WO2023204117A1 - Lubrication treatment method for metal wire material - Google Patents

Lubrication treatment method for metal wire material Download PDF

Info

Publication number
WO2023204117A1
WO2023204117A1 PCT/JP2023/014820 JP2023014820W WO2023204117A1 WO 2023204117 A1 WO2023204117 A1 WO 2023204117A1 JP 2023014820 W JP2023014820 W JP 2023014820W WO 2023204117 A1 WO2023204117 A1 WO 2023204117A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal wire
lubricant
lubricating
wire material
coil
Prior art date
Application number
PCT/JP2023/014820
Other languages
French (fr)
Japanese (ja)
Inventor
正人 大竹
優 望月
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Publication of WO2023204117A1 publication Critical patent/WO2023204117A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a lubrication treatment method applied when drawing various metal wires.
  • lubrication treatment is performed to form a lubricating film on the metal surface in order to prevent seizure and scratches caused by metal contact between the workpiece and the tool.
  • a composite film treatment of a phosphate chemical conversion film and a soap-based lubricant film (hereinafter also referred to as phosphate/soap treatment) is widely used as a lubricant treatment with particularly excellent workability.
  • phosphate/soap treatment is problematic in that it consumes a large amount of energy and places a large burden on the environment. For this reason, environmentally friendly water-based lubricants have been developed in recent years.
  • coating type water-based lubricants such as those containing a water-soluble inorganic salt and wax as described in Patent Document 1, and those containing a resin component, an inorganic component, and a solid lubricant component as described in Patent Document 2.
  • Spread-type lubrication treatment is a low-temperature, short-time process, and has a low environmental impact in terms of energy consumption.
  • a cleaning treatment is performed for the purpose of removing various stains such as oxide scale and oil generated on the surface of the metal material due to heat treatment or the like.
  • Shot blasting, acid cleaning, alkaline degreasing, etc. are used for the cleaning treatment.
  • acid cleaning and alkaline degreasing use acidic or alkaline high-temperature cleaning agents (generally around 50°C to 80°C), and require multiple steps, which take a considerable amount of time. This creates a large environmental impact and a heavy burden on workers.
  • shot blasting does not have such disadvantages.
  • the surface of the metal wires is treated with a cleaning treatment method selected from shot blasting, bending, electrolytic acid cleaning, etc.
  • a method has been proposed in which a metal wire coated with a lubricant film is coated with a lubricating film in an in-line method by carrying out a continuous process of cleaning the metal wire for less than a second, then contacting and applying a water-based lubricant, and then drying the lubricant. ing.
  • the formed lubricant film is less likely to have thick parts or unevenness, but compared to the batch method, the amount of processing per hour is smaller and the production efficiency is lower.
  • the problem is that it is not practical in terms of One possible solution to this problem is to increase the linear speed in the in-line method, but this does not allow for sufficient drying time, resulting in poor drying and poor uniformity of the lubricant film. , it was inappropriate.
  • batch-type lubrication treatment when shot blasting is selected as the cleaning treatment and a coiled metal wire is treated, descaling is insufficient, resulting in the problem that a uniform lubricant film cannot be obtained. .
  • the present invention finds and solves the problems faced by the above-mentioned conventional technology, and takes into account global environmental conservation by applying shot blasting and a water-based lubricant to reduce the environmental load, and by applying a batch method.
  • An object of the present invention is to provide a method for lubricating a metal wire, which has practical production efficiency and in which a lubricating film is uniformly formed.
  • the invention may include the following.
  • a method of lubricating a coiled metal wire in a batch manner A descaling process in which a coiled metal wire is shot blasted, and a lubricant film forming process in which a lubricant is applied to the metal wire after the descaling process,
  • the coiled metal wire satisfies L/(d ⁇ N) ⁇ 1.1, where the coil width is L, the wire diameter of the metal wire is d, and the number of coil turns is N.
  • the lubricant contains one or more film base components (A) selected from the group consisting of inorganic salts and organic acid salts, and a lubricant component (B).
  • (2) The method for lubricating a metal wire according to (1), wherein the lubricant has a viscosity of 5 to 50 mPa ⁇ s at 25°C.
  • the method for lubricating a metal wire according to (1) or (2) which is within the range.
  • (4) The method for lubricating a metal wire according to any one of (1) to (3), comprising a preheating step of heating the metal wire before the lubricant film forming step.
  • the environmental impact can be significantly reduced by using shot blasting and a coating-type treatment agent, rather than the combination of acid cleaning/alkaline degreasing and phosphate/soap treatment, which have a large environmental impact.
  • a batch method practical production efficiency is achieved, so production energy can be significantly reduced.
  • a method for lubricating a metal wire according to an embodiment of the present invention is used for wire drawing.
  • Wire drawing is a drawing process that reduces the diameter and lengthens the metal wire by passing it through a conical hole die with a thick entrance and a narrow exit.
  • the metal type of the metal wire to which the lubrication treatment method of this embodiment can be applied is not particularly limited, but examples include iron, steel, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, titanium, titanium alloy, copper, copper alloy, etc. It will be done.
  • the wire diameter of the metal wire is not particularly limited as long as the metal wire can be wound into a coil shape.
  • the lubrication treatment method of this embodiment includes a descaling step of performing shot blasting on a metal wire wound into a coil shape, and a lubricant film forming step of applying a lubricant to the metal wire after the descaling step.
  • the lubricating film forming step may include a drying step of drying the applied lubricant.
  • the lubrication treatment method of this embodiment is based on a batch method in which a coil-shaped metal wire is processed by moving the processing equipment step by step.
  • a water washing process may or may not be provided for the purpose of removing residues such as shot particles that have adhered to the surface of the metal wire during the descaling process. good.
  • the metal wire has a spirally wound coil shape.
  • the coiled metal wire satisfies L/(d ⁇ N) ⁇ 1.1, where the coil width is L, the wire diameter of the metal wire is d, and the number of coil turns is N.
  • L/(d ⁇ N) indicates the degree of dispersion of the coil, and by setting this value to 1.1 or more, shot particles will spread over the surface of the metal wire. Descaling is sufficiently carried out, and as a result, unevenness in the lubricating film formed can be suppressed.
  • it is 1.2 or more, more preferably 1.3 or more.
  • the upper limit is not particularly limited, but from the viewpoint of production efficiency, it is usually 3.0 or less, preferably 2.0 or less.
  • L/(d ⁇ N) is less than 1.1, shot particles are not sufficiently projected onto the surface of the metal wire, and stains such as oxide scale and oil cannot be sufficiently removed in the descaling process. .
  • repellency occurs when the lubricant is applied, and the lubricant film formed by subsequent drying becomes uneven, resulting in a decrease in lubricity. Further, if oxidized scale remains, the adhesion between the wire surface and the lubricating film may decrease, which may also reduce lubricity.
  • FIG. 1 is a schematic diagram showing the coil width L, the wire diameter d of the metal wire, and the number of coil turns N of a coiled metal wire.
  • the coil width L is appropriately set depending on the equipment that performs the lubrication process, but is usually 1 m or more, may be 2 m or more, or may be 3 m or more. Moreover, the upper limit is usually 10 m or less, may be 8 m or less, and may be 5 m or less.
  • the wire diameter d of the metal wire is appropriately set depending on the type of metal wire, its use, etc., but is usually 1 mm or more, may be 5 mm or more, and may be 8 mm or more.
  • the upper limit is usually 5 cm or less, may be 4 cm or less, and may be 2 cm or less.
  • the number of coil turns N is appropriately set depending on the equipment that performs the lubrication process, but is usually 30 or more, may be 100 or more, and may be 200 or more.
  • the upper limit is usually 5000 or less, may be 2000 or less, and may be 1000 or less.
  • Shot blasting used in the descaling process uses compressed air or centrifugal force to project shot particles such as steel balls or cut wires to impact the surface of the metal wire, thereby physically and/or mechanically oxidizing the surface of the metal wire. This is a method to remove scale. It is possible to use a method known as shot blasting, and there are no particular limitations. For the purpose of shortening the time required for descaling, shot blasting may be performed while rotating the coiled metal wire.
  • the lubrication treatment method of the present embodiment includes a lubricating film forming step of applying the lubricant to the metal wire by bringing the metal wire into contact with the lubricant after performing the above-described descaling treatment on the coiled metal wire; has. It is preferable to include a preheating step of preheating the metal wire before bringing the metal wire into contact with the lubricant. Preheating can speed up the drying of the lubricant applied to the metal wire. By speeding up the drying of the lubricant, dripping on the wire surface can be suppressed and a uniform lubricant film with less unevenness can be formed.
  • the preheating method is not particularly limited, and hot water heating, high frequency heating, hot air heating, steam heating, etc.
  • hot water heating is preferable in this embodiment.
  • the hot water washing and heating may also be performed as water washing for the purpose of removing residues such as shot grains attached to the wire surface during the descaling process.
  • the temperature of preheating is not particularly limited, it is preferable to conduct the preheating so that the temperature of the metal wire is 70 to 150°C. By performing preheating in this temperature range, a uniform and high-quality lubricating film can be obtained.
  • the method of bringing the metal wire into contact with the lubricant is not particularly limited, but for example, a dipping method, a spray method, a pouring method from above the coil, etc. can be applied.
  • the contact time between the metal wire and the lubricant is not particularly limited as long as the surface of the metal wire is sufficiently covered with the lubricant.
  • the coil width of the coiled metal wire may be expanded or contracted as appropriate depending on the method of bringing the lubricant into contact. Further, at this time, the expression L/(d ⁇ N) ⁇ 1.1 may or may not be satisfied.
  • the lubricant may be heated to 40 to 70° C. and brought into contact with the metal wire in order to increase the drying rate.
  • the lubricant is an aqueous lubricant containing as main components one or more film base components (A) selected from inorganic salts and organic acid salts and a lubricant component (B) in an aqueous medium.
  • the lubricating film formed from the lubricant containing the film base component (A) and the lubricating component (B) has good followability during wire drawing processing and has hardness and strength against seizing with the die tool. However, it has good slip properties and can reduce the coefficient of friction.
  • the aqueous medium is not particularly limited as long as it is water or a mixture with a water-miscible organic solvent.
  • the mass % of water in the mixture may be 50 mass % or more, and is more preferably in the order of 80 mass % or more, 90 mass % or more, 95 mass % or more, and 99 mass % or more.
  • Water-miscible organic solvents are not particularly limited as long as they are miscible with water; examples include ketone solvents such as acetone and methyl ethyl ketone; amide solvents such as N,N'-dimethylformamide and dimethylacetamide. ; Alcohol solvents such as methanol, ethanol, and isopropanol; Ether solvents such as ethylene glycol monobutyl ether and ethylene glycol monohexyl ether; Pyrolidone solvents such as 1-methyl-2-pyrrolidone and 1-ethyl-2-pyrrolidone, etc. can be mentioned.
  • One kind of these water-miscible organic solvents may be mixed with water, or two or more kinds thereof may be mixed with water.
  • Examples of the inorganic salt of the film base component (A) include silicates, borates, phosphates, carbonates, sulfates, nitrates, tungstates, molybdates, vanadates, and the like.
  • Examples of the salts that constitute these include alkali metal salts (sodium salts, potassium salts, lithium salts, etc.), alkaline earth metal salts (magnesium salts, calcium salts, etc.), ammonium salts, amine salts (ethylamine salts, etc.), etc. can be given. It does not matter whether it is soluble in water or not, as long as it can provide the followability of a lubricating film during wire drawing.
  • sodium silicate lithium borate (lithium tetraborate), sodium borate (sodium tetraborate), potassium borate (potassium tetraborate), sodium phosphate, calcium phosphate, sodium tripolyphosphate, and sodium carbonate.
  • inorganic salts may be used alone or in combination of two or more.
  • Examples of the organic acid salt of the film base component (A) include aliphatic carboxylates, aromatic carboxylates, and organic phosphonates.
  • the aliphatic carboxylic acid salt may have two or more carboxyl groups or one or more hydroxyl groups in its molecule, and preferably has 2 to 8 carbon atoms. Examples include oxalate, maleate, malate, tartrate, gluconate, citrate, glutarate, and the like.
  • the aromatic carboxylic acid salt may have two or more carboxyl groups in the molecule, and may also have one or more hydroxyl groups. Examples include benzoates, phthalates, isophthalates, terephthalates, salicylates, and the like.
  • the organic phosphonate may have two or more phosphonic groups in the molecule, and may also have one or more hydroxyl groups. Examples include octylphosphonate and 1-hydroxyethane-1,1-diphosphonate.
  • the salts that constitute these include alkali metal salts (sodium salts, potassium salts, lithium salts, etc.), alkaline earth metal salts (magnesium salts, calcium salts, etc.), ammonium salts, amine salts (ethylamine salts, etc.), etc. There is. It does not matter whether it is soluble in water or not, as long as it can provide the followability of a lubricating film during wire drawing.
  • organic acid salts may be used alone or in combination of two or more.
  • Examples of the lubricating component (B) include oil, wax, soap, molybdenum disulfide, graphite, fluororesins such as polytetrafluoroethylene (PTFE), hopite (zinc phosphate), extreme pressure agents, and the like.
  • Examples of the wax include polyethylene wax, microcrystalline wax, polypropylene wax, and carnauba wax, and polyethylene wax is most preferred.
  • Soaps include metal salts of fatty acids, and more specifically metal salts of saturated or unsaturated fatty acids having 8 to 22 carbon atoms such as octanoic acid, lauric acid, palmitic acid, oleic acid, and stearic acid. be able to.
  • the metal salts include alkali metal salts such as sodium salts and potassium salts, as well as polyvalent metal salts such as calcium salts, zinc salts, magnesium salts, and barium salts.
  • solid lubricants made of solid particles such as molybdenum disulfide, graphite, polytetrafluoroethylene, and hopite
  • the extreme pressure agent include a sulfur-based extreme pressure agent, an organic molybdenum-based extreme pressure agent, and a phosphorus-based extreme pressure agent. More specifically, sulfurized olefins, molybdenum dithiophosphate (MoDTP), phosphoric acid esters, etc. may be mentioned.
  • These lubricating components may be used alone or in combination of two or more.
  • the content ratio of the film base component (A) and the lubricant component (B) in the lubricant will be explained.
  • the solid content weight ratio [(B)/ ⁇ (A)+(B) ⁇ ] of the film base component (A) and the lubricating component (B) is preferably within the range of 0.05 to 0.90. , more preferably within the range of 0.15 to 0.65.
  • [(B)/ ⁇ (A)+(B) ⁇ ] is within the above range, the expected friction-reducing effect of the lubricant component (B) is fully exhibited, and the followability of the lubricant film is improved. .
  • the total content of the above components (A) and (B) in the lubricant is not particularly limited, but the total content of the above components (A) and (B) in the lubricant is usually in the range of 1 to 50% by weight. It is preferably within the range of 5 to 20% by weight.
  • the viscosity of the lubricant is not particularly limited, but it is preferably 5 to 50 mPa ⁇ s, more preferably 10 to 40 mPa ⁇ s at 25°C.
  • the viscosity referred to in this specification is a value measured by a B-type viscometer (Brookfield-type viscometer).
  • a B-type viscometer immerses a rotor called a spindle in a liquid and measures the flow resistance (torque) when rotating the spindle to calculate the viscosity.
  • the measurement conditions were as follows, and the values were measured 1 minute after the start of rotation of the spindle. ⁇ Viscosity measurement conditions> Equipment: Toki Sangyo Co., Ltd. TVB-10M Spindle: diameter 25mm, height 90mm Rotation speed: 50rpm
  • a viscosity modifier (C) may be added for the purpose of adjusting the viscosity of the lubricant within a desired range.
  • the viscosity modifier is not particularly limited, but includes, for example, aqueous resins and inorganic clay minerals.
  • aqueous resin include vinyl resin, acrylic resin, epoxy resin, urethane resin, phenol resin, cellulose derivative (CMC: carboxymethyl cellulose, etc.), polymaleic acid type, polyolefin type (PVA: polyvinyl alcohol, etc.), and the like.
  • inorganic clay minerals include smectite clay minerals such as montmorillonite, sauconite, beidellite, saponite, and hectorite.
  • the content of the viscosity modifier (C) in the lubricant is not particularly limited, but it is usually in the range of 0.1 to 10% by weight, and in the range of 0.5 to 5% by weight in the lubricant. It is preferable.
  • the lubricant may contain a rust-preventive component for the purpose of suppressing rusting of the metal wire after the lubricant film is formed, within a range that does not impair the effects of the present invention.
  • the antirust component used here is a corrosion inhibitor that suppresses the occurrence of rust on metal materials, and is a component that acts as an inhibitor to suppress redox reactions on the metal surface.
  • the rust preventive component known ones such as nitrites, phosphites, amines, azoles, benzotriazoles, chelate compounds, etc. can be used.
  • nonionic surfactants anionic surfactants, amphoteric surfactants, and cationic surfactants can be used. Either can be used.
  • the lubricant applied to the metal wire can be dried by heating or air drying.
  • the drying temperature is not particularly limited, but it is preferably carried out at an ambient temperature of 60 to 150°C.
  • the attached weight of the lubricant film formed by the lubrication treatment method according to the present embodiment may be adjusted as appropriate depending on the difficulty of processing, etc., but it can prevent seizure and scratching during wire drawing, reduce friction, and suppress generation of scum. From this point of view, the dry film weight is preferably 1 g/m 2 or more, and more preferably within the range of 2 to 18 g/m 2 .
  • the weight of the lubricant film attached can be adjusted by appropriately controlling the concentration of the applied lubricant. To measure the attached weight, cut the lubricated metal wire to a certain length, measure the weight, peel off the coating, measure the weight of the metal wire alone, calculate the weight difference, and calculate the weight difference and surface area. (Calculated from the cut length) Note that the film can be peeled off by immersing the film in hot water at 60° C. for 1 minute, for example.
  • Shot blasting ⁇ Descaling treatment of Examples 1 to 31 and Comparative Examples 1 to 7: shot blasting> Shot conditions: shot ball (steel ball, hardness: HRC40-50, ⁇ 0.5mm), time 10 minutes, pressure 7kgf/cm 2
  • Hot water washing was performed after the descaling treatment and before the lubrication treatment (application of water-based lubricant). Hot water washing conditions: Tap water, 80°C, 1 minute, immersion
  • B Slightly large amount of scum generation: The amount of scum generation is 20% or more and less than 40% of the amount of lubricating film.
  • C A large amount of scum is generated: The amount of scum generated is 40% or more of the amount of lubricating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Extraction Processes (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention addresses the problem of providing a lubrication treatment method for a metal wire material that is not a combination of acid cleaning/alkaline degreasing and a phosphate/soap treatment, which has a heavy burden on the environment, but instead uses a shotblast and coating-type treatment agent to greatly decrease environmental burden, and adopts a batch scheme to have practical production efficiency, with a lubricating coating being uniformly formed on the metal wire material. The problem is solved by this lubrication treatment method for a metal wire material, which is a method for performing a batch-type lubrication treatment on a coil-shaped metal wire material, the method including: a descale step for performing a shotblast treatment on the coil-shaped metal wire material; and a lubricating coating forming step for coating a lubricating agent on the metal wire material after the descale step, wherein, in the descale step, the coil-shaped metal wire material satisfies L/(d×N)≥1.1, where L is the coil width, d is the wire diameter of the metal wire material, and N is the number of coil windings, and the lubricating agent contains one or more coating base components (A) selected from the group consisting of an inorganic salt and an organic acid salt, and a lubricating component (B).

