WO2023206991A1 - 供砖总成、砌砖***以及砌砖方法 - Google Patents

供砖总成、砌砖***以及砌砖方法 Download PDF

Info

Publication number
WO2023206991A1
WO2023206991A1 PCT/CN2022/126920 CN2022126920W WO2023206991A1 WO 2023206991 A1 WO2023206991 A1 WO 2023206991A1 CN 2022126920 W CN2022126920 W CN 2022126920W WO 2023206991 A1 WO2023206991 A1 WO 2023206991A1
Authority
WO
WIPO (PCT)
Prior art keywords
brick
bricks
grouting
positioning mechanism
bricklaying
Prior art date
Application number
PCT/CN2022/126920
Other languages
English (en)
French (fr)
Inventor
谢军
李卓雄
张细刚
曹耿
梁敏雄
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2023206991A1 publication Critical patent/WO2023206991A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/18Adjusting tools; Templates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/18Adjusting tools; Templates
    • E04G21/1841Means for positioning building parts or elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/20Tools or apparatus for applying mortar
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/22Tools or apparatus for setting building elements with mortar, e.g. bricklaying machines

Definitions

  • the present application relates to a brick supply assembly, for example, to a brick supply assembly with a compact operating cycle and high integration, a bricklaying system and a bricklaying method using the brick supply assembly.
  • the operation of two robots will require multiple manpower to complete the transition during the transition operation.
  • the time cost and labor cost of the transition are high; and when two robots are operating, in order to ensure the accuracy of brick supply, the first robot must To accurately transport the mortared bricks to the loading platform, the position accuracy of the two robots must be adjusted.
  • the second robot wants to complete the construction of the entire wall, then the second robot needs to pass through multiple sites. When the second robot switches sites, the first robot will also switch sites with the second robot, so the two robots must be re-connected.
  • the position accuracy of the robot is adjusted to confirm the accuracy of the brick supply. This not only slows down the masonry pace, but also involves the process of placing the mortared bricks on the bearing platform every time because of the first step.
  • the recalibration of the robot and the second robot can easily lead to position errors. Multiple position accuracy adjustments of the two robots will lead to the accumulation of multiple position errors, which is not conducive to bricklaying accuracy.
  • the present application provides a brick supply assembly, a brick laying system and a brick laying method including the brick supply assembly, which can integrate brick loading, grouting and turning bricks into one, with compact operation rhythm and high operation accuracy.
  • this application provides a brick supply assembly, including: a support mechanism; a moving platform, which is arranged in the space above the supporting mechanism; the moving platform has a positioning mechanism, and the positioning mechanism is It is configured to move back and forth between a first position and a second position, accept a brick at the first position, and deliver the brick at the second position; a smearing mechanism, disposed on the support The space above the mechanism, the grouting mechanism has a grouting working end, and the grouting working end is configured to apply grouting on the surface of the bricks, so that the grouted bricks form a grouting surface.
  • the flipping mechanism has a flipping robot for picking up the bricks from the second position and flipping the spatial orientations of the plastered surface and the non-plastered surface.
  • the brick supply assembly in this application integrates brick loading, brick transportation, mortar and brick flipping on a supporting mechanism.
  • the degree of integration is high, and during the process of transporting bricks, After the action of brick smearing is completed, compared to the related art in which the two actions of transporting bricks and smearing are carried out separately, the brick supply assembly of the present application completes the entire brick supply process in a shorter time, thereby speeding up the brick supply.
  • the cycle time reduces the time cost of supplying bricks; at the same time, the process of receiving bricks and the process of transferring the mortared bricks to the turning mechanism are completed by the moving stage, so that the first position and delivery of bricks are
  • the second position of the bricks can all use the coordinate system of the same mechanism, which makes it easier to control the position accuracy in each process of loading bricks, mortaring, and delivering bricks, thereby increasing the accuracy of picking by the flipping mechanism.
  • the slurrying mechanism includes a first mounting frame mounted on the support mechanism, and a hopper mounted on the first mounting frame via a first pivot mechanism, the lower end of the hopper forming There is the grouting working end, and the first rotation axis of the first pivot mechanism extends forward and backward;
  • the flipping mechanism includes a second mounting bracket installed on the support mechanism, and the second mounting bracket is connected to the The first mounting brackets are arranged at intervals, and the flipping manipulator is mounted on the second mounting bracket through a second pivot mechanism, and the second rotation axis of the second pivot mechanism extends forward and backward; the movement stage, the The hopper and the turning manipulator are located in the space between the first mounting bracket and the second mounting bracket.
  • the turning manipulator, the hopper and the moving platform are installed between the first mounting frame and the second mounting frame, so that the transportation of bricks, the grouting of bricks, and the flipping of bricks can all be done in the first installation frame. It is carried out in the space between the first mounting bracket and the second mounting bracket, effectively utilizing the limited space to expand the required functions.
  • the coordinates of the positioning mechanism at the first position are fixedly set, and the coordinates of the bricks at the second position are fixedly set.
  • the position of the upper brick is the positioning mechanism at the first position.
  • the coordinates of the positioning mechanism at the first position are fixed, so that the position of the upper brick is fixed. If the position of the upper brick is not fixed, then there must be a gap between the upper bricks.
  • Performing a position detection process to determine the position of the bricks is not conducive to saving time and economic costs; secondly, the coordinates of the bricks at the second position are fixed, so that the picking targets of the flipping manipulator have the same position, so the flipping manipulator also No additional position detection process is required, which speeds up the work cycle; thirdly, compared with the related art transport manipulator transporting to the bearing platform, the positioning mechanism of the first position and the bricks of the second position are better The coordinates are all within the same coordinate system, which is conducive to the control of movement accuracy, thereby increasing the position accuracy of the bricks reaching the second position, and is conducive to the picking accuracy of the flipping robot.
  • the brick supply assembly includes a position detection device, and the position detection device is configured to detect the coordinates of the bricks at the first position compared to the coordinates of the bricks at the first position along the first direction.
  • the deviation of the coordinates of the positioning mechanism, the first direction is the direction in which the brick moves.
  • a position detection device is provided in the brick supply assembly.
  • the position detection device detects the actual coordinate value of the side of the brick, which is consistent with the ideal coordinate value.
  • the deviation value of the brick at the first position is obtained, so that the transportation distance of the moving stage can be controlled so that the bricks stop at fixed coordinates every time they reach the second position. , so that the coordinates of the pickup target of the flip manipulator are fixed, thereby increasing the picking accuracy of the flip manipulator.
  • the positioning mechanism includes two clamping plates configured to move synchronously, and the two clamping plates respectively synchronously clamp the bricks along the second direction and position the bricks so that the bricks are The coordinates along the second direction overlap with the coordinates of the positioning mechanism along the second direction, and the second direction is perpendicular to the first direction.
  • the two splints are synchronized away from each other at the same distance to have enough space to receive the bricks, and the two splints are synchronously close to each other at the same distance so that the two splints can match the coordinates of the center of the bricks with the positioning mechanism
  • the coordinates are positioned on the same vertical plane; furthermore, two splints that are synchronously distant or close can position bricks of different widths on the same vertical plane, so that the brick supply assembly can supply bricks of different widths.
  • Brick grout also maintains good positional accuracy.
  • the position detection device is installed on the grouting mechanism.
  • the position detection device By installing the position detection device on the grouting mechanism, the position detection device is closer to the bricks at the first position than the flipping mechanism, so that the position detection device can detect the bricks at the first position before the bricks are transported to the second position.
  • the deviation of the bricks is conducive to precise control of the accuracy of transporting the bricks to the second position.
  • the coordinates of the flipping manipulator on the horizontal plane overlap with the coordinates of the brick in the second position on the horizontal plane.
  • the flipping manipulator can pick up bricks downward along the smallest vertical path, which is beneficial to speeding up the operation cycle.
  • the grouting mechanism includes a first mounting frame, the lower end of the first mounting frame is mounted on the support mechanism, the upper end of the first mounting frame has a transverse driving mechanism; a hopper, the The lower end of the hopper forms the grouting operation end, and the hopper is connected to the output end of the transverse drive mechanism; when the bricks move from the first position to the second position, the transverse drive The mechanism drives the grouting working end laterally to apply grout on the upper surface of the brick, and the transverse driving direction is opposite to the moving direction of the brick.
  • the grouting end When plastering the grouting end, by moving the grouting end and the bricks in opposite directions relative to each other, the grouting end can complete the grouting on the upper surface of the bricks with a relatively small traverse path.
  • the grouting time of this embodiment is shorter and the operating rhythm is faster than when the bricks are plastered stationary.
  • the traverse path of the grouting operation end is required to be shorter. Then the lateral size requirements for the lateral drive mechanism are also smaller, which is conducive to miniaturization design.
  • the first mounting frame further includes a first lifting mechanism, the first lifting mechanism is provided at the output end of the transverse driving mechanism, and the hopper is provided at the output end of the first lifting mechanism;
  • the positioning mechanism carries the brick and pauses at a third position; when the brick is in the third position, by the In the first lifting mechanism, the grouting working end is grouted on the side of the brick in a stationary state from bottom to top.
  • the motion control strategy By keeping the bricks in a stationary state, the motion control strategy only has the first lifting mechanism drive the grouting working end upward in the vertical direction.
  • the control strategy is relatively simple, and the slurry layer formed by the grouting is good in uniformity.
  • any one of the smearing mechanism and the turning mechanism can be far away from or close to the other to form a working state and a storage state.
  • the smearing mechanism and the smearing mechanism in the working state can be A portion of any one of the flip mechanisms moves beyond the configured edge of the support mechanism, and the flip mechanism and the grouting mechanism in the stowed state are located within the configured edge of the support mechanism.
  • the flipping mechanism and the smearing mechanism in the stowed state are both located within the configuration edge of the support mechanism, so that the overall size in the stowed state is smaller, which is conducive to passing through a narrow space; and in the working state, by moving all Parts of any one of the smearing mechanism and the flipping mechanism moves beyond the configuration edge of the support mechanism, so that the distance between the slurrying mechanism and the flipping mechanism is increased, so that both the slurrying mechanism and the flipping mechanism have sufficient working space without colliding with each other while working.
  • any one of the turning mechanism and the smearing mechanism can be moved away from the other along the front-to-back direction to form the working state, and the one that is farther away from the turning mechanism or the slurrying mechanism can be moved away from the other along the front-to-back direction.
  • the front-to-back direction exceeds the configuration edge of the support mechanism; or, either one of the flipping mechanism and the grouting mechanism can move away from the other along the left-right direction to form the working state, and the flipping mechanism and the farther one of the troweling mechanism extends beyond the configuration edge of the supporting mechanism along the left-right direction.
  • Either one of the turning mechanism and the troweling mechanism can be moved away from the other along the front and rear direction to form a working state, so that the distance between the turning mechanism and the troweling mechanism increases along the front and rear direction, thereby enabling the turning
  • the action of the manipulator turning over the bricks and the action of the troweling mechanism mortaring the bricks are spaced apart in the front and rear spaces, so that when planning the movement of the troweling mechanism to avoid obstacles, there is no need to consider the obstacles caused by the turning mechanism when the bricks are turned over.
  • similarly, when planning the motion obstacle avoidance of the flipping mechanism there is no need to additionally consider the obstacles caused by the smearing operation of the smearing mechanism, so that the two have relatively more motion control strategies.
  • Either one of the flipping mechanism and the grouting mechanism can be moved away from the other along the left and right direction to form a working state, so that the flipping mechanism and the grouting mechanism are arranged along the left and right directions, so that the bricks can automatically
  • the transportation distance from the first position to the second position is relatively small, which is conducive to speeding up the rhythm of brick supply.
  • either one of the turning mechanism and the smearing mechanism can form a working state away from the other along the front-to-back direction; when in the working state, along the left-right direction, the first first The positioning mechanism is located on either side of the troweling working end.
  • the vertical projection of the troweling mechanism and the vertical projection of the flipping mechanism are spaced apart from each other and do not overlap.
  • the first position can be set on either side of the left and right direction of the grouting operation end, thereby increasing the flexibility of the brick position of the brick supply mechanism; in addition, the vertical projection of the grouting mechanism and the vertical projection of the flipping mechanism
  • the projections are spaced apart from each other and do not overlap, so that the action of the flipping mechanism overturning the bricks and the action of the plastering operation end plastering the bricks on the path are spaced in the front and rear directions, so that no matter the first position of the bricks is on the left or On the right side, neither will affect the flipping mechanism's action of flipping the bricks.
  • the support mechanism includes a first guide extending along the front-to-back direction; one of the smearing mechanism and the flipping mechanism is fixed to the support mechanism, and the other is movable. Adapted to the first guide member to form the working state.
  • the moving accuracy of the mover in the smearing mechanism or the flipping mechanism is good, and there will be no directional deviation in the moving direction.
  • the support mechanism includes a second guide member disposed parallel to the first guide member; the motion stage further includes a base movably disposed on the second guide member, and a base disposed on the second guide member.
  • a movement mechanism of the base and the output end of the movement mechanism are connected to the positioning mechanism; when in the working state, the grouting working end is located on the first vertical surface, and the flipping manipulator is located on the second On the vertical surface, the second vertical surface and the first vertical surface extend along the left and right directions and are arranged parallel to each other at intervals along the front and rear directions; the positioning mechanism at the first position is located at the On the first vertical surface, the positioning mechanism at the second position is located on the second vertical surface, and the second guide guides the base and the positioning mechanism on it from the One of the first vertical surface and the second vertical surface moves to the other.
  • the positioning mechanism By moving the positioning mechanism from one of the first vertical plane and the second vertical plane to the other, the positioning mechanism can be moved between the grouting working end and the turning manipulator, so that the positioning mechanism carries the bricks on After the first vertical surface interacts with the plastering working end to complete the plastering, the positioning mechanism carries the bricks to the second vertical surface along the precise guidance of the second guide member, so that the flipping robot can pick up the bricks.
  • the positioning mechanism moves from the first position along the first vertical surface past the grouting working end to grout the surface of the brick.
  • the mortaring operation end By moving the bricks along the first vertical plane past the mortaring operation end, the mortaring operation end is also located on the first vertical plane, so that when the bricks pass through the mortaring operation end, the mortaring operation end
  • the width of the slurry applied to the surface of the bricks at the working end remains the same, which is beneficial to forming a slurry layer of uniform width on the surface of the bricks, thus ensuring the firmness of the wall and good bricklaying quality.
  • the movement mechanism includes at least one plate-shaped portion, a first space is formed between the at least one plate-shaped portion and the base, and a first space is formed between the at least one plate-shaped portion and the positioning mechanism.
  • a second driving component and a second sliding component are provided in the second space assembly, the second sliding assembly includes mutually adapted guide rails and guide blocks, the second driving assembly drives the positioning mechanism to displace along the left and right directions, and the second sliding assembly guides the positioning mechanism along the Displacement in the left-right direction.
  • At least one plate-shaped part can move left and right relative to the base, and the positioning mechanism can move left and right with respect to the at least one plate-shaped part, so that the movement mechanism
  • the installation space occupied in the retracted state is small, which is conducive to the installation of other mechanisms in the limited space of the support mechanism, thereby achieving miniaturization and multi-functionality; at the same time, when the movement mechanism is in the extended state, it is driven by two first drives.
  • the driving directions of the assembly and the second driving assembly are parallel, so that the positioning mechanism can extend a far distance relative to the base, thereby facilitating the loading of bricks in the first position.
  • the positioning mechanism includes: a bottom plate connected to the output end of the motion mechanism; two splints, the two splints are respectively provided on the front and rear sides of the bottom plate, and at least one of the splints faces each other.
  • the bottom plate can move away from or close to the other said splint.
  • the bricks are clamped and fixed by two splints, which increases the positioning stability of the bricks.
  • the splints By positioning the splints on both sides in the front and rear direction, the left and right extending center lines of the bricks are parallel to the first vertical surface. Facilitates positional accuracy for brick transportation.
  • either one of the turning mechanism and the smearing mechanism can form a working state away from the other along the left-right direction, and the turning mechanism and the smearing mechanism in the working state can move along the left-right direction.
  • the distance in the left and right direction can allow the flipping robot to flip the bricks; the bricks in the first position and the bricks in the second position are located on the same vertical plane, and the vertical The surface extends along the left-right direction.
  • Either one of the turning mechanism and the grouting mechanism can be moved away from the other along the left and right directions to form a working state.
  • the distance between the two can allow the turning manipulator to turn over the bricks, ensuring that the turning manipulator operates smoothly.
  • the bricks at the first position and the bricks at the second position are located on the same vertical plane, so that the transportation distance of the bricks from the first position to the second position is relatively small. , which will help speed up the pace of brick supply.
  • the motion stage includes: a base fixed to the support mechanism, and when viewed from the front and back direction, the base overlaps at least part of the smearing mechanism; a motion mechanism, On the base, the output end of the movement mechanism drives the positioning mechanism to move away from the smearing mechanism along the left and right direction to the first position.
  • the positioning mechanism can maintain a smaller installation space while having a longer extension path.
  • the movement mechanism includes at least one plate-shaped portion, a first space is formed between the at least one plate-shaped portion and the base, and a first space is formed between the at least one plate-shaped portion and the positioning mechanism.
  • Two sliding assemblies the second sliding assembly includes mutually adapted guide rails and guide blocks, the second driving assembly drives the positioning mechanism to displace along the left and right directions, and the second sliding assembly guides the positioning The mechanism is displaced along the left-right direction.
  • At least one plate-shaped part can move left and right relative to the base, and the positioning mechanism can move left and right with respect to the at least one plate-shaped part, so that the movement mechanism
  • the installation space occupied in the retracted state is small, which is conducive to the installation of other mechanisms in the limited space of the support mechanism, thereby achieving miniaturization and multi-functionality; at the same time, when the movement mechanism is in the extended state, it is driven by two first drives.
  • the driving directions of the assembly and the second driving assembly are parallel, so that the positioning mechanism can extend a far distance relative to the base, thereby facilitating the loading of bricks in the first position.
  • the positioning mechanism includes: a bottom plate connected to the output end of the motion mechanism; two splints, the two splints are respectively provided on the front and rear sides of the bottom plate, and at least one of the splints faces each other.
  • the bottom plate can move away from or close to the other said splint.
  • the bricks are clamped and fixed by two splints, which increases the positioning stability of the bricks.
  • the splints By positioning the splints on both sides in the front and rear direction, the left and right extending center lines of the bricks are parallel to the first vertical surface. Facilitates positional accuracy for brick transportation.
  • the grouting mechanism includes a first mounting frame, the lower end of the first mounting frame is fixed to the support mechanism and is located on one side of the moving stage in the front and rear direction, and the first mounting frame
  • a hopper is rotatably connected through a first pivot mechanism, the lower end of the hopper is configured to form the grouting working end, and the first rotation axis of the first pivot mechanism extends along the front and rear direction.
  • the hopper is installed on the first mounting frame and can rotate along the first rotation axis extending forward and backward.
  • the lower end of the hopper forms a grouting end, so that the first pivot mechanism can drive the hopper to rotate along the first rotation axis so that the hopper can be rotated along the first rotation axis. Rotate until it forms a grouting angle with the surface of the brick to be grouted.
  • the first mounting frame includes a first lifting mechanism, and the first lifting mechanism is configured to drive the hopper to lift; during the movement from the first position toward the second position, the The positioning mechanism carries the bricks and pauses them in a third position; when the bricks are in the third position, through the first lifting mechanism, the grouting working end is plastered from bottom to top. The side of said brick at rest.
  • the motion control strategy By keeping the bricks in a stationary state, the motion control strategy only has the first lifting mechanism drive the grouting working end upward in the vertical direction.
  • the control strategy is relatively simple, and the slurry layer formed by the grouting is good in uniformity.
  • the positioning mechanism is used to carry the bricks in a direction away from the hopper, and the grouting working end remains in a fixed position. Apply grout along the left-right direction to the horizontal upper surface of the brick in motion.
  • the motion control strategy By keeping the hopper stationary, the motion control strategy only moves the brick positioning mechanism in the left and right directions.
  • the control strategy is relatively simple.
  • the grouting end is in a fixed posture, so that the bricks move relative to the grouting end.
  • the process is Chinese.
  • the grouting end forms a uniform grout layer on the brick surface.
  • the flipping mechanism includes a second mounting bracket, the second mounting bracket is movably mounted on the support mechanism along the left and right direction, and the second mounting bracket is connected by a second pivot
  • the mechanism is rotatably connected to the flipping manipulator, and the second rotation axis of the second pivot mechanism extends along the front-to-back direction.
  • the flipping manipulator is installed on the support mechanism through the second mounting bracket, and the second pivot mechanism can drive the flipping manipulator to flip the bricks up and down.
  • this application also provides a bricklaying system that can build walls in a working space, including: a mobile chassis that walks in the working space to a predetermined site, and the wall to be built is located at the predetermined site.
  • the front side of the brick supply assembly ; the brick supply assembly as described above, installed on the mobile chassis; a brick laying mechanism, installed on the mobile chassis and located on the front side of the brick supply assembly, the brick laying mechanism includes A mechanical claw, the mechanical claw picks up the bricks from the flipping manipulator backward along the non-mortared surface, and carries the bricks forward to the masonry position of the wall to be built.
  • brick loading, brick transportation, grouting, brick flipping and brick laying are integrated on a mobile chassis.
  • the degree of integration is high, and the brick supply assembly completes the process of transporting bricks.
  • the brick supply assembly of the present application completes the entire brick supply process in a shorter time, thereby speeding up the brick supply rhythm.
  • the process of accepting bricks and transferring the mortared bricks to the turning mechanism are completed by the moving stage, so that the first position of accepting bricks and delivering bricks
  • the second position of the block can all use the coordinate system of the same mechanism, which makes it easy to control the position accuracy in each process of loading bricks - mortaring - delivering bricks, thereby increasing the accuracy of picking by the flipping mechanism.
  • the bricklaying mechanism On the basis that the brick supply assembly speeds up the brick supply rhythm, the bricklaying mechanism also speeds up the operation rhythm, thereby shortening the time of the bricklaying operation; and because the bricklaying mechanism picks up bricks from the flipping mechanism for bricklaying, The accuracy of picking by the flipping mechanism is increased, which also improves the accuracy of bricklaying.
  • the bricklaying system further includes a control module.
  • the control module includes a vertical cabinet. Control elements are provided in the vertical cabinet to control the actions of the brick supply assembly and the bricklaying mechanism.
  • the vertical cabinet is installed on the mobile chassis and is located behind the bricklaying mechanism, and the brick supply assembly is installed on the vertical cabinet.
  • the vertical cabinet raises the height of the brick supply assembly, reducing the transport distance of the brick laying mechanism from picking up bricks from the brick supply assembly to placing the bricks to the laying position, which is beneficial to speeding up the work cycle.
  • the bricklaying system further includes a support structure, which is the upper surface of the standing cabinet; or the support mechanism is a flat plate, which is installed on the upper surface of the standing cabinet.
  • the support structure is installed on the upper surface of the vertical cabinet with an independent flat plate.
  • the area of the flat plate can be set larger than the area of the upper surface of the vertical cabinet, thus ensuring the overall miniaturization of the bricklaying system and increasing the brick supply assembly. Installation space.
  • the brick laying mechanism includes: a column, the column is installed on the mobile chassis; a robotic arm, the proximal end of the robotic arm is rotationally connected to the column, and the distal end of the robotic arm Connected to the mechanical claw, the mechanical arm has multiple joints to form different postures.
  • the column is installed on the mobile chassis, so that the bricklaying mechanism and the brick supply assembly are integrated into a mobile chassis, so that the bricklaying mechanism and the brick supply assembly mechanism can be within the coordinate system of the bricklaying system, thus allowing for movement strategy planning. At this time, it is helpful to increase the position accuracy of the bricks transferred between the bricklaying mechanism and the brick supply assembly.
  • the present invention also provides a bricklaying method, including: when the positioning mechanism moves to the first position, placing bricks on the positioning mechanism through the positioning mechanism; After the mechanism receives the brick, the positioning mechanism carries the brick to move from the first position to the second position; after the positioning mechanism carries the brick to move from the first position to During the process of the second position, the grouting working end of the grouting mechanism is used to grout the surface of the bricks to form a grouting surface and a non-grouting surface; when the positioning mechanism carries the bricks, it stops at After the second position, the flipping manipulator of the flipping mechanism picks up the mortared bricks from the positioning mechanism, and flips the spatial directions of the mortared surface and the non-plastered surface of the bricks.
  • the bricks are picked up from the flipping robot by the mechanical claw of the bricklaying mechanism along the non-mortared surface, and the bricks are transported to the building position of the wall to be built, so that all the bricks are The grouting surface is adhered to the brick surface at the masonry position.
  • the bricklaying method of the present invention also completes the smearing action at the same time during the process of transporting bricks from the first position to the second position, so that It shortens the time to complete the entire brick supply process, thus speeding up the brick supply rhythm and reducing the time cost of brick supply; at the same time, the process of receiving bricks and the process of transferring the plastered bricks to the turning mechanism are both It is completed by the moving stage, so that the first position of receiving bricks and the second position of delivering bricks can use the coordinate system of the same mechanism, which makes it easy to control the positions in each process of loading bricks - mortaring - delivering bricks.
  • the bricklaying mechanism On the basis that the brick supply assembly speeds up the brick supply rhythm, the bricklaying mechanism also speeds up the operation rhythm, thus shortening the time of the bricklaying operation; and due to the bricklaying The mechanism picks up bricks from the flipping mechanism for bricklaying, which increases the accuracy of picking by the flipping mechanism and also improves the accuracy of bricklaying.
  • the method further includes: driving the grouting mechanism to move backward relative to the flipping mechanism, so that the grouting working end is located at a first position extending left and right.
  • the flipping manipulator On a vertical surface, the flipping manipulator is located on a second vertical surface extending left and right, the first vertical surface and the second vertical surface extend along the left and right directions and are arranged in parallel at intervals in the front and back, and the The first position is located on the first vertical plane, and the second position is located on the second vertical plane.
  • the grouting working end and the first position are located on a first vertical plane extending left and right, and the flipping manipulator and the second position are located on a second vertical plane extending left and right, so that the bricks
  • the upper bricks and the grouting are located on the same vertical plane, which is conducive to forming a uniform width of the slurry layer; so that the turning manipulator and the second position are both located on the second vertical plane, so that the turning manipulator picks up the path of the bricks at the second position. Relatively short, and the picking accuracy is relatively high.
  • moving the positioning mechanism to the first position includes: driving the positioning mechanism backward to the plane where the first position is located through a front and rear driving member, and driving the positioning mechanism along the left and right direction through a motion mechanism Move to the first position.
  • the positioning mechanism can move in the front and rear directions and the left and right directions.
  • the positioning mechanism moves along the first vertical surface, it passes through the grouting working end to apply grout to the surface of the brick.
  • the mortaring end By moving the bricks along the first vertical surface past the mortaring end, the mortaring end is also located on the first vertical surface, so that when the bricks pass through the mortaring end, the mortaring end is smeared on the surface of the bricks
  • the width of the slurry remains the same, which is beneficial to forming a uniform width slurry layer on the surface of the bricks, thereby ensuring the firmness of the wall and good bricklaying quality.
  • the front and rear driving parts drive the positioning mechanism to move from the first vertical surface to the second vertical surface to For the flipping mechanism to pick up.
  • the grouting operation end is arranged on the first vertical surface, and the flipping manipulator to pick up the bricks is arranged on the second vertical surface, so that the working actions of the two will not cause each other's movement obstacles.
  • the front and rear driving parts are used to drive the positioning mechanism from the The first vertical surface moves to the second vertical surface, and at the same time, the positioning mechanism is driven by a motion mechanism to move to the second position along the left-right direction.
  • the grouting speed at the grouting end must be relatively fast, thereby speeding up the work cycle.
  • the left and right displacement movements and the forward and backward displacement movements are combined in one period of time, thereby speeding up the tempo of transporting bricks.
  • the motion mechanism drives the positioning mechanism to move to the first position, move one of the smearing mechanism and the flipping mechanism toward one side in the left and right direction away from the other,
  • the space between the grouting mechanism and the flipping mechanism allows the flipping manipulator of the flipping mechanism to flip the bricks, and the flipping manipulator and the grouting working end of the grouting mechanism are located along the on the same vertical plane extending in the left and right directions.
  • Either one of the turning mechanism and the grouting mechanism can be moved away from the other along the left-right direction to form a working state, and the distance between the two can allow the turning manipulator to turn over the bricks, while ensuring that the turning manipulator is Under the premise that there is no obstacle to the operation, the bricks at the first position and the bricks at the second position are located on the same vertical plane, so that the transportation distance of the bricks from the first position to the second position is relatively opposite. Smaller, it is conducive to speeding up the rhythm of brick supply.
  • the positioning mechanism is driven by the movement mechanism to move in the left and right direction to the first position, so that the positioning of the first position is
  • the mechanism, the grouting working end and the turning manipulator are all located on the same vertical plane.
  • the positioning mechanism in the first position, the grouting working end and the flipping manipulator are all located on the same vertical plane, so that the transportation distance of the bricks is relatively small and it is also completed in the process of linear transportation.
  • the grouting operation is completed, thereby forming a uniform width slurry layer.
  • the flipping manipulator and the bricks after grouting are located on the same vertical plane, ensuring the picking accuracy of the flipping manipulator.
  • the first position is provided on the other side of the flip mechanism relative to the left-right direction.
  • the brick loading position is flexibly set on both sides to facilitate brick loading in a small space.
  • the positioning mechanism at the first position, the grouting working end and the movement mechanism at the second position are all arranged on the same vertical plane, and the grouting mechanism at the grouting working end Behind the surface of the brick, the motion mechanism drives the positioning mechanism in the left-right direction to move to the second position.
  • the positioning mechanism in the first position, the grouting working end and the flipping manipulator are all located on the same vertical plane, so that the transportation distance of the bricks is relatively small and it is also completed in the process of linear transportation.
  • the grouting operation is completed, thereby forming a slurry layer with uniform width.
  • the flipping manipulator and the bricks in the second position are located on the same vertical plane, ensuring the picking accuracy of the flipping manipulator.
  • the positioning mechanism is configured with two clamping plates that move synchronously, and the two clamping plates clamp the brick synchronously to position the coordinates of the brick in the front-rear direction on the first vertical plane.
  • the two splints are synchronized away from each other at the same distance to have enough space to receive the bricks, and the two splints are synchronously close to each other at the same distance so that the two splints can align the center of the bricks with the coordinates of the positioning mechanism Located on the same vertical plane; furthermore, two plywood plates that are synchronously moved away or close to each other can position bricks of different widths on the same vertical plane, so that the brick supply assembly can supply bricks with grout for bricks of different widths. Good position accuracy is also maintained.
  • a position detection device is used to detect the relative coordinates of the brick at the first position.
