WO2023207010A1 - 集成式热管理装置及*** - Google Patents

集成式热管理装置及*** Download PDF

Info

Publication number
WO2023207010A1
WO2023207010A1 PCT/CN2022/128801 CN2022128801W WO2023207010A1 WO 2023207010 A1 WO2023207010 A1 WO 2023207010A1 CN 2022128801 W CN2022128801 W CN 2022128801W WO 2023207010 A1 WO2023207010 A1 WO 2023207010A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve port
water
valve
water pump
thermal management
Prior art date
Application number
PCT/CN2022/128801
Other languages
English (en)
French (fr)
Inventor
郑凡
邓湘
金永镇
卜江华
Original Assignee
岚图汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岚图汽车科技有限公司 filed Critical 岚图汽车科技有限公司
Priority to EP22929219.8A priority Critical patent/EP4303044A1/en
Publication of WO2023207010A1 publication Critical patent/WO2023207010A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature

Definitions

  • the present disclosure relates to the technical field of automotive thermal management, and specifically to an integrated thermal management device and system.
  • the mainstream battery thermal management system mainly includes two circuits: one is a refrigeration or heating circuit including a compressor, evaporator, condenser or heater, heat exchanger and other components; the other is a water pump, heat exchanger , the cooling circuit of the power battery box; in the circuit, a kettle is usually connected as the circuit compensation medium, which has a single function, and the power battery thermal management system needs to be equipped with an expansion kettle in the circuit of each working mode, resulting in parts
  • disadvantages such as more and higher cost.
  • the functions of each part are independent of each other, heat waste is serious.
  • the existing thermal management system design models are becoming more and more complex, and the structures are becoming more and more complex. Many problems in the thermal management system The equipment requires a considerable amount of space, which has an adverse impact on the pursuit of miniaturization of some electric vehicles in the future.
  • the present disclosure provides an integrated thermal management device and system that can perform integrated thermal management, rationally utilize the heat in different zones, reduce energy consumption, and at the same time save unnecessary kettles, pipelines and management equipment, making the structure Simple, cost-saving and easy to miniaturize.
  • the present disclosure provides an integrated thermal management device, including an integrated kettle for containing a medium, the integrated kettle having a No. 1 water pump, a No. 2 water pump for pumping out, pumping in or pressurizing the medium. Water pump and No.
  • thermal management components including a water-cooled heat exchanger, water-cooled condenser, water-to-water heat exchanger, five-way valve and six-way valve installed on the surface of the integrated kettle; water-cooled heat exchanger, water-cooled condenser, The water-to-water heat exchangers are connected to the five-way valve and/or six-way valve pipeline, and the thermal management components are connected to the integrated kettle pipeline; the water-cooled heat exchanger is also connected to the liquid refrigerant pipeline in the vehicle air conditioning system, so The water-cooled condenser is also connected to the gaseous refrigerant pipeline in the vehicle air conditioning system.
  • the present disclosure provides an integrated thermal management system installed in a vehicle with a central controller, a front radiator, a power battery, a motor and a passenger compartment, where the passenger compartment is equipped with a heater air conditioner, including: Integrated thermal management device as mentioned above; water heater, installed in the vehicle;
  • the front radiator, power battery, motor and heater air conditioner of the car are connected to the thermal management component pipelines;
  • the central controller is signally connected to the integrated thermal management device, and adjusts the thermal management components of the vehicle's front radiator, power battery, motor, heater, air conditioner, and thermal management components by adjusting the thermal management components of the integrated thermal management device.
  • the medium flow direction is used to control the thermal management of the motor, power battery and passenger compartment.
  • the integrated thermal management device and system provided in this disclosure adopts an integrated architecture design.
  • the heat in areas such as electric drives, batteries, and passenger compartments can be reasonably managed. Distribution, reducing unnecessary heat dissipation and reducing irreversible losses on the low-pressure side of the heat pump, achieving optimal overall energy consumption and the best experience.
  • this application integrates the thermal management system and modularizes the design, so that the thermal management modules can be packaged and adapted to different models; at the same time, the assembly reduces the number of parts and pipelines, resulting in lower parts costs and assembly costs; and the module parts Control integration.
  • Figure 1 shows a front view of an integrated thermal management device according to some embodiments of the present disclosure
  • Figure 2 is an exploded schematic diagram of the embodiment shown in Figure 1 from an axial side perspective;
  • Figure 3 is a schematic diagram of the structure from different perspectives as shown in Figure 2;
  • Figure 4 is a schematic structural diagram of the five-way valve
  • Figure 5 is a schematic structural diagram of a six-way valve
  • Figure 6 shows a schematic pipeline diagram of an integrated thermal management system according to some embodiments of the present disclosure
  • Figure 7 is a schematic diagram of a pipeline with medium flowing when starting the battery heating mode in some embodiments shown in Figure 6;
  • Figure 8 is a schematic diagram of the pipeline with medium circulation when starting the heat pump type electric drive waste heat recovery mode or the battery heating type electric drive waste heat recovery mode in some embodiments shown in Figure 6;
  • Figure 9 is a schematic diagram of the pipeline with medium circulation when the electric drive cooling mode, battery forced cooling mode, battery heating mode or passenger compartment heating mode is activated in some embodiments shown in Figure 6;
  • Figure 10 is a schematic diagram of the pipeline with medium flowing when starting the battery natural cooling mode in some embodiments shown in Figure 6;
  • Figure 11 is a schematic diagram of the pipeline with medium flowing when starting the filling and exhaust mode in some embodiments shown in Figure 6;
  • FIG. 12 is a schematic diagram of a pipeline with medium circulation when the passenger compartment defogging combined with battery heating mode is activated in some embodiments shown in FIG. 6 .
  • the present disclosure provides an integrated thermal management device, including an integrated kettle 1, thermal management components and a water-cooled heat exchanger 14.
  • water is used as the medium, and those skilled in the art can also select other suitable media according to the situation.
  • thick solid lines are pipelines through which media may flow, and thin solid lines are
  • the arrows only indicate the direction of medium flow in one of the situations, and do not mean that the medium must flow in the direction of the arrow.
  • Figures 7 to 12 the corresponding situations where the medium does not flow are shown. The pipeline is hidden.
  • the integrated kettle 1 is a location for storing media. In addition to water, it can also be other types of safe liquids. Specifically, in some embodiments as shown in Figures 1, 2 and 3, the integrated kettle 1 is divided into upper and lower parts. The lower part has a stronger overall structure and is used to carry other components and connect other components, while the upper part It is relatively light, and the upper and lower parts are detachably connected, making it convenient to open the upper part when necessary and clean the integrated kettle 1. There are also three water pumps arranged around the integrated kettle 1, namely the No. 1 water pump 11, the No. 2 water pump 12 and the No. 3 water pump 13. Their function is to pump out the medium in the inherited water pump and to provide water when the water pump forms part of the circuit. The water flow within the circuit is pressurized.
  • Thermal management components are the main part of medium heat exchange, and are also components that adjust the flow direction of the medium.
  • the heat exchange part includes a water-cooled heat exchanger 14, a water-cooled condenser 15 and a water-to-water heat exchanger 16, and the flow direction adjustment part includes a six-way valve 3 and a five-way valve 2.
  • One of the pipes of the water-cooled heat exchanger 14 is used to receive the liquid refrigerant in the vehicle air conditioning system and is used to cool the medium in the other pipe. After the refrigerant is vaporized, it is mixed with the gas refrigerant generated after the air conditioner in the passenger compartment 8 is cooled. , enters the water-cooled condenser 15, exchanges heat, and then returns to the front radiator 5 of the car for forced cooling into liquid.
  • the five-way valve 2 and the six-way valve 3 are devices that control the flow direction of the medium.
  • the pipeline can be switched by turning the five-way valve 2 and the six-way valve 3.
  • the above-mentioned six-way valve 3 includes a six-way housing 37.
  • the above-mentioned six-way housing 37 is evenly provided with six valve ports for connecting pipelines.
  • the valve ports are connected to each pipeline, and the inner core
  • the flow grooves 39 can connect up to three valve ports under certain circumstances.
  • the lower flow groove 39 in Figure 5 can allow the three valve ports below.
  • the valve ports are connected. When rotated to a position close to the upper right corner, the two valve ports above and on the upper right will be connected.
  • the six valve ports of the six-way valve 3 are named as the No. 1 valve port 31, the No. 2 valve port 32, the No.
  • valve port 33 the No. 4 valve port 34, the No. 5 valve port 35 and the No. 6 valve port respectively. 36. Because the six valve ports of the six-way valve 3 are connected to the valve body at evenly distributed positions in the circumferential direction, any valve port facing upward can be named the second valve port 32 without affecting the function.
  • the upper left valve port is named the No. 1 valve port 31, and is named the No. 2 valve port 32, the No. 3 valve port 33, and clockwise in sequence.
  • No. 4 valve port 34, No. 5 valve port 35 and No. 6 valve port 36 is named the upper left valve port.
  • the structure of the above-mentioned five-way valve 2 is not centrally symmetrical, so it has a specific installation direction, and the installation position of a specific valve port cannot be arbitrarily exchanged.
  • the first valve port 21 is located near the left, and then named clockwise.
  • the second valve port 22 , the third valve port 23 , the fourth valve port 24 and the fifth valve port 25 Taking the line connecting the second valve port 22 and the fifth valve port 25 as a boundary, the position of the first valve port 21 bisects the valve body on the left, and the positions of the third valve port 23 and the fourth valve port 24 bisect the valve body on the right.
  • the side valve body is divided into three equal parts.
  • the first communication groove 28 connects the second valve port 22 and the third valve port 23.