Description

金属線材の潤滑処理方法Lubrication treatment method for metal wire
 本発明は、各種金属線材に対して伸線加工を行なう際に適用する潤滑処理方法に関する。 The present invention relates to a lubrication treatment method applied when drawing various metal wires.
 一般に鉄鋼、ステンレス等の金属材料を塑性加工する際には、被加工材と工具との金属接触により生ずる焼付きやキズ付きを防止する目的で、金属表面に潤滑皮膜を生成させる潤滑処理が施される。その中で、特に加工性に優れる潤滑処理として、リン酸塩化成皮膜と石けん系潤滑皮膜の複合皮膜処理(以下、リン酸塩/石けん処理とも言う)が広く用いられている。 Generally, when plastic working metal materials such as steel and stainless steel, lubrication treatment is performed to form a lubricating film on the metal surface in order to prevent seizure and scratches caused by metal contact between the workpiece and the tool. be done. Among these, a composite film treatment of a phosphate chemical conversion film and a soap-based lubricant film (hereinafter also referred to as phosphate/soap treatment) is widely used as a lubricant treatment with particularly excellent workability.
 しかし、リン酸塩/石けん処理は、エネルギー消費量が大きく、環境への負荷が大きいことが問題となっている。このことから、近年では環境に配慮した塗布型水性潤滑剤が開発されてきた。
 塗布型水性潤滑剤には、特許文献1にある水溶性無機塩とワックスを含有するものや、特許文献2にある樹脂成分と無機成分と固体潤滑成分を含有するものなど、複数のタイプがある。塗布型潤滑処理は低温度、短時間の処理であり、エネルギー消費の側面から見て環境負荷が低い。
However, phosphate/soap treatment is problematic in that it consumes a large amount of energy and places a large burden on the environment. For this reason, environmentally friendly water-based lubricants have been developed in recent years.
There are multiple types of coating type water-based lubricants, such as those containing a water-soluble inorganic salt and wax as described in Patent Document 1, and those containing a resin component, an inorganic component, and a solid lubricant component as described in Patent Document 2. . Spread-type lubrication treatment is a low-temperature, short-time process, and has a low environmental impact in terms of energy consumption.
 塗布型潤滑処理において、水性潤滑剤の塗布の前には、熱処理等により金属材料表面に生じた酸化スケールや油などの各種の汚れを除去する目的で、清浄化処理を行なう。清浄化処理には、ショットブラスト、酸洗浄、及びアルカリ脱脂などが用いられる。清浄化処理のうち、酸洗浄とアルカリ脱脂は、酸性あるいはアルカリ性の高温(一般的には50℃~80℃程度)の洗浄剤が用いられ、さらに多段階の工程が必要で作業上相当の時間を要するため、環境負荷や作業者の負担が大きい。一方、ショットブラストにはそういったデメリットがない。 In the coating type lubrication treatment, before applying the water-based lubricant, a cleaning treatment is performed for the purpose of removing various stains such as oxide scale and oil generated on the surface of the metal material due to heat treatment or the like. Shot blasting, acid cleaning, alkaline degreasing, etc. are used for the cleaning treatment. Among the cleaning processes, acid cleaning and alkaline degreasing use acidic or alkaline high-temperature cleaning agents (generally around 50°C to 80°C), and require multiple steps, which take a considerable amount of time. This creates a large environmental impact and a heavy burden on workers. On the other hand, shot blasting does not have such disadvantages.
 金属線材の潤滑処理に塗布型水性潤滑剤を適用するための方法として、特許文献3にあるような、金属線材の表面にショットブラスト、ベンディング、電解酸洗浄などから選ばれる清浄化処理方法で20秒間以下清浄化処理を施した後、塗布型水性潤滑剤を接触させ塗布し、次いで乾燥する工程を連続的に行なうことにより、潤滑皮膜を被覆した金属線材をインライン方式で実施する方法が提案されている。 As a method for applying a coating type water-based lubricant to the lubrication treatment of metal wires, as described in Patent Document 3, the surface of the metal wires is treated with a cleaning treatment method selected from shot blasting, bending, electrolytic acid cleaning, etc. A method has been proposed in which a metal wire coated with a lubricant film is coated with a lubricating film in an in-line method by carrying out a continuous process of cleaning the metal wire for less than a second, then contacting and applying a water-based lubricant, and then drying the lubricant. ing.
国際公開第2002/012420号International Publication No. 2002/012420 国際公開第2011/001653号International Publication No. 2011/001653 国際公開第2003/035929号International Publication No. 2003/035929
 特許文献3に係るインライン方式による塗布型潤滑処理を用いた場合、形成された潤滑皮膜には、厚膜部やムラが生じにくいものの、バッチ方式と比較して時間当たり処理量が少なく、生産効率の面で実用的ではないという課題がある。これを解決する方法としては、インライン方式における線速度を高速とすることが考えられるが、乾燥時間を十分に設けることができず、乾燥不良が生じ、潤滑皮膜の均一性も劣るようになるため、不適であった。
 また、バッチ方式の潤滑処理において、清浄化処理としてショットブラストを選択し、コイル状の金属線材を処理した場合、脱スケールが不十分となり、その結果均一な潤滑皮膜が得られない問題があった。
When using the in-line coating type lubrication treatment according to Patent Document 3, the formed lubricant film is less likely to have thick parts or unevenness, but compared to the batch method, the amount of processing per hour is smaller and the production efficiency is lower. The problem is that it is not practical in terms of One possible solution to this problem is to increase the linear speed in the in-line method, but this does not allow for sufficient drying time, resulting in poor drying and poor uniformity of the lubricant film. , it was inappropriate.
In addition, in batch-type lubrication treatment, when shot blasting is selected as the cleaning treatment and a coiled metal wire is treated, descaling is insufficient, resulting in the problem that a uniform lubricant film cannot be obtained. .
 本発明は、上記従来技術の抱える問題を見出し、それを解決するものであり、地球環境保全を考慮しショットブラストと塗布型水性潤滑剤を適用して環境負荷を低減し、バッチ式を適用することで実用的な生産効率を有し、且つ潤滑皮膜が均一に形成される金属線材の潤滑処理方法を提供することを課題とするものである。 The present invention finds and solves the problems faced by the above-mentioned conventional technology, and takes into account global environmental conservation by applying shot blasting and a water-based lubricant to reduce the environmental load, and by applying a batch method. An object of the present invention is to provide a method for lubricating a metal wire, which has practical production efficiency and in which a lubricating film is uniformly formed.
 本発明者らは、前記課題を達成すべく鋭意検討を重ねた結果、バッチ式の金属線材の潤滑処理において、コイル状の金属線材を、線材間に適度な間隙を有した状態でショットブラスト処理をして脱スケールを行い、続いて潤滑剤を塗布して潤滑皮膜を形成することで、上記課題を達成できることを見出し、本発明を完成するに至った。本発明は、以下のものを含み得る。 As a result of extensive studies to achieve the above-mentioned problems, the present inventors have discovered that, in a batch-type metal wire lubrication process, a coiled metal wire is subjected to shot blasting with an appropriate gap between the wires. The inventors have discovered that the above-mentioned problems can be achieved by descaling and subsequently applying a lubricant to form a lubricant film, and have completed the present invention. The invention may include the following.
(1):コイル状の金属線材をバッチ式で潤滑処理する方法であって、
 コイル状の金属線材にショットブラスト処理を行う脱スケール工程、及び脱スケール工程後の金属線材に潤滑剤を塗布する潤滑皮膜形成工程、を有し、
 前記脱スケール工程において、前記コイル状の金属線材は、コイル幅をL、金属線材の線径をd、コイル巻き数をN、としてL/(d×N)≧1.1を満たし、
 前記潤滑剤は、無機塩、及び有機酸塩からなる群より選ばれる一種以上の皮膜ベース成分(A)と、潤滑成分(B)と、を含有する、金属線材の潤滑処理方法。
(2):前記潤滑剤は、25℃での粘度が5~50mPa・sである、(1)に記載の金属線材の潤滑処理方法。
(3):前記潤滑剤は、皮膜ベース成分(A)と前記潤滑成分(B)との固形分重量比(B)/{(A)+(B)}が0.05~0.90の範囲内である、(1)又は(2)に記載の金属線材の潤滑処理方法。
(4):前記潤滑皮膜形成工程の前に、金属線材を加熱する予備加熱工程、を有する、(1)~(3)のいずれかに記載の金属線材の潤滑処理方法。
(1): A method of lubricating a coiled metal wire in a batch manner,
A descaling process in which a coiled metal wire is shot blasted, and a lubricant film forming process in which a lubricant is applied to the metal wire after the descaling process,
In the descaling step, the coiled metal wire satisfies L/(d×N)≧1.1, where the coil width is L, the wire diameter of the metal wire is d, and the number of coil turns is N.
A method for lubricating a metal wire, wherein the lubricant contains one or more film base components (A) selected from the group consisting of inorganic salts and organic acid salts, and a lubricant component (B).
(2): The method for lubricating a metal wire according to (1), wherein the lubricant has a viscosity of 5 to 50 mPa·s at 25°C.
(3): The lubricant has a solid content weight ratio (B)/{(A)+(B)} of 0.05 to 0.90 between the film base component (A) and the lubricant component (B). The method for lubricating a metal wire according to (1) or (2), which is within the range.
(4): The method for lubricating a metal wire according to any one of (1) to (3), comprising a preheating step of heating the metal wire before the lubricant film forming step.
 本発明によれば、環境への負荷が大きい酸洗浄・アルカリ脱脂とリン酸塩/石けん処理の組み合わせではなく、ショットブラストと塗布型の処理剤を用いることから環境負荷を大きく低減することができ、また、バッチ式を適用することで実用的な生産効率を有することから、生産エネルギーを大きく低減させることができる。加えて、金属線材に潤滑皮膜が均一に形成される金属線材の潤滑処理方法を提供できる。 According to the present invention, the environmental impact can be significantly reduced by using shot blasting and a coating-type treatment agent, rather than the combination of acid cleaning/alkaline degreasing and phosphate/soap treatment, which have a large environmental impact. In addition, by applying a batch method, practical production efficiency is achieved, so production energy can be significantly reduced. In addition, it is possible to provide a method for lubricating a metal wire in which a lubricating film is uniformly formed on the metal wire.
