轮是列车的重要部件之一,其在列车行走过程中起着关键的作用。而车轮在长期服役过程中,也会因为材质疲劳、擦伤、磨损等因素产生多类缺陷。这些缺陷的存在是极其危险的,如果不及时对车轮进行健康检测并识别可能的缺陷而后做出相应的处理,有可能造成机车脱轨或者颠覆等严重的交通事故。
长期以来,铁路轨道及车轮状态检测主要是通过列车运行前状态安全确定、定期状态检测以及综合检测车检测等周期性检测方法进行,导致铁路轨道及车轮状态检测的时效性较低。
发明内容
本公开提供了一种应用于铁路轨道的检测方法及装置、检测设备,以解决现有技术中铁路轨道及车轮状态检测仅在列车运行前进行检测,导致铁路轨道及车轮状态检测的时效性较低的问题。
第一方面,本公开提供了一种应用于铁路轨道的检测方法,该铁路轨道的轨道两侧均铺设有光纤,该方法包括:获取铺设在所述铁路轨道一侧的光纤所产生的第一测量信号,并基于第一测量信号生成第一曲线;获取铺设在铁路轨道另一侧的光纤所产生的第二测量信号,并基于第二测量信号生成第二曲线;其中,第一测量信号和第二测量信号用于表征铁路轨道或行经在铁路轨道上的车轮对应位置振动所产生的信号,第一曲线和第二曲线用于表征时间距离振幅状态曲线;获取第一曲线与第二曲线中相同距离的幅值差,并基于幅值差对铁路轨道或行经在铁路轨道上的车轮进行检测。
第二方面,本公开提供了一种应用于铁路轨道的检测装置,该铁路轨道的轨道两侧均铺设有光纤,该装置包括:第一处理模块,用于获取铺设在铁路轨道一侧的光纤所产生的第一测量信号,并基于第一测量信号生成第一曲线;第二处理模块,用于获取铺设在铁路轨道另一侧的光纤所产生的第二测量信号,并基于第二测量信号生成第二曲线;其中,第一测量信号和第二测量信号用于表征铁路轨道或行经在铁路轨道上的车轮对应位置振动所产生的信号,第一曲线和第二曲线用于表征时间距离振幅状态曲线;第三处理模块,用于获取第一曲 线与第二曲线中相同距离的幅值差,并基于幅值差对铁路轨道或行经在所述铁路轨道上的车轮进行检测。
第三方面,提供了一种检测设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现如第一方面任一项实施例所述的应用于铁路轨道的检测方法的步骤。
第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项实施例所述的应用于铁路轨道的检测方法的步骤。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种应用于铁路轨道的检测方法的流程示意图;
图2为本公开实施例提供的铁路轨道光纤铺设示意图;
图3为本公开实施例提供的车轮损伤侧时间距离振幅曲线示意图;
图4为本公开实施例提供的车轮无损伤侧时间距离振幅曲线示意图;
图5为本公开实施例提供的轨道损伤侧时间距离振幅曲线示意图;
图6为本公开实施例提供的轨道无损伤侧时间距离振幅曲线示意图;
图7为本公开实施例提供的损伤程度状态示意图;
图8为本公开实施例提供的确定计算模型过程中穷举设计训练集的示意图;
图9为本公开实施例提供的一种应用于铁路轨道的检测装置的结构示意图;
图10为本公开实施例提供的一种检测设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述地实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
在后续的描述中,使用用于表示元件的诸如“模块”、“单元”的后缀仅为了有利于本公开的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行描述。本公开实施例提供了一种应用于铁路轨道的检测方法,如图1所示,该方法包括以下步骤:
步骤102,获取铺设在铁路轨道一侧的光纤所产生的第一测量信号,并基于第一测量信号生成第一曲线;
步骤104,获取铺设在铁路轨道另一侧的光纤所产生的第二测量信号,并基于第二测量信号生成第二曲线;其中,第一测量信号和第二测量信号用于表征铁路轨道或行经在铁路轨道上的车轮对应位置振动所产生的信号,第一曲线和第二曲线用于表征时间距离振幅状态曲 线;
如图2所示,本公开实施例中铺设在轨道两侧的光纤可以是振动光纤,由检测设备基于该振动光纤发送测量信号,也即检测设备基于铺设在轨道两侧的光纤同时进行数据采集,依据轨道两侧的测量信号绘制时间距离振幅状态曲线。