  • the offset value of the positioning mechanism in the first position in the left-right direction wherein the offset value is used to calibrate the coordinates of the brick in the left-right direction.
  • the position detection device By installing the position detection device on the grouting mechanism, the position detection device is closer to the bricks at the first position than the flipping mechanism, so that the position detection device can detect the bricks at the first position before the bricks are transported to the second position.
  • the deviation of the bricks is conducive to precise control of the accuracy of transporting the bricks to the second position.
  • control module determines the transportation distance according to the coordinates of the positioning mechanism at the first position and the offset value, and controls the positioning mechanism to move in the left and right direction according to the transportation distance.
  • the corresponding transportation distance makes the coordinates of the bricks at each second position in the left-right direction constant.
  • the coordinates of each brick at the second position in the left-right direction are set to a constant position, so that the bricks at the second position are positioned in the left-right and front-to-back directions.
  • the coordinates of the bricks are all set constant, so that the picking target of the flipping robot is constant, and there is no need to additionally detect the position of the bricks, thus speeding up the work cycle and ensuring the picking accuracy.
  • control module determines the bricklaying direction of the mechanical claw, and selects a corresponding grouting mode from a variety of grouting modes of the grouting mechanism according to the bricklaying direction, so that in the corresponding In a plastering mode, when the mechanical claw transports the bricks to the masonry position of the wall to be built, the plaster surface of the bricks sticks to the brick surface at the masonry position.
  • the control module causes the grouting mechanism to apply grout on the upstream or downstream sides of the bricks according to the bricklaying direction to the left or right, thereby enabling bricklaying to the left or right.
  • Figure 1 is a schematic diagram of a brick supply assembly and a bricklaying system using the brick supply assembly according to the first embodiment of the present application;
  • Figure 2 is a schematic three-dimensional structural diagram of the brick supply assembly shown in Figure 1 in its working state
  • Figure 3 is a schematic structural diagram of the brick supply assembly shown in Figure 2 when viewed in the X direction;
  • Figure 4 is a schematic three-dimensional structural diagram of the brick supply assembly shown in Figure 2 in a stored state
  • Figure 5 is a schematic structural diagram of the brick supply assembly shown in Figure 2 when viewed in the X-direction when it is stored;
  • Figure 6 is a schematic diagram of the three-dimensional explosion structure of the brick supply assembly shown in Figure 2;
  • Figure 7 is a schematic structural diagram of the grouting mechanism of the brick supply assembly shown in Figure 2, viewed from front to back;
  • Figure 8 is a schematic three-dimensional structural diagram of the grouting mechanism of the brick supply assembly shown in Figure 7;
  • Figure 9 is a schematic three-dimensional structural view of the first vertical frame of the smearing mechanism shown in Figure 8.
  • Figure 10 is a schematic three-dimensional structural diagram of the first vertical frame of the smearing mechanism shown in Figure 8 in another state;
  • Figure 11 is a schematic diagram of the three-dimensional structure of the traverse mechanism of the smearing mechanism and the hopper shown in Figure 8;
  • Figure 12 is a schematic three-dimensional structural diagram of the hopper shown in Figure 8.
  • Figure 13 is a schematic three-dimensional structural diagram of the moving platform of the brick supply assembly shown in Figure 2;
  • Figure 14 is a schematic structural diagram of the moving stage of the brick supply assembly shown in Figure 9 viewed along the X direction;
  • Figure 15 is a schematic structural diagram of the turning mechanism of the brick supply assembly shown in Figure 2, viewed along the X direction;
  • Figure 16 is a schematic three-dimensional structural diagram of the flip manipulator of the flip mechanism shown in Figure 15;
  • Figure 17 is a schematic diagram of the positioning mechanism of one of the grouting operations of the brick supply assembly in Figure 2 receiving bricks in the first position and the bricks are in the ideal position, viewed from back to front;
  • Figure 18 is a schematic view of the positioning mechanism of the brick supply assembly of Figure 17 in the third position, viewed from back to front;
  • Figure 19 is a schematic view of the brick shown in Figure 18 in the third position when the downstream side grouting is completed, viewed from back to front;
  • Figure 20 is a schematic diagram of the state of the brick shown in Figure 19 with the upper surface smeared, viewed from back to front;
  • Figure 21 is a schematic view of the brick shown in Figure 19 when it reaches the second position after completion of grouting, viewed from back to front;
  • Figure 22 is a schematic diagram of the positioning mechanism of the brick supply assembly shown in Figure 2 receiving bricks in the first position and the bricks being in an offset position, viewed from back to front;
  • Figure 23 is a schematic view of the positioning mechanism of the brick supply assembly shown in Figure 22 when carrying bricks to the second position, viewed from back to front;
  • Figure 24 is a top-down view of the positioning mechanism of the brick supply assembly shown in Figure 17 when receiving bricks in the first position;
  • Figure 25 is a top-down view of the positioning mechanism of the brick supply assembly shown in Figure 18 when it carries bricks to the third position;
  • Figure 26 is a top-down view of the brick shown in Figure 20 when the upper surface is plastered;
  • Figure 27 is a top-down view of the brick shown in Figure 20 when the upper surface is plastered;
  • Figure 28 is a schematic view of another positioning mechanism for grouting operation of the brick supply assembly in Figure 2 receiving bricks in the first position and the bricks are in the ideal position, viewed from back to front;
  • Figure 29 is a schematic view of the positioning mechanism of the brick supply assembly shown in Figure 28 in the third position, viewed from back to front;
  • Figure 30 is a schematic view of the brick shown in Figure 29 with the upper surface smeared and reaching the third position, viewed from back to front;
  • Figure 31 is a schematic view of the brick shown in Figure 30 in the third position after completion of the upstream side grouting, viewed from back to front;
  • Figure 32 is a schematic structural diagram of the brick supply assembly according to the second embodiment of the present application, viewed along the X direction before the flipping mechanism is moved;
  • Figure 33 is a schematic structural diagram of the flipping mechanism shown in Figure 32 viewed along the X direction after moving forward;
  • Figure 34 is a schematic structural diagram of the bricks flipped 180° after the flipping mechanism shown in Figure 33 moves forward and is viewed along the X direction;
  • Figure 35 is a schematic diagram of the brick supply assembly provided by the third embodiment of the present application and the bricklaying system using the brick supply assembly;
  • Figure 36 is a schematic three-dimensional structural diagram of the brick supply assembly shown in Figure 35;
  • Figure 37 is a schematic three-dimensional structural diagram of the bricklaying mechanism of the bricklaying system shown in Figure 35;
  • Figure 38(a) is a schematic three-dimensional structural view of the grouting mechanism of the brick supply assembly shown in Figure 36;
  • Figure 38(b) is a schematic three-dimensional structural diagram of the grouting mechanism of the brick supply assembly shown in Figure 36;
  • Figure 39 is a schematic three-dimensional structural diagram of the moving platform of the brick supply assembly shown in Figure 36;
  • Figure 40 is a schematic three-dimensional structural diagram of the turning mechanism of the brick supply assembly shown in Figure 36;
  • Figure 41 is a schematic diagram of the positioning mechanism of one of the grouting operations of the brick supply assembly shown in Figure 36 receiving bricks in the first position and the bricks are in the ideal position, viewed from back to front;
  • Figure 42 is a schematic view of the positioning mechanism of the brick supply assembly shown in Figure 41 in the third position, viewed from back to front;
  • Figure 43 is a schematic view of the third position brick shown in Figure 42 when the downstream side is plastered, viewed from back to front;
  • Figure 44 is a schematic view of the brick shown in Figure 43 when the upper surface is plastered and reaches the second position, viewed from back to front;
  • Figure 45 is a schematic diagram of the positioning mechanism of the brick supply assembly shown in Figure 36 receiving bricks in the first position and the bricks being in an offset position, viewed from back to front;
  • Figure 46 is a schematic view of the positioning mechanism of the brick supply assembly shown in Figure 45 when carrying bricks to the second position, viewed from back to front;
  • Figure 47 is a schematic view of another positioning mechanism of the brick supply assembly of Figure 36 during grouting operation, receiving bricks in the first position and the bricks being in the ideal position, viewed from back to front;
  • Figure 48 is a schematic view of the positioning mechanism of the brick supply assembly shown in Figure 47 in the third position and when the upper surface is plastered, viewed from back to front;
  • Figure 49 is a schematic view of the brick shown in Figure 48 in the third position after completion of the upstream side grouting, viewed from back to front;
  • Figure 50 is a schematic view of the brick shown in Figure 49 moving to the second position after completion of grouting, viewed from back to front;
  • Figure 51 is a top-down view of the positioning mechanism of the brick supply assembly shown in Figure 36 when it reaches the first position and is in an unloaded state;
  • Figure 52(a) is a top-down view of the brick supply assembly shown in Figure 41;
  • Figure 52(b) is a top-down view of the brick supply assembly shown in Figure 42;
  • Figure 52(c) is a top-down view of the brick supply assembly shown in Figure 44.
  • Bin; 12b first installation frame; 124, horizontal frame; 1241, middle part; 1242, extension arm; 1243, sliding adapter part; 125, first vertical frame; 125a , fixed lower end; 125b, fixed upper end; 126, transverse driving mechanism; 127, first lifting mechanism; 1271, rear plate; 1272, front plate; 1273, side plate; 1274, enclosed cavity; 12c, first pivot mechanism ; R1, first rotation axis; 128a, first plate; 128b, second plate; 1280, fixed hole; 129, first pivot motor; 12d, transfer part; 12d1, elbow; 12d2, valve; 12e, Rotation mechanism; A. Rotation axis; 12e1, driving gear; 12e2, driven gear; 13.
  • Three lifting frames 311, proximal end; 312, distal end; 3120, connecting rod; 313, joint; 3121, first connecting rod; 3122, second connecting rod; 314, three-axis adjustment device; 315, rotating column; 4 , control module; 40, vertical cabinet; 5, bricks; 51, upstream side; 52, downstream side; 53, slurry layer; S, working space; W, wall to be built; P1, first position; P2, second Position; P3, third position; O1, first coordinate; O2, second coordinate; O3, third coordinate; d, offset value; D1, ideal distance; D2, actual distance.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship in which the product of this application is commonly placed when used, or the orientation or positional relationship of this application.
  • the orientations or positional relationships commonly understood by those skilled in the art are only for convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish descriptions and shall not be understood as indicating or implying relative importance.
  • the present application relates to a brick supply assembly 1, a brick laying system 100 and a brick laying method including the brick supply assembly 1.
  • the brick laying system 100 and the brick laying method are used to implement brick laying operations in the working space S to lay bricks.
  • the bricklaying system 100 and bricklaying method of the present application can be used for stacking interior walls of buildings, and can also be used for stacking exterior walls of buildings.
  • the left and right directions The direction is defined as the rear, and the vertical direction Z is perpendicular to the front-rear direction X and the left-right direction Y.
  • FIGS. 1 to 31 illustrate a brick supply assembly 1 according to a first embodiment of the present application and a bricklaying system 100 using the brick supply assembly 1 .
  • the bricklaying system 100 includes a brick supply assembly 1 , a mobile The chassis 2 and the brick laying mechanism 3.
  • the brick supply assembly 1 and the brick laying mechanism 3 are integrated and installed on the mobile chassis 2.
  • the mobile chassis 2 can walk in the working space S and stop at a predetermined masonry site.
  • the wall W to be built is located on the front side of the masonry site.
  • the installation position of the bricklaying mechanism 3 is compared with the brick supply assembly.
  • the installation position of 1 is closer to the wall W to be laid, thereby reducing the transport path of the bricks 5 for laying operations, thereby speeding up the brick laying operation rhythm.
  • the bricklaying system 100 may include a control module 4.
  • the control module 4 includes a vertical cabinet 40.
  • Control components are installed inside the vertical cabinet 40.
  • the control components are respectively connected to the brick supply assembly 1 and the bricklaying system 100.
  • the mechanism 3 and the mobile chassis 2 are connected with signals to control the actions of the brick supply assembly 1, the bricklaying mechanism 3 and the mobile chassis 2.
  • the vertical cabinet 40 is installed in the rear area of the mobile chassis 2, behind the installation position of the bricklaying mechanism 3, and the brick supply assembly 1 is installed above the vertical cabinet 40.
  • the brick supply assembly 1 is installed above the vertical cabinet 40.
  • the vertical cabinet 40 raises the height of the brick supply assembly 1 and reduces the self-supply brick assembly of the bricklaying mechanism 3.
  • the transportation distance from picking up bricks 5 to placing bricks 5 to the masonry position is reduced to 1, which is beneficial to speeding up the work rhythm.
  • the brick supply assembly 1 is installed in the space above the rear side of the mobile chassis 2.
  • the brick supply assembly 1 includes a support mechanism 10, which is fixed in the space above the rear side of the mobile chassis 2.
  • the space above the support mechanism 10 is the installation space (that is, the space above the support mechanism), and a moving platform is provided in the installation space.
  • the moving stage 11 has a positioning mechanism 111.
  • the positioning mechanism 111 can move between the first position P1 and the second position P2.
  • the positioning mechanism 111 is used to position the first position P1 at the first position P1. Receive bricks 5 from the outside and transfer the bricks 5 to the turning mechanism 13 at the second position P2.
  • the grouting mechanism 12 has a grouting working end 121, which is used during the movement from the first position P1 to the second position P2. , smear the surface of the brick 5 so that the brick 5 received by the flipping mechanism 13 is the brick 5 after smearing.
  • the brick 5 after smearing has a smeared surface and a non-smeared surface
  • the flipping mechanism 13 has A flipping robot 13b picks up the mortared bricks 5 from the second position P2 and flips the spatial orientations of the mortared surface and the non-mortared surface, so that the bricklaying mechanism 3 can pick up along the non-mortared surface of the bricks 5 Brick 5.
  • the brick supply assembly 1 in this application integrates brick loading, brick transportation, mortaring and brick flipping on a support mechanism 10.
  • the degree of integration is high, and during the process of transporting bricks 5, the brick supply assembly 1 is completed.
  • the plastering is also completed at the same time.
  • the action of slurry makes the time for the brick supply assembly 1 of the present application to complete the entire brick supply process shorter, thereby speeding up the brick supply rhythm and reducing the time cost of brick supply; at the same time, the process of receiving bricks 5 and The process of transferring the mortared bricks 5 to the turning mechanism 13 is completed by the moving stage 11, so that the first position P1 for receiving the bricks 5 and the second position P2 for delivering the bricks 5 can use the same mechanism.
  • the coordinate system makes it easy to control the positional accuracy in each process of loading bricks, mortaring, and delivering bricks, thereby increasing the accuracy of picking by the flipping mechanism 13.
  • the brick supply assembly 1 of the present application is applied to the bricklaying system 100.
  • the bricklaying mechanism 3 On the basis that the brick supply assembly 1 speeds up the brick supply rhythm, the bricklaying mechanism 3 also speeds up the operation rhythm, thereby shortening the time of the bricklaying operation. time; and because the bricklaying mechanism 3 picks up the bricks 5 from the flipping mechanism 13 for bricklaying, the accuracy of picking up by the flipping mechanism 13 is increased, and the bricklaying accuracy is also improved.
  • the coordinates of the positioning mechanism 111 on the horizontal plane are defined as the first coordinate O1.
  • the coordinate values of the first coordinate O1 at P1 are all (X1, Y1).
  • the coordinates of the flipping robot 13b on the horizontal plane in the waiting-for-picking state are defined as the second coordinate O2.
  • the coordinate value of the second coordinate O2 of the flipping robot 13b in the waiting-for-picking state is (X2, Y2).
  • the brick 5 at the second position P2 is located below the flipping robot 13b, and the third coordinate O3 overlaps the second coordinate O2, so that the flipping robot 13b can pick up the brick 5 downward in the shortest vertical distance.
  • the coordinates in this application are the coordinates of each mechanism under the coordinate system of the bricklaying system 100, generally the center coordinates.
  • the brick supply assembly 1 is provided with a position detection device 14.
  • the position detection device 14 is used to detect the coordinate value Xb of the third coordinate O3 when the first position P1 is compared.
  • the coordinate value X1 of the first coordinate O1 is offset by d.
  • Figures 17 and 22 The third coordinate O3 overlaps the first coordinate O1, and their coordinate values are (X1, Y1 ).
  • loading bricks under this ideal state requires high accuracy in placing bricks 5, which will have a certain impact on the operating rhythm during the calibration process.
  • Figures 22 and 23 In order not to affect the operation rhythm, when the brick 5 is placed in the positioning mechanism 111 of the first position P1, a rough positioning calibration is performed.
  • the rough positioning calibration is as follows: when the positioning mechanism 111 receives the brick 5 at the first position P1, the positioning mechanism 111 positions and calibrates the Y-direction coordinate value of the third coordinate O3 to Y1, thereby positioning and calibrating the brick 5 in the Y direction.
  • the position detection device 14 detects the actual coordinate value of the side of the brick 5 in the Compare the ideal coordinate value of the side of the brick 5 in the Two coordinates O2 (X2, Y1), thereby obtaining the transportation distance of the moving stage 11 driving the positioning mechanism 111 from the first position P1 to the second position P2, so that when the positioning mechanism 111 reaches the second position P2, the third coordinate O3 and The second coordinate O2 overlaps.
  • the bricks 5 are placed on the positioning mechanism 111, and the positioning mechanism 111 positions and calibrates the Y-coordinate of the third coordinate O3 on the vertical plane Y1.
  • the position detection device 14 detects the side of the brick 5 and can determine the offset value d of the coordinate value Xb of the third coordinate O3 compared to the coordinate value X1 of the first coordinate O1, so that in the subsequent motion control strategy, the control module 4
  • the positioning mechanism 111 is moved by the corresponding transportation distance according to the offset value d, so that the coordinate value of the third coordinate O3 is (X2, Y2) every time it reaches the second position P2. Because before loading bricks, brick 5 is outside the coordinate system of brick supply assembly 1.
  • brick 5 When loading bricks, brick 5 enters the coordinate system of brick supply assembly 1 from the external coordinate system. If the brick is loaded accurately, For positioning calibration, all that is needed is to match the coordinate system of the brick 5 to the coordinate system of the positioning mechanism 111. This requires a complex and relatively lengthy process for the control strategy of the control module 4 and the brick loading process, which is not conducive to speed. Bricks on.
  • the rough positioning calibration of this application eliminates the need for precise positioning calibration of the bricks 5 during the brick loading process.
  • This application determines the coordinate system of the brick supply assembly 1 after placing the bricks 5 on the positioning mechanism 111. What is the position on the brick 5? The compensation and calibration of the brick 5 are carried out under the coordinate system of the brick supply assembly 1, thereby speeding up the work cycle.
  • the support mechanism 10 does not exceed the configuration size of the mobile chassis 2 when viewed from top to bottom.
  • the supporting structure is the upper surface of the vertical cabinet 40 , or an independent flat plate is installed on the upper surface of the vertical cabinet 40 .
  • a flat plate with an independent support structure is installed on the upper surface of the vertical cabinet 40.
  • the area of the flat plate can be set larger than the area of the upper surface of the vertical cabinet 40, thereby ensuring the overall miniaturization of the bricklaying system 100 and increasing the total brick supply. into 1 installation space.
  • the first guide 101 and the second guide 102 extending along the front and rear directions are installed on the support structure.
  • the first guide 101 defines the first guide 101 along the front and rear directions.
  • Moving path, the second guide member 102 defines a second moving path along the front and rear direction, and the first moving path and the second moving path are parallel.
  • the number of the first guide members 101 is two.
  • the two first guide members 101 are symmetrically arranged on both sides of the second guide member 102 in the left and right direction.
  • 1243 are adapted to each other to guide the smearing mechanism 12 to move forward and backward along the front and rear directions.
  • the second guide 102 and the sliding adapter portion 1243 at the bottom of the moving stage 11 are adapted to each other to guide the moving stage 11 to move forward and backward. The direction moves forward and reverse.
  • the movement stage 11 includes a base 110, a movement mechanism 112 and a positioning mechanism 111 provided on the movement mechanism 112.
  • the movement mechanism 112 is provided on the base 110 and moves.
  • the output end of the mechanism 112 can move along the left and right directions, and the positioning mechanism 111 is provided at the output end of the motion mechanism 112 .
  • the base 110 has a plate-like structure.
  • the lower surface of the base 110 is provided with a sliding portion 1101 that matches the second guide 102.
  • the lower plate of the base 110 The allowable sliding direction of the sliding portion 1101 on the surface is the front and rear direction to guide the moving stage 11 to move forward and backward.
  • the upper surface of the base 110 is provided with a sliding adapter portion 1243 that is adapted to the motion mechanism 112.
  • the base 110 The allowable sliding direction of the sliding adapter portion 1243 on the upper plate is the left-right direction X to guide the movement mechanism 112 to move along the left-right direction X.
  • the space between the lower plate surface of the base 110 and the support mechanism 10 is provided with front and rear driving parts.
  • the front and rear driving parts is a screw driving part.
  • the screw driving part includes a screw rod extending forward and backward, and the screw rod is located at Between the two parallel guide rails of the second guide member 102, one end of the screw rod is rotatably connected to a driving motor, the threaded portion of the screw rod is connected to an enabling nut, and the lower plate surface of the base 110 is connected to the enabling nut.
  • the driving motor drives the screw rod to rotate
  • the moving nut moves forward and backward along the extension direction of the screw rod, thereby driving the base 110 to move in the front and back direction, and the guiding effect of the second guide member 102 causes the base 110 to move forward and backward. Movement is smoother and more precise.
  • the front and rear driving members can also be other driving methods, such as belt drive, chain drive, etc. As long as the driving method can make the base 110 move forward and backward, it can be the driving method of the front and rear driving mechanism of this embodiment.
  • the movement mechanism 112 includes at least one plate-shaped portion 1121.
  • the number of the plate-shaped portion 1121 is one.
  • the length of the plate-shaped portion 1121 in the left and right directions is greater than the length of the base 110 , so that the motion mechanism 112 has a larger extension stroke.
  • the first driving component 112a and the first sliding component 112b are disposed in the first space V1.
  • the sliding assembly 112b includes a guide rail and a sliding block that are adapted to each other.
  • the first driving assembly 112a is used to drive the plate-shaped portion 1121 to move along the left-right direction
  • the first sliding assembly 112b is used to guide the plate-shaped portion 1121 along the left-right direction. Displacement.
  • the first sliding member includes a first guide rail 1122 extending left and right and a first guide block 1123 that is adapted to the first guide rail 1122.
  • the first guide block 1123 is installed on the upper surface of the base 110 and the first guide rail 1122 is installed on the upper surface of the base 110.
  • the lower plate surface of the plate-shaped portion 1121, when the first driving assembly 112a drives the plate-shaped portion 1121 to move left and right, is guided by the sliding adaptation of the first guide rail 1122 and the first guide block 1123 to guide the plate-shaped portion 1121 along the left-right direction. move.
  • the first drive assembly 112a is a screw drive.
  • the first driving component 112a includes a first screw rod 1124, a first nut seat 1125 adapted to the first screw rod 1124, and a first motor drivingly connected to the first screw rod 1124 through a transmission member. It can be a belt transmission or a chain transmission.
  • the first nut seat 1125 is connected to the upper surface of the base 110 and is located between the sliders on the upper surface of the base 110.
  • the first screw 1124 and the first motor connected to it for driving Installed on the lower plate surface of the plate-shaped part 1121, the design is such that the larger first screw rod 1124 and the first motor are placed on the plate-shaped part 1121, so that the base 110 does not need to be larger in size to enable movement.
  • Mechanism 112 has a longer extension stroke.
  • the first driving assembly 112a can also be a belt drive, a chain drive, or a gear-rack drive. Any driving method that can make the plate-shaped portion 1121 move forward and backward can be the driving method of the first driving assembly 112a.
  • the screw drive mode in this embodiment uses a belt and chain transmission, so that the first motor and the third The threaded rods 1124 can be disposed in the same direction along the left and right directions, so that the space occupied by the first driving component 112a in the front and rear directions is relatively small, which is beneficial to the miniaturization design of the machine.
  • the second driving component 112c and the second sliding component 112d are disposed in the second space V2.
  • the sliding assembly 112d includes mutually adapted guide rails and sliding blocks.
  • the second driving assembly 112c is used to drive the positioning mechanism 111 to displace in the left and right direction
  • the second sliding assembly 112d is used to guide the positioning mechanism 111 to displace in the left and right direction.
  • the second sliding member includes a second guide rail 1126 extending left and right and a second guide block 1127 that is adapted to the second guide rail 1126.
  • the second guide block 1127 is installed on the positioning mechanism 111, and the second guide rail 1126 is installed on the plate-shaped portion 1121.
  • the second driving assembly 112c drives the plate-shaped portion 1121 to move left and right, the plate-shaped portion 1121 is guided to move in the left-right direction through the sliding adaptation of the second guide rail 1126 and the second guide block 1127.
  • the second driving assembly 112c includes a second screw rod 1128, a second nut seat 1129 adapted to the second screw rod 1128, and a second motor drivingly connected to the second screw rod 1128 through a transmission member.
  • the second screw rod 1128 passes The bearing seats at both ends are installed on the upper surface of the plate-shaped portion 1121 and are located between the two second guide rails 1126.
  • the transmission member is a belt transmission member or a chain transmission member.
  • the second motor drives the second screw rod 1128 to rotate through the transmission member.
  • the second nut seat 1129 is adapted to the threaded portion of the second screw rod 1128 to form the output end of the second driving component 112c, and the second nut seat 1129 is connected to the positioning mechanism 111.
  • the second motor drives the second screw rod 1128 to rotate
  • the second nut seat 1129 drives the positioning mechanism 111 to move in the left and right direction.
  • the plate-shaped portion 1121 enables the positioning mechanism 111 and the base 110 to be miniaturized in the length direction.
  • the number of plate-shaped parts 1121 may be multiple.
  • the number of plate-shaped parts 1121 may be two, three or more, two adjacent ones above and below.
  • the plate-like parts 1121 are spaced apart to form a third space, and a third sliding component and a third driving component are disposed in the third space.
  • the arrangement of the third sliding component refers to the corresponding structures of the first and second sliding components 112d.
  • the arrangement of the three driving components refers to the corresponding structures of the first and second driving components 112c, and will not be described again here.
  • the positioning mechanism 111 includes a bottom plate 1110.
  • the bottom plate 1110 is connected to the second nut seat 1129.
  • Two clamping plates 1111 are provided above the bottom plate 1110.
  • each of the two clamping plates 1111 Each one can move in the front-to-back direction relative to each other to increase or decrease the clamping space between the two clamping plates 1111 .
  • the two clamping plates 1111 are connected to a synchronous driving mechanism, so that the two clamping plates 1111 are brought close to each other at the same time to position and hold the brick 5 or are moved away from each other at the same time to release the brick 5 .
  • the two clamping plates 1111 that move synchronously can position the third coordinate O3 of the brick 5 on the same vertical plane extending left and right.
  • one of the two splints 1111 is a fixed splint 1111 and the other is a movable splint 1111.
  • the movable splint 1111 moves close to the fixed splint 1111 to position the brick 5, and the movable splint 1111 is relative to the fixed splint 1111.
  • Clamp 1111 moves away to release brick 5.
  • the slurrying mechanism 12 includes a first mounting bracket 12b mounted on the support mechanism 10 and a hopper 12a mounted on the first mounting bracket 12b via a first pivot mechanism 12c.
  • the lower end of the hopper 12a A grouting working end 121 is formed, and the first rotation axis R1 of the first pivot mechanism 12c extends forward and backward.
  • the lower end of the first mounting bracket 12b includes a horizontal frame 124.
  • the horizontal frame 124 is arranged in a U shape to form an opening, and the opening is located at the base 110.
  • the horizontal frame 124 includes a middle portion 1241 extending left and right and two extension arms 1242 located on the left and right sides of the middle portion 1241.
  • Each extension arm 1242 extends along the front and rear direction.
  • the middle portion 1241 is provided on one side of the base 110 along the front-to-back direction.
  • the base 110 is located between the two extension arms 1242 along the left-right direction.
  • a sliding adapter portion 1243 is provided at the lower end of each extension arm 1242 to adapt to the second extension arm 1242 .
  • a guide member 101 is provided at the lower end of each extension arm 1242 to adapt to the second extension arm 1242 .
  • the first mounting frame 12b also includes a first vertical frame 125, a transverse driving mechanism 126 fixed on the fixed upper end 125b of the first vertical frame 125, and a transverse driving mechanism 126.
  • a first lifting mechanism 127 at the output end of 126 and a fixed lower end 125a of the first vertical frame 125 are installed on the middle part 1241, so that the vertical frame can move forward and backward along the first guide 101.
  • the hopper 12a is installed on the output end of the transverse driving mechanism 126 through the first lifting mechanism 127, so that the hopper 12a can move in the left and right directions.
  • the hopper 12a is pivotally connected to the output end of the first lifting mechanism 127 through a first pivoting mechanism 12c. , thereby enabling the hopper 12a to perform lifting and lowering movements and to swing up and down along the first rotation axis R1.
  • the output end of the first lifting mechanism 127 is configured as a lifting seat.
  • the first lifting mechanism 127 includes a rear plate 1271.
  • the rear plate 1271 is connected to the lifting driving part of the first lifting mechanism 127.
  • the lifting driving part The lifting base can be driven to perform lifting movements under the driving of the motor.
  • the lifting base includes a front plate 1272 opposite to the rear plate 1271.
  • the front plate 1272 is connected to the hopper 12a through the first pivot mechanism 12c.
  • the front plate 1272 and the back plate 1271 are connected through two side plates 1273, so that the front plate, the back plate and the two side plates 1273 form an enclosed cavity 1274.
  • the first pivot mechanism 12c includes a vertically disposed first plate 128a, a second plate 128b extending vertically from the first plate 128a, and a first pivot motor 129.
  • the first pivot motor 129 is disposed in the enclosure cavity 1274 and the output portion of the first pivot motor 129 extends from the main plate out of the enclosure cavity 1274 and is rotationally connected to the first plate 128a.
  • the output portion of the first pivot motor 129 Forming the first rotation axis R1, the second plate 128b has a fixing hole 1280 for mounting the hopper 12a.
  • the upper end of the hopper 12a has a feeding pipe 122.
  • the feeding pipe 122 passes through the fixing hole 1280 and is fixed therein.
  • the lower end of the feeding pipe 122 is connected to a silo 123.
  • the lower end of the silo 123 It has a grouting working end 121.
  • the grouting working end 121 includes a longitudinally extending outlet 1211 and a scraper 1212 installed on one of the long edges of the outlet 1211.
  • the width of the bin 123 from top to bottom is It is tapered to maintain the slurry discharge pressure of the discharge port 1211.
  • the scraper 1212 scrapes the slurry evenly so that a uniform slurry layer is formed on the surface of the brick 5.
  • the grouting mechanism 12 also includes an adapter portion 12d.
  • the adapter plate includes an elbow 12d1 and a valve 12d2 that controls the opening and closing of the elbow 12d1.
  • the first end of the elbow 12d1 is connected to an external power supply.
  • the second end of the elbow 12d1 is connected to the feed pipe 122 through the slurry pipe.
  • the external slurry supply mechanism provides slurry.
  • the slurry passes through the elbow 12d1 and the feed pipe and enters the feed pipe 122.
  • the slurry enters the feed pipe 122. After the material pipe 122, it flows downward into the silo 123, and is output from the discharge port 1211 to the surface of the brick 5, completing the process of supplying slurry to the surface of the brick 5.
  • the valve 12d2 closes the elbow 12d1 to cut off the slurry transport.
  • the smearing mechanism 12 includes a rotation mechanism 12e.
  • the rotation mechanism 12e is provided on the second plate 128b.
  • the output end of the rotation mechanism 12e is drivingly connected to the hopper 12a.
  • the hopper 12a is along the rotation axis A of the fixing hole 1280. It can achieve 180° rotation, so that the scraper 1212 can face the left or right side, so that the smearing direction can be flexibly adjusted.
  • the output end of the rotation mechanism 12e of this embodiment is configured as a driving gear 12e1.
  • the driving gear 12e1 is connected to a motor drive.
  • the driving gear 12e1 rotates and drives the driven gear 12e2 installed on the hopper 12a, thereby This allows the hopper 12a to rotate 180° along the rotation axis A of the fixing hole 1280.
  • the turning mechanism 13 includes a second mounting frame 13a and a turning manipulator 13b.
  • the second mounting frame 13a includes a second vertical frame 131 and a second lifting mechanism provided on the second vertical frame 131.
  • Mechanism 132, the flipping robot 13b is connected to the second lifting mechanism 132 through a second pivot mechanism 12c, whereby the second rotation axis R2 of the second pivot mechanism 12c and the first rotation axis R1 of the first pivot mechanism 12c parallel.
  • the flipping robot 13b can lift and flip 180° up and down along the second rotation axis R2.
  • the driving mode of the second lifting mechanism 132 is screw drive, belt transmission or gear transmission. As long as it can realize the lifting and lowering of the flipping manipulator 13b, it belongs to the second lifting mechanism 132 of this application.
  • the second pivot mechanism 12c includes a rotating part 133 and a second pivot motor 134 that drives and connects the rotating part 133.
  • the rotating part 133 rotates forward and backward to connect the second lifting mechanism 132 and the flip manipulator 13b.
  • the rotating part 133 may be a rotating bearing, a satellite gear mechanism, or a belt rotating mechanism.
  • the second pivot motor 134 drives the rotating part 133 to rotate, and the flipping manipulator 13b can flip up and down relative to the second lifting mechanism 132 .
  • the flip manipulator 13b includes a connecting base 135, which is connected to the rotating part 133, and a hand body 136 extending from the connecting base 135 along the front and rear direction.
  • Two clamping parts 137 are provided at intervals, and at least one of the two clamping parts 137 can be disposed movably in the front-rear direction.
  • the two clamping parts 137 are both movably disposed and move away from each other relative to a vertically extending center line to release the brick 5 or approach each other to pick up and position the brick 5 .
  • the flipping robot 13b is used to pick up the plastered brick 5 from the second position P2 and then flip it 180° along the front and rear axis so that the plastered side of the brick 5 is placed downwards and the non-plastered side of the brick 5 is placed downwards.
  • the second position P2 is set vertically below the flipping robot 13b, that is, the coordinate value of the first coordinate O1 of the second position P2 is (X2, Y2), which is the same as that of the flipping robot 13b.
  • the second coordinate O2 on the horizontal plane overlaps.
  • the position detection device 14 includes a mounting portion 141 installed on the first vertical frame 125, and a carrier 142.
  • the first end is rotatably connected to the mounting portion 141 through a first servo 143
  • the second end of the carrier 142 is rotatably connected to a detection sensor 145 through a second servo 144 .
  • the first steering gear 143 causes the rotation axis extending along the X direction of the carrier 142 to flip up and down relative to the mounting portion 141 .
  • the rotation axis of the second steering gear 144 is perpendicular to the rotation axis of the first steering gear 143 , thereby causing the detection sensor 145 to flip left and right.
  • the first steering gear 143 drives the carrier 142 to flip downward so that the brick 5 is within the detection range of the detection sensor 145.
  • the machine 144 is configured such that the detection end of the detection sensor 145 is aligned with the side of the brick 5 .
  • the position detection device 14 of this embodiment can detect the offset value d of the brick 5 at the first position P1 corresponding to the first position P1 on both sides.