コイル状金属線材の、コイル幅L、金属線材の線径d、及びコイル巻き数N、を示す模式図である。It is a schematic diagram showing the coil width L, the wire diameter d of the metal wire, and the number of coil turns N of the coiled metal wire.
 以下、本発明の内容を詳細に説明する。本発明の実施形態である金属線材の潤滑処理方法は、伸線加工に用いられるものである。伸線加工は金属線材を入り口が太く、出口が細い円錐状の穴ダイスを通すことで、金属線材の直径を細くし、長さを伸ばす引抜き加工である。 Hereinafter, the content of the present invention will be explained in detail. A method for lubricating a metal wire according to an embodiment of the present invention is used for wire drawing. Wire drawing is a drawing process that reduces the diameter and lengthens the metal wire by passing it through a conical hole die with a thick entrance and a narrow exit.
 本実施形態の潤滑処理方法が適用できる金属線材の金属種は特に制限されないが、鉄、鋼、ステンレス鋼、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、チタン、チタン合金、銅、銅合金などが挙げられる。また、金属線材の線径は、金属線材をコイル状に巻くことができれば、特に制限はない。 The metal type of the metal wire to which the lubrication treatment method of this embodiment can be applied is not particularly limited, but examples include iron, steel, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, titanium, titanium alloy, copper, copper alloy, etc. It will be done. Moreover, the wire diameter of the metal wire is not particularly limited as long as the metal wire can be wound into a coil shape.
 本実施形態の潤滑処理方法は、コイル形状に巻いた金属線材に対して、ショットブラスト処理を行う脱スケール工程、及び脱スケール工程後の金属線材に潤滑剤を塗布する潤滑皮膜形成工程、を有する。潤滑皮膜形成工程は、塗布した潤滑剤を乾燥させる乾燥工程を有していてもよい。また、本実施形態の潤滑処理方法は、コイル形状の金属線材を、そのまま段階的に処理設備を移動させて処理していくバッチ方式によるものである。なお、潤滑皮膜形成工程において、潤滑剤を塗布する前に、脱スケール工程で金属線材表面に付着したショット粒などの残留物の除去を目的として、水洗工程を設けてもよく、設けなくてもよい。 The lubrication treatment method of this embodiment includes a descaling step of performing shot blasting on a metal wire wound into a coil shape, and a lubricant film forming step of applying a lubricant to the metal wire after the descaling step. . The lubricating film forming step may include a drying step of drying the applied lubricant. Moreover, the lubrication treatment method of this embodiment is based on a batch method in which a coil-shaped metal wire is processed by moving the processing equipment step by step. In addition, in the lubricant film forming process, before applying the lubricant, a water washing process may or may not be provided for the purpose of removing residues such as shot particles that have adhered to the surface of the metal wire during the descaling process. good.
 本実施形態の潤滑処理方法において、金属線材は螺旋状に巻いたコイル形状とする。本実施形態では、コイル状の金属線材は、コイル幅をL、金属線材の線径をd、コイル巻き数をN、として、L/(d×N)≧1.1を満たす。図1に具体的に示すが、L/(d×N)はコイルのバラけ具合を示しており、この値を1.1以上とすることで、金属線材表面にショット粒が行きわたることから脱スケールが十分に行われ、その結果形成した潤滑皮膜のムラを抑制できる。好ましくは1.2以上であり、より好ましくは1.3以上である。上限は特に限定されないが、生産効率の観点から通常3.0以下であり、2.0以下であることが好ましい。
 L/(d×N)が1.1未満の場合には、金属線材表面にショット粒が十分に投射されず、脱スケール工程において酸化スケールや油などの汚れを十分に除去することができなくなる。その結果として、潤滑剤を塗布する際にはじきが生じて、それに続く乾燥によって形成される潤滑皮膜にムラが生じて、潤滑性が低下する。また、酸化スケールが残存していると、線材表面と潤滑皮膜の密着性が低下することでも、潤滑性が低下する場合がある。 
In the lubrication treatment method of this embodiment, the metal wire has a spirally wound coil shape. In this embodiment, the coiled metal wire satisfies L/(d×N)≧1.1, where the coil width is L, the wire diameter of the metal wire is d, and the number of coil turns is N. As specifically shown in Figure 1, L/(d×N) indicates the degree of dispersion of the coil, and by setting this value to 1.1 or more, shot particles will spread over the surface of the metal wire. Descaling is sufficiently carried out, and as a result, unevenness in the lubricating film formed can be suppressed. Preferably it is 1.2 or more, more preferably 1.3 or more. The upper limit is not particularly limited, but from the viewpoint of production efficiency, it is usually 3.0 or less, preferably 2.0 or less.
When L/(d×N) is less than 1.1, shot particles are not sufficiently projected onto the surface of the metal wire, and stains such as oxide scale and oil cannot be sufficiently removed in the descaling process. . As a result, repellency occurs when the lubricant is applied, and the lubricant film formed by subsequent drying becomes uneven, resulting in a decrease in lubricity. Further, if oxidized scale remains, the adhesion between the wire surface and the lubricating film may decrease, which may also reduce lubricity.
 図1に、コイル状の金属線材の、コイル幅L、金属線材の線径d、及びコイル巻き数N、を示す模式図を示す。
 コイル幅Lは、潤滑処理を行う設備に応じて適宜設定されるが、通常1m以上であり2m以上であってよく、3m以上であってよい。また上限は通常10m以下であり、8m以下であってよく、5m以下であってよい。
 金属線材の線径dは、金属線材の種類、用途などに応じて適宜設定されるが、通常1mm以上であり5mm以上であってよく、8mm以上であってよい。また上限は通常5cm以下であり、4cm以下であってよく、2cm以下であってよい。
 コイル巻き数Nは、潤滑処理を行う設備に応じて適宜設定されるが、通常30以上であり100以上であってよく、200以上であってよい。また上限は通常5000以下であり、2000以下であってよく、1000以下であってよい。
FIG. 1 is a schematic diagram showing the coil width L, the wire diameter d of the metal wire, and the number of coil turns N of a coiled metal wire.
The coil width L is appropriately set depending on the equipment that performs the lubrication process, but is usually 1 m or more, may be 2 m or more, or may be 3 m or more. Moreover, the upper limit is usually 10 m or less, may be 8 m or less, and may be 5 m or less.
The wire diameter d of the metal wire is appropriately set depending on the type of metal wire, its use, etc., but is usually 1 mm or more, may be 5 mm or more, and may be 8 mm or more. Moreover, the upper limit is usually 5 cm or less, may be 4 cm or less, and may be 2 cm or less.
The number of coil turns N is appropriately set depending on the equipment that performs the lubrication process, but is usually 30 or more, may be 100 or more, and may be 200 or more. Moreover, the upper limit is usually 5000 or less, may be 2000 or less, and may be 1000 or less.
 脱スケール工程に用いるショットブラストは、鋼球やカットワイヤ等のショット粒を圧縮空気や遠心力を用いて投射して金属線材表面に衝突させ、物理的及び/又は機械的に金属線材表面の酸化スケールを除去する方法である。ショットブラストとして既知の方法を用いることが可能であり、特に制限はない。脱スケールに要する時間の短縮を目的とし、コイル状の金属線材を回転させながらショットブラストを行ってもよい。 Shot blasting used in the descaling process uses compressed air or centrifugal force to project shot particles such as steel balls or cut wires to impact the surface of the metal wire, thereby physically and/or mechanically oxidizing the surface of the metal wire. This is a method to remove scale. It is possible to use a method known as shot blasting, and there are no particular limitations. For the purpose of shortening the time required for descaling, shot blasting may be performed while rotating the coiled metal wire.
 本実施形態の潤滑処理方法では、コイル状の金属線材に対して上記の脱スケール処理をした後に、金属線材と潤滑剤とを接触させて、金属線材に潤滑剤を塗布する潤滑皮膜形成工程、を有する。金属線材と潤滑剤とを接触させる前に、金属線材を予備加熱する予備加熱工程、を有することが好ましい。予備加熱によって、金属線材に塗布した潤滑剤の乾燥を早めることができる。そして、潤滑剤の乾燥を早めることで、線材表面での液だれを抑制し、ムラの少ない均一な潤滑皮膜を形成させることができる。
 予備加熱の方法は特に限定されず、湯洗加熱、高周波加熱、熱風加熱、蒸気加熱などが採用できるが、本実施形態では、湯洗加熱が好ましい。湯洗加熱は、脱スケール工程で線材表面に付着したショット粒などの残留物の除去を目的とした水洗を兼ねて行ってもよい。予備加熱の温度は特に限定されないが、金属線材の温度が70~150℃となるように行なうことが好ましい。この温度範囲で予備加熱を行うことで、均一で質のよい潤滑皮膜を得ることができる。
The lubrication treatment method of the present embodiment includes a lubricating film forming step of applying the lubricant to the metal wire by bringing the metal wire into contact with the lubricant after performing the above-described descaling treatment on the coiled metal wire; has. It is preferable to include a preheating step of preheating the metal wire before bringing the metal wire into contact with the lubricant. Preheating can speed up the drying of the lubricant applied to the metal wire. By speeding up the drying of the lubricant, dripping on the wire surface can be suppressed and a uniform lubricant film with less unevenness can be formed.
The preheating method is not particularly limited, and hot water heating, high frequency heating, hot air heating, steam heating, etc. can be employed, but hot water heating is preferable in this embodiment. The hot water washing and heating may also be performed as water washing for the purpose of removing residues such as shot grains attached to the wire surface during the descaling process. Although the temperature of preheating is not particularly limited, it is preferable to conduct the preheating so that the temperature of the metal wire is 70 to 150°C. By performing preheating in this temperature range, a uniform and high-quality lubricating film can be obtained.
