WO2023204048A1 - 液供給システム、液処理装置および液供給方法 - Google Patents

液供給システム、液処理装置および液供給方法 Download PDF

Info

Publication number
WO2023204048A1
WO2023204048A1 PCT/JP2023/014327 JP2023014327W WO2023204048A1 WO 2023204048 A1 WO2023204048 A1 WO 2023204048A1 JP 2023014327 W JP2023014327 W JP 2023014327W WO 2023204048 A1 WO2023204048 A1 WO 2023204048A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing liquid
circulation line
filter
pump
circulation
Prior art date
Application number
PCT/JP2023/014327
Other languages
English (en)
French (fr)
Inventor
創 長田
一樹 小佐井
和義 篠原
勝也 奥田
俊行 塩川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023204048A1 publication Critical patent/WO2023204048A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the disclosed embodiments relate to a liquid supply system, a liquid processing device, and a liquid supply method.
  • a liquid processing apparatus circulates processing liquid for substrates such as semiconductor wafers (hereinafter also referred to as wafers) through a circulation line, and supplies the processing liquid to a processing section via a branch line branching from the circulation line. It has been known.
  • the circulation line of such a liquid processing apparatus is provided with a filter that removes foreign matter from the processing liquid (see Patent Document 1).
  • the present disclosure provides a technique that can suppress contamination of the processing liquid in the circulation line.
  • a liquid supply system includes a tank, a circulation line, a pump, a filter, a back pressure valve, and a control unit.
  • the tank stores the processing liquid.
  • the circulation line returns the processing liquid sent from the tank to the tank.
  • a pump forms a circulating flow of the processing liquid in the circulation line.
  • a filter is provided downstream of the pump in the circulation line.
  • a back pressure valve is provided downstream of the filter in the circulation line.
  • the control section controls each section. Furthermore, when stopping the operation of the pump, the control unit may control the control unit to control the pressure difference between the upstream side and the downstream side of the filter to a specified value between the start of a decrease in the discharge pressure of the pump and the stop of the operation of the pump.
  • the pump and the back pressure valve are controlled so that the pressure is below a given threshold.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of a processing unit according to the embodiment.
  • FIG. 3 is a diagram showing a schematic configuration of a processing liquid supply source according to the embodiment.
  • FIG. 4 is a diagram showing changes in the differential pressure between the upstream side and the downstream side of the filter in a reference example.
  • FIG. 5 is a diagram showing changes in the differential pressure between the upstream side and the downstream side of the filter according to the embodiment.
  • FIG. 6 is a diagram showing a schematic configuration of a processing liquid supply source according to Modification 1 of the embodiment.
  • FIG. 7 is a diagram showing changes in the flow rate of the processing liquid in the circulation line according to Modification 1 of the embodiment.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of a processing unit according to the embodiment.
  • FIG. 3
  • FIG. 8 is a diagram showing a schematic configuration of a processing liquid supply source according to a second modification of the embodiment.
  • FIG. 9 is a diagram illustrating a procedure for starting up a processing liquid supply source according to modification 2 of the embodiment.
  • FIG. 10 is a diagram illustrating a procedure for starting up a processing liquid supply source according to modification 2 of the embodiment.
  • FIG. 11 is a diagram illustrating a procedure for starting up a processing liquid supply source according to Modification 2 of the embodiment.
  • FIG. 12 is a diagram showing a schematic configuration of a processing liquid supply source according to modification 3 of the embodiment.
  • FIG. 13 is a diagram illustrating a procedure for starting up a processing liquid supply source according to modification 3 of the embodiment.
  • FIG. 14 is a diagram illustrating a procedure for starting up a processing liquid supply source according to modification 3 of the embodiment.
  • FIG. 15 is a diagram illustrating a procedure for starting up a processing liquid supply source according to Modification 3 of the embodiment.
  • FIG. 16 is a diagram showing a schematic configuration of a processing liquid supply source according to modification example 4 of the embodiment.
  • FIG. 17 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system according to the embodiment.
  • a liquid processing apparatus circulates processing liquid for substrates such as semiconductor wafers (hereinafter also referred to as wafers) through a circulation line, and supplies the processing liquid to a processing section via a branch line branching from the circulation line. It has been known.
  • the circulation line of such a liquid processing device is provided with a filter that removes foreign matter from the processing liquid.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment.
  • the substrate processing system 1 is an example of a liquid processing apparatus.
  • an X-axis, a Y-axis, and a Z-axis that are perpendicular to each other are defined, and the positive direction of the Z-axis is defined as a vertically upward direction.
  • the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3.
  • the loading/unloading station 2 and the processing station 3 are provided adjacent to each other.
  • the loading/unloading station 2 includes a carrier mounting section 11 and a transport section 12.
  • the transport section 12 is provided adjacent to the carrier mounting section 11 and includes a substrate transport device 13 and a transfer section 14 inside.
  • the substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 13 is capable of horizontal and vertical movement and rotation about a vertical axis, and uses a wafer holding mechanism to transfer the wafer W between the carrier C and the transfer section 14. conduct.
  • the processing station 3 is provided adjacent to the transport section 12.
  • the processing station 3 includes a transport section 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
  • the transport section 15 includes a substrate transport device 17 inside.
  • the substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 17 is capable of horizontal and vertical movement and rotation about a vertical axis, and is capable of transferring wafers W between the transfer section 14 and the processing unit 16 using a wafer holding mechanism. I do.
  • the processing unit 16 is an example of a liquid processing section, and performs predetermined substrate processing on the wafer W transported by the substrate transport device 17.
  • the substrate processing system 1 also includes a control device 4.
  • the control device 4 is, for example, a computer, and includes a control section 18 and a storage section 19.
  • the storage unit 19 stores programs that control various processes executed in the substrate processing system 1.
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing a program stored in the storage unit 19 .
  • Such a program may be one that has been recorded on a computer-readable storage medium, and may be one that is installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnetic optical disks (MO), and memory cards.
  • the substrate transfer device 13 of the loading/unloading station 2 takes out the wafer W from the carrier C placed on the carrier mounting section 11, and receives the taken out wafer W. Place it on Watabe 14.
  • the wafer W placed on the transfer section 14 is taken out from the transfer section 14 by the substrate transport device 17 of the processing station 3 and carried into the processing unit 16.
  • the wafer W carried into the processing unit 16 is processed by the processing unit 16, and then carried out from the processing unit 16 by the substrate transport device 17 and placed on the transfer section 14.
  • the processed wafer W placed on the transfer section 14 is then returned to the carrier C of the carrier mounting section 11 by the substrate transfer device 13.
  • FIG. 2 is a schematic diagram showing the configuration of the processing unit 16 according to the embodiment.
  • the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, and a recovery cup 50.
  • the chamber 20 accommodates a substrate processing section 30, a liquid supply section 40, and a recovery cup 50.
  • a fan filter unit (FFU) 21 is provided on the ceiling of the chamber 20 .
  • FFU 21 forms a downflow within chamber 20 .
  • the substrate processing section 30 includes a holding section 31, a support section 32, and a driving section 33, and performs liquid processing on the mounted wafer W.
  • the holding unit 31 holds the wafer W (see FIG. 1) horizontally.
  • the support portion 32 is a member extending in the vertical direction, has a base end rotatably supported by a drive portion 33, and a distal end portion that supports the holding portion 31 horizontally.
  • the drive section 33 rotates the support section 32 around a vertical axis.
  • the substrate processing section 30 rotates the support section 31 supported by the support section 32 by rotating the support section 32 using the drive section 33 . As a result, the wafer W held by the holding section 31 rotates.
  • the liquid supply unit 40 supplies the processing liquid L (see FIG. 3) to the wafer W.
  • the liquid supply section 40 is connected to a processing liquid supply source 70.
  • the liquid supply section 40 includes a plurality of nozzles. Such a plurality of nozzles are provided, for example, corresponding to a plurality of types of processing liquids L. Further, the plurality of nozzles discharges a plurality of types of processing liquids L supplied from the plurality of processing liquid supply sources 70 onto the wafer W.
  • the collection cup 50 is arranged to surround the holding part 31 and collects the processing liquid L scattered from the wafer W by the rotation of the holding part 31.
  • a drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid L collected by the recovery cup 50 is discharged to the outside of the processing unit 16 from the drain port 51.
  • an exhaust port 52 is formed at the bottom of the collection cup 50 to discharge the gas supplied from the FFU 21 to the outside of the processing unit 16.
  • FIG. 3 is a diagram showing a schematic configuration of the processing liquid supply source 70 according to the embodiment.
  • the processing liquid supply source 70 is an example of a liquid supply system.
  • the processing liquid supply source 70 included in the substrate processing system 1 supplies the processing liquid L to the plurality of processing units 16.
  • a processing liquid supply source 70 shown in FIG. 3 is provided for each of the plurality of types of processing liquids L.
  • the processing liquid supply source 70 includes a tank 71, a circulation line 72, a pump 73, a heater 74, a first pressure sensor 75, a filter 76, and a second pressure sensor 77. , a flow meter 78, a plurality of branch parts 79, and a back pressure valve 80.
  • the tank 71 stores the processing liquid L.
  • the treatment liquid L is, for example, IPA (isopropyl alcohol). Note that the treatment liquid L of the present disclosure is not limited to IPA, and various types of chemical liquids are applicable.
  • the circulation line 72 returns the processing liquid L sent from the tank 71 to the tank 71.
  • the circulation line 72 includes, in order from the upstream side with respect to the tank 71, a pump 73, a heater 74, a first pressure sensor 75, a filter 76, a second pressure sensor 77, and a flow meter 78.
  • a plurality of branch portions 79 and a back pressure valve 80 are provided.
  • the pump 73 forms a circulating flow of the processing liquid L in the circulation line 72. Note that in the embodiment, the discharge pressure of the pump 73 can be controlled by the control unit 18 (see FIG. 1).
  • the heater 74 is an example of a heating mechanism, and heats the processing liquid L circulating in the circulation line 72.
  • the control unit 18 can adjust the temperature of the processing liquid L by controlling the amount of heating of the processing liquid L by the heater 74.
  • the amount of heating of the processing liquid L by the heater 74 is adjusted based on the temperature of the processing liquid L detected by a temperature sensor (not shown) provided in the tank 71 and the circulation line 72.
  • the first pressure sensor 75 measures the pressure of the processing liquid L on the upstream side of the filter 76.
  • the filter 76 removes contaminants such as particles contained in the processing liquid L circulating within the circulation line 72 .
  • the second pressure sensor 77 measures the pressure of the processing liquid L on the downstream side of the filter 76.
  • the flow meter 78 measures the flow rate of the circulating flow of the processing liquid L formed in the circulation line 72 .
  • a plurality of supply lines 100 are branched from the plurality of branch portions 79, each connected to the nozzles of the plurality of processing units 16.
  • the supply line 100 is provided with a branch portion 101 and a valve 102 in this order from the upstream side.
  • the return line 103 is provided with a valve 104 .
  • the valves 102 and 104 control whether or not the processing liquid L is supplied from the supply line 100 to the processing unit 16.
  • the control unit 18 supplies the processing liquid L from the supply line 100 to the processing unit 16 by opening the valve 102 and closing the valve 104.
  • control unit 18 closes the valve 102 and opens the valve 104, thereby not supplying the processing liquid L from the supply line 100 to the processing unit 16. In this case, the processing liquid L in the supply line 100 returns to the tank 71 through the return line 103.
  • the back pressure valve 80 increases its opening degree when the pressure of the processing liquid L on the upstream side of the back pressure valve 80 is higher than a desired pressure.
  • the back pressure valve 80 reduces the valve opening degree when the pressure of the processing liquid L on the upstream side of the back pressure valve 80 is lower than a desired pressure.
  • the back pressure valve 80 has a function of maintaining the pressure of the processing liquid L on the upstream side at a desired pressure.
  • the valve opening degree of the back pressure valve 80 can be controlled by the control unit 18.
  • the tank 71 includes a processing liquid replenishment section 81 and a drain line 82.
  • the processing liquid replenisher 81 replenishes the tank 71 with the processing liquid L.
  • the drain line 82 discharges the processing liquid L in the tank 71 to the drain portion DR when replacing the processing liquid L in the tank 71 or the like.
  • the pressure in the plurality of branch parts 79 is maintained at a desired pressure by the back pressure valve 80, thereby controlling the supply of the processing liquid L from the processing liquid supply source 70 to each processing unit 16. It can be done smoothly.
  • FIG. 4 is a diagram showing changes in the differential pressure between the upstream side and the downstream side of the filter 76 in a reference example.
  • the control unit 18 performs a circulation process of forming a circulating flow of the processing liquid L in the circulation line 72 until time T01 when the process of lowering the circulating flow starts.
  • the discharge pressure of the pump 73 (that is, the pressure on the upstream side of the filter 76) is approximately constant.
  • the back pressure valve 80 operates to keep the pressure upstream of the back pressure valve 80 constant, so the pressure downstream of the filter 76 is also approximately constant.
  • the pressure difference between the upstream side and the downstream side of the filter 76 is a substantially constant pressure difference P1. Further, this differential pressure P1 has a value smaller than the rated discharge pressure of the pump 73.
  • the control unit 18 first turns off the control of the back pressure valve 80. This is because if the circulation flow in the circulation line 72 is stopped while the back pressure valve 80 is turned on, there is a risk of contact inside the back pressure valve 80.
  • the valve opening degree of the back pressure valve 80 becomes fully open, so the pressure on the upstream side of the back pressure valve 80 (that is, on the downstream side of the filter 76) rapidly decreases. Therefore, the differential pressure between the upstream side and the downstream side of the filter 76 rises rapidly, and a large differential pressure P2 that exceeds the differential pressure resistance of the filter 76 is applied to the filter 76.
  • control unit 18 starts up the pump 73 and turns on the control of the back pressure valve 80 at time T03 in order to start up the circulation flow of the processing liquid L in the circulation line 72 (startup). process).
  • the filter 76 is connected between the upstream side and the downstream side of the filter 76. A large differential pressure P2 that exceeds the differential pressure resistance is applied.
  • FIG. 5 is a diagram showing changes in the differential pressure between the upstream side and the downstream side of the filter 76 according to the embodiment.
  • the control unit 18 performs a circulation process of forming a circulation flow of the processing liquid L in the circulation line 72 until time T11 when the pump 73 starts the shut-down process.
  • the pressure difference between the upstream side and the downstream side of the filter 76 becomes a substantially constant pressure difference P1, as in the above-mentioned reference example.
  • control unit 18 gradually reduces the discharge pressure of the pump 73 while keeping the control of the back pressure valve 80 on. decrease to.
  • control unit 18 controls the pump 73 and the back pressure valve 80 so that the differential pressure between the upstream side and the downstream side of the filter 76 is equal to or lower than a given threshold value (for example, differential pressure P1 during circulation). Control.