步骤106,获取第一曲线与第二曲线中相同距离的幅值差,并基于幅值差对铁路轨道或行经在铁路轨道上的车轮进行检测。
需要说明的是,由于第一曲线和第二曲线用于表征时间距离振幅状态曲线,如果是铁路轨道,则该相同距离可以是指时间距离振幅状态曲线中距离轴上的相同位置,即铁路轨道上两侧轨道同一位置所产生的振动信号所产生的幅值差;如果是行经在铁路轨道上的车轮,则该相同距离可以是时间距离振幅状态曲线中间隔相同距离的位置,即如果是车轮上某一位置出现损伤,则该车轮在铁路轨道上行驶时,该振动信号在该损伤位置在曲线上的表现是间隔相同距离且周期性出现的。例如,在列车行进过程中,若一侧车轮发生损伤,则曲线会在距离轴上周期性出现变化,对比与轨道两侧对应的第一曲线和第二曲线,两曲线同一距离位置幅值会存在幅值差;又或者,在列车行进中,若一侧轨道某处发生损伤,另一侧轨道对应位置无损伤情况下,比对轨道两侧的第一曲线和第二曲线,如果对应位置存在损伤,则会存在幅值差。
通过上述步骤102至步骤106,通过铺设在铁路轨道一侧的光纤所产生的第一测量信号,并基于第一测量信号生成第一曲线,以及通过铺设在铁路轨道另一侧的光纤所产生的第二测量信号,并基于第二测量信号生成第二曲线;由于在列车行进过程中,若车轮某处发生损伤或轨道某处发生损伤,则会导致第一曲线和第二曲线中的相同距离存在幅值差,进而可以根据该幅值差对铁路轨道或铁路轨道上的车轮进行检测;可见,通过本公开实施例中在轨道两侧铺设光纤,并基于该光纤所产生的测量信号绘制时间距离振幅状态曲线,可以对铁路轨道或铁路轨道上的车轮进行实时检测,提升了铁路轨道及车轮监测的实效性,从而解决了现有技术中铁路轨道及车轮状态检测仅在列车运行前进行检测,导致铁路轨道及车轮状态检测的时效性较低的问题。
在本公开实施例的可选实施方式中,对于上述步骤104中涉及到的获取第一曲线与第二曲线中相同位置的幅值差,并基于幅值差对铁路轨道或铁路轨道上的车轮进行检测的方式,进一步可以包括:
步骤11,对第一曲线与所述第二曲线中相同距离的幅值作差,得到第一曲线与第二曲线中相同位置的幅值差;
其中,对于该步骤11,由于第一曲线和第二曲线用于表征时间距离振幅状态曲线,如果是铁路轨道,则该相同距离可以是指时间距离振幅状态曲线中距离轴上的相同位置,即铁路轨道上两侧轨道同一位置所产生的振动信号所产生的幅值差,例如,从铁路轨道开始处开始距离20KM处的一侧轨道存在损伤,则测量信号对该距离处进行测量时两侧轨道的振动信号所产生的幅值是存在差值的;如果是行经在铁路轨道上的车轮,则该相同距离可以是时间距离振幅状态曲线中间隔相同距离的位置,即如果是车轮上某一位置出现损伤,则该车轮在铁路轨道上行驶时,该振动信号在该损伤位置在曲线上的表现是间隔相同距离且周期性出现的,例如车轮的周长为1.4m,如果有一侧车轮存在损伤,则每隔1.4m,第一曲线和第二曲线相同 距离存在复制叉。相同距离所对应的振幅如果铁路轨道没有存在损伤的地方,相同距离所对应的幅值是不存在差值的,如果铁路轨道存在损伤的地方,则该损伤位置所对应的第一幅值与第二幅值之间是存在差值的,对于车轮也是类似的。
步骤12,从全光纤采样点所对应的幅值差中确定出大于预设阈值的差值,并基于大于预设阈值的差值确定铁路轨道上的损伤位置或行经在铁路轨道上的车轮上的损伤位置;
需要说明的是,通常情况下,差值越大表明损伤程度严重,差值越小表明损伤程度越小,但也有例外,对于某些特殊地段或特殊结构处要视情况而定,对于这些地方也许差值很小但也会存在很大的安全隐患,因此,该预设阈值可以不同的实际情况进行相应的设置。
另外,对于上述步骤12中涉及到的基于大于预设阈值的差值确定铁路轨道上存在损伤的位置或铁路轨道上的车轮上存在损伤的位置,在具体实施方式中包括以下两种方式:
方式1)在大于预设阈值的差值所对应的幅值在距离上周期性出现的情况下,将车轮到达的大于预设阈值的差值所对应的位置确定为车轮上的损伤位置;
对于该方式,在具体实施方式中,在图2布纤方式下,检测设备对铺设在轨道两侧的光纤同时进行数据采集,在列车行进过程中,若一侧车轮某处发生损伤(对应第一曲线),另一侧车轮对应位置无损伤(对应第二曲线)的情况下,比对两侧状态曲线,信号幅值会产生较为明显的变化,表明对应位置存在损伤。随着列车行进,该位置的测量信号在空间上(距离轴上)会周期性出现,绘制车轮损伤侧时间距离振幅曲线(第一曲线)如图3所示,其中,A表示振幅、T表示时间、L表示距离,下述图4至6中也是一致的含义;无损伤侧状态曲线(第二曲线)如图4所示,而且根据第一曲线和第二曲线,可实时定位出车轮损伤的位置。