 金属線材と潤滑剤とを接触させる方法としては特に限定されないが、例えば、浸漬法、スプレー法、コイル上部からの流し掛け法、などを適用することができる。金属線材と潤滑剤との接触は、金属線材表面が潤滑剤で十分に覆われればよく、接触時間は特に制限はない。金属線材と潤滑剤との接触の際、潤滑剤を接触させる方法に応じて適宜、コイル状の金属線材のコイル幅を伸縮してよい。またこのとき、L/(d×N)≧1.1の式を満たしていてもよく、満たしていなくてもよい。潤滑剤は、乾燥速度を高めるために、40~70℃に加温して、金属線材と接触させてもよい。 The method of bringing the metal wire into contact with the lubricant is not particularly limited, but for example, a dipping method, a spray method, a pouring method from above the coil, etc. can be applied. The contact time between the metal wire and the lubricant is not particularly limited as long as the surface of the metal wire is sufficiently covered with the lubricant. When the metal wire is brought into contact with the lubricant, the coil width of the coiled metal wire may be expanded or contracted as appropriate depending on the method of bringing the lubricant into contact. Further, at this time, the expression L/(d×N)≧1.1 may or may not be satisfied. The lubricant may be heated to 40 to 70° C. and brought into contact with the metal wire in order to increase the drying rate.
 潤滑剤は、水系媒体中に無機塩、及び有機酸塩から選ばれる一種以上の皮膜ベース成分(A)と潤滑成分(B)とを主成分として含む、水性潤滑剤である。本実施形態において皮膜ベース成分(A)と潤滑成分(B)を含む潤滑剤から形成される潤滑皮膜は、伸線加工時の追従性が良く、ダイス工具との焼付きに対する硬度と強度を有し、滑り性が良く、摩擦係数を低減させることができる。 The lubricant is an aqueous lubricant containing as main components one or more film base components (A) selected from inorganic salts and organic acid salts and a lubricant component (B) in an aqueous medium. In this embodiment, the lubricating film formed from the lubricant containing the film base component (A) and the lubricating component (B) has good followability during wire drawing processing and has hardness and strength against seizing with the die tool. However, it has good slip properties and can reduce the coefficient of friction.
 水性媒体としては、水または水混和性有機溶媒との混合物であれば特に限定されるものではない。なお、混合物における水の質量%は、50質量%以上であればよく、80質量%以上、90質量%以上、95質量%以上、99質量%以上の順でより好ましい。 The aqueous medium is not particularly limited as long as it is water or a mixture with a water-miscible organic solvent. In addition, the mass % of water in the mixture may be 50 mass % or more, and is more preferably in the order of 80 mass % or more, 90 mass % or more, 95 mass % or more, and 99 mass % or more.
 水混和性有機溶媒としては、水と混和するものであれば特に限定されるものではなく、例えば、アセトン、メチルエチルケトン等のケトン系溶媒;N,N’-ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;エチレングリコールモノブチルエーテル、エチレングリコールモノへキシルエーテル等のエーテル系溶媒;1-メチル-2-ピロリドン、1-エチル-2-ピロリドン等のピロリドン系溶媒等が挙げられる。これらの水混和性有機溶媒は1種を水と混合させてもよいし、2種以上を水に混合させてもよい。 Water-miscible organic solvents are not particularly limited as long as they are miscible with water; examples include ketone solvents such as acetone and methyl ethyl ketone; amide solvents such as N,N'-dimethylformamide and dimethylacetamide. ; Alcohol solvents such as methanol, ethanol, and isopropanol; Ether solvents such as ethylene glycol monobutyl ether and ethylene glycol monohexyl ether; Pyrolidone solvents such as 1-methyl-2-pyrrolidone and 1-ethyl-2-pyrrolidone, etc. can be mentioned. One kind of these water-miscible organic solvents may be mixed with water, or two or more kinds thereof may be mixed with water.
 皮膜ベース成分(A)の無機塩としては、珪酸塩、ホウ酸塩、リン酸塩、炭酸塩、硫酸塩、硝酸塩、タングステン酸塩、モリブデン酸塩、バナジン酸塩などがあげられる。これらを構成する塩としては、例えば、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩など)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩など)、アンモニウム塩、アミン塩(エチルアミン塩など)などがあげられる。伸線加工時に潤滑皮膜の追従性を得られるものであれば、水に対して溶解するもの、溶解しないものは問わない。
 具体例としては、珪酸ナトリウム、ホウ酸リチウム(四ホウ酸リチウム)、ホウ酸ナトリウム(四ホウ酸ナトリウム)、ホウ酸カリウム(四ホウ酸カリウム)、リン酸ナトリウム、リン酸カルシウム、トリポリリン酸ナトリウム、炭酸ナトリウム、炭酸マグネシウム、硫酸カリウム、硫酸カルシウム、タングステン酸ナトリウムなどを挙げることができる。これらの無機塩は単独で用いてもよいし、2種類以上を組み合わせて使用してもよい。
Examples of the inorganic salt of the film base component (A) include silicates, borates, phosphates, carbonates, sulfates, nitrates, tungstates, molybdates, vanadates, and the like. Examples of the salts that constitute these include alkali metal salts (sodium salts, potassium salts, lithium salts, etc.), alkaline earth metal salts (magnesium salts, calcium salts, etc.), ammonium salts, amine salts (ethylamine salts, etc.), etc. can be given. It does not matter whether it is soluble in water or not, as long as it can provide the followability of a lubricating film during wire drawing.
Specific examples include sodium silicate, lithium borate (lithium tetraborate), sodium borate (sodium tetraborate), potassium borate (potassium tetraborate), sodium phosphate, calcium phosphate, sodium tripolyphosphate, and sodium carbonate. , magnesium carbonate, potassium sulfate, calcium sulfate, sodium tungstate, and the like. These inorganic salts may be used alone or in combination of two or more.
 皮膜ベース成分(A)の有機酸塩としては、脂肪族カルボン酸塩、芳香族カルボン酸塩、有機ホスホン酸塩などがある。ここで脂肪族カルボン酸塩は、分子内に2個以上のカルボキシル基が存在してもよく、また、水酸基を1個以上有してもよく、炭素数は2~8が好ましい。例えば、シュウ酸塩、マレイン酸塩、リンゴ酸塩、酒石酸塩、グルコン酸塩、クエン酸塩、グルタル酸塩などがあげられる。芳香族カルボン酸塩は、分子内に2個以上のカルボキシル基が存在してもよく、また、水酸基を1個以上有してもよい。例えば、安息香酸塩、フタル酸塩、イソフタル酸塩、テレフタル酸塩、サリチル酸塩などがあげられる。有機ホスホン酸塩は、分子内に2個以上のホスホン基が存在してもよく、また、水酸基を1個以上有してもよい。例えば、オクチルホスホン酸塩、1-ヒドロキシエタン-1,1-ジホスホン酸塩などがあげられる。
 これらを構成する塩としては、例えば、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩など)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩など)、アンモニウム塩、アミン塩(エチルアミン塩など)などがある。伸線加工時に潤滑皮膜の追従性を得られるものであれば、水に対して溶解するもの、溶解しないものは問わない。
 具体例としては、シュウ酸リチウム、リンゴ酸ナトリウム、酒石酸ナトリウム、グルコン酸カリウム、クエン酸カルシウム、グルタル酸マグネシウム、安息香酸ナトリウム、サリチル酸ナトリウム、1-ヒドロキシエタン-1,1-ジホスホン酸ナトリウムなどを挙げることができる。これらの有機酸塩は単独で用いてもよいし、2種類以上を組み合わせて使用してもよい。
Examples of the organic acid salt of the film base component (A) include aliphatic carboxylates, aromatic carboxylates, and organic phosphonates. Here, the aliphatic carboxylic acid salt may have two or more carboxyl groups or one or more hydroxyl groups in its molecule, and preferably has 2 to 8 carbon atoms. Examples include oxalate, maleate, malate, tartrate, gluconate, citrate, glutarate, and the like. The aromatic carboxylic acid salt may have two or more carboxyl groups in the molecule, and may also have one or more hydroxyl groups. Examples include benzoates, phthalates, isophthalates, terephthalates, salicylates, and the like. The organic phosphonate may have two or more phosphonic groups in the molecule, and may also have one or more hydroxyl groups. Examples include octylphosphonate and 1-hydroxyethane-1,1-diphosphonate.
Examples of the salts that constitute these include alkali metal salts (sodium salts, potassium salts, lithium salts, etc.), alkaline earth metal salts (magnesium salts, calcium salts, etc.), ammonium salts, amine salts (ethylamine salts, etc.), etc. There is. It does not matter whether it is soluble in water or not, as long as it can provide the followability of a lubricating film during wire drawing.
Specific examples include lithium oxalate, sodium malate, sodium tartrate, potassium gluconate, calcium citrate, magnesium glutarate, sodium benzoate, sodium salicylate, sodium 1-hydroxyethane-1,1-diphosphonate, etc. be able to. These organic acid salts may be used alone or in combination of two or more.
 潤滑成分(B)としては、油、ワックス、石けん、二硫化モリブデン、グラファイト、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂、ホパイト(リン酸亜鉛)、極圧剤などを挙げることができる。ワックスとしては、例えば、ポリエチレンワックス、マイクロクリスタリンワックス、ポリプロピレンワックス、カルナバワックスが挙げられるが、ポリエチレンワックスが最も好ましい。石けんは、脂肪酸の金属塩などであり、より具体的には、オクタン酸、ラウリン酸、パルミチン酸、オレイン酸、ステアリン酸などの炭素数8~22の飽和、もしくは不飽和脂肪酸の金属塩を挙げることができる。該金属塩としては、例えば、ナトリウム塩、カリウム塩などのアルカリ金属塩の他、カルシウム塩、亜鉛塩、マグネシウム塩、バリウム塩などの多価金属塩を挙げることができる。二硫化モリブデン、グラファイト、ポリテトラフルオロエチレン、ホパイトなどの固体粒子からなる、いわゆる固体潤滑剤については、平均粒子径や分子量などに特に制限はない。極圧剤としては、例えば、硫黄系極圧剤、有機モリブデン系極圧剤、リン系極圧剤などを挙げることができる。より具体的には、硫化オレフィン、モリブデンジチオホスフェート(MoDTP)、リン酸エステルなどが挙げられる。これらの潤滑成分は、単独で用いてもよいし、2種類以上を組み合わせて使用してもよい。 Examples of the lubricating component (B) include oil, wax, soap, molybdenum disulfide, graphite, fluororesins such as polytetrafluoroethylene (PTFE), hopite (zinc phosphate), extreme pressure agents, and the like. Examples of the wax include polyethylene wax, microcrystalline wax, polypropylene wax, and carnauba wax, and polyethylene wax is most preferred. Soaps include metal salts of fatty acids, and more specifically metal salts of saturated or unsaturated fatty acids having 8 to 22 carbon atoms such as octanoic acid, lauric acid, palmitic acid, oleic acid, and stearic acid. be able to. Examples of the metal salts include alkali metal salts such as sodium salts and potassium salts, as well as polyvalent metal salts such as calcium salts, zinc salts, magnesium salts, and barium salts. Regarding so-called solid lubricants made of solid particles such as molybdenum disulfide, graphite, polytetrafluoroethylene, and hopite, there are no particular restrictions on the average particle diameter or molecular weight. Examples of the extreme pressure agent include a sulfur-based extreme pressure agent, an organic molybdenum-based extreme pressure agent, and a phosphorus-based extreme pressure agent. More specifically, sulfurized olefins, molybdenum dithiophosphate (MoDTP), phosphoric acid esters, etc. may be mentioned. These lubricating components may be used alone or in combination of two or more.