  • the pressure difference between the upstream side and the downstream side of the filter 76 is determined by measuring the pressure on the upstream side of the filter 76 with a first pressure sensor 75, and measuring the pressure on the downstream side of the filter 76 with a second pressure sensor. It can be found by measuring at 77.
  • control unit 18 lowers the discharge pressure of the pump 73 and increases the valve opening degree of the back pressure valve 80, for example, so that the differential pressure between the upstream side and the downstream side of the filter 76 becomes equal to or lower than the differential pressure P1. Control as follows.
  • control processing can prevent a large differential pressure that exceeds the differential pressure resistance from being applied to the filter 76 during the shut-down process, so that foreign objects trapped in the filter 76 can be prevented from entering the filter 76. You can prevent them from passing through.
  • the pressure difference between the upstream side and the downstream side of the filter 76 is controlled to be equal to or lower than the pressure difference P1 by decreasing the discharge pressure of the pump 73 and increasing the opening degree of the back pressure valve 80. It's good to do that.
  • control unit 18 constantly monitors the first pressure sensor 75 and the second pressure sensor 77 in the circulation process before the shutdown process, and controls the first pressure sensor 75 and the second pressure sensor 77 in the circulation process.
  • the maximum differential pressure with the second pressure sensor 77 is calculated in advance.
  • control unit 18 controls the control unit 18 so that the differential pressure between the upstream side and the downstream side of the filter 76 is equal to or lower than the maximum differential pressure between the first pressure sensor 75 and the second pressure sensor 77 in the circulation process during the shutdown process.
  • the pump 73 and the back pressure valve 80 may be controlled so that.
  • the pump 73 and the back pressure valve 80 are controlled so that the pressure difference between the upstream side and the downstream side of the filter 76 is equal to or lower than the pressure difference P1 slightly higher than the pressure difference P1 in the circulation process in the stopping process. may be done.
  • control unit 18 lowers the discharge pressure of the pump 73 and increases the opening degree of the back pressure valve 80 so that the differential pressure between the upstream side and the downstream side of the filter 76 is equal to or lower than the differential pressure P1. control so that
  • the control unit 18 controls the discharge of the pump 73. It is assumed that the pressure has become lower than the differential pressure P1, and the control of the back pressure valve 80 is turned off.
  • control unit 18 starts up the pump 73 and turns on the control of the back pressure valve 80 at time T14 in order to start up the circulation flow of the processing liquid L in the circulation line 72 (startup process).
  • control unit 18 controls the discharge of the pump 73.
  • the pump 73 is operated so that the pressure gradually increases.
  • the differential pressure between the upstream side and the downstream side of the filter 76 is the maximum differential pressure between the first pressure sensor 75 and the second pressure sensor 77 in the previous circulation process described above.
  • the pump 73 and the back pressure valve 80 may be controlled as follows.
  • the circulation process is started again from time T15 when the back pressure valve 80 is sufficiently controlled.
  • FIG. 6 is a diagram showing a schematic configuration of a processing liquid supply source 70 according to Modification 1 of the embodiment.
  • this modification 1 differs from the above embodiment in that the circulation line 72 is not provided with the first pressure sensor 75 and the second pressure sensor 77. Therefore, in the following examples, the same reference numerals are given to the same parts as in the embodiments already described, and detailed explanations will be omitted.
  • FIG. 7 is a diagram showing changes in the flow rate of the processing liquid L in the circulation line 72 according to Modification 1 of the embodiment.
  • control unit 18 performs a circulation process of forming a circulation flow of the processing liquid L in the circulation line 72 until time T21 when the pump 73 starts the stop process.
  • the flow rate of the processing liquid L in the circulation line 72 becomes a substantially constant flow rate F1.
  • control unit 18 gradually reduces the discharge pressure of the pump 73 while keeping the control of the back pressure valve 80 on. decrease to.
  • control unit 18 controls the pump 73 and the back pressure valve 80 so that the flow rate of the processing liquid L in the circulation line 72 is equal to or less than a given threshold value (for example, the flow rate F1 during circulation).
  • a given threshold value for example, the flow rate F1 during circulation.
  • the flow rate of the processing liquid L in the circulation line 72 can be measured by the flow meter 78.
  • control unit 18 controls the flow rate of the processing liquid L in the circulation line 72 to be equal to or lower than the flow rate F1 by, for example, decreasing the discharge pressure of the pump 73 and increasing the valve opening degree of the back pressure valve 80. .
  • such control processing can suppress the flow of a large flow rate of processing liquid into the filter 76 during the shut-down process, thereby suppressing foreign matter captured by the filter 76 from passing through the filter 76. can do.
  • the flow rate of the processing liquid L in the circulation line 72 may be controlled to be equal to or lower than the flow rate F1 by decreasing the discharge pressure of the pump 73 and increasing the opening degree of the back pressure valve 80.
  • control unit 18 constantly monitors the flow meter 78 in the circulation process before the shutdown process, and calculates in advance the maximum flow rate of the processing liquid L in the circulation process.
  • control unit 18 controls the pump 73 and the back pressure valve 80 so that the flow rate of the processing liquid L in the circulation line 72 is equal to or less than the maximum flow rate of the processing liquid L in the circulation process during the startup process. Good too.
  • FIG. 7 shows an example in which the flow rate of the processing liquid L in the circulation line 72 is controlled to be equal to or lower than the flow rate F1 in the circulation process in the stopping process, the present disclosure is limited to such an example. do not have.
  • the pump 73 and the back pressure valve 80 may be controlled such that the flow rate of the processing liquid L in the circulation line 72 is equal to or lower than the pressure slightly higher than the flow rate F1 in the circulation process in the down process. .
  • This also makes it possible to prevent a large flow rate of the processing liquid L from flowing into the filter 76 during the shut-down process, thereby making it possible to prevent foreign matter captured by the filter 76 from passing through the filter 76. .
  • control unit 18 controls the flow rate of the processing liquid L in the circulation line 72 to be equal to or lower than the flow rate F1 by decreasing the discharge pressure of the pump 73 and increasing the opening degree of the back pressure valve 80. do.
  • the control unit 18 controls the flow rate of the processing liquid L in the circulation line 72. It is assumed that the flow rate has become less than the flow rate F1, and the control of the back pressure valve 80 is turned off.
  • control unit 18 starts up the pump 73 and turns on the control of the back pressure valve 80 at time T24 in order to start up the circulation flow of the processing liquid L in the circulation line 72 (startup). process).
  • the control unit 18 controls the discharge pressure of the pump 73.
  • the pump 73 is operated to gradually increase the temperature.
  • the pump 73 and the back pressure valve 80 are controlled so that the flow rate of the processing liquid L in the circulation line 72 is equal to or lower than the maximum flow rate of the processing liquid L in the previous circulation process in the start-up process. You may.
  • the circulation process is started again from time T25 when the control of the back pressure valve 80 is sufficiently effective.
  • FIG. 8 is a diagram showing a schematic configuration of a processing liquid supply source 70 according to a second modification of the embodiment.
  • the circulation line 72 includes a pump 73, a heater 74, a branch part 83, a valve 85, and a first pressure sensor 75 in order from the upstream side with respect to the tank 71.
  • a filter 76 and a second pressure sensor 77 are provided.
  • a flow meter 78, a branch part 87, a valve 89, a plurality of branch parts 79, and a back pressure valve 80 are arranged in order from the upstream side with respect to the second pressure sensor 77. provided.
  • the branch circulation line 84 is provided with a valve 86 .
  • the drain line 88 is provided with a valve 90 .
  • FIGS. 9 to 11 are diagrams illustrating a procedure for starting up the processing liquid supply source 70 according to Modification 2 of the embodiment. Note that in FIGS. 9 to 11, illustrations of the processing unit 16 and the like are omitted.
  • the control unit 18 first operates the pump 73 and the heater 74, closes the valve 85, and opens the valve 86. state.
  • "O” is given to the valve in the open state
  • "C” is given to the valve in the closed state.
  • a circulating flow of the processing liquid L flowing through the circulation line 72 and the branch circulation line 84 is formed in the processing liquid supply source 70.
  • the processing liquid L in the tank 71 can be heated to a desired temperature.
  • the process liquid L is passed through the filter 76 in the start-up process.
  • the temperature raising process of the processing liquid L can be performed without raising the temperature.
  • the second modification contamination by particles passing through the filter 76 as the temperature of the processing liquid L increases can be prevented. Furthermore, in the second modification, since the processing liquid L does not flow through the filter 76 in which particles are captured, contamination of the processing liquid L during the temperature raising process can be suppressed. Furthermore, in the second modification, pressure loss at the filter 76 during the temperature raising process can be avoided, so the temperature of the processing liquid L can be raised efficiently.
  • the control unit 18 maintains the operation of the pump 73 and the heater 74, and Valves 85, 86, and 90 are opened, and valve 89 is closed.
  • the control unit 18 maintains the operation of the pump 73 and the heater 74, opens the valves 85 and 89, and closes the valves 86 and 90.
  • the processing liquid L in the circulation line 72 can be prevented from being contaminated by performing the same control process in the start-up process as in the above-described embodiment.
  • Modification 2 after the temperature raising process of the processing liquid L is completed, by flowing the high temperature processing liquid L through the filter 76, it is possible to suppress the temperature of the filter 76 from returning to room temperature. As a result, by gradually raising the temperature of the filter 76 which has returned to room temperature to a given high temperature through the temperature raising process, the mesh of the filter 76 becomes coarser, and it is possible to suppress many particles from passing through the filter 76. can.
  • the drain line 88 is not connected directly to the filter 76, but is preferably connected to the circulation line 72 downstream of the filter 76 (here, to the branch section 87).
  • drain line 88 If the drain line 88 is directly connected to the filter 76, it is very difficult to cause all the processing liquid L that has passed through the filter 76 to flow into the drain line 88.
  • the second modification by connecting the drain line 88 to the downstream side of the filter 76 in the circulation line 72, all the processing liquid L that has passed through the filter 76 can be made to flow into the drain line 88. Can be done.
  • the flow meter 78 may be located between the filter 76 and the drain line 88 (i.e., the branch portion 87) in the circulation line 72.
  • the second modification in the step of discharging the processing liquid L to the drain part DR via the liquid drain line 88, it is possible to suppress excessive discharge of the processing liquid L, so that wasteful disposal of the processing liquid L can be suppressed. can be reduced.
  • a circulating flow of the processing liquid L is formed through the circulation line 72 and the branch circulation line 84, and the processing liquid L whose temperature is rising is drained.
  • the present disclosure is not limited to this example.
  • control unit 18 maintains the operation of the pump 73 and the heater 74, opens the valves 85 and 90, and closes the valves 86 and 89. Thereby, the control section 18 may discharge the processing liquid L for which the temperature raising process has been completed to the drain section DR via the drain line 88.
  • control unit 18 may repeat the process shown in FIG. 9 and the process shown in FIG. 10 multiple times.
  • the processing liquid L while circulating the processing liquid L in the branch circulation line 84, the processing liquid L is first discharged by a predetermined amount of liquid in the drain line 88 without raising the temperature of the processing liquid L to a desired temperature.
  • the treatment liquid L may be circulated through the circulation line 72 thereafter. This also makes it possible to prevent the processing liquid L in the circulation line 72 from being contaminated.
  • FIG. 12 is a diagram showing a schematic configuration of a processing liquid supply source 70 according to modification 3 of the embodiment. As shown in FIG. 12, in this modification 3, the configuration of the branch circulation line 84 is different from that in the above-mentioned modification 2.
  • the branch circulation line 84 has a bypass line 91.
  • the bypass line 91 is connected between the upstream side of the valve 86 and the downstream side of the valve 86 in the branch circulation line 84 .
  • bypass line 91 an orifice 92 is provided in the bypass line 91.
  • the orifice 92 reduces the flow rate of the processing liquid L flowing through the bypass line 91.
  • Bypass line 91 and orifice 92 are examples of a flow rate adjustment mechanism.
  • FIGS. 13 to 15 are diagrams illustrating a procedure for starting up the processing liquid supply source 70 according to the third modification of the embodiment. Note that illustration of the processing unit 16 and the like is omitted in FIGS. 13 to 15.
  • the control unit 18 first operates the pump 73 and the heater 74, closes the valve 85, and opens the valve 86. state.
  • the processing liquid L in the tank 71 can be heated to a desired temperature.
  • the processing liquid L is passed through the filter 76 in the startup process.
  • the temperature raising process of the processing liquid L can be performed without raising the temperature.
  • the third modification contamination by particles passing through the filter 76 as the temperature of the processing liquid L increases can be prevented. Furthermore, in the third modification, since the processing liquid L does not flow through the filter 76 in which particles are captured, contamination of the processing liquid L during the temperature raising process can be suppressed. Furthermore, in the third modification, pressure loss in the filter 76 during the temperature raising process can be avoided, so the temperature of the processing liquid L can be raised efficiently.
  • the control unit 18 maintains the operation of the pump 73 and the heater 74, and Valves 85, 86, and 90 are opened, and valve 89 is closed.
  • the processing liquid L in the circulation line 72 can be prevented from being contaminated by performing the same control process in the start-up process as in the above-described embodiment.
  • Modification 3 after the temperature raising process of the processing liquid L is completed, by flowing the high temperature processing liquid L through the filter 76, it is possible to suppress the temperature of the filter 76 from returning to room temperature. As a result, by gradually raising the temperature of the filter 76 which has returned to room temperature to a given high temperature through the temperature raising process, the mesh of the filter 76 becomes coarser, and it is possible to suppress many particles from passing through the filter 76. can.
  • both the circulation flow in the circulation line 72 and the circulation flow in the branch circulation line 84 can be maintained without excessively increasing the rated flow rate of the pump 73. Therefore, according to the third modification, the manufacturing cost of the processing liquid supply source 70 can be reduced.
  • bypass line 91 and the orifice 92 are used as the flow rate adjustment mechanism of the branch circulation line 84, but the present disclosure is not limited to such examples.
  • a valve capable of controlling two or more types of valve openings is provided in the branch circulation line 84, and the control unit 18 controls the flow rate of the processing liquid L in the branch circulation line 84 by controlling the valve openings of such valves. may be adjusted.
  • FIG. 16 is a diagram showing a schematic configuration of a processing liquid supply source 70 according to modification example 4 of the embodiment. As shown in FIG. 16, this modification 4 differs from the above-described modification 2 in the configuration on the downstream side of the drain line 88.
  • the drain line 88 is connected to the recovery mechanism 110 instead of the drain part DR (see FIG. 8).
  • the recovery mechanism 110 includes a recovery tank 111, a circulation line 112, a pump 113, a flow meter 114, a filter 115, a branch 116, and a valve 117.
  • Filter 115 is an example of a filtration mechanism.
  • the recovery tank 111 recovers and stores the processing liquid L discharged from the drain line 88.
  • the circulation line 112 returns the processing liquid L sent from the recovery tank 111 to the recovery tank 111.
  • the circulation line 112 is provided with a pump 113, a flow meter 114, a filter 115, a branch part 116, and a valve 117 in order from the upstream side with respect to the recovery tank 111.