需要说明的是,上述仅仅是举例说明一侧车轮某处发生损伤,如果是两侧车轮均存在损伤,且两侧车轮存在损伤的位置不对应,则处理方式与上述一侧车轮某处发生损伤的方式类似,如果是两侧车轮存在损伤的位置对应,则两侧的状态曲线所对应的幅值也会存在相应的幅值差,则此时的预设阈值要进行相应的调整,即此时的预设阈值通常情况下要比一侧车轮损伤时多采用的预设阈值要小。
方式2)在大于预设阈值的差值所对应的幅值在时间上周期性出现的情况下,将大于预设阈值的差值所对应的位置确定为铁路轨道的损伤位置。
对于该方式,在具体实施方式中,在图2布纤方式下,检测设备对铺设在轨道两边的光纤同时进行数据采集,在列车行进中,若一侧轨道某处发生损伤(对应第一曲线),另一侧轨道对应位置无损伤(对应第二曲线)情况下,比对两侧状态曲线信号幅值会产生较为明显的区别,表明对应位置存在损伤。随着列车行进,该损伤信号位置是固定的,即列车行进过程中,车轮和损伤处作用时都会出现一次信号,在时间上存在周期性。绘制轨道损伤侧距离振幅曲线(第一曲线)如图5所示,无损伤侧状态曲线(第二曲线)如图6所示,根据第一曲线和第二曲线,可实时定位出轨道损伤位置。
步骤13,基于预设的计算模型和大于预设阈值的差值,在铁路轨道或铁路轨道上的车轮上确定出现损伤的位置的损伤程度状态,其中,计算模型用于表征损伤程度状态与差值之间的函数关系。
通过上述步骤11至步骤13,通过轨道两侧铺设光纤进而绘制相应的时间距离振幅状态曲线,并根据两侧曲线上幅值差可以确定产生损伤的位置,进而根据预设的计算模型可以进一 步确定该确定出现损伤的位置的损伤程度状态。
在本公开实施例中的,在步骤13中涉及到的基于预设的计算模型和大于预设阈值的差值,确定铁路轨道上的损伤位置所对应的损伤程度状态,或确定车轮上的损伤位置所对应的损伤程度状态之前,本公开实施例的方法还可以包括:
步骤31,获取多种情形下铁路轨道或铁路轨道上的车轮的损伤程度,以及光纤在损伤处所产生的测量信号,其中,损伤程度包括损伤处的深度值、损伤处的宽度值;
步骤32,基于损伤程度和测量信号建立计算模型。
对于上述步骤31和步骤32,在具体实施方式中可以是:将布设在轨道两侧光纤同步测量的信号A1、A2作差得到相对信号差值ΔA作为后续算法处理的输入数据来源,进而评估出损伤程度状态。轨道或者车轮损伤程度状态σ,可以用深度h和宽度w来衡量。在实验环境下,损伤程度可以进一步通过损伤的深度和宽度来确定,如图7所示,深度为h,宽度为w,用Δh、Δw分别用来分割深度和宽度;如图8所示穷举设计训练集,在各种情况下(x1,x2...xn),建立(其中i标记损伤状态编号,j标记测量信号输入编号)对应关系,可以利用包括但不限于机器学习算法,建立损伤程度状态σ与信号输入模型ΔA之间的计算模型其中,表示编号为j测量信号所测量的深度和宽度所对应的轨道或车轮损伤程度,f(ΔAj)为输入为ΔAj的机器学习算法,也就是说,在实时监测中,利用输入的差值信号与计算模型,可以定量评估出实际损伤程度状态。
本公开实施例还提供了一种应用于铁路轨道的检测装置,本公开实施例中的铁路轨道的轨道两侧均铺设有光纤,如图9所示,该装置包括:
第一处理模块92,用于获取铺设在铁路轨道一侧的光纤所产生的第一测量信号,并基于第一测量信号生成第一曲线;
第二处理模块94,用于获取铺设在铁路轨道另一侧的光纤所产生的第二测量信号,并基于第二测量信号生成第二曲线;其中,第一测量信号和第二测量信号用于表征铁路轨道或行经在铁路轨道上的车轮对应位置振动所产生的信号,第一曲线和第二曲线用于表征时间距离振幅状态曲线;
第三处理模块96,用于获取第一曲线与第二曲线中相同距离的幅值差,并基于幅值差对铁路轨道或行经在铁路轨道上的车轮进行检测。
通过本公开实施的装置,通过铺设在铁路轨道一侧的光纤所产生的第一测量信号,并基于第一测量信号生成第一曲线,以及通过铺设在铁路轨道另一侧的光纤所产生的第二测量信号,并基于第二测量信号生成第二曲线;由于在列车行进过程中,若车轮某处发生损伤或轨道某处发生损伤,则会导致第一曲线和第二曲线中的相同距离存在幅值差,进而可以根据该幅值差对铁路轨道或铁路轨道上的车轮进行检测;可见,通过本公开实施例中在轨道两侧铺设光纤,并基于该光纤所产生的测量信号绘制时间距离振幅状态曲线,可以对铁路轨道或铁 路轨道上的车轮进行实时检测,提升了铁路轨道及车轮监测的实效性,从而解决了现有技术中铁路轨道及车轮状态检测仅在列车运行前进行检测,导致铁路轨道及车轮状态检测的时效性较低的问题。