 潤滑剤における、皮膜ベース成分(A)と潤滑成分(B)との含有比率について説明する。皮膜ベース成分(A)と潤滑成分(B)との固形分重量比[(B)/{(A)+(B)}]は、0.05~0.90の範囲内であることが好ましく、0.15~0.65の範囲内であることがより好ましい。[(B)/{(A)+(B)}]が上記範囲内であることで、潤滑成分(B)に期待する摩擦低減作用が十分に発揮され、潤滑皮膜の追従性が良好となる。
 潤滑剤中における上記成分(A)と成分(B)の合計含有量は特に限定されないが、通常潤滑剤中の上記成分(A)と成分(B)の合計量が1~50重量%の範囲内であり、5~20重量%の範囲内であることが好ましい。
The content ratio of the film base component (A) and the lubricant component (B) in the lubricant will be explained. The solid content weight ratio [(B)/{(A)+(B)}] of the film base component (A) and the lubricating component (B) is preferably within the range of 0.05 to 0.90. , more preferably within the range of 0.15 to 0.65. When [(B)/{(A)+(B)}] is within the above range, the expected friction-reducing effect of the lubricant component (B) is fully exhibited, and the followability of the lubricant film is improved. .
The total content of the above components (A) and (B) in the lubricant is not particularly limited, but the total content of the above components (A) and (B) in the lubricant is usually in the range of 1 to 50% by weight. It is preferably within the range of 5 to 20% by weight.
 潤滑剤の粘度は特に限定されないが、25℃において5~50mPa・sであることが好ましく、10~40mPa・sであることがより好ましい。潤滑剤の粘度を上記範囲とすることで、潤滑剤の乾燥後にムラが少なく均一性の高い潤滑皮膜が形成され、優れた潤滑性が皮膜に発現する。ここで、本明細書にいう粘度は、B型粘度計(ブルックフィールド型粘度計)による測定値である。B型粘度計は液体中にスピンドルと呼ばれる回転子を浸し、スピンドルを回転させた時の流動抵抗(トルク)を計測し、粘度を算出するものである。測定条件は以下のとおりであり、スピンドルの回転開始から1分後の測定値とした。
<粘度測定条件> 
機器:東機産業株式会社 TVB-10M
スピンドル:直径25mm、高さ90mm
回転速度:50rpm
The viscosity of the lubricant is not particularly limited, but it is preferably 5 to 50 mPa·s, more preferably 10 to 40 mPa·s at 25°C. By setting the viscosity of the lubricant within the above range, a lubricating film with little unevenness and high uniformity is formed after the lubricant dries, and the film exhibits excellent lubricity. Here, the viscosity referred to in this specification is a value measured by a B-type viscometer (Brookfield-type viscometer). A B-type viscometer immerses a rotor called a spindle in a liquid and measures the flow resistance (torque) when rotating the spindle to calculate the viscosity. The measurement conditions were as follows, and the values were measured 1 minute after the start of rotation of the spindle.
<Viscosity measurement conditions>
Equipment: Toki Sangyo Co., Ltd. TVB-10M
Spindle: diameter 25mm, height 90mm
Rotation speed: 50rpm
 潤滑剤の粘度を所望の範囲内に調整する目的で、粘度調整剤(C)を配合してもよい。粘度調整剤としては特に制限はされないが、例えば、水性樹脂や無機系の粘土鉱物が挙げられる。水性樹脂としては、ビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体(CMC:カルボキシメチルセルロースなど)、ポリマレイン酸系、ポリオレフィン系(PVA:ポリビニルアルコールなど)などが挙げられる。無機系の粘土鉱物としては、モンモリロナイト、ソーコナイト、バイデライト、サポナイト、ヘクトライトなどのスメクタイト系粘土鉱物が挙げられる。これらを単独で配合してもよいし、2種類以上を組み合わせて配合してもよい。
 潤滑剤中における粘度調整剤(C)の含有量は特に限定されないが、通常潤滑剤中で通常0.1~10重量%の範囲内であり、0.5~5重量%の範囲内であることが好ましい。
A viscosity modifier (C) may be added for the purpose of adjusting the viscosity of the lubricant within a desired range. The viscosity modifier is not particularly limited, but includes, for example, aqueous resins and inorganic clay minerals. Examples of the aqueous resin include vinyl resin, acrylic resin, epoxy resin, urethane resin, phenol resin, cellulose derivative (CMC: carboxymethyl cellulose, etc.), polymaleic acid type, polyolefin type (PVA: polyvinyl alcohol, etc.), and the like. Examples of inorganic clay minerals include smectite clay minerals such as montmorillonite, sauconite, beidellite, saponite, and hectorite. These may be blended alone or in combination of two or more.
The content of the viscosity modifier (C) in the lubricant is not particularly limited, but it is usually in the range of 0.1 to 10% by weight, and in the range of 0.5 to 5% by weight in the lubricant. It is preferable.
 潤滑剤は、本発明の効果を損なわない範囲で、潤滑皮膜形成後の金属線材の発錆を抑制する目的で、防錆成分を配合してもよい。ここで用いる防錆成分は金属材料での錆の発生を抑制する腐食抑制剤であり、金属表面での酸化還元反応を抑制するインヒビターとして作用する成分である。防錆成分としては、亜硝酸塩、亜リン酸塩、アミン類、アゾール類、ベンゾトリアゾール類、キレート化合物など、公知のものを用いることができる。また、潤滑成分を潤滑剤中に分散させるために界面活性剤が必要な場合には、非イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、及び陽イオン性界面活性剤のいずれも用いることができる。 The lubricant may contain a rust-preventive component for the purpose of suppressing rusting of the metal wire after the lubricant film is formed, within a range that does not impair the effects of the present invention. The antirust component used here is a corrosion inhibitor that suppresses the occurrence of rust on metal materials, and is a component that acts as an inhibitor to suppress redox reactions on the metal surface. As the rust preventive component, known ones such as nitrites, phosphites, amines, azoles, benzotriazoles, chelate compounds, etc. can be used. In addition, when a surfactant is required to disperse lubricant components in a lubricant, nonionic surfactants, anionic surfactants, amphoteric surfactants, and cationic surfactants can be used. Either can be used.
 金属線材に塗布した潤滑剤の乾燥は、加熱乾燥や風乾などによって行なうことができる。乾燥温度としては、特に制限されるものではないが、60~150℃の雰囲気温度で行なうことが好ましい。 The lubricant applied to the metal wire can be dried by heating or air drying. The drying temperature is not particularly limited, but it is preferably carried out at an ambient temperature of 60 to 150°C.
 本実施形態に係る潤滑処理方法によって形成する潤滑皮膜の付着重量は、加工の難易度などによって適宜調整すればよいが、伸線加工時の焼付き、キズ付きの防止や摩擦低減、カス発生抑制の観点から、乾燥皮膜で1g/m以上であることが好ましく、2~18g/mの範囲内であることがより好ましい。潤滑皮膜の付着重量は、塗布する潤滑剤の濃度を適宜コントロールすることで、調整することができる。付着重量の測定は、潤滑処理した金属線材を一定の長さに切り出し、この重量を測定し、次いで皮膜を剥離して金属線材単独の重量を測定し、この重量差を求め、重量差と表面積(切り出した長さより算出)より算出することができる。なお、皮膜の剥離は、例えば60℃の湯水に1分間浸漬することで行うことができる。 The attached weight of the lubricant film formed by the lubrication treatment method according to the present embodiment may be adjusted as appropriate depending on the difficulty of processing, etc., but it can prevent seizure and scratching during wire drawing, reduce friction, and suppress generation of scum. From this point of view, the dry film weight is preferably 1 g/m 2 or more, and more preferably within the range of 2 to 18 g/m 2 . The weight of the lubricant film attached can be adjusted by appropriately controlling the concentration of the applied lubricant. To measure the attached weight, cut the lubricated metal wire to a certain length, measure the weight, peel off the coating, measure the weight of the metal wire alone, calculate the weight difference, and calculate the weight difference and surface area. (Calculated from the cut length) Note that the film can be peeled off by immersing the film in hot water at 60° C. for 1 minute, for example.
 以下、実施例と比較例とを用いることによって、本発明をその効果とともに更に具体的に説明する。なお、本発明の範囲はこれらの実施例によって制限されるものではない。 Hereinafter, the present invention will be explained in more detail along with its effects by using Examples and Comparative Examples. Note that the scope of the present invention is not limited by these Examples.
(1)水性潤滑剤の調製
 実施例、及び比較例に係る各種の水性潤滑剤の調製方法を以下に示す。
 まず、表1に示す成分(A)と、成分(B)との組み合わせを所定の割合で水に添加した。なお、成分(A)と成分(B)の合計固形分重量と水との重量比を10:90とした。次に、表1に示す粘度調整剤(C)を所定の粘度となるように添加し、各種水性潤滑剤を調製した。なお、後述する潤滑皮膜の外観評価のために、すべての水性潤滑剤に固形分基準として0.5%の水性蛍光染料(ビストリアジニルスチルベンジスルホン酸誘導体)を含有させた。
(1) Preparation of water-based lubricants Methods for preparing various water-based lubricants according to Examples and Comparative Examples are shown below.