  • the pump 113 forms a circulating flow of the processing liquid L in the circulation line 112.
  • the flow meter 114 measures the flow rate of the circulating flow of the processing liquid L formed in the circulation line 112.
  • the filter 115 removes contaminants such as particles contained in the processing liquid L circulating within the circulation line 112 .
  • a valve 119 is provided in the return line 118.
  • the processing liquid L discharged from the drain line 88 is collected by the collection mechanism 110, and the processing liquid L is filtered by this collection mechanism.
  • control unit 18 (see FIG. 1) operates the pump 113 to form a circulating flow of the processing liquid L in the circulation line 112, and causes the circulating processing liquid L to repeatedly flow through the filter 115. Then, the treatment liquid L is filtered. At this time, the control unit 18 opens the valve 117 and closes the valve 119.
  • the control unit 18 closes the valve 117 and opens the valve 119. Thereby, the control unit 18 returns the cleanly filtered processing liquid L from the recovery tank 111 to the tank 71 via the circulation line 112 and the return line 118.
  • the temperature of the processing liquid L circulating through the circulation line 112 may be lower than the temperature of the processing liquid L circulating through the circulation line 72.
  • the temperature of the processing liquid L circulating through the circulation line 112 may be room temperature.
  • the treatment liquid L can be efficiently filtered in the recovery mechanism 110.
  • the liquid supply system (processing liquid supply source 70) according to the embodiment includes a tank 71, a circulation line 72, a pump 73, a filter 76, a back pressure valve 80, and a control unit 18.
  • the tank 71 stores the processing liquid L.
  • the circulation line 72 returns the processing liquid L sent from the tank 71 to the tank 71.
  • the pump 73 forms a circulating flow of the processing liquid L in the circulation line 72 .
  • Filter 76 is provided downstream of pump 73 in circulation line 72 .
  • Back pressure valve 80 is provided downstream of filter 76 in circulation line 72 .
  • the control section 18 controls each section.
  • control unit 18 controls the pressure difference between the upstream side and the downstream side of the filter 76 to reach a certain point between the start of the decrease in the discharge pressure of the pump 73 and the stop of the operation of the pump 73.
  • Pump 73 and back pressure valve 80 are controlled so that the pressure is below a given threshold. Thereby, it is possible to suppress contamination of the processing liquid L in the circulation line 72.
  • the control unit 18 lowers the discharge pressure of the pump 73 and increases the opening degree of the back pressure valve 80, thereby controlling the upstream side of the filter 76.
  • the pressure difference between the downstream side and the downstream side is controlled so that it is below a given threshold value. Thereby, it is possible to further suppress contamination of the processing liquid L in the circulation line 72.
  • the control unit 18 controls whether the differential pressure between the upstream side and the downstream side of the filter 76 is the maximum differential pressure when stopping the operation of the pump 73.
  • the pump 73 and the back pressure valve 80 are controlled as follows.
  • This maximum differential pressure is the maximum differential pressure between the upstream side and the downstream side of the filter 76 when the circulating flow of the processing liquid L in the circulation line 72 is formed. Thereby, it is possible to further suppress contamination of the processing liquid L in the circulation line 72.
  • the liquid supply system (processing liquid supply source 70) according to the embodiment includes a first pressure sensor 75 provided on the upstream side of the filter 76, a second pressure sensor 77 provided on the downstream side of the filter 76, Furthermore, it is equipped with. Further, the control unit 18 calculates the maximum differential pressure between the first pressure sensor 75 and the second pressure sensor 77 when the circulating flow of the processing liquid L in the circulation line 72 is formed. Further, when stopping the operation of the pump 73, the control unit 18 controls the pump 73 and the back pressure valve 80 so that the differential pressure between the upstream side and the downstream side of the filter 76 becomes equal to or less than the maximum differential pressure. Thereby, it is possible to further suppress contamination of the processing liquid L in the circulation line 72.
  • the control unit 18 controls the pressure difference between the upstream side and the downstream side of the filter 76 when starting the circulation of the processing liquid L in the circulation line 72.
  • the pump 73 and the back pressure valve 80 are controlled so that the pressure difference becomes less than or equal to the maximum differential pressure.
  • This maximum differential pressure is the maximum differential pressure between the upstream side and the downstream side of the filter 76 when the circulating flow of the processing liquid L in the circulation line 72 is formed. Thereby, it is possible to further suppress contamination of the processing liquid L in the circulation line 72.
  • the liquid supply system (processing liquid supply source 70) further includes a heating mechanism (heater 74) and a branch circulation line 84.
  • a heating mechanism (heater 74) is provided between pump 73 and filter 76 in circulation line 72.
  • the branch circulation line 84 branches from between the heating mechanism (heater 74) and the filter 76 in the circulation line 72, and returns the processing liquid L sent from the tank 71 to the tank 71.
  • the control unit 18 operates the pump 73 to circulate the processing liquid L in the branch circulation line 84 while heating it with the heating mechanism (heater 74). Thereby, contamination of the processing liquid L during the temperature raising process can be suppressed.
  • the liquid supply system (processing liquid supply source 70) according to the embodiment further includes a branch section 79, a valve 89, and a drain line 88.
  • the branch section 79 is located downstream of the filter 76 in the circulation line 72, and the supply line 100 that supplies the processing liquid L to the substrate processing section 30 branches off.
  • Valve 89 is provided between filter 76 and branch section 79 .
  • Drain line 88 is connected between filter 76 and valve 89 in circulation line 72 .
  • the control unit 18 closes the valve 89 and heats it with the heating mechanism (heater 74) while circulating it in the branch circulation line 84. ), the processing liquid L is drained from the drain line 88. Thereby, the processing liquid L containing many particles that has passed through the filter 76 can be prevented from diffusing into the circulation line 72 and returning to the tank 71.
  • the control unit 18 controls the circulation in the branch circulation line 84 and the drainage line 88 before starting the circulation of the processing liquid L in the circulation line 72. Drain the liquid from the drain and repeat. Thereby, it is possible to further suppress contamination of the processing liquid L in the circulation line 72.
  • the liquid supply system (processing liquid supply source 70) according to the embodiment further includes a flow meter 78 provided between the filter 76 and the valve 89. Further, the drain line 88 is connected to the downstream side of the flow meter 78 in the circulation line 72 . Further, the control unit 18 monitors the amount of the processing liquid L drained from the drain line 88 using the flow meter 78 . Thereby, wasteful disposal of the processing liquid L can be reduced.
  • the control unit 18 opens the valve 90 to flow the processing liquid L into the circulation line 72. to form a circulating flow. Thereby, wasteful disposal of the processing liquid L can be reduced.
  • control unit 18 circulates the processing liquid L in the branch circulation line 84 while circulating the processing liquid L in the circulation line 72. Thereby, it is possible to suppress contamination of the processing liquid L in the circulation line 72.
  • the liquid supply system (processing liquid supply source 70) according to the embodiment includes a flow rate adjustment mechanism (bypass line 91 and orifice 92) that is provided in the branch circulation line 84 and adjusts the flow rate of the processing liquid L flowing through the branch circulation line 84. ), further comprising.
  • the control unit 18 when circulating the processing liquid L in the circulation line 72, the control unit 18 circulates the processing liquid L in the branch circulation line 84 at a flow rate lower than that before starting the circulation of the processing liquid L in the circulation line 72. let Thereby, the manufacturing cost of the processing liquid supply source 70 can be reduced.
  • the liquid supply system (processing liquid supply source 70) according to the embodiment further includes a recovery tank 111, a filtration mechanism (filter 115), and a return line 118.
  • the recovery tank 111 recovers the processing liquid L flowing through the drain line 88 .
  • the filtration mechanism (filter 115) filters the processing liquid L collected in the collection tank 111.
  • the return line 118 connects the filtration mechanism (filter 115) and the tank 71, and returns the processing liquid L filtered by the filtration mechanism (filter 115) to the tank 71. Thereby, the processing cost of the wafer W can be reduced.
  • the liquid supply system (processing liquid supply source 70) according to the embodiment further includes a branch section 79, a valve 89, and a drain line 88.
  • the branch section 79 is located downstream of the filter 76 in the circulation line 72, and the supply line 100 that supplies the processing liquid L to the substrate processing section 30 branches off.
  • Valve 89 is provided between filter 76 and branch section 79 .
  • Drain line 88 is connected between filter 76 and valve 89 in circulation line 72 .
  • the control unit 18 closes the valve 89 and drains the processing liquid L from the drainage line 88. Thereby, the processing liquid L containing many particles that has passed through the filter 76 can be prevented from diffusing into the circulation line 72 and returning to the tank 71.
  • the liquid supply system (processing liquid supply source 70) includes a tank 71, a circulation line 72, a pump 73, a filter 76, a back pressure valve 80, and a control unit 18.
  • the tank 71 stores the processing liquid L.
  • the circulation line 72 returns the processing liquid L sent from the tank 71 to the tank 71.
  • the pump 73 forms a circulating flow of the processing liquid L in the circulation line 72 .
  • Filter 76 is provided downstream of pump 73 in circulation line 72 .
  • Back pressure valve 80 is provided downstream of filter 76 in circulation line 72 .
  • the control section 18 controls each section.
  • control unit 18 controls the flow rate of the processing liquid L flowing into the circulation line 72 to a given value between the start of the decrease in the discharge pressure of the pump 73 and the stop of the operation of the pump 73.
  • the pump 73 and the back pressure valve 80 are controlled so that the pressure is below the threshold value. Thereby, it is possible to suppress contamination of the processing liquid L in the circulation line 72.
  • the liquid processing apparatus (substrate processing system 1) according to the embodiment includes a liquid processing section (processing unit 16) and a supply line 100.
  • the liquid processing section (processing unit 16) processes the substrate (wafer W) with the processing liquid L.
  • the supply line 100 supplies the processing liquid L from the above-described liquid supply system (processing liquid supply source 70) to the liquid processing section (processing unit 16). Thereby, the wafer W can be processed with the processing liquid L in which contamination is suppressed in the processing liquid supply source 70.
  • FIG. 17 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system 1 according to the embodiment.
  • control unit 18 operates the pump 73 and the heater 74 to circulate the processing liquid L in the circulation line 72 (step S101). Further, in the process of step S101, the control unit 18 determines the maximum differential pressure between the upstream side and the downstream side of the filter 76 by operating the first pressure sensor 75 and the second pressure sensor 77.
  • control unit 18 may determine the maximum flow rate of the processing liquid L in the circulation line 72 by operating the flow meter 78.
  • control unit 18 stops the circulation flow of the processing liquid L in the circulation line 72 (step S102). At this time, the control unit 18 determines that the differential pressure between the upstream side and the downstream side of the filter 76 is a given threshold value (for example, the maximum differential pressure between the upstream side and the downstream side of the filter 76 in the process of step S101).
  • the pump 73 and the back pressure valve 80 are controlled as follows.
  • control unit 18 controls the flow rate of the processing liquid L in the circulation line 72 to be equal to or less than a given threshold value (for example, the maximum flow rate of the processing liquid L in the process of step S101). , the pump 73 and the back pressure valve 80.
  • a given threshold value for example, the maximum flow rate of the processing liquid L in the process of step S101.
  • step S103 maintenance steps such as cleaning the inside of the tank 71, replacing the processing liquid L, and troubleshooting are performed.
  • the control unit 18 starts the circulating flow of the processing liquid L in the circulation line 72 (step S104).
  • control unit 18 operates the pump 73 so that the discharge pressure of the pump 73 gradually increases.
  • control unit 18 determines that the differential pressure between the upstream side and the downstream side of the filter 76 is the maximum difference between the first pressure sensor 75 and the second pressure sensor 77 in the circulation process described above.
  • the pump 73 and the back pressure valve 80 may be controlled so that the pressure is below the pressure.
  • control unit 18 controls the pump 73 and the back pressure valve 80 so that the flow rate of the treatment liquid L in the circulation line 72 is equal to or less than the maximum flow rate of the treatment liquid L in the circulation process described above. You may.
  • the liquid supply method includes a step of forming a circulating flow (step S101), a step of lowering the circulating flow (step S102), and a step of raising the circulating flow (step S104).
  • step S101 the pump 73 is operated to form a circulating flow of the processing liquid L in the circulation line 72 that returns the processing liquid L sent from the tank 71 to the tank 71.
  • step S102 the circulating flow of the processing liquid L in the circulation line 72 is lowered.
  • the step of starting up the circulating flow (step S104) starts up the circulating flow of the processing liquid L in the circulation line 72.
  • the differential pressure between the upstream side and the downstream side of the filter 76 increases between the time when the discharge pressure of the pump 73 starts decreasing and the operation of the pump 73 stops.
  • the pump 73 and the back pressure valve 80 are controlled so that the pressure is below a given threshold.
  • Filter 76 is provided downstream of pump 73 in circulation line 72 .
  • Back pressure valve 80 is provided downstream of filter 76 in circulation line 72 . Thereby, it is possible to suppress contamination of the processing liquid L in the circulation line 72.
  • the step of lowering the circulating flow is such that when the operation of the pump 73 is stopped, the differential pressure between the upstream side and the downstream side of the filter 76 is the maximum differential pressure.
  • the pump 73 and the back pressure valve 80 are controlled as follows. This maximum differential pressure is the maximum differential pressure between the upstream side and the downstream side of the filter 76 in the step of forming a circulating flow (step S101). Thereby, it is possible to suppress contamination of the processing liquid L in the circulation line 72.
  • the step of starting up the circulating flow is performed when starting the circulation of the processing liquid L in the circulation line 72, when the differential pressure between the upstream side and the downstream side of the filter 76 is The pump 73 and the back pressure valve 80 are controlled so that the pressure difference is equal to or less than the maximum differential pressure.
  • This maximum differential pressure is the maximum differential pressure between the upstream side and the downstream side of the filter 76 in the step of forming a circulating flow (step S101). Thereby, it is possible to suppress contamination of the processing liquid L in the circulation line 72.
  • Substrate processing system (an example of liquid processing equipment) 16 Processing unit (an example of liquid processing section) 18 Control unit 30 Substrate processing unit 70 Processing liquid supply source (an example of a liquid supply system) 71 Tank 72 Circulation line 73 Pump 74 Heater (an example of a heating mechanism) 75 First pressure sensor 76 Filter 77 Second pressure sensor 78 Flow meter 79 Branch 80 Back pressure valve 84 Branch circulation line 88 Drain line 89 Valve 91 Bypass line (an example of flow rate adjustment mechanism) 92 Orifice (an example of a flow rate adjustment mechanism) 100 Supply line 110 Recovery mechanism 111 Recovery tank 115 Filter (an example of a filtration mechanism) 118 Return line L Processing liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pipeline Systems (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本開示の一態様による液供給システムは、タンク(71)と、循環ライン(72)と、ポンプ(73)と、フィルタ(76)と、背圧弁(80)と、制御部(18)と、を備える。タンク(71)は、処理液(L)を貯留する。循環ライン(72)は、タンク(71)から送られる処理液(L)をタンク(71)へ戻す。ポンプ(73)は、循環ライン(72)における処理液(L)の循環流を形成する。フィルタ(76)は、循環ライン(72)におけるポンプ(73)の下流側に設けられる。背圧弁(80)は、循環ライン(72)におけるフィルタ(76)の下流側に設けられる。制御部(18)は、各部を制御する。また、制御部(18)は、ポンプ(73)の動作を停止させる際に、ポンプ(73)の吐出圧力の下降開始からポンプ(73)の動作停止までの間に、フィルタ(76)の上流側と下流側との差圧が所与のしきい値以下となるように、ポンプ(73)および背圧弁(80)を制御する。