  • the first steering gear 143 drives the carrier 142 to flip upward to make way for the transport path of the bricks 5 .
  • the detection sensor 145 can be a laser ranging sensor, a camera detection sensor 145 and a proximity switch detection sensor 145.
  • the detection sensor 145 in this embodiment is a laser ranging sensor, with the detection end facing the first position P1
  • the side of brick 5 emits laser, and the side of brick 5 reflects the laser.
  • the detection end can know the actual distance D2 from the detection end to the side of brick 5 based on the received reflected laser. According to the actual distance D2, the side of brick 5 can be known.
  • the actual coordinate value of the ideal coordinate value of the side of the brick 5 at the first position P1 under the ideal state is the ideal distance D1 from the detection end. Compare the actual distance D2 and the ideal distance D1, so that the offset of the brick 5 can be known. Move distance d.
  • the first vertical frame 125 of the smearing mechanism 12 is installed on the rear side of the moving stage 11, and the second vertical frame 131 of the flipping mechanism 13 is installed on the moving stage 11.
  • the front side of the brick-laying mechanism 3 is moved closer to the brick-laying mechanism 3, thereby reducing the transport stroke of the brick-laying mechanism 3 and speeding up the brick-laying rhythm.
  • the brick supply assembly 1 has a storage state and a working state. Please refer to Figures 4 and 5.
  • the first vertical frame 125 is located within the edge of the support mechanism 10, which is conducive to miniaturization of the bricklaying system 100 and facilitates passage indoors. The door frame of the scene or the narrow passage.
  • the grouting mechanism 12 moves backward beyond the rear configuration edge of the support mechanism 10, and the grouting working end 121 is located on the first vertical plane extending left and right.
  • the flipping robot 13b is located on the second vertical plane extending left and right, and the first vertical plane Y1 is located at a parallel interval on the rear side of the second vertical plane.
  • the grouting working end 121, the positioning mechanism 111 and the flipping manipulator 13b in the stowed state are all located on the second vertical plane, which is conducive to the compactness of the brick supply assembly 1 in the stowed state in the front and rear directions. settings.
  • the smearing mechanism 12 and the flipping mechanism 13 are spaced apart in the front-to-back direction and do not overlap along the projection on the horizontal plane, so that the hopper 12a can move left and right without any obstacles driven by the transverse driving mechanism 126, and the flipping manipulator 13b is at the second pivot. Driven by the connecting mechanism 12c, it can be flipped up and down without any obstacles.
  • the front and rear driving parts pass through the driving base 110, so that the moving stage 11 moves forward and backward along the second guide part 102 in the front and rear direction, moves backward to the first vertical surface Y1 to complete brick mortaring, and moves forward to the first vertical surface Y1 to complete brick mortaring.
  • the two vertical surfaces are used to transfer the mortared bricks 5 to the flipping robot 13b.
  • the base 110 drives the positioning mechanism 111 to move to the first vertical plane Y1 along the second guide 102, and the movement mechanism 112 moves to the left or toward the second vertical plane Y1.
  • the right drives the positioning mechanism 111 to a first position P1.
  • the positioning mechanism 111 at the first position P1 is used to receive bricks 5 from the outside.
  • the first coordinate O1 located at the first position P1 is fixedly set (X1, Y1), which is beneficial to the operation rhythm of loading bricks of the brick supply assembly 1 and is beneficial to the simplification of the control strategy.
  • the positioning mechanism 111 can move between the moving mechanism 112 and the first vertical plane Y1. It can move left and right under drive without affecting the flipping robot 13b to flip the bricks 5, so that the first position P1 of the positioning mechanism 111 can be set on either side in the left and right directions, which increases the flexibility of loading bricks in the working space S. , especially in some narrow working spaces S with dead corners.
  • the first position P1 is located on either side of the grouting operation end 121 in the upward direction Y.
  • the first position P1 is located at the grouting operation end 121.
  • the positioning mechanism 111 moves to the right, the first position P1 is located on the right side of the vertical projection of the grouting working end 121 .
  • the positioning mechanism 111 receives the brick 5 at the first position P1
  • the clamping plate 1111 of the positioning mechanism 111 is in an open state to maintain enough space to receive the brick 5.
  • the two clamping plates 1111 clamp and position the brick 5 inwardly.
  • the two splints 1111 move synchronously, so that the Y coordinate of the third coordinate O3 of the first position P1 remains on the same vertical plane, so that when the control module 4 controls the brick 5 to move from the first position P1,
  • the third coordinate O3 of brick 5 forms a fixed coordinate value in the Y direction, which is conducive to simplifying the control strategy and increasing position accuracy.
  • the Y coordinate of the brick 5 is located on the first vertical plane Y1, thereby ensuring that the brick 5 and the grouting operation end 121 are co-located on the first vertical plane Y1, which is beneficial to the grouting operation end.
  • 121 Align brick 5 with grout.
  • the positioning mechanism 111 receives the brick 5 at the first position P1 and moves from the first position P1 to the second position P2, the grouting mechanism 12 groutes the brick 5.
  • the grouting mechanism 12 performs side grouting and horizontal grouting on the bricks 5.
  • the order of side grouting and horizontal grouting can be exchanged.
  • One working mode of the grouting mechanism 12 is: first grout the downstream side 52 of the brick 5, and then horizontally grout the upper surface of the brick 5.
  • the working mode is as follows.
  • the positioning mechanism 111 carries the bricks 5 from the first position P1 to a third position P3 along the second vertical plane toward the grouting end 121.
  • the bricks 5 in the third position P3 are The side is aligned with the grouting working end 121, and the grouting working end 121 is grouted on the side of the brick 5 at the third position P3 from bottom to top.
  • the first side smearing method is: Refer to Figure 18, the positioning mechanism 111 stops at the third position P3 under the braking of the movement mechanism 112, and the smearing working end 121 is at the first lifting mechanism 127. When driven, the brick 5 moves from bottom to top relative to the stationary brick 5.
  • the outlet 1211 applies slurry to the side of the brick 5, and the scraper 1212 scrapes the slurry from bottom to top on the side of the brick 5.
  • the brick 5 is stopped at the third position P3.
  • the control module 4 only controls the driving of the first lifting mechanism 127, which is beneficial to Simplification of the control strategy;
  • the second side grouting method is: the positioning mechanism 111 still maintains a moving state at the third position P3, and the grouting working end 121 is driven along the brick 5 by the transverse drive mechanism 126.
  • the left and right directions maintain a synchronous movement state.
  • the grouting working end 121 moves from bottom to top relative to the brick 5, and the outlet 1211 moves the grout
  • the material is applied to the side of the brick 5, and the scraper 1212 scrapes the slurry from bottom to top on the side of the brick 5.
  • the brick 5 can be smeared while being transported. There is no pause in the movement of bricks 5, which speeds up the rhythm of brick supply and helps save time and costs.
  • the first horizontal grouting method is: the positioning mechanism 111 keeps the moving bricks 5 in a stationary state, and the grouting working end 121 is driven by the transverse driving mechanism 126 along the second vertical plane relative to the stationary bricks.
  • the block 5 moves, the outlet 1211 applies slurry on the upper surface of the brick 5, the scraper 1212 scrapes the slurry flat on the upper surface of the brick 5, and through the first horizontal slurrying method, between the slurrying mechanism 12 and Of the two moving stages 11, the control module 4 only controls the transverse drive mechanism 126, and the control strategy is relatively simple; the second horizontal grouting method is: the grouting working end 121 remains stationary, and the upper surface of the brick 5 moves along the The second vertical surface moves relative to the grouting mechanism 12.
  • the outlet 1211 applies grout to the upper surface of the brick 5.
  • the scraper 1212 scrapes the grout evenly on the upper surface of the brick 5.
  • the control module 4 only controls the moving platform 11.
  • the control strategy is relatively simple, and horizontal grouting can be achieved while transporting the bricks 5, thereby reducing movement.
  • the pause time of the carrier 11 is shortened, thereby shortening the transportation time of the bricks 5, thereby speeding up the brick supply rhythm;
  • the third horizontal grouting method is: as shown in Figure 19, the bricks 5 are placed along the second vertical surface Moving in a direction away from the grouting working end 121, the grouting working end 121 moves along the second vertical plane driven by the transverse driving mechanism 126, and the moving direction of the grouting working end 121 is opposite to the moving direction of the brick 5.
  • the outlet 1211 applies slurry to the upper surface of the brick 5, and the scraper 1212 smoothes the slurry on the upper surface of the brick 5.
  • the traverse path of the grouting working end 121 of the third horizontal grouting method is shorter, correspondingly, the length of the traversing mechanism can be relatively smaller, compared to the third horizontal grouting method.
  • the traverse path of the bricks 5 is relatively short, so that the length of the plate-shaped portion 1121 can be set relatively small.
  • the lateral movement distance of the grouting working end 121 is L1
  • the lateral movement distance of the brick 5 is L2
  • the sum of L1 plus L2 is equal to the length of the brick 5.
  • An embodiment of the third horizontal grouting method is: the initial position of the grouting working end 121 is located at the middle position of the transverse driving mechanism 126.
  • the first lifting mechanism 127 and the connected grouting working end 121 are located on the right side of the first position P1, and the scraper 1212 is arranged toward the brick 5 on the left side.
  • the brick 5 moves from the first position P1 to the right toward the grouting end 121.
  • the first lifting drive mechanism drives the grouting end 121 to grout the side of the brick 5 from bottom to top, and the transverse drive mechanism 126 drives the grouting operation.
  • the end 121 is moved to the left while the brick 5 is moved to the right to complete the horizontal grouting of the upper surface of the brick 5 .
  • the first lifting mechanism 127 and its connected grouting working end 121 are located on the left side of the first position P1 , and the scraper 1212 is disposed toward the bricks 5 on the right side.
  • the brick 5 moves from the first position P1 to the left toward the grouting end 121.
  • the first lifting drive mechanism drives the grouting end 121 to grout the side of the brick 5 from bottom to top, and the transverse drive mechanism 126 drives the grouting operation.
  • the end 121 is moved to the right while the brick 5 is moved to the left to complete the horizontal grouting of the upper surface of the brick 5 .
  • the rotation mechanism 12e allows the hopper 12a to move toward the left and right sides, so that the transverse driving mechanism 126 can drive the hopper 12a toward the left and right sides. While smearing the side, the length of the transverse driving mechanism 126 does not need to be twice the length of the brick 5.
  • the stroke of the brick 5 moving along the first vertical plane Y1 can be shorter, which is beneficial to the realization of the smearing mechanism.
  • the miniaturization of 12mm also shortens the implementation of grouting operations, saving time and cost.
  • Another operation method of the grouting mechanism 12 is: first grout the upper surface of the brick 5 horizontally, and then grout the upstream side 51 of the brick 5 horizontally.
  • the method can be selected from the three horizontal grouting methods mentioned above, and the side grouting method can be chosen from the two side grouting methods mentioned above.
  • the driving assembly drives the base 110 to move forward to the second vertical plane. If the X-coordinate of the third coordinate of the brick 5 after grouting is completed on the first vertical plane Y1 and the X-coordinate of the second coordinate are aligned along the front-to-back direction, during the process of the base 110 moving forward, The motion mechanism 112 does not work, so that the brick 5 only moves backward along the front and rear direction to the second position P2; the X-direction coordinate of the third coordinate O3 of the brick 5 after completion of grouting on the first vertical plane Y1 is the same as the second position P2.
  • the X-axis coordinate of coordinate O2 is offset a certain distance to the left or right along the front-to-back direction.
  • the motion mechanism 112 correspondingly drives the brick 5 to move to the left or right, so that the third position of the brick 5 Coordinate O3 overlaps the second coordinate O2.
  • the second lifting mechanism 132 drives the flipping robot 13b downward, and the two clamping parts 137 of the flipping robot 13b clamp the brick 5 to complete the picking action.
  • the two lifting drive mechanisms drive the flipping manipulator 13b upward so that the brick 5 has space to flip up and down.
  • the flipping manipulator 13b is driven by the second pivot mechanism 12c to flip 180°, so that the horizontal plastering surface of the brick 5 faces downward.
  • the horizontal non-smeared surface of the block 5 faces upward. Since the side slurry can optionally be smeared on the upstream side 51 or the downstream side 52 of the brick 5, the brick 5 can face to the left after being turned over 180°. Can be oriented to the right.
  • the bricklaying mechanism 3 picks up the non-smeared surface of the brick 5 downwards, and sticks the horizontal smeared surface of the bricks 5 downwards to the masonry position of the wall.
  • the horizontal placement surface, and according to the different orientations of the sides of the bricks in the left and right directions, the bricklaying mechanism 3 can lay bricks to the left or to the right, and stick the side mortar surfaces of the bricks to the wall to be built The vertical surface of body W.
  • the turning mechanism 13 is fixedly arranged, and the grouting mechanism 12 is movable along the front and rear directions.
  • the mobile chassis 2 includes a main frame 20.
  • the main frame 20 has a predetermined length and width when viewed from top to bottom.
  • the predetermined length and width of the main frame 20 can allow the mobile chassis 2 to pass indoors. Scenes with predetermined dimensions such as narrow passages and entrances to the site.
  • the configuration of the main frame 20 when viewed from top to bottom is a rectangle, but in other embodiments, the configuration can be a trapezoid, a concave shape, or a triangle, etc., and the corresponding configuration can be selected according to actual needs. configuration.
  • the four corners of the main frame 20 are rounded respectively to prevent sharp corners from scratching the operator or other objects.
  • the main frame 20 includes an upper mounting surface 21 and a lower mounting surface, as well as a plurality of wheel sets 22.
  • the electric control cabinet is installed in the rear area of the upper mounting surface 21, and the edge of the electric control cabinet is not Beyond the edge of the upper mounting surface 21 , the brick laying mechanism 3 is installed in the front area of the upper mounting surface 21 .
  • a plurality of wheel sets 22 are installed on the lower mounting surface.
  • the number of wheel sets 22 is four.
  • the application is not limited to four wheel sets 22 and can be other numbers as long as the self-moving function of the chassis mechanism can be realized.
  • the wheel set 22 is a steering wheel, which can realize the functions of automatic rotation and automatic displacement.
  • the main frame 20 is equipped with liftable support legs 23. When moving to the corresponding brick laying site, the support legs 23 are lowered to contact the ground.
  • the bricklaying mechanism 3 includes a column 30, a robotic arm 31 connected to the column 30, and a mechanical claw 32 connected to the robotic arm 31.
  • the column 30 is installed on the front area of the mobile chassis 2, and the robotic arm 31 is located nearby. Extending between the end 311 and the distal end 312 , the proximal end 311 of the robotic arm 31 is fixedly mounted on the column 30 , and the distal end 312 of the robotic arm 31 is connected to a mechanical claw 32 .
  • the upright column 30 in this embodiment is a lifting column.
  • the upright column 30 can drive the mechanical arm 31 to move in the up and down direction.
  • the mechanical arm 31 is a horizontal joint 313.
  • the mechanical arm 31 includes a plurality of connecting rods 3120 and a plurality of joints 313.
  • Each joint 313 is provided with a braking part, and the braking part controls the rotation and stop motion of the joint 313 to form the multiple links 3120 into different angles, so that the robotic arm 31 forms different postures.
  • the mechanical arm 31 swings back and forth around the column 30 to move between a brick picking position and a masonry position.
  • the mechanical claw 32 in the picking position picks up the flipped bricks 5 from the flipping manipulator 13b, and the mechanical claw 32 in the masonry position picks up the flipped bricks 5.
  • the bricks 5 are released onto the wall W to be built, and the plastering surface of the bricks 5 is adhered to the brick surface at the construction position.
  • the column 30 is configured as a multi-level lifting column.
  • the column 30 has a three-level lifting structure.
  • the multi-level lifting in this application is not limited to a three-level lifting, and may also be a two-level lifting or a four-level lifting. Or other levels of lifting, as long as it can cover the masonry height.
  • the column 30 includes a fixed bracket 301, a first lifting bracket 302 slidably connected to the fixed bracket 301, a second lifting bracket 303 slidably connected to the first lifting bracket, and a first lifting bracket 303 slidably connected to the second lifting bracket.
  • the lower end of the fixed bracket 301 is installed in the front area of the upper mounting surface 21 to form the installation position where the column 30 is installed on the mobile chassis 2.
  • the lower end of the fixed bracket 301 is slidably installed on the upper mounting surface 21 along the left and right directions.
  • the first lifting bracket 302 is raised and lowered relative to the fixed bracket 301 through the first height driving member to form the first level of lifting.
  • the lifting frame 303 is raised and lowered relative to the first lifting frame 302 through the second height driving member to form a second level of lifting, and the third lifting frame 304 is raised and lowered relative to the second lifting frame 303 through the third height driving member to form a third level of lifting.
  • the third-level lifting frame is the lifting output end of the column 30, and the proximal end 311 of the robotic arm 31 is connected to the third-level lifting frame.
  • the bricklaying system 100 of this embodiment has a bricklaying method, the steps of which are as follows:
  • the control module 4 pre-stores the operation map of the operation space S, the spatial position and spatial size of the wall W to be built, and the spatial coordinates corresponding to each brick of the wall W to be built, as well as the corresponding wall to be built.
  • the work map, the spatial position and size of the wall, the spatial coordinates corresponding to each brick, and the spatial coordinates of multiple masonry sites are all generated by the Building Information Modeling (BIM) system.
  • BIM Building Information Modeling
  • an inclination sensor is installed on the mobile chassis 2. After the mobile chassis 2 moves to the corresponding masonry site, the inclination sensor learns that the mobile chassis 2 2. Relative to the inclination on the ground, according to the inclination, the control module 4 controls each adjustment mechanism to adjust the height of the corresponding support leg 23, so that the mobile chassis 2 can form a horizontal state, which is beneficial to the accuracy of bricklaying, thereby The quality of bricklaying is guaranteed.
  • the first vertical surface Y1 and the second vertical surface extend along the left and right directions and are arranged in parallel at intervals in front and back.
  • the first position P1 is located on the first vertical surface Y1.
  • the coordinate value of the first coordinate O1 of the positioning mechanism 111 at the first position P1 is (X1, Y1), and the first coordinate O1 is located along the grouting end 121 Either side in the left or right direction.
  • the brick at the second position P2 is located vertically below the flipping robot 13b.
  • the coordinate value of the third coordinate O3 of the brick at the second position P2 is (X2, Y2).
  • the third coordinate O3 and the second coordinate O2 of P2 are set to overlap.
  • the driving method of driving the smearing mechanism 12 can be manual driving by the operator, or automatic driving by an automatic driving element.
  • the driving mode of the smearing mechanism 12 is manual driving by the operator.
  • the column 30 moves to the left away from the flip mechanism 13, and a left and right gap is formed between the two, which facilitates the mechanical claw 32 to swing back and forth, and also allows the mechanical claw 32 to swing from the picking position to the left.
  • the masonry location has relatively small handling paths.
  • the outside world places the unmortared bricks in the positioning mechanism 111 at the first position P1.
  • the placement method may be that the operator places the bricks on the positioning mechanism 111, or another brick loading device may automatically place the bricks on the positioning mechanism 111.
  • the two clamping plates 1111 of the positioning mechanism 111 are synchronously clamped inward to position the Y-coordinate of the third coordinate O3 of the brick on the first vertical plane Y1.
  • the position detection device 14 detects the offset value d of Xb of the third coordinate O3 of the first position P1 relative to X1 of the first coordinate O1 of the first position P1.
  • the control module 4 moves the corresponding distance along the X direction by controlling the motion mechanism 112, so that the X coordinate of the brick every time it reaches the second position P2 is X2; the front and rear driving parts drive the
  • the base 110 drives the positioning mechanism 111 to move from the first vertical plane Y1 to the second vertical plane, that is, the brick moves from the coordinate Y1 of the first position P1 to the coordinate Y2 of the second position P2.
  • the brick grouting steps include the following:
  • the control module 4 determines the bricklaying mode, which includes bricklaying to the left and bricklaying to the right;
  • the grouted surface of the control brick is the downstream side 52 (ie, the right side) of the brick in the conveying direction and the Upper surface:
  • the grouted surface of the control brick is the upstream side 51 (ie, the left side) of the brick in the conveying direction and the upper side of the brick. surface:
  • the smeared side and the unsmeared side are respectively defined as the first smeared surface and the first non-smeared surface;
  • the smeared horizontal surface and the unsmeared horizontal surface are respectively defined as the second smeared surface and the second non-smeared surface.
  • the first lifting mechanism 127 and the grouting working end 121 connected thereto are driven to the end of the transverse drive mechanism 126 through the transverse drive mechanism 126.
  • the first lifting drive mechanism drives the hopper 12a to lower to the corresponding height, so that the starting position of the grouting end 121 can cover the lower edge of the downstream side 52 of the bricks, and the first pivot mechanism 12c makes the hopper 12a swing.
  • the hopper 12a in the side plastering posture tilts to the left from top to bottom and the scraper 1212 faces left toward the downstream side 52 of the bricks.
  • the hopper 12a forms an included angle with the downstream side 52 of the bricks. The range is between 15° and 25°.
  • the movement carrier 11 is controlled to transport the bricks to the third position P3.
  • the downstream side 52 of the bricks in the third position P3 is aligned with the grouting working end 121, and the bricks are in the third position. It is at rest in P3.
  • the first lifting drive mechanism drives the grouting working end 121 to rise, so that the grouting working end 121 is grouted on the downstream side 52 of the brick from bottom to top to form the first grouting noodle.
  • the first lifting mechanism 127 continues to drive the hopper 12a to rise to a certain distance from the brick level between the plastering operation end 121. This distance can make the first pivot mechanism When 12c drives the hopper 12a to swing to the right to the horizontal grouting posture, the grouting working end 121 will not collide with the bricks.
  • the first lifting mechanism 127 and the grouting working end 121 connected thereto are driven to the middle position of the transverse driving mechanism 126 through the transverse driving mechanism 126 , the first lifting drive mechanism drives the hopper 12a to move to the corresponding height, so that the height of the grouting working end 121 is flush with the height of the upper surface of the brick, and the first pivot mechanism 12c makes the hopper 12a swing to a horizontal grouting posture.
  • the hopper 12a in a horizontal slurrying posture is tilted from top to bottom to the right and the scraper 1212 is set toward the left.
  • the hopper 12a forms an included angle with the vertical plane extending front and back, and the included angle ranges from 15° to 25°. between.
  • the movement carrier 11 is controlled to transport the bricks to the third position P3, and the bricks move to the right from the first position P1 to a third position P3 along the first vertical plane Y1.
  • the bricks move from left to right across the grouting working end 121
  • the transverse driving mechanism 126 drives the grouting working end 121 to move from right to left
  • the bricks and the grouting working end 121 move in opposite directions to each other.
  • the grouting working end 121 is grouted on the upper surface of the brick to form a second grouting surface;
  • the bricks at the third position P3 are in a stationary state.
  • the first pivot structure causes the hopper 12a to rotate to the side smearing posture.
  • the first lifting mechanism 127 drives the hopper 12a to lower to the slurrying operation.
  • the end 121 can cover the lower edge of the downstream side 52 of the brick, and then the first lifting drive mechanism drives the hopper 12a to rise, so that the slurry working end 121 is smeared on the upstream side 51 of the brick from bottom to top to form the first slurry.
  • the positioning mechanism 111 is restarted through the motion mechanism 112, and there is no pause rhythm from the third position P3 to the second position P2.
  • the positioning mechanism 111 is driven to the right by the motion carrier 11, and the bricks Move right to the second position P2 along the left-right coordinate Y2, and drive the base 110 backward through the front and rear driving members, so that the brick moves from the first vertical plane Y1 to the second vertical plane, so that the brick The center moves to the coordinate X2 along the front-rear direction of the second position P2.
  • the flipping mechanism 13 picks up the bricks from the moving carrier 11 and flips the spatial orientations of the plastered surface and the non-plastered surface.
  • the first mortared surface of the bricks that reaches the second position P2 faces the right
  • the first non-pasted surface faces the left
  • the second mortared surface faces upward
  • the second non-pasted surface faces upward.
  • Face down use the second lifting mechanism 132 to drive the flipping robot 13b to pick up the bricks downward, and then use the second pivot mechanism 12c to flip the bricks 180°, so that the first plastered surface faces left and the first non-plastered surface To the right, the second grouted side is facing down, and the second non-greased side is facing up.
  • the first mortared surface of the brick that reaches the second position P2 faces left
  • the first non-mortared surface faces left
  • the second mortared surface faces upward
  • the second non-pasted surface faces upward.
  • Face down use the second lifting mechanism 132 to drive the flipping manipulator 13b to pick up the bricks downward
  • the second grouted side is facing down and the second non-greased side is facing up.
  • the robot arm 31 swings to the right rear direction so that the mechanical claw 32 is in the picking position and the picking space of the mechanical claw 32 faces the second non-mortar surface to pick up bricks, and then the robot arm 31 Swing forward to the left to make the mechanical claw 32 place the bricks in the masonry position.
  • the first plastering surface of the masonry position is glued to the right on the vertical placement surface of the wall W to be built, and the second plastering surface is glued downward. Glue to the horizontal surface of the wall W to be built.
  • the robot arm 31 swings to the right rear direction so that the mechanical claw 32 is in the pick-up position and the pick-up space of the mechanical claw 32 faces the second non-mortar surface to pick up bricks, and then the robot arm 31 Swing forward to the left to make the mechanical claw 32 place the bricks in the masonry position.
  • the first plastering surface in the masonry position is glued to the left on the vertical placement surface of the wall W to be built, and the second plastering surface is glued downwards. Glue to the horizontal surface of the wall W to be built.
  • the bricklaying system 100 completes the bricklaying operation of loading bricks on the left side.
  • the bricklaying system 100 can enable the positioning mechanism 111 to complete the mortaring of the bricks during the process of transporting the bricks, speed up the brick supply rhythm, and control the mortaring according to different bricklaying methods.
  • the different orientations of the grout surface allow the bricklaying system 100 to cover both leftward and rightward bricklaying.
  • the operations of loading bricks, plastering, flipping bricks, and laying bricks are integrated into the bricklaying system 100 to achieve miniaturization of the system, and allow the brick supply assembly 1 and the bricklaying mechanism 3 to work at the same time, speeding up operating rhythm.
  • step S1 systematic automated bricklaying can be realized, and through step S2, the overall levelness of the bricklaying system 100 can be improved, thereby benefiting bricklaying accuracy.
  • steps S65 and S66 after the bricks move from the third position P3 again, the horizontal grouting is completed in the process of moving towards the second position P2.
  • the bricks move to the right from the third position P3 to When the horizontal grouting is completed, the X-direction coordinate of the brick has not reached the left-right coordinate X2 of the second position P2; move the brick forward on the base 110 to the Y-direction coordinate Y2 of the second coordinate O2 (X2, Y2) During the process, the moving stage 11 drives the brick to move the X-direction coordinate X2 of the second coordinate O2 (X2, Y2) to the right.
  • the above control strategy divides the process of the movement mechanism 112 from the third position P3 to the second position P2 into two consecutive stages.
  • the first stage is to only drive the bricks to the right by the movement mechanism 112, and the second stage is to move the bricks to the right.
  • the mechanism 112 drives the bricks to the right and the base 110 drives the bricks forward at the same time, thereby reducing the time when only the motion mechanism 112 drives the bricks to the right, thereby speeding up the brick feeding cycle.
  • the bricks in this embodiment stop at the third position P3 after completing the horizontal grouting, and the Y upward coordinate of the bricks at the third position P3 has not reached
  • the Y-direction coordinate Y2 of the second coordinate O2 (X2, Y2) in the process of the base 110 moving the brick forward to the Y-direction coordinate Y2 of the second coordinate O2 (X2, Y2), the moving stage 11 drives the brick Move the X-direction coordinate X2 of the second coordinate O2 (X2, Y2) to the right, and overlap part of the time when the positioning mechanism 111 moves to the right with the time when the base 110 moves forward, thereby reducing the time for horizontal grouting, and thereby increasing The rhythm of supplying bricks.
  • the bricklaying method is similar to the bricklaying method on the left side, and under different bricklaying modes, the wiping work when passing to the second position P2
  • the orientation of the bricks after grouting is the same. Only because the directions of the first position P1 are different, the downstream side 52 of the brick is the left side, and the upstream side 51 of the brick is the right side.
  • the plastering mechanism 12 plasters the bricks on the downstream side 52 of the bricks, the corresponding bricklaying mode is to the left, and when the plastering mechanism 12 plasters the upstream side 51 of the bricks, the corresponding bricklaying mode is to the right.
  • the flipping mechanism 13 is located on the right side of the support mechanism 10 when viewed from back to front. Therefore, when the first position P1 is on the left side, the transportation path of the bricks is smaller than when the first position P1 is on the right side. Path, optionally, sets the first position P1 to the left.
  • FIG 32, Figure 33 and Figure 34 is the second embodiment of the present application.
  • the structures of the mobile chassis 2, the bricklaying mechanism 3 and the standing cabinet 40 of the second embodiment are the same as those of the first embodiment.
  • the brick supply assembly 1 of this example is different from the brick supply assembly 1 of the first embodiment in that:
  • the difference between the support mechanism 10 of the second embodiment and the support mechanism 10 of the first embodiment is that the first guide member 101 is installed at the rear of the flipping mechanism 13 and extends along the front and rear direction to adapt to the movement of the flipping mechanism 13 along the front and rear direction. so that the flipping mechanism 13 can move forward away from the moving stage 11 and move backward close to the moving stage 11; the support mechanism 10 of the second embodiment is not provided with a second guide 102.
  • the difference between the moving stage 11 of the second embodiment and the moving stage 11 of the first embodiment is that the base 110 does not have a sliding member and a front and rear driving member adapted to the second guide member 102 along the front and rear direction. 110 is fixedly installed on the support mechanism 10, and the first position P1 and the second position P2 of the moving stage 11 are located on the second vertical plane.
  • the grouting mechanism 12 of the second embodiment is different from the grouting mechanism 12 of the first embodiment in that the lower end of the first mounting frame 12b does not have a horizontal frame 124, and the fixed lower end 125a of its first vertical frame 125 is fixedly installed on the support mechanism 10 , the installation position is located behind the moving stage 11 .
  • the flip mechanism 13 of the second embodiment is different from the flip mechanism 13 of the first embodiment in that the second mounting frame 13a includes a horizontal frame 124 and a vertical frame extending vertically from the horizontal frame 124.
  • the second vertical frame 131 and the horizontal frame 124 are provided with a sliding adapter portion 1243 on the rearward horizontally extending portion and are slidably connected to the first guide member 101 along the front and rear direction.
  • the second lifting mechanism 132, the second pivot mechanism 12c, and the flipping manipulator 13b of the frame 131 are the same as those in the first embodiment, and will not be described again here.
  • the front space is shifted to the left by the column 30 to make way for the space, thereby forming a space on the right side of the front cabinet 40. space.
  • the front space is located on the right side of the column 30 .
  • the bricklaying system 100 of this embodiment When the bricklaying system 100 of this embodiment is in the stowed state, the grouting working end 121, the moving platform 11 and the turning manipulator 13b are located in the second vertical plane, from top to bottom. Viewed from below, the smearing mechanism 12, the moving platform 11 and the flipping mechanism 13 are located within the configuration dimensions of the mobile chassis 2. What is different from the first embodiment is that the flipping mechanism 13 in the stowed state can protrude forward beyond the configuration of the supporting mechanism 10 into the front space of the supporting mechanism 10 , so that the installation space of the flipping mechanism 13 in this embodiment is relatively small. It is relatively large, and at the same time, the overall miniaturization of the bricklaying system 100 is achieved.
  • the steps of the bricklaying method of the bricklaying system 100 of the second embodiment are as follows:
  • the control module 4 pre-stores the operation map of the operation space S, the spatial position and spatial size of the wall W to be built, and the spatial coordinates corresponding to each brick of the wall W to be built, as well as the corresponding wall to be built.
  • the work map, the spatial position and size of the wall, the spatial coordinates corresponding to each brick, and the spatial coordinates of multiple masonry sites are all generated by the BIM system.
  • an inclination sensor is installed on the mobile chassis 2. After the mobile chassis 2 moves to the corresponding masonry site, the inclination sensor learns that the mobile chassis 2 2. Relative to the inclination on the ground, according to the inclination, the control module 4 controls each adjustment mechanism to adjust the height of the corresponding support leg 23, so that the mobile chassis 2 can form a horizontal state, which is beneficial to the accuracy of bricklaying, thereby The quality of bricklaying is guaranteed.
  • the positioning mechanism 111 is driven by the motion mechanism 112, so that the positioning mechanism 111 moves to the left or right along the second vertical surface to the first position P1, and the brick is placed on the positioning mechanism 111.
  • the positioning mechanism 111 After receiving the bricks, the positioning mechanism 111 is moved from the first position P1 toward the second position P2.
  • the two clamping plates 1111 of the positioning mechanism 111 are synchronously clamped inward to position the Y-coordinate of the third coordinate O3 of the brick on the second vertical plane.
  • the position detection device 14 detects the offset value d of Xb of the third coordinate O3 of the first position P1 relative to X1 of the first coordinate O1 of the first position P1.
  • the positioning mechanism 111 is driven by the motion mechanism 112 to move from the first position P1 to the second position P2 along the second vertical plane.
  • the control module 4 moves correspondingly along the X direction by controlling the motion mechanism 112. distance, so that the X coordinate of the brick every time it reaches the second position P2 is X2.
  • the grouting mechanism 12 spreads grout on the surface of the bricks.
  • the brick grouting steps include the following:
  • the control module 4 determines the bricklaying mode, which includes bricklaying to the left and bricklaying to the right;
  • the grouted surface of the control bricks is the downstream side 52 (ie, the right side) of the bricks in the conveying direction and the upper surface of the bricks:
  • the grouted surface of the control bricks is the upstream side 51 (ie, the left side) of the bricks in the conveying direction and the upper surface of the bricks:
  • the smeared side and the unsmeared side are respectively defined as the first smeared surface and the first non-smeared surface;
  • the smeared horizontal surface and the unsmeared horizontal surface are respectively defined as the second smeared surface and the second non-smeared surface.
  • the first lifting mechanism 127 and the grouting working end 121 connected thereto are driven to the middle position of the transverse driving mechanism 126 through the transverse driving mechanism 126.
  • the hopper 12a is driven to drop to the corresponding height so that the starting position of the grouting end 121 can cover the lower edge of the downstream side 52 of the brick.
  • the first pivot mechanism 12c makes the hopper 12a swing to the side grouting posture, and the side grouting
  • the hopper 12a is inclined to the left from top to bottom and the scraper 1212 is facing left toward the downstream side 52 of the bricks.
  • the hopper 12a forms an included angle with the downstream side 52 of the bricks, and the included angle ranges between 15° and 25°. .