  • the first communication groove 28 mainly connects two adjacent valve ports
  • the second communication groove 29 mainly connects two alternate valve ports in the right range.
  • the first communication groove 29 28 and the second communication groove 29 can connect the second valve port 22 to the third valve port 23 and the fourth valve port 24 at the same time, or connect the fifth valve port 25 to the third valve port 23 and the fourth valve port 24 at the same time.
  • This disclosure also provides an integrated thermal management system, which is mainly used in automobiles.
  • the vehicle is required to have at least a central controller 4, a front radiator 5, a power battery 6, a motor 7 and a passenger compartment. 8 these components, the passenger compartment 8 should also have hot air air conditioning.
  • the central controller 4 generally refers to the driving computer of the car, which mainly plays the role of judgment and control.
  • the driver generally issues instructions through the central controller 4 to control the disclosure to achieve a specific thermal management mode.
  • the car's front radiator 5 is a radiator mainly installed on the front of the car. It uses the violent airflow generated by the front of the car to force heat exchange. The heat exchange efficiency is high and the gaseous refrigerant in the vehicle air conditioning system is liquefied at the same time.
  • the liquid refrigerant pipeline cooled in the car's front radiator 5 is divided into two channels through a three-way valve, one of which is connected to the water-cooled heat exchanger 14, and the other is connected to the evaporation core of the passenger compartment 8. Evaporative cooling is performed in the evaporation core to cool the passenger compartment 8 .
  • the gaseous refrigerant coming out of the water-cooled heat exchanger 14 and the evaporator core is gaseous refrigerant.
  • the two gaseous refrigerants are collected through a three-way valve and flow to the water-cooled condenser 15, transferring heat to the medium loop, and then flow back to the car's front radiator 5 It cools into a liquid state, and the cycle repeats.
  • the medium circuit in the present disclosure and the cooling of the above-mentioned refrigerant are at different positions of the front radiator 5 of the car, and the pipelines do not affect each other.
  • the power battery 6 is the place where electric power is stored in the vehicle, and the motor 7 is where electric energy is consumed. Both of them have large heat production, and part of the heat can be transferred to heat other parts of the vehicle through this disclosure, which not only plays a role in The heat dissipation effect of the power battery 6 reduces the overall energy consumption.
  • the passenger compartment 8 is where the passengers and the driver are located. Generally, the temperature in the passenger compartment 8 needs to be adjusted to a more comfortable temperature. When the weather is cold, it needs to be heated. The heat from other heat-generating locations in the vehicle can be transferred to heat the passenger compartment. 8. When the weather is hot, refrigeration equipment can be used together with other components to improve heat exchange efficiency.
  • the heater air conditioner 81 is a heat exchange component. It usually exchanges heat between the medium in the pipeline and the passenger cabin 8. When the medium temperature is relatively high, When it is high, the medium is cooled and hot air is blown to the passenger cabin 8 .
  • the present disclosure also includes the aforementioned integrated thermal management device, as well as the water heater 9.
  • the above-mentioned automobile front radiator 5, power battery 6, motor 7 and heater air conditioner 81 are connected with thermal management component pipelines.
  • the central controller 4 is signally connected to the integrated thermal management device, and adjusts the vehicle's front radiator 5, power battery 6, motor 7 and heater air conditioner 81 by adjusting the thermal management components of the integrated thermal management device.
  • the flow direction of the medium in the thermal management component is used to control the thermal management of the motor 7, the power battery 6 and the passenger compartment 8.
  • the central controller 4 mainly controls the internal connection relationship between the five-way valve 2 and the six-way valve 3 to guide the medium to different pipelines. At the same time, it also controls the No. 1 water pump 11, the No. 2 water pump 12, and the No. 3 water pump.
  • the water pump 13, the car's front radiator 5, the power battery 6, the motor 7 and the heater air conditioner 81 are turned on and off to achieve different thermal management modes.
  • the pipeline connection status of the integrated thermal management system is as follows:
  • the five-way valve 2 is provided with a first valve port 21 , a second valve port 22 , a third valve port 23 , a fourth valve port 24 , and a fifth valve port 25 .
  • the six-way valve 3 is provided with a No. 1 valve port 31 , a No. 2 valve port 32 , a No. 3 valve port 33 , a No. 4 valve port 34 , a No. 5 valve port 35 and a No. 6 valve port 36 .
  • the pipeline extending from the No. 1 valve port 31 is divided into two paths through a three-way valve, one of which flows back to the No. 3 valve port 33 through the water-to-water heat exchanger 16 , the other path sequentially passes through the heating air conditioner 81, the water heater 9, the water-cooled condenser 15, and the No. 2 water pump 12 integrated with the kettle 1 to reach the No. 2 valve port 32. That is, the pipelines corresponding to the No. 1 valve port 31, the No. 2 valve port 32 and the No. 3 valve port 33 are connected to each other through a three-way valve. Among them, the main function of the No. 1 valve port 31 is to recover the medium into the six-way valve 3. The main function of the No.
  • valve port 32 is to send the medium to the water-to-water heat exchanger 16 for heat exchange to utilize the battery heat.
  • the main function of the valve port 33 is to send the medium to the heater or the heater air conditioner 81, and use the waste heat in the medium to heat the passenger cabin 8.
  • the water heater 9 can also be used to heat the medium for use in other parts.
  • the pipeline protruding from the No. 4 valve port 34 is divided into two paths through a three-way valve, one of which leads to the first valve port 21 and the other leads to the No. 6 valve port 36 after passing through the front radiator 5 of the car.
  • the pipeline corresponding to the No. 4 valve port 34, the pipeline corresponding to the No. 6 valve port 36 and the pipeline corresponding to the first valve port 21 are connected to each other through a three-way valve, and the No. 4 valve port 34 corresponds to
  • the pipeline is to send the medium in the six-way valve 3 directly to the five-way valve 2
  • the pipeline corresponding to the No. 6 valve port 36 is to send the medium to the front cooler of the vehicle, and then be forced to cool to a lower temperature before being sent to the five-way valve.
  • the pipe corresponding to the first valve port 21 is used to receive the medium from the six-way valve 3.
  • the pipeline extending from the No. 5 valve port 35 passes through the motor 7 and the No. 1 water pump 11 in sequence and then leads to the second valve port 22.
  • the electric motor 7 is collectively referred to as the electric motor on the vehicle, the control equipment attached to the electric motor, and the transformer equipment attached to the electric motor, such as the front electric motor used in commercial vehicles,
  • the rear electric motor and the DC/DC (DC-DC converter, DC to DC converter), OBC (On Board Charger, on-board charger), and PDU (Power Distribution Unit) on general vehicles pass through the five-way valve
  • the second valve port 22 of 2 sends the cold water out, and after passing through the motor 7, it is returned to the six-way valve 3, and is distributed by the six-way valve 3 to the cooling mechanism.
  • the pipeline extending from the fifth valve port 25 sequentially passes through the No. 3 water pump 13 and the water-to-water heat exchanger 16 and is divided into two paths through a three-way valve, and one of the paths passes through the power battery 6 and is connected to the third valve port. 23.
  • the other path passes through the central controller 4 and is connected to the fourth valve port 24.
  • the pipeline corresponding to the fifth valve port 25, the pipeline corresponding to the third valve port 23, and the pipeline corresponding to the fourth valve port 24 are connected to each other through a three-way valve to form a circuit, and the fifth valve port 25 corresponds to
  • the pipeline generally pumps water from the integrated kettle 1, exchanges heat from the water-to-water heat exchanger 16, and then controls the temperature of the power battery 6 and the central controller 4.
  • the pipeline of the third valve port 23 corresponds to controlling the power battery. 6
  • the pipeline of the fourth valve port 24 corresponds to the temperature of the central controller 4, and the specific cooling efficiency can be distributed through the three-way valve.
  • the integrated thermal management system forms different medium circuits by adjusting the opening and closing of each valve port inside the five-way valve 2 and the six-way valve 3, and controls the water-cooled heat exchanger 14, water-cooled condenser 15, and water-water heat exchanger 16 , heater air conditioner 81, car front radiator 5 and water heater 9, thereby realizing battery heating mode, heat pump electric drive waste heat recovery mode, battery heating electric drive waste heat recovery mode, electric drive cooling mode, battery forced One or more of the cooling mode, battery soaking mode, passenger cabin 8 heating mode, battery natural cooling mode, filling and exhaust mode, and crew cabin 8 defogging combined with battery heating mode.
  • the battery heating mode needs to be activated to maintain the battery temperature in cold weather and prevent the battery from being unable to start.
  • the pipeline is shown in Figure 7.
  • the central controller 4 controls the water heater 9, the No. 2 water pump 12 and the No. 3 water pump 13 to start.
  • the No. 5 valve port 35 is connected to the No. 4 valve port 34, and the No. 3 valve port 33 is connected to the No. 2 valve port 32.
  • the No. 3 water pump 13 provides power for the circuit controlled by the five-way valve 2 and replenishes the water volume. The entire circuit pumps water out from the No. 3 water pump 13, heats the water through the water-to-water heat exchanger 16, and then passes through the three-way Valve, a three-way valve is used to distribute the amount of water.
  • the specific amount of distribution is determined according to the temperature of the central controller 4 and the power battery 6. After the hot water heats the power battery 6 and the central controller 4, it continues to be pumped to the water through the No. 3 water pump 13. Heater 16 circulates. On the other side, the No. 2 water pump 12 pumps out the water and sends the water to the water-cooled condenser 15. At this time, the valve on the other side of the water-cooled condenser 15 is closed, so the water is not cooled here, and then the water passes through the water heater 9 It is heated, and then sent to the water-to-water heat exchanger 16 to heat the cold water of another circuit through the warm air air conditioner 81, and finally returns to the No. 3 valve port 33, the No. 2 valve port 32, and then returns to the No. 2 water pump 12. The heater air conditioner 81 is not started, so the passenger compartment 8 is not heated.