Description

液供給システム、液処理装置および液供給方法
 開示の実施形態は、液供給システム、液処理装置および液供給方法に関する。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板用の処理液を循環ラインで循環させるとともに、かかる循環ラインから分岐する分岐ラインを介して処理部に処理液を供給する液処理装置が知られている。かかる液処理装置の循環ラインには、処理液から異物を除去するフィルタが設けられている(特許文献1参照)。
特開2019-41039号公報
 本開示は、循環ライン内の処理液が汚染されることを抑制することができる技術を提供する。
 本開示の一態様による液供給システムは、タンクと、循環ラインと、ポンプと、フィルタと、背圧弁と、制御部と、を備える。タンクは、処理液を貯留する。循環ラインは、前記タンクから送られる前記処理液を前記タンクへ戻す。ポンプは、前記循環ラインにおける前記処理液の循環流を形成する。フィルタは、前記循環ラインにおける前記ポンプの下流側に設けられる。背圧弁は、前記循環ラインにおける前記フィルタの下流側に設けられる。制御部は、各部を制御する。また、前記制御部は、前記ポンプの動作を停止させる際に、前記ポンプの吐出圧力の下降開始から前記ポンプの動作停止までの間に、前記フィルタの上流側と下流側との差圧が所与のしきい値以下となるように、前記ポンプおよび前記背圧弁を制御する。
 本開示によれば、循環ライン内の処理液が汚染されることを抑制することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1は、実施形態に係る基板処理システムの概略構成を示す模式図である。 図2は、実施形態に係る処理ユニットの構成を示す模式図である。 図3は、実施形態に係る処理液供給源の概略構成を示す図である。 図4は、参考例におけるフィルタの上流側と下流側との差圧の推移について示す図である。 図5は、実施形態に係るフィルタの上流側と下流側との差圧の推移について示す図である。 図6は、実施形態の変形例1に係る処理液供給源の概略構成を示す図である。 図7は、実施形態の変形例1に係る循環ラインでの処理液の流量の推移について示す図である。 図8は、実施形態の変形例2に係る処理液供給源の概略構成を示す図である。 図9は、実施形態の変形例2に係る処理液供給源の立ち上げ工程の手順を示す図である。 図10は、実施形態の変形例2に係る処理液供給源の立ち上げ工程の手順を示す図である。 図11は、実施形態の変形例2に係る処理液供給源の立ち上げ工程の手順を示す図である。 図12は、実施形態の変形例3に係る処理液供給源の概略構成を示す図である。 図13は、実施形態の変形例3に係る処理液供給源の立ち上げ工程の手順を示す図である。 図14は、実施形態の変形例3に係る処理液供給源の立ち上げ工程の手順を示す図である。 図15は、実施形態の変形例3に係る処理液供給源の立ち上げ工程の手順を示す図である。 図16は、実施形態の変形例4に係る処理液供給源の概略構成を示す図である。 図17は、実施形態に係る基板処理システムが実行する制御処理の手順の一例を示すフローチャートである。
 以下、添付図面を参照して、本願の開示する液供給システム、液処理装置および液供給方法の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板用の処理液を循環ラインで循環させるとともに、かかる循環ラインから分岐する分岐ラインを介して処理部に処理液を供給する液処理装置が知られている。かかる液処理装置の循環ラインには、処理液から異物を除去するフィルタが設けられている。
 しかしながら、従来の循環ラインでは、メンテナンスなどのために処理液の循環流を立ち下げる際に、ポンプの吐出圧力に起因して異物がフィルタを通り抜けることによって、循環ライン内の処理液が汚染されてしまう恐れがあった。
 そこで、上述の問題点を克服し、循環ライン内の処理液が汚染されることを抑制することができる技術の実現が期待されている。
<基板処理システムの概要>
 最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。かかる基板処理システム1は、液処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚の基板、実施形態では半導体ウェハW(以下、ウェハWと呼称する。)を水平状態で収容する複数のキャリアCが載置される。
 搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてキャリアCと受渡部14との間でウェハWの搬送を行う。
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と処理ユニット16との間でウェハWの搬送を行う。
 処理ユニット16は、液処理部の一例であり、基板搬送装置17によって搬送されるウェハWに対して所定の基板処理を行う。
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。
 処理ユニット16へ搬入されたウェハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。
<処理ユニットの概要>
 次に、処理ユニット16の概要について、図2を参照しながら説明する。図2は、実施形態に係る処理ユニット16の構成を示す模式図である。処理ユニット16は、チャンバ20と、基板処理部30と、液供給部40と、回収カップ50とを備える。
 チャンバ20は、基板処理部30と、液供給部40と、回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。
 基板処理部30は、保持部31と、支柱部32と、駆動部33とを備え、載置されたウェハWに液処理を施す。保持部31は、ウェハW(図1参照)を水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。
 基板処理部30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された保持部31を回転させる。これにより、保持部31に保持されたウェハWが回転する。
 液供給部40は、ウェハWに処理液L(図3参照)を供給する。液供給部40は、処理液供給源70に接続される。液供給部40は、複数のノズルを備える。かかる複数のノズルは、たとえば、複数種類の処理液Lに対応して設けられる。また、複数のノズルは、複数の処理液供給源70からそれぞれ供給される複数種類の処理液LをウェハWに吐出する。
 回収カップ50は、保持部31を取り囲むように配置され、保持部31の回転によってウェハWから飛散する処理液Lを捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液Lは、かかる排液口51から処理ユニット16の外部へ排出される。
 また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。
<処理液供給源の概要>
 次に、基板処理システム1が備える処理液供給源70の概略構成について、図3を参照しながら説明する。図3は、実施形態に係る処理液供給源70の概略構成を示す図である。処理液供給源70は、液供給システムの一例である。
 図3に示すように、基板処理システム1が備える処理液供給源70は、複数の処理ユニット16に処理液Lを供給する。なお、実施形態では、たとえば、複数種類の処理液Lごとに、図3に示す処理液供給源70が設けられる。
 図3に示すように、処理液供給源70は、タンク71と、循環ライン72と、ポンプ73と、ヒータ74と、第1の圧力センサ75と、フィルタ76と、第2の圧力センサ77と、流量計78と、複数の分岐部79と、背圧弁80とを備える。
 タンク71は、処理液Lを貯留する。処理液Lは、たとえば、IPA(イソプロピルアルコール)である。なお、本開示の処理液LはIPAに限られず、さまざまな種類の薬液が適用可能である。
 循環ライン72は、タンク71から送られる処理液Lをタンク71へ戻す。かかる循環ライン72には、タンク71を基準として、上流側から順にポンプ73と、ヒータ74と、第1の圧力センサ75と、フィルタ76と、第2の圧力センサ77と、流量計78と、複数の分岐部79と、背圧弁80とが設けられる。
 ポンプ73は、循環ライン72における処理液Lの循環流を形成する。なお、実施形態において、ポンプ73の吐出圧力は、制御部18(図1参照)によって制御可能である。
 ヒータ74は、加熱機構の一例であり、循環ライン72を循環する処理液Lを加熱する。制御部18は、ヒータ74での処理液Lの加熱量を制御することで、処理液Lの温度を調整することができる。
 たとえば、ヒータ74による処理液Lの加熱量は、タンク71および循環ライン72に設けられる図示しない温度センサによって検出される処理液Lの温度に基づいて調整される。
 第1の圧力センサ75は、フィルタ76の上流側における処理液Lの圧力を測定する。フィルタ76は、循環ライン72内を循環する処理液Lに含まれるパーティクルなどの汚染物質を除去する。
 第2の圧力センサ77は、フィルタ76の下流側における処理液Lの圧力を測定する。流量計78は、循環ライン72に形成される処理液Lの循環流の流量を測定する。複数の分岐部79からは、複数の処理ユニット16のノズルにそれぞれ繋がる複数の供給ライン100が分岐する。
 かかる供給ライン100には、上流側から順に、分岐部101と、バルブ102とが設けられる。分岐部101からは、タンク71に繋がる帰還ライン103が分岐する。かかる帰還ライン103には、バルブ104が設けられる。
 バルブ102、104は、供給ライン100から処理ユニット16への処理液Lの供給の有無を制御する。制御部18は、バルブ102を開くとともにバルブ104を閉じることで、供給ライン100から処理ユニット16に処理液Lを供給する。
 一方で、制御部18は、バルブ102を閉じるとともにバルブ104を開くことで、供給ライン100から処理ユニット16に処理液Lを供給しない。この場合、供給ライン100の処理液Lは、帰還ライン103を通じてタンク71に戻る。
 背圧弁80は、かかる背圧弁80の上流側における処理液Lの圧力が所望の圧力より大きい場合には弁開度を大きくする。一方で、背圧弁80は、かかる背圧弁80の上流側における処理液Lの圧力が所望の圧力より小さい場合には弁開度を小さくする。
 これにより、背圧弁80は、上流側における処理液Lの圧力を所望の圧力に保つ機能を有する。なお、実施形態において、背圧弁80の弁開度は制御部18によって制御可能である。
 また、タンク71は、処理液補充部81と、排液ライン82とを有する。処理液補充部81は、タンク71に処理液Lを補充する。排液ライン82は、タンク71内の処理液Lを交換する際などに、タンク71内の処理液Lをドレイン部DRに排出する。
 ここまで説明した処理液供給源70では、複数の分岐部79における圧力を背圧弁80によって所望の圧力に保持することで、処理液供給源70から各処理ユニット16への処理液Lの供給を円滑に行うことができる。
 一方で、循環ライン72では、処理液Lの交換作業やトラブルからの復帰作業などの直前に、処理液Lの循環流を立ち下げる際に、ポンプ73の吐出圧力に起因して異物がフィルタ76を通り抜けることで、循環ライン72内の処理液Lが汚染される場合があった。かかる課題の詳細について、図4を参照しながら説明する。
 図4は、参考例におけるフィルタ76の上流側と下流側との差圧の推移について示す図である。図4に示すように、循環流の立ち下げ工程が始まる時間T01までは、制御部18が、循環ライン72に処理液Lの循環流を形成する循環工程を行う。
 この循環工程では、ポンプ73はかかるポンプ73の定格出力で動作していることから、ポンプ73の吐出圧力(すなわち、フィルタ76の上流側の圧力)はほぼ一定である。また、この循環工程では、背圧弁80が、かかる背圧弁80の上流側における圧力を一定に保つように動作していることから、フィルタ76の下流側の圧力もほぼ一定である。
 すなわち、この参考例では、フィルタ76の上流側と下流側との差圧はほぼ一定の差圧P1となる。また、かかる差圧P1は、ポンプ73の定格吐出圧力よりも小さい値となる。
 次に、時間T01において、循環ライン72における処理液Lの循環流を立ち下げる立ち下げ工程が始まると、制御部18は、まず、背圧弁80の制御をオフにする。これは、背圧弁80をオンにしたまま循環ライン72の循環流を停止すると、背圧弁80内の接触リスクがあるからである。
 すると、背圧弁80の弁開度が全開状態となるため、背圧弁80の上流側(すなわち、フィルタ76の下流側)における圧力が急激に低下する。そのため、フィルタ76の上流側と下流側との差圧が急激に上昇し、フィルタ76にはかかるフィルタ76の耐差圧を超えるような大きな差圧P2がかかってしまう。
 したがって、参考例では、かかる大きな差圧P2によって、フィルタ76に捕捉されていた異物が立ち下げ工程の際にフィルタ76を通り抜ける場合があった。
 次に、制御部18は、背圧弁80の制御をオフにした後、ポンプ73を立ち下げると、ポンプ73の吐出圧力が徐々に下がり、時間T02で吐出圧力がゼロになる。これにより、フィルタ76の上流側の圧力がゼロになるため、フィルタ76の上流側と下流側との差圧もゼロになって、循環流の立ち下げ工程が終了する。そして、ユーザは、処理液供給源70などのメンテナンス工程を行う。
 そして、かかるメンテナンス工程が終わると、制御部18は、循環ライン72における処理液Lの循環流を立ち上げるため、時間T03でポンプ73を立ち上げるとともに背圧弁80の制御をオンにする(立ち上げ工程)。
 しかしながら、背圧弁80の制御が安定して動作するまでには所与のタイムラグがあることから、制御が安定するまで背圧弁80は十分に制御されない状態である。
 これにより、図4に示すように、ポンプ73が動作し始める時間T03から、背圧弁80の制御が十分に機能し始める時間T04までは、フィルタ76の上流側と下流側との間でフィルタ76の耐差圧を超えるような大きな差圧P2がかかってしまう。
 したがって、参考例では、かかる大きな差圧P2によって、フィルタ76に捕捉されていた異物が立ち上げ工程の際にフィルタ76を通り抜ける場合があった。なお、背圧弁80の制御が十分に働く時間T04から、再度の循環工程が開始される。
 ここまで説明したように、参考例では、メンテナンス工程の前後で立ち下げ工程および立ち上げ工程が行われる際に、ポンプ73の吐出圧力に起因して異物がフィルタ76を通り抜けることにより、循環ライン72内の処理液Lが汚染される場合がある。
 そこで、実施形態では、以下に説明する制御処理を実施することで、循環ライン72内の処理液Lが汚染されることを抑制することとした。図5は、実施形態に係るフィルタ76の上流側と下流側との差圧の推移について示す図である。
 図5に示すように、ポンプ73の立ち下げ工程が始まる時間T11までは、制御部18が、循環ライン72に処理液Lの循環流を形成する循環工程を行う。この循環工程では、上述の参考例と同様に、フィルタ76の上流側と下流側との差圧はほぼ一定の差圧P1となる。