  • the first lifting drive mechanism drives the hopper 12a to rise, so that the grouting working end 121 is grouted on the downstream side 52 of the brick from bottom to top to form the first grouting surface;
  • the first lifting mechanism 127 continues to drive the hopper 12a to rise to a certain distance from the brick level between the grouting working end 121. This distance allows the first pivot mechanism 12c to drive the hopper 12a to the right. During the swing to the horizontal grouting posture, the grouting working end 121 will not collide with the bricks;
  • the motion mechanism 112 restarts the positioning mechanism 111, and the bricks move to the right along the second vertical plane.
  • the first lifting mechanism 127 and the grouting working end 121 connected thereto are driven to the middle position of the transverse driving mechanism 126 through the transverse driving mechanism 126.
  • the mechanism drives the hopper 12a to drop to the corresponding height, so that the height of the mortaring end 121 is flush with the height of the upper surface of the bricks.
  • the first pivot mechanism 12c causes the hopper 12a to swing to a horizontal mortaring posture.
  • the horizontal mortaring posture is
  • the hopper 12a is tilted to the right from top to bottom and the scraper 1212 is set toward the left.
  • the hopper 12a forms an included angle with the vertical plane extending front and back, and the included angle ranges from 15° to 25°.
  • the positioning mechanism 111 is driven by the motion mechanism 112, and the brick moves to the right from the first position P1 to a third position P3 along the second vertical plane, and the downstream side 52 of the brick at the third position P3 crosses to the right.
  • the transverse driving mechanism 126 drives the grouting working end 121 to move to the left, and grouting is applied to the upper surface of the bricks from right to left to form a third 2. Apply paste;
  • the bricks in the third position P3 are in a static state.
  • the rotation mechanism 12e causes the hopper 12a to rotate so that the scraper 1212 is set toward the right, toward the bricks.
  • the first lifting mechanism 127 drives the hopper 12a down to the mortaring operation end 121 to cover the lower edge of the brick downstream side 52, and then drives the hopper 12a to rise through the first lifting mechanism 127, so that the mortaring operation end 121 starts from Apply grout on the downstream side 52 of the bricks from bottom to top to form the first grouting surface;
  • the positioning mechanism 111 is restarted through the motion mechanism 112, and there is no pause rhythm from the third position P3 to the second position P2.
  • the positioning mechanism 111 is driven to the right by the motion carrier 11, and the bricks
  • the third coordinate O3 moves right to the coordinate X2 of the second coordinate O2 along the left-right direction.
  • the first mortared surface of the bricks that reaches the second position P2 faces the right
  • the first non-pasted surface faces the left
  • the second mortared surface faces upward
  • the second non-pasted surface faces upward.
  • face down drive the flipping robot 13b downward to pick up bricks through the second lifting mechanism 132
  • drive the flipping mechanism 13 to move forward to a third vertical plane in the front space, and the third vertical plane is spaced parallel to the second vertical plane.
  • straight surface then flip the brick 180° on the second vertical surface through the second pivot mechanism 12c, so that the first plastered surface faces left, the first non-plastered surface faces right, and the second plastered surface faces down.
  • the second non-pasted side faces up.
  • the first mortared surface of the brick that reaches the second position P2 faces left
  • the first non-mortared surface faces left
  • the second mortared surface faces upward
  • the second non-pasted surface faces upward.
  • Face down use the second lifting mechanism 132 to drive the flipping manipulator 13b to pick up the bricks downward
  • the second grouted side is facing down and the second non-greased side is facing up.
  • the bricklaying method is similar to the bricklaying method on the left side, and under different bricklaying modes, the wiping work when passing to the second position P2
  • the orientation of the bricks after grouting is the same. Only because the directions of the first position P1 are different, the downstream side 52 of the brick is the left side, and the upstream side 51 of the brick is the right side.
  • the plastering mechanism 12 plasters the bricks on the downstream side 52 of the bricks, the corresponding bricklaying mode is to the left, and when the plastering mechanism 12 plasters the upstream side 51 of the bricks, the corresponding bricklaying mode is to the right.
  • FIGS 35 to 52 are the bricklaying system 100 of the third embodiment of the present application.
  • the bricklaying system 100 of this embodiment has the same thing as the bricklaying system 100 of the first embodiment in that: the mobile chassis 2,
  • the brick supply assembly 1 is located in the rear area of the mobile chassis 2, and the brick laying mechanism 3 is located in the front area of the mobile chassis 2.
  • the mobile chassis 2 of this embodiment refers to the mobile chassis 2 of the first embodiment.
  • the bricklaying mechanism 3 of this embodiment includes a column 30 , a robotic arm 31 provided on the column 30 , and a mechanical claw 32 connected to the distal end 312 of the robotic arm 31 .
  • the robotic arm 31 of this embodiment is a six-axis robotic arm 31.
  • the proximal end 311 of the robotic arm 31 is connected to the column 30, and the distal end 312 of the robotic arm 31 is connected to the mechanical claw 32.
  • the robotic arm 31 extends from the proximal end 311 to the distal end 312.
  • the first link 3121 and the second link 3122 are configured to be connected through the joint 313.
  • the first link 3121 is rotationally connected to the column 30, and the second link 3122 is connected to the mechanical claw 32 through a three-axis adjustment device 314.
  • the shaft adjustment device 314 has three rotating columns 315 to adjust the rotation angles in the X, Y and Z directions respectively.
  • the proximal end 311 is rotatably connected to the column 30 along the vertical axis J1, and the first link 3121 is along the horizontal axis J2.
  • Rotationally connected to the proximal end 311, the second link 3122 is rotatably connected to the end of the first link 3121 along the horizontal axis J3, and the first rotating column 315 of the three-axis adjustment device 314 is rotatably connected to the second link along the horizontal axis J4.
  • the second rotating column 315 of the three-axis adjustment device 314 rotates along the vertical axis J6 to connect the mechanical claw 32, and the third rotating column 315 rotates back and forth along the horizontal axis J5 to connect the first rotating column 315 and the second rotating column 315.
  • the horizontal axes J2, J3, and J5 are arranged parallel to the Y direction, the horizontal axis J4 is parallel to the X direction, and the vertical axis J6 is parallel to the Z direction.
  • the bricklaying mechanism 3 of this embodiment can also adopt the implementation of the bricklaying mechanism 3 of the first embodiment, as long as it can pick up the mortared bricks from the flipping mechanism 13 backward, and move the mortared bricks forward. The bricks can be transported to the building position of the wall W to be built.
  • the bricklaying system 100 of this embodiment also includes a control module 4, which is the same as the control module 4 of the first embodiment.
  • They both include a vertical cabinet 40 and control components arranged in the vertical cabinet 40.
  • the installation position of the vertical cabinet 40 is Located in the rear area of the mobile chassis 2, the brick supply assembly 1 is installed on the vertical cabinet 40 in the same manner as the brick supply assembly 1 of the first embodiment is installed on the vertical cabinet 40.
  • the brick supply assembly 1 of this embodiment has a support mechanism 10 , a smearing mechanism 12 provided on the support mechanism 10 , a turning mechanism 13 , and a moving platform 11 provided between the smearing mechanism 12 and the turning mechanism 13 .
  • the moving stage 11 includes a positioning mechanism 111.
  • the positioning mechanism 111 moves between the first position P1 and the second position P2.
  • the positioning mechanism 111 at the first position P1 is used to receive bricks
  • the positioning mechanism 111 at the second position P2 is used for receiving bricks.
  • the first position P1 and the second position P2 are both located in the same first vertical plane Y1.
  • the coordinate of the positioning mechanism 111 on the horizontal plane is defined as the first coordinate O1.
  • the coordinate value of the first coordinate O1 at the first position P1 is (X1 , Y1), define the coordinate of the flipping manipulator 13b on the horizontal plane in the waiting state as the second coordinate O2, and the coordinate value of the second coordinate O2 of the flipping manipulator 13b in the waiting state each time is (X2, Y2) .
  • the brick at the second position P2 is located below the flipping manipulator 13b, and the third coordinate O3 overlaps the second coordinate O2, so that the flipping manipulator 13b can pick up the bricks downward at the shortest vertical distance.
  • the difference between X2 of the second coordinate O2 and X1 of the first coordinate O1 is the transportation distance of the positioning mechanism 111.
  • the grouting working end 121 of the grouting mechanism 12 is located on the conveyance path of the bricks to grout the surface of the bricks. , so that the bricks at the second position P2 are the bricks after mortaring.
  • a third guide member 103 extending along the left and right direction is installed on the support structure.
  • the third guide member 103 forms a chute extending along the left and right direction.
  • the chute provides support for the flipping mechanism 13 to protrude or retract along the left and right direction.
  • the motion stage 11 includes a base 110, a motion mechanism 112 and a positioning mechanism 111 provided on the motion mechanism 112.
  • the motion mechanism 112 is disposed on the base 110 and the output end of the motion mechanism 112 can move along the left and right directions.
  • 111 is provided at the output end of the motion mechanism 112.
  • the base 110 is fixed on the support structure, and the base 110 overlaps with at least part of the grouting mechanism 12 in the front-to-back direction; the structure of the motion mechanism 112 of the third embodiment is the same as that of the first embodiment, so please Referring to Figures 13 and 14 of the first embodiment, the movement mechanism 112 includes at least one plate-shaped portion 1121. In this embodiment, the number of the plate-shaped portion 1121 is one. There are a first driving component 112a and a first sliding component 112b between the plate-shaped part 1121 and the base 110. The length of the plate-shaped portion 1121 in the left and right directions is greater than the length of the base 110 , so that the motion mechanism 112 has a larger extension stroke.
  • the plate-shaped portion 1121 can move forward and backward along the left and right directions under the guidance of the first sliding component 112b.
  • the positioning mechanism 111 can maintain a long extension path while maintaining a long extension path. Small installation space.
  • the second driving component 112c and the second sliding component 112d are disposed between the upper surface of the plate-shaped portion 1121 and the positioning mechanism 111. Driven by the second driving component 112c, the positioning mechanism 111 can move forward and backward along the left and right directions under the guidance of the second sliding component 112d, so that the first position P1 of the positioning mechanism 111 can be in any left or right direction. Side setting, thereby increasing the flexibility of the upper brick position.
  • the positioning mechanism 111 includes a bottom plate 1110.
  • the bottom plate 1110 is connected to the output end of the motion mechanism 112, that is, the second nut seat 1129 of the second driving assembly 112c.
  • the bottom plate 1110 extends along the front-rear direction, and two clamping plates 1111 are provided above the bottom plate 1110.
  • Each of the two clamping plates 1111 can move relative to each other along the front-rear direction to increase or decrease the clamping force between the two clamping plates 1111. Hold space.
  • the two clamping plates 1111 are connected to a synchronous driving mechanism, so that the two clamping plates 1111 approach each other at the same time to position and hold the bricks or move away from each other at the same time to release the bricks.
  • the two clamping plates 1111 that move synchronously can position the bricks at the same coordinate value along the Y direction, thereby ensuring the position accuracy of the bricks in the Y direction.
  • the grouting mechanism 12 of this embodiment includes a first mounting frame 12b.
  • the first mounting frame 12b includes a first vertical frame 125 and a first lifting mechanism provided on the first vertical frame 125. 127.
  • the first lifting mechanism 127 is pivotally connected to a hopper 12a through a first pivoting mechanism 12c.
  • the fixed lower end 125a of the first vertical frame 125 is fixed on the rear side of the support mechanism 10.
  • the fixed upper end 125b of the first vertical frame 125 is equipped with a first lifting driving member.
  • the output end of the first lifting driving member is in contact with the first lifting mechanism.
  • 127 is connected, the output end of the first lifting mechanism 127 is located on the side away from the output end of the first lifting driving member, the output end of the first lifting mechanism 127 is connected to the first pivot mechanism 12c, and the first pivot mechanism 12c runs along the front and rear
  • the extended first rotation axis R1 is pivotally connected to the hopper 12a, so that the hopper 12a can be raised and lowered and can be swung left and right along the axis extending forward and backward to form different postures.
  • the driving mode of the first lifting driving member and the driving mode of the first lifting mechanism 127 can be implemented by selecting one of gear driving, screw driving, belt driving, chain driving and other driving modes.
  • the first pivot mechanism 12c includes a driving wheel and a driven wheel installed at the output end of the first lifting mechanism 127, and a transmission belt surrounding the driving wheel and the driven wheel.
  • the rotation axes of the driving wheel and the driven wheel both extend along the front and rear directions.
  • the driving wheel is connected to the first pivot motor 129, and the driven wheel is connected to an intermediate seat.
  • the intermediate seat includes a vertically extending first plate 128a and a second plate 128b that vertically extends from the first plate 128a.
  • the driven wheel is connected along the first plate 128a.
  • the rotation axis R1 is connected to the first plate 128a, and the second plate 128b is connected to the hopper 12a through the fixing hole 1280.
  • the first pivot motor 129 drives the driving wheel, and the driving wheel drives the driven wheel to rotate along the first pivot axis through the transmission belt.
  • the driven wheel drives the hopper 12a to swing left and right along the first rotation axis R1.
  • the upper end of the hopper 12a includes a feed pipe 122, and a silo 123 connected to the lower end of the feed pipe 122.
  • the lower end of the silo 123 has a grouting end 121, and the grouting end 121 includes a vertical A long extending outlet 1211 and a scraper 1212 installed on one of the long edges of the outlet 1211.
  • the width of the bin 123 is tapered from top to bottom, thereby maintaining the outlet of the outlet 1211.
  • the scraper 1212 scrapes the slurry evenly so that a uniform slurry layer 53 is formed on the surface of the brick.
  • the smearing mechanism 12 includes a rotation mechanism 12e.
  • the rotation mechanism 12e is provided on the second plate 128b.
  • the rotation mechanism 12e is The output end is driven and connected to the hopper 12a.
  • the hopper 12a can rotate 180° along the axis of the fixing hole 1280, so that the scraper 1212 can face the left or right side, so that the smearing direction can be flexibly adjusted.
  • the flipping mechanism 13 includes a second mounting frame 13a and a flipping manipulator 13b.
  • the second mounting frame 13a includes a second vertical frame 131 slidingly adapted to the third guide member 103.
  • the second lifting mechanism 132 provided on the second vertical frame 131, the flipping robot 13b is connected to the output end of the second lifting mechanism 132 through a second pivot mechanism 12c, and the second rotation axis R2 of the second pivot mechanism 12c It is parallel to the first rotation axis R1 of the first pivot mechanism 12c.
  • the second vertical frame 131 drives the flipping manipulator 13b to be telescopically arranged along the left and right directions along the third guide member 103 relative to the support structure.
  • the flipping robot 13b is capable of lifting and lowering and flipping 180° up and down along the second rotation axis R2.
  • the driving mode of the second lifting mechanism 132 is screw drive, belt transmission or gear transmission. As long as it can realize the lifting and lowering of the flipping mechanism 13, it belongs to the second lifting mechanism 132 of this application.
  • the second pivot mechanism 12c includes a rotating part 133 connected to the second lifting mechanism 132 and a second rotating motor driving the rotating part 133.
  • the rotating part 133 rotates forward and backward to connect the second rotating motor.
  • the second lifting mechanism 132 and the flipping manipulator 13b, the rotating part 133 can be a rotating bearing or a satellite gear mechanism or a belt rotating mechanism. By driving the rotating part 133 to rotate through the second rotating motor, the flipping manipulator 13b can flip up and down relative to the first base.
  • the flipping robot 13b includes a connecting base 135, which is connected to the rotating part 133, and a hand body 136 extending in the front and rear direction from the connecting base 135.
  • the hand body 136 is connected to two clamping parts 137 spaced apart along the front and rear direction. At least one of the two clamping parts 137 may be disposed movably in the front-rear direction. In this embodiment, the two clamping parts 137 are both movably disposed and move away from each other relative to a vertically extending center line to release bricks or approach each other to pick up and position bricks.
  • the flipping robot 13b is used to pick up the plastered bricks from the second position P2 and then flip them 180° along the front-to-back axis so that the plastered side of the bricks is placed downwards and the non-plastered sides of the bricks are placed downwards.
  • the bricks at the second position P2 are arranged vertically below the flipping robot 13b.
  • the coordinates (X2, Y3) of the bricks at the second position P2 on the horizontal plane are consistent with the flipping robot 13b. Coordinates on the horizontal plane overlap.
  • the brick supply assembly 1 has a storage state and a working state.
  • the second vertical frame 131 When the brick supply assembly 1 is in the stowed state, the second vertical frame 131 is retracted within the configured edge of the support mechanism 10 along the left and right directions, and the first vertical frame 125 is also fixed within the configured edge of the support mechanism 10 , the first lifting mechanism 127 and the hopper 12a are installed inside the first vertical frame 125, which is conducive to miniaturization of the size of the bricklaying system 100 and is conducive to passing through door frames or narrow passages in indoor scenes.
  • the positioning mechanism 111 and the flipping robot 13b are located in the same third vertical plane Y3. That is to say, the coordinates of the positioning mechanism 111 and the flipping robot 13b in the front-rear direction Y are both Y3.
  • the second vertical frame 131 Since the second vertical frame 131 only moves when switching states, in order to save costs, the second vertical frame 131 can be set to be manually driven. Of course, in order to improve the degree of automation, the second vertical frame 131 can also be set to be manually driven. Intelligent driving, as long as it can realize the displacement of the second vertical frame 131 along the third guide part, belongs to the concept of this application.
  • the motion mechanism 112 drives the positioning mechanism 111 to the left or right along the third vertical plane Y3 to the first position P1.
  • the positioning mechanism 111 at the first position P1 is at
  • the first coordinate O1 on the horizontal plane is (X1, Y3), which is used to receive bricks.
  • the second coordinate O2 of the flipping robot 13b on the horizontal plane is (X2, Y3), and the grouting operation end 121 is also located on the vertical plane Y3, so that when the bricks are transported from the first position P1 to the second position P2, the grouting operation The end 121 can be grouted on the surface of the bricks in the transport path.
  • the coordinates of the bricks on the horizontal plane overlap with the coordinates (X2, Y3) of the flipping manipulator 13b on the horizontal plane, which facilitates the flipping manipulator 13b to pick up bricks from top to bottom along the smallest vertical path. piece.
  • the coordinates when transporting the bricks to the second position P2 are set to fixed coordinates, so that the flipping robot 13b can pick up the bricks at the same position every time. There is no need to detect the position of the bricks before picking up the bricks.
  • the coordinates of the brick at position P2 overlap with the second coordinate O2 of the flipping robot 13b, so that the flipping robot 13b can pick up the bricks along the smallest vertical path, thereby speeding up the operation cycle.
  • the first coordinate O1 of the positioning mechanism 111 at the first position P1 is set to a fixed position. By setting the brick loading at the same position every time, it is beneficial to the brick loading operation rhythm of the brick supply assembly 1 and to the control. Simplification of strategy.
  • the brick supply assembly 1 is provided with a position detection device 14.
  • the position detection device 14 is used to detect the first position P1.
  • the offset value d of the coordinates of the brick compared to the first coordinate O1.
  • the bricks are placed on the positioning mechanism 111 at the first position P1
  • the coordinates of the bricks overlap with the coordinates of the positioning mechanism 111.
  • loading the bricks in this ideal state affects the accuracy of brick placement. If the requirements are high, it will have a certain impact on the operating rhythm during the calibration process. In order not to affect the operation rhythm, when the bricks are placed on the positioning mechanism 111, rough positioning calibration is performed.
  • the rough positioning calibration is as follows: when the positioning mechanism 111 receives the brick at the first position P1, the clamping plate 1111 of the positioning mechanism 111 is in an open state to maintain enough space to receive the brick. When the brick is placed between the two clamping plates 1111 , the two splints 1111 clamp the positioning bricks inward. In this embodiment, the two splints 1111 move synchronously, so that the Y coordinate of the brick at the first position P1 is maintained on the vertical plane Y3, thereby calibrating the upward Y coordinate of the brick.
  • the position detection device 14 detects the side of the brick to obtain the actual coordinate value of the side of the brick in the X direction, which is different from the ideal coordinate value in the X direction.
  • the ideal coordinate value of the side of the brick in the The coordinate values (X2, Y3) of the two coordinates O2 are used to obtain the transportation distance for the moving stage 11 to drive the positioning mechanism 111 to move from the first position P1 to the second position P2, so that when the positioning mechanism 111 reaches the second position P2, the third Coordinate O3 overlaps the second coordinate O2.
  • the bricks are placed on the positioning mechanism 111, and the positioning mechanism 111 coordinates the bricks in the Y upward position and calibrate them on the vertical plane Y3, and uses the distance sensor to By detecting the side of the brick, the offset value d of the brick in the X direction compared to the first coordinate O1 can be determined, so that in the subsequent motion control strategy, the control module 4 can move the positioning mechanism 111 correspondingly according to the offset value d.
  • the distance is such that the third coordinate O3 of the brick at the second position P2 overlaps with the second coordinate O2 of the flipping robot 13b. Since before loading the bricks, the bricks are outside the coordinate system of the brick supply assembly 1.
  • the bricks When loading the bricks, the bricks enter the coordinate system of the brick supply assembly 1 from the external coordinate system. If the precise positioning calibration is performed when loading the bricks, , then what is needed is to match the coordinate system of the bricks to the coordinate system of the positioning mechanism 111. This requires a complex and relatively lengthy process for the control strategy of the control module 4 and the process of loading bricks, which is not conducive to rapid brick loading.
  • the rough positioning calibration of this application eliminates the need for precise positioning and calibration of the bricks during the brick loading process. This application determines the position of the bricks on the coordinate system of the brick feeding assembly 1 after placing the bricks on the positioning mechanism 111 The compensation and calibration of the bricks are carried out under the coordinate system of the brick supply assembly 1, thereby speeding up the work cycle.
  • the position detection device 14 includes a mounting part 141 and a detection sensor 145 installed on the mounting part 141.
  • the mounting part is installed on the first pivot.
  • the second plate 128b of the connecting mechanism 12c follows the hopper 12a, so that the position of the side of the brick can be detected.
  • the detection sensor 145 can be a laser ranging sensor, a camera detection sensor 145 and a proximity switch detection sensor 145.
  • the position detection device 14 in this embodiment is a laser ranging sensor, with the detection end facing the first position.
  • the side of the brick in P1 emits laser, and the side of the brick reflects the laser.
  • the detection end can know the actual distance D2 from the detection end to the side of the brick, and compare the actual distance D2 with the ideal distance of the brick. By comparing the ideal distance D1, you can know the offset distance d of the brick.
  • the positioning mechanism 111 receives the bricks at the first position P1 and moves from the first position P1 to the second position P2, the grouting mechanism 12 groutes the bricks.
  • the mechanism 12 performs side mortar and horizontal mortar on the bricks.
  • the order of side mortar and horizontal mortar can be exchanged.
  • one working mode of the grouting mechanism 12 is to grout the downstream side 52 of the brick first, and then horizontally grout the upper surface of the brick.
  • the working mode is as follows.
  • the positioning mechanism 111 carries the bricks from the first position P1 and moves toward the mortaring working end 121 along the second vertical plane to a third position P3.
  • the bricks at the third position P3 form a third coordinate O3 (X3 , Y3)
  • the grouting working end 121 is grouted on the side of the brick at the third position P3 from bottom to top.
  • the side smearing method of the smearing working end 121 is as follows: the positioning mechanism 111 stops at the third position P3 under the braking of the movement mechanism 112, and the slurrying working end 121 is driven by the first lifting mechanism 127 in a side smearing attitude. Moving from bottom to top relative to the stationary bricks, the outlet 1211 applies slurry to the side of the brick, and the scraper 1212 scrapes the slurry from bottom to top on the side of the brick.
  • the motion mechanism 112 drives the bricks to move along the vertical plane Y3 from the third position P3 away from the plastering operation end 121.
  • the plastering operation end 121 is plastered in a horizontal plane. Apply grout horizontally to the upper surface of the bricks in the left and right directions. For example, the grouting working end 121 remains stationary in a horizontal plastering posture, and the brick moves relative to the grouting working end 121, so that the grouting working end 121 is grouted on the upper surface of the brick.
  • another operating mode of the grouting mechanism 12 of this embodiment is: first grout the upper surface of the brick horizontally, and then grout the upstream side 51 of the brick.
  • the smearing working end 121 spreads slurry on the upstream side 51 or the downstream side 52, so that the scraper 1212 can be scraped toward the corresponding side.
  • the motion control strategy of the smearing mechanism 12 in this embodiment is: control the movement of the first lifting mechanism 127; control the second pivot mechanism 12c to move the smearing working end 121 between the horizontal smearing position and the side smearing position. Switch; optionally control the rotation mechanism 12e to drive the grouting working end 121 toward the corresponding side according to the bricklaying direction.
  • the motion control strategy of the grouting mechanism 12 in this embodiment is relatively simple, and the side grouting and upper surface grouting of bricks can be realized without setting up a complicated motion mechanism 112 .
  • the motion mechanism 112 drives the bricks to move from the third position P3 to the second position P2 without any pause.
  • the grouting end 121 plasters the upper surface of the bricks
  • the bricks are transported by the motion mechanism 112 at the same time, so that both sides Each process is carried out in the same period of time, speeding up the bricklaying rhythm.
  • the second lifting mechanism 132 drives the flipping manipulator 13b downward, and the two clamping parts 137 of the flipping manipulator 13b clamp the bricks to complete the picking action.
  • the driving mechanism drives the flipping manipulator 13b upward so that the bricks have room to flip up and down.
  • the flipping manipulator 13b is driven by the second pivot mechanism 12c to flip 180°, so that the horizontal plastered surface of the brick faces downward and the non-plastered surface of the brick faces downward.
  • the grouting side is facing upward. Since the side grouting is optionally applied to the upstream side 51 or the downstream side 52 of the bricks, the bricks can face to the left or right after being turned over 180°.
  • the bricklaying mechanism 3 picks up the non-smeared surface of the bricks downwards, and sticks the horizontal smeared surfaces of the bricks downwards to the horizontal position of the wall. surface, and according to the different orientations of the sides of the bricks in the left and right directions, the bricklaying mechanism 3 can lay bricks to the left or to the right, and stick the side plastering surfaces of the bricks to the vertical position of the position to be laid.
  • the above-mentioned horizontal placement surface and vertical placement surface are formed by the brick surface of the built wall.
  • the bricklaying system 100 of this embodiment has a bricklaying method, the steps of which are as follows:
  • the control module 4 pre-stores the operation map of the operation space S, the spatial position and spatial size of the wall W to be built, and the spatial coordinates corresponding to each brick 5 of each wall W to be built, and the corresponding spatial coordinates of the wall W to be built.
  • the operation map, the spatial position and size of the wall, the spatial coordinates corresponding to each brick 5 and the spatial coordinates of multiple masonry sites are all generated by the BIM system.
  • an inclination sensor is installed on the mobile chassis 2. After the mobile chassis 2 moves to the corresponding masonry site, the inclination sensor learns that the mobile chassis 2 2. Relative to the inclination on the ground, according to the inclination, the control module 4 controls each adjustment mechanism to adjust the height of the corresponding support leg 23, so that the mobile chassis 2 can form a horizontal state, which is beneficial to the accuracy of bricklaying, thereby The quality of bricklaying is guaranteed.
  • the control module 4 controls the positioning mechanism 111 to move left or right to the first coordinate O1 (X1, Y3) through the motion mechanism 112 according to the preset control strategy.
  • the outside world places the unplastered brick 5 in the positioning mechanism 111 at the first position P1.
  • the placement method may be that the operator places the bricks 5 on the positioning mechanism 111, or another brick loading device may automatically place the bricks 5 on the positioning mechanism 111.
  • the positioning mechanism 111 After receiving the brick 5, the positioning mechanism 111 is moved from the first position P1 toward the second position P2.
  • the two clamping plates 1111 of the positioning mechanism 111 are clamped inward to position the Y-direction coordinate of the third coordinate O3 of the brick 5 at the first position P1 on the third vertical plane Y3.
  • the position detection device 14 detects the offset value d of Xb of the third coordinate O3 of the first position P1 relative to X1 of the first coordinate O1 of the first position P1.
  • the movement mechanism 112 drives the positioning mechanism 111 to move along the left-right direction from the first position P1 along the third vertical plane Y3 to the second position P2; according to the offset value d, the control module 4 controls the movement mechanism 112 to move along the third vertical plane Y3. Move the corresponding distance in the X direction, so that the X coordinate of the brick 5 when it reaches the second position P2 is X2, so that the coordinates of the brick 5 when it is at the second position P2 are (X2, Y3).
  • a detection mechanism is used to detect the offset value d of the brick 5 at the first position P1 relative to the first coordinate O1, and the control module 4 controls the movement according to the offset value d.
  • the mechanism 112 drives the positioning mechanism 111 to move the transportation distance from the first position P1 to the second position P2.
  • the grouting steps for brick 5 include the following:
  • the control module 4 determines the bricklaying mode, which includes bricklaying to the left and bricklaying to the right;
  • the grouted surface of the brick 5 is controlled to be the downstream side 52 (ie, the right side) of the brick 5 in the conveying direction and the brick Upper surface of block 5:
  • the grouted surface of the control brick 5 is the upstream side 51 (ie, the left side) of the brick 5 in the conveying direction and the brick Upper surface of block 5:
  • the smeared side and the non-smeared side are respectively defined as the first smeared surface and the first non-smeared surface;
  • the smeared horizontal surface and the non-smeared horizontal surface are respectively defined as the second smeared surface and the second non-smeared surface.
  • the first lifting drive mechanism drives the hopper 12a to move to the corresponding height, so that the starting position of the mortaring end 121 can cover the bricks.
  • the lower edge of the downstream side 52 of the block 5 uses the first pivot mechanism 12c to swing the hopper 12a to the side smearing posture.
  • the hopper 12a in the side smearing posture tilts from top to bottom to the left and the scraper 1212 moves to the left toward the brick 5
  • the downstream side 52, the hopper 12a and the downstream side 52 of the brick 5 form an included angle, and the included angle ranges from 15° to 25°.
  • the first lifting driving mechanism drives the grouting working end 121 to rise, so that the grouting working end 121 is grouted on the downstream side 52 of the brick 5 from bottom to top to form a first grouting surface.
  • the first lifting mechanism 127 continues to drive the hopper 12a to rise to a certain distance between the plastering working end 121 and the horizontal plane of the brick 5. This distance allows the first pivot mechanism 12c to drive the hopper 12a to During the right swing to the horizontal grouting posture, the grouting working end 121 will not collide with the brick 5 .
  • the moving platform 11 drives the brick 5 again, and the brick 5 continues to move to the right along the vertical plane Y3.
  • the first lifting drive mechanism drives the hopper 12a to move to the corresponding height, so that the height of the mortaring end 121 is equal to the height of the brick 5
  • the height of the upper surface is the same.
  • the first pivot mechanism 12c causes the hopper 12a to swing to a horizontal smearing posture.
  • the hopper 12a in the horizontal slurrying posture tilts to the right from top to bottom and the scraper 1212 is set toward the left.
  • the hopper 12a and The vertical surfaces extending front and back form an included angle, and the included angle ranges from 15° to 25°.
  • the bricks 5 in the third position P3 are in a stationary state.
  • the first pivot structure causes the hopper 12a to rotate to the side mortaring posture.
  • the first lifting mechanism 127 drives the hopper 12a to lower to the mortaring end 121 to cover the bricks.
  • the lower edge of the downstream side 52 of the block 5 is then driven up by the first lifting drive mechanism to drive the hopper 12a upward, so that the slurry working end 121 is smeared on the upstream side 51 of the block 5 from bottom to top to form the first slurry surface;
  • the flipping mechanism 13 picks up the brick 5 from the moving carrier 11 and flips the spatial orientation of the plastered surface and the non-paintered surface.
  • the first mortared surface of the brick 5 that reaches the second position P2 faces the right
  • the first non-pasted surface faces the left
  • the second mortared surface faces upward
  • the second non-pasted surface faces upward.
  • the second lifting mechanism 132 drives the flipping manipulator 13b to pick up the bricks 5 downwards
  • the second pivot mechanism 12c flips the bricks 5 180° so that the first grouting surface faces left and the first non- The grouted side is facing right, the second grouted side is facing down, and the second non-grintered side is facing up.
  • the first plastered surface of the brick 5 that reaches the second position P2 faces left
  • the first non-plastered surface faces left
  • the second plastered surface faces upward
  • the second non-plastered surface faces upward.
  • the second lifting mechanism 132 drives the flipping manipulator 13b to pick up the bricks 5 downwards, and then the second pivot mechanism 12c flips the bricks 5 180° so that the first grouting surface faces the right and the first non- The grouted side faces left, the second grouted side faces down, and the second non-grintered side faces up.
  • the robot arm 31 swings to the right rear direction so that the mechanical claw 32 is in the picking position and the picking space of the mechanical claw 32 faces the second non-scraping surface to pick up the brick 5, and then the robot arm 31 swings forward to the left to make the mechanical claw 32 place the brick 5 in the masonry position.
  • the first plastering surface of the masonry position faces the vertical placement surface of the wall W to be built, and the second plastering surface faces the right. Glue down to the horizontal surface of the wall W to be built.
  • the robot arm 31 swings to the right rear direction so that the mechanical claw 32 is in the pick-up position and the pick-up space of the mechanical claw 32 faces the second non-mortar surface to pick up bricks 5, and then the robot arm 31 swings forward to the left to make the mechanical claw 32 place the brick 5 in the masonry position.
  • the first plastering surface of the masonry position faces left and sticks to the vertical placement surface of the wall W to be built, and the second plastering surface faces left. Glue down to the horizontal surface of the wall W to be built.
  • the bricklaying system 100 completes the bricklaying operation of loading bricks on the left side.
  • the motion control strategy of the bricklaying system 100 of this embodiment is relatively simple, and the transportation path of the bricks 5 is relatively short, which is beneficial to speeding up the operation cycle.
  • the bricklaying method is similar to the bricklaying method on the left side, and under different bricklaying modes, the wiping work when passing to the second position P2
  • the orientation of bricks 5 after slurry is the same. Only because the directions of the first position P1 are different, the downstream side 52 of the brick 5 is the left side, and the upstream side 51 of the brick 5 is the right side.
  • the grouting mechanism 12 groutes the downstream side 52 of the brick 5 and the corresponding bricklaying mode is left, when the grouting mechanism 12 groutes the upstream side 51 corresponding to the bricklaying mode corresponding to the rightward bricklaying.
  • the flipping mechanism 13 is located on the right side of the support mechanism 10 when viewed from back to front. Therefore, the transportation path of the bricks 5 when the first position P1 is on the left is smaller than when the first position P1 is on the right.
  • the transport path optionally, sets the first position P1 to the left.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