可选地,本公开实施例中的第三处理模块96进一步可以包括:第一处理单元,用于对第一曲线与第二曲线中相同距离的幅值作差,得到第一曲线与第二曲线中相同位置的幅值差;第二处理单元,用于从全光纤采样点所对应的幅值差中确定出大于预设阈值的差值,并基于大于预设阈值的差值确定铁路轨道上的损伤位置或行经在铁路轨道上的车轮上的损伤位置;确定单元,用于基于预设的计算模型和大于预设阈值的差值,确定铁路轨道上的损伤位置所对应的损伤程度状态,或确定车轮上的损伤位置所对应的损伤程度状态,其中,计算模型用于表征损伤程度状态与差值之间的函数关系。
可选地,本公开实施例中的第二处理单元进一步可以包括:第一确定子单元,用于在大于预设阈值的差值所对应的幅值在距离上周期性出现的情况下,将车轮到达的大于预设阈值的差值所对应的位置确定为车轮上的损伤位置;第二确定子单元,用于在大于预设阈值的差值所对应的幅值在时间上周期性出现的情况下,将大于预设阈值的差值所对应的位置确定为铁路轨道的损伤位置。
可选地,本公开实施例中的装置还进一步可以包括:获取模块,用于在基于预设的计算模型和大于预设阈值的差值,在铁路轨道或铁路轨道上的车轮上确定出现损伤的位置的损伤程度状态之前,获取多种情形下铁路轨道或铁路轨道上的车轮的损伤程度,以及光纤在损伤处所产生的测量信号,其中,损伤程度包括损伤处的深度值、损伤处的宽度值;第四处理模块,基于光纤在损伤处与健康处的测量信号作差得到对应的差值,并基于差值与损伤程度建立计算模型。
本公开实施例还提供了一种检测设备,如图10所示,包括处理器1001、通信接口1002、存储器1003和通信总线1004,其中,处理器1001,通信接口1002,存储器1003通过通信总线1004完成相互间的通信,
存储器1003,用于存放计算机程序;
处理器1001,用于执行存储器1003上所存放的程序时,实现图1中的方法步骤,其所起到的作用与图1中的方法步骤一样。
上述终端提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口用于上述终端与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称 ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本公开提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述实施例中任一所述的应用于铁路轨道的检测方法。
在本公开提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一所述的应用于铁路轨道的检测方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机E加载和执行所述计算机程序指令时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本公开的保护范围内。

Claims (10)

  1. 一种应用于铁路轨道的检测方法,所述铁路轨道的轨道两侧均铺设有光纤,所述方法包括:
    获取铺设在所述铁路轨道一侧的光纤所产生的第一测量信号,并基于所述第一测量信号生成第一曲线;
    获取铺设在所述铁路轨道另一侧的光纤所产生的第二测量信号,并基于所述第二测量信号生成第二曲线;其中,所述第一测量信号和所述第二测量信号用于表征所述铁路轨道或行经在所述铁路轨道上的车轮对应位置振动所产生的信号,所述第一曲线和所述第二曲线用于表征时间距离振幅状态曲线;
    获取所述第一曲线与所述第二曲线中相同距离的幅值差,并基于所述幅值差对所述铁路轨道或行经在所述铁路轨道上的车轮进行检测。
  2. 根据权利要求1所述的方法,其中,获取所述第一曲线与所述第二曲线中相同距离的幅值差,并基于所述幅值差对所述铁路轨道或行经在所述铁路轨道上的车轮进行检测,包括:
    对所述第一曲线与所述第二曲线中相同距离的幅值作差,得到所述第一曲线与所述第二曲线中相同位置的幅值差;
    从全光纤采样点所对应的所述幅值差中确定出大于预设阈值的差值,并基于所述大于预设阈值的差值确定所述铁路轨道上的损伤位置或行经在所述铁路轨道上的车轮上的损伤位置;