  • a loop is also formed, which starts from the second valve port 22, flows through the No. 1 water pump 11, the motor 7 and then returns to the fifth circuit. No. 35, and flows from the six-way valve 3 to the No. 4 valve 34, and then the pipeline corresponding to the No. 4 valve 34 leads to the first valve 21.
  • the first valve 21 is connected to the No. 4 valve in the five-way valve 2.
  • the second valve port 22 forms a complete circuit, but because the No. 1 water pump 11 is not turned on, the circuit does not have any medium flowing at this time, so it is not shown in the figure.
  • the above-mentioned medium loop is shown in Figure 8 and includes:
  • the No. 5 valve port 35 leads to the No. 4 and No. 6 valve ports 36, and the No. 1 valve port 31 leads to the No. 2 valve port 32.
  • the first valve port 21 and the fifth valve port 25 are connected, and the third valve port 23, the fourth valve port 24 and the second valve port 22 are connected.
  • the pipeline starts from the No. 1 water pump 11, enters the five-way valve 2 through the second valve port 22, and flows out of the five-way valve 2 from the third and fourth valve ports 24 to cool the power battery 6 and the central controller 4 respectively. Finally, it is collected through a three-way valve, passes through the water-cooled cooler, and then passes through the No. 3 water pump 13, enters the five-way valve 2 from the fifth valve port 25, and then flows out from the first valve port 21, and is divided into two parts through a three-way valve. Roads, one of which passes through the No. 4 valve port 34 and enters the six-way valve 3, the other passes through the car's front radiator 5 and then enters the six-way valve 3 from the No. 6 valve port 36, and then from the No. 5 valve port 35, passes through the motor 7 and returns To the No. 1 water pump 11, a loop is formed.
  • the No. 1 water pump 11, No. 3 water pump 13 and the car's front radiator 5 are started. Only the medium exists in the above loop, and the heat of the motor 7 is used to heat the battery and The central controller 4 realizes the heat recovery of the motor 7, and then reduces the medium temperature through the car's front radiator 5 to cool the motor 7 again. At this time, the car's front radiator 5 does not produce liquid refrigerant, and the water-cooled heat exchanger 14 and water-cooled condenser 15 do not start.
  • the No. 1 water pump 11, No. 3 water pump 13 and the car's front radiator 5 are started. Only the medium exists in the above circuit. At the same time, the car's front radiator 5 is cooled to generate liquid refrigerant, and then the water cooling exchanger is started. In the heat exchanger 14, the medium that has been cooled once by the car's front radiator 5 in the above circuit is cooled again through the water-cooled heat exchanger 14, so that the temperature of the medium is further reduced, thereby more effectively controlling the battery temperature.
  • the other circuit starts from the No. 2 valve port 32, passes through the pressure and replenishment of the No. 2 water pump 12, then flows through the water-cooled condenser 15, then passes through the water heater 9 and the warm air air conditioner 81, and finally flows from the No. 1 valve port 31 Return to the six-way valve 3 to form a loop.
  • the No. 2 water pump 12 in this circuit is only turned on when the heat pump electric drive heat recovery mode is performed, so that there is medium circulation. When the battery heating electric drive preheat recovery mode is performed, there is no medium circulation.
  • the vehicle air conditioning system is started, and the vehicle's front radiator 5 is used to cool the refrigerant into liquid and send it to the water-cooling heat exchanger 14.
  • the hot water flowing out from the power battery 6 and the central controller 4 is exchanged in the water-cooling heat exchanger 14, and the The refrigerant vaporizes, and the vaporized refrigerant enters the water-cooled condenser 15 and transfers heat to the medium flowing out of the No. 2 water pump 12 to heat the medium.
  • the medium with a higher temperature will send heat into the passenger cabin 8 through the heater air conditioner 81, thereby effectively Utilize the waste heat of the motor 7.
  • the water heater 9 is also turned on to adjust the medium to a comfortable temperature.
  • the medium loop is shown in Figure 9 and includes:
  • the No. 4 valve port 34, the No. 6 valve port 36 and the No. 5 valve port 35 are connected, and the No. 1 valve port 31 and the No. 2 valve port 32 are connected.
  • the third valve port 23, the fourth valve port 24 and the fifth valve port 25 are connected, and the first valve port 21 and the second valve port 22 are connected.
  • the circulation loop can be divided into three loops, which are called the first loop, the second loop and the third loop respectively.
  • the first circuit starts from the fifth valve port 25, is replenished and pressurized by the No. 3 water pump 13, flows through the water-to-water heat exchanger 16 and the water-cooled heat exchanger 14, and is divided into two circuits through a three-way valve. , flow through the power battery 6 and the central controller 4 respectively, and finally converge from the third valve port 23 and the fourth valve port 24 to the fifth valve port 25 respectively, forming a loop. There is no medium flowing in the other heat exchange pipeline of the water-to-water heat exchanger 16 in this loop, which is equivalent to no heat exchange.
  • the second circuit starts from the second valve port 22, replenishes and pressurizes water through the No. 1 water pump 11, then flows through the motor 7, enters the six-way valve 3 from the No. 5 valve port 35, and then distributes equally to the No. 6 valve port 36 and No. 4 valve port 34, and then the pipeline corresponding to No. 6 valve port 36 and the pipeline corresponding to No. 4 valve port 34 are collected to the first valve port 21 through a three-way valve, and return to the second valve port 21 from the five-way valve 2.
  • Valve port 22 starts from the second valve port 22, replenishes and pressurizes water through the No. 1 water pump 11, then flows through the motor 7, enters the six-way valve 3 from the No. 5 valve port 35, and then distributes equally to the No. 6 valve port 36 and No. 4 valve port 34, and then the pipeline corresponding to No. 6 valve port 36 and the pipeline corresponding to No. 4 valve port 34 are collected to the first valve port 21 through a three-way valve, and return to the second valve port 21 from the five-
  • the third circuit starts from the No. 2 valve port 32, passes through the water replenishment and pressurization of the No. 2 water pump 12, and then passes through the water-cooled condenser 15, the water heater 9 and the warm air air conditioner 81, and then returns to the No. 6 valve port 31. Pass valve 3, and return to No. 2 valve port 32 from the six-way valve 3.
  • the car's front radiator 5 provides liquid refrigerant to start the water-cooled heat exchanger 14, and the medium After passing through the water-cooled heat exchanger 14 in the first loop, the liquid refrigerant vaporizes and quickly cools the medium to a lower temperature, thereby greatly improving the battery cooling efficiency, while the gaseous refrigerant flows back to the car's front radiator 5 for re-cooling circulate into liquid.
  • the pipeline diagram is as shown in Figure 10.
  • the fourth valve port 34, the sixth valve port 36 and the fifth valve port 35 are connected.
  • the No. 1 valve port 31 and the No. 2 valve port 32 are connected.
  • the third valve port 23, the fourth valve port 24 and the fifth valve port 25 are connected.
  • the circuit that plays the main role of cooling the battery starts from the No. 3 water pump 13, passes through the water-to-water heat exchanger 16 and the water-cooled condenser 15, and then is sent to the power battery 6 and the central controller 4 through a three-way valve.
  • the hot water is sent The water enters the five-way valve 2 through the third valve port 23 and the fourth valve port 24, flows out from the fifth valve port 25, and returns to the integrated kettle 1 from the third water pump 13, using the natural heat dissipation of the entire circuit to cool the battery.
  • the No. 2 water pump 12 and the No. 1 water pump 11 can also be turned on at the same time, extracting hotter water from the integrated kettle 1 to circulate in their corresponding pipelines for heat dissipation, and finally return the cooled water to the integrated kettle 1 for No. 3.
  • the medium loop includes:
  • the No. 4 valve port 34, the No. 5 valve port 35 and the No. 6 valve port 36 are connected, and the No. 3 valve port 33 and the No. 2 valve port 32 are connected.
  • the second valve port 22 In the five-way valve 2, the second valve port 22, the third valve port 23 and the fourth valve port 24 are connected, and the first valve port 21 and the fifth valve port 25 are connected.
  • One of the circuits starts from the No. 1 water pump 11 and flows through the motor 7 to the No. 5 valve port 35 of the six-way valve 3. Then it is divided into two paths in the six-way valve 3. One path flows out from the No. 4 valve port 34, and the other path flows out from the No. 6 valve port 34. Outflow from the No. 4 valve port 36, the pipeline corresponding to the No. 4 valve port 34 and the pipeline corresponding to the No. 6 valve port 36 are collected through a three-way valve and sent to the first valve port 21 of the five-way valve 2, and from the five-way valve 2 flows out from the fifth valve port 25. After passing through the No. 3 water pump 13, it flows through the water-to-water heat exchanger 16 and the water-cooled heat exchanger 14.
  • the other circuit starts from the No. 2 water pump 12, passes through the water-cooled condenser 15, the water heater 9 and the warm air air conditioner 81 and is divided into two circuits.
  • One path flows through the water-to-water heat exchanger 16 and then flows from the No. 3 valve of the six-way valve 3.
  • Port 33 returns to the six-way valve 3, the other path returns to the six-way valve 3 from the No. 1 valve port 31, and finally flows out from the No. 2 valve port 32 back to the No. 2 water pump 12, forming another circuit.
  • the non-condensable air bubbles can be taken out of the pipeline and finally collected into the integrated kettle 1.
  • the pipeline diagram is as shown in Figure 12, including:
  • the No. 4 valve port 34, the No. 5 valve port 35 and the No. 6 valve port 36 are connected, and the No. 3 valve port 33 and the No. 2 valve port 32 are connected.
  • the third valve port 23, the fourth valve port 24 and the fifth valve port 25 are connected, and the first valve port 21 and the second valve port 22 are connected.
  • water is pumped out from the No. 2 water pump 12, heated to a sufficient temperature in the water heater 9, and dissipates part of the heat to the passenger cabin 8 through the warm air core to increase the temperature of the passenger cabin 8.
  • another part of the hot water flows to the water-to-water heat exchanger 16 to heat the water in the second circuit, thereby heating the battery and the central controller 4 to achieve heating of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种集成式热管理装置,包括集成水壶(1),其用于容纳介质,集成水壶(1)带有用于泵出、泵入或者加压介质的一号水泵(11)、二号水泵(12)和三号水泵(13);安装于集成水壶(1)表面的水冷换热器(14)、水冷冷凝器(15)、水水换热器(16)、五通阀(2)和六通阀(3);水冷换热器(14)、水冷冷凝器(15)、水水换热器(16)均与五通阀(2)和/或六通阀(3)管路连接。还包括一种集成式热管理***。通过调整六通阀和五通阀的内部流通路径,使得电驱、电池和乘员舱等领域的热量可以合理的分配,减少热量不必要的散耗,并降低热泵低压侧不可逆损失,实现整体能耗最优、体验最佳。