 次に、時間T11において、循環ライン72における処理液Lの循環流を立ち下げる立ち下げ工程が始まると、制御部18は、背圧弁80の制御をオンにしたまま、ポンプ73の吐出圧力を徐々に低下させる。
 さらに、制御部18は、フィルタ76の上流側と下流側との差圧が、所与のしきい値(たとえば、循環時の差圧P1)以下となるように、ポンプ73および背圧弁80を制御する。
 かかる制御において、フィルタ76の上流側と下流側との差圧は、フィルタ76の上流側の圧力を第1の圧力センサ75で測定するとともに、フィルタ76の下流側の圧力を第2の圧力センサ77で測定することで求められる。
 また、制御部18は、たとえば、ポンプ73の吐出圧力を下降させるとともに背圧弁80の弁開度を大きくすることで、フィルタ76の上流側と下流側との差圧が差圧P1以下となるように制御する。
 実施形態では、このような制御処理によって、立ち下げ工程の際にフィルタ76に耐差圧を超えるような大きな差圧がかかることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることを抑制することができる。
 したがって、実施形態によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、実施形態では、ポンプ73の吐出圧力を下降させるとともに背圧弁80の弁開度を大きくすることで、フィルタ76の上流側と下流側との差圧が差圧P1以下となるように制御するとよい。
 これにより、フィルタ76に耐差圧を超えるような大きな差圧がかかることを円滑に抑制することができる。したがって、実施形態によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、実施形態では、制御部18が、立ち下げ工程前の循環工程において、第1の圧力センサ75と第2の圧力センサ77とを常時モニタリングして、循環工程における第1の圧力センサ75と第2の圧力センサ77との最大差圧をあらかじめ算出する。
 そして、制御部18は、立ち下げ工程の際に、フィルタ76の上流側と下流側との差圧が、循環工程における第1の圧力センサ75と第2の圧力センサ77との最大差圧以下となるように、ポンプ73および背圧弁80を制御してもよい。
 これにより、直近の循環工程においてフィルタ76に加わった差圧よりも大きな差圧が立ち下げ工程において加わることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることをさらに抑制することができる。
 したがって、実施形態によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 なお、図5の例では、立ち下げ工程において、フィルタ76の上流側と下流側との差圧が、循環工程における差圧P1以下となるように制御する例について示したが、本開示はかかる例に限られない。
 たとえば、本開示では、立ち下げ工程において、フィルタ76の上流側と下流側との差圧が、循環工程における差圧P1よりもわずかに高い圧力以下となるようにポンプ73および背圧弁80が制御されてもよい。
 これによっても、立ち下げ工程の際にフィルタ76に耐差圧を超えるような大きな差圧がかかることを抑制することができるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることを抑制することができる。
 したがって、実施形態によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 図5の説明を続ける。上述のように、制御部18は、ポンプ73の吐出圧力を下降させるとともに背圧弁80の弁開度を大きくすることで、フィルタ76の上流側と下流側との差圧が差圧P1以下となるように制御する。
 そして、背圧弁80の弁開度が全開状態になり、かつフィルタ76の上流側と下流側との差圧が差圧P1以下である場合(時間T12)、制御部18は、ポンプ73の吐出圧力が差圧P1以下になったものとみなし、背圧弁80の制御をオフにする。
 そして、制御部18は、背圧弁80の制御をオフにした後、ポンプ73を立ち下げると、ポンプ73の吐出圧力が下がり、時間T13で吐出圧力がゼロになる。そして、ユーザは、処理液供給源70などのメンテナンス工程を行う。
 そして、かかるメンテナンス工程が終わると、制御部18は、循環ライン72における処理液Lの循環流を立ち上げるため、時間T14でポンプ73を立ち上げるとともに背圧弁80の制御をオンにする(立ち上げ工程)。
 ここで、実施形態では、背圧弁80が十分に動作するまでの間、フィルタ76の上流側と下流側との差圧が過度に上昇することを防ぐため、制御部18が、ポンプ73の吐出圧力が徐々に高くなるようにポンプ73を動作させる。
 これにより、図5に示すように、立ち上げ工程の際にフィルタ76に耐差圧を超えるような大きな差圧がかかることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることを抑制することができる。
 したがって、実施形態によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、実施形態では、立ち上げ工程において、フィルタ76の上流側と下流側との差圧が、上述した以前の循環工程における第1の圧力センサ75と第2の圧力センサ77との最大差圧以下となるように、ポンプ73および背圧弁80を制御してもよい。
 これにより、直近の循環工程においてフィルタ76に加わった差圧よりも大きな差圧が立ち上げ工程において加わることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることをさらに抑制することができる。
 したがって、実施形態によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。なお、実施形態では、背圧弁80の制御が十分に働く時間T15から、再度の循環工程が開始される。
<変形例1>
 つづいて、実施形態に係る基板処理システム1の各種変形例について、図6~図16を参照しながら説明する。図6は、実施形態の変形例1に係る処理液供給源70の概略構成を示す図である。
 図6に示すように、この変形例1では、循環ライン72に第1の圧力センサ75および第2の圧力センサ77が設けられない点が上述の実施形態と異なる。そこで、以降の例では、すでに説明した実施形態等と同様の部位については同じ符号を付して、詳細な説明は省略する。
 そして、変形例1では、以下に説明する制御処理を実施することで、循環ライン72内の処理液Lが汚染されることを抑制することができる。図7は、実施形態の変形例1に係る循環ライン72における処理液Lの流量の推移について示す図である。
 図7に示すように、ポンプ73の立ち下げ工程が始まる時間T21までは、制御部18が、循環ライン72に処理液Lの循環流を形成する循環工程を行う。この循環工程では、循環ライン72における処理液Lの流量はほぼ一定の流量F1となる。
 次に、時間T21において、循環ライン72における処理液Lの循環流を立ち下げる立ち下げ工程が始まると、制御部18は、背圧弁80の制御をオンにしたまま、ポンプ73の吐出圧力を徐々に低下させる。
 さらに、制御部18は、循環ライン72における処理液Lの流量が、所与のしきい値(たとえば、循環時の流量F1)以下となるように、ポンプ73および背圧弁80を制御する。かかる制御において、循環ライン72における処理液Lの流量は、流量計78によって測定可能である。
 また、制御部18は、たとえば、ポンプ73の吐出圧力を下降させるとともに背圧弁80の弁開度を大きくすることで、循環ライン72における処理液Lの流量が流量F1以下となるように制御する。
 変形例1では、このような制御処理によって、立ち下げ工程の際にフィルタ76に大きな流量の処理液が流れることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることを抑制することができる。
 したがって、変形例1によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、変形例1では、ポンプ73の吐出圧力を下降させるとともに背圧弁80の弁開度を大きくすることで、循環ライン72における処理液Lの流量が流量F1以下となるように制御するとよい。
 これにより、フィルタ76に大きな流量の処理液が流れることを円滑に抑制することができる。したがって、変形例1によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、変形例1では、制御部18が、立ち下げ工程前の循環工程において、流量計78を常時モニタリングして、循環工程における処理液Lの最大流量をあらかじめ算出する。
 そして、制御部18は、立ち下げ工程の際に、循環ライン72における処理液Lの流量が、循環工程における処理液Lの最大流量以下となるように、ポンプ73および背圧弁80を制御してもよい。
 これにより、直近の循環工程においてフィルタ76に流れた流量よりも大きな流量が立ち下げ工程において流れることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることをさらに抑制することができる。
 したがって、変形例1によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 なお、図7の例では、立ち下げ工程において、循環ライン72における処理液Lの流量が、循環工程における流量F1以下となるように制御する例について示したが、本開示はかかる例に限られない。
 たとえば、本開示では、立ち下げ工程において、循環ライン72における処理液Lの流量が、循環工程における流量F1よりもわずかに高い圧力以下となるようにポンプ73および背圧弁80が制御されてもよい。
 これによっても、立ち下げ工程の際にフィルタ76に大きな流量の処理液Lが流れることを抑制することができるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることを抑制することができる。
 したがって、変形例1によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 図7の説明を続ける。上述のように、制御部18は、ポンプ73の吐出圧力を下降させるとともに背圧弁80の弁開度を大きくすることで、循環ライン72における処理液Lの流量が流量F1以下となるように制御する。
 そして、背圧弁80の弁開度が全開状態になり、かつ循環ライン72における処理液Lの流量が流量F1以下である場合(時間T22)、制御部18は、循環ライン72における処理液Lの流量が流量F1以下になったものとみなし、背圧弁80の制御をオフにする。
 そして、制御部18は、背圧弁80の制御をオフにした後、ポンプ73を立ち下げると、ポンプ73の吐出圧力が下がり、時間T23で吐出圧力がゼロになる。そして、ユーザは、処理液供給源70などのメンテナンス工程を行う。
 そして、かかるメンテナンス工程が終わると、制御部18は、循環ライン72における処理液Lの循環流を立ち上げるため、時間T24でポンプ73を立ち上げるとともに背圧弁80の制御をオンにする(立ち上げ工程)。
 ここで、変形例1では、背圧弁80が十分に動作するまでの間、循環ライン72における処理液Lの流量が過度に上昇することを防ぐため、制御部18が、ポンプ73の吐出圧力が徐々に高くなるようにポンプ73を動作させる。
 これにより、図7に示すように、立ち上げ工程の際にフィルタ76に大きな流量の処理液が流れることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることを抑制することができる。
 したがって、変形例1によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、変形例1では、立ち上げ工程において、循環ライン72における処理液Lの流量が、上述した以前の循環工程における処理液Lの最大流量以下となるように、ポンプ73および背圧弁80を制御してもよい。
 これにより、直近の循環工程においてフィルタ76に流れた流量よりも大きな流量が立ち上げ工程において流れることを抑制できるため、フィルタ76に捕捉されていた異物がフィルタ76を通り抜けることをさらに抑制することができる。
 したがって、変形例1によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。なお、変形例1では、背圧弁80の制御が十分に働く時間T25から、再度の循環工程が開始される。
<変形例2>
 図8は、実施形態の変形例2に係る処理液供給源70の概略構成を示す図である。図8に示すように、変形例2では、循環ライン72に、タンク71を基準として、上流側から順にポンプ73と、ヒータ74と、分岐部83と、バルブ85と、第1の圧力センサ75と、フィルタ76と、第2の圧力センサ77とが設けられる。さらに、かかる循環ライン72には、第2の圧力センサ77を基準として、上流側から順に、流量計78と、分岐部87と、バルブ89と、複数の分岐部79と、背圧弁80とが設けられる。
 分岐部83からは、タンク71に繋がる分岐循環ライン84が分岐する。かかる分岐循環ライン84には、バルブ86が設けられる。分岐部87からは、ドレイン部DRに繋がる排液ライン88が分岐する。かかる排液ライン88には、バルブ90が設けられる。
 つづいて、変形例2に係る立ち上げ工程の詳細について、図9~図11を参照しながら説明する。図9~図11は、実施形態の変形例2に係る処理液供給源70の立ち上げ工程の手順を示す図である。なお、図9~図11では、処理ユニット16等の図示を省略している。
 図9に示すように、変形例2に係る立ち上げ工程では、制御部18(図1参照)が、まず、ポンプ73およびヒータ74を動作させるとともに、バルブ85を閉状態にし、バルブ86を開状態にする。なお、以降の図面では、開状態のバルブに「O」を付与し、閉状態のバルブに「C」を付与する。
 これにより、図9の太字破線に示すように、処理液供給源70には、循環ライン72および分岐循環ライン84を通流する処理液Lの循環流が形成される。そして、ヒータ74を動作させながら、太字破線の循環流を維持することで、タンク71内の処理液Lを所望の温度に昇温することができる。
 ここで、変形例2では、循環ライン72および分岐循環ライン84を通流する処理液Lの循環流を形成しながら処理液Lを昇温することで、立ち上げ工程において、フィルタ76を通流させることなく処理液Lの昇温処理を行うことができる。
 したがって、変形例2によれば、処理液Lの昇温に伴って、フィルタ76を通り抜けるパーティクルによる汚染を防止することができる。また、変形例2では、パーティクルが捕捉されているフィルタ76を処理液Lが通流しないため、昇温処理における処理液Lの汚染を抑制することができる。さらに、変形例2では、昇温処理におけるフィルタ76での圧損を回避できるため、効率よく処理液Lを昇温することができる。