    基于预设的计算模型和所述大于预设阈值的差值,确定所述铁路轨道上的损伤位置所对应的损伤程度状态,或确定所述车轮上的损伤位置所对应的损伤程度状态,其中,所述计算模型用于表征所述损伤程度状态与所述差值之间的函数关系。
  3. 根据权利要求2所述的方法,其中,从多个所述幅值差中确定出大于预设阈值的差值,并基于所述大于预设阈值的差值确定所述车轮上存在损伤的位置,包括:
    在所述大于预设阈值的差值所对应的幅值在距离上周期性出现的情况下,将所述车轮到达的所述大于预设阈值的差值所对应的位置确定为所述车轮上的损伤位置。
  4. 根据权利要求2所述的方法,其中,从多个所述幅值差中确定出大于预设阈值的差值,并基于所述大于预设阈值的差值确定所述铁路轨道上的损伤位置,包括:
    在所述大于预设阈值的差值所对应的幅值在时间上周期性出现的情况下,将所述大于预设阈值的差值所对应的位置确定为所述铁路轨道的损伤位置。
  5. 根据权利要求2所述的方法,其中,在基于预设的计算模型和所述大于预设阈值的差值,确定所述铁路轨道上的损伤位置所对应的损伤程度状态,或确定所述车轮上的损伤位置所对应的损伤程度状态之前,所述方法还包括:
    获取多种情形下所述铁路轨道或所述铁路轨道上的车轮的损伤程度,以及所述光纤在损伤处所产生的测量信号,其中,所述损伤程度包括损伤处的深度值、损伤处的宽度值;
    基于所述光纤在损伤处与健康处的测量信号作差得到对应的差值,并基于所述差值与所述损伤程度建立所述计算模型。
  6. 一种应用于铁路轨道的检测装置,所述铁路轨道的轨道两侧均铺设有光纤,所述装置包括:
    第一处理模块,用于获取铺设在所述铁路轨道一侧的光纤所产生的第一测量信号,并基于所述第一测量信号生成第一曲线;
    第二处理模块,用于获取铺设在所述铁路轨道另一侧的光纤所产生的第二测量信号,并基于所述第二测量信号生成第二曲线;其中,所述第一测量信号和所述第二测量信号用于表征所述铁路轨道或行经在所述铁路轨道上的车轮对应位置振动所产生的信号,所述第一曲线和所述第二曲线用于表征时间距离振幅状态曲线;
    第三处理模块,用于获取所述第一曲线与所述第二曲线中相同距离的幅值差,并基于所述幅值差对所述铁路轨道或行经在所述铁路轨道上的车轮进行检测。
  7. 根据权利要求6所述的装置,其中,所述第三处理模块包括:
    第一处理单元,用于对所述第一曲线与所述第二曲线中相同距离的幅值作差,得到所述第一曲线与所述第二曲线中相同位置的幅值差;
    第二处理单元,用于从全光纤采样点所对应的所述幅值差中确定出大于预设阈值的差值,并基于所述大于预设阈值的差值确定所述铁路轨道上的损伤位置或行经在所述铁路轨道上的车轮上的损伤位置;
    确定单元,用于基于预设的计算模型和所述大于预设阈值的差值,确定所述铁路轨道上的损伤位置所对应的损伤程度状态,或确定所述车轮上的损伤位置所对应的损伤程度状态,其中,所述计算模型用于表征所述损伤程度状态与所述差值之间的函数关系。
  8. 根据权利要求7所述的装置,其中,所述第二处理单元包括:
    第一确定子单元,用于在所述大于预设阈值的差值所对应的幅值在距离上周期性出现的情况下,将所述车轮到达的所述大于预设阈值的差值所对应的位置确定为所述车轮上的损伤位置;
    第二确定子单元,用于在所述大于预设阈值的差值所对应的幅值在时间上周期性出现的情况下,将所述大于预设阈值的差值所对应的位置确定为所述铁路轨道的损伤位置。
  9. 一种检测设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
    存储器,用于存放计算机程序;
    处理器,用于执行存储器上所存放的程序时,实现权利要求1-5任一所述的方法步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1-5中任一所述的方法。
PCT/CN2023/080157 2022-04-28 2023-03-07 应用于铁路轨道的检测方法及装置、检测设备 WO2023207346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210470767.5A CN117002556A (zh) 2022-04-28 2022-04-28 应用于铁路轨道的检测方法及装置、检测设备