Description

集成式热管理装置及***
相关申请的交叉引用
本申请要求于2022年4月29日提交、申请号为CN202210474716.X且名称为“集成式热管理装置及***”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容涉及一种汽车热管理技术领域,具体涉及一种集成式热管理装置及***。
背景技术
目前,电动汽车以动力电池为驱动装置动力来源,伴随电动汽车的不断发展,热管理***逐渐得到关注。
目前,主流的电池热管理***主要包括两个回路:一个为包括压缩机、蒸发器、冷凝器或者加热器、热交换器等构件组成的制冷或制热回路;一个为包括水泵、热交换器、动力电池箱的冷却回路;在回路中,通常会旁接水壶为回路补偿介质,其功能单一,而且动力电池热管理***在每种工作模式下的回路均需设置一个膨胀水壶,导致零部件较多、成本较高等弊端,同时由于各部分功能相互独立,热量浪费严重;此外,现有的热管理***设计的模式越来越多,结构也越来越复杂,热管理***中的诸多的设备均需要占用相当大的空间,这对于未来追求部分电动车小型化带来了不利的影响。
发明内容
本公开内容提供一种集成式热管理装置及***,可以集成式的进行热管理,合理的利用不同分区的热量,降低能耗,同时省去多于的水壶、管路和管理设备,使得结构简单,节省成本,易于小型化。
一方面,本公开内容提供了一种集成式热管理装置,包括:集成水壶,其用于容纳介质,所述集成水壶带有用于泵出、泵入或者加压介质的一号水泵、二号水泵和三号水泵;热管理部件,其包括安装于集成水壶表面的水冷换热器、水冷冷凝器、水水换热器、五通阀和六通阀;水冷换热器、水冷冷凝器、水水换热器均与五通阀和/或六通阀管路连接,热管理部件与集成水壶 管路连接;所述水冷换热器还与车辆空调***中的液态冷媒管路连接,所述水冷冷凝器还与车辆空调***中的气态冷媒管路连接。
另一方面,本公开内容提供了一种集成式热管理***,安装于具有中央控制器、汽车前散热器、动力电池、电机和乘员舱的车辆,其中乘员舱设置有暖风空调,包括:如前述的集成式热管理装置;水加热器,安装于车辆;
所述汽车前散热器、动力电池、电机和暖风空调与热管理部件管路连接;
所述中央控制器与所述集成式热管理装置信号连接,通过调节所述集成式热管理装置的热管理部件来调整汽车前散热器、动力电池、电机和暖风空调和热管理部件中的介质流向,来进行电机、动力电池和乘员舱的热管理控制。
本公开内容所提供的集成式热管理装置及***,采用了一体化架构设计,通过调整六通阀和五通阀的内部流通路径,使得电驱、电池和乘员舱等领域的热量可以合理的分配,减少热量不必要的散耗,并降低热泵低压侧不可逆损失,实现整体能耗最优、体验最佳。同时本申请将热管理***集成化,模块化设计,可以将热管理模块打包适配不同车型;同时总成化减少零件数量,减少管路,带来零件成本和装配成本的降低;并且模块零件控制集成。
附图说明
图1示出了依据本公开一些实施例的集成式热管理装置的主视图;
图2为图1所示实施例的轴侧视角的分解示意图;
图3与图2不同视角的结构示意图;
图4为五通阀的结构示意图;
图5为六通阀的结构示意图;
图6示出了依据本公开一些实施例的集成式热管理***的管路示意图;
图7为图6所示的一些实施例中启动电池加热模式时有介质流通的管路示意图;
图8为图6所示一些实施例中,启动热泵型电驱余热回收模式或电池加热型电驱余热回收模式时,有介质流通的管路示意图;
图9为图6所示的一些实施例中,启动电驱冷却模式、电池强制冷却模式、电池均热模式或乘员舱加热模式时,有介质流通的管路示意图;
图10为图6所示的一些实施例中,启动电池自然冷却模式时,有介质流通的管路示意图;
图11为图6所示的一些实施例中,启动加注排气模式时,有介质流通的管路示意图;
图12为图6所示的一些实施例中,启动乘员舱除雾联合电池加热模式时,有介质流通的管路示意图。
具体实施方式
本公开内容提供一种集成式热管理装置,包括集成水壶1、热管理部件和水冷换热器14。本公开内容的一些实施例以及后续实施例中,介质均选用水,本领域技术人员也可以根据情况选择其他合适的介质。本公开内容的一些实施例以及后续实施例中,如图6至图12所示,通过管路图进行表示的附图中,粗实线为可能有介质流经的管路,细实线为跟本公开内容相关的其他管线,同时箭头仅表示其中一种情况下的介质流通方向,并不代表介质一定依照箭头方向流通,并且在图7至图12中,将对应情况下不流通介质的管路隐去。
其中集成水壶1是用于储藏介质的位置,除了水也可以是其他类型安全的液体。具体的,如图1、图2和图3所示的一些实施例中,集成水壶1分为上下两部分,其中下部分整体结构较为结实,用以承载其他部件以及连接其他部件,而上部分较为轻盈,上下部份之间可拆卸连接,方便在必要的时候打开上部分的,对集成水壶1进行清洗。集成水壶1的***还设置有三个水泵,分别是一号水泵11、二号水泵12和三号水泵13,作用是将继承水泵内的介质泵出,还用于在水泵构成回路的一部分时给回路内的水流加压。
热管理部件是介质换热的主要部分,另外也是调整介质流向的部件。其中换热的部分包括水冷换热器14,水冷冷凝器15和水水换热器16,调整流向的部分包括六通阀3和五通阀2。
水冷换热器14的其中一条管路用于接受车辆空调***中的液体冷媒,用来冷却另一条管路中的介质,冷媒汽化后,与乘员舱8内的空调冷却之后产生的气体冷媒混合,进入水冷冷凝器15,将热量进行交换,然后回到汽车前散热器5进行强制冷却成液体。
而五通阀2和六通阀3则是控制介质流向的装置,可以通过转动五通阀2和六通阀3来切换管路。
一些实施例中,上述六通阀3包括六通壳体37,上述六通壳体37周向均匀设置有六个用于连接管路的阀口,阀口连接向各个管路,内部的芯体如 图5所示,六通芯体38内有两个流通槽39,流通槽39在特定情况下最多会将三个阀口连通,例如图5中靠下的流通槽39能让下方三个阀口连通。当转动到如同靠近右上角的位置时,会使上方和右上方两个阀口连通。为了方便叙述,六通阀3的六个阀口分别命名为一号阀口31、二号阀口32、三号阀口33、四号阀口34、五号阀口35和六号阀口36,因为六通阀3的六个阀口连接在阀体上的位置是周向均布的,所以可以以任意一个阀口朝上命名为二号阀口32,并不影响功能,在本公开内容的一些实施例以及后续实施例中,以图5所示方向,将朝左上的阀口命名为一号阀口31,并且沿顺时针依次命名为二号阀口32、三号阀口33、四号阀口34、五号阀口35和六号阀口36。
而上述五通阀2结构并不中心对称,所以具有特定的安装方向,不能任意调换特定阀口的安装位置,以图4中靠近左方为第一阀口21、然后沿顺时针一次命名为第二阀口22、第三阀口23、第四阀口24和第五阀口25。以第二阀口22和第五阀口25的连线为界,第一阀口21的位置将左侧的阀体二等分,第三阀口23和第四阀口24的位置将右侧阀体三等分,图4中此时第一连通槽28将第二阀口22和第三阀口23连通。而第一连通槽28主要是将相邻两个阀口连通,第二连通槽29主要将右侧范围内相间的两个阀口连通,具体的,当转动到特定角度时,第一连通槽28和第二连通槽29可以将第二阀口22同时与第三阀口23和第四阀口24连通,或者将第五阀口25同时与第三阀口23和第四阀口24连通。
本公开内容还提供一种集成式热管理***,主要应用于汽车上,在实施本公开内容时,要求车辆至少具备中央控制器4、汽车前散热器5、动力电池6、电机7和乘员舱8这些部件,同时乘员舱8还应当具有热风空调。
中央控制器4一般是指汽车的行车电脑,主要起到判断和控制的作用,驾驶员一般通过中央控制器4下发指令控制本公开内容来实现特定的热管理模式。