 そして、タンク71内の処理液Lの温度が所与の温度になったところで、図10に示すように、制御部18(図1参照)は、ポンプ73およびヒータ74の動作を維持するとともに、バルブ85、86、90を開状態にし、バルブ89を閉状態にする。
 これにより、図10の太字破線に示すように、循環ライン72および分岐循環ライン84を通流する処理液Lの循環流が引き続き形成されるとともに、昇温中の処理液Lが排液ライン88を介してドレイン部DRに排出される。
 これにより、昇温中の処理液Lがフィルタ76を通流する際に、フィルタ76が昇温して目が粗くなり、フィルタ76に捕捉されていたパーティクルがフィルタ76を通り抜けた場合でも、かかるパーティクルがタンク71に戻ることを抑制することができる。
 したがって、変形例2によれば、フィルタ76を通り抜けたパーティクルを多く含む処理液Lが循環ライン72内に拡散し、タンク71に戻ることを抑制することができる。
 そして、流量計78の測定値に基づいて求められる排液ライン88からの排液量が所与の量に達し、フィルタ76を通り抜けるパーティクルが少なくなる。すると、図11に示すように、制御部18(図1参照)は、ポンプ73およびヒータ74の動作を維持するとともに、バルブ85、89を開状態にし、バルブ86、90を閉状態にする。
 これにより、図11の太字破線に示すように、処理液供給源70には、循環ライン72を通流する処理液Lの循環流が形成される。なお、図11に示す段階の前には、背圧弁80の制御はすでにオンになっている。
 そして、変形例2では、上述の実施形態と同様の立ち上げ工程における制御処理を行うことで、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、変形例2では、処理液Lの昇温処理が完了した後、高温の処理液Lをフィルタ76に通流させることで、フィルタ76の温度が室温まで戻ることを抑制することができる。これにより、室温に戻ったフィルタ76を、昇温処理によって所与の高温まで徐々に昇温することで、フィルタ76の目が粗くなり、多くのパーティクルがフィルタ76を通り抜けることを抑制することができる。
 したがって、変形例2によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、変形例2では、排液ライン88がフィルタ76に直接接続されているのではなく、循環ライン72のフィルタ76よりも下流側(ここでは、分岐部87)に接続されているとよい。
 排液ライン88がフィルタ76に直接接続されている場合、フィルタ76の内部を通流したすべての処理液Lを排液ライン88に流すことは非常に困難である。一方で、変形例2では、循環ライン72のフィルタ76よりも下流側に排液ライン88を接続することで、フィルタ76の内部を通流したすべての処理液Lを排液ライン88に流すことができる。
 したがって、変形例2によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、変形例2では、循環ライン72におけるフィルタ76と排液ライン88(すなわち、分岐部87)との間に、流量計78が位置しているとよい。これにより、図10に示した排液ライン88を介してドレイン部DRに処理液Lを排出する工程において、制御部18は、排出される処理液Lの排液量を、流量計78の値に基づいて精度よくモニタすることができる。
 したがって、変形例2によれば、排液ライン88を介してドレイン部DRに処理液Lを排出する工程において、処理液Lを過剰に排出することを抑制できるため、処理液Lの無駄な廃棄を低減することができる。
 なお、上記の変形例2では、図10に示したように、循環ライン72及び分岐循環ライン84を通流する処理液Lの循環流を形成すると共に、昇温中の処理液Lを排液ライン88を介してドレイン部DRに排出する例について示したが、本開示はこの例に限られない。
 たとえば、図9に示した処理に続けて、制御部18は、ポンプ73およびヒータ74の動作を維持するとともに、バルブ85、90を開状態にし、バルブ86、89を閉状態にする。これにより、制御部18は、昇温処理が完了した処理液Lを、排液ライン88を介してドレイン部DRに排出してもよい。
 これにより、昇温された処理液Lがフィルタ76を通流する際に、フィルタ76が昇温して目が粗くなり、フィルタ76に捕捉されていたパーティクルがフィルタ76を通り抜けた場合でも、かかるパーティクルがタンク71に戻ることを抑制することができる。
 なおこの場合、昇温処理が完了した処理液Lを排液ライン88を介してドレイン部DRに所定の時間排出した後に、図11に示した処理に移行するとよい。
 また、上記の変形例2では、図10に示したように昇温中の処理液Lを排液ライン88を介してドレイン部DRに排出した後に、図11に示したように循環ライン72を通流する処理液Lの循環流を形成する例について示したが、本開示はかかる例に限られない。
 たとえば、図10に示した処理に続けて、制御部18は、図9に示した処理および図10に示した処理を複数回繰り返してもよい。
 これにより、図9に示した処理でフィルタ76を通流する処理液Lの流量をゼロに戻した上で、図10に示した処理でフィルタ76に再度処理液Lを通流させることができるため、フィルタ76に捕捉されていたパーティクルをより多く下流側に流すことができる。
 したがって、変形例2によれば、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、上記の変形例2では、分岐循環ライン84で処理液Lを循環させながら、処理液Lを所望の温度まで昇温させた後に、排液ライン88で処理液Lを排液する工程を行なう例について示したが、本開示はかかる例に限られない。
 たとえば、本開示では、分岐循環ライン84で処理液Lを循環させながら、処理液Lを所望の温度まで昇温させること無く、まず排液ライン88で所定の排液量だけ処理液Lを排出し、その後循環ライン72で処理液Lを循環させてもよい。これによっても、循環ライン72内の処理液Lが汚染されることを抑制することができる。
<変形例3>
 図12は、実施形態の変形例3に係る処理液供給源70の概略構成を示す図である。図12に示すように、この変形例3では、分岐循環ライン84の構成が上述の変形例2と異なる。
 具体的には、変形例3では、分岐循環ライン84がバイパスライン91を有する。かかるバイパスライン91は、分岐循環ライン84におけるバルブ86の上流側とバルブ86の下流側との間に接続される。
 また、バイパスライン91には、オリフィス92が設けられる。かかるオリフィス92は、バイパスライン91を流れる処理液Lの流量を低下させる。バイパスライン91およびオリフィス92は、流量調整機構の一例である。
 つづいて、変形例3に係る立ち上げ工程の詳細について、図13~図15を参照しながら説明する。図13~図15は、実施形態の変形例3に係る処理液供給源70の立ち上げ工程の手順を示す図である。なお、図13~図15では、処理ユニット16等の図示を省略している。
 図13に示すように、変形例3に係る立ち上げ工程では、制御部18(図1参照)が、まず、ポンプ73およびヒータ74を動作させるとともに、バルブ85を閉状態にし、バルブ86を開状態にする。
 これにより、図13の太字破線に示すように、処理液供給源70には、循環ライン72および分岐循環ライン84を通流する処理液Lの循環流が形成される。なお、図13に示す工程では、処理液Lが分岐循環ライン84およびバイパスライン91の両方を通流するため、分岐循環ライン84における処理液Lの流量が大きい。
 そして、ヒータ74を動作させながら、太字破線の循環流を維持することで、タンク71内の処理液Lを所望の温度に昇温することができる。
 ここで、変形例3では、循環ライン72および分岐循環ライン84を通流する処理液Lの循環流を形成しながら処理液Lを昇温することで、立ち上げ工程において、フィルタ76を通流させることなく処理液Lの昇温処理を行うことができる。
 したがって、変形例3によれば、処理液Lの昇温に伴って、フィルタ76を通り抜けるパーティクルによる汚染を防止することができる。また、変形例3では、パーティクルが捕捉されているフィルタ76を処理液Lが通流しないため、昇温処理における処理液Lの汚染を抑制することができる。さらに、変形例3では、昇温処理におけるフィルタ76での圧損を回避できるため、効率よく処理液Lを昇温することができる。
 そして、タンク71内の処理液Lの温度が所与の温度になったところで、図14に示すように、制御部18(図1参照)は、ポンプ73およびヒータ74の動作を維持するとともに、バルブ85、86、90を開状態にし、バルブ89を閉状態にする。
 これにより、図14の太字破線に示すように、循環ライン72および分岐循環ライン84を通流する処理液Lの循環流が引き続き形成されるとともに、昇温中の処理液Lが排液ライン88を介してドレイン部DRに排出される。なお、図14に示す工程では、処理液Lが分岐循環ライン84およびバイパスライン91の両方を通流するため、分岐循環ライン84における処理液Lの流量が大きい。
 これにより、昇温中の処理液Lがフィルタ76を通流する際に、フィルタ76が昇温して目が粗くなり、フィルタ76に捕捉されていたパーティクルがフィルタ76を通り抜けた場合でも、かかるパーティクルがタンク71に戻ることを抑制することができる。
 したがって、変形例3によれば、フィルタ76を通り抜けたパーティクルを多く含む処理液Lが循環ライン72内に拡散し、タンク71に戻ることを抑制することができる。
 そして、所与の時間が経過し、フィルタ76を通り抜けるパーティクルが少なくなると、図15に示すように、制御部18(図1参照)は、ポンプ73およびヒータ74の動作を維持するとともに、バルブ85、89を開状態にし、バルブ86、90を閉状態にする。
 これにより、図14の太字破線に示すように、処理液供給源70には、循環ライン72を通流する処理液Lの循環流が形成されるとともに、循環ライン72および分岐循環ライン84を通流する処理液Lの循環流が引き続き形成される。
 なお、図15に示す段階の前には、背圧弁80の制御はすでにオンになっている。また、図15に示す工程では、分岐循環ライン84において処理液Lがバイパスライン91のみを通流するため、分岐循環ライン84における処理液Lの流量が小さい。
 そして、変形例3では、上述の実施形態と同様の立ち上げ工程における制御処理を行うことで、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、変形例3では、処理液Lの昇温処理が完了した後、高温の処理液Lをフィルタ76に通流させることで、フィルタ76の温度が室温まで戻ることを抑制することができる。これにより、室温に戻ったフィルタ76を、昇温処理によって所与の高温まで徐々に昇温することで、フィルタ76の目が粗くなり、多くのパーティクルがフィルタ76を通り抜けることを抑制することができる。
 したがって、変形例3によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、変形例3では、上述の変形例2とは図15に示した循環ライン72での処理液Lの循環工程において、分岐循環ライン84にも小さい流量の循環流が形成される。これにより、循環ライン72での処理液Lの循環中に、分岐循環ライン84において処理液Lが滞留することを抑制できる。
 すなわち、変形例3では、処理液供給源70などのメンテナンス工程を再度行なった後、循環流の立ち上げ工程を再度行なう際に、処理液Lが滞留していた分岐循環ライン84を用いることで、処理液Lがパーティクルなどで汚染されることを防止できる。
 したがって、変形例3によれば、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、変形例3では、図15に示したように、循環ライン72において処理液Lを循環させる場合には、循環ライン72における処理液Lの循環を開始する前よりも小さい流量で、処理液Lを分岐循環ライン84で循環させるとよい。
 これにより、ポンプ73の定格流量を過剰に大きくすることなく、循環ライン72における循環流および分岐循環ライン84における循環流の両方を維持することができる。したがって、変形例3によれば、処理液供給源70の製造コストを低減することができる。
 なお、図12~図15の例では、分岐循環ライン84の流量調整機構として、バイパスライン91およびオリフィス92を用いた例について示したが、本開示はかかる例に限られない。
 たとえば、2種類以上の弁開度を制御可能なバルブが分岐循環ライン84に設けられ、制御部18は、かかるバルブの弁開度を制御することで、分岐循環ライン84における処理液Lの流量を調整してもよい。
 これによっても、循環流の立ち上げ工程を再度行なう際に、処理液Lが滞留していた分岐循環ライン84を用いることで、処理液Lがパーティクルなどで汚染されることを防止できるため、循環ライン72内の処理液Lが汚染されることを抑制することができる。
<変形例4>
 図16は、実施形態の変形例4に係る処理液供給源70の概略構成を示す図である。図16に示すように、この変形例4では、排液ライン88の下流側の構成が上述の変形例2と異なる。
 具体的には、変形例4では、排液ライン88が、ドレイン部DR(図8参照)ではなく、回収機構110に接続される。かかる回収機構110は、回収タンク111と、循環ライン112と、ポンプ113と、流量計114と、フィルタ115と、分岐部116と、バルブ117とを備える。フィルタ115は、濾過機構の一例である。
 回収タンク111は、排液ライン88から排出された処理液Lを回収して貯留する。循環ライン112は、回収タンク111から送られる処理液Lを回収タンク111へ戻す。かかる循環ライン112には、回収タンク111を基準として、上流側から順にポンプ113と、流量計114と、フィルタ115と、分岐部116と、バルブ117とが設けられる。
 ポンプ113は、循環ライン112における処理液Lの循環流を形成する。流量計114は、循環ライン112に形成される処理液Lの循環流の流量を測定する。フィルタ115は、循環ライン112内を循環する処理液Lに含まれるパーティクルなどの汚染物質を除去する。
 分岐部116からは、タンク71に繋がる戻しライン118が分岐する。かかる戻しライン118には、バルブ119が設けられる。
 ここで、変形例4では、排液ライン88から排出された処理液Lを回収機構110で回収して、この回収機構で処理液Lを濾過する。
 具体的には、制御部18(図1参照)は、ポンプ113を動作させることで循環ライン112に処理液Lの循環流を形成し、循環する処理液Lをフィルタ115にくり返し通流させることで、処理液Lを濾過する。この際、制御部18は、バルブ117を開状態にし、バルブ119を閉状態にする。
 そして、回収タンク111内の処理液Lが所与の清浄度となった場合、制御部18は、バルブ117を閉状態にし、バルブ119を開状態にする。これにより、制御部18は、清浄に濾過された処理液Lを、回収タンク111から循環ライン112および戻しライン118を介してタンク71に戻す。