本申请提供了一种供砖总成及包括该供砖总成的砌砖***和砌砖方法。供砖总成包括:一支撑机构;一运动载台,设置于支撑机构上方的空间,运动载台具有一定位机构,定位机构被设置为沿着第一位置和第二位置之间往复移动,在第一位置接受砖块,并在第二位置递出砖块;一抹浆机构,设置于支撑机构上方的空间,抹浆机构具有一抹浆作业端,抹浆作业端被设置为施浆于砖块的表面,以使抹浆后的砖块形成有非抹浆面和抹浆面,抹浆作业端位于砖块自第一位置移动至第二位置的移动路径上;一翻转机构,设置于支撑机构上方的空间,翻转机构具有一翻转机械手,用以自第二位置拾取砖块且翻转非抹浆面和抹浆面的空间朝向。

Description

供砖总成、砌砖***以及砌砖方法
本公开要求在2022年4月27日提交中国专利局、申请号为202210459054.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种供砖总成,例如涉及一种作业节拍紧凑且集成度高的供砖总成以及应用该供砖总成的砌砖***以及砌砖方法。
背景技术
在砌砖作业中,对于砖块的抹浆,往往采用人工抹浆,然后人工将抹浆后的砖块砌筑至墙体上,或者,人工将砖块砌筑到墙体后,再对砖块进行人工抹浆。由于相关技术中的墙体采用的是加气砖块砌筑,一个加气砖块可以重达18千克,此类的人工砌砖作业,作业节拍慢,施工周期长,人工操作成本较大,不利于解放人力。
相关技术中,为了解放人力,采用自动设备代替人工的砌筑作业,请参阅中国专利申请号CN202110730651.6,其公开一种自动砌砖作业,由用于砌砖的第一机器人和用于抹浆供砖的第二机器人一起协同作业,第二机器人将砖块抹浆后搬运至第一机器人的承载台上,第一机器人的自承载台上拾取抹浆后的砖块,然后将其砌筑至墙体上,从而完成砌砖作业。
但是,两台机器人作业会导致转场作业时需要多个人力协同完成转场,转场的时间成本和人力成本较高;而且两台机器人作业时,为了确保供砖的精度,确保第一机器人能够精准地将抹浆后的砖块搬运至承载台上,必须要调整两台机器人的位置精度。如果第二机器人要完成整面墙的砌筑,那么第二机器人需要途径多个站点,当第二机器人切换站点时,第一机器人也跟着第二机器人切换站点,那么就必须要重新将两台机器人的位置精度再做调整从而能够确认供砖的精度,如此下来,不仅减慢了砌筑的节拍,还涉及到每一次将抹浆后的砖块放置于承载台的工序,会因为第一机器人和第二机器人的重新校准而容易导致出现位置误差,两台机器人的多次的位置精度调整会导致出现多次的位置误差积累,从而不利于砌砖精度。
发明内容
本申请提供一种供砖总成以及包括该供砖总成的砌砖***、砌砖方法,能够将上砖、抹浆、翻砖集成于一体,作业节拍紧凑且作业精度高。
第一方面,本申请提供一种供砖总成,包括:一支撑机构;一运动载台,设置于所述支撑机构上方的空间,所述运动载台具有一定位机构,所述定位机构被设置为沿着第一位置和第二位置之间往复移动,在所述第一位置接受一砖 块,并在所述第二位置递出所述砖块;一抹浆机构,设置于所述支撑机构上方的空间,所述抹浆机构具有一抹浆作业端,所述抹浆作业端被设置为施浆于所述砖块的表面,以使抹浆后的所述砖块形成有抹浆面和非抹浆面,所述抹浆作业端位于所述砖块自所述第一位置移动至所述第二位置的移动路径上;一翻转机构,设置于所述支撑机构上方的空间,所述翻转机构具有一翻转机械手,用以自所述第二位置拾取所述砖块且翻转所述抹浆面和所述非抹浆面的空间朝向。
与相关技术相比,本申请中的供砖总成将上砖、砖块运送、抹浆以及砖块翻转集成在一个支撑机构上,集成化的程度高,而且在运送砖块的过程中,完成了砖块抹浆的动作,相比于相关技术中将运送砖块以及抹浆两个动作分开进行,本申请的供砖总成完成整个供砖流程的时间更加短,从而加快的供砖的节拍,减少了供砖的时间成本;同时,将接受砖块的工序以及将抹浆后的砖块传递至翻转机构的工序均由运动载台完成,使得接受砖块的第一位置和递出砖块的第二位置均可以使用同一个机构的坐标系,进而便于控制上砖-抹浆-递砖的各个工序中的位置精度,从而增加了翻转机构拾取的精准度。
可选的,所述抹浆机构包括安装于所述支撑机构的一第一安装架,以及借由一第一枢接机构安装于所述第一安装架的一料斗,所述料斗的下端形成有所述抹浆作业端,所述第一枢接机构的第一转动轴线前后延伸;所述翻转机构包括安装于所述支撑机构的一第二安装架,所述第二安装架与所述第一安装架间隔设置,所述翻转机械手借由一第二枢接机构安装于所述第二安装架,所述第二枢接机构的第二转动轴线前后延伸;所述运动载台、所述料斗和所述翻转机械手均位于所述第一安装架和所述第二安装架之间的空间内。
与相关技术对比,将翻转机械手、料斗以及运动载台安装在第一安装架和第二安装架之间,从而使得砖块的运输、砖块的抹浆、以及砖块的翻转均可以在第一安装架和第二安装架之间的空间内进行,有效地利用了有限的空间来拓展所需的功能。
可选的,所述第一位置的所述定位机构的坐标固定设置,所述第二位置的所述砖块的坐标固定设置。
与相关技术对比,上砖的位置为第一位置的定位机构,第一位置的定位机构坐标固定设置,使得上砖的位置固定,如果上砖的位置不固定,那么在上砖之间必须要进行位置检测工序来确定上砖的位置,不利于节省时间成本和经济成本;再二,第二位置的砖块的坐标固定设置,使得翻转机械手的拾取标的都具有相同的位置,所以翻转机械手也不用额外进行位置的检测工序,加快了作业节拍;再三,与相关技术的搬运机械手搬运至承载台相比,所述第一位置的所述定位机构和所述第二位置的所述砖块的坐标均为同一坐标体系之内,有利于运动精度的控制,从而增加了砖块到达第二位置的位置精度,有利于翻转机械手拾取精度。
可选的,所述供砖总成包括一位置检测装置,所述位置检测装置被设置为沿着第一方向检测所述第一位置的所述砖块的坐标相较所述第一位置的所述定位机构的坐标的偏差,所述第一方向为所述砖块移动的方向。
理想状态下,将砖块放置于第一位置的定位机构上,砖块的坐标与定位机构的坐标是重叠的。但这种理想状态下的上砖,对砖块放置的精准度要求较高,那么在校准的过程中对作业节拍造成一定的影响。为了不影响作业节拍,通过在供砖总成中设置一个位置检测装置,在将砖块放置于第一位置的定位机构时,位置检测装置检测砖块侧面在实际坐标值,与理想状态下的砖块的侧面的理想坐标值做比较,得到了第一位置上的砖块的偏差值,从而可以控制运动载台的运输距离,使得每一次到达第二位置的砖块均停止于固定的坐标,使得翻转机械手的拾取标的坐标固定,从而增加翻转机械手的拾取精度。
可选的,所述定位机构包括被设置为同步活动的两个夹板,两个所述夹板分别沿着第二方向同步夹持所述砖块且定位所述砖块,使得所述砖块的沿着所述第二方向的坐标与所述定位机构沿着所述第二方向的坐标重叠,所述第二方向垂直于所述第一方向设置。
通过两个同步移动的夹板,两个夹板同步远离彼此相同的距离以具有足够的空间接收砖块,两个夹板同步靠近彼此相同的距离使得两个夹板可以将砖块的中心的坐标与定位机构的坐标定位于同一竖直面上;再者,两个同步远离或者靠近的夹板可以将不同宽度的砖块也同样定位于同一竖直面上,使得供砖总成针对不同宽度砖块的供砖抹浆还能保持良好的位置精度。
可选的,所述位置检测装置安装于所述抹浆机构。
通过将位置检测装置安装于抹浆机构上,使得位置检测装置相较于翻转机构更加靠近第一位置的砖块,使得位置检测装置可以在砖块运输至第二位置之前,检测第一位置的砖块的偏差,有利于精准地控制砖块运输至第二位置的精准度。
可选的,所述翻转机械手在水平面上的坐标与所述第二位置的所述砖块在水平面上的坐标重叠。
通过将翻转机械手的坐标与第二位置的砖块的坐标重叠设置,使得翻转机械手可以沿着最小的垂直路径向下拾取砖块,有利于加快作业节拍。
可选的,所述抹浆机构包括一第一安装架,所述第一安装架的下端安装于所述支撑机构,所述第一安装架的上端具有一横向驱动机构;一料斗,所述料斗的下端形成所述抹浆作业端,所述料斗连接于所述横向驱动机构的输出端;所述砖块自所述第一位置朝向所述第二位置移动的过程中,所述横向驱动机构横移驱动所述抹浆作业端以抹浆于所述砖块的上表面,横移驱动方向与所述砖块的移动方向相反。
在抹浆作业端抹浆时,通过将抹浆作业端和砖块相对彼此沿着相反方向运 动,抹浆作业端以相对较小的横移路径就可以完成砖块上表面的抹浆,在保持相同抹浆速度的前提下,相对于砖块静止被抹浆的情况,本实施例的抹浆时间较短,作业节拍也较快;再者,抹浆作业端的横移路径要求较短,那么对横向驱动机构的横向尺寸要求也较小,有利于小型化设计。
可选的,所述第一安装架还包括一第一升降机构,所述第一升降机构设置于所述横向驱动机构的输出端,所述料斗设置于所述第一升降机构的输出端;自所述第一位置朝向所述第二位置移动的过程中,所述定位机构载运所述砖块暂停于一第三位置;当所述砖块处于所述第三位置时,借由所述第一升降机构,所述抹浆作业端自下而上抹浆于处于静止状态的所述砖块的侧面。
通过砖块保持静止状态,运动控制策略仅第一升降机构沿着竖直方向向上驱动抹浆作业端,控制策略相对简单,抹浆形成的浆层均匀程度好。
可选的,所述抹浆机构和所述翻转机构中的任一者可远离或者靠近另一者以形成一工作状态和一收纳状态,处于所述工作状态下的所述抹浆机构和所述翻转机构中任一者的部分移动超出所述支撑机构的构形边缘,处于所述收纳状态下的所述翻转机构和所述抹浆机构位于所述支撑机构的构形边缘内。
通过收纳状态下的所述翻转机构和所述抹浆机构均位于支撑机构的构形边缘内,使得收纳状态下的整体尺寸较小,有利于通过狭小的空间;以及工作状态下,通过将所述抹浆机构和所述翻转机构中任一者的部分移动超出所述支撑机构的构形边缘,使得抹浆机构和翻转之间的间隔增大,从而使得抹浆机构和翻转机构均具有足够的作业空间而不会在作业时碰撞到彼此。
可选的,所述翻转机构和所述抹浆机构中的任一者沿着前后方向可远离另一者形成所述工作状态,所述翻转机构和所述抹浆机构中的远离者沿着所述前后方向超出所述支撑机构的构形边缘;或者,所述翻转机构和所述抹浆机构中的任一者沿着左右方向可远离另一者形成所述工作状态,所述翻转机构和所述抹浆机构中的远离者沿着所述左右方向超出所述支撑机构的构形边缘。
通过所述翻转机构和所述抹浆机构中的任一者沿着前后方向可远离另一者形成工作状态,使得翻转机构和抹浆机构之间的间隔沿着前后方向增大,从而使得翻转机械手翻转翻转砖块的动作和抹浆机构抹浆砖块的动作在前后空间上间隔开来,使得在规划抹浆机构的运动避障时,不用额外考虑翻转机构的翻转砖块时造成的阻碍,同理,在规划翻转机构的运动避障时,不用额外考虑抹浆机构抹浆作业时造成的阻碍,从而使得两者具有相对较多的运动控制策略。
通过所述翻转机构和所述抹浆机构中的任一者沿着左右方向可远离另一者形成工作状态,使得翻转机构和抹浆机构是沿着左右方向排布设置,从而使得砖块自第一位置到第二位置的运输距离相对较小,有利于加快供砖的节奏。
可选的,所述翻转机构和所述抹浆机构中的任一者沿着前后方向可远离另一者形成工作状态;当处于所述工作状态时,沿着左右方向上,所述第一位置的所述定位机构位于所述抹浆作业端的任一侧,沿着前后方向上,所述抹浆机 构的竖直投影和所述翻转机构的竖直投影彼此间隔且不重叠。
第一位置可以设置于抹浆作业端的左右方向上的任一侧,从而增加了供砖机构的上砖位置的灵活性;此外,所述抹浆机构的竖直投影和所述翻转机构竖直投影彼此间隔且不重叠,使得翻转机构翻转砖块的动作以及抹浆作业端抹浆于途径的砖块的动作在前后方向上间隔开来,从而使得无论上砖的第一位置在左侧还是在右侧,都不会影响翻转机构翻转砖块的动作。
可选的,所述支撑机构包括沿着所述前后方向延伸的一第一导向件;所述抹浆机构和所述翻转机构中的其中一者固定于所述支撑机构,另一者可移动地适配于所述第一导向件以形成所述工作状态。
通过第一导向件的导向,使得抹浆机构或者翻转机构中的移动者的移动精度良好,不会在移动方向上出现方向偏差。
可选的,所述支撑机构包括与所述第一导向件平行设置的一第二导向件;所述运动载台还包括活动设置于所述第二导向件的一基座,以及设置于所述基座的一运动机构、所述运动机构的输出端连接所述定位机构;当处于所述工作状态时,所述抹浆作业端位于第一竖直面上,所述翻转机械手位于第二竖直面上,所述第二竖直面与所述第一竖直面沿着所述左右方向延伸且沿着所述前后方向间隔平行设置;所述第一位置的所述定位机构位于所述第一竖直面上,所述第二位置的所述定位机构位于所述第二竖直面上,所述第二导向件导向所述基座及其上的所述定位机构自所述第一竖直面和所述第二竖直面中的一者移动至另一者。
通过定位机构自第一竖直面和第二竖直面中的一者移动至另一者,可以使得定位机构在抹浆作业端和翻转机械手之间运动,使得所述定位机构载运砖块在第一竖直面上与抹浆作业端相互作用完成抹浆后,沿着第二导向件的精准导向,定位机构载运砖块到达第二竖直面,便于供翻转机械手拾取砖块。
可选的,借由所述运动机构,所述定位机构沿着所述第一竖直面自所述第一位置移动经过所述抹浆作业端以抹浆所述砖块的表面。
通过沿着第一竖直面移动砖块经过抹浆作业端,所述抹浆作业端也位于第一竖直面上,使得所述砖块经过所述抹浆作业端时,所述抹浆作业端抹浆于所述砖块表面的抹浆宽度保持相同,有利于在砖块表面上形成宽度均匀的浆层,进而保证了墙体粘粘的牢固性,砌砖质量好。
可选的,所述运动机构包括至少一个板状部,所述至少一个板状部与所述基座之间形成有一第一空间,所述至少一个板状部与所述定位机构之间形成有一第二空间;所述第一空间内设置有一第一驱动组件以及一第一滑动组件,所述第一滑动组件包括相互适配的导轨和导块,所述第一驱动组件驱动所述至少一个板状部沿着左右方向位移,所述第一滑动组件导引所述至少一个板状部沿着所述左右方向位移;所述第二空间内设置有一第二驱动组件以及一第二滑动组件,所述第二滑动组件包括相互适配的导轨和导块,所述第二驱动组件驱动 所述定位机构沿着所述左右方向位移,所述第二滑动组件导引所述定位机构沿着所述左右方向位移。
通过在第一空间和第二空间分别设置驱动组件和滑动组件,使得至少一板状部可以相对于基座左右移动,定位机构可以相对于至少一板状部左右方向机构移动,从而使得运动机构在收回状态时占据的安装空间较小,有利于在支撑机构有限的空间上增加其他机构的安装,从而实现小型化且多功能化;同时运动机构在伸出状态时,通过两个第一驱动组件和第二驱动组件的驱动方向平行,使得定位机构可以相对于基座延伸出较远的路程,从而有利于第一位置的上砖。
可选的,所述定位机构包括:一底板,所述底板连接于所述运动机构的输出端;二夹板,所述二夹板分别设于所述底板的前后两侧,至少一个所述夹板相对于所述底板可远离或者靠近另一所述夹板移动。
通过两个夹板夹持固定砖块,增加了砖块的定位稳定性,通过将夹板定位于前后方向上的两侧,使得所述砖块的左右延伸的中心线平行于第一竖直面,有利于砖块运输的位置精准度。
可选的,所述翻转机构和所述抹浆机构中的任一者沿着左右方向可远离另一者形成工作状态,处于所述工作状态下的所述翻转机构和所述抹浆机构沿着所述左右方向的距离能够允许所述翻转机械手翻转所述砖块;所述第一位置的所述砖块与所述第二位置的所述砖块位于同一竖直面,所述竖直面沿着所述左右方向延伸。
通过所述翻转机构和所述抹浆机构中的任一者沿着左右方向可远离另一者形成工作状态,两者之间的距离可以允许翻转机械手翻转砖块,在保证了翻转机械手作业无障碍的前提下,所述第一位置的所述砖块与所述第二位置的所述砖块位于同一竖直面,从而使得砖块自第一位置到第二位置的运输距离相对较小,有利于加快供砖的节奏。
可选的,所述运动载台包括:一基座,固定于所述支撑机构,且自前后方向观察,所述基座与与所述抹浆机构的至少部分重叠设置;一运动机构,设置于所述基座,所述运动机构的输出端驱动所述定位机构沿着所述左右方向远离所述抹浆机构移动至所述第一位置。
通过基座与与抹浆机构的至少部分沿着前后方向重叠设置以及运动机构驱动定位移动左右移动,从而使得定位机构在具有较长伸出路径的同时,还能保持较小的安装空间。
可选的,所述运动机构包括至少一个板状部,所述至少一个板状部与所述基座之间形成有一第一空间,所述至少一个板状部与所述定位机构之间形成有一第二空间;所述第一空间内设置有一第一驱动组件以及一第一滑动组件,所述第一滑动组件包括相互适配的导轨和导块,所述第一驱动组件驱动所述至少一个板状部沿着所述左右方向位移,所述第一滑动组件导引所述至少一个板状部沿着所述左右方向位移;所述第二空间内设置有一第二驱动组件以及一第二 滑动组件,所述第二滑动组件包括相互适配的导轨和导块,所述第二驱动组件驱动所述定位机构沿着所述左右方向位移,所述第二滑动组件导引所述定位机构沿着所述左右方向位移。
通过在第一空间和第二空间分别设置驱动组件和滑动组件,使得至少一板状部可以相对于基座左右移动,定位机构可以相对于至少一板状部左右方向机构移动,从而使得运动机构在收回状态时占据的安装空间较小,有利于在支撑机构有限的空间上增加其他机构的安装,从而实现小型化且多功能化;同时运动机构在伸出状态时,通过两个第一驱动组件和第二驱动组件的驱动方向平行,使得定位机构可以相对于基座延伸出较远的路程,从而有利于第一位置的上砖。
可选的,所述定位机构包括:一底板,所述底板连接于所述运动机构的输出端;二夹板,所述二夹板分别设于所述底板的前后两侧,至少一个所述夹板相对于所述底板可远离或者靠近另一所述夹板移动。
通过两个夹板夹持固定砖块,增加了砖块的定位稳定性,通过将夹板定位于前后方向上的两侧,使得所述砖块的左右延伸的中心线平行于第一竖直面,有利于砖块运输的位置精准度。
可选的,所述抹浆机构包括一第一安装架,所述第一安装架的下端固定于所述支撑机构且位于所述运动载台前后方向上的一侧,所述第一安装架借由一第一枢接机构转动连接一料斗,所述料斗的下端被构造形成所述抹浆作业端,所述第一枢接机构的第一转动轴线沿着所述前后方向延伸。
料斗安装于第一安装架上且可以沿着前后延伸的第一转动轴线转动,料斗的下端形成抹浆作业端,使得第一枢接机构能够驱动料斗沿着第一转动轴线旋转从而使得将料斗旋转至与砖块待抹浆表面形成抹浆夹角。
可选的,所述第一安装架包括一第一升降机构,所述第一升降机构被设置为驱动所述料斗升降;自所述第一位置朝向所述第二位置移动的过程中,所述定位机构载运所述砖块暂停于一第三位置;当所述砖块处于所述第三位置时,借由所述第一升降机构,所述抹浆作业端自下而上抹浆于处于静止状态的所述砖块的侧面。
通过砖块保持静止状态,运动控制策略仅第一升降机构沿着竖直方向向上驱动抹浆作业端,控制策略相对简单,抹浆形成的浆层均匀程度好。
可选的,自所述第一位置朝向所述第二位置移动的过程中,借由所述定位机构载运所述砖块朝向远离所述料斗的方向移动,所述抹浆作业端保持固定位姿沿着所述左右方向抹浆于处于运动状态的所述砖块的水平上表面。
通过保持料斗固定不动,运动控制策略仅砖块定位机构沿着左右方向移动,控制策略相对简单,抹浆作业端成固定的姿态,使得砖块相对于抹浆作业端移动的过程过程中国,抹浆作业端于砖块表面形成均匀的浆层。
可选的,所述翻转机构包括一第二安装架,所述第二安装架沿着所述左右 方向可移动地安装于所述支撑机构,所述第二安装架借由一第二枢接机构转动连接所述翻转机械手,所述第二枢接机构的第二转动轴线沿着前后方向延伸。
翻转机械手通过第二安装架安装于支撑机构上,通过第二枢接机构可以驱使翻转机械手上下翻转砖块。
第二方面,本申请还提供一种砌砖***,能够于作业空间中砌筑墙体,包括:一移动底盘,于所述作业空间中行走至预定站点,待砌墙***于所述预定站点的前侧;如上所述的供砖总成,安装于所述移动底盘;一砌砖机构,安装于所述移动底盘上且位于所述供砖总成的前侧,所述砌砖机构包括一机械爪,所述机械爪向后自所述翻转机械手沿着非抹浆面拾取所述砖块,向前搬运所述砖块至所述待砌墙体的砌筑位置。
本申请中将上砖、砖块运送、抹浆、砖块翻转以及砖块砌砖集成在一个移动底盘上,集成化的程度高,而且供砖总成在运送砖块的过程中,完成了砖块抹浆的动作,相比于相关技术中将运送砖块以及抹浆两个动作分开进行,本申请的供砖总成完成整个供砖流程的时间更加短,从而加快的供砖的节拍,减少了供砖的时间成本;同时,将接受砖块的工序以及将抹浆后的砖块传递至翻转机构的工序均由运动载台完成,使得接受砖块的第一位置和递出砖块的第二位置均可以使用同一个机构的坐标系,进而便于控制上砖-抹浆-递砖的各个工序中的位置精度,从而增加了翻转机构拾取的精准度。在供砖总成加快了供砖的节拍的基础上,砌砖机构也同样加快的作业节拍,从而缩短了砌筑作业的时间;而由于砌砖机构自翻转机构拾取砖块来进行砌砖,增加了翻转机构拾取的精准度,也使得砌砖精度得到改善。
可选的,所述砌砖***还包括一控制模块,所述控制模块包括一立柜,所述立柜内设置有控制元件,用以控制所述供砖总成和所述砌砖机构的动作,所述立柜安装于所述移动底盘且位于所述砌砖机构的后方,所述供砖总成安装于所述立柜上。
立柜垫高了供砖总成的高度,减小了砌砖机构自供砖总成拾取砖块到放置砖块至砌筑位置的搬运路程,有利于加快作业节拍。
可选的,所述砌砖***还包括一支撑结构,所述支撑结构为所述立柜的上表面;或者,所述支撑机构为一平板,安装于所述立柜的上表面。
支撑结构以独立的一块平板安装于立柜的上表面,可以将平板的面积设置大于立柜的上表面的面积,从而在保证了砌砖***整体小型化的基础上,增大了供砖总成的安装空间。
可选的,所述砌砖机构包括:一立柱,所述立柱安装于所述移动底盘上;一机械臂,所述机械臂的近端转动连接于所述立柱,所述机械臂的远端连接所述机械爪,所述机械臂具有多个关节以形成不同姿态。
立柱安装于移动底盘上,使得砌砖机构与供砖总成集成于一个移动底盘, 从而使得砌砖机构和供砖总成机构可以在砌砖***的坐标体系内,从而使得在进行运动策略规划时,有利于增加砌砖机构和供砖总成之间传递砖块的位置精度。
第三方面,本发明还提供一种砌砖方法,包括:在所述定位机构移动至第一位置的情况下,通过所述定位机构将砖块放置于所述定位机构上;在所述定位机构接收所述砖块之后,通过所述定位机构定位机构载运所述砖块自所述第一位置朝向第二位置移动;在所述定位机构载运所述砖块自所述第一位置移动至所述第二位置的过程中,通过抹浆机构的抹浆作业端抹浆于所述砖块的表面以形成抹浆面和非抹浆面;在所述定位机构载运所述砖块停止于所述第二位置之后,通过翻转机构的翻转机械手自所述定位机构拾取抹浆后的所述砖块,且翻转所述砖块的所述抹浆面和所述非抹浆面的空间朝向;通过砌砖机构的机械爪沿着所述非抹浆面自所述翻转机械手拾取所述砖块,以及搬运所述砖块至待砌墙体的砌筑位置,使得所述砖块的所述抹浆面粘粘至所述砌筑位置的砖面。
相比于相关技术中将运送砖块以及抹浆两个动作分开进行,本发明的砌砖方法将砖块自第一位置运输至第二位置的过程中,也同时完成抹浆的动作,从而使得完成整个供砖流程的时间更加短,从而加快的供砖的节拍,减少了供砖的时间成本;同时,将接受砖块的工序以及将抹浆后的砖块传递至翻转机构的工序均由运动载台完成,使得接受砖块的第一位置和递出砖块的第二位置均可以使用同一个机构的坐标系,进而便于控制上砖-抹浆-递砖的各个工序中的位置精度,从而增加了翻转机构拾取的精准度,在供砖总成加快了供砖的节拍的基础上,砌砖机构也同样加快的作业节拍,从而缩短了砌筑作业的时间;而由于砌砖机构自翻转机构拾取砖块来进行砌砖,增加了翻转机构拾取的精准度,也使得砌砖精度得到改善。
可选的,在所述定位机构移动至所述第一位置之前,还包括:驱使所述抹浆机构相对于所述翻转机构向后移动,使得所述抹浆作业端位于左右延伸的一第一竖直面上,所述翻转机械手位于左右延伸的一第二竖直面上,所述第一竖直面和所述第二竖直面沿着左右方向延伸且前后间隔平行设置,所述第一位置位于第一竖直面上,所述第二位置位于所述第二竖直面上。
所述抹浆作业端和所述第一位置均位于左右延伸的一第一竖直面上,所述翻转机械手和所述第二位置位于左右延伸的一第二竖直面上,使得砖块的上砖到抹浆位于同一竖直面上,有利于形成均匀宽度的浆层;使得翻转机械手和第二位置均位于第二竖直面上,使得翻转机械手拾取第二位置的砖块的路径相对较短,且拾取精度相对较高。
可选的,所述定位机构移动至第一位置,包括:通过前后驱动件驱动所述定位机构向后移动至所述第一位置所在的平面,通过运动机构驱动所述定位机构沿着左右方向移动至所述第一位置。
通过运动机构和前后驱动件,使得定位机构能够在前后方向和左右方向上 运动。
可选的,通过所述定位机构沿着所述第一竖直面移动时经过所述抹浆作业端以抹浆于所述砖块的表面。
通过沿着第一竖直面移动砖块经过抹浆作业端,抹浆作业端也位于第一竖直面上,使得砖块经过抹浆作业端时,抹浆作业端抹浆于砖块表面的抹浆宽度保持相同,有利于在砖块表面上形成宽度均匀的浆层,进而保证了墙体粘粘的牢固性,砌砖质量好。
可选的,在所述抹浆作业端完成所述砖块的表面的抹浆之后,通过前后驱动件驱动所述定位机构自所述第一竖直面移动至所述第二竖直面以供所述翻转机构拾取。
抹浆作业端的进行抹浆设置在第一竖直面上,翻转机械手拾取砖块设置在第二竖直面上,使得两者的作业动作不会造成彼此的运动障碍。
可选的,在所述抹浆作业端完成所述砖块抹浆之后且所述砖块沿着左右方向上未到达第二位置时,通过所述前后驱动件驱动所述定位机构自所述第一竖直面移动至所述第二竖直面,同时,通过运动机构驱动所述定位机构沿着所述左右方向移动至所述第二位置。
为了保证所述抹浆作业端完成所述砖块抹浆时,所述砖块沿着左右方向上未到达第二位置,必须使得抹浆作业端的抹浆速度相对较快,从而加快的作业节拍,在抹浆完成后移动至第二位置的时间段内,将左右位移的动作和前后位移的动作集合在有一个时间段内,从而加快了运输砖块的节拍。
可选的,在所述运动机构驱动所述定位机构移动至所述第一位置之前,将所述抹浆机构和所述翻转机构其中一者朝向左右方向的一侧移动以远离另一者,使得所述抹浆机构和所述翻转机构之间的空间允许所述翻转机构的所述翻转机械手翻转所述砖块,所述翻转机械手和所述抹浆作业端所述抹浆机构的位于沿着所述左右方向延伸的同一竖直面上。
通过所述翻转机构和所述抹浆机构中的任一者沿着所述左右方向可远离另一者形成工作状态,两者之间的距离可以允许翻转机械手翻转砖块,在保证了翻转机械手作业无障碍的前提下,所述第一位置的所述砖块与所述第二位置的所述砖块位于同一竖直面,从而使得砖块自第一位置到第二位置的运输距离相对较小,有利于加快供砖的节奏。
可选的,将所述翻转机构移动远离所述抹浆机构之后,通过所述运动机构驱动所述定位机构朝向左右方向上移动至所述第一位置,使得所述第一位置的所述定位机构与所述抹浆作业端、所述翻转机械手均位于同一竖直面上。
所述第一位置的所述定位机构与所述抹浆作业端、所述翻转机械手均位于同一竖直面上,使得砖块的运输距离相对较小的同时,也在直线运输的过程中完成了抹浆作业,从而形成了宽度均匀的浆层,同时翻转机械手与抹浆完成后 的砖块位于同一竖直面上,保证了翻转机械手的拾取精度。
可选的,所述第一位置设置在所述翻转机构相对在所述左右方向上的另一侧。
上砖位置灵活地设置在两侧,便于狭小空间中的上砖。
可选的,所述第一位置的所述定位机构、所述抹浆作业端和所述第二位置的所述运动机构均设置在同一竖直平面上,在所述抹浆作业端抹浆于所述砖块的表面之后,所述运动机构沿着左右方向驱动所述定位机构移动至所述第二位置。
所述第一位置的所述定位机构与所述抹浆作业端、所述翻转机械手均位于同一竖直面上,使得砖块的运输距离相对较小的同时,也在直线运输的过程中完成了抹浆作业,从而形成了宽度均匀的浆层,同时翻转机械手与第二位置的砖块位于同一竖直面上,保证了翻转机械手的拾取精度。
可选的,所述定位机构配置有同步位移的两个夹板,两个所述夹板同步夹紧所述砖块,将所述砖块的前后方向上的坐标定位于第一竖直面上。
通过两个同步移动的夹板,两个夹板同步远离彼此相同的距离以具有足够的空间接收砖块,两个夹板同步靠近彼此相同的距离使得两个夹板可以将砖块的中心与定位机构的坐标位于同一竖直面上;再者,两个同步远离或者靠近的夹板可以将不同宽度的砖块也同样定位于同一竖直面上,使得供砖总成针对不同宽度砖块的供砖抹浆还能保持良好的位置精度。
可选的,在所述定位机构将所述砖块的前后方向上的坐标定位于所述第一竖直面上之后,通过位置检测装置检测所述第一位置的所述砖块的坐标相对于所述第一位置的定位机构在左右方向上的偏移值,其中,所述偏移值用于对所述砖块在左右方向上的坐标进行校准。
通过将位置检测装置安装于抹浆机构上,使得位置检测装置相较于翻转机构更加靠近第一位置的砖块,使得位置检测装置可以在砖块运输至第二位置之前,检测第一位置的砖块的偏差,有利于精准地控制砖块运输至第二位置的精准度。
可选的,通过控制模块根据所述第一位置的所述定位机构的坐标和所述偏移值,确定运输距离,并根据所述运输距离控制所述定位机构沿着所述左右方向上移动相应的所述运输距离,使得每一所述第二位置的所述砖块在所述左右方向上的坐标恒定。
在砖块被两个夹板定位在前后方向上的恒定坐标后,将每一第二位置的砖块在左右方向上的坐标恒定设置,从而使得第二位置的砖块在左右方向和前后方向上的坐标均恒定设置,从而使得翻转机械手的拾取标的恒定,不用额外检测砖块的位置,从而加快了作业节拍,同时也保证了拾取的精度。
可选的,通过控制模块判断所述机械爪的砌砖方向,根据所述砌砖方向从 所述抹浆机构的多种抹浆模式中选择对应的一种抹浆模式,使得在所述对应的一种抹浆模式下所述机械爪将所述砖块搬运至待砌墙体的砌筑位置时,所述砖块的抹浆面粘粘至所述砌筑位置的砖面。
控制模块根据砌砖方向的向左或者向右使得抹浆机构对应抹浆于砖块的上游侧面或者下游侧面,从而使得可以实现向左砌砖或者向右砌砖,当自左向右行走完一排砌筑站点后,接着自右向左开始砌砖,相比于只能单向砌砖的砌砖方法,本申请的砌砖方法不用重新绕回左侧站点再自左向右砌砖,本申请的砌砖方法节省了绕回的时间,加快的砌砖节拍。
附图说明
下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请第一实施例提供供砖总成以及应用该供砖总成的砌砖***的示意图;
图2为图1所示的供砖总成工作状态时的立体结构示意图;
图3为图2所示的供砖总成工作状态时的沿X向观察的结构示意图;
图4为图2所示的供砖总成收纳状态时的立体结构示意图;
图5为图2所示的供砖总成收纳状态时的沿X向观察的结构示意图;
图6为图2所示的供砖总成立体***结构示意图;
图7为图2所示的供砖总成的抹浆机构的自前向后观察的结构示意图;
图8为图7所示的供砖总成的抹浆机构的立体结构示意图;
图9为图8所示的抹浆机构的第一竖直架的立体结构示意图;
图10为图8所示的抹浆机构的第一竖直架的另一个状态的立体结构示意图;
图11为图8所示的抹浆机构的横移机构以及料斗的立体结构示意图;
图12为图8所示的料斗的立体结构示意图;
图13为图2所示的供砖总成的运动载台的立体结构示意图;
图14为图9所示的供砖总成的运动载台的沿着X向观察的结构示意图;
图15为图2所示的供砖总成的翻转机构的沿着X向观察的结构示意图;
图16为图15所示的翻转机构的翻转机械手的立体结构示意图;
图17为图2的供砖总成的其中一种抹浆作业的定位机构在第一位置时接收砖块且砖块位于理想位置的自后向前观察的状态示意图;
图18为图17的供砖总成的定位机构在第三位置时的自后向前观察的状态示意图;
图19为图18所示的砖块在第三位置时完成下游侧面抹浆的自后向前观察的状态示意图;
图20为图19所示的砖块完成上表面抹浆的自后向前观察的状态示意图;
图21为图19所示的砖块完成抹浆后到达第二位置时的自后向前观察的状态示意图;
图22为图2所示的供砖总成的定位机构在第一位置时接收砖块且砖块位于偏移位置的自后向前观察的状态示意图;
图23为图22所示的供砖总成的定位机构载运砖块到达第二位置时的自后向前观察的状态示意图;
图24为图17所示的供砖总成的定位机构在第一位置接收砖块时自上而下观察的状态示意图;
图25为图18所示的供砖总成的定位机构载运砖块到达第三位置时的自上而下观察的状态示意图;
图26为图20所示的砖块完成上表面抹浆时的自上而下观察的状态示意图;
图27为图20所示的砖块完成上表面抹浆时的自上而下观察的状态示意图;
图28为图2的供砖总成另一种抹浆作业的定位机构在第一位置时接收砖块且砖块位于理想位置的自后向前观察的状态示意图;
图29为图28所示的供砖总成的定位机构在第三位置时的自后向前观察的状态示意图;
图30为图29所示的砖块完成上表面抹浆且到达第三位置的自后向前观察的状态示意图;
图31为图30所示的砖块在第三位置完成上游侧面抹浆的自后向前观察的状态示意图;
图32为本申请第二实施例的供砖总成的翻转机构未移动前的沿着X向观察的结构示意图;
图33为图32所示的翻转机构向前移动后的沿着X向观察的结构示意图;
图34为图33所示的翻转机构向前移动后将砖块翻转180°的沿着X向观察的结构示意图;
图35为本申请第三实施例提供的供砖总成以及应用该供砖总成的砌砖***的示意图;
图36为图35所示的供砖总成的立体结构示意图;
图37为图35所示的砌砖***的砌砖机构的立体结构示意图;
图38(a)为图36所示的供砖总成的抹浆机构的立体结构示意图;
图38(b)为图36所示的供砖总成的抹浆机构的立体结构示意图;
图39为图36所示的供砖总成的运动载台的立体结构示意图;
图40为图36所示的供砖总成的翻转机构的立体结构示意图;
图41为图36所示的供砖总成的其中一种抹浆作业的定位机构在第一位置时接收砖块且砖块位于理想位置的自后向前观察的状态示意图;
图42为图41所示的供砖总成的定位机构在第三位置时的自后向前观察的状态示意图;
图43为图42所示的第三位置砖块完成下游侧面抹浆时的自后向前观察的状态示意图;
图44为图43所示的砖块完成上表面抹浆且到达第二位置时的自后向前观察的状态示意图;
图45为图36所示的供砖总成的定位机构在第一位置时接收砖块且砖块位于偏移位置的自后向前观察的状态示意图;
图46为图45所示的供砖总成的定位机构载运砖块到达第二位置时的自后向前观察的状态示意图;
图47为图36的供砖总成的另一种抹浆作业时的定位机构在第一位置时接收砖块且砖块位于理想位置的自后向前观察的状态示意图;
图48为图47所示的供砖总成的定位机构在第三位置且完成上表面抹浆时的自后向前观察的状态示意图;
图49为图48所示的砖块在第三位置完成上游侧面抹浆的自后向前观察的状态示意图;
图50为图49所示的砖块完成抹浆后移动至第二位置的自后向前观察的状态示意图;
图51为图36所示的供砖总成的定位机构到达第一位置时且处于空载状态下的自上而下观察的状态示意图;
图52(a)为图41所示的供砖总成的自上而下观察的状态示意图;
图52(b)为图42所示的供砖总成的自上而下观察的状态示意图;
图52(c)为图44所示的供砖总成的自上而下观察的状态示意图。
附图标号说明:
100、砌砖***;1、供砖总成;10、支撑机构;101、第一导向件;102、第二导向件;103、第三导向件;11、运动载台;110、基座;1101、滑动部; 111、定位机构;1110、底板;1111、夹板;112、运动机构;1121、板状部;V1、第一空间;V2、第二空间;112a、第一驱动组件;112b、第一滑动组件;1122、第一导轨;1123、第一导块;1124、第一丝杆;1125、第一螺母座;112c、第二驱动组件;112d、第二滑动组件;1126、第二导轨;1127、第二导块;1128、第二丝杆;1129、第二螺母座;12、抹浆机构;12a、料斗;121、抹浆作业端;1211、出料口;1212、刮板;122、进料管;123、料仓;12b、第一安装架;124、水平架;1241、中间部;1242、延伸臂;1243、滑动适配部;125、第一竖直架;125a、固定下端;125b、固定上端;126、横向驱动机构;127、第一升降机构;1271、后板;1272、前板;1273、侧板;1274、围合腔;12c、第一枢接机构;R1、第一转动轴线;128a、第一板;128b、第二板;1280、固定孔;129、第一枢接电机;12d、转接部;12d1、弯管;12d2、阀门;12e、自转机构;A、自转轴线;12e1、主动齿轮;12e2、从动齿轮;13、翻转机构;13a、第二安装架;13b、翻转机械手;12c、第二枢接机构;131、第二竖直架;132、第二升降机构;133、转动部;134、第二枢接电机;135、连接座;136、手部主体;137、夹持部;R2、第二转动轴线;14、位置检测装置;141、安载部;142、载架;143、第一舵机;144、第二舵机;145、检测传感器;2、移动底盘;20、主框架;21、上安装面;22、轮组;23、支撑腿;3、砌砖机构;30、立柱;31、机械臂;32、机械爪;301、固定支架;302、第一升降架;303、第二升降架;304、第三升降架;311、近端;312、远端;3120、连杆;313、关节;3121、第一连杆;3122、第二连杆;314、三轴调整装置;315、旋转柱;4、控制模块;40、立柜;5、砖块;51、上游侧面;52、下游侧面;53、浆层;S、作业空间;W、待砌墙体;P1、第一位置;P2、第二位置;P3、第三位置;O1、第一坐标;O2、第二坐标;O3、第三坐标;d、偏移值;D1、理想距离;D2、实际距离。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的描述并非限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关 系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
具体实施例
本申请涉及一种供砖总成1、包括供砖总成1的一种砌砖***100和砌砖方法,砌砖***100和砌砖方法用于在作业空间S中实现砌砖作业以砌筑形成墙体,本申请的砌砖***100和砌砖方法可以用于建筑物室内墙的堆砌,也可以用于建筑物外墙的堆砌。
本申请中定义左右方向X为平行于待砌墙体W的方向,定义前后方向Y垂直于待砌墙体W的方向,朝向待砌墙体W的方向定义为前方,远离待砌墙体W的方向定义为后方,竖直方向Z垂直于前后方向X和左右方向Y。
第一实施例
请参阅图1~图31,其为本申请的第一种实施例的供砖总成1以及应用该供砖总成1的砌砖***100,砌砖***100包括供砖总成1、移动底盘2,以及砌砖机构3,本实施例中供砖总成1和砌砖机构3集成安装移动底盘2上。
请参阅图1,移动底盘2能够在作业空间S中行走且停止于预定的砌筑站点,待砌墙体W位于砌筑站点的前侧,砌砖机构3安装位置相比于供砖总成1的安装位置更加靠近待砌墙体W,从而减少了砖块5砌筑作业的搬运路径,从而加快了砌砖的作业节拍。
请参阅图1、图2和图3,砌砖***100可以包括一控制模块4,控制模块4包括一立柜40,立柜40内部安装有控制元件,控制元件分别与供砖总成1、砌砖机构3和移动底盘2信号连接,从而控制供砖总成1、砌砖机构3和移动底盘2动作。立柜40安装于移动底盘2的后方区域,位于砌砖机构3的安装位置的后方,供砖总成1安装于立柜40上方。
在砌砖机构3砌筑高层的砖块5时,通过供砖总成1安装于立柜40的上方,立柜40垫高了供砖总成1的高度,减小了砌砖机构3自供砖总成1拾取砖块5到放置砖块5至砌筑位置的搬运路程,有利于加快作业节拍。
请参阅图1、图2、图17和图21,供砖总成1安装于移动底盘2后侧上方的空间。供砖总成1包括一支撑机构10,其固定于移动底盘2后侧上方的空间,支撑机构10上方的空间为安装空间(即,支持机构上方的空间),安装空间内设置有运动载台11,抹浆机构12以及翻转机构13,运动载台11具有一定位机构111,定位机构111可以在第一位置P1和第二位置P2之间移动,定位机构111用以在第一位置P1上自外界接收砖块5且在第二位置P2上将砖块5传递至翻转机构13,抹浆机构12具有抹浆作业端121,其用于在第一位置P1移动至第二位置P2过程中,抹浆于砖块5的表面,使得翻转机构13接收到的砖块5为抹浆后的砖块5,抹浆后 的砖块5具有抹浆面和非抹浆面,翻转机构13具有一翻转机械手13b,自第二位置P2拾取抹浆后的砖块5且翻转抹浆面和非抹浆面的空间朝向,从而使得砌砖机构3能够沿着砖块5的非抹浆面拾取砖块5。
本申请中的供砖总成1将上砖、砖块运送、抹浆以及砖块翻转集成在一个支撑机构10上,集成化的程度高,而且在运送砖块5的过程中,完成了砖块抹浆的动作,相比于相关技术中将运送砖块以及抹浆两个动作分开进行,本申请的自第一位置P1运输砖块5至第二位置P2的过程中,也同时完成抹浆的动作,从而使得本申请的供砖总成1完成整个供砖流程的时间更加短,从而加快的供砖的节拍,减少了供砖的时间成本;同时,将接收砖块5的工序以及将抹浆后的砖块5传递至翻转机构13的工序均由运动载台11完成,使得接收砖块5的第一位置P1和递出砖块5的第二位置P2均可以使用同一个机构的坐标系,进而便于控制上砖-抹浆-递砖的各个工序中的位置精度,从而增加了翻转机构13拾取的精准度。本申请的供砖总成1应用在砌砖***100上,在供砖总成1加快了供砖的节拍的基础上,砌砖机构3也同样加快的作业节拍,从而缩短了砌筑作业的时间;而由于砌砖机构3自翻转机构13拾取砖块5来进行砌砖,增加了翻转机构13拾取的精准度,也使得砌砖精度得到改善。