汽车前散热器5是主要安装在车头的散热器,借助车头在行进过程中产生的剧烈气流来强制换热,换热效率较高,同时将车辆空调***中的气态冷媒液化。本公开内容中,汽车前散热器5中冷却得到的液态冷媒管路通过一个三通阀分为两路,其中一路连向水冷换热器14,另一路连向乘员舱8的蒸发芯体,在蒸发芯体中蒸发制冷,来冷却乘员舱8。水冷换热器14和蒸发芯体中出来的均为气态冷媒,两路气态冷媒通过一个三通阀汇总,流向水冷冷凝器15,将热量传递给介质回路,然后再流回汽车前散热器5中冷却成液态, 如此循环往复。如图6所示,本公开内容中的介质回路和上述冷媒的冷却在汽车前散热器5的不同位置,管路之间互相不影响。
动力电池6是车辆中储存电力的地方,电机7是消耗电能的位置,两者均具有较大的产热量,可以通过本公开内容将其中部分热量转移用来加热车辆其他位置,既起到对动力电池6散热的效果,又降低了整体能耗。乘员舱8是乘客和驾驶员所处的位置,一般需要调节乘员舱8内温度达到一个比较舒适的温度,在天气冷的时候需要加热,可以将车辆其他产热位置的热量搬运过来加热乘员舱8,在天气热的时候可以和其他部件一同使用制冷设备,提高换热效率,暖风空调81是换热部件,一般是将管路里的介质和乘员舱8进行换热,在介质温度较高时对介质降温,对乘员舱8吹热风。
本公开内容还包括前述的集成式热管理装置,以及水加热器9。上述汽车前散热器5、动力电池6、电机7和暖风空调81与热管理部件管路连接。所述中央控制器4与所述集成式热管理装置信号连接,通过调节所述集成式热管理装置的热管理部件来调整汽车前散热器5、动力电池6、电机7和暖风空调81和热管理部件中的介质流向,来进行电机7、动力电池6和乘员舱8的热管理控制。其具体的,中央控制器4主要控制的是五通阀2和六通阀3内部的连通关系,以将介质导向不同的管路,同时,还控制一号水泵11、二号水泵12、三号水泵13、汽车前散热器5、动力电池6、电机7和暖风空调81的启闭,以实现不同的热管理模式。
在其中一些实施例中,如图6所示,集成式热管理***的管路连接状态如下:
所述五通阀2上设置有第一阀口21、第二阀口22、第三阀口23、第四阀口24、第五阀口25。
所述六通阀3上设置有一号阀口31、二号阀口32、三号阀口33、四号阀口34、五号阀口35和六号阀口36。
在默认管路中所有阀门敞开的情况下,所述一号阀口31伸出的管路通过一个三通阀分为两路,其中一路经过水水换热器16回流到三号阀口33,另一路依次通过暖风空调81、水加热器9、水冷冷凝器15、集成水壶1的二号水泵12到达二号阀口32。也即一号阀口31、二号阀口32和三号阀口33所对应的管道通过一个三通阀互相连通。其中,一号阀口31的作用主要是将介质回收到六通阀3内,二号阀口32的主要作用是将介质送往水水换热器16进行热交换,以利用电池热量,三号阀口33的主要作用是将介质送往加热器 或者暖风空调81,利用介质内的余热来加热乘员舱8,也可以依靠水加热器9来加热介质以供其他部位使用。
所述四号阀口34伸出的管路通过一个三通阀分为两路,其中一路通向第一阀口21,另一路通过汽车前散热器5后通向六号阀口36。具体的,是四号阀口34对应的管路、六号阀口36对应的管路以及第一阀口21对应的管路互相之间通过一个三通阀连接起来,四号阀口34对应的管路是将六通阀3内介质直接送往五通阀2,六号阀口36对应的管路是将介质送往车前冷却器内强制冷却到一个较低温度后再送往五通阀2,而第一阀口21对应的管路是用来接收来自六通阀3的介质。
所述五号阀口35伸出的管路依次通过电机7、一号水泵11后通向第二阀口22。具体的,电机7在本公开内容的一些实施例以及后续实施例中,统称车辆上的电动机、附属于电动机的控制设备以及附属于电动机的变电设备,例如用在商用车上的前电动机、后电动机以及一般车辆上的DC/DC(DC-DC converter,直流到直流的变电器)、OBC(On Board Charger,车载充电器)、PDU(Power Distribution Unit,电源分配单元),通过五通阀2的第二阀口22将冷水送出,经过电机7后送回六通阀3内,由六通阀3分配向进行冷却的机构。
所述第五阀口25伸出的管路依次通过三号水泵13、水水换热器16后通过一个三通阀分为两路,并且其中一路经过动力电池6后连接于第三阀口23,另一路通过中央控制器4后连接于第四阀口24。具体的,第五阀口25对应的管路、第三阀口23对应的管路和第四阀口24对应的管路互相通过一个三通阀连通,构成一个回路,第五阀口25对应的管路一般是从集成水壶1冲抽水,以及从水水换热器16中交换热量,然后去控制动力电池6和中央控制器4的温度,第三阀口23的管路对应控制动力电池6的温度,第四阀口24的管路对应控制中央控制器4的温度,具体降温效率可以通过三通阀来分配水量。
所述集成式热管理***通过调节五通阀2和六通阀3内部各阀口的通断形成不同的介质回路、以及控制水冷换热器14、水冷冷凝器15、水水换热器16、暖风空调81、汽车前散热器5和水加热器9,进而实现用于实现电池加热模式、热泵型电驱余热回收模式、电池加热型电驱余热回收模式、电驱冷却模式、电池强制冷却模式、电池均热模式、乘员舱8加热模式、电池自然冷却模式、加注排气模式和乘员舱8除雾联合电池加热模式中的一种或多种。
在其中一些实施例中,需要启动电池加热模式,用来在寒冷天气下保持 电池温度,避免电池无法启动,其管路如图7所示。在这种模式下,中央控制器4控制水加热器9、二号水泵12和三号水泵13启动。
同时,在六通阀3内,五号阀口35和四号阀口34连通,三号阀口33和二号阀口32连通。在五通阀2内,第三阀口23、第四阀口24和第五阀口25连通,第一阀口21和第二阀口22连通。具体的,此时三号水泵13为五通阀2控制的回路提供动力,以及补充水量,整个回路从三号水泵13将水泵出,经过水水换热器16将水加热,然后通过三通阀,利用三通阀分配水量,具体的分配量根据中央控制器4和动力电池6的温度确定,热水在加热动力电池6和中央控制器4后通过三号水泵13继续泵向水水换热器16进行循环。而另一边,二号水泵12将水泵出,将水送到水冷冷凝器15,而此时水冷冷凝器15的另一路的阀门关闭,所以水不在此处冷却,然后水通过水加热器9进行加热,经过暖风空调81后送到水水换热器16加热另一个回路的冷水,最后回到三号阀口33回到二号阀口32,再回到二号水泵12。其中暖风空调81并未启动,所以不向乘员舱8加热。
而本公开内容中,因为六通芯体38和五通芯体27的结构原因,还构成一条回路,其是从第二阀口22出发,流经一号水泵11、电机7后回到五号阀口35,并从六通阀3内流向四号阀口34,然后四号阀口34对应的管路通向第一阀口21,第一阀口21在五通阀2内连通于第二阀口22,构成一条完整回路,但是因为一号水泵11并未开启,此时这条回路并未流通介质,所以在图中并未示出。
在一些实施例中,需要启动热泵型电驱余热回收模式或、电池加热型电驱余热回收模式或电池双重冷却模式时,上述介质回路如图8所示,包括:
在六通阀3内,五号阀口35通向四号和六号阀口36,一号阀口31通向二号阀口32。在五通阀2内,第一阀口21和第五阀口25连通,第三阀口23、第四阀口24和第二阀口22连通。
具体的,管路从一号水泵11出发,由第二阀口22进入五通阀2,并从第三和第四阀口24流出五通阀2,分别冷却动力电池6和中央控制器4后,通过一个三通阀汇集,经过水冷冷却器,然后通过三号水泵13,从第五阀口25进入五通阀2,然后从第一阀口21流出,通过一个三通阀分为两路,其中一路通过四号阀口34进入六通阀3,另一路经过汽车前散热器5后从六号阀口36进入六通阀3,然后从五号阀口35,经过电机7后回到一号水泵11,形成回路。