 これにより、ドレイン部DRに廃棄される処理液Lの液量を低減することができる。したがって、変形例4によれば、処理液Lの使用量を削減できるため、ウェハWの処理コストを低減することができる。
 また、変形例4では、循環ライン72を循環する処理液Lの温度よりも、循環ライン112を循環する処理液Lの温度が低くてもよい。たとえば、循環ライン112を循環する処理液Lの温度は室温であってもよい。
 これにより、循環ライン112を循環する処理液L内において、パーティクルをより多く凝集させることができる。したがって、変形例4によれば、回収機構110において処理液Lを効率よくフィルトレーション処理することができる。
 実施形態に係る液供給システム(処理液供給源70)は、タンク71と、循環ライン72と、ポンプ73と、フィルタ76と、背圧弁80と、制御部18と、を備える。タンク71は、処理液Lを貯留する。循環ライン72は、タンク71から送られる処理液Lをタンク71へ戻す。ポンプ73は、循環ライン72における処理液Lの循環流を形成する。フィルタ76は、循環ライン72におけるポンプ73の下流側に設けられる。背圧弁80は、循環ライン72におけるフィルタ76の下流側に設けられる。制御部18は、各部を制御する。また、制御部18は、ポンプ73の動作を停止させる際に、ポンプ73の吐出圧力の下降開始からポンプ73の動作停止までの間に、フィルタ76の上流側と下流側との差圧が所与のしきい値以下となるように、ポンプ73および背圧弁80を制御する。これにより、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)において、制御部18は、ポンプ73の吐出圧力を下降させるとともに背圧弁80の弁開度を大きくすることにより、フィルタ76の上流側と下流側との差圧が所与のしきい値以下となるように制御する。これにより、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)において、制御部18は、ポンプ73の動作を停止させる際に、フィルタ76の上流側と下流側との差圧が、最大差圧以下となるように、ポンプ73および背圧弁80を制御する。かかる最大差圧は、循環ライン72における処理液Lの循環流が形成されている際のフィルタ76の上流側と下流側との最大差圧である。これにより、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、フィルタ76の上流側に設けられる第1の圧力センサ75と、フィルタ76の下流側に設けられる第2の圧力センサ77と、をさらに備える。また、制御部18は、循環ライン72における処理液Lの循環流が形成されている際に、第1の圧力センサ75と第2の圧力センサ77との最大差圧を算出する。さらに、制御部18は、ポンプ73の動作を停止させる際に、フィルタ76の上流側と下流側との差圧がかかる最大差圧以下となるように、ポンプ73および背圧弁80を制御する。これにより、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)において、制御部18は、循環ライン72における処理液Lの循環を開始する際に、フィルタ76の上流側と下流側との差圧が最大差圧以下となるように、ポンプ73および背圧弁80を制御する。かかる最大差圧は、循環ライン72における処理液Lの循環流が形成されている際のフィルタ76の上流側と下流側との最大差圧である。これにより、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、加熱機構(ヒータ74)と、分岐循環ライン84と、をさらに備える。加熱機構(ヒータ74)は、循環ライン72におけるポンプ73とフィルタ76との間に設けられる。分岐循環ライン84は、循環ライン72における加熱機構(ヒータ74)とフィルタ76との間から分岐して、タンク71から送られる処理液Lをタンク71へ戻す。また、制御部18は、循環ライン72における処理液Lの循環を開始する前に、ポンプ73を動作させて処理液Lを分岐循環ライン84で循環させながら加熱機構(ヒータ74)で加熱する。これにより、昇温処理における処理液Lの汚染を抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、分岐部79と、バルブ89と、排液ライン88と、をさらに備える。分岐部79は、循環ライン72におけるフィルタ76の下流側であって、基板処理部30に処理液Lを供給する供給ライン100が分岐する。バルブ89は、フィルタ76と分岐部79との間に設けられる。排液ライン88は、循環ライン72におけるフィルタ76とバルブ89との間に接続される。また、制御部18は、循環ライン72における処理液Lの循環を開始する前に、バルブ89を閉じて分岐循環ライン84で循環させながら加熱機構(ヒータ74)で加熱し、加熱機構(ヒータ74)で加熱した後に、排液ライン88から処理液Lを排液する。これにより、フィルタ76を通り抜けたパーティクルを多く含む処理液Lが循環ライン72内に拡散し、タンク71に戻ることを抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)において、制御部18は、循環ライン72における処理液Lの循環を開始する前に、分岐循環ライン84での循環と排液ライン88からの排液とを繰り返す。これにより、循環ライン72内の処理液Lが汚染されることをさらに抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、フィルタ76とバルブ89との間に設けられる流量計78、をさらに備える。また、排液ライン88は、循環ライン72における流量計78の下流側に接続される。また、制御部18は、流量計78によって排液ライン88から排液される処理液Lの排液量をモニタする。これにより、処理液Lの無駄な廃棄を低減することができる。
 また、実施形態に係る液供給システム(処理液供給源70)において、制御部18は、排液量が所定量となった場合に、バルブ90を開けて循環ライン72に処理液Lを通流させ循環流を形成する。これにより、処理液Lの無駄な廃棄を低減することができる。
 また、実施形態に係る液供給システム(処理液供給源70)において、制御部18は、循環ライン72における処理液Lの循環を行いながら分岐循環ライン84で処理液Lを循環させる。これにより、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、分岐循環ライン84に設けられ、分岐循環ライン84を流れる処理液Lの流量を調整する流量調整機構(バイパスライン91およびオリフィス92)、をさらに備える。また、制御部18は、循環ライン72において処理液Lを循環させる場合には、循環ライン72における処理液Lの循環を開始する前よりも小さい流量で、処理液Lを分岐循環ライン84で循環させる。これにより、処理液供給源70の製造コストを低減することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、回収タンク111と、濾過機構(フィルタ115)と、戻しライン118と、をさらに備える。回収タンク111は、排液ライン88を流れる処理液Lを回収する。濾過機構(フィルタ115)は、回収タンク111に回収された処理液Lを濾過する。戻しライン118は、濾過機構(フィルタ115)とタンク71との間を接続し、濾過機構(フィルタ115)で濾過された処理液Lをタンク71に戻す。これにより、ウェハWの処理コストを低減することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、分岐部79と、バルブ89と、排液ライン88とをさらに備える。分岐部79は、循環ライン72におけるフィルタ76の下流側であって、基板処理部30に処理液Lを供給する供給ライン100が分岐する。バルブ89は、フィルタ76と分岐部79との間に設けられる。排液ライン88は、循環ライン72におけるフィルタ76とバルブ89との間に接続される。また、制御部18は、循環ライン72における処理液Lの循環を開始する前に、バルブ89を閉じ、排液ライン88から処理液Lを排液する。これにより、フィルタ76を通り抜けたパーティクルを多く含む処理液Lが循環ライン72内に拡散し、タンク71に戻ることを抑制することができる。
 また、実施形態に係る液供給システム(処理液供給源70)は、タンク71と、循環ライン72と、ポンプ73と、フィルタ76と、背圧弁80と、制御部18と、を備える。タンク71は、処理液Lを貯留する。循環ライン72は、タンク71から送られる処理液Lをタンク71へ戻す。ポンプ73は、循環ライン72における処理液Lの循環流を形成する。フィルタ76は、循環ライン72におけるポンプ73の下流側に設けられる。背圧弁80は、循環ライン72におけるフィルタ76の下流側に設けられる。制御部18は、各部を制御する。また、制御部18は、ポンプ73の動作を停止させる際に、ポンプ73の吐出圧力の下降開始からポンプ73の動作停止までの間に、循環ライン72に流れる処理液Lの流量が所与のしきい値以下となるように、ポンプ73および背圧弁80を制御する。これにより、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、実施形態に係る液処理装置(基板処理システム1)は、液処理部(処理ユニット16)と、供給ライン100と、を備える。液処理部(処理ユニット16)は、処理液Lで基板(ウェハW)を処理する。供給ライン100は、上記に記載の液供給システム(処理液供給源70)から液処理部(処理ユニット16)に処理液Lを供給する。これにより、処理液供給源70において汚染が抑制された処理液LでウェハWを処理することができる。
<制御処理の手順>
 つづいて、実施形態に係る制御処理の手順について、図17を参照しながら説明する。図17は、実施形態に係る基板処理システム1が実行する制御処理の手順の一例を示すフローチャートである。
 実施形態に係る制御処理では、制御部18が、ポンプ73およびヒータ74を動作させて、循環ライン72において処理液Lを循環させる(ステップS101)。また、かかるステップS101の処理では、制御部18が、フィルタ76の上流側と下流側との最大差圧を、第1の圧力センサ75および第2の圧力センサ77を動作させることで求める。
 また、ステップS101の処理では、制御部18が、循環ライン72における処理液Lの最大流量を、流量計78を動作させることで求めてもよい。
 次に、制御部18は、循環ライン72における処理液Lの循環流を立ち下げる(ステップS102)。この際、制御部18は、フィルタ76の上流側と下流側との差圧が、所与のしきい値(たとえば、ステップS101の処理におけるフィルタ76の上流側と下流側との最大差圧)以下となるように、ポンプ73および背圧弁80を制御する。
 また、ステップS102の処理では、制御部18が、循環ライン72における処理液Lの流量が、所与のしきい値(たとえば、ステップS101の処理における処理液Lの最大流量)以下となるように、ポンプ73および背圧弁80を制御してもよい。
 次に、タンク71内部の清掃や処理液Lの交換、トラブルの復旧などのメンテナンス工程が行われる(ステップS103)。そして、制御部18は、循環ライン72における処理液Lの循環流を立ち上げる(ステップS104)。
 この際、制御部18は、ポンプ73の吐出圧力が徐々に高くなるようにポンプ73を動作させる。また、制御部18は、このステップS104の処理において、フィルタ76の上流側と下流側との差圧が、上述した循環工程における第1の圧力センサ75と第2の圧力センサ77との最大差圧以下となるように、ポンプ73および背圧弁80を制御してもよい。
 さらに、制御部18は、このステップS104の処理において、循環ライン72における処理液Lの流量が、上述した循環工程における処理液Lの最大流量以下となるように、ポンプ73および背圧弁80を制御してもよい。
 そして、背圧弁80の制御が十分に働いたところで、処理液Lの再度の循環工程に戻り(ステップS105)、一連の制御処理が終了する。
 実施形態に係る液供給方法は、循環流を形成する工程(ステップS101)と、循環流を立ち下げる工程(ステップS102)と、循環流を立ち上げる工程(ステップS104)と、を含む。循環流を形成する工程(ステップS101)は、ポンプ73を動作させて、タンク71から送られる処理液Lをタンク71へ戻す循環ライン72に処理液Lの循環流を形成する。循環流を立ち下げる工程(ステップS102)は、循環ライン72における処理液Lの循環流を立ち下げる。循環流を立ち上げる工程(ステップS104)は、循環ライン72における処理液Lの循環流を立ち上げる。循環流を立ち下げる工程は、ポンプ73の動作を停止させる際に、ポンプ73の吐出圧力の下降開始からポンプ73の動作停止までの間に、フィルタ76の上流側と下流側との差圧が所与のしきい値以下となるように、ポンプ73と、背圧弁80とを制御する。フィルタ76は、循環ライン72におけるポンプ73の下流側に設けられる。背圧弁80は、循環ライン72におけるフィルタ76の下流側に設けられる。これにより、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、実施形態に係る液供給方法において、循環流を立ち下げる工程(ステップS102)は、ポンプ73の動作を停止させる際に、フィルタ76の上流側と下流側との差圧が、最大差圧以下となるように、ポンプ73および背圧弁80を制御する。かかる最大差圧は、循環流を形成する工程(ステップS101)におけるフィルタ76の上流側と下流側との最大差圧である。これにより、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 また、実施形態に係る液供給方法において、循環流を立ち上げる工程(ステップS104)は、循環ライン72における処理液Lの循環を開始する際に、フィルタ76の上流側と下流側との差圧が、最大差圧以下となるように、ポンプ73および背圧弁80を制御する。かかる最大差圧は、循環流を形成する工程(ステップS101)におけるフィルタ76の上流側と下流側との最大差圧である。これにより、循環ライン72内の処理液Lが汚染されることを抑制することができる。
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 W   ウェハ
 1   基板処理システム(液処理装置の一例)
 16  処理ユニット(液処理部の一例)
 18  制御部
 30  基板処理部
 70  処理液供給源(液供給システムの一例)
 71  タンク
 72  循環ライン
 73  ポンプ
 74  ヒータ(加熱機構の一例)
 75  第1の圧力センサ
 76  フィルタ
 77  第2の圧力センサ
 78  流量計
 79  分岐部
 80  背圧弁
 84  分岐循環ライン
 88  排液ライン
 89  バルブ
 91  バイパスライン(流量調整機構の一例)
 92  オリフィス(流量調整機構の一例)
 100 供給ライン
 110 回収機構
 111 回収タンク
 115 フィルタ(濾過機構の一例)
 118 戻しライン
 L   処理液