First, a combination of component (A) and component (B) shown in Table 1 was added to water at a predetermined ratio. The weight ratio of the total solid weight of component (A) and component (B) to water was 10:90. Next, a viscosity modifier (C) shown in Table 1 was added to give a predetermined viscosity to prepare various water-based lubricants. In order to evaluate the appearance of the lubricating film, which will be described later, all aqueous lubricants contained 0.5% of an aqueous fluorescent dye (bistriazinylstilbene disulfonic acid derivative) on a solid content basis.
(2)引抜き加工試験用潤滑処理
 表1に示すバラけ具合(L/(d×N))の金属線材に対し、ショットブラストを行い、表1に示す予備加熱の有無、表1に示す水性潤滑剤の組み合わせで、引抜き加工試験用の金属線材に潤滑処理をした。金属線材にはSCM435の鋼線材(φ13.0mm、長さ200m)を用いた。金属線材はコイル形状にして、コイル直径は1.3m、コイル幅L(線材の両末端間の距離)と線径dとコイル巻き数Nは、表1に示す(L/(d×N))の値となるようにした。ショットブラスト、及び潤滑処理の詳細を以下に示す。
(2) Lubricating treatment for drawing test The metal wires with the degree of dispersion (L/(d×N)) shown in Table 1 were subjected to shot blasting, with or without preheating shown in Table 1, and with or without the water lubrication shown in Table 1. A combination of lubricants was used to lubricate metal wire for drawing tests. As the metal wire, SCM435 steel wire (φ13.0 mm, length 200 m) was used. The metal wire is in the form of a coil, the coil diameter is 1.3 m, the coil width L (distance between both ends of the wire), the wire diameter d, and the number of coil turns N are shown in Table 1 (L/(d×N) ). Details of shot blasting and lubrication treatment are shown below.
(2-1)ショットブラスト
<実施例1~31、及び比較例1~7の脱スケール処理:ショットブラスト>
ショット条件:ショット球(スチールボール、硬さ:HRC40~50、φ0.5mm)、時間10分、圧力7kgf/cm
(2-1) Shot blasting <Descaling treatment of Examples 1 to 31 and Comparative Examples 1 to 7: shot blasting>
Shot conditions: shot ball (steel ball, hardness: HRC40-50, φ0.5mm), time 10 minutes, pressure 7kgf/cm 2
(2-2)予備加熱
 予備加熱を行なう実施例、比較例では、脱スケール処理の後、潤滑処理(水性潤滑剤の塗布)の前に、湯洗を実施した。
 湯洗条件:水道水、80℃、1分、浸漬
(2-2) Preheating In Examples and Comparative Examples in which preheating was performed, hot water washing was performed after the descaling treatment and before the lubrication treatment (application of water-based lubricant).
Hot water washing conditions: Tap water, 80℃, 1 minute, immersion
(2-3)潤滑処理
 脱スケール処理、及び予備加熱を行う実施例、比較例では予備加熱後の金属線材表面に水性潤滑剤を塗布した後、乾燥により水分を蒸発させ、潤滑皮膜を形成させた。また、潤滑処理後に金属線材の一部を切り出し、潤滑皮膜を剥離することで、潤滑皮膜の付着重量を算出した。なお、皮膜の剥離は60℃の湯水に1分間浸漬して行った。
 潤滑剤の塗布:各種の水性潤滑剤、60℃、1分、浸漬
 乾燥:加熱乾燥、100℃、10分
(2-3) Lubrication treatment In Examples and Comparative Examples in which descaling treatment and preheating are performed, a water-based lubricant is applied to the surface of the metal wire after preheating, and then water is evaporated by drying to form a lubricant film. Ta. Furthermore, after the lubrication treatment, a part of the metal wire was cut out and the lubricant film was peeled off to calculate the weight of the lubricant film attached. The film was peeled off by immersing it in hot water at 60°C for 1 minute.
Lubricant application: Various water-based lubricants, 60℃, 1 minute, immersion Drying: Heat drying, 100℃, 10 minutes
(3)潤滑皮膜の均一性評価
 (2)の各潤滑処理によって形成された潤滑皮膜の均一性を評価した。評価は特許第5046545号公報の発明に準じた手法で行なった。暗所にてブラックライトで紫外線を照射することで潤滑皮膜を発光させ、皮膜の形成状態を目視にて観察し、以下の評価基準により均一性を評価した。B以上で実用レベルと判断した。
(3) Evaluation of uniformity of lubricant film The uniformity of the lubricant film formed by each lubrication treatment in (2) was evaluated. The evaluation was performed using a method based on the invention disclosed in Japanese Patent No. 5046545. The lubricating film was made to emit light by irradiating it with ultraviolet rays using a black light in a dark place, and the state of film formation was visually observed, and the uniformity was evaluated using the following evaluation criteria. A value of B or higher was judged to be at a practical level.
<評価基準>
S:皮膜が全面に付着しており、且つ、均一に形成されている。
A:皮膜が全面に付着しているが、皮膜の一部が不均一に形成されている。
B:皮膜が全面に付着しているが、皮膜の全体が不均一に形成されている。
C:皮膜が形成していない部分がある。
<Evaluation criteria>
S: The film adheres to the entire surface and is formed uniformly.
A: The film is adhered to the entire surface, but some parts of the film are unevenly formed.
B: The film adheres to the entire surface, but the film is formed non-uniformly throughout.
C: There are parts where no film is formed.
(4)引抜き加工試験
 (2)の各潤滑処理を施した金属線材の潤滑性能を評価するために、引抜き加工を行ない、引抜き加工時の潤滑性、カス発生状態を以下の評価基準により評価した。引抜き加工は、Rダイス(φ12.0mm)を用いて金属線材を引抜くことにより行なった。
(4) Drawing process test In order to evaluate the lubrication performance of the metal wire rods subjected to each lubrication treatment in (2), drawing processes were performed, and the lubricity and scum generation state during the drawing process were evaluated using the following evaluation criteria. . The drawing process was performed by drawing the metal wire using an R die (φ12.0 mm).
<潤滑性の評価基準>
 引抜き加工時の潤滑性が不足すると、潤滑皮膜切れによって線材とRダイスの直接接触が生じて、焼付きやキズが発生する。B以上で実用レベルの性能を有すると判断した。
S:潤滑性が極めて良好であり、線材表面やRダイスに焼付きやキズ等が全く認められない。
A:潤滑性が良好であり、線材表面やRダイスに面積率で5%未満の範囲で軽微な焼付きやキズ等が認められる程度である。
B:潤滑性が標準的であり、線材表面やRダイスに面積率で5%以上10%未満の範囲で軽微な焼付きやキズ等が認められる。
C:潤滑性が不良であり、線材表面やRダイスに面積率で10%以上の範囲で焼付きやキズ等が認められる、または、潤滑不足のため、引抜き加工時に線材が破断してしまう。
<Lubricity evaluation criteria>
If lubricity during drawing is insufficient, the wire rod and R die come into direct contact due to breakage of the lubricant film, resulting in seizure and scratches. It was judged that the performance was at a practical level if it was B or higher.
S: The lubricity is extremely good, and no seizures or scratches are observed on the wire surface or R die.
A: The lubricity is good, and only slight seizures, scratches, etc. are observed on the wire surface and R die in an area ratio of less than 5%.
B: Lubricity is standard, and slight seizures, scratches, etc. are observed on the wire surface and R die in an area ratio of 5% or more and less than 10%.
C: The lubricity is poor, and seizures, scratches, etc. are observed on the wire surface and R die in an area ratio of 10% or more, or the wire breaks during drawing due to insufficient lubrication.
<カス発生状態の評価基準>
 引抜き加工の際、潤滑皮膜のカス発生量が多いと、潤滑カスがRダイスに詰まり、線材表面に押込み痕が発生し、表面品質が低下することがある。また、Rダイス周辺にカスが飛散、堆積し、作業環境が悪化する。B以上で実用レベルの性能を有すると判断した。
S:カスの発生がほとんど認められない:カス発生量は潤滑皮膜量の10%未満。
A:カス発生量が少ない:カス発生量は潤滑皮膜量の10%以上20%未満。
B:カス発生量がやや多い:カス発生量は潤滑皮膜量の20%以上40%未満。
C:カス発生量が多い:カス発生量は潤滑皮膜量の40%以上。
<Evaluation criteria for debris generation status>
During drawing, if a large amount of lubricant film sludge is generated, the lubrication sludge may clog the R die, causing indentation marks on the wire surface and degrading the surface quality. In addition, debris scatters and accumulates around the R die, deteriorating the working environment. It was judged that the performance was at a practical level if it was B or higher.
S: Almost no scum is observed: The amount of scum generated is less than 10% of the amount of lubricating film.
A: Low amount of scum: The amount of scum generated is 10% or more and less than 20% of the amount of lubricating film.
B: Slightly large amount of scum generation: The amount of scum generation is 20% or more and less than 40% of the amount of lubricating film.
C: A large amount of scum is generated: The amount of scum generated is 40% or more of the amount of lubricating film.
 試験結果を表2に示す。表2から明らかなように、実施例1~31によって形成された潤滑皮膜は、皮膜均一性、引抜き加工試験での潤滑性、及びカス発生状態の評価において、実用レベルであった。
 一方で、脱スケール工程(ショットブラスト)での金属線材のコイルのバラけ具合が小さい比較例1~4は、潤滑性、カス発生状態が不良であった。
 また、皮膜ベース成分(A)と潤滑成分(B)のいずれかしか含有しない水性潤滑剤組成である比較例5~7は、引抜き加工試験での潤滑性が不良であった。
The test results are shown in Table 2. As is clear from Table 2, the lubricating films formed in Examples 1 to 31 were at a practical level in terms of film uniformity, lubricity in the drawing test, and evaluation of the state of scum generation.
On the other hand, Comparative Examples 1 to 4, in which the degree of disintegration of the metal wire coil in the descaling process (shot blasting) was small, had poor lubricity and scum generation.
Furthermore, Comparative Examples 5 to 7, which were water-based lubricant compositions containing only either the film base component (A) or the lubricant component (B), had poor lubricity in the drawing test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、本発明については、具体的な実施例を参照して詳細に説明されるが、本発明の趣旨及び範囲から離れることなく、種々の変更、改変を施すことができることは、当業者には明らかである。 Although the present invention will be described in detail with reference to specific examples, those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit and scope of the present invention. it is obvious.