当启动电池加热型电驱预热回收模式时,启动一号水泵11、三号水泵13和汽车前散热器5,仅在上述回路中存在介质,电机7的热量在循环过后用于加热电池和中央控制器4,实现电机7的热量回收,然后通过汽车前散热器5将介质温度降低以便于再次冷却电机7。此时汽车前散热器5不产生液态冷媒,水冷换热器14和水冷冷凝器15不启动。
当启动电池双重冷却模式时,启动一号水泵11、三号水泵13和汽车前散热器5,仅在上述回路中存在介质,同时此时汽车前散热器5冷却生成液态冷媒,进而启动水冷换热器14,在上述回路中经过汽车前散热器5冷却过一次的介质通过水冷换热器14再次进行冷却,使得介质温度进一步降低,从而更有效的控制电池温度。
另一个回路是从二号阀口32出发,经过二号水泵12的加压和补水,然后流经水冷冷凝器15,再经过水加热器9和暖风空调81,最后从一号阀口31回到六通阀3内,形成一个回路。这个回路中的二号水泵12仅在进行热泵式电驱热回收模式时才开启,从而有介质流通,在进行电池加热型电驱预热回收模式时相当于没有介质流通。同时启动车辆空调***,利用汽车前散热器5将冷媒冷却至液体送往水冷换热器14,从动力电池6和中央控制器4中流出的热水在水冷换热器14中换热,将冷媒汽化,汽化的冷媒进入水冷冷凝器15,将热量传递给从二号水泵12中流出的介质,加热介质,温度较高的介质会通过暖风空调81将热量送入乘员舱8,进而有效的利用电机7的余热。同时,有一些实施例中还会开启水加热器9来将介质调节到令人舒适的温度。
一些实施例中,当启动电驱冷却模式、电池强制冷却模式、电池均热模式和乘员舱8加热模式中的一种时,所述介质回路如图9所示,包括:
在六通阀3内,四号阀口34、六号阀口36和五号阀口35连通,一号阀口31和二号阀口32连通。
在五通阀2内,第三阀口23、第四阀口24和第五阀口25连通,第一阀口21和第二阀口22连通。
具体的,流通的回路可以分为三个回路,分别称为第一条回路、第二条回路和第三条回路。
其中,第一条回路从第五阀口25出发,经过三号水泵13的补水和加压,流经水水换热器16、水冷换热器14后,通过一个三通阀分为两路,分别流经动力电池6和中央控制器4,最后分别从第三阀口23和第四阀口24汇集到第五阀口25,形成一个回路。该回路中水水换热器16的另一条换热管路中并没 有介质流通,相当于没有进行换热。
第二条回路从第二阀口22出发,通过一号水泵11补水和加压,然后流经电机7,从五号阀口35进入六通阀3,然后均等分配向六号阀口36和四号阀口34,然后六号阀口36对应的管路和四号阀口34对应的管路通过一个三通阀汇集到第一阀口21,并从五通阀2内回到第二阀口22。
第三条回路从二号阀口32出发,经过二号水泵12的补水和加压,然后依次通过水冷冷凝器15、水加热器9和暖风空调81后从一号阀口31回到六通阀3,从六通阀3内回到二号阀口32。
当需要启动电驱冷却模式时,仅启动一号水泵11和汽车前散热器5,此时仅有第二条回路内有介质流通,用于将电机7内的热量通过汽车前散热器5强制冷却。
当需要启动电池强制冷却模式时,启动三号水泵13,进而使得第一条回路中有介质流通,同时启动汽车前散热器5,汽车前散热器5提供液态冷媒启动水冷换热器14,介质在第一条回路中经过水冷换热器14后,液态冷媒汽化,将介质迅速冷却至一个较低的温度,从而使得电池冷却效率大大提高,而气态的冷媒流回汽车前散热器5重新冷却成液体进行循环。
当需要启动电池均热模式时。启动三号水泵13和二号水泵12,使得第一条回路和第三条回路中均有介质流通,然后启动汽车前散热器5,将液态冷媒通向水冷换热器14,使得水冷换热器14启动冷却第一条回路中的介质,冷却后的气态冷媒流向水冷冷凝器15,加热第三条回路中的介质,第三条回路中的介质被升温,热的介质通过第三条回路中的暖风空调81加热乘员舱8,利用电池的余热实现均热效果。
当需要启动乘员舱8加热模式时,启动二号水泵12,此时仅有第三条回路中有介质流通,并启动水加热器9,将介质加热至合适的温度,然后同暖风空调81将热量送往乘员舱8。
一些实施例中,当启动电池自然冷却模式,其管路图如图10所示,在所述六通阀3内,四号阀口34、六号阀口36和五号阀口35连通,一号阀口31和二号阀口32连通。在所述五通阀2内,第三阀口23、第四阀口24和第五阀口25连通。
其中起到主要冷却电池作用的回路是从三号水泵13中出发,经过水水换热器16、水冷冷凝器15后通过一个三通阀送向动力电池6和中央控制器4,热水送回通过第三阀口23、第四阀口24进入五通阀2,并从第五阀口25流 出,从三号水泵13出送回集成水壶1,利用整个回路的自然散热来冷却电池,同时二号水泵12和一号水泵11也可以同时开启,从集成水壶1中抽取较热的水在各自对应的管路中循环散热,最后将冷却后的水送回集成水壶1供三号。
一些实施例中,在循环次数多了以后,在管路内会累积不凝气的气泡,需要连通尽可能多的管路,循环流动,最终将不凝气的气泡送入集成水壶1,然后打开集成水壶1将不凝气排除。此时所述介质回路如图11所示包括:
在六通阀3内,四号阀口34、五号阀口35和六号阀口36连通,三号阀口33和二号阀口32连通。
在五通阀2内,第二阀口22、第三阀口23和第四阀口24连通,第一阀口21和第五阀口25连通。
并且启动一号水泵11、二号水泵12和三号水泵13,此时构成两个回路。
其中一个回路从一号水泵11出发,经过电机7流向六通阀3的五号阀口35,然后在六通阀3内均分成两路,一路从四号阀口34流出,另一路从六号阀口36流出,四号阀口34对应的管路和六号阀口36对应的管路通过一个三通阀汇集,送向五通阀2的第一阀口21,并从五通阀2的第五阀口25流出,经过三号水泵13后流过水水换热器16、水冷换热器14后,通过一个三通阀分为两路,其中一路流经动力电池6,另一路流经中央控制器4,然后分别从第三阀口23和第四阀口24流入五通阀2,最后从五通阀2的第二阀口22流出,回到一号水泵11,形成回路。
另一个回路从二号水泵12出发,经过水冷冷凝器15、水加热器9和暖风空调81后分为两路,一路流经水水换热器16后从六通阀3的三号阀口33回到六通阀3,另一路从一号阀口31回到六通阀3,最后从二号阀口32流出回到二号水泵12,形成另一个回路。
两个回路持续运转一段时间,就可以将不凝气的气泡从管路中带出,最终汇集到集成水壶1中。
一些实施例中,当需要启动乘员舱8除雾联合电池加热模式时,其管路图如图12所示,包括:
在六通阀3内,四号阀口34、五号阀口35和六号阀口36连通,三号阀口33和二号阀口32连通。
在五通阀2内,第三阀口23、第四阀口24和第五阀口25连通,第一阀口21和第二阀口22连通。
在本公开内容中有两个回路,其中一个回路中,从二号水泵12出发,流经水冷冷凝器15、水加热器9、暖风空调81后通过三通阀,然后流经水水换热器16,从六通阀3的三号阀口33流回六通阀3,并从二号阀口32流出,回到二号水泵12,形成一个回路,这个回路仅在本公开内容中称为第一条回路。
另一个回路中,从三号水泵13出发,流经水水换热器16、水冷换热器14后经过一个三通阀分为两路,一路流向动力电池6,另一路流向中央控制器4,然后分别从第三阀口23和第四阀口24流向五通阀2,最后从五通阀2的第五阀口25流出,回到三号水泵13,这个回路仅在本实施例中称为第二条回路。
第一条回路中,水被从二号水泵12中泵出,在水加热器9中加热到足够温度,并通过暖风芯体将一部分热量发散向乘员舱8,提高乘员舱8温度,用于除雾,另一部分热水流向水水换热器16,来加热第二条回路中的水,从而加热电池和中央控制器4,实现对电池的加热。
以上所举实施例为本发明的较佳实施方式,仅用来方便说明本发明,并非对本发明作任何形式上的限制,任何所述技术领域中具有通常知识者,若在不脱离本发明所提技术特征的范围内,利用本发明所揭示技术内容所作出局部更动或修饰的等效实施例,并且未脱离本发明的技术特征内容,均仍属于本发明技术特征的范围内。