请参阅图17、图21、图22和图23,为了增加位置精度以及简单化运动控制策略,将定位机构111在水平面上的坐标定义为第一坐标O1,每一次定位机构111到达第一位置P1时的第一坐标O1的坐标值均为(X1,Y1)。将待拾取状态下的翻转机械手13b在水平面上的坐标定义为第二坐标O2,每一次待拾取状态下的翻转机械手13b的第二坐标O2的坐标值均为(X2,Y2)。将砖块5在水平面上的坐标定义为第三坐标O3。第二位置P2的砖块5位于翻转机械手13b的下方,第三坐标O3与第二坐标O2重叠,从而使得翻转机械手13b能够以最短的垂直距离向下拾取砖块5。本申请中的坐标均为砌砖***100的坐标系下各个机构的坐标,一般为中心坐标。
为了增加砖块5到达第二位置P2时的位置精度,供砖总成1设置有位置检测装置14,位置检测装置14用于检测第一位置P1时的第三坐标O3的坐标值Xb相较于第一坐标O1的坐标值X1偏移值d。理想状态下,将砖块5放置于第一位置P1的定位机构111上,请参阅图17和图22,第三坐标O3与第一坐标O1是重叠的,其坐标值均为(X1,Y1)。但这种理想状态下的上砖,对砖块5放置的精准度要求较高,那么在校准的过程中对作业节拍造成一定的影响。请参阅图22和图23,为了不影响作业节拍,在将砖块5放置于第一位置P1的定位机构111时,进行的是粗定位校准。
粗定位校准如下:定位机构111在第一位置P1接收砖块5时,定位机构111将第三坐标O3的Y向坐标值定位校准为Y1,从而对砖块5在Y向上进行定位校准。为了获知第三坐标O3的X向坐标相较于第一坐标O1(X1,Y1)的偏移值d,位置检测装置14检测砖块5侧面在X方向上的实际坐标值,与理想状态下的砖块5的侧面X方向上的理想坐标值做比较,得到了第一位置P1上的砖块5的偏差值, 控制模块4根据该偏差值、第一坐标O1(X1,Y1)和第二坐标O2(X2,Y1),从而得到运动载台11驱动定位机构111自第一位置P1移动至第二位置P2的运输距离,使得定位机构111到达第二位置P2时,第三坐标O3与第二坐标O2重叠。
通过进行粗定位校准,在第一位置P1上砖的时候,将砖块5放置于定位机构111上,由定位机构111将第三坐标O3的Y向坐标定位校准在竖直面Y1上,通过位置检测装置14检测砖块5的侧面,可以判断第三坐标O3的坐标值Xb相较于第一坐标O1的坐标值X1的偏移值d,从而可以在后续运动控制策略中,控制模块4根据偏移值d将定位机构111移动相应的运输距离,使得每一次到达第二位置P2时第三坐标O3的坐标值均为(X2,Y2)。由于上砖之前,砖块5位于供砖总成1自身的坐标体系外,上砖时,砖块5是自外界的坐标体系进入供砖总成1的坐标体系,如果上砖的时候进行精定位校准,那么所需要的就是将砖块5的坐标体系匹配上定位机构111的坐标体系,这对控制模块4的控制策略以及上砖的工序都是需要复杂以及相对冗长的过程,不利于快速上砖。本申请的粗定位校准使得在上砖的过程中无需对砖块5进行精定位校准,本申请是将砖块5放置于定位机构111后,确定砖块5在供砖总成1的坐标体系上的位置是多少,砖块5的补偿和校准均是在供砖总成1的坐标体系下进行,从而加快的作业节拍。
为了砌砖***100整体小型化的设置,自上而下观察,支撑机构10不超过移动底盘2的构形尺寸。支撑结构为立柜40的上表面,或者是独立的一块平板安装于立柜40的上表面。支撑结构独立的一块平板安装于立柜40的上表面,可以将平板的面积设置大于立柜40的上表面的面积,从而在保证了砌砖***100整体小型化的基础上,增大了供砖总成1的安装空间。
请参阅图6、图8、图13和图14,支撑结构上安装有沿着前后方向延伸的第一导向件101和第二导向件102,第一导向件101沿着前后方向定义了第一移动路径,第二导向件102沿着前后方向定义了第二移动路径,第一移动路径和第二移动路径平行。第一导向件101的数量为两个,两个第一导向件101对称设于第二导向件102的左右方向上的两侧,第一导向件101与抹浆机构12底部的滑动适配部1243相互适配用以导引抹浆机构12沿着前后方向正反移动,第二导向件102与运动载台11底部的滑动适配部1243相互适配以导引运动载台11沿着前后方向正反移动。
请参阅图5、图6、图13和图14,运动载台11包括一基座110、一运动机构112以及设于运动机构112的定位机构111,运动机构112设置于基座110上且运动机构112的输出端能够沿着左右方向移动、定位机构111设置于运动机构112输出端。
请参阅图5、图6、图13和图14,基座110为板状结构,基座110的下板面设有与第二导向件102相互适配的滑动部1101,基座110下板面的滑动部1101可允许的滑动方向为前后方向以导引运动载台11前后正反移动,基座110的上板面设有与运动机构112相互适配滑动适配部1243,基座110上板面的滑动适配部1243 可允许的滑动方向为左右方向X以导引运动机构112沿着左右方向X移动。基座110的下板面与支撑机构10之间的空间设置有前后驱动件,前后驱动件的一种实施方式为丝杆驱动件,该丝杆驱动件包括前后延伸的一丝杆,丝杆位于第二导向件102的两个平行导轨之间,丝杆的一端转动连接有驱动电机,丝杆的螺纹部连接有使动螺母,基座110的下板面连接使动螺母,借此,当驱动电机驱动丝杆转动的时候,使动螺母沿着丝杆的延伸方向前后移动,从而带动基座110沿着前后方向移动,而第二导向件102的导引作用使得基座110的前后位移运动更加平稳精准。当然,前后驱动件也可以是其他的驱动方式,比如皮带驱动,链条驱动等,只要能够使得基座110前后移动的驱动方式,都可以是本实施例的前后驱动机构的驱动方式。
请参阅图5、图6、图13和图14,运动机构112包括至少一个板状部1121,在本实施例中,板状部1121的数量为一个。板状部1121沿着左右方向上的长度均大于基座110的长度,从而使得运动机构112具有较大的伸出行程。
请参阅图13和图14,板状部1121的下板面与基座110之间具有一第一空间V1,第一空间V1内设置有第一驱动组件112a以及第一滑动组件112b,第一滑动组件112b包括相互适配的导轨和滑块,借由第一驱动组件112a以驱动板状部1121沿着左右方向位移,借由第一滑动组件112b以导引板状部1121沿着左右方向位移。
第一滑动件包括有左右延伸的第一导轨1122及与第一导轨1122相互适配的第一导块1123,第一导块1123安装于基座110的上板面和第一导轨1122安装于板状部1121的下板面,当第一驱动组件112a驱动板状部1121左右移动时,通过第一导轨1122和第一导块1123的滑动适配从而导引板状部1121沿着左右方向移动。
第一驱动组件112a的一种实施方式为丝杆驱动。可选的,第一驱动组件112a包括一第一丝杆1124、与第一丝杆1124适配的第一螺母座1125以及与第一丝杆1124通过传动件驱动连接的第一电机,传动件可以是皮带传动件或者链条传动件,第一螺母座1125连接基座110的上板面且位于基座110上板面的滑块之间,第一丝杆1124及其驱动连接的第一电机安装于板状部1121的下板面,如此设计,将尺寸较大的第一丝杆1124以及第一电机放置于板状部1121,从而使得基座110不必设置较大的尺寸也能使得运动机构112具有较长的伸出行程。
当然,第一驱动组件112a也可以是皮带驱动或者链条驱动或者是齿轮-齿条驱动,只要能够使得板状部1121左右正反移动的驱动方式,都可以是第一驱动组件112a的驱动方式。本实施例中的丝杆驱动模式相比于皮带驱动或者链条驱动或者是齿轮-齿条驱动等驱动方式,本实施例的丝杆驱动方式通过带链传动的方式,从而使得第一电机和第一丝杆1124可以沿着左右方向同向设置,从而使得第一驱动组件112a在前后方向占用的空间尺寸相对较小,从而有利于机器的小型化设计。
请参阅图13和图14,板状部1121的上板面与定位机构111之间具有一第二空间V2,第二空间V2内设置有第二驱动组件112c以及第二滑动组件112d,第二滑动组件112d包括相互适配的导轨和滑块,借由第二驱动组件112c以驱动定位机构111沿着左右方向位移,借由第二滑动组件112d以导引定位机构111沿着左右方向位移。
第二滑动件包括有左右延伸的第二导轨1126及与第二导轨1126相互适配的第二导块1127,第二导块1127安装于定位机构111,第二导轨1126安装于板状部1121的上板面,当第二驱动组件112c驱动板状部1121左右移动时,通过第二导轨1126和第二导块1127的滑动适配从而导引板状部1121沿着左右方向移动。
第二驱动组件112c包括一第二丝杆1128、与第二丝杆1128适配的第二螺母座1129以及通过传动件与第二丝杆1128驱动连接的第二电机,第二丝杆1128通过两端的轴承座安装于板状部1121的上板面且位于两个第二导轨1126之间,传动件为带状传动件或者链条传动件,第二电机通过传动件驱动第二丝杆1128转动,第二螺母座1129适配于第二丝杆1128的螺纹部形成第二驱动组件112c的输出端,第二螺母座1129连接定位机构111。当第二电机驱动第二丝杆1128转动时,第二螺母座1129带动定位机构111沿着左右方向移动。
通过将第一导轨1122、第一电机安装于板状部1121的下板面,第二导轨1126、第二电机安装于板状部1121的上板面,从而将长度尺寸较大的部件安装于板状部1121,从而使得定位机构111和基座110在长度方向上能够小型化设置。
当然,在另外的实施例中,根据伸出行程的需求,板状部1121的数量可以是多个,比如板状部1121的数量为两个、三个或者更多,上下相邻的两个板状部1121之间之间间隔设置形成第三空间,第三空间内设置第三滑动组件和第三驱动组件,第三滑动组件的设置参考第一、第二滑动组件112d的相应构造,第三驱动组件的设置参考第一、第二驱动组件112c的相应构造,在此不在赘述。
请参阅图13和图14,定位机构111包括一底板1110,底板1110连接于第二螺母座1129,底板1110的上方设置有两个夹板1111,在本实施例中,两个夹板1111中的每一个均相对于彼此能够沿着前后方向移动,用以增加或者减小两个夹板1111之间的夹持空间。两个夹板1111连接于一同步驱动机构,从而使得两个夹板1111同时靠近彼此以定位夹持砖块5或者同时远离彼此以释放砖块5。同步移动的两个夹板1111能够将砖块5的第三坐标O3定位于同一左右延伸的竖直面上。当然,在其他实施例中,两个夹板1111中的其中一个夹板1111为固定夹板1111,另一个为活动夹板1111,活动夹板1111靠近固定夹板1111移动以定位砖块5,活动夹板1111相对于固定夹板1111远离以释放砖块5。
请参阅图6~图12,抹浆机构12包括安装于支撑机构10的一第一安装架12b以及借由第一枢接机构12c安装于第一安装架12b的一料斗12a,料斗12a的下端形成有抹浆作业端121,第一枢接机构12c的第一转动轴线R1前后延伸。
请参阅图6、图7和图8,第一安装架12b下端包括一水平架124,水平架124 呈U型设置以形成一开口,开口让位于基座110。水平架124包括左右延伸的中间部1241以及位于中间部1241左右两侧的两个延伸臂1242,每一延伸臂1242沿着前后方向延伸。中间部1241设于基座110沿着前后方向上的一侧,基座110沿着左右方向位于两个延伸臂1242之间,每一延伸臂1242下端设置有滑动适配部1243以适配第一导向件101。
请参阅图8、图9和图11,第一安装架12b还包括一第一竖直架125、固定于第一竖直架125的固定上端125b的一横向驱动机构126以及连接于横向驱动机构126的输出端的一第一升降机构127、第一竖直架125的固定下端125a安装于中间部1241,从而使得竖直架可以沿第一导向件101前后移动。料斗12a通过第一升降机构127安装于横向驱动机构126的输出端,从而使得料斗12a可以沿着左右方向移动,料斗12a通过一第一枢接机构12c枢接于第一升降机构127的输出端,从而使得料斗12a能够进行升降运动以及沿着第一转动轴线R1进行上下摆动。
请参阅图11和图12,第一升降机构127的输出端被构造成升降座,第一升降机构127包括后板1271,后板1271连接于第一升降机构127的升降驱动部,升降驱动部能够在电机的驱动下,带动升降座进行升降运动,升降座包括与后板1271相对的前板1272,前板1272通过第一枢接机构12c连接料斗12a。前板1272和后板1271之间通过两个侧板1273相连接,从而正板、背板以及两个侧板1273围成一个围合腔1274。
请参阅图11和图12,第一枢接机构12c包括竖直设置的第一板128a、自第一板128a垂直延伸的第二板128b,以及包括第一枢接电机129。第一枢接电机129设置于围合腔1274内且第一枢接电机129的输出部自正板延伸出围合腔1274且与第一板128a转动连接,第一枢接电机129的输出部形成第一转动轴线R1,第二板128b具有一固定孔1280,固定孔1280用以安装料斗12a。
请参阅图11和图12,料斗12a的上端具有进料管122,进料管122穿过固定孔1280且固定于其内,进料管122的下端连通有一料仓123,料仓123的下端具有抹浆作业端121,抹浆作业端121包括纵长延伸的一出料口1211以及安装于出料口1211的其中一个长边缘的一刮板1212,料仓123自上而下的的宽度呈渐缩设置,从而保持了出料口1211的出浆压力,当出料口1211施浆于砖块5的表面时,刮板1212刮匀浆料使得砖块5的表面形成均匀的浆层53。
请参阅图11和图12,抹浆机构12还包括一转接部12d,转接板包括一弯管12d1以及控制弯管12d1开闭的阀门12d2,弯管12d1的第一端连接外部的供浆机构,弯管12d1的第二端通过输浆管连接进料管122,外部的供浆机构提供浆料,浆料依次经过弯管12d1、输料管进入进料管122,浆料进入进料管122后,向下流至料仓123内,自出料口1211输出至砖块5的表面,完成了给砖块5的表面供浆的工序。当需要停止输浆时,阀门12d2关闭弯管12d1,截断浆料的输送。
请参阅图11和图12,抹浆机构12包括一自转机构12e,自转机构12e设于第二板128b,自转机构12e的输出端驱动连接料斗12a,料斗12a沿着固定孔1280的自 转轴线A能够实现180°自转,使得刮板1212可以面朝左侧或者右侧,从而可以灵活地调整抹浆方向。请参阅图12,本实施例的自转机构12e的输出端被构造成一个主动齿轮12e1,该主动齿轮12e1与一个电机驱动相连,主动齿轮12e1转动驱动安装于料斗12a上的从动齿轮12e2,从而使得料斗12a可以固定孔1280的自转轴线A实现180°自转。
请参阅图15和图16,翻转机构13包括一第二安装架13a和一翻转机械手13b,第二安装架13a包括一第二竖直架131、设于第二竖直架131的第二升降机构132,翻转机械手13b通过一第二枢接机构12c连接于第二升降机构132,借此,第二枢接机构12c的第二转动轴线R2与第一枢接机构12c的第一转动轴线R1平行。通过第二升降机构132的升降以及第二枢接机构12c的转动,翻转机械手13b能够进行升降且沿着第二转动轴线R2进行180°上下翻转。
第二升降机构132的驱动方式为丝杠驱动或者皮带传动或者齿轮传动,只要能够实现翻转机械手13b的升降,均属于本申请的第二升降机构132。
请参阅图15和图16,第二枢接机构12c包括一转动部133以及驱动连接转动部133的一第二枢接电机134,转动部133前后转动连接第二升降机构132和翻转机械手13b,转动部133可以是转动轴承或者是卫星齿轮机构或者皮带转动机构,通过第二枢接电机134旋转驱动转动部133,翻转机械手13b可以相对于第二升降机构132进行上下翻转。
请参阅图15和图16,翻转机械手13b包括一连接座135,连接座135连接转动部133,自连接座135沿着前后方向延伸的一手部主体136,手部主体136连接有沿着前后方向间隔设置两个夹持部137,两个夹持部137中的至少一个可以沿着前后方向可以移动设置。在本实施例中,两个夹持部137均活动设置,相对于一个竖直延伸的中心线彼此相互远离以释放砖块5或者彼此相互靠近以拾取定位砖块5。
翻转机械手13b用于自第二位置P2拾取抹浆后的砖块5然后沿着前后轴线翻转180°,使得砖块5的抹浆面朝下设置,砖块5的非抹浆面朝下设置。为了翻转机械手13b具有相对较短的拾取行程,第二位置P2设于翻转机械手13b的竖直下方,即第二位置P2的第一坐标O1的坐标值为(X2,Y2),与翻转机械手13b在水平面上的第二坐标O2重叠。
请参阅图9和图10,此为本实施例的位置检测装置14的实施方式,所述位置检测装置14包括安装于第一竖直架125上的一安载部141,一载架142的第一端通过一第一舵机143转动连接于安载部141,载架142的第二端通过一第二舵机144转动连接一检测传感器145。第一舵机143使得载架142沿着X向延伸的转轴相对于安载部141上下翻转,第二舵机144的转轴垂直于第一舵机143的转轴,从而使得检测传感器145左右翻转。当位置检测装置14需要检测第一位置P1的砖块5的偏移值d时,第一舵机143驱使载架142向下翻动,使得砖块5位于检测传感器145的检测范围,第二舵机144对应使得检测传感器145的检测端对准砖块5的侧面。 本实施例的位置检测装置14对应两侧的第一位置P1均可以检测砖块5在第一位置P1的偏移值d。当砖块5传输时,使得第一舵机143驱动载架142向上翻动,让位于砖块5的传输路径。
可选的,检测传感器145可以是激光测距传感器、相机检测传感器145以及接近开关检测传感器145,示例性地,本实施例的检测传感器145为激光测距传感器,通过检测端朝向第一位置P1的砖块5的侧面发射激光,砖块5的侧面反射激光,检测端根据接收的反射激光,从而可以知道检测端到砖块5侧面的实际距离D2,根据实际距离D2可以获知砖块5侧面的实际坐标值,理想状态下的第一位置P1的砖块5侧面的理想坐标值与检测端的距离为理想距离D1,将实际距离D2以及理想距离D1作比较,从而可以知道砖块5的偏移距离d。
请参阅图1和图2,本实施例中,抹浆机构12的第一竖直架125安装于运动载台11的后侧,翻转机构13的第二竖直架131安装于运动载台11的前侧,从而使得翻转机构13比较靠近砌砖机构3,从而减小了砌砖机构3的搬运行程,进而加快了砌砖节奏。
请参阅图2、图3、图4和图5,供砖总成1具有一个收纳状态和一个工作状态。请参阅图4和图5,供砖总成1处于收纳状态时,第一竖直架125位于支撑机构10的构形边缘内,从而有利于砌砖***100的尺寸小型化,有利于通过室内场景的门框或者是狭窄的通道。请参阅图2和图3,供砖总成1处于工作状态时,抹浆机构12向后移动超过支撑机构10的后侧构形边缘,抹浆作业端121位于左右延伸的第一竖直面Y1上,翻转机械手13b位于左右延伸的第二竖直面上,第一竖直面Y1平行间隔位于第二竖直面的后侧。
请参阅图4,收纳状态下的抹浆作业端121、定位机构111以及翻转机械手13b均位于第二竖直面上,有利于收纳状态下的供砖总成1实现在前后方向方向上的小型化设置。
请参阅图2、图3和图24,当供砖总成1处于工作状态时,驱动抹浆机构12向后远离抹浆机构12,此时抹浆机构12的第一竖直架125位于移动底盘2的构形尺寸之外,抹浆作业端121向后移动至第一竖直面Y1上,翻转机构13沿着前后方向固定不动,翻转机械手13b位于第二竖直面上。抹浆机构12和翻转机构13沿着在水平面上的投影沿着前后方向间隔且不重叠,从而使得料斗12a在横向驱动机构126的驱动下可以无障碍地左右移动,翻转机械手13b在第二枢接机构12c的驱动下可以无障碍地上下翻转。
前后驱动件通过驱动基座110,使得运动载台11在前后方向上沿着第二导向件102前后移动,向后移动至第一竖直面Y1以完成砖块抹浆,向前移动至第二竖直面以传递抹浆后的砖块5至翻转机械手13b。
请参阅图3、图13、图17和图24,基座110沿着第二导向件102带动定位机构111移动至第一竖直面Y1,运动机构112沿着第二竖直面向左或者向右驱动定位机构111至一第一位置P1,第一位置P1的定位机构111用以自外界接收砖块5。位 于第一位置P1的第一坐标O1为固定设置的(X1,Y1),有利于供砖总成1的上砖的作业节拍以及有利于控制策略的简单化。
由于抹浆机构12向后移动使得第一竖直面Y1与第二竖直面Y2间隔设置,从而使得运动载台11移动至第一竖直面Y1时,定位机构111可以在运动机构112的驱动下左右移动而不影响翻转机械手13b翻转砖块5,从而使得定位机构111的第一位置P1均可以设在左右方向上的任一侧,增加了在作业空间S内的上砖的灵活性,特别是在一些有死角的狭窄作业空间S内。
请参阅图24,自上而下观察,第一位置P1位于抹浆作业端121于Y向上的任一侧,例如,当定位机构111向左移动时,第一位置P1位于抹浆作业端121的竖直投影的左侧,当定位机构111向右移动时,第一位置P1位于抹浆作业端121的竖直投影的右侧。
请参阅图17、图18、图19和图24,定位机构111在第一位置P1接收砖块5时,定位机构111的夹板1111呈张开的状态以保持有足够的空间接收砖块5,当砖块5放置两个夹板1111之间时,两个夹板1111向内夹持定位砖块5。本实施例中的两个夹板1111呈同步移动,使得第一位置P1的第三坐标O3的Y坐标保持在同一竖直面上,使得控制模块4控制砖块5自第一位置P1移动时,砖块5的第三坐标O3在Y向上形成一个固定坐标值,从而有利于简化控制策略,增加位置精准度。本实施例中的砖块5的Y坐标位于第一竖直面Y1上的,从而保证了砖块5与抹浆作业端121共同位于第一竖直面Y1上,从而有利于抹浆作业端121对准砖块5进行抹浆。
请参阅图17~图31,当定位机构111在第一位置P1接收砖块5后,自第一位置P1朝向第二位置P2移动的过程中,抹浆机构12对砖块5进行抹浆,抹浆机构12对砖块5进行侧面抹浆以及水平抹浆,可选的,侧面抹浆和水平抹浆的顺序可以调换。
抹浆机构12的一种作业方式为:先对砖块5的下游侧面52进行抹浆,然后进行砖块5的上表面的水平抹浆,其工作方式如下。
请参阅图17和图18,定位机构111载运砖块5自第一位置P1沿着第二竖直面朝向抹浆作业端121移动至一第三位置P3,第三位置P3的砖块5的侧面与抹浆作业端121对齐,抹浆作业端121自下而上抹浆于第三位置P3的砖块5的侧面。可选的,第一种侧面抹浆的方式为:请参阅图18,定位机构111在运动机构112的制动下,在第三位置P3停止,抹浆作业端121在第一升降机构127的驱动下,自下而上相对于静止的砖块5移动,出料口1211将浆料施浆于砖块5的侧面,刮板1212将浆料在砖块5的侧面上自下而上刮平,通过使用第一种侧面抹浆方式,将砖块5在第三位置P3停止,在抹浆机构12和运动载台11中,控制模块4只控制第一升降机构127的驱动,有利于控制策略的简单化;第二种侧面抹浆的方式为:定位机构111在第三位置P3上仍然保持运动的状态,抹浆作业端121在横向驱动机构126的驱动下与砖块5沿着左右方向保持同步移动的状态,在沿着左右方向同步 移动的前提下,通过第一升降机构127的驱动,抹浆作业端121自下而上相对于砖块5移动,出料口1211将浆料施浆于砖块5的侧面,刮板1212将浆料在砖块5的侧面自下而上刮平,通过使用第二种侧面抹浆的方式,砖块5可以实现一边传输一边抹浆的动作,砖块5运输没有停顿的节拍,加快了供砖的节奏,有利于节约时间成本。
请参阅图19和图20,在抹浆作业端121完成砖块5的侧面抹浆后,砖块5沿着第二竖直面远离抹浆作业端121移动,抹浆作业端121沿着左右方向水平抹浆于砖块5的上表面。可选的,第一种水平抹浆的方式为:定位机构111使动砖块5保持静止状态,抹浆作业端121在横向驱动机构126的驱动下沿着第二竖直面相对于静止的砖块5移动,出料口1211施浆于砖块5的上表面,刮板1212将浆料在砖块5的上表面刮平,通过第一种的水平抹浆方式,在抹浆机构12和运动载台11两者中,控制模块4仅控制横向驱动机构126,控制策略相对简单;第二种水平抹浆的方式为:抹浆作业端121保持不动,砖块5的上表面沿着第二竖直面相对于抹浆机构12运动,出料口1211施浆于砖块5的上表面,刮板1212将浆料在砖块5的上表面刮平,通过第二种的水平抹浆方式,在抹浆机构12和运动载台11两者中,控制模块4仅控制运动载台11,控制策略相对简单,且在运输砖块5的同时就可以实现水平抹浆,从而减少了运动载台11停顿的时间,从而缩短了砖块5的运输时间,进而加快的供砖节拍;第三种水平抹浆的方式为:如图19所示,砖块5沿着第二竖直面朝向远离抹浆作业端121的方向移动,抹浆作业端121在横向驱动机构126的驱动下沿着第二竖直面移动,抹浆作业端121的移动方向与砖块5的移动方向相反,在两者相对于彼此移动的过程中,出料口1211施浆于砖块5的上表面,刮板1212将浆料在砖块5的上表面刮平,通过使用第三种水平抹浆方式,相比于第一种的水平抹浆方式,第三种水平抹浆方式的抹浆作业端121的横移路径较短,对应地使得横移机构的长度可以相对较小,相比于第二种水平抹浆方式,第三种水平抹浆方式的砖块5的横移路径相较较短,使得板状部1121的长度相对可以设置地较小,同时,在第三种水平抹浆的方式中,抹浆作业端121的横移距离为L1,砖块5的横移距离为L2,L1加上L2的总和等于砖块5的长度。
请参阅图17~图20,第三种水平抹浆方式的一种实施例为:抹浆作业端121的初始位置位于横向驱动机构126的中间位置,当第一位置P1位于左侧的时候,第一升降机构127及其连接的抹浆作业端121位于第一位置P1的右侧,刮板1212朝向左侧的砖块5设置。砖块5自第一位置P1朝右向抹浆作业端121移动,第一升降驱动机构驱动抹浆作业端121自下而上抹浆于砖块5的侧面,横向驱动机构126驱动抹浆作业端121朝左移动同时砖块5朝向右移动以完成砖块5的上表面的水平抹浆。相反的,当第一位置P1位于右侧时,第一升降机构127及其连接的抹浆作业端121位于第一位置P1的左侧,刮板1212朝向右侧的砖块5设置。砖块5自第一位置P1朝左向抹浆作业端121移动,第一升降驱动机构驱动抹浆作业端121自下而上抹浆于砖块5的侧面,横向驱动机构126驱动抹浆作业端121朝右移动同时砖块5朝向左移动以完成砖块5的上表面的水平抹浆。通过将第一升降机构127及 其连接的料斗12a设置于横移机构的中间位置,通过自转机构12e使得料斗12a可以朝向左右两侧抹浆,从而使得横向驱动机构126可以驱使料斗12a朝向左右两侧抹浆的同时使得横向驱动机构126的长度不用设置成两倍的砖块5的长度,同时可以使得砖块5沿着第一竖直面Y1移动的行程较短,有利于实现抹浆机构12的小型化的同时缩短了抹浆作业的实现,节约了时间的成本。
请参阅图28~图31,抹浆机构12的另一种作业方式为:先对砖块5的上表面进行水平抹浆,然后对砖块5的上游侧面51进行侧面抹浆,水平抹浆方式可在上述的三种水平抹浆方式中选择,侧面抹浆方式可在上述的两种侧面抹浆方式中选择。
请参阅图20和图26当抹浆机构12对砖块5完成了抹浆作业之后,驱动组件驱动基座110向前移动至第二竖直面。如若在第一竖直面Y1上完成抹浆后的砖块5的第三坐标的X向坐标与第二坐标的X向坐标沿着前后方向对正,基座110向前移动的过程中,运动机构112不工作,使得砖块5仅沿着前后方向后移动至第二位置P2;第一竖直面Y1上完成抹浆后的砖块5的第三坐标O3的X向坐标与第二坐标O2的X向坐标沿着前后方向向左或者向右偏移一段距离,基座110向前移动的同时运动机构112对应驱动砖块5向左或者向右移动,使得砖块5的第三坐标O3重叠于第二坐标O2。
当完成抹浆后的砖块5移动至第二位置P2后,第二升降机构132的向下驱动翻转机械手13b,翻转机械手13b的两个夹持部137夹持砖块5完成拾取动作,第二升降驱动机构向上驱动翻转机械手13b使得砖块5具有上下翻转的空间,翻转机械手13b在第二枢接机构12c的驱动下翻转180°,从而使得砖块5的水平抹浆面朝下,砖块5的水平非抹浆面朝上,由于侧面抹浆可选地抹浆于砖块5的上游侧面51或者下游侧面52,从而使得砖块5在翻转180°后,可以朝向左侧,也可以朝向右侧。
当翻转机械手13b将砖块5上下翻转180°后,砌砖机构3向下拾取砖块5的非抹浆面,且将砖块5的水平抹浆面向下粘粘至墙体的砌筑位置的水平放置面,而根据砖块的侧面沿着左右方向上的不同朝向,砌砖机构3可以实现向左砌砖或者向右砌砖,将砖块的侧抹浆面粘粘至待砌墙体W的竖直放置面。
在本实施中的供砖总成1,翻转机构13固定设置,抹浆机构12沿着前后方向可移动设置。
请参阅图1和图5,移动底盘2包括主框架20,主框架20自上而下观察的构形具有预定的长度和宽度,主框架20的预定的长度和宽度可以允许移动底盘2通过室内场地的狭窄通道和进入口等具有预定尺寸的场景。在本实施例中,主框架20自上而下观察的构形呈矩形设置,但可以在其他实施例中,该构形可以是梯形、凹字状、或者是三角形等,根据实际需要选择相应的构形。可选的,主框架20的四个边角均分别做倒圆角处理,避免尖锐的边角刮伤操作人员或者其他的物件
请参阅图1、图3和图5,主框架20包括上安装面21和下安装面、以及多个轮组22,电控柜安装于上安装面21的后方区域,电控柜的边缘不超过上安装面21的边缘,砌砖机构3安装于上安装面21的前方区域。多个轮组22安装于下安装面,本实施例中的轮组22为四个,但本申请不限于四个轮组22,可以是其他数量,只要能够实现底盘机构自移功能即可。本实施例中,轮组22是舵轮,能够实现自动旋转和自动位移的功能。主框架20上安装有可升降的支撑腿23,当移动至对应砌砖站点时,将支撑腿23下降抵接地面。
请参阅图1,砌砖机构3包括一立柱30、连接立柱30的一机械臂31以及连接于机械臂31的机械爪32,立柱30安装于移动底盘2的前方区域上,机械臂31在近端311和远端312之间延伸,机械臂31的近端311固定安装于立柱30上,机械臂31的远端312连接有机械爪32。本实施例中的立柱30为升降柱,立柱30能够驱动机械臂31沿着上下方向移动,机械臂31为水平关节313机械臂31,机械臂31包括多个连杆3120以及多个关节313,每一关节313上设置有制动部,制动部控制关节313旋转运动和停止运动以将多个连杆3120形成不同的角度,从而使得机械臂31形成不同的姿态。机械臂31绕着立柱30前后摆动以在一拾砖位置和一砌筑位置之间移动,拾取位置的机械爪32自翻转机械手13b拾取翻转后的砖块5,砌筑位置的机械爪32将砖块5释放于待砌墙体W,将砖块5的抹浆面粘粘至砌筑位置的砖面。
立柱30被构造成多级升降的升降柱,在本实施例中,立柱30为三级升降构造,但本申请的多级升降不限定为三级升降,也可以是二级升降或者四级升降或者其他级的升降,只要能够覆盖砌筑高度即可。
请参阅图1,立柱30包括一个固定支架301、滑动连接于固定支架301的第一升降架302、滑动连接于第一级升降架的第二升降架303、滑动连接于第二升降架303的第三升降架304,固定支架301的下端安装于上安装面21的前方区域的位置形成立柱30安装于移动底盘2的安装位置,本实施例中,为了在同一砌筑站点中增加左右方向上的砌筑范围,固定支架301的下端沿着左右方向可滑动的安装于上安装面21,第一升降架302通过第一高度驱动件从而相对于固定支架301升降形成第一级升降,第二升降架303通过第二高度驱动件从而相对于第一升降架302升降形成第二级升降,第三升降架304通过第三高度驱动件从而相对于第二升降架303升降形成第三级升降。第三级升降架为立柱30的升降输出端,机械臂31的近端311连接于第三级升降架上。
可选的,本实施例的砌砖***100具有一砌砖方法,其步骤如下:
S1、控制模块4内预存有作业空间S的作业地图,待砌墙体W的空间位置和空间尺寸,以及每一待砌墙体W的每一砖块对应的空间坐标,以及对应待砌墙体W的多个砌筑站点的空间坐标。
作业地图、墙体的空间位置和空间尺寸、每一砖块对应的空间坐标以及多个砌筑站点的空间坐标均由建筑信息模型(Building Information Modeling,BIM) ***生成。
S2、将移动底盘2移动至对应的砌筑站点,将支撑腿23下降至抵接地面,使得移动底盘2处于水平状态。
在调节移动底盘2的水平状态之前,为了获知移动底盘2相对于水平面的倾斜度,在移动底盘2上安装有倾角传感器,在移动底盘2移动至对应的砌筑站点后,倾角传感器获知移动底盘2相对于地面上的倾斜度,根据该倾斜度,控制模块4控制每一调节机构调节对应的支撑腿23的高度,从而使得移动底盘2可以形成水平状态,有利于砌砖的精准度,从而保证了砌砖质量。
S3、请参阅图3、图5、图17和图24,驱动抹浆机构12向后远离抹浆机构12,此时抹浆机构12的第一竖直架125位于移动底盘2的构形尺寸之外,抹浆作业端121向后移动至一第一竖直面Y1上,翻转机械手13b位于第二竖直面上,此时供砖总成1自收纳状态转变成工作状态,工作状态下的定位机构111能够在第一位置P1和第二位置P2之间移动。
请参阅图17、图21、图24和图26,第一竖直面Y1和第二竖直面沿着左右方向延伸且前后间隔平行设置,第一位置P1位于第一竖直面Y1上,自上而下观察,如图17和图24所示,第一位置P1的定位机构111的第一坐标O1的坐标值为(X1,Y1),第一坐标O1位于抹浆作业端121沿着左右方向上的任一侧。如图21和图26所示,第二位置P2的砖块位于翻转机械手13b的竖直下方,第二位置P2的砖块的第三坐标O3的坐标值为(X2,Y2),第二位置P2的第三坐标O3与第二坐标O2重叠设置。
驱动抹浆机构12的驱动方式可以是操作人员手动驱动,或者是通过自动驱动元件进行自动驱动的方式。示例性地,由于抹浆机构12的位移只是存在于形成工作状态或者形成收纳状态的时候,也就是对于驱动要求相对较少,为了减少驱动元件的数量、实现小型化设置以及为了控制制作成本,抹浆机构12的驱动方式采用的是操作人员通过手动驱动。
在形成砌砖***100的工作状态的过程中,自后向前观察,立柱30向左远离翻转机构13移动,两者之间形成左右间隔,便于机械爪32前后摆动,也使得自拾取位置至砌筑位置的搬运路径相对较小。
S4、使得定位机构111移动至第一位置P1,将砖块放置于定位机构111上。
通过以下步骤来实现S4步骤:
S41、如图2所示,前后驱动件驱动基座110自第二竖直面向后驱动至第一竖直面Y1上。
S42、如图17和图24所示,当基座110位于第一竖直面Y1上之后,通过运动机构112驱动定位机构111沿着第一竖直面Y1,向左或者向右移动至第一位置P1。
S43、外界将未抹浆的砖块放置于第一位置P1的定位机构111。
放置的方法可以是操作人员将砖块放置于定位机构111,也可以是另一个上砖设备将砖块自动放置于定位机构111上。
S5、如图17~图21,或者如图28到31所示,接收砖块后,使得定位机构111自第一位置P1朝向第二位置P2移动。
通过以下步骤来实现S5步骤:
S51、定位机构111的两个夹板1111向内同步夹紧,将砖块的第三坐标O3的Y向坐标定位于第一竖直面Y1上。
S52、定位机构111将砖块定位夹紧后,通过位置检测装置14检测第一位置P1的第三坐标O3的Xb相对于第一位置P1的第一坐标O1的X1的偏移值d。
S53、根据偏移值d,控制模块4通过控制运动机构112沿着X向移动相应的距离,使得砖块每一次到达第二位置P2时的X向坐标均为X2;通过前后驱动件驱动所在基座110带动定位机构111自第一竖直面Y1移动至第二竖直面,即砖块自第一位置P1的坐标Y1移动至第二位置P2的坐标Y2。
S6、如图17~图21,或者如图28到31所示,在砖块载运砖块自第一位置P1移动至第二位置P2的过程中,抹浆机构12抹浆于砖块的表面。
自后向前的视角观察,第一位置P1位于左侧时,砖块的抹浆步骤包括如下:
S61、控制模块4判断砌砖模式,砌砖模式包括向左砌砖和向右砌砖;
如图17~图21所示,当砌砖模式是向右砌砖时,控制砖块的被抹浆的表面为砖块在输送方向上的下游侧面52(即右侧面)和砖块的上表面:
如图28到31所示,当砌砖模式为向左砌砖时,控制砖块的被抹浆的表面为砖块在输送方向上的上游侧面51(即左侧面)和砖块的上表面:
沿着砖块的左右方向,将抹浆的侧面以及未被抹浆的侧面分别定义为第一抹浆面和第一非抹浆面;
沿着砖块的上下方向,将抹浆的水平表面以及未抹浆的水平表面分别定义为第二抹浆面和第二非非抹浆面。
S62、如图17和图18所示,当砌砖模式为向右砌砖时,通过横向驱动机构126将第一升降机构127及其上连接的抹浆作业端121驱动至横向驱动机构126的中间位置,通过第一升降驱动机构驱动料斗12a下降至对应的高度,使得抹浆作业端121的起始位置可以覆盖砖块下游侧面52的下边缘,通过第一枢接机构12c使得料斗12a摆动至侧面抹浆姿态,侧面抹浆姿态的料斗12a自上而下向左倾斜且刮板1212向左朝向砖块下游侧面52,料斗12a与砖块的下游侧面52形成一夹角,夹角的范围在15°~25°之间。
S63、如图17和图18所示,控制运动载台11将砖块运输第三位置P3,第三位置P3的砖块的下游侧面52与抹浆作业端121对齐,砖块在第三位置P3中处于静止状态。
S64、如图18和图19所示,通过第一升降驱动机构驱动抹浆作业端121上升,使得抹浆作业端121自下而上抹浆于砖块的下游侧面52从而形成第一抹浆面。
如图19所示,当抹浆作业端121完成侧面抹浆后,第一升降机构127继续驱动料斗12a上升至抹浆作业端121间隔砖块水平面一定距离,该距离可以使得第一枢接机构12c驱动料斗12a向右摆动至水平抹浆姿态的过程中,抹浆作业端121不会碰撞到砖块。
如图19所示,当料斗12a向右摆动至水平抹浆姿态的过程中,运动载台11重新驱动砖块,砖块沿着第一竖直面Y1继续向右移动。
S65、在运动载台11重新驱动砖块,砖块沿着第一竖直面Y1向右移动的过程中,横向驱动机构126驱动料斗12a向左移动,抹浆作业端121以水平抹浆姿态自右向左抹浆于砖块的上表面形成第二抹浆面。
S66、运动机构112重新启动定位机构111后,自第三位置P3到第二位置P2无停顿节拍。通过运动载台11向右驱动定位机构111,砖块的中心向右移动至第二位置P2沿着左右方向的坐标Y2,通过前后驱动件向后驱动基座110,使得砖块自第一竖直面Y1移动至第二竖直面,从而使得砖块的中心移动至第二位置P2沿着前后方向的坐标X2。
通过S61~S66的步骤,完成了砌砖模式向右砌砖时的抹浆作业。
S62”、如图28所示,当砌砖模式为向左砌砖时,通过横向驱动机构126将第一升降机构127及其上连接的抹浆作业端121驱动至横向驱动机构126的中间位置,通过第一升降驱动机构驱动料斗12a移动至对应的高度,使得抹浆作业端121的高度与砖块上表面的高度齐平,通过第一枢接机构12c使得料斗12a摆动至水平抹浆姿态,水平抹浆姿态的料斗12a自上而下向右倾斜且刮板1212向左朝向设置,料斗12a与前后延伸是的竖直面形成一夹角,夹角的范围在15°~25°之间。
S63”、如图29和图30所示,控制运动载台11将砖块运输第三位置P3,砖块沿着第一竖直面Y1自第一位置P1向右移动至一第三位置P3,在此过程中,砖块自左向右移动越过抹浆作业端121,横向驱动机构126驱动抹浆作业端121自右向左移动,砖块和抹浆作业端121沿着相反的方向彼此相对运动,抹浆作业端121抹浆于砖块的上表面从而形成第二抹浆面;
S64”、如图31所示,第三位置P3的砖块呈静止状态,通过第一枢接结构使得料斗12a旋转至侧面抹浆的姿态,第一升降机构127驱动料斗12a下降至抹浆作业端121可以覆盖砖块下游侧面52的下边缘,然后通过第一升降驱动机构驱动料斗12a上升,使得抹浆作业端121自下而上抹浆于砖块的上游侧面51从而形成第一抹浆面;
S65”、在第一抹浆面完成后,通过所在运动机构112重启定位机构111,自第三位置P3到第二位置P2无停顿节拍。通过运动载台11向右驱动定位机构111, 砖块向右移动至第二位置P2沿着左右方向的坐标Y2,通过前后驱动件向后驱动基座110,使得砖块自第一竖直面Y1移动至第二竖直面,从而使得砖块的中心移动至第二位置P2沿着前后方向的坐标X2。
通过S61以及S62”~S65”步骤,完成了砌砖模式向左砌砖时的抹浆作业。
S7、在运动载台11载运砖块停止于第二位置P2后,使得翻转机构13自运动载台11上拾取砖块后,翻转抹浆面和非抹浆面的空间朝向。
当砌砖模式为向右砌砖时,到达第二位置P2的砖块的第一抹浆面朝右,第一非抹浆面朝左,第二抹浆面朝上,第二非抹浆面朝下;通过第二升降机构132驱动翻转机械手13b向下拾取砖块,然后通过第二枢接机构12c将砖块翻转180°,使得第一抹浆面朝左,第一非抹浆面朝右,第二抹浆面朝下,第二非抹浆面朝上。