Claims (4)

  1.  コイル状の金属線材をバッチ式で潤滑処理する方法であって、
     コイル状の金属線材にショットブラスト処理を行う脱スケール工程、及び脱スケール工程後の金属線材に潤滑剤を塗布する潤滑皮膜形成工程、を有し、
     前記脱スケール工程において、前記コイル状の金属線材は、コイル幅をL、金属線材の線径をd、コイル巻き数をN、としてL/(d×N)≧1.1を満たし、
     前記潤滑剤は、無機塩、及び有機酸塩からなる群より選ばれる一種以上の皮膜ベース成分(A)と、潤滑成分(B)と、を含有する、金属線材の潤滑処理方法。
    A method for batch-type lubrication of coiled metal wire, the method comprising:
    A descaling process in which a coiled metal wire is shot blasted, and a lubricant film forming process in which a lubricant is applied to the metal wire after the descaling process,
    In the descaling step, the coiled metal wire satisfies L/(d×N)≧1.1, where the coil width is L, the wire diameter of the metal wire is d, and the number of coil turns is N.
    A method for lubricating a metal wire, wherein the lubricant contains one or more film base components (A) selected from the group consisting of inorganic salts and organic acid salts, and a lubricant component (B).
  2.  前記潤滑剤は、25℃での粘度が5~50mPa・sである、請求項1に記載の金属線材の潤滑処理方法。 The method for lubricating a metal wire according to claim 1, wherein the lubricant has a viscosity of 5 to 50 mPa·s at 25°C.
  3.  前記潤滑剤は、皮膜ベース成分(A)と前記潤滑成分(B)との固形分重量比(B)/{(A)+(B)}が0.05~0.90の範囲内である、請求項1又は2に記載の金属線材の潤滑処理方法。 The lubricant has a solid content weight ratio (B)/{(A)+(B)} of the film base component (A) and the lubricant component (B) within a range of 0.05 to 0.90. The method for lubricating a metal wire according to claim 1 or 2.
  4.  前記潤滑皮膜形成工程の前に、金属線材を加熱する予備加熱工程、を有する、請求項1~3のいずれか1項に記載の金属線材の潤滑処理方法。
     