Claims (10)

  1. 一种集成式热管理装置,包括:
    集成水壶,其用于容纳介质,所述集成水壶带有用于泵出、泵入或者加压介质的一号水泵、二号水泵和三号水泵;
    热管理部件,其包括安装于集成水壶表面的水冷换热器、水冷冷凝器、水水换热器、五通阀和六通阀;
    水冷换热器、水冷冷凝器、水水换热器均与五通阀和/或六通阀管路连接,热管理部件与集成水壶管路连接;
    所述水冷换热器还与车辆空调***中的液态冷媒管路连接;所述水冷冷凝器还与车辆空调***中的气态冷媒管路连接。
  2. 根据权利要求1所述的一种集成式热管理装置,其中,所述六通阀包括:
    六通壳体,其设置有六个均匀周向排列的阀口
    六通芯体,其包括一对流通槽,每个流通槽最多使得三个相邻的阀口连通,且一对流通槽中最多有一个流通槽使得三个相邻的阀口连通;
    所述五通阀包括:
    五通壳体,其设置有五个阀口,分别为第一阀口、第二阀口、第三阀口、第四阀口、第五阀口,其中第二阀口和第五阀口位于同一直线上且沿五通壳体的几何中心对称设置,第一阀口位于第二阀口和第五阀口所在直线的一侧,第三阀口和第四阀口位于另一侧;
    五通芯体,其包括一对第一连通槽和一对第二连通槽,每个第一连通槽最多使得相邻的两个阀口连通,每个第二连通槽使得第二阀口和第四阀口连通或者使得第三阀口和第五阀口连通。
  3. 一种集成式热管理***,安装于具有中央控制器、汽车前散热器、动力电池、电机和乘员舱的车辆,其中乘员舱设置有暖风空调,所述集成式热管理***包括:
    如权利要求1所述集成式热管理装置;
    水加热器,安装于车辆;
    所述汽车前散热器、动力电池、电机和暖风空调与热管理部件管路连接;所述中央控制器与所述集成式热管理装置信号连接,通过调节所述集成式热管理装置的热管理部件来调整汽车前散热器、动力电池、电机和暖风空调和热管理部件中的介质流向,来进行电机、动力电池和乘员舱的热管理控制。
  4. 根据权利要求3所述的一种集成式热管理***,其中,所述五通阀上设置有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口;所述六通阀上设置有一号阀口、二号阀口、三号阀口、四号阀口、五号阀口和六号阀口;
    所述一号阀口伸出的管路通过一个三通阀分为两路,其中一路经过水水换热器回流到三号阀口,另一路依次通过暖风空调、水加热器、水冷冷凝器、集成水壶的二号水泵到达二号阀口;
    所述四号阀口伸出的管路通过一个三通阀分为两路,其中一路通向第一阀口,另一路通过汽车前散热器后通向六号阀口;
    所述五号阀口伸出的管路依次通过电机、一号水泵后通向第二阀口;
    所述第五阀口伸出的管路依次通过三号水泵、水水换热器后通过一个三通阀分为两路,并且其中一路经过动力电池后连接于第三阀口,另一路通过中央控制器后连接于第四阀口;
    所述集成式热管理***通过调节五通阀和六通阀内部各阀口的通断形成不同的介质回路、以及控制一号水泵、二号水泵、三号水泵、水冷换热器、水冷冷凝器、水水换热器、暖风空调、汽车前散热器和水加热器的启闭,进而启动电池加热模式、热泵型电驱余热回收模式、电池加热型电驱余热回收模式、电池双重冷却模式、电驱冷却模式、电池强制冷却模式、电池均热模式、乘员舱加热模式、电池自然冷却模式、加注排气模式和乘员舱制冷模式中的一种或多种。
  5. 根据权利要求4所述的一种集成式热管理***,其中,当需要启动电池加热模式时,启动水加热器、二号水泵和三号水泵,所述介质回路包括:
    在六通阀内,五号阀口和四号阀口连通,三号阀口和二号阀口连通;
    在五通阀内,第三阀口、第四阀口和第五阀口连通,第一阀口和第二阀口连通。
  6. 根据权利要求4所述的一种集成式热管理***,其中,当启动热泵型电驱余热回收模式、电池加热型电驱余热回收模式和电池双重冷却模式时,所述介质回路包括:
    在六通阀内,五号阀口通向四号和六号阀口,一号阀口通向二号阀口;
    在五通阀内,第一阀口和第五阀口连通,第三阀口、第四阀口和第二阀口连通;
    当需要启动热泵型电驱余热回收模式时,启动一号水泵、二号水泵、三号水泵、水冷换热器、水冷冷凝器、汽车前散热器和暖风空调;
    当需要启动电池加热型电驱余热回收模式时,启动一号水泵、三号水泵和汽车前散热器;
    当需要启动电池双重冷却模式时,启动一号水泵、三号水泵、水冷换热器、汽车前散热器。
  7. 根据权利要求4所述的一种集成式热管理***,其中,当启动电驱冷却模式、电池强制冷却模式、电池均热模式和乘员舱加热模式中的一种时,所述介质回路包括:
    在六通阀内,四号阀口、六号阀口和五号阀口连通,一号阀口和二号阀口连通;
    在五通阀内,第三阀口、第四阀口和第五阀口连通,第一阀口和第二阀口连通;
    当需要启动电驱冷却模式时,启动一号水泵和汽车前散热器;
    当需要启动电池强制冷却模式时,启动三号水泵、汽车前散热器和水冷换热器;
    当需要启动电池均热模式时,启动二号水泵、三号水泵、汽车前散热器、水冷换热器和水冷冷凝器;
    当需要进行乘员舱加热模式时,启动二号水泵、水加热器和暖风空调。
  8. 根据权利要求4所述的一种集成式热管理***,其中,当启动电池自然冷却模式时,三号水泵处于启动状态,且一号水泵和二号水泵处于开启状态或非开启状态,所述介质回路包括:
    在所述六通阀内,四号阀口、六号阀口和五号阀口连通,一号阀口和二号阀口连通;
    在所述五通阀内,第三阀口、第四阀口和第五阀口连通。
  9. 根据权利要求4所述的一种集成式热管理***,其中,当启动加注排气模式时,启动一号水泵、二号水泵和三号水泵,所述介质回路包括:
    在六通阀内,四号阀口、五号阀口和六号阀口连通,三号阀口和二号阀口连通;
    在五通阀内,第二阀口、第三阀口和第四阀口连通,第一阀口和第五阀口连通。
  10. 根据权利要求4所述的一种集成式热管理***,其中,当启动乘员舱除雾联合电池加热模式时,启动水加热器、暖风空调、二号水泵和三号水泵,所述介质回路包括:
    在六通阀内,四号阀口、五号阀口和六号阀口连通,三号阀口和二号阀口连通;
    在五通阀内,第三阀口、第四阀口和第五阀口连通,第一阀口和第二阀口连通。
PCT/CN2022/128801 2022-04-29 2022-10-31 集成式热管理装置及*** WO2023207010A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22929219.8A EP4303044A1 (en) 2022-04-29 2022-10-31 Integrated thermal management apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210474716.XA CN114851802B (zh) 2022-04-29 2022-04-29 一种集成式热管理装置及***
CN202210474716.X 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207010A1 true WO2023207010A1 (zh) 2023-11-02