当砌砖模式为向左砌砖时,到达第二位置P2的砖块的第一抹浆面朝左,第一非抹浆面朝左,第二抹浆面朝上,第二非抹浆面朝下;通过第二升降机构132驱动翻转机械手13b向下拾取砖块,然后通过第二枢接机构12c将砖块翻转180°,使得第一抹浆面朝右,第一非抹浆面朝左,第二抹浆面朝下,第二非抹浆面朝上。
S8、使得机械爪32朝向非抹浆面抓取砖块,其后搬运砖块至砌筑位置,位于砌筑位置的抹浆面粘粘至已砌筑的墙体。
当砌砖模式为向右砌砖时,机械臂31向右后方向摆动以使得机械爪32位于拾取位置且机械爪32的拾取空间朝向第二非抹浆面以拾取砖块,然后机械臂31向左前方摆动以使动机械爪32将砖块放置于砌筑位置,砌筑位置的第一抹浆面朝右粘粘待砌墙体W的竖直放置面,第二抹浆面向下粘粘至待砌墙体W的水平放置面。
当砌砖模式为向左砌砖时,机械臂31向右后方向摆动以使得机械爪32位于拾取位置且机械爪32的拾取空间朝向第二非抹浆面以拾取砖块,然后机械臂31向左前方摆动以使动机械爪32将砖块放置于砌筑位置,砌筑位置的第一抹浆面朝左粘粘待砌墙体W的竖直放置面,第二抹浆面向下粘粘至待砌墙体W的水平放置面。
通过S1~S8的步骤,砌砖***100完成在左侧进行上砖的砌砖作业。通过步骤S3~S8的,使得砌砖***100可以使得定位机构111在传输砖块的过程中就可以完成砖块的抹浆,可以加快供砖节拍,并且可以根据砌砖方式的不同,控制抹浆面的不同朝向从而使得砌砖***100可以覆盖向左砌砖和向右砌砖。将上砖、抹浆、翻转砖块以及砌筑砖块的作业动作集成在砌砖***100上,实现***的小型化,并且可以允许供砖总成1以及砌砖机构3可以同时工作,加快的作业节拍。通过S1步骤可以实现***性的自动化砌砖,通过S2步骤,可以通过提高砌砖***100整体的水平度从而有利于砌砖精准度。
在步骤S65和S66中,砖块自第三位置P3重新运动后,朝向第二位置P2的过程中,完成了水平抹浆,为了加快供砖节拍,砖块自第三位置P3向右移动至水平抹浆完成时,砖块的X向坐标未到达第二位置P2的左右方向上的坐标X2;在基座110向前移动砖块至第二坐标O2(X2,Y2)的Y向坐标Y2的过程中,运动载台11驱动砖块向右移动第二坐标O2(X2,Y2)的X向坐标X2。上述的控制策略将运动机构112自第三位置P3移动至第二位置P2的过程分成两个连续的阶段,第一个阶段是仅运动机构112向右驱动砖块,第二个阶段是将运动机构112向右驱动砖块和基座110向前驱动砖块同时发生在一个时间段,从而减小了仅运动机构112向右驱动的时间,从而加快的供砖节拍。
在步骤S63”和S64”,如图23和图26所示,本实施例的砖块在完成水平抹浆后停止于第三位置P3,第三位置P3的砖块的Y向上的坐标未到达第二坐标O2(X2,Y2)的Y向坐标Y2,在基座110向前移动砖块至第二坐标O2(X2,Y2)的Y向坐标Y2的过程中,运动载台11驱动砖块向右移动第二坐标O2(X2,Y2)的X向坐标X2,将定位机构111向右移动的部分时间与基座110向前移动的时间重叠,从而减少了水平抹浆的时间,进而增加了供砖节拍。
在上述步骤S64和步骤S64”中,由于抹浆作业端121抹浆于不同朝向的侧面,通过自转机构12e驱使刮板1212朝向对应的侧面以完成不同朝向的侧面抹浆。
自后向前观察,当第一位置P1位于右侧时,其砌砖工作方式与左侧进行上砖的砌砖方法相似,而且在不同砌砖模式下,传递至第二位置P2时的抹浆后的砖块的朝向相同。只是由于第一位置P1的方向不同,使得砖块的下游侧面52是左侧面,砖块的上游侧面51是右侧面。抹浆机构12抹浆于砖块的下游侧面52对应的砌砖模式为向左砌砖时,当抹浆机构12抹浆于上游侧面51对应的砌砖模式向右砌砖。
在本实施例中,自后向前观察翻转机构13位于支撑机构10的右侧位置,故当第一位置P1位于左侧时的砖块的运输路径小于第一位置P1位于右侧时的运输路径,可选的,将第一位置P1设置在左侧。
第二实施例
请参阅图32、如33和图34,其为本申请的第二实施例,第二实施例的移动底盘2、砌砖机构3以及立柜40的结构与第一实施例的相同,第二实施例的供砖总成1与第一实施例的供砖总成1不同在于:
第二实施例的支撑机构10与第一实施例的支撑机构10的不同在于,第一导向件101安装于翻转机构13的后方,沿着前后方向延伸以与翻转机构13沿着前后方向活动适配,从而使得翻转机构13可以向前移动远离运动载台11,向后移动靠近运动载台11;第二实施例的支撑机构10没有设置第二导向件102。
第二实施例的运动载台11与第一实施例的运动载台11的不同在于,基座110没有沿着前后方向滑动适配于第二导向件102的滑动件以及前后驱动件,基座110固定安装于支撑机构10上,运动载台11的第一位置P1和第二位置P2位于第二 竖直面上。
第二实施例的抹浆机构12与第一实施例的抹浆机构12不同在于,第一安装架12b下端没有水平架124,其第一竖直架125的固定下端125a固定安装于支撑机构10上,安装位置位于运动载台11的后方。
请参阅图32、如33和图34,第二实施例的翻转机构13与第一实施例的翻转机构13不同在于:第二安装架13a包括一水平架124以及自水平架124竖直延伸的第二竖直架131,水平架124向后水平延伸的部分设有滑动适配部1243且与第一导向件101沿着前后方向滑动连接,第二竖直架131以及设于第二竖直架131的第二升降机构132、第二枢接机构12c、以及翻转机械手13b与第一实施例的相同,在此不在赘述。翻转机械手13b拾取砖块后,沿着第一导向件101向前移动至前侧空间内,前侧空间由立柱30向左偏移而让位出空间,从而在立柜40前右侧形成的一个空间。前侧空间位于立柱30的右侧。
请参阅图32、如33和图34,当本实施例的砌砖***100处于收纳状态时,抹浆作业端121、运动载台11和翻转机械手13b位于第二竖直面内,自上而下观察,抹浆机构12、运动载台11和翻转机构13位于移动底盘2的构形尺寸内。与第一实施例不同的是,收纳状态下的翻转机构13可以向前超出支撑机构10的构形凸伸于支撑机构10的前侧空间内,使得本实施例的翻转机构13的安装空间相较较大,且同时也是实现了砌砖***100的整体小型化。
可选的,第二实施例的砌砖***100的砌砖方法,其步骤如下:
S1、控制模块4内预存有作业空间S的作业地图,待砌墙体W的空间位置和空间尺寸,以及每一待砌墙体W的每一砖块对应的空间坐标,以及对应待砌墙体W的多个砌筑站点的空间坐标。
作业地图、墙体的空间位置和空间尺寸、每一砖块对应的空间坐标以及多个砌筑站点的空间坐标均由BIM***生成。
S2、将移动底盘2移动至对应的砌筑站点,将支撑腿23下降至抵接地面,使得移动底盘2处于水平状态。
在调节移动底盘2的水平状态之前,为了获知移动底盘2相对于水平面的倾斜度,在移动底盘2上安装有倾角传感器,在移动底盘2移动至对应的砌筑站点后,倾角传感器获知移动底盘2相对于地面上的倾斜度,根据该倾斜度,控制模块4控制每一调节机构调节对应的支撑腿23的高度,从而使得移动底盘2可以形成水平状态,有利于砌砖的精准度,从而保证了砌砖质量。
S3、通过运动机构112驱动定位机构111,使得定位机构111沿着第二竖直面向左或者向右移动至第一位置P1,将砖块放置于定位机构111上。
S4、接收砖块后,使得定位机构111自第一位置P1朝向第二位置P2移动。
通过以下步骤来实现S4步骤:
S41、定位机构111的两个夹板1111向内同步夹紧,将砖块的第三坐标O3的Y向坐标定位于第二竖直面上。
S42、定位机构111将砖块定位夹紧后,通过位置检测装置14检测第一位置P1的第三坐标O3的Xb相对于第一位置P1的第一坐标O1的X1的偏移值d。
S43、通过运动机构112驱动定位机构111沿着第二竖直面自第一位置P1移动至第二位置P2,根据偏移值d,控制模块4通过控制运动机构112沿着X向移动相应的距离,使得砖块每一次到达第二位置P2时的X向坐标均为X2。
S5、在砖块载运砖块自第一位置P1移动至第二位置P2的过程中,抹浆机构12抹浆于砖块的表面。
自后向前的视角观察,第一位置P1位于左侧,砖块的抹浆步骤包括如下:
S51、控制模块4判断砌砖模式,砌砖模式包括向左砌砖和向右砌砖;
当砌砖模式是向右砌砖时,控制砖块的被抹浆的表面为砖块在输送方向上的下游侧面52(即右侧面)和砖块的上表面:
当砌砖模式为向左砌砖时,控制砖块的被抹浆的表面为砖块在输送方向上的上游侧面51(即左侧面)和砖块的上表面:
沿着砖块的左右方向,将抹浆的侧面以及未被抹浆的侧面分别定义为第一抹浆面和第一非抹浆面;
沿着砖块的上下方向,将抹浆的水平表面以及未抹浆的水平表面分别定义为第二抹浆面和第二非非抹浆面。
S52、当砌砖模式为向右砌砖时,通过横向驱动机构126将第一升降机构127及其上连接的抹浆作业端121驱动至横向驱动机构126的中间位置,通过第一升降驱动机构驱动料斗12a下降至对应的高度,使得抹浆作业端121的起始位置可以覆盖砖块下游侧面52的下边缘,通过第一枢接机构12c使得料斗12a摆动至侧面抹浆姿态,侧面抹浆姿态的料斗12a自上而下向左倾斜且刮板1212向左朝向砖块下游侧面52,料斗12a与砖块的下游侧面52形成一夹角,夹角的范围在15°~25°之间。
S53、通过运动机构112驱动定位机构111,砖块沿着第二竖直面自第一位置P1向右移动至第三位置P3,砖块在第三位置P3中处于静止状态;
S54、通过第一升降驱动机构驱动料斗12a上升,使得抹浆作业端121自下而上抹浆于砖块的下游侧面52从而形成第一抹浆面;
当抹浆作业端121完成侧面抹浆后,第一升降机构127继续驱动料斗12a上升至抹浆作业端121间隔砖块水平面一定距离,该距离可以使得第一枢接机构12c驱动料斗12a向右摆动至水平抹浆姿态的过程中,抹浆作业端121不会碰撞到砖块;
当料斗12a向右摆动至水平抹浆姿态的过程中,运动机构112重新启动定位 机构111,砖块沿着第二竖直面向右移动。
S55、在运动机构112重启定位机构111,砖块沿着第二竖直面向右移动的过程中,横向驱动机构126驱动料斗12a向左移动,抹浆作业端121以水平抹浆姿态自右向左抹浆于砖块的上表面形成第二抹浆面;
S56、运动机构112重新启动定位机构111后,自第三位置P3到第二位置P2无停顿节拍。通过运动载台11向右驱动定位机构111,砖块的中心向右移动至第二位置P2沿着左右方向的坐标Y2。
通过S51~S56的步骤,完成了砌砖模式向右砌砖时的抹浆作业。
S52”、当砌砖模式为向左砌砖时,通过横向驱动机构126将第一升降机构127及其上连接的抹浆作业端121驱动至横向驱动机构126的中间位置,通过第一升降驱动机构驱动料斗12a下降至对应的高度,使得抹浆作业端121的高度与砖块上表面的高度齐平,通过第一枢接机构12c使得料斗12a摆动至水平抹浆姿态,水平抹浆姿态的料斗12a自上而下向右倾斜且刮板1212向左朝向设置,料斗12a与前后延伸是的竖直面形成一夹角,夹角的范围在15°~25°之间。
S53”、通过运动机构112驱动定位机构111,砖块沿着第二竖直面自第一位置P1向右移动至一第三位置P3,第三位置P3的砖块的下游侧面52向右越过抹浆作业端121,在第一位置P1移动至第三位置P3的过程中,横向驱动机构126驱动抹浆作业端121向左移动,自右向左抹浆于砖块的上表面从而形成第二抹浆面;
S54”、第三位置P3的砖块呈静止状态,通过第一枢接结构和使得料斗12a旋转至侧面抹浆的姿态,自转机构12e使得料斗12a自转使得刮板1212朝向右设置,朝向砖块的下游侧面52,第一升降机构127驱动料斗12a下降至抹浆作业端121可以覆盖砖块下游侧面52的下边缘,然后通过第一升降驱动机构驱动料斗12a上升,使得抹浆作业端121自下而上抹浆于砖块的下游侧面52从而形成第一抹浆面;
S55”、在第一抹浆面完成后,通过所在运动机构112重启定位机构111,自第三位置P3到第二位置P2无停顿节拍。通过运动载台11向右驱动定位机构111,砖块的第三坐标O3向右移动至第二坐标O2沿着左右方向的坐标X2。
通过S51以及S52”~S55”步骤,完成了砌砖模式向左砌砖时的抹浆作业。
S6、请参阅图33和图34所示,在运动载台11载运砖块停止于第二位置P2后,使得翻转机构13自运动载台11上拾取砖块后,向前位移至前侧空间内且翻转抹浆面和非抹浆面的空间朝向。
当砌砖模式为向右砌砖时,到达第二位置P2的砖块的第一抹浆面朝右,第一非抹浆面朝左,第二抹浆面朝上,第二非抹浆面朝下;通过第二升降机构132驱动翻转机械手13b向下拾取砖块;驱动翻转机构13向前移动至前侧空间的一第三竖直面,第三竖直面间隔平行于第二竖直面;然后通过第二枢接机构12c将砖块在第二竖直面上翻转180°,使得第一抹浆面朝左,第一非抹浆面朝右,第二 抹浆面朝下,第二非抹浆面朝上。
当砌砖模式为向左砌砖时,到达第二位置P2的砖块的第一抹浆面朝左,第一非抹浆面朝左,第二抹浆面朝上,第二非抹浆面朝下;通过第二升降机构132驱动翻转机械手13b向下拾取砖块,然后通过第二枢接机构12c将砖块翻转180°,使得第一抹浆面朝右,第一非抹浆面朝左,第二抹浆面朝下,第二非抹浆面朝上。
自后向前观察,当第一位置P1位于右侧时,其砌砖工作方式与左侧进行上砖的砌砖方法相似,而且在不同砌砖模式下,传递至第二位置P2时的抹浆后的砖块的朝向相同。只是由于第一位置P1的方向不同,使得砖块的下游侧面52是左侧面,砖块的上游侧面51是右侧面。抹浆机构12抹浆于砖块的下游侧面52对应的砌砖模式为向左砌砖时,当抹浆机构12抹浆于上游侧面51对应的砌砖模式向右砌砖。
第三实施例
请参阅图35~图52,此为本申请的第三实施例的砌砖***100,本实施例的砌砖***100与第一实施例的砌砖***100共同之处在于:移动底盘2,设于移动底盘2后方区域供砖总成1,设于移动底盘2的前方区域砌砖机构3。本实施例的移动底盘2参考第一实施例的移动底盘2。
请参阅图35和图37,本实施例的砌砖机构3包括一立柱30以及设于立柱30上的机械臂31以及连接机械臂31远端312的机械爪32。本实施例的机械臂31为六轴机械臂31,机械臂31的近端311连接立柱30,机械臂31的远端312连接机械爪32,机械臂31自近端311至远端312之间被构造成通过关节313连接的第一连杆3121和第二连杆3122,第一连杆3121与立柱30转动连接,第二连杆3122通过一三轴调整装置314与机械爪32连接,三轴调整装置314具有三个旋转柱315,分别调整X向、Y向以及Z向的旋转角,近端311沿着竖直轴线J1转动连接于立柱30,第一连杆3121沿着水平轴线J2转动连接于近端311,第二连杆3122沿着水平轴线J3转动连接于第一连杆3121末端,三轴调整装置314的第一个旋转柱315沿着水平轴线J4转动连接于第二连杆3122末端,三轴调整装置314的第二个旋转柱315沿着竖直轴线J6转动连接机械爪32,第三个旋转柱315水平轴线J5前后转动连接第一个旋转柱315和第二个旋转柱315。水平轴线J2、J3、J5平行设置于Y向,水平轴线J4平行于X向,竖直轴线J6平行于Z向。
当然,本实施例的砌砖机构3也可以采用第一实施例的砌砖机构3的实施方式,只要能够实现向后自翻转机构13拾取抹浆后的砖块,且向前将抹浆后的砖块搬运至待砌墙体W的砌筑位置即可。
可选的,本实施例的砌砖***100也包括一控制模块4,其与第一实施例的控制模块4相同,均包括立柜40以及设置于立柜40内的控制元件,立柜40的安装位置位于移动底盘2的后方区域,供砖总成1安装于立柜40上,其安装方式与第一实施例的供砖总成1安装于立柜40的安装方式相同。
本实施例的供砖总成1具有一支撑机构10、设于支撑机构10的一抹浆机构12、一翻转机构13和设于于抹浆机构12和翻转机构13之间的运动载台11。运动载台11包括一定位机构111,定位机构111在第一位置P1和第二位置P2之间移动,第一位置P1的定位机构111用以接收砖块,第二位置P2的定位机构111用以递出砖块至翻转机构13。第一位置P1和第二位置P2均位于同一第一竖直面Y1内,定位机构111在水平面上的坐标定义为第一坐标O1,第一坐标O1在第一位置P1的坐标值为(X1,Y1),将待拾取状态下的翻转机械手13b在水平面上的坐标定义为第二坐标O2,每一次待拾取状态下的翻转机械手13b的第二坐标O2的坐标值均为(X2,Y2)。将砖块在水平面上的坐标定义为第三坐标O3。第二位置P2的砖块位于翻转机械手13b的下方,第三坐标O3与第二坐标O2重叠,从而使得翻转机械手13b能够以最短的垂直距离向下拾取砖块。第二坐标O2的X2与第一坐标O1的X1的差值为定位机构111的运输距离,抹浆机构12的抹浆作业端121位于砖块的运输路径上用以抹浆于砖块的表面,从而使得第二位置P2的砖块为抹浆后的砖块。
支撑结构上安装有沿着左右方向延伸的一第三导向件103,第三导向件103形成沿着左右方向延伸的滑槽,滑槽供翻转机构13沿着左右方向上凸出或者缩回支撑机构10的构形边缘。
运动载台11包括一基座110、一运动机构112以及设于运动机构112的定位机构111,运动机构112设置于基座110上且运动机构112的输出端能够沿着左右方向移动、定位机构111设置于运动机构112输出端。
基座110固定于支撑结构上,且基座110与与抹浆机构12的至少部分沿着前后方向重叠设置;第三实施例的运动机构112的构造与第一实施例的构造相同,故请参阅第一实施例的图13和图14,运动机构112包括至少一个板状部1121,在本实施例中,板状部1121的数量为一个。板状部1121与基座110之间具有第一驱动组件112a以及第一滑动组件112b。板状部1121沿着左右方向上的长度均大于基座110的长度,从而使得运动机构112具有较大的伸出行程。在第一驱动组件112a的驱动下,板状部1121在第一滑动组件112b的导引下,能够沿着左右方向正反移动。通过基座110与与抹浆机构12的至少部分沿着前后方向重叠设置以及运动机构112相对于基座110能够左右伸缩,从而使得定位机构111在具有较长伸出路径的同时,还能保持较小的安装空间。
板状部1121的上板面与定位机构111之间设置有第二驱动组件112c以及第二滑动组件112d。在第二驱动组件112c的驱动下,定位机构111在第二滑动组件112d的导引下,能够沿着左右方向正反移动,使得定位机构111的第一位置P1可以在左右方向上的任一侧设置,从而增加了上砖位置的灵活度。
请参阅图36和图39,定位机构111包括一底板1110,底板1110连接于运动机构112的输出端,即第二驱动组件112c的第二螺母座1129。底板1110沿着前后方向延伸,底板1110的上方设置有两个夹板1111,两个夹板1111中的每一均相对 于彼此能够沿着前后方向移动一增加或者减小两个夹板1111之间的夹持空间。两个夹板1111连接于一同步驱动机构,从而使得两个夹板1111同时靠近彼此以定位夹持砖块或者同时远离彼此以释放砖块。同步移动的两个夹板1111能够将砖块沿着Y方向上定位于同一坐标值,从而确保了砖块在Y方向上的位置精度。
请参阅图36和图38,本实施例的抹浆机构12包括第一安装架12b,第一安装架12b包括第一竖直架125以及设置于第一竖直架125上的第一升降机构127,第一升降机构127机构通过一第一枢接机构12c枢接一料斗12a。
第一竖直架125的固定下端125a固定于支撑机构10的后侧,第一竖直架125的固定上端125b安装有第一升降驱动件,第一升降驱动件的输出端与第一升降机构127连接,第一升降机构127的输出端位于背离第一升降驱动件的输出端的一侧,第一升降机构127的输出端与第一枢接机构12c连接,第一枢接机构12c沿着前后延伸的第一转动轴线R1枢接料斗12a,从而使得料斗12a能够升降且能够沿着前后延伸的轴线左右摆动从而形成不同的姿态。
第一升降驱动件驱动方式和第一升降机构127的驱动方式均可以在齿轮驱动,丝杆驱动、皮带驱动以及链式驱动等驱动方式择一实施。
请参阅请参阅图36和图38,第一枢接机构12c包括安装于第一升降机构127输出端的主动轮和从动轮、环绕主动轮和从动轮的传动带。主动轮和从动轮的转动轴线均沿着前后方向延伸。主动轮与第一枢接电机129连接,从动轮与一中间座连接,中间座包括竖直延伸的第一板128a以及自第一板128a垂直延伸的第二板128b,从动轮沿着第一转动轴线R1与第一板128a连接,第二板128b通过固定孔1280与料斗12a连接。通过第一枢接电机129驱动主动轮,主动轮通过传动带驱动从动轮沿着第一枢接轴线转动,通过中间座,从动轮带动料斗12a沿着第一转动轴线R1左右摆动。
请参阅图36和图38,料斗12a上端包括一进料管122,以及连接于进料管122下端的料仓123,料仓123的下端具有抹浆作业端121,抹浆作业端121包括纵长延伸的一出料口1211以及安装于出料口1211的其中一个长边缘的一刮板1212,料仓123自上而下的的宽度呈渐缩设置,从而保持了出料口1211的出浆压力,当出料口1211施浆于砖块的表面时,刮板1212刮匀浆料使得砖块的表面形成均匀的浆层53。
可选的,抹浆机构12包括一自转机构12e,本实施例的自转机构12e的构造请参阅第一实施例的自转机构12e的构造,自转机构12e设于第二板128b,自转机构12e的输出端驱动连接料斗12a,料斗12a沿着固定孔1280的轴线能够实现180°自转,使得刮板1212可以面朝左侧或者右侧,从而可以灵活地调整抹浆方向。
请参阅如35、图36和图40,翻转机构13包括一第二安装架13a和一翻转机械手13b,第二安装架13a包括滑动适配于第三导向件103的一第二竖直架131、设于第二竖直架131的第二升降机构132,翻转机械手13b通过一第二枢接机构12c连接于第二升降机构132的输出端,第二枢接机构12c的第二转动轴线R2与第一 枢接机构12c的第一转动轴线R1平行。借此,第二竖直架131带动翻转机械手13b沿着第三导向件103相对于支撑结构沿着左右方向可伸缩设置,通过第二升降机构132的升降以及第二枢接机构12c的转动,翻转机械手13b能够进行升降且沿着第二转动轴线R2进行180°上下翻转。
第二升降机构132的驱动方式为丝杠驱动或者皮带传动或者齿轮传动,只要能够实现翻转机构13的升降,均属于本申请的第二升降机构132。
请参阅如35、图36和图40,第二枢接机构12c包括连接于第二升降机构132的一转动部133以及驱动连接转动部133的一第二旋转电机,转动部133前后转动连接第二升降机构132和翻转机械手13b,转动部133可以是转动轴承或者是卫星齿轮机构或者皮带转动机构,通过第二旋转电机旋转驱动转动部133,翻转机械手13b可以相对于第一座进行上下翻转。
翻转机械手13b包括一连接座135,连接座135连接转动部133,自连接座135延伸前后方向延伸的一手部主体136,手部主体136连接有沿着前后方向间隔设置两个夹持部137,两个夹持部137中的至少一个可以沿着前后方向可以移动设置。在本实施例中,两个夹持部137均活动设置,相对于一个竖直延伸的中心线彼此相互远离以释放砖块或者彼此相互靠近以拾取定位砖块。
翻转机械手13b用于自第二位置P2拾取抹浆后的砖块然后沿着前后轴线翻转180°,使得砖块的抹浆面朝下设置,砖块的非抹浆面朝下设置。为了翻转机械手13b具有相对较短的拾取行程,第二位置P2的砖块设于翻转机械手13b的竖直下方,第二位置P2的砖块在水平面上的坐标(X2,Y3)与翻转机械手13b在水平面上的坐标重叠。
供砖总成1具有一个收纳状态和一个工作状态。
当供砖总成1处于收纳状态时,第二竖直架131沿着左右方向内缩于支撑机构10的构形边缘内,第一竖直架125也固定在支撑机构10的构形边缘内,第一升降机构127和料斗12a安装在第一竖直架125的内侧,从而有利于砌砖***100的尺寸小型化,有利于通过室内场景的门框或者是狭窄的通道。
当供砖总成1位于收纳状态时,定位机构111和翻转机械手13b位于同一第三竖直平面Y3内,也就是说,定位机构111和翻转机械手13b在前后方向Y上的坐标均为Y3。
请参阅如35、图36和图41,当供砖总成1处于工作状态时,驱动第二竖直架131沿着第三导引部凸出支撑机构10的构形边缘,此时翻转机械手13b和定位机构111仍位于同一竖直平面Y3上,第二竖直架131和第一竖直架125之间的间隔距离增大,该间隔距离可以允许翻转机械手13b无碰撞地翻转砖块。当需要自工作状态切换至收纳状态时,只需要驱动第二竖直架131沿着第三导引部向内收缩于支撑机构10的构形边缘内即可。由于第二竖直架131只在切换状态时位移,为了节省成本,可以将第二竖直架131设置为手动驱动,当然,为了提高自动化的程度,也可以将第二竖直架131设置为智能驱动,只要能够实现第二竖直架131沿 着第三导引部位移,均属于本申请的构思。
请参阅图41~图52,在工作状态下,运动机构112沿着第三竖直面Y3向左或者向右驱动定位机构111到达第一位置P1,此时第一位置P1的定位机构111在水平面上的第一坐标O1为(X1,Y3),用以接收砖块。翻转机械手13b在水平面上的第二坐标O2为(X2,Y3),抹浆作业端121也位于竖直面Y3上,使得砖块自第一位置P1运输至第二位置P2时,抹浆作业端121可以在运输路径上抹浆于砖块的表面。当定位机构111到达第二位置P2时,砖块在水平面上的坐标与翻转机械手13b在水平面上的坐标(X2,Y3)重叠,便于翻转机械手13b沿着最小的垂直路径自上而下拾取砖块。将砖块运输到第二位置P2时的坐标设置位固定坐标,使得翻转机械手13b可以每一次均在相同的位置拾取砖块,无需在拾取砖块前还要检测砖块的位置,将第二位置P2的砖块的坐标重叠于翻转机械手13b的第二坐标O2,使得翻转机械手13b可以沿着最小的垂直路径拾取砖块,从而加快的作业节拍。
将位于第一位置P1的定位机构111的第一坐标O1为固定设置,通过将每一次上砖都在设置在相同的位置,有利于供砖总成1的上砖的作业节拍以及有利于控制策略的简单化。
请参阅如41、图45和图46,为了增加砖块到达第二位置P2时的位置精度,供砖总成1设置有位置检测装置14,位置检测装置14用于检测第一位置P1时的砖块的坐标相较于第一坐标O1的偏移值d。理想状态下,将砖块放置于第一位置P1的定位机构111上,砖块的坐标与定位机构111的坐标是重叠的,但这种理想状态下的上砖,对砖块放置的精准度要求较高,那么在校准的过程中对作业节拍造成一定的影响。为了不影响作业节拍,将砖块放置于定位机构111时,进行的是粗定位校准。
粗定位校准如下:定位机构111在第一位置P1接收砖块时,定位机构111的夹板1111呈张开的状态以保持有足够的空间接收砖块,当砖块放置两个夹板1111之间时,两个夹板1111向内夹持定位砖块。本实施例中的两个夹板1111呈同步移动,使得第一位置P1的砖块的Y坐标保持在竖直面Y3上,从而对砖块Y向上的坐标进行校准。为了获知X方向上第三坐标O3相较于第一坐标O1的偏移值d,位置检测装置14通过检测砖块的侧面得到砖块侧面在X方向上的实际坐标值,与理想状态下的砖块的侧面X方向上的理想坐标值做比较,得到了第一位置P1上的砖块的偏差值,控制模块4根据该偏差值、第一坐标O1的坐标值(X1,Y3)和第二坐标O2的坐标值(X2,Y3),从而得到运动载台11驱动定位机构111自第一位置P1移动至第二位置P2的运输距离,使得定位机构111到达第二位置P2时,第三坐标O3与第二坐标O2重叠。
通过进行粗定位校准,在第一位置P1上砖的时候,将砖块放置于定位机构111上,由定位机构111将砖块在Y向上坐标定位校准在竖直面Y3上,通过测距传感器检测砖块侧面,可以判断砖块在X向上相较于第一坐标O1上的偏移值d, 从而可以在后续运动控制策略中,控制模块4根据偏移值d将定位机构111移动相应的距离,使得第二位置P2的砖块的第三坐标O3与翻转机械手13b的第二坐标O2重叠。由于上砖之前,砖块位于供砖总成1自身的坐标体系外,上砖时,砖块是自外界的坐标体系进入供砖总成1的坐标体系,如果上砖的时候进行精定位校准,那么所需要的就是将砖块的坐标体系匹配上定位机构111的坐标体系,这对控制模块4的控制策略以及上砖的工序都是需要复杂以及相对冗长的过程,不利于快速上砖。本申请的粗定位校准使得在上砖的过程中无需对砖块进行精定位校准,本申请是将砖块放置于定位机构111后,确定砖块在供砖总成1的坐标体系上的位置是多少,砖块的补偿和校准均是在供砖总成1的坐标体系下进行,从而加快的作业节拍。
请参阅图38,此为第三实施例的位置检测装置14的实施方式,所述位置检测装置14包括安载部141以及安装于安载部141的检测传感器145,安装部安装于第一枢接机构12c的第二板128b上,随动于料斗12a,从而可以检测砖块侧面的位置。
可选的,检测传感器145可以是激光测距传感器、相机检测传感器145以及接近开关检测传感器145,示例性地,本实施例的位置检测装置14为激光测距传感器,通过检测端朝向第一位置P1的砖块的侧面发射激光,砖块的侧面反射激光,检测端根据接收的反射激光,从而可以知道检测端到砖块侧面的实际距离D2,将实际距离D2与理想状态下的砖块的理想距离D1做比较,可以知道砖块的偏移距离d。
请参阅图41~图52,当定位机构111在第一位置P1接收砖块后,自第一位置P1朝向第二位置P2移动的过程中,抹浆机构12对砖块进行抹浆,抹浆机构12对砖块进行侧面抹浆以及水平抹浆,可选的,侧面抹浆和水平抹浆的顺序可以调换。
如图41~图44所示,抹浆机构12的一种作业方式为:先对砖块的下游侧面52进行抹浆,然后进行砖块的上表面的水平抹浆,其工作方式如下。
定位机构111载运砖块自第一位置P1沿着第二竖直面朝向抹浆作业端121移动至一第三位置P3,第三位置P3的砖块在水平面上形成有第三坐标O3(X3,Y3),抹浆作业端121自下而上抹浆于第三位置P3的砖块的侧面。抹浆作业端121的侧面抹浆方式为:定位机构111在运动机构112的制动下,在第三位置P3停止,抹浆作业端121以侧面抹浆的姿态在第一升降机构127的驱动下,自下而上相对于静止的砖块移动,出料口1211将浆料施浆于砖块的侧面,刮板1212将浆料在砖块的侧面上自下而上刮平。
在抹浆作业端121完成砖块的侧面抹浆后,运动机构112驱动砖块沿着竖直面Y3自第三位置P3远离抹浆作业端121移动,抹浆作业端121以水平面抹浆的姿态沿着左右方向水平抹浆于砖块的上表面。例如,抹浆作业端121以水平面抹浆的姿态保持静止,砖块相对于抹浆作业端121运动,从而使得抹浆作业端121抹 浆于砖块的上表面。
如图47~图50所示,本实施例的抹浆机构12的另一种作业方式为:先对砖块的上表面的水平抹浆,然后进行砖块的上游侧面51进行抹浆。通过自转机构12e驱使料斗12a,抹浆作业端121抹浆于上游侧面51,抑或是抹浆于下游侧面52,都可以使得刮板1212朝向对应的侧面进行刮平。
本实施例的抹浆机构12的运动控制策略为:控制第一升降机构127的运动;控制第二枢接机构12c将抹浆作业端121在水平抹浆位姿和侧面抹浆位姿之间切换;根据砌砖方向可选地控制自转机构12e驱使抹浆作业端121朝向对应的侧面。本实施例的抹浆机构12的运动控制策略相较简单,无需设置复杂的运动机构112就可以实现砖块的侧面抹浆和上表面抹浆。
运动机构112驱动砖块自第三位置P3移动至第二位置P2的过程中无停顿节拍,当抹浆作业端121对砖块上表面抹浆时,砖块同时被运动机构112运输,使得两个工序在同一个时段内进行,加快的砌砖的节拍。
当完成抹浆后的砖块移动至第二位置P2后,第二升降机构132的向下驱动翻转机械手13b,翻转机械手13b的两个夹持部137夹持砖块完成拾取动作,第二升降驱动机构向上驱动翻转机械手13b使得砖块具有上下翻转的空间,翻转机械手13b在第二枢接机构12c的驱动下翻转180°,从而使得砖块的水平抹浆面朝下,砖块的非抹浆面朝上,由于侧面抹浆可选地抹浆于砖块的上游侧面51或者下游侧面52,从而使得砖块在翻转180°后,可以朝向左侧,也可以朝向右侧。
当翻转机械手13b将砖块上下翻转180°后,砌砖机构3向下拾取砖块的非抹浆面,且将砖块的水平抹浆面向下粘粘至墙体的砌筑位置的水平放置面,而根据砖块的侧面沿着左右方向上的不同朝向,砌砖机构3可以实现向左砌砖或者向右砌砖,将砖块的侧抹浆面粘粘至待砌位置的竖直放置面,上述水平放置面和竖直面放置面由已砌筑的墙体的砖面形成。
可选的,本实施例的砌砖***100具有一砌砖方法,其步骤如下:
S1、控制模块4内预存有作业空间S的作业地图,待砌墙体W的空间位置和空间尺寸,以及每一待砌墙体W的每一砖块5对应的空间坐标,以及对应待砌墙体W的多个砌筑站点的空间坐标。
作业地图、墙体的空间位置和空间尺寸、每一砖块5对应的空间坐标以及多个砌筑站点的空间坐标均由BIM***生成。
S2、将移动底盘2移动至对应的砌筑站点,将支撑腿23下降至抵接地面,使得移动底盘2处于水平状态。
在调节移动底盘2的水平状态之前,为了获知移动底盘2相对于水平面的倾斜度,在移动底盘2上安装有倾角传感器,在移动底盘2移动至对应的砌筑站点后,倾角传感器获知移动底盘2相对于地面上的倾斜度,根据该倾斜度,控制模块4控制每一调节机构调节对应的支撑腿23的高度,从而使得移动底盘2可以形 成水平状态,有利于砌砖的精准度,从而保证了砌砖质量。
S3、如图41、47、图51和图52所示,驱动翻转机构13沿着左右方向X远离抹浆机构12,此时翻转机械手13b位于移动底盘2的构形尺寸之外,移动后翻转机械手13b仍位于竖直面Y3上,此时供砖总成1自收纳状态转变成工作状态,工作状态下的定位机构111能够在第一位置P1和第二位置P2之间移动。
S4、使得定位机构111移动至第一位置P1,将砖块5放置于定位机构111上。
控制模块4根据预先设置的控制策略,通过运动机构112控制定位机构111向左移动或者向右移动至第一坐标O1(X1,Y3)上。
外界将未抹浆的砖块5放置于第一位置P1的定位机构111。放置的方法可以是操作人员将砖块5放置于定位机构111,也可以是另一个上砖设备将砖块5自动放置于定位机构111上。
S5、接收砖块5后,使得定位机构111自第一位置P1朝向第二位置P2移动。
通过以下步骤来实现S5步骤:
S51、定位机构111的两个夹板1111向内夹紧,将第一位置P1的砖块5的第三坐标O3的Y向坐标定位在第三竖直面Y3上。
S52、定位机构111将砖块5定位夹紧后,通过位置检测装置14检测第一位置P1的第三坐标O3的Xb相对于第一位置P1的第一坐标O1的X1的偏移值d。
S52、通过运动机构112驱动定位机构111沿着左右方向自第一位置P1沿着第三竖直面Y3移动至第二位置P2;根据偏移值d,控制模块4通过控制运动机构112沿着X向移动相应的距离,使得砖块5每一次到达第二位置P2时的X向坐标均为X2,从而使得砖块5在第二位置P2时的坐标均为(X2,Y3)。
为了保证砖块5在第二位置P2时的位置精度,使用检测机构检测第一位置P1的砖块5相对于第一坐标O1的偏移值d,控制模块4根据该偏移值d控制运动机构112驱使定位机构111自第一位置P1移动至第二位置P2的运输距离。
S6、在定位机构111载运砖块5自第一位置P1移动至第二位置P2的过程中,抹浆机构12抹浆于砖块5的表面。
自后向前的视角观察,第一位置P1位于左侧时,砖块5的抹浆步骤包括如下:
S61、控制模块4判断砌砖模式,砌砖模式包括向左砌砖和向右砌砖;
如图41~图44所示,当砌砖模式是向右砌砖时,控制砖块5的被抹浆的表面为砖块5在输送方向上的下游侧面52(即右侧面)和砖块5的上表面:
如图47~图50所示,当砌砖模式为向左砌砖时,控制砖块5的被抹浆的表面为砖块5在输送方向上的上游侧面51(即左侧面)和砖块5的上表面:
沿着砖块5的左右方向,将抹浆的侧面以及未被抹浆的侧面分别定义为第一抹浆面和第一非抹浆面;
沿着砖块5的上下方向,将抹浆的水平表面以及未抹浆的水平表面分别定义为第二抹浆面和第二非非抹浆面。
S62、如图41~图44所示,当砌砖模式为向右砌砖时,通过第一升降驱动机构驱动料斗12a移动至对应的高度,使得抹浆作业端121的起始位置可以覆盖砖块5下游侧面52的下边缘,通过第一枢接机构12c使得料斗12a摆动至侧面抹浆姿态,侧面抹浆姿态的料斗12a自上而下向左倾斜且刮板1212向左朝向砖块5下游侧面52,料斗12a与砖块5的下游侧面52形成一夹角,夹角的范围在15°~25°之间。
S63、控制运动载台11将砖块5运输第三位置P3,第三位置P3的砖块5的下游侧面52与抹浆作业端121对齐,砖块5在第三位置P3中处于静止状态。
S64、通过第一升降驱动机构驱动抹浆作业端121上升,使得抹浆作业端121自下而上抹浆于砖块5的下游侧面52从而形成第一抹浆面。
当抹浆作业端121完成侧面抹浆后,第一升降机构127继续驱动料斗12a上升至抹浆作业端121间隔砖块5水平面一定距离,该距离可以使得第一枢接机构12c驱动料斗12a向右摆动至水平抹浆姿态的过程中,抹浆作业端121不会碰撞到砖块5。
当料斗12a向右摆动至水平抹浆姿态的过程中,运动载台11重新驱动砖块5,砖块5沿着竖直面Y3继续向右移动。
S65、在运动载台11重新驱动砖块5,砖块5沿着竖直面Y3继续向右移动的过程中,抹浆作业端121保持水平抹浆姿态,砖块5相对于抹浆作业端121自左向右移动,抹浆作业端121自右向左抹浆于砖块5的上表面形成第二抹浆面。
通过S61~S65的步骤,完成了砌砖模式向右砌砖时的抹浆作业。
S62”、如图47~图50所示,当砌砖模式为向左砌砖时,通过第一升降驱动机构驱动料斗12a移动至对应的高度,使得抹浆作业端121的高度与砖块5上表面的高度齐平,通过第一枢接机构12c使得料斗12a摆动至水平抹浆姿态,水平抹浆姿态的料斗12a自上而下向右倾斜且刮板1212向左朝向设置,料斗12a与前后延伸是的竖直面形成一夹角,夹角的范围在15°~25°之间。
S63”、控制运动载台11将砖块5运输第三位置P3,砖块5沿着竖直面Y3向右移动至一第三位置P3,在此过程中,抹浆作业端121保持水平抹浆的姿态,砖块5自左向右越过抹浆作业端121以将砖块5上表面抹浆形成第二抹浆面。
S64”、第三位置P3的砖块5呈静止状态,通过第一枢接结构使得料斗12a旋转至侧面抹浆的姿态,第一升降机构127驱动料斗12a下降至抹浆作业端121可以覆盖砖块5下游侧面52的下边缘,然后通过第一升降驱动机构驱动料斗12a上升,使得抹浆作业端121自下而上抹浆于砖块5的上游侧面51从而形成第一抹浆面;
S65”、在第一抹浆面完成后,通过所在运动机构112重启定位机构111,自第三位置P3到第二位置P2无停顿节拍。
S7、在运动载台11载运砖块5停止于第二位置P2后,使得翻转机构13自运动载台11上拾取砖块5后,翻转抹浆面和非抹浆面的空间朝向。
当砌砖模式为向右砌砖时,到达第二位置P2的砖块5的第一抹浆面朝右,第一非抹浆面朝左,第二抹浆面朝上,第二非抹浆面朝下;通过第二升降机构132驱动翻转机械手13b向下拾取砖块5,然后通过第二枢接机构12c将砖块5翻转180°,使得第一抹浆面朝左,第一非抹浆面朝右,第二抹浆面朝下,第二非抹浆面朝上。
当砌砖模式为向左砌砖时,到达第二位置P2的砖块5的第一抹浆面朝左,第一非抹浆面朝左,第二抹浆面朝上,第二非抹浆面朝下;通过第二升降机构132驱动翻转机械手13b向下拾取砖块5,然后通过第二枢接机构12c将砖块5翻转180°,使得第一抹浆面朝右,第一非抹浆面朝左,第二抹浆面朝下,第二非抹浆面朝上。
S8、使得机械爪32朝向非抹浆面抓取砖块5,其后搬运砖块5至砌筑位置,位于砌筑位置的抹浆面粘粘至已砌筑的墙体。
当砌砖模式为向右砌砖时,机械臂31向右后方向摆动以使得机械爪32位于拾取位置且机械爪32的拾取空间朝向第二非抹浆面以拾取砖块5,然后机械臂31向左前方摆动以使动机械爪32将砖块5放置于砌筑位置,砌筑位置的第一抹浆面朝右粘粘待砌墙体W的竖直放置面,第二抹浆面向下粘粘至待砌墙体W的水平放置面。
当砌砖模式为向左砌砖时,机械臂31向右后方向摆动以使得机械爪32位于拾取位置且机械爪32的拾取空间朝向第二非抹浆面以拾取砖块5,然后机械臂31向左前方摆动以使动机械爪32将砖块5放置于砌筑位置,砌筑位置的第一抹浆面朝左粘粘待砌墙体W的竖直放置面,第二抹浆面向下粘粘至待砌墙体W的水平放置面。
通过S1~S8的步骤,砌砖***100完成在左侧进行上砖的砌砖作业。本实施例的砌砖***100的运动控制策略相对较简单,且砖块5的运输路径相对较短,从而有利于加快作业节拍。
自后向前观察,当第一位置P1位于右侧时,其砌砖工作方式与左侧进行上砖的砌砖方法相似,而且在不同砌砖模式下,传递至第二位置P2时的抹浆后的砖块5的朝向相同。只是由于第一位置P1的方向不同,使得砖块5的下游侧面52是左侧面,砖块5的上游侧面51是右侧面。抹浆机构12抹浆于砖块5的下游侧面52对应的砌砖模式为向左砌砖时,当抹浆机构12抹浆于上游侧面51对应的砌砖模式向右砌砖。
在本实施例中,自后向前观察翻转机构13位于支撑机构10的右侧位置,故当第一位置P1位于左侧时的砖块5的运输路径小于第一位置P1位于右侧时的运输路径,可选的,将第一位置P1设置在左侧。