    The method for lubricating a metal wire according to any one of claims 1 to 3, further comprising a preheating step of heating the metal wire before the lubricant film forming step.
PCT/JP2023/014820 2022-04-19 2023-04-12 Lubrication treatment method for metal wire material WO2023204117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-068880 2022-04-19
JP2022068880A JP7428746B2 (en) 2022-04-19 2022-04-19 Lubrication treatment method for metal wire

Publications (1)

Publication Number Publication Date
WO2023204117A1 true WO2023204117A1 (en) 2023-10-26

Family

ID=88420045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014820 WO2023204117A1 (en) 2022-04-19 2023-04-12 Lubrication treatment method for metal wire material

Country Status (2)

Country Link
JP (1) JP7428746B2 (en)
WO (1) WO2023204117A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102532U (en) * 1983-12-19 1985-07-12 プレシジョンスプリング株式会社 Coil spring for slide valve device
WO2002012420A1 (en) * 2000-08-07 2002-02-14 Nihon Parkerizing Co., Ltd Aqueous lubricant for plastic working of metallic material and method for forming lubricant film
WO2003035929A1 (en) * 2001-10-19 2003-05-01 Nihon Parkerizing Co., Ltd. Process for producing metal wire rod for plastic working

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124157A (en) 2002-10-01 2004-04-22 O & K:Kk Method for lubrication film treatment of wire, lubrication film treatment apparatus, and continuous wire drawing mechanism
JP6362379B2 (en) 2014-03-28 2018-07-25 株式会社神戸製鋼所 Steel wire having a film excellent in corrosion resistance and workability and method for producing the same
JP2019209357A (en) 2018-06-05 2019-12-12 大同特殊鋼株式会社 Binding method of metal wire coil and lubricant coating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102532U (en) * 1983-12-19 1985-07-12 プレシジョンスプリング株式会社 Coil spring for slide valve device
WO2002012420A1 (en) * 2000-08-07 2002-02-14 Nihon Parkerizing Co., Ltd Aqueous lubricant for plastic working of metallic material and method for forming lubricant film
WO2003035929A1 (en) * 2001-10-19 2003-05-01 Nihon Parkerizing Co., Ltd. Process for producing metal wire rod for plastic working

Also Published As

Publication number Publication date
JP2023158855A (en) 2023-10-31
JP7428746B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
JP5682021B2 (en) Metallic material with poor crystallinity and excellent moisture absorption, corrosion resistance and workability Water-based lubricant for plastic working and metal material with its lubricating film formed
WO2015146848A1 (en) Steel wire rod having lubricating coating film that has excellent corrosion resistance and workability
WO2002014458A1 (en) Water-based composition for protective film formation
KR100621693B1 (en) Aqueous lubricant for plastic working of metallic material and method of lubricant film processing
JP5355583B2 (en) Dry film corrosion resistant cold forming lubricant
EP1449936A1 (en) Process for producing metal wire rod for plastic working
KR100621692B1 (en) Aqueous lubricant for plastic working of metallic material and method for forming lubricant film
WO2015005142A1 (en) Aqueous lubricant for plastic working of metal material and having superior gas clogging resistance and post-moisture absorption workability
EP3124582B1 (en) Aqueous lubricating coating agent having excellent corrosion resistance and workability, and metal material
RU2343223C2 (en) Metal plate, manufacturing method of metal plate, water solution, usage of water solution, concentrate for solution preparation, usage of metal plate
JP6362379B2 (en) Steel wire having a film excellent in corrosion resistance and workability and method for producing the same
CN108138327B (en) Steel wire rod excellent in corrosion resistance and appearance after working
JP7428746B2 (en) Lubrication treatment method for metal wire
JP6216208B2 (en) Non-phosphating agent for plastic working, treatment liquid, chemical film and metal material having chemical film
WO2015118602A1 (en) Lubricating coating agent for metal plasticity processing and metal material for metal plasticity processing
JPWO2007132851A1 (en) Lubricant for cold working of steel pipe and cold working method
WO2017057385A1 (en) Steel wire with excellent corrosion resistance and appearance after processing
JP3462632B2 (en) Aqueous lubricant composition for plastic working of metal materials and surface treatment method thereof
US20230091443A1 (en) One-step pretreatment method of metallic substrates for metal cold forming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791765

Country of ref document: EP

Kind code of ref document: A1