CN202210470767.5 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207346A1 true WO2023207346A1 (zh) 2023-11-02

Family

ID=88517269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080157 WO2023207346A1 (zh) 2022-04-28 2023-03-07 应用于铁路轨道的检测方法及装置、检测设备

Country Status (2)

Country Link
CN (1) CN117002556A (zh)
WO (1) WO2023207346A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160207552A1 (en) * 2015-01-16 2016-07-21 International Electronic Machines Corporation Abnormal Vehicle Dynamics Detection
CN106323442A (zh) * 2016-08-18 2017-01-11 南京发艾博光电科技有限公司 一种基于分布式光纤振动传感***的铁路健康监测方法
CN106662483A (zh) * 2014-08-18 2017-05-10 光学感应器控股有限公司 铁轨轮组中的异常检测
CN106828543A (zh) * 2017-03-13 2017-06-13 北京众成探知信息技术有限公司 一种光纤分布式列车监测***
CN109142524A (zh) * 2018-08-14 2019-01-04 唐智科技湖南发展有限公司 一种轨道损伤检测方法、装置及设备
CN214028661U (zh) * 2020-11-27 2021-08-24 南京拓控信息科技股份有限公司 地铁车辆运行品质监测***
CN113879358A (zh) * 2021-10-29 2022-01-04 国能朔黄铁路发展有限责任公司 轨道状态监测设备及方法、控制装置和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662483A (zh) * 2014-08-18 2017-05-10 光学感应器控股有限公司 铁轨轮组中的异常检测
US20160207552A1 (en) * 2015-01-16 2016-07-21 International Electronic Machines Corporation Abnormal Vehicle Dynamics Detection
CN106323442A (zh) * 2016-08-18 2017-01-11 南京发艾博光电科技有限公司 一种基于分布式光纤振动传感***的铁路健康监测方法
CN106828543A (zh) * 2017-03-13 2017-06-13 北京众成探知信息技术有限公司 一种光纤分布式列车监测***
CN109142524A (zh) * 2018-08-14 2019-01-04 唐智科技湖南发展有限公司 一种轨道损伤检测方法、装置及设备
CN214028661U (zh) * 2020-11-27 2021-08-24 南京拓控信息科技股份有限公司 地铁车辆运行品质监测***
CN113879358A (zh) * 2021-10-29 2022-01-04 国能朔黄铁路发展有限责任公司 轨道状态监测设备及方法、控制装置和存储介质

Also Published As

Publication number Publication date
CN117002556A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
Zhang et al. Damage detection in bridge structures under moving loads with phase trajectory change of multi-type vibration measurements
CN111373252B (zh) 一种桥梁损伤快速检测方法及相关装置