Family

ID=82636070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128801 WO2023207010A1 (zh) 2022-04-29 2022-10-31 集成式热管理装置及***

Country Status (3)

Country Link
EP (1) EP4303044A1 (zh)
CN (1) CN114851802B (zh)
WO (1) WO2023207010A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851802B (zh) * 2022-04-29 2024-07-19 岚图汽车科技有限公司 一种集成式热管理装置及***
DE102022210903A1 (de) 2022-10-14 2024-04-25 Zf Friedrichshafen Ag Verteilermodul für ein Thermomanagementsystem, System umfassend eine Wärme-pumpe mit einem Verteilermodul, und Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216515A (zh) * 2020-02-25 2020-06-02 中国第一汽车股份有限公司 一种电动汽车热管理***
CN112543709A (zh) * 2020-09-22 2021-03-23 华为技术有限公司 一种热管理***及电动汽车
CN113276628A (zh) * 2021-06-16 2021-08-20 广州小鹏新能源汽车有限公司 热管理集成单元、热管理***和车辆
CN114290874A (zh) * 2021-12-31 2022-04-08 上海飞龙新能源汽车部件有限公司 一种集成式膨胀水壶、热管理***及电动汽车
CN114851802A (zh) * 2022-04-29 2022-08-05 岚图汽车科技有限公司 一种集成式热管理装置及***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619018B1 (ko) * 2018-12-21 2023-12-28 한온시스템 주식회사 열관리 시스템
KR20200103391A (ko) * 2019-02-25 2020-09-02 주식회사 두원공조 전기자동차용 냉난방 시스템
CN110077197A (zh) * 2019-05-24 2019-08-02 苏州同捷汽车工程技术股份有限公司 一种电动汽车热管理***及方法
CN110816207A (zh) * 2019-10-31 2020-02-21 上海思致汽车工程技术有限公司 一种电动汽车集成式综合热管理***
CN112193016B (zh) * 2020-10-14 2022-08-16 广州小鹏汽车科技有限公司 热管理***和车辆
CN113212104B (zh) * 2021-06-16 2022-03-18 广州小鹏汽车科技有限公司 热管理***及其控制方法和车辆
CN113199923B (zh) * 2021-06-16 2022-05-10 广州小鹏汽车科技有限公司 热管理***、控制方法和车辆
CN114132148B (zh) * 2021-12-24 2023-09-12 广州小鹏汽车科技有限公司 热管理***和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216515A (zh) * 2020-02-25 2020-06-02 中国第一汽车股份有限公司 一种电动汽车热管理***
WO2021169946A1 (zh) * 2020-02-25 2021-09-02 中国第一汽车股份有限公司 电动汽车热管理***
CN112543709A (zh) * 2020-09-22 2021-03-23 华为技术有限公司 一种热管理***及电动汽车
CN113276628A (zh) * 2021-06-16 2021-08-20 广州小鹏新能源汽车有限公司 热管理集成单元、热管理***和车辆
CN114290874A (zh) * 2021-12-31 2022-04-08 上海飞龙新能源汽车部件有限公司 一种集成式膨胀水壶、热管理***及电动汽车
CN114851802A (zh) * 2022-04-29 2022-08-05 岚图汽车科技有限公司 一种集成式热管理装置及***

Also Published As

Publication number Publication date
EP4303044A1 (en) 2024-01-10
CN114851802A (zh) 2022-08-05
CN114851802B (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
WO2023207010A1 (zh) 集成式热管理装置及***
WO2022147975A1 (zh) 热管理***和车辆
WO2020108542A1 (zh) 车辆热管理***及其控制方法、车辆
JP4891584B2 (ja) 自動車用熱交換装置
CN109774409B (zh) 汽车热管理***
CN111216515A (zh) 一种电动汽车热管理***
WO2021083067A1 (zh) 一种热管理***
CN111231770A (zh) 车辆热管理***和车辆
CN107351627B (zh) 汽车热管理***和电动汽车
CN213228245U (zh) 车辆热管理***和车辆
CN108466532A (zh) 一种混合动力车辆温度控制***
CN108466531A (zh) 一种混合动力车乘员舱温度调节***及混合动力车
JP2004501021A (ja) 自動車のキャビンの温度を調節するための方法および装置
CN108550952A (zh) 一种混合动力车电池组温度调节***及混合动力车
WO2022127328A1 (zh) 间接式热泵***
CN113370741A (zh) 车载温度调节***
CN216659503U (zh) 车辆热管理***
CN115366605A (zh) 车载调温***
CN208602278U (zh) 一种混合动力车辆温度控制***
CN208306323U (zh) 一种混合动力车乘员舱温度调节***及混合动力车
CN115891624A (zh) 热管理***和具有其的车辆
JP5819433B2 (ja) 電磁弁を備え、ヒートポンプとして動作する空調ループ
CN208272072U (zh) 一种混合动力车电池组温度调节***及混合动力车
CN217863624U (zh) 一种热管理***及车辆
WO2023024604A1 (zh) 热管理***及其控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022929219

Country of ref document: EP

Effective date: 20231002

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929219

Country of ref document: EP

Kind code of ref document: A1