Claims (43)

  1. 一种供砖总成,应用于一种砌砖***,包括:
    一支撑机构;
    一运动载台,设置于所述支撑机构上方的空间,所述运动载台具有一定位机构,所述定位机构被设置为沿着第一位置和第二位置之间往复移动,在所述第一位置接受一砖块,并在所述第二位置递出所述砖块;
    一抹浆机构,设置于所述支撑机构上方的空间,所述抹浆机构具有一抹浆作业端,所述抹浆作业端被设置为施浆于所述砖块的表面,以使抹浆后的所述砖块形成有抹浆面和非抹浆面,所述抹浆作业端位于所述砖块自所述第一位置移动至所述第二位置的移动路径上;
    一翻转机构,设置于所述支撑机构上方的空间,所述翻转机构具有一翻转机械手,用以自所述第二位置拾取所述砖块且翻转所述抹浆面和所述非抹浆面的空间朝向。
  2. 根据权利要求1所述的供砖总成,其中,所述抹浆机构包括安装于所述支撑机构的一第一安装架,以及借由一第一枢接机构安装于所述第一安装架的一料斗,所述料斗的下端形成有所述抹浆作业端,所述第一枢接机构的第一转动轴线前后延伸;
    所述翻转机构包括安装于所述支撑机构的一第二安装架,所述第二安装架与所述第一安装架间隔设置,所述翻转机械手借由一第二枢接机构安装于所述第二安装架,所述第二枢接机构的第二转动轴线前后延伸;
    所述运动载台、所述料斗和所述翻转机械手均位于所述第一安装架和所述第二安装架之间的空间内。
  3. 根据权利要求1所述的供砖总成,其中,所述第一位置的所述定位机构的坐标固定设置,所述第二位置的所述砖块的坐标固定设置。
  4. 根据权利要求3所述的供砖总成,其中,所述供砖总成包括一位置检测装置,所述位置检测装置被设置为沿着第一方向检测所述第一位置的所述砖块的坐标相较所述第一位置的所述定位机构的坐标的偏差,所述第一方向为所述砖块移动的方向。
  5. 根据权利要求4所述的供砖总成,其中,所述定位机构包括被设置为同步活动的两个夹板,两个所述夹板分别沿着第二方向同步夹持所述砖块且定位所述砖块,使得所述砖块沿着所述第二方向的坐标与所述定位机构沿着所述第二方向的坐标重叠,所述第二方向垂直于所述第一方向设置。
  6. 根据权利要求4所述的供砖总成,其中,所述位置检测装置安装于所述抹浆机构。
  7. 根据权利要求3所述的供砖总成,其中,所述翻转机械手在水平面上的坐标与所述第二位置的所述砖块在水平面上的坐标重叠。
  8. 根据权利要求1所述的供砖总成,其中,所述抹浆机构包括:
    一第一安装架,所述第一安装架的下端安装于所述支撑机构,所述第一安装架的上端包括一横向驱动机构;
    一料斗,所述料斗的下端形成所述抹浆作业端,所述料斗连接于所述横向驱动机构的输出端;
    所述砖块自所述第一位置朝向所述第二位置移动的过程中,所述横向驱动机构横移驱动所述抹浆作业端以抹浆于所述砖块的上表面,横移驱动方向与所述砖块的移动方向相反。
  9. 根据权利要求8所述的供砖总成,其中,所述第一安装架还包括一第一升降机构,所述第一升降机构设置于所述横向驱动机构的输出端,所述料斗设置于所述第一升降机构的输出端;
    自所述第一位置朝向所述第二位置移动的过程中,所述定位机构载运所述砖块暂停于一第三位置;
    当所述砖块处于所述第三位置时,借由所述第一升降机构,所述抹浆作业端自下而上抹浆于处于静止状态的所述砖块的侧面。
  10. 根据权利要求1所述的供砖总成,其中,所述抹浆机构和所述翻转机构中的任一者可远离或者靠近另一者以形成一工作状态和一收纳状态,处于所述工作状态下的所述抹浆机构和所述翻转机构中任一者的部分移动超出所述支撑机构的构形边缘,处于所述收纳状态下的所述翻转机构和所述抹浆机构位于所述支撑机构的构形边缘内。
  11. 根据权利要求10所述的供砖总成,其中,所述翻转机构和所述抹浆机构中的任一者沿着前后方向可远离另一者形成所述工作状态,所述翻转机构和所述抹浆机构中的远离者沿着所述前后方向超出所述支撑机构的构形边缘;
    或者,
    所述翻转机构和所述抹浆机构中的任一者沿着左右方向可远离另一者形成所述工作状态,所述翻转机构和所述抹浆机构中的远离者沿着所述左右方向超出所述支撑机构的构形边缘。
  12. 根据权利要求1所述的供砖总成,其中,所述翻转机构和所述抹浆机构中的任一者沿着前后方向可远离另一者形成工作状态;
    当处于所述工作状态时,
    沿着左右方向上,所述第一位置的所述定位机构位于所述抹浆作业端的任一侧,
    沿着前后方向上,所述抹浆机构的竖直投影和所述翻转机构的竖直投影彼此间隔且不重叠。
  13. 根据权利要求12所述的供砖总成,其中,所述支撑机构包括沿着所述前后方向延伸的一第一导向件;
    所述抹浆机构和所述翻转机构中的其中一者固定于所述支撑机构,另一者可移动地适配于所述第一导向件以形成所述工作状态。
  14. 根据权利要求13所述的供砖总成,其中,所述支撑机构包括与所述第一导向件平行设置的一第二导向件;
    所述运动载台还包括活动设置于所述第二导向件的一基座,以及设置于所述基座的一运动机构、所述运动机构的输出端连接所述定位机构;
    当处于所述工作状态时,所述抹浆作业端位于第一竖直面上,所述翻转机械手位于第二竖直面上,所述第二竖直面与所述第一竖直面沿着所述左右方向延伸且沿着所述前后方向间隔平行设置;
    所述第一位置的所述定位机构位于所述第一竖直面上,所述第二位置的所述定位机构位于所述第二竖直面上,所述第二导向件导向所述基座及其上的所述定位机构自所述第一竖直面和所述第二竖直面中的一者移动至另一者。
  15. 根据权利要求14所述的供砖总成,其中,借由所述运动机构,所述定位机构沿着所述第一竖直面自所述第一位置移动经过所述抹浆作业端以抹浆所述砖块的表面。
  16. 根据权利要求14所述的供砖总成,其中,所述运动机构包括至少一个板状部,所述至少一个板状部与所述基座之间形成有一第一空间,所述至少一个板状部与所述定位机构之间形成有一第二空间;
    所述第一空间内设置有一第一驱动组件以及一第一滑动组件,所述第一滑动组件包括相互适配的导轨和导块,所述第一驱动组件驱动所述至少一个板状部沿着所述左右方向位移,所述第一滑动组件导引所述至少一个板状部沿着所 述左右方向位移;
    所述第二空间内设置有一第二驱动组件以及一第二滑动组件,所述第二滑动组件包括相互适配的导轨和导块,所述第二驱动组件驱动所述定位机构沿着所述左右方向位移,所述第二滑动组件导引所述定位机构沿着所述左右方向位移。
  17. 根据权利要求14所述的供砖总成,其中,所述定位机构包括:
    一底板,所述底板连接于所述运动机构的输出端;
    二夹板,所述二夹板分别设于所述底板的前后两侧,至少一个所述夹板相对于所述底板可远离或者靠近另一所述夹板移动。
  18. 根据权利要求1所述的供砖总成,其中,所述翻转机构和所述抹浆机构中的任一者沿着左右方向可远离另一者形成工作状态,处于所述工作状态下的所述翻转机构和所述抹浆机构沿着所述左右方向的距离能够允许所述翻转机械手翻转所述砖块;
    所述第一位置的所述砖块与所述第二位置的所述砖块位于同一竖直面,所述竖直面沿着所述左右方向延伸。
  19. 根据权利要求18所述的供砖总成,其中,所述运动载台包括:
    一基座,固定于所述支撑机构,且自前后方向观察,所述基座与与所述抹浆机构的至少部分重叠设置;
    一运动机构,设置于所述基座,所述运动机构的输出端驱动所述定位机构沿着所述左右方向远离所述抹浆机构移动至所述第一位置。
  20. 根据权利要求19所述的供砖总成,其中,所述运动机构包括至少一个板状部,所述至少一个板状部与所述基座之间形成有一第一空间,所述至少一个板状部与所述定位机构之间形成有一第二空间;
    所述第一空间内设置有一第一驱动组件以及一第一滑动组件,所述第一滑动组件包括相互适配的导轨和导块,所述第一驱动组件驱动所述至少一个板状部沿着所述左右方向位移,所述第一滑动组件导引所述至少一个板状部沿着所述左右方向位移;
    所述第二空间内设置有一第二驱动组件以及一第二滑动组件,所述第二滑动组件包括相互适配的导轨和导块,所述第二驱动组件驱动所述定位机构沿着所述左右方向位移,所述第二滑动组件导引所述定位机构沿着所述左右方向位移。
  21. 根据权利要求19所述的供砖总成,其中,所述定位机构包括:
    一底板,所述底板连接于所述运动机构的输出端;
    二夹板,所述二夹板分别设于所述底板的前后两侧,至少一个所述夹板相对于所述底板可远离或者靠近另一所述夹板移动。
  22. 根据权利要求18所述的供砖总成,其中,所述抹浆机构包括一第一安装架,所述第一安装架的下端固定于所述支撑机构且位于所述运动载台前后方向上的一侧,所述第一安装架借由一第一枢接机构转动连接一料斗,所述料斗的下端被构造形成所述抹浆作业端,所述第一枢接机构的第一转动轴线沿着所述前后方向延伸。
  23. 根据权利要求22所述的供砖总成,其中,所述第一安装架包括一第一升降机构,所述第一升降机构被设置为驱动所述料斗升降;
    自所述第一位置朝向所述第二位置移动的过程中,所述定位机构载运所述砖块暂停于一第三位置;
    当所述砖块处于所述第三位置时,借由所述第一升降机构,所述抹浆作业端自下而上抹浆于处于静止状态的所述砖块的侧面。
  24. 根据权利要求22所述的供砖总成,其中,自所述第一位置朝向所述第二位置移动的过程中,借由所述定位机构载运所述砖块朝向远离所述料斗的方向移动,所述抹浆作业端保持固定位姿沿着所述左右方向抹浆于处于运动状态的所述砖块的水平上表面。
  25. 根据权利要求18所述的供砖总成,其中,所述翻转机构包括一第二安装架,所述第二安装架沿着所述左右方向可移动地安装于所述支撑机构,所述第二安装架借由一第二枢接机构转动连接所述翻转机械手,所述第二枢接机构的第二转动轴线沿着前后方向延伸。
  26. 一种砌砖***,能够于作业空间中砌筑墙体,包括:
    一移动底盘,于所述作业空间中行走至预定站点,待砌墙***于所述预定站点的前侧;
    如权利要求1~25任一项所述的供砖总成,安装于所述移动底盘;
    一砌砖机构,安装于所述移动底盘上且位于所述供砖总成的前侧,所述砌砖机构包括一机械爪,所述机械爪向后自翻转机械手沿着非抹浆面拾取砖块,向前搬运所述砖块至所述待砌墙体的砌筑位置。
  27. 根据权利要求26所述的砌砖***,所述砌砖***还包括一控制模块,所述控制模块包括一立柜,所述立柜内设置有控制元件,用以控制所述供砖总成和所述砌砖机构的动作,所述立柜安装于所述移动底盘且位于所述砌砖机构的后方,所述供砖总成安装于所述立柜上。
  28. 根据权利要求27所述的砌砖***,所述砌砖***还包括一支撑结构,所述支撑结构为所述立柜的上表面;
    或者,
    所述支撑机构为一平板,安装于所述立柜的上表面。
  29. 根据权利要求26所述的砌砖***,其中,所述砌砖机构包括:
    一立柱,所述立柱安装于所述移动底盘上;
    一机械臂,所述机械臂的近端转动连接于所述立柱,所述机械臂的远端连接所述机械爪,所述机械臂具有多个关节以形成不同姿态。
  30. 一种砌砖方法,包括:
    在定位机构移动至第一位置的情况下,通过所述定位机构将砖块放置于所述定位机构上;
    在所述定位机构接收所述砖块之后,通过所述定位机构载运所述砖块自所述第一位置朝向第二位置移动;
    在所述定位机构载运所述砖块自所述第一位置移动至所述第二位置的过程中,通过抹浆机构的抹浆作业端抹浆于所述砖块的表面以形成抹浆面和非抹浆面;
    在所述定位机构载运所述砖块停止于所述第二位置之后,通过翻转机构的翻转机械手自所述定位机构拾取抹浆后的所述砖块,且翻转所述砖块的所述抹浆面和所述非抹浆面的空间朝向;
    通过砌砖机构的机械爪沿着所述非抹浆面自所述翻转机械手拾取所述砖块,以及搬运所述砖块至待砌墙体的砌筑位置,使得所述砖块的所述抹浆面粘粘至所述砌筑位置的砖面。
  31. 根据权利要求30所述的砌砖方法,在所述定位机构移动至第一位置之前,所述方法还包括:
    驱使所述抹浆机构相对于所述翻转机构向后移动,使得所述抹浆作业端位于左右延伸的一第一竖直面上,所述翻转机械手位于左右延伸的一第二竖直面上,所述第一竖直面和所述第二竖直面沿着左右方向延伸且前后间隔平行设置, 所述第一位置位于第一竖直面上,所述第二位置位于所述第二竖直面上。
  32. 根据权利要求30所述的砌砖方法,所述定位机构移动至第一位置,包括:
    通过前后驱动件驱动所述定位机构向后移动至所述第一位置所在的平面,通过运动机构驱动所述定位机构沿着左右方向移动至所述第一位置。
  33. 根据权利要求31所述的砌砖方法,所述方法还包括:
    通过所述定位机构沿着所述第一竖直面移动时经过所述抹浆作业端以抹浆于所述砖块的表面。
  34. 根据权利要求33所述的砌砖方法,在所述抹浆作业端完成所述砖块的表面的抹浆之后,所述方法还包括:
    通过前后驱动件驱动所述定位机构自所述第一竖直面移动至所述第二竖直面以供所述翻转机构拾取。
  35. 根据权利要求34所述的砌砖方法,所述方法还包括:
    在所述抹浆作业端完成所述砖块抹浆之后且所述砖块沿着左右方向上未到达第二位置时,通过所述前后驱动件驱动所述定位机构自所述第一竖直面移动至所述第二竖直面,同时,通过运动机构驱动所述定位机构沿着所述左右方向移动至所述第二位置。
  36. 根据权利要求30所述的砌砖方法,在运动机构驱动所述定位机构移动至所述第一位置之前,所述方法还包括:
    将所述抹浆机构和所述翻转机构其中一者朝向左右方向的一侧移动以远离另一者,使得所述抹浆机构和所述翻转机构之间的空间允许所述翻转机构的所述翻转机械手翻转所述砖块,所述翻转机械手和所述抹浆机构的所述抹浆作业端位于沿着所述左右方向延伸的同一竖直面上。
  37. 根据权利要求36所述的砌砖方法,在将所述翻转机构移动远离所述抹浆机构之后,所述方法还包括:
    通过所述运动机构驱动所述定位机构朝向所述左右方向上移动至所述第一位置,使得所述第一位置的所述定位机构与所述抹浆作业端、所述翻转机械手均位于同一竖直面上。
  38. 根据权利要求37所述的砌砖方法,其中,所述第一位置设置在所述翻转机构相对在所述左右方向上的另一侧。
  39. 根据权利要求38所述的砌砖方法,其中,所述第一位置的所述定位机构、所述抹浆作业端和所述第二位置的所述运动机构均设置在同一竖直平面上,在所述抹浆作业端抹浆于所述砖块的表面之后,所述运动机构沿着左右方向驱动所述定位机构移动至所述第二位置。
  40. 根据权利要求30所述的砌砖方法,其中,所述定位机构配置有同步位移的两个夹板,两个所述夹板同步夹紧所述砖块,将所述砖块的前后方向上的坐标定位于第一竖直面上。
  41. 根据权利要求40所述的砌砖方法,在所述定位机构将所述砖块的前后方向上的坐标定位于所述第一竖直面上之后,所述方法还包括:
    通过位置检测装置检测所述第一位置的所述砖块的坐标相较于所述第一位置的所述定位机构在左右方向上的偏移值,其中,所述偏移值用于对所述砖块在左右方向上的坐标进行校准。
  42. 根据权利要求41所述的砌砖方法,所述方法还包括:
    通过控制模块根据所述第一位置的所述定位机构的坐标和所述偏移值,确定运输距离,并根据所述运输距离控制所述定位机构沿着所述左右方向上移动相应的所述运输距离,使得每一所述第二位置的所述砖块在所述左右方向上的 坐标恒定。
  43. 根据权利要求30所述的砌砖方法,所述方法还包括:
    通过控制模块判断所述机械爪的砌砖方向,根据所述砌砖方向从所述抹浆机构的多种抹浆模式中选择对应的一种抹浆模式,使得在所述对应的一种抹浆模式下所述机械爪将所述砖块搬运至待砌墙体的砌筑位置时,所述砖块的抹浆面粘粘至所述砌筑位置的砖面。
PCT/CN2022/126920 2022-04-27 2022-10-24 供砖总成、砌砖***以及砌砖方法 WO2023206991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210459054.9 2022-04-27
CN202210459054.9A CN116696090A (zh) 2022-04-27 2022-04-27 一种供砖总成、砌砖***以及砌砖方法

Publications (1)

Publication Number Publication Date
WO2023206991A1 true WO2023206991A1 (zh) 2023-11-02

Family

ID=87842023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126920 WO2023206991A1 (zh) 2022-04-27 2022-10-24 供砖总成、砌砖***以及砌砖方法

Country Status (2)

Country Link
CN (1) CN116696090A (zh)
WO (1) WO2023206991A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117536462A (zh) * 2024-01-08 2024-02-09 山西冶金岩土工程勘察有限公司 一种砂浆自动浇筑的砌墙装置及砌墙方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1276783A1 (ru) * 1985-01-02 1986-12-15 Экспериментальный научно-исследовательский институт кузнечно-прессового машиностроения Манипул тор дл кладки кирпичных стен и блоков
CN110685446A (zh) * 2019-09-23 2020-01-14 柴勤 一种全自动砌墙工艺
CN210342596U (zh) * 2019-07-01 2020-04-17 广东中捷建设有限公司 自动化智能装修施工装置
CN111088895A (zh) * 2020-03-20 2020-05-01 广东博智林机器人有限公司 砌砖装置及砌砖机器人
CN113187238A (zh) * 2021-06-08 2021-07-30 广东博智林机器人有限公司 砌砖设备及建筑***
CN113389394A (zh) * 2021-06-28 2021-09-14 广东博智林机器人有限公司 一种升降机构及砌砖机器人
CN113431355A (zh) * 2021-06-30 2021-09-24 广东博智林机器人有限公司 建筑装置
CN113431354A (zh) * 2021-06-28 2021-09-24 广东博智林机器人有限公司 一种砌砖设备
CN113530176A (zh) * 2020-04-16 2021-10-22 广东博智林机器人有限公司 瓷砖抹浆装置及瓷砖铺贴机
CN114961195A (zh) * 2022-07-05 2022-08-30 南京芸皓智能建筑科技有限公司 一种大负载高效高精度铺砖机器人

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1276783A1 (ru) * 1985-01-02 1986-12-15 Экспериментальный научно-исследовательский институт кузнечно-прессового машиностроения Манипул тор дл кладки кирпичных стен и блоков
CN210342596U (zh) * 2019-07-01 2020-04-17 广东中捷建设有限公司 自动化智能装修施工装置
CN110685446A (zh) * 2019-09-23 2020-01-14 柴勤 一种全自动砌墙工艺
CN111088895A (zh) * 2020-03-20 2020-05-01 广东博智林机器人有限公司 砌砖装置及砌砖机器人
CN113530176A (zh) * 2020-04-16 2021-10-22 广东博智林机器人有限公司 瓷砖抹浆装置及瓷砖铺贴机
CN113187238A (zh) * 2021-06-08 2021-07-30 广东博智林机器人有限公司 砌砖设备及建筑***
CN113389394A (zh) * 2021-06-28 2021-09-14 广东博智林机器人有限公司 一种升降机构及砌砖机器人
CN113431354A (zh) * 2021-06-28 2021-09-24 广东博智林机器人有限公司 一种砌砖设备
CN114482582A (zh) * 2021-06-28 2022-05-13 广东博智林机器人有限公司 一种砌砖设备
CN113431355A (zh) * 2021-06-30 2021-09-24 广东博智林机器人有限公司 建筑装置
CN114961195A (zh) * 2022-07-05 2022-08-30 南京芸皓智能建筑科技有限公司 一种大负载高效高精度铺砖机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117536462A (zh) * 2024-01-08 2024-02-09 山西冶金岩土工程勘察有限公司 一种砂浆自动浇筑的砌墙装置及砌墙方法
CN117536462B (zh) * 2024-01-08 2024-04-19 山西冶金岩土工程勘察有限公司 一种砂浆自动浇筑的砌墙装置及砌墙方法

Also Published As

Publication number Publication date
CN116696090A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CA3012505C (en) Automated brick laying system and method of use thereof
CN110242030B (zh) 地砖铺设机器人及地砖铺设方法
WO2023206991A1 (zh) 供砖总成、砌砖***以及砌砖方法
US7641461B2 (en) Robotic systems for automated construction
EP1977058B1 (en) An automated brick laying system for constructing a building from a plurality of bricks
WO2023273581A1 (zh) 砌砖设备
CN113187238B (zh) 砌砖设备及建筑***
WO2005070657A1 (en) Automated construction including robotic systems
CN111219069A (zh) 砌砖机器人
CN107740591A (zh) 砌砖机器人t型墙体砌筑方法
CN111395717A (zh) 一种铺贴装置、地砖铺贴机器人及地砖铺贴方法
WO2022267515A1 (zh) 板材铺贴设备及板材铺贴方法
CN113323422B (zh) 工件夹持***及工件夹持方法
WO2022257948A1 (zh) 砌砖方法、砌砖装置、砌砖设备及建筑***
WO2022262505A1 (zh) 板料铺贴设备、铺贴方法、板材涂料装置及板料铺贴装置
US20230167650A1 (en) Block transfer apparatus and improved clamping assembly for use therewith
WO2023206855A1 (zh) 一种砌砖装置及控制方法
CN210622349U (zh) 一种全自动砌墙***
RU2754505C1 (ru) Способ возведения конструкций из мелкоштучных изделий, робот-манипулятор и комплекс для его осуществления
WO2023207012A1 (zh) 翻转机构、砌砖机器人及砌砖方法
RU2803337C1 (ru) Робототехнический комплекс укладки газобетона
CN114351991B (zh) 铺贴机构、铺贴机器人及可兼容不同尺寸墙砖的铺贴方法
CN116696014A (zh) 瓷砖铺贴机器人
CN116696086A (zh) 砌块抹浆方法及砌块设备
LT7026B (lt) Statinio konstrukcijos elementų statybos sistema ir būdas (57) 1. Statybos sistema (1), skirta industrinių ar statinio element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939811

Country of ref document: EP

Kind code of ref document: A1