Alemi et al. Condition monitoring approaches for the detection of railway wheel defects
Mosleh et al. An approach for wheel flat detection of railway train wheels using envelope spectrum analysis
CN108562446B (zh) 基于轴箱振动时频域特征车轮多边形检测方法及终端设备
Mosleh et al. Early wheel flat detection: An automatic data-driven wavelet-based approach for railways
WO2013053140A1 (zh) 一种轮对故障动态检测数据处理方法和***
Muñoz et al. Railroad inspection based on ACFM employing a non-uniform B-spline approach
CN105723183B (zh) 凹凸分析方法、凹凸分析装置以及记录介质
CN108698622A (zh) 轨道状态评价方法、装置以及程序
Xin et al. Effect of Long‐Wavelength Track Irregularities on Vehicle Dynamic Responses
Chiacchiari et al. Measurement methods and analysis tools for rail irregularities: a case study for urban tram track
Li et al. Spatial–temporal model to identify the deformation of underlying high-speed railway infrastructure
CN114241266B (zh) 一种光缆智能预警的处理方法及***
WO2017076189A1 (zh) 一种基于差分窗和模板匹配的otdr事件分析算法
Zeng et al. A new strategy for hunting alarm and stability evaluation for railway vehicles based on nonlinear dynamics analysis
WO2023207346A1 (zh) 应用于铁路轨道的检测方法及装置、检测设备
ElHattab et al. Drive-by bridge damage detection using non-specialized instrumented vehicle
Wang et al. A new DFT-based dynamic detection framework for polygonal wear state of railway wheel
JP6245466B2 (ja) 車輪偏摩耗度合い判定システム、車輪偏摩耗度合い判定方法およびプログラム
US10386265B2 (en) Estimating method, information processing device, and non-transitory computer-readable recording medium storing estimating program
CN110143217B (zh) 轨道状态测量方法、***及装置
Uygun et al. Acoustic monitoring of railway defects using deep learning with audio to spectrogram conversion
Sitton et al. Damage scenario analysis of bridges using crowdsourced smartphone data from passing vehicles
CN112629652A (zh) 基于车辆响应的桥梁空间模态振型获取方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794782

Country of ref document: EP

Kind code of ref document: A1