Claims (19)

  1.  処理液を貯留するタンクと、
     前記タンクから送られる前記処理液を前記タンクへ戻す循環ラインと、
     前記循環ラインにおける前記処理液の循環流を形成するポンプと、
     前記循環ラインにおける前記ポンプの下流側に設けられるフィルタと、
     前記循環ラインにおける前記フィルタの下流側に設けられる背圧弁と、
     各部を制御する制御部と、
     を備え、
     前記制御部は、前記ポンプの動作を停止させる際に、前記ポンプの吐出圧力の下降開始から前記ポンプの動作停止までの間に、前記フィルタの上流側と下流側との差圧が所与のしきい値以下となるように、前記ポンプおよび前記背圧弁を制御する
     液供給システム。
  2.  前記制御部は、前記ポンプの吐出圧力を下降させるとともに前記背圧弁の弁開度を大きくすることにより、前記フィルタの上流側と下流側との差圧が所与のしきい値以下となるように制御する
     請求項1に記載の液供給システム。
  3.  前記制御部は、前記ポンプの動作を停止させる際に、前記フィルタの上流側と下流側との差圧が、前記循環ラインにおける前記処理液の循環流が形成されている際の前記フィルタの上流側と下流側との最大差圧以下となるように、前記ポンプおよび前記背圧弁を制御する
     請求項1または2に記載の液供給システム。
  4.  前記フィルタの上流側に設けられる第1の圧力センサと、
     前記フィルタの下流側に設けられる第2の圧力センサと、
     をさらに備え、
     前記制御部は、
     前記循環ラインにおける前記処理液の循環流が形成されている際に、前記第1の圧力センサと前記第2の圧力センサとの最大差圧を算出し、
     前記ポンプの動作を停止させる際に、前記フィルタの上流側と下流側との差圧が前記最大差圧以下となるように、前記ポンプおよび前記背圧弁を制御する
     請求項1または2に記載の液供給システム。
  5.  前記制御部は、前記循環ラインにおける前記処理液の循環を開始する際に、前記フィルタの上流側と下流側との差圧が、前記循環ラインにおける前記処理液の循環流が形成されている際の前記フィルタの上流側と下流側との最大差圧以下となるように、前記ポンプおよび前記背圧弁を制御する
     請求項1または2に記載の液供給システム。
  6.  前記循環ラインにおける前記ポンプと前記フィルタとの間に設けられる加熱機構と、
     前記循環ラインにおける前記加熱機構と前記フィルタとの間から分岐して、前記タンクから送られる前記処理液を前記タンクへ戻す分岐循環ラインと、
     をさらに備え、
     前記制御部は、前記循環ラインにおける前記処理液の循環を開始する前に、前記ポンプを動作させて前記処理液を前記分岐循環ラインで循環させながら前記加熱機構で加熱する
     請求項1または2に記載の液供給システム。
  7.  前記循環ラインにおける前記フィルタの下流側であって、基板処理部に前記処理液を供給する供給ラインが分岐する分岐部と、
     前記フィルタと前記分岐部との間に設けられるバルブと、
     前記循環ラインにおける前記フィルタと前記バルブとの間に接続される排液ラインと、
     をさらに備え、
     前記制御部は、前記循環ラインにおける前記処理液の循環を開始する前に、前記バルブを閉じて前記分岐循環ラインで循環させながら前記加熱機構で加熱し、前記加熱機構で前記加熱した後に、前記排液ラインから前記処理液を排液する
     請求項6に記載の液供給システム。
  8.  前記制御部は、前記循環ラインにおける前記処理液の循環を開始する前に、前記分岐循環ラインでの循環と前記排液ラインからの排液とを繰り返す
     請求項7に記載の液供給システム。
  9.  前記フィルタと前記バルブとの間に設けられる流量計、をさらに備え、
     前記排液ラインは、前記循環ラインにおける前記流量計の下流側に接続され、
     前記制御部は、前記流量計によって前記排液ラインから排液される前記処理液の排液量をモニタする
     請求項7に記載の液供給システム。
  10.  前記制御部は、前記排液量が所定量となった場合に、前記バルブを開けて前記循環ラインに前記処理液を通流させ循環流を形成する
     請求項9に記載の液供給システム。
  11.  前記制御部は、前記循環ラインにおける前記処理液の循環を行いながら前記分岐循環ラインで前記処理液を循環させる
     請求項6に記載の液供給システム。
  12.  前記分岐循環ラインに設けられ、前記分岐循環ラインを流れる前記処理液の流量を調整する流量調整機構、をさらに備え、
     前記制御部は、前記循環ラインにおいて前記処理液を循環させる場合には、前記循環ラインにおける前記処理液の循環を開始する前よりも小さい流量で、前記処理液を前記分岐循環ラインで循環させる
     請求項11に記載の液供給システム。
  13.  前記排液ラインを流れる前記処理液を回収する回収タンクと、
     前記回収タンクに回収された前記処理液を濾過する濾過機構と、
     前記濾過機構と前記タンクとの間を接続し、前記濾過機構で濾過された前記処理液を前記タンクに戻す戻しラインと、
     をさらに備える請求項7に記載の液供給システム。
  14.  前記循環ラインにおける前記フィルタの下流側であって、基板処理部に前記処理液を供給する供給ラインが分岐する分岐部と、
     前記フィルタと前記分岐部との間に設けられるバルブと、
     前記循環ラインにおける前記フィルタと前記バルブとの間に接続される排液ラインと、
     をさらに備え、
     前記制御部は、前記循環ラインにおける前記処理液の循環を開始する前に、前記バルブを閉じ、前記排液ラインから前記処理液を排液する
     請求項1または2に記載の液供給システム。
  15.  処理液を貯留するタンクと、
     前記タンクから送られる前記処理液を前記タンクへ戻す循環ラインと、
     前記循環ラインにおける前記処理液の循環流を形成するポンプと、
     前記循環ラインにおける前記ポンプの下流側に設けられるフィルタと、
     前記循環ラインにおける前記フィルタの下流側に設けられる背圧弁と、
     各部を制御する制御部と、
     を備え、
     前記制御部は、前記ポンプの動作を停止させる際に、前記ポンプの吐出圧力の下降開始から前記ポンプの動作停止までの間に、前記循環ラインに流れる前記処理液の流量が所与のしきい値以下となるように、前記ポンプおよび前記背圧弁を制御する
     液供給システム。
  16.  前記処理液で基板を処理する液処理部と、
     請求項1または2に記載の液供給システムから前記液処理部に前記処理液を供給する供給ラインと、
     を備える液処理装置。
  17.  ポンプを動作させて、タンクから送られる処理液を前記タンクへ戻す循環ラインに前記処理液の循環流を形成する工程と、
     前記循環ラインにおける前記処理液の循環流を立ち下げる工程と、
     前記循環ラインにおける前記処理液の循環流を立ち上げる工程と、
     を含み、
     前記循環流を立ち下げる工程は、
     前記ポンプの動作を停止させる際に、前記ポンプの吐出圧力の下降開始から前記ポンプの動作停止までの間に、前記循環ラインにおける前記ポンプの下流側に設けられるフィルタの上流側と下流側との差圧が所与のしきい値以下となるように、前記ポンプと、前記循環ラインにおける前記フィルタの下流側に設けられる背圧弁とを制御する
     液供給方法。
  18.  前記循環流を立ち下げる工程は、
     前記ポンプの動作を停止させる際に、前記フィルタの上流側と下流側との差圧が、前記循環流を形成する工程における前記フィルタの上流側と下流側との最大差圧以下となるように、前記ポンプおよび前記背圧弁を制御する
     請求項17に記載の液供給方法。
  19.  前記循環流を立ち上げる工程は、
     前記循環ラインにおける前記処理液の循環を開始する際に、前記フィルタの上流側と下流側との差圧が、前記循環流を形成する工程における前記フィルタの上流側と下流側との最大差圧以下となるように、前記ポンプおよび前記背圧弁を制御する
     請求項17または18に記載の液供給方法。
PCT/JP2023/014327 2022-04-21 2023-04-07 液供給システム、液処理装置および液供給方法 WO2023204048A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022069916 2022-04-21
JP2022-069916 2022-04-21
JP2023003169 2023-01-12
JP2023-003169 2023-01-12

Publications (1)

Publication Number Publication Date
WO2023204048A1 true WO2023204048A1 (ja) 2023-10-26

Family

ID=88419898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014327 WO2023204048A1 (ja) 2022-04-21 2023-04-07 液供給システム、液処理装置および液供給方法

Country Status (2)

Country Link
TW (1) TW202401552A (ja)
WO (1) WO2023204048A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137367A (ja) * 2017-02-22 2018-08-30 株式会社Screenホールディングス 基板処理装置
JP2019041039A (ja) * 2017-08-28 2019-03-14 東京エレクトロン株式会社 液処理装置および液処理方法
JP2020126974A (ja) * 2019-02-06 2020-08-20 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2022003666A (ja) * 2020-06-23 2022-01-11 東京エレクトロン株式会社 液処理装置および液処理方法
WO2022009661A1 (ja) * 2020-07-06 2022-01-13 東京エレクトロン株式会社 液処理装置および液処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137367A (ja) * 2017-02-22 2018-08-30 株式会社Screenホールディングス 基板処理装置
JP2019041039A (ja) * 2017-08-28 2019-03-14 東京エレクトロン株式会社 液処理装置および液処理方法
JP2020126974A (ja) * 2019-02-06 2020-08-20 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2022003666A (ja) * 2020-06-23 2022-01-11 東京エレクトロン株式会社 液処理装置および液処理方法
WO2022009661A1 (ja) * 2020-07-06 2022-01-13 東京エレクトロン株式会社 液処理装置および液処理方法

Also Published As

Publication number Publication date
TW202401552A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
JP6385714B2 (ja) 基板液処理装置、基板液処理装置の洗浄方法及び記憶媒体
JP5173500B2 (ja) 処理液供給装置およびそれを備えた基板処理装置
US10500617B2 (en) Substrate liquid treatment apparatus, tank cleaning method and non-transitory storage medium
KR102591343B1 (ko) 액처리 장치 및 액처리 방법
JP2015220318A5 (ja)
WO2017135064A1 (ja) 基板処理装置および基板処理方法
US11433420B2 (en) Solution supply apparatus and solution supply method
WO2022009661A1 (ja) 液処理装置および液処理方法
US11798819B2 (en) Liquid processing apparatus and liquid processing method
JP5977058B2 (ja) 処理液供給装置および処理液供給方法
WO2023204048A1 (ja) 液供給システム、液処理装置および液供給方法
CN112185845A (zh) 液处理装置和液处理方法
JP6159651B2 (ja) フィルタ洗浄方法、液処理装置及び記憶媒体
JP2023115235A (ja) フィルタ洗浄システム、フィルタ洗浄方法および減圧機構
JP7520119B2 (ja) 液処理装置および液処理方法
TW201937120A (zh) 液體加熱裝置及洗淨系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791698

Country of ref document: EP

Kind code of ref